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Abstract. Network structure has a large impact on constant-selection evolutionary dynamics,3
with which multiple types of different fitnesses (i.e., strengths) compete on the network. Here we4
study constant-selection dynamics on two-layer networks in which the fitness of a node in one layer5
affects that in the other layer, under birth-death processes and uniform initialization, which are com-6
monly assumed. We show mathematically and numerically that two-layer networks are suppressors7
of selection, which suppresses the effects of the different fitness values between the different types on8
final outcomes of the evolutionary dynamics (called fixation probability), relative to the constituent9
one-layer networks. In fact, many two-layer networks are suppressors of selection relative to the most10
basic baseline, the Moran process. This result is in stark contrast with the results for conventional11
one-layer networks for which most networks are amplifiers of selection.12
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1. Introduction. Evolutionary dynamics is a mathematical modeling frame-16

work that allows us to investigate how the composition of different traits in a popula-17

tion changes over time under the assumption that fitter individuals tend to reproduce18

more often. For example, evolutionary game theory focuses on situations in which19

the fitness is determined by the game interaction between individuals, such as the20

prisoner’s dilemma game [1–3]. Another example, which we focus on in the present21

study, is evolutionary graph theory in which one investigates the effects of network22

structure and possibly its variation over time on evolution of traits [1, 4–7]. In par-23

ticular, studies of evolutionary games on networks have revealed that the conditions24

under which cooperation occurs in social dilemma games heavily depend on the net-25

work structure and that these conditions can be mathematically derived using random26

walk theory [8, 9].27

Let us consider the constant-selection evolutionary dynamics on networks. In28

this dynamics, different types are assigned with different constant fitness values, each29

node of the given network is occupied by either of these types, and the different types30

compete for survival. One can view this dynamics as competition between resident31

and mutant phenotypes in structured populations, or social dynamics of opinions in32

which people switch between different opinions, influenced by their neighbors in the33

network.34

A core property of constant-selection evolutionary dynamics on networks is the35

fixation probability. It is the likelihood that the mutant type initially occupying a36

single node of the network ultimately fixates, i.e., the mutant type eventually occupies37

all the nodes of the network, under the assumption that there is no mutation (i.e.,38

the type on any node does not spontaneously change during the dynamics except due39

to the influence by their neighbors). The fixation probability depends on the network40

structure, the fitness of the mutant type, denoted by r, relative to the fitness of the41

resident type, which is normalized to be 1, as well as the initial condition [1,4,6]. The42

mutant type is more likely to fixate if r is large. The extent to which the fixation43
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2 R. LIU AND N. MASUDA

probability of the mutant type increases with rising r hinges on the network structure.44

Some networks are known to be amplifiers of selection. By definition, in a network45

amplifying selection, a single mutant has a larger fixation probability than the case46

of the well-mixed population with the same number of nodes, which is equivalent to47

the so-called Moran process, at any r > 1, and has a lower fixation probability than48

the case of the Moran process at any r < 1. In amplifying networks, the effect of the49

difference between the mutant and resident type in terms of the fitness (i.e., r versus50

1) is magnified by the network. In contrast, other networks are suppressors of selection51

such that a single mutant has a lower fixation probability than the case of the Moran52

process at any r > 1 and vice versa at any r < 1. Under a standard assumption of the53

birth-death process with selection on the birth and uniform initialization, it has been54

shown that most networks are amplifiers of selection [10–12]. Suppressors of selection55

are rare [11,13].56

Studies have shown that the amplifiers of selection under the birth-death process57

are not necessarily common when we introduce additional factors into evolutionary58

graph dynamics models, such as the non-uniform initialization [14, 15], directed net-59

works [16], metapopulation models [17,18], temporal (i.e., time-varying) networks [19],60

and hypergraphs [20]. These results encourage us to study evolutionary dynamics on61

other extensions of conventional networks with an expectation that the dynamics on62

them may be drastically different from those on conventional networks.63

In the present study, we explore constant-selection evolutionary dynamics on mul-64

tilayer networks. Multilayer networks express the situation in which the individuals65

in a population are pairwise connected by different types of edges, such as different66

types of social relationships; the same pair of individuals may be directly connected67

by multiple types of edges [21–24]. In evolutionary dynamics on multilayer networks,68

each layer, corresponding to one type of edge, is a network, and evolutionary dynamics69

in different network layers are coupled in some manner. This setting has been inves-70

tigated for evolutionary social dilemma games. See [25] for a review. Earlier work71

considered two-layer networks in which the game interaction occurs in one network72

layer and imitation of strategies between players occurs in the other network layer.73

Cooperation is more enhanced in this model if the edges overlap more heavily between74

the two layers [26–29] or under other conditions [30,31] (but see [32]). When players75

are assumed to be engaged in game interactions, not just imitation of strategies, in76

the different layers, multilayer networks promote cooperation under some conditions77

such as positive degree correlation between two layers [33] and asynchronous strategy78

updating [34]. Cooperation can thrive in this class model even if each network layer79

in isolation does not support cooperation [35]. However, to the best of our knowl-80

edge, constant-selection evolutionary dynamics on multilayer networks have not been81

studied.82

We particularly use two-layer networks. We introduce two models of constant-83

selection dynamics in multilayer networks, which are analogues of an evolutionary84

game model in multilayer networks [35], and semi-analytically calculate the fixation85

probability of mutants for each network layer for two-layer networks with high sym-86

metry. Using martingale techniques, we also theoretically prove that the complete87

graph layer and the cycle graph layer in a two-layer network are suppressors of se-88

lection, and that the star graph layer and the complete bipartite layer in a two-layer89

network are more suppressing than the corresponding one-layer network. We numer-90

ically show that all the two-layer networks that we have numerically investigated are91

suppressors of selection, except for the coupled star networks. However, the coupled92

star networks are more suppressing than the one-layer star graphs. In this manner,93

This manuscript is for review purposes only.



FIXATION DYNAMICS ON MULTILAYER NETWORKS 3

we conclude that two-layer networks suppress the effects of selection.94

2. Moran process. The Moran process is a model of stochastic constant-95

selection evolutionary dynamics in a well-mixed finite population with N individuals.96

The population consists of two types of individuals, i.e., the resident and mutant,97

with constant fitness values, 1 and r, respectively. At each time step, an individual98

is selected as the parent for reproduction with probability proportional to its fitness99

and an individual dies uniformly at random. Then, the parent’s offspring replaces the100

dead individual. The fixation probability for a single mutant is given by [1, 4]101

(2.1) ρ =
1− 1/r

1− 1/rN
.102

Extensions of the Moran process to networks depend on specific update rules to be103

assumed. The network may be directed or weighted. A major variant of the updating104

rule that we consider in the present paper is the birth-death process with selection105

on the birth, or the Bd rule [6, 16, 36], which operates as follows. At each time106

step, an individual is selected as the parent, denoted by u, for reproduction with107

probability proportional to its fitness. This step is the same as in the Moran process.108

Then, u’s type replaces the type of a neighbor of u, which is selected with probability109

proportional to the edge weight between u and itself. We use the Bd rule because a110

majority of work on constant-selection evolutionary dynamics on networks do so [4,111

15,37–43]. However, death-birth processes also give important insights into constant-112

selection evolutionary dynamics [10, 36, 44, 45], and we briefly examine it with our113

two-layer network model in section 5.7.114

In a directed and weighted network, the edge direction indicates a one-way rela-115

tionship between the two nodes. A network is an isothermal graph if the weighted116

in-degree (i.e., sum of the edge weight over all incoming edges to a node) is the same117

for all nodes. Unweighted regular graphs are examples of isothermal graph. The118

fixation probability for an isothermal graph is given by Eq. (2.1) [1, 4].119

The fixation probability for a single mutant of the Moran process is 1/N at120

r = 1 [46–48]. Relative to the Moran process, many networks are either amplifiers or121

suppressors of selection [4, 10–13, 15, 39–42]. Amplifiers of selection are networks in122

which the fixation probability is larger than that for the Moran process (i.e., Eq. (2.1))123

for any r > 1 and smaller than that for the Moran process for any r < 1. Suppressors124

of selection are networks in which the fixation probability is smaller and larger than125

for the Moran process for any r > 1 and r < 1, respectively.126

3. Models. We introduce two models of constant-selection evolutionary dynam-127

ics for a population of N individuals in undirected and possibly weighted multilayer128

networks. The assumption of the undirected network is for simplicity, and it is129

straightforward to generalize the following models to the case of directed multilayer130

networks. We assume a two-layer network as the population structure, whereas it is131

straightforward to generalize the models to the case of more than two layers. Each132

layer is assumed to be a connected network with N nodes. It represents one of the133

two types of relationship between individuals, such as physical proximity contact or134

online social relationship in the case of human social networks. We call each node in135

one layer the replica node; there are 2N replica nodes in the entire two-layer network.136

Each replica node has a corresponding replica node in the other layer. A pair of the137

corresponding replica nodes, one in each layer, represents an individual (see Figure 1138

for a schematic). Each edge within a layer represents direct connectivity between two139

replica nodes in the same layer. Each pair of individuals may be adjacent to each140
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other in both layers, just one layer, or neither layer. For example, two people may141

directly interact both in person and online, or in only one of the two ways.142

Fig. 1. An example of a two-layer network. Each individual occupies a replica node in layer 1
and the corresponding replica node in layer 2, as indicated by dashed lines. A resident replica node
and a mutant replica node are shown in blue and red, respectively.

Both models extend the Bd process on conventional (i.e., mono-layer) networks143

and the Moran process in well-mixed populations to the case of two-layer networks.144

We assume that each of the 2N replica nodes takes either the resident or mutant145

type at any discrete time. The resident and mutant have fitness 1 and r, respectively,146

which are constant over time. We define the fitness of each individual by the sum of147

the fitness of the corresponding replica nodes in both layers [35]. In other words, the148

individual has fitness 2 if it is of the resident type in both layers, r + 1 if it is of the149

mutant type in one layer and the resident type in the other layer, and 2r if it is of the150

mutant type in both layers. We allow each individual to adopt different types in the151

opposite layers (i.e., the resident type in one layer and the mutant type in the other152

layer) because they may behave differently in different types of social relationship.153

Furthermore, success or failure of an individual in one type of social relationship may154

affect the same in the other domain, which motivates us to couple the fitness of each155

individual across the two layers [35].156

The model assumptions up to this point are shared by models 1 and 2. Next, in157

model 1, in each time step, we select one individual (i.e., parent) for reproduction with158

probability proportional to its fitness. Then, we select one of the two layers to operate159

the Bd process with the equal probability, i.e., 1/2. Then, the parent selects one of160

its neighbors in the selected layer with probability proportional to the weight of the161

edge between the two individuals. Finally, the parent converts the type of the selected162

neighbor into the parent’s type in the selected layer. This concludes one time step of163

the Bd process. We repeat this procedure until the entire population settles into an164

absorbing state in which all individuals are either of the resident or mutant type in165

each layer. It should be noted that the final state in the two layers may be different,166

i.e., resident in one layer and mutant in the other layer. This phenomenon may167

represent the situation in which two opinions or behaviors, O1 and O2, are competing168
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in one layer, and two others, O3 and O4, are competing in the other layer. Then, all169

individuals may adopt the combination of O1 and O3 in the end, or the combination170

of O1 and O4, for example.171

In each time step in model 2, we first select an individual i as the parent with172

probability proportional to its fitness in each time step. This process is the same as173

that in model 1. However, differently from model 1, we then do not select the layer174

but draw a neighbor of i in layer 1, denoted by j, with probability proportional to175

the edge weight w
[1]
ij , and j copies i’s type. At the same time, we select an individual176

k as another parent with probability proportional to its fitness. Then, we select a177

neighbor of k in layer 2, denoted by `, with probability proportional to the edge178

weight w
[2]
k` , and ` copies k’s type. Individual k may be the same as individual i. This179

model is the same as the main model proposed in [35] except that their model used180

a death-birth instead of birth-death process and that the fitness for each individual181

is determined by two-player games in their model and therefore not constant for each182

type in general. We consider model 2 in addition to model 1 because model 2 is a183

direct extension of the model proposed in [35]. On the other hand, model 1 is more184

amenable to mathematical analysis of fixation dynamics than model 2.185

4. Theoretical results.186

4.1. Neutral drift. In this section, we focus on the case of neutral mutants, i.e.,187

r = 1. The fixation probability for the neutral mutant type when there is initially188

just one mutant node selected uniformly at random must be equal to 1/N for one to189

be able to discuss amplifiers and suppressors of selection. We start by proving this190

property for two-layer networks.191

Theorem 4.1. Consider model 1 under r = 1. When there are initially i mutants192

selected uniformly at random from the N replica nodes in one layer, the fixation193

probability for the mutant for that layer is equal to i/N .194

Proof. When r = 1, the fitness of each individual is always equal to 2. Then, the195

Bd process in layer 1 is independent of that in layer 2. Therefore, the proof is exactly196

the same as that for conventional networks as shown in [20,46–48].197

Remark 4.2. This theorem also holds true for model 2 with the proof being un-198

changed.199

4.2. Complete graph layer in a two-layer network is always a suppressor200

of selection. In this section, we show that the complete graph layer in an arbitrary201

two-layer network is always a suppressor of selection under model 1. To this end, we202

let ξt ∈ {0, 1}2N , with t ∈ {0, 1, . . .}, be the state of the Bd process on the two-layer203

network at time t. The initial condition is given by ξ0. We conveniently define t as the204

number of the state changes in layer 1, which we assumed to be the complete graph.205

In other words, when counting t, we ignore the updating steps in which a replica node206

in layer 1 is selected as the parent but does not induce the actual change of the state207

of the network (because the child node has the same type as that of the parent) or208

a replica node in layer 2 is selected as the parent (because there is then no change209

in the state in layer 1). We consider model 1 in the following text unless we state210

otherwise.211

Lemma 4.3. Consider the Bd process on the two-layer network in which layer 1212

is the unweighted complete graph and layer 2 is an arbitrary connected network. We213

let Xt be the number of mutants in the first layer at time t and set Yt ≡ r−Xt . Then,214

sequence {Yn} is a submartingale for any r > 0.215
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Proof. Let {Bt} be the filtration, i.e., an increasing sequence of the σ-algebras,216

generated by the Bd process on the two-layer network. We obtain Xt+1 = Xt + 1217

or Xt+1 = Xt − 1 because we count the time t if and only if the number of the218

mutants changes in the complete graph layer. For an arbitrary state of the two-layer219

network with Xt mutants, ξt, we denote by p(ξt) and q(ξt) the probabilities with220

which Xt+1 = Xt + 1 and Xt+1 = Xt − 1, respectively. Note that p(ξt) + q(ξt) = 1.221

To calculate p(ξt) and q(ξt), we denote by N1 the number of individuals that222

have the mutant type in both layers, by N2 the number of individuals that have223

the mutant type in layer 1 and the resident type in layer 2, by N3 the number of224

individuals that have the resident type in layer 1 and the mutant type in layer 2, and225

by N4 the number of individuals that have the resident type in both layers. Note that226

N1 +N2 +N3 +N4 = N . In a single time step of the original Bd process, Xt increases227

by one with probability228

(4.1) p′ =
2rN1 + (r + 1)N2

2rN1 + (r + 1)(N2 +N3) + 2N4
· 1

2
· N3 +N4

N1 +N2 +N3 +N4 − 1
229

and decreases by one with probability230

(4.2) q′ =
(r + 1)N3 + 2N4

2rN1 + (r + 1)(N2 +N3) + 2N4
· 1

2
· N1 +N2

N1 +N2 +N3 +N4 − 1
.231

By combining Eqs. (4.1) and (4.2) with p(ξt)/q(ξt) = p′/q′ and p(ξt) + q(ξt) = 1, we232

obtain233

p(ξt) =
r

r + 1
− ε,(4.3)234

q(ξt) =
1

r + 1
+ ε,(4.4)235

236

where237

(4.5) ε =
(r − 1) [rN1N3 + (r + 1)N2N3 +N2N4]

(r + 1) {[2rN1 + (r + 1)N2] (N3 +N4) + [(r + 1)N3 + 2N4] (N1 +N2)}
.238

We obtain239

E[Yt+1|Bt] =p(ξt)r
−(Xt+1) + q(ξt)r

−(Xt−1)240

=

[(
r

r + 1
− ε
)

1

r
+

(
1

r + 1
+ ε

)
r

]
Yt241

=

[
1 +

(
r − 1

r

)
ε

]
Yt,(4.6)242

243

where E[·|·] represents the conditional expectation. If r > 1, we obtain E[Yt+1|Bt] ≥244

Yt because r − r−1 > 0 and ε ≥ 0. If r < 1, we also obtain E[Yt+1|Bt] ≥ Yt because245

r − r−1 < 0 and ε ≤ 0. Therefore, in both cases, Yt is a submartingale. If r = 1, we246

obtain ε = 0 such that Yt is a martingale, which is a submartingale.247

Remark 4.4. Our choice of Yt is inspired by the construction of a martingale for248

the biased random walk on Z (see, e.g., [49, 50]) and its application to constant-249

selection evolutionary dynamics [14,43,51].250

Theorem 4.5. Consider the Bd process on the two-layer network in which layer251

1 is the unweighted complete graph and layer 2 is an arbitrary connected network.252

Then, the complete graph layer is a suppressor of selection.253
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Proof. Sequence {Yt} is a submartingale and bounded because r−N ≤ Yt ≤ 1254

∀t when r ≥ 1 and 1 ≤ Yt ≤ r−N ∀t when r ≤ 1. Therefore, Yt converges almost255

surely and E[Y∞] is finite owing to the martingale convergence theorem [49,50]. The256

present Bd process has four absorbing states in which all the nodes in each layer are257

unanimously occupied by the resident or mutant. The two absorbing states in which258

all the nodes in layer 1 are occupied by the resident yields Xt = 0. The other two259

absorbing states in which all the nodes in layer 1 are occupied by the mutant yields260

Xt = N . Because an absorbing state is ultimately reached with probability 1,261

(4.7) E[Y∞] ≥ Y0262

yields263

(4.8) x(ξ0)r−N + [1− x(ξ0)] r−0 ≥ r−X0 ,264

where x(ξ0) is the fixation probability of the mutant under an initial condition ξ0265

with X0 mutants in layer 1; therefore, there are initially N −X0 residents in the same266

layer. Equation (4.8) yields267

(4.9)

{
x(ξ0) ≤ 1−rX0

1−rN (r ≥ 1),

x(ξ0) ≥ 1−rX0

1−rN (r < 1).
268

Our goal is to exclude the equalities in Eq. (4.9) for 1 ≤ X0 ≤ N − 1 because269

then it will hold true that the complete graph layer is a suppressor of selection. To270

show this, we distinguish among the following three cases.271

To state the first case, we note that ε = 0 for r 6= 1 and 1 ≤ X0 ≤ N − 1 if and272

only if N2 = N3 = 0. Therefore, if the initial condition ξ0 satisfies N2 > 0 or N3 > 0,273

then Eq. (4.6) implies that274

(4.10) E[Y1|ξ0] > Y0275

for r 6= 1. By combining E[Y2|Bt] ≥ Y1, which follows from Lemma 4.3, with276

Eq. (4.10), we obtain E[Y2|ξ0] > Y0.277

The second and third cases concern the initial condition ξ0 satisfying N2 = N3 = 0278

such that each individual has the same type (i.e., resident or mutant) in both layers.279

Then, we obtain E[Y1|ξ0] = Y0 because ε = 0. As the second case, we consider280

the situation in which ξ0 satisfies N1 ≤ N − 2 in addition to N2 = N3 = 0. In this281

case, the network’s state after the first state transition, ξ1, satisfies (N1, N2, N3, N4) =282

(N1, 1, 0, N−N1−1) with probability p(ξ0) = r/(r+1). Conditioned on this transition,283

we obtain E[Y2|ξ1] > Y1 for r 6= 1, which is an adaptation of Eq. (4.10). We obtain284

E[Y2|ξ1] > Y1 because this particular ξ1 yields N2 = 1, which implies (r − r−1)ε > 0.285

If we start from the same ξ0 and a different ξ1 is realized with probability 1−p(ξ0), we286

still obtain E[Y2|ξ1] ≥ Y1 owing to Lemma 4.3. Therefore, we obtain E[Y2|ξ0] > Y0287

when ξ0 satisfies N1 ≤ N − 2 and N2 = N3 = 0.288

As the third case, we consider the situation in which ξ0 satisfies N1 = N − 1,289

which implies that N2 = N3 = 0. In this case, ξ1 satisfies (N1, N2, N3, N4) = (N1 −290

2, 0, 1, N − N1) with probability q(ξ0) = 1/(r + 1). Conditioned on this transition,291

we obtain E[Y2|ξ1] > Y1 for r 6= 1 because this particular ξ1 yields N3 = 1, which292

implies (r− r−1)ε > 0. If we start from the same ξ0 and a different ξ1 is realized with293

probability 1 − q(ξ0), we still obtain E[Y2|ξ1] ≥ Y1 owing to Lemma 4.3. Therefore,294

we obtain E[Y2|ξ0] > Y0 when ξ0 satisfies N1 = N − 1.295
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Because E[Y2|ξ0] > Y0 holds true in all the three cases, we obtain E[Y2|B0] > Y0,296

which together with E[Yt+1|Bt] ≥ Yt, ∀t ∈ {2, 3, . . .} leads to Eq. (4.7) with the strict297

inequality. Therefore, Eqs. (4.8) and (4.9) hold true with the strict inequality when298

r 6= 1.299

4.3. Cycle graph layer in a two-layer network is always a suppressor300

of selection. We use the same method as that for the complete graph layer to show301

that Lemma 4.3 also holds true when one replaces the complete graph layer by the302

cycle graph. The cycle graph, which we assumed to form layer 1, is defined by w
[1]
ij = 1303

if j = i±1 mod N , and w
[1]
ij = 0 otherwise. For simplicity, we assume that the replica304

nodes of the mutant type are initially consecutive (i.e., forming just one connected305

component of mutants) in the cycle graph layer.306

Lemma 4.6. Consider the Bd process on the two-layer network in which layer 1307

is the unweighted cycle graph and layer 2 is an arbitrary connected network. We let308

Xt the number of mutants in layer 1 at time t and set Yt ≡ r−Xt . The individuals of309

the mutant type are assumed to be initially located at consecutive replica nodes on the310

cycle. Then, sequence {Yn} is a submartingale for any r > 0.311

We prove Lemma 4.6 in section S1.312

Theorem 4.7. Consider the Bd process on the two-layer network in which layer313

1 is the unweighted cycle graph and layer 2 is an arbitrary connected network. Then,314

the cycle graph layer is a suppressor of selection, given that the individuals of the315

mutant type are initially located at consecutive replica nodes on the cycle.316

We prove Theorem 4.7 in section S2.317

4.4. Complete bipartite graph layer in a two-layer network. In this sec-318

tion, we consider the two-layer network in which layer 1 is the unweighted complete319

bipartite graph and layer 2 is an arbitrary connected network. The complete bipartite320

graph, denoted by KN1,N2
, where N1 + N2 = N , consists of two disjoint subsets of321

nodes V1 and V2 with N1 and N2 nodes, respectively. It is defined by w
[1]
ij = 1 if i ∈ V1322

and j ∈ V2, or i ∈ V2 and j ∈ V1, and w
[1]
ij = 0 otherwise. We construct a similar323

proof to that for the complete graph or cycle graph layer to show that the complete324

bipartite graph layer in an arbitrary two-layer network is more suppressing than the325

one-layer complete bipartite graph.326

Lemma 4.8. Consider the Bd process on the two-layer network in which layer327

1 is the unweighted complete bipartite graph and layer 2 is an arbitrary connected328

network. We let Xt = [X1,t, X2,t], where X1,t and X2,t are the number of nodes in V1329

and V2, respectively, that are occupied by the mutant in layer 1 at time t. We define330

Yt ≡ hX1,t
1 hX2,t

2 , where331

h1 =
N1 +N2r

N1r2 +N2r
,(4.11)332

h2 =
N2 +N1r

N2r2 +N1r
.(4.12)333

334

Then, sequence {Yn} is a submartingale for any r > 0.335

We prove Lemma 4.8 in section S3.336

Remark 4.9. Our choice of Yt is inspired by the application of martingales to the337

Bd process in one-layer complete bipartite graphs [43].338
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Theorem 4.10. Consider the Bd process on the two-layer network in which layer339

1 is the unweighted complete bipartite graph and layer 2 is an arbitrary connected340

network. Then, the complete bipartite graph layer is more suppressing than the one-341

layer complete bipartite graph.342

Proof. Equation (4.7) holds true in the present case as well. It is equivalent to343

(4.13) x(ξ0)hN1
1 hN2

2 + [1− x(ξ0)]h01h
0
2 ≥ h

X1,0

1 h
X2,0

2 ,344

where x(ξ0) is the fixation probability of the mutant type under an initial condition345

ξ0 with X1,0 mutants on the nodes in V1 and X2,0 mutants on the nodes in V2; there346

are initially X1,0 + X2,0 mutants and N − (X1,0 + X2,0) residents in the complete347

bipartite graph layer. Equation (4.13) yields348

(4.14)


x(ξ0) ≤ h

X1,0
1 h

X2,0
2 −1

h
N1
1 h

N2
2 −1

(r ≥ 1),

x(ξ0) ≥ h
X1,0
1 h

X2,0
2 −1

h
N1
1 h

N2
2 −1

(r < 1).

349

To exclude the equalities in Eq. (4.14) for 1 ≤ X1,0 + X2,0 ≤ N − 1, we distinguish350

among 12 cases that are different in terms of the number of individuals in V1 and that351

in V2 with different fitness values. We obtain352

(4.15) E[Y3|ξ0] > Y0353

for all the 12 cases; see section S4 for the proof.354

Because Eq. (4.15) holds true in all the cases, we obtain E[Y3|B0] > Y0, which355

together with E[Yt+1|Bt] ≥ Yt, ∀t ∈ {3, 4, . . .} leads to Eq. (4.7) with the strict356

inequality. Therefore, Eqs. (4.13) and (4.14) hold true with the strict inequality when357

r 6= 1, proving that the complete bipartite graph layer in a two-layer network is more358

suppressing than the mono-layer complete bipartite graph.359

Remark 4.11. If N1 = 1 and N2 = N − 1, the complete bipartite graph layer360

reduces to a star graph. Therefore, Lemma 4.8 and Theorem 4.10 also hold true when361

one layer of the two-layer network is a star graph.362

Remark 4.12. All lemmas and theorems also hold true for model 2 with the proof363

being essentially unchanged (see section S4 for more).364

5. Semi-analytical results for two-layer networks with high symmetry.365

5.1. Exact computation of the fixation probability in two-layer net-366

works. In this section, we explain how to exactly calculate the fixation probability367

for the mutant type when there is initially one replica node of mutant type that is se-368

lected uniformly at random in layer 1, and one replica node of mutant type in layer 2.369

This initial state is the same as that assumed in [35]. Let s
[1]
i ∈ {0, 1} and s

[2]
i ∈ {0, 1}370

be individual i’s type in layer 1 and layer 2, respectively, where values 0 and 1 repre-371

sent resident and mutant, respectively. Then, the state of the evolutionary dynamics372

is specified by a 2N -dimensional binary vector s = (s
[1]
1 , . . . , s

[1]
N , s

[2]
1 , . . . , s

[2]
N ). There-373

fore, there are 22N states in total. We number the states from 1 to 22N by a bijective374

map, denoted by ϕ, given by375

ϕ : S → {1, . . . , 22N},376

s 7→ ϕ(s),(5.1)377378

This manuscript is for review purposes only.



10 R. LIU AND N. MASUDA

where S is the set of all states. Let P = [pi,j ] denote the 22N × 22N transition379

probability matrix, where pi,j is the probability that the state moves from the ith state380

to the jth state in a time step of the birth-death process. Denote the probability that381

the mutant fixates in layer 1 by x
[1]
i starting from the ith state, where i ∈ {1, . . . , 22N}.382

Similarly, denote the probability that the mutant fixates in layer 2 by x
[2]
i starting383

from the ith state. We can obtain x
[1]
i by solving the linear system384

(5.2) x[1] = Px[1],385

where x[1] = (x
[1]
1 , . . . , x

[1]

22N
)>, and > represents the transposition, with bound-386

ary conditions x
[1]
ϕ((1,...,1,1,...,1)) = 1, x

[1]
ϕ((1,...,1,0,...,0)) = 1, x

[1]
ϕ((0,...,0,1,...,1)) = 0, and387

x
[1]
ϕ((0,...,0,0,...,0)) = 0. Similarly, we can obtain x

[2]
i by solving the same linear system388

(5.3) x[2] = Px[2],389

where x[2] = (x
[2]
1 , . . . , x

[2]

22N
)>, with boundary conditions x

[2]
ϕ((1,...,1,1,...,1)) = 1,390

x
[2]
ϕ((1,...,1,0,...,0)) = 0, x

[2]
ϕ((0,...,0,1,...,1)) = 1, and x

[2]
ϕ((0,...,0,0,...,0)) = 0. Let C ⊂ S be391

the set of initial states that contain only one replica node of mutant type in layer 1392

and one replica node of mutant type in layer 2. The cardinality of C is N2. Denote393

the numerical labels of states in C by {k1, . . . , kN2}. Then, the fixation probability394

for the mutant type in layer 1 and 2 starting with the initial configuration with just395

one mutant in each layer, denoted by x
[1]
C and x

[2]
C , respectively, is given by396

x
[1]
C =

∑
i∈{k1,...,kN2}

x
[1]
i

N2
,(5.4)397

x
[2]
C =

∑
i∈{k1,...,kN2}

x
[2]
i

N2
.(5.5)398

399

For an arbitrary two-layer network, we need to solve a linear system with 22N −4400

unknowns to obtain the fixation probability of the mutant type. This is computation-401

ally prohibitive when N is large. Although we can exploit that x
[1]

ϕ((0,...,0,s
[2]
1 ,...,s

[2]
N ))

= 0402

and x
[1]

ϕ((1,...,1,s
[2]
1 ,...,s

[2]
N ))

= 1 for any (s
[2]
1 , . . . , s

[2]
N ) ∈ {0, 1}N and similar relationships403

for x[2], the number of unknowns still scales with 22N as N increases. Therefore,404

to drastically reduce the dimension of the linear system to be solved, we analyze405

two-layer networks with a highly symmetric structure for each layer, in which all or406

most replica nodes are structurally equivalent to other replica nodes. This strategy has407

been used for exactly calculating fixation probabilities on conventional networks [1,4],408

hypergraphs [20], and temporal networks [19].409

In the following text, we consider model 1 except in section 5.8, where we briefly410

consider model 2.411

5.2. Coupled complete graphs. We first consider the case in which each layer412

is the complete graph with N nodes. Because all nodes in each layer are structurally413

equivalent to each other, we only need to track the number of individuals with the414

mutant type in both layers, denoted by i1, the number of individuals with the mutant415

type in layer 1 and the resident type in layer 2, denoted by i2, the number of individuals416
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with the resident type in layer 1 and the mutant type in layer 2, denoted by i3, and the417

number of individuals with the resident type in both layers, denoted by i4. One can418

specify the state of the evolutionary dynamics by a 4-tuple i = (i1, i2, i3, i4), where419

i1, i2, i3, i4 ∈ {0, 1, . . . , N} and i1 + i2 + i3 + i4 = N . Therefore, there are
(
N+3
3

)
states420

in total, where
()

represents the binomial coefficient. For visual clarity, we denote the421

transition probability matrix by P = [pi→j ], where pi→j is the probability that the422

state moves from i = (i1, i2, i3, i4) to j = (j1, j2, j3, j4) in a time step. Assume that423

the current state is i = (i1, i2, i3, i4). There are nine types of events that can occur424

next.425

In the first type of event, an individual that has the mutant type in layer 1426

(and either type in layer 2) is selected as the parent, which occurs with probability427

[2ri1+(1+r)i2]/[2ri1+(1+r)(i2+i3)+2i4], and layer 1 is selected for the reproduction428

event with probability 1/2. Then, we select a neighbor of the parent in layer 1 for429

death, and the selected individual, which we refer to as the child, has the resident type430

in layer 1 and the mutant type in layer 2 with probability i3/(N −1). Then, the child431

copies the parent’s type in layer 1. The state after this event is (i1 + 1, i2, i3 − 1, i4).432

Therefore, we obtain433

(5.6) p(i1,i2,i3,i4)→(i1+1,i2,i3−1,i4) =
2ri1 + (1 + r)i2

2ri1 + (1 + r)(i2 + i3) + 2i4
· 1

2
· i3
N − 1

.434

In the second type of event, an individual that has the mutant type in layer 1435

is selected as the parent, which occurs with probability [2ri1 + (1 + r)i2]/[2ri1 +436

(1 + r)(i2 + i3) + 2i4], and layer 1 is selected for reproduction with probability 1/2.437

Then, we select a neighbor of the parent in layer 1 as the child, and the child has the438

resident type in both layers, which occurs with probability i4/(N−1). Then, the child439

copies the parent’s type in layer 1. The state after this event is (i1, i2 + 1, i3, i4 − 1).440

Therefore, we obtain441

(5.7) p(i1,i2,i3,i4)→(i1,i2+1,i3,i4−1) =
2ri1 + (1 + r)i2

2ri1 + (1 + r)(i2 + i3) + 2i4
· 1

2
· i4
N − 1

.442

In the third type of event, an individual that has the resident type in layer 1 is443

selected as the parent, which occurs with probability [(1 + r)i3 + 2i4]/[2ri1 + (1 +444

r)(i2 + i3) + 2i4], and layer 1 is selected for reproduction with probability 1/2. Then,445

we select a neighbor of the parent in layer 1 as the child, and the child has the mutant446

type in both layers, which occurs with probability i1/(N − 1). The state after this447

event is (i1 − 1, i2, i3 + 1, i4). Therefore, we obtain448

(5.8) p(i1,i2,i3,i4)→(i1−1,i2,i3+1,i4) =
(1 + r)i3 + 2i4

2ri1 + (1 + r)(i2 + i3) + 2i4
· 1

2
· i1
N − 1

.449

In the fourth type of event, an individual that has the resident type in layer450

1 is selected as the parent, which occurs with probability [(1 + r)i3 + 2i4]/[2ri1 +451

(1 + r)(i2 + i3) + 2i4], and layer 1 is selected for reproduction with probability 1/2.452

Then, we select a neighbor of the parent in layer 1 as the child, and the child has the453

mutant type in layer 1 and the resident type in layer 2, which occurs with probability454

i2/(N − 1). The state after this event is (i1, i2 − 1, i3, i4 + 1). Therefore, we obtain455

(5.9) p(i1,i2,i3,i4)→(i1,i2−1,i3,i4+1) =
(1 + r)i3 + 2i4

2ri1 + (1 + r)(i2 + i3) + 2i4
· 1

2
· i2
N − 1

.456
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In the fifth type of event, an individual that has the mutant type in layer 2 is457

selected as the parent, which occurs with probability [2ri1 + (1 + r)i3]/[2ri1 + (1 +458

r)(i2 + i3) + 2i4], and layer 2 is selected for reproduction with probability 1/2. Then,459

we select a neighbor of the parent in layer 2 as the child, and the child has the460

mutant type in layer 1 and the resident type in layer 2, which occurs with probability461

i2/(N − 1). The state after this event is (i1 + 1, i2 − 1, i3, i4). Therefore, we obtain462

(5.10) p(i1,i2,i3,i4)→(i1+1,i2−1,i3,i4) =
2ri1 + (1 + r)i3

2ri1 + (1 + r)(i2 + i3) + 2i4
· 1

2
· i2
N − 1

.463

In the sixth type of event, an individual that has the mutant type in layer 2 is464

selected as the parent, which occurs with probability [2ri1 + (1 + r)i3]/[2ri1 + (1 +465

r)(i2 + i3) + 2i4], and layer 2 is selected for reproduction with probability 1/2. Then,466

we select a neighbor of the parent in layer 2 as the child, and the child has the resident467

type in both layers, which occurs with probability i4/(N − 1). The state after this468

event is (i1, i2, i3 + 1, i4 − 1). Therefore, we obtain469

(5.11) p(i1,i2,i3,i4)→(i1,i2,i3+1,i4−1) =
2ri1 + (1 + r)i3

2ri1 + (1 + r)(i2 + i3) + 2i4
· 1

2
· i4
N − 1

.470

In the seventh type of event, an individual that has the resident type in layer 2471

is selected as the parent, which occurs with probability [(1 + r)i2 + 2i4]/[2ri1 + (1 +472

r)(i2 + i3) + 2i4], and layer 2 is selected for reproduction with probability 1/2. Then,473

we select a neighbor of the parent in layer 2 as the child, and the child has the mutant474

type in both layers, which occurs with probability i1/(N − 1). The state after this475

event is (i1 − 1, i2 + 1, i3, i4). Therefore, we obtain476

(5.12) p(i1,i2,i3,i4)→(i1−1,i2+1,i3,i4) =
(1 + r)i2 + 2i4

2ri1 + (1 + r)(i2 + i3) + 2i4
· 1

2
· i1
N − 1

.477

In the eighth type of event, an individual that has the resident type in layer478

2 is selected as the parent, which occurs with probability [(1 + r)i2 + 2i4]/[2ri1 +479

(1 + r)(i2 + i3) + 2i4], and layer 2 is selected for reproduction with probability 1/2.480

Then, we select a neighbor of the parent in layer 2 as the child, and the child has the481

resident type in layer 1 and the mutant type in layer 2, which occurs with probability482

i3/(N − 1). The state after this event is (i1, i2, i3 − 1, i4 + 1). Therefore, we obtain483

(5.13) p(i1,i2,i3,i4)→(i1,i2,i3−1,i4+1) =
(1 + r)i2 + 2i4

2ri1 + (1 + r)(i2 + i3) + 2i4
· 1

2
· i3
N − 1

.484

If any other event occurs, the state remains unchanged. Therefore, we obtain485

p(i1,i2,i3,i4)→(i1,i2,i3,i4) = 1− p(i1,i2,i3,i4)→(i1+1,i2,i3−1,i4) − p(i1,i2,i3,i4)→(i1,i2+1,i3,i4−1)486

− p(i1,i2,i3,i4)→(i1−1,i2,i3+1,i4) − p(i1,i2,i3,i4)→(i1,i2−1,i3,i4+1)487

− p(i1,i2,i3,i4)→(i1+1,i2−1,i3,i4) − p(i1,i2,i3,i4)→(i1,i2,i3+1,i4−1)488

− p(i1,i2,i3,i4)→(i1−1,i2+1,i3,i4) − p(i1,i2,i3,i4)→(i1,i2,i3−1,i4+1).(5.14)489490

By slightly adapting the notations introduced in section 5.1, we denote by x
[1]
i491

and x
[2]
i the fixation probability of the mutant type in layer 1 and layer 2, respectively,492

when the initial state is i = (i1, i2, i3, i4). To obtain fixation probabilities in layer 1,493

we solve Eq. (5.2), where x[1] is a column vector of which each entry is the fixation494
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probability for the mutant type starting from one of the
(
N+3
3

)
initial states. The495

boundary conditions are given by x
[1]
(N,0,0,0) = 1, x

[1]
(0,N,0,0) = 1, x

[1]
(0,0,N,0) = 0, and496

x
[1]
(0,0,0,N) = 0. To obtain fixation probabilities in layer 2, we solve Eq. (5.3) with497

boundary conditions x
[2]
(N,0,0,0) = 1, x

[2]
(0,N,0,0) = 0, x

[2]
(0,0,N,0) = 1, and x

[2]
(0,0,0,N) = 0.498

There are two initial states with one mutant in each layer, i.e., (1, 0, 0, N − 1) and499

(0, 1, 1, N − 2). These initial states occur with probability 1/N and (N − 1)/N ,500

respectively. Therefore, we obtain501

(5.15) x
[`]
C =

1

N
x
[`]
(1,0,0,N−1) +

N − 1

N
x
[`]
(0,1,1,N−2), ` ∈ {1, 2},502

where we remind that x
[`]
C is the fixation probability for the mutant type in layer `503

when there is initially one mutant in each layer.504

We obtained x
[1]
C (= x

[2]
C ) by numerically solving Eq. (5.2) for N = 6 and N = 30.505

The results shown in Figure 2(a) and 2(b) for N = 6 and N = 30, respectively,506

indicate that these coupled complete graphs are suppressors of selection. This result507

is consistent with Theorem 4.5.508
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r
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r

3.58018435
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×10 2
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Fig. 2. Fixation probability for coupled complete graphs under models 1 and 2. (a) N = 6. (b)
N = 30. The insets to the left within each panel magnify the results for r values less than and close
to r = 1. Those to the right within each panel magnify the results for r values greater than and
close to r = 1.

5.3. Combination of the complete graph and star graph. Next, we con-509

sider the two-layer network in which layer 1 is the complete graph and layer 2 is the510

star graph. All the N nodes in the complete graph are structurally equivalent, and so511

are all the N − 1 leaf nodes (i.e., nodes with degree 1) in the star graph. Therefore,512

we represent the state of the evolutionary dynamics by i = (h1, h2, i1, i2, i3, i4), i.e.,513

an ordered 6-tuple, where h1 = 0 or 1 if the individual that is the hub node (i.e.,514

the replica node with degree N − 1) in layer 2 is of resident or mutant type in layer515

1, respectively; h2 = 0 or 1 if the hub node in layer 2 is of the resident or mutant516

type, respectively; i1 is the number of the remaining N − 1 individuals that have the517

mutant type in both layers, i2 is the number of the remaining N − 1 individuals that518

have the mutant type in layer 1 and the resident type in layer 2; i3 is the number of519
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the remaining N −1 individuals that have the resident type in layer 1 and the mutant520

type in layer 2; i4 is the number of the remaining N − 1 individuals that have the521

resident type in both layers. There are 22
(
N+2
3

)
states in total.522

Similarly to the case in which both layers are the complete graph, we distinguish523

nine types of state transitions from each state. We derive the probability of each state524

transition in section S5.525

We use the same numerical method for solving Eqs. (5.2) and (5.3) as that for526

the coupled complete graphs. We show the fixation probability for the mutant type527

for N = 6 and N = 30 in Figure 3(a) and 3(b), respectively. The figure suggests that528

the two-layer networks composed of a complete graph layer and a star graph layer are529

suppressors of selection.530
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Fig. 3. Fixation probability for two-layer networks composed of a complete graph layer and a
star graph layer under model 1. (a) N = 6. (b) N = 30.

5.4. Coupled star graphs. Here we consider the case in which each layer is the531

star graph with N nodes. We assume that the hub replica node in layer 1 corresponds532

to a leaf replica node in layer 2, and vice versa. Then, we can specify the network’s533

state by an ordered 8-tuple i = (h1, h2, h3, h4, i1, i2, i3, i4), where h1 = 0 or 1 if the534

hub node in layer 1 is of resident or mutant type, respectively; h2 = 0 or 1 if the535

individual that is the hub node in layer 1 is of resident or mutant type in layer 2,536

respectively; h3 = 0 or 1 if the individual that is the hub node in layer 2 is of resident537

or mutant type in layer 1, respectively; h4 = 0 or 1 if the hub node in layer 2 is of538

resident or mutant type, respectively; We reuse i1, i2, i3, and i4 defined in section 5.3539

with a slight difference. Here, we count i1, i2, i3, and i4 among the N − 2 individuals540

that are leaf nodes in both layers. There are 24
(
N+1
3

)
states in total.541

We distinguish all types of state transitions from each state and derive the proba-542

bility of each state transition in section S6. The number of the type of state transitions543

varies between seven and nine and depends on the current state.544

We use the same numerical method for solving Eqs. (5.2) and (5.3) as that for the545

coupled complete graphs. We show the fixation probability for the mutant type for546

N = 6 and N = 30 in Figure 4(a) and 4(b), respectively. Figure 4 indicates that the547

coupled star graph is a suppressor of selection when N = 6, but is neither a suppressor548

nor an amplifier of selection when N = 30. However, in both cases, the coupled star549
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graph is more suppressing than the one-layer star graph, which is a strong amplifier550

of selection. This last result is consistent with Theorem 4.10 and Remark 4.11.551
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Fig. 4. Fixation probability for coupled star graphs under model 1. We compare the results for
the coupled star graphs, shown in blue, with those for the Moran process, shown in black, and those
for the single-layer star graphs, shown in green. (a) N = 6. (b) N = 30. The inset in (b) magnifies
the result for r values less than and close to r = 1.

5.5. Combination of the complete graph and complete bipartite graph.552

Consider two-layer networks in which layer 1 is the complete graph and layer 2 is the553

complete bipartite graph KN1,N2
, where N1 + N2 = N . The complete bipartite554

graph KN1,N2
has two disjoint subsets of nodes V1 and V2 with N1 and N2 nodes,555

respectively. Each node in V1 is adjacent to each node in V2. We can describe the state556

of the evolutionary dynamics by an 8-tuple. For each 8-tuple state, we distinguish 17557

types of transition events and can derive the transition probability of each state to558

each state. We show the calculations of the transition probability matrix in section S7.559

We use the same numerical method to solve Eqs. (5.2) and (5.3) for this two-layer560

network. We show the fixation probability for N = 6 in Figure 5(a) and 5(b), and561

N = 20 in Figure 5(c) and 5(d), respectively. We reduce the larger N value to 20 due562

to large memory requirement for this network. We set N1 = N2 = N/2 in Figure 5(a)563

and 5(c). In this case, a one-layer network KN1,N2
is a regular graph and therefore an564

isothermal graph. We set N2 ≈ 2N1, where ≈ represents “approximately equal to”,565

in Figure 5(b) and 5(d). Figure 5 shows that these two-layer networks are suppressors566

of selection.567
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Fig. 5. Fixation probability for two-layer networks composed of a complete graph layer and a
complete bipartite graph layer under model 1. (a) N = 6 with K3,3. (b) N = 6 with K2,4. (c)
N = 20 with K10,10. (d) N = 20 with K7,13. In panels (a) and (c), the results for the complete
graph layer are close to those for the complete bipartite graph layer such that the blue lines are
almost hidden behind the green lines.

5.6. Combination of the complete graph and two-community networks.568

Empirical networks often have community (i.e., group) struture [52]. Therefore, in569

this section, we consider two-layer networks in which layer 1 is the complete graph and570

layer 2 is a weighted network with two communities. Specifically, layer 2 is composed571

of two disjoint sets of nodes V1 and V2 with N1 and N2 nodes, respectively, where572

N1 +N2 = N . Each set of nodes forms a clique (i.e., complete graph as a subgraph)573

with edge weight 1. In addition, each node in V1 is connected with each node in V2574

with edge weight ε. A small ε implies a strong community structure. It should also be575

noted that the combination of the complete graph and the complete bipartite graph576

corresponds to this model in the limit of ε → ∞. Similar to the case of combination577

of the complete graph and the complete bipartite network, we use an 8-tuple and578

distinguish 17 types of transition events from each state to another state. We show579

the calculations of the transition probability matrix in section S8.580

We numerically solve Eqs. (5.2) and (5.3) for N = 6 and N = 20 with ε = 0.1.581

We show the results for N = 6 in Figure 6(a) and 6(b), and N = 20 in Figure 6(c)582

and 6(d), respectively. In Figure 6(a) and 6(c), we set N1 = N2 = N/2, and the two-583

community network is an isothermal graph. In Figure 6(b) and 6(d), we set N2 ≈ 2N2.584

Figure 6 indicates that these two-layer networks are suppressors of selection.585
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Fig. 6. Fixation probability for two-layer networks composed of a complete graph layer and a
two-community network layer under model 1. (a) N1 = N2 = 3 and ε = 0.1. (b) N1 = 2, N2 = 4,
and ε = 0.1. (c) N1 = N2 = 10 and ε = 0.1. (d) N1 = 7, N2 = 13, and ε = 0.1.

5.7. Death-birth process variant of model 1. We have analyzed model 1,586

which is a two-layer Bd process. To assess the robustness of our main result that587

two-layer networks are mostly suppressors of selection, in this section, we consider588

a variant of model 1 in which we replace the Bd updating rule by the death-birth589

updating rule with selection on the birth, often referred to as the dB rule [6,8,16,36].590

According to the dB rule, we select an individual uniformly at random for death in591

each time step. Then, the neighbors of the dying individual compete to reproduce592

its type on the vacant site with probability proportional to their fitness. The fixation593

probability for this death-birth process in the case of the well-mixed population (i.e.,594

unweighted complete graph) is [44]595

(5.16) ρdB =

(
1− 1

N

)
1− 1

r

1− 1
rN−1

.596

We extend the dB process to the case of two-layer networks. For simplicity,597

we only consider the case in which both layers are complete graphs (i.e., coupled598

complete graph). In each time step, an individual selected uniformly at random (i.e.,599

with probability 1/N) dies. We then select one of the two layers to operate the dB600

process with equal probability, i.e., 1/2. The neighbors of the dying individual in601

the selected layer compete for filling the empty site with probability proportional to602
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the product of their fitness and the edge weight (which we set to 1 because we are603

considering unweighted complete graphs for both layers). As we show in section S9,604

we can derive the set of
(
N+3
3

)
−4 linear equations with which to calculate the fixation605

probability similarly to the case of the Bd process on the coupled complete graph.606

We show the fixation probability for this death-birth process on coupled complete607

graphs with N = 6 and N = 30 in Figure 7(a) and 7(b), respectively. We find that608

these coupled complete graphs are suppressors of selection under the dB rule, relative609

to the Moran process. The green lines in Figure 7 represent Eq. (5.16). We find that610

the coupled complete graphs under the dB rule are also more suppressing than the611

one-layer complete graphs under the same dB rule.612
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Fig. 7. Fixation probability for coupled complete graphs under the variant of model 1 with the
dB updating. (a) N = 6. (b) N = 30. The green lines represent Eq. (5.16).

5.8. Model 2 on coupled complete graphs. In this section, we consider613

model 2 in which both layers are complete graphs. We can describe the state of the614

network by the same 4-tuple i = (i1, i2, i3, i4) as that we used in section 5.2 and615

derive a set of
(
N+3
3

)
− 4 linear equations to determine the fixation probability. For616

each state (i1, i2, i3, i4), we distinguish 21 types of events and obtain the transition617

probability from each state to another state, as shown in section S10.618

We show the fixation probability for the mutant type for N = 6 and N = 30 by619

the dashed lines in Figure 2(a) and 2(b), respectively. We find that these coupled620

complete graphs are suppressors of selection. Furthermore, the results for model 2621

are close to those for model 1, while model 2 is slightly less suppressing than model622

1.623

6. Numerical results. In this section, we carry out numerical simulations of624

the Bd process on four two-layer networks without particular symmetry, i.e., a coupled625

Erdős-Rényi (ER) random graph, a coupled Barabási-Albert (BA) network, and two626

empirical two-layer networks. To generate a two-layer ER random graph with N = 100627

individuals, in each layer, we connected each pair of nodes with probability 0.1. We628

iterated generating networks from the ER random graph with N = 100 nodes until629

we obtained two connected networks, which we used as two layers. The two generated630

networks had M1 = 498 edges and M2 = 500 edges, respectively. To generate a two-631

layer BA network, we sampled two networks with N = 100 nodes each from the BA632
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model [53]. In the network growth process of the BA model, each incoming node is633

connected to five already existing nodes according to the linear preferential attachment634

rule. We use the star graph on 6 nodes as the initial network in each layer. Each of the635

two generated networks was more heterogeneous than the ER graph in terms of the636

node’s degree, was connected, and had M = 475 edges. Without loss of generality, we637

uniformly randomly permuted the label of all nodes in layer 2. Otherwise, there would638

be strong positive correlation between the degree of the two replica nodes of the same639

individual. One empirical network is the Vickers-Chan 7thGraders (VC7) network,640

which is a two-layer network of scholastic and friendship relationships among N = 29641

seventh grade students in a school in Victoria, Australia, with M1 = 126 edges in642

layer 1 and M2 = 152 edges in layer 2 [54]. The second empirical network is the643

Lazega Law Firm (LLF) network, which is a two-layer network of professional and644

cooperative relationships among N = 71 partners at the LLF, with M1 = 717 edges645

in layer 1 and M2 = 726 edges in layer 2 [55].646

We focus on model 1 and examine whether these two-layer networks tend to be647

suppressors of selection. We initially placed a mutant on just one replica node in each648

layer. Therefore, there are N × N possible initial states. To calculate the fixation649

probability for a single mutant for each layer, we run the Bd process until the mutant650

type or the resident type fixates in the selected layer. For each value of r, we run651

20N2 simulations starting from each of the N2 initial conditions 20 times. We obtain652

the fixation probability of the mutant type for each layer as the number of the runs653

in which the mutant type has fixated in the selected layer divided by 20N 2.654

Figure 8 shows the relationship between the fixation probability for a single mu-655

tant and r for the four two-layer networks, one per panel. The figure shows that both656

layers are suppressors of selection in all the four two-layer networks. Unexpectedly,657

we also find that the fixation probability as a function of r is similar between the658

two layers, which are different networks in terms of edges, in all the four two-layer659

networks.660
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Fig. 8. Fixation probability in model and empirical two-layer networks. (a) Two-layer ER
graph. (b) Two-layer BA model. (c) Vickers-Chan 7thGraders network (VC7). (d) Lazega Law
Firm network (LLF). The insets of (a), (b), and (d) magnify the results for values of r less than
and close to r = 1.

7. Discussion. Inspired by an evolutionary game model on two-layer net-661

works [35], we formulated and analyzed constant-selection dynamics on two-layer662

networks in which each individual’s fitness is defined to be the sum of the fitness663

of the replica node over the two layers. Using martingales, we proved that two-664

layer networks are suppressors of selection if one layer is a particular network with665

high symmetry, at least relative to that network considered as a single-layer network.666

The single-layer regular graphs, including the complete graph, cycle, and bipartite667

complete graphs in which the two parts have same number of nodes, are isothermal668

graphs [4, 56], i.e., equivalent to the Moran process. Therefore, these theorems show669

that two-layer networks that have any of these networks as one layer are suppressors670

of selection regardless of the second layer. Furthermore, we semi-analytically analyzed671

some two-layer networks in which both layers are highly symmetric networks to show672

that they are also suppressors of selection except the coupled star graph with N = 30673

nodes. Nonetheless, the couple star graph with N = 30 is more suppressing than674

the single star graph with N = 30. Numerical simulations of stochastic evolutionary675

dynamics on four larger two-layer networks without particular symmetry have also676

shown that these networks are suppressors of selection. Overall, we have provided677

mathematical results and compelling numerical evidence that two-layer networks are678

suppressors of selection unless both layers are strong amplifiers of selection such as679

the star graph (see Figure 4).680

We argue that the intuitive reason behind this result is the key assumption of our681

model that the total fitness of a replica node depends on the fitness of the corresonding682
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replica node in the other layer as well as its own fitness. Suppose that r > 1 and that683

a replica node i in layer 1 is of resident type. Then, intuitively, it is more likely to be684

invaded by a mutant type, if a neighbor is a mutant because the mutant’s fitness (= r)685

is higher than the resident’s fitness (= 1). However, if the replica node i in layer 2 is686

of mutant type, the total fitness for the ith individual is equal to 1+ r. Therefore, the687

mutant type in layer 2 boosts the likelihood that ith individual reproduces in layer 1688

relative to the case of a single-layer network. In this manner, the two-layer nature of689

the model blurs the effect of fitness due to the interference of one layer into constant-690

selection dynamics in the other layer. This is why two-layer networks are expected691

to be suppressors of selection, at least relative to their one-layer counterparts. We692

note that we exploited this intuition in formulating and proving our theorems using693

martingales.694

As we reviewed in section 1, most networks are amplifiers of selection under the Bd695

process and uniform initialization. However, small directed networks [16], metapopu-696

lation model networks [17,18], a type of temporal network called a switching network697

(i.e., in which the network switches between two static network with regular or irreg-698

ular time intervals) when N is small [19], and hypergraphs [20] tend to be suppressors699

of selection under the same conditions (i.e., the Bd process with uniform initialization)700

even if the undirected variant of them is an amplifier of selection. Here we add two-701

layer networks as another case in which suppressors of selection are common. These702

results altogether suggest that amplifiers of selection under the Bd process with uni-703

form initialization are not so common as was initially considered. It is straightforward704

to extend our models to the case of more than two layers. Constant-selection dynam-705

ics under adaptive networks (i.e., time-varying networks in which network changes are706

induced by the state, or type, of the nodes) are underexplored [57, 58]. Whether or707

not these networks are amplifying or suppressing would be a worthwhile investigation.708

We have exploited some highly symmetric networks to be used as network layers709

with the aim of reducing the number of linear equations to be solved from O(22N ) to710

a polynomial order of N . We used the same strategy to analyze hypergraphs [20] and711

switching temporal networks [19]. The same technique was exploited for analytically712

solving the fixation probability in the complete bipartite graphs [59, 60], stars [4, 56],713

and so-called superstars [4]. However, the size of the two-layer networks for which714

we exactly calculated the fixation probability is still modest, i.e., up to N = 20 or715

N = 30 depending on the network. This is because, the network in our models has716

two layers, and we need to track the type (i.e., resident or mutant) of the replica nodes717

in both layers to specify the state of an individual. It would be ideal if this type of718

mathematical technique leads to analytical solutions of the fixation probability, not719

just to reduce the dimension of the problem. This is left for future work.720
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[7] Perc M, Gómez-Gardeñes J, Szolnoki A, Floŕıa LM, and Moreno Y, Evolutionary dynamics of736

group interactions on structured populations: a review, J. R. Soc. Interface., 10 (2013),737
20120997.738

[8] Ohtsuki H, Hauert C, Lieberman E, Nowak MA, A simple rule for the evolution of cooperation739
on graphs and social networks, Nature, 441 (2006), 502–505.740

[9] Allen B, Lippner G, Chen Y, Fotouhi B, Momeni N, Yau S, et al, Evolutionary dynamics on741
any population structure, Nature, 544 (2017), 227–230.742

[10] Hindersin L and Traulsen A, Most undirected random graphs are amplifiers of selection for743
birth-death dynamics, but suppressors of selection for death-birth dynamics, PLoS Com-744
put. Biol., 11 (2015), e1004437.745
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