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FIXATION DYNAMICS ON MULTILAYER NETWORKS

RUODAN LIU* AND NAOKI MASUDAT

Abstract. Network structure has a large impact on constant-selection evolutionary dynamics,
with which multiple types of different fitnesses (i.e., strengths) compete on the network. Here we
study constant-selection dynamics on two-layer networks in which the fitness of a node in one layer
affects that in the other layer, under birth-death processes and uniform initialization, which are com-
monly assumed. We show mathematically and numerically that two-layer networks are suppressors
of selection, which suppresses the effects of the different fitness values between the different types on
final outcomes of the evolutionary dynamics (called fixation probability), relative to the constituent
one-layer networks. In fact, many two-layer networks are suppressors of selection relative to the most
basic baseline, the Moran process. This result is in stark contrast with the results for conventional
one-layer networks for which most networks are amplifiers of selection.

Key words. Evolutionary dynamics, fixation probability, constant selection, multilayer net-
works, amplifier, suppressor
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1. Introduction. Evolutionary dynamics is a mathematical modeling frame-
work that allows us to investigate how the composition of different traits in a popula-
tion changes over time under the assumption that fitter individuals tend to reproduce
more often. For example, evolutionary game theory focuses on situations in which
the fitness is determined by the game interaction between individuals, such as the
prisoner’s dilemma game [1-3]. Another example, which we focus on in the present
study, is evolutionary graph theory in which one investigates the effects of network
structure and possibly its variation over time on evolution of traits [1,4-7]. In par-
ticular, studies of evolutionary games on networks have revealed that the conditions
under which cooperation occurs in social dilemma games heavily depend on the net-
work structure and that these conditions can be mathematically derived using random
walk theory [8,9].

Let us consider the constant-selection evolutionary dynamics on networks. In
this dynamics, different types are assigned with different constant fitness values, each
node of the given network is occupied by either of these types, and the different types
compete for survival. One can view this dynamics as competition between resident
and mutant phenotypes in structured populations, or social dynamics of opinions in
which people switch between different opinions, influenced by their neighbors in the
network.

A core property of constant-selection evolutionary dynamics on networks is the
fixation probability. It is the likelihood that the mutant type initially occupying a
single node of the network ultimately fixates, i.e., the mutant type eventually occupies
all the nodes of the network, under the assumption that there is no mutation (i.e.,
the type on any node does not spontaneously change during the dynamics except due
to the influence by their neighbors). The fixation probability depends on the network
structure, the fitness of the mutant type, denoted by r, relative to the fitness of the
resident type, which is normalized to be 1, as well as the initial condition [1,4,6]. The
mutant type is more likely to fixate if r is large. The extent to which the fixation

*Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260-2900,
USA (rliu8@buffalo.edu).

TDepartment of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260-2900,
USA (naokimas@gmail.com).

This manuscript is for review purposes only.


mailto:rliu8@buffalo.edu
mailto:naokimas@gmail.com

(S NG) B, B, B NG
T = W N

ot

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93

2 R. LIU AND N. MASUDA

probability of the mutant type increases with rising r hinges on the network structure.
Some networks are known to be amplifiers of selection. By definition, in a network
amplifying selection, a single mutant has a larger fixation probability than the case
of the well-mixed population with the same number of nodes, which is equivalent to
the so-called Moran process, at any r > 1, and has a lower fixation probability than
the case of the Moran process at any r < 1. In amplifying networks, the effect of the
difference between the mutant and resident type in terms of the fitness (i.e., r versus
1) is magnified by the network. In contrast, other networks are suppressors of selection
such that a single mutant has a lower fixation probability than the case of the Moran
process at any r > 1 and vice versa at any 7 < 1. Under a standard assumption of the
birth-death process with selection on the birth and uniform initialization, it has been
shown that most networks are amplifiers of selection [10-12]. Suppressors of selection
are rare [11,13].

Studies have shown that the amplifiers of selection under the birth-death process
are not necessarily common when we introduce additional factors into evolutionary
graph dynamics models, such as the non-uniform initialization [14,15], directed net-
works [16], metapopulation models [17,18], temporal (i.e., time-varying) networks [19],
and hypergraphs [20]. These results encourage us to study evolutionary dynamics on
other extensions of conventional networks with an expectation that the dynamics on
them may be drastically different from those on conventional networks.

In the present study, we explore constant-selection evolutionary dynamics on mul-
tilayer networks. Multilayer networks express the situation in which the individuals
in a population are pairwise connected by different types of edges, such as different
types of social relationships; the same pair of individuals may be directly connected
by multiple types of edges [21-24]. In evolutionary dynamics on multilayer networks,
each layer, corresponding to one type of edge, is a network, and evolutionary dynamics
in different network layers are coupled in some manner. This setting has been inves-
tigated for evolutionary social dilemma games. See [25] for a review. Earlier work
considered two-layer networks in which the game interaction occurs in one network
layer and imitation of strategies between players occurs in the other network layer.
Cooperation is more enhanced in this model if the edges overlap more heavily between
the two layers [26-29] or under other conditions [30,31] (but see [32]). When players
are assumed to be engaged in game interactions, not just imitation of strategies, in
the different layers, multilayer networks promote cooperation under some conditions
such as positive degree correlation between two layers [33] and asynchronous strategy
updating [34]. Cooperation can thrive in this class model even if each network layer
in isolation does not support cooperation [35]. However, to the best of our knowl-
edge, constant-selection evolutionary dynamics on multilayer networks have not been
studied.

We particularly use two-layer networks. We introduce two models of constant-
selection dynamics in multilayer networks, which are analogues of an evolutionary
game model in multilayer networks [35], and semi-analytically calculate the fixation
probability of mutants for each network layer for two-layer networks with high sym-
metry. Using martingale techniques, we also theoretically prove that the complete
graph layer and the cycle graph layer in a two-layer network are suppressors of se-
lection, and that the star graph layer and the complete bipartite layer in a two-layer
network are more suppressing than the corresponding one-layer network. We numer-
ically show that all the two-layer networks that we have numerically investigated are
suppressors of selection, except for the coupled star networks. However, the coupled
star networks are more suppressing than the one-layer star graphs. In this manner,
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FIXATION DYNAMICS ON MULTILAYER NETWORKS 3

we conclude that two-layer networks suppress the effects of selection.

2. Moran process. The Moran process is a model of stochastic constant-
selection evolutionary dynamics in a well-mixed finite population with N individuals.
The population consists of two types of individuals, i.e., the resident and mutant,
with constant fitness values, 1 and r, respectively. At each time step, an individual
is selected as the parent for reproduction with probability proportional to its fitness
and an individual dies uniformly at random. Then, the parent’s offspring replaces the
dead individual. The fixation probability for a single mutant is given by [1,4]

1-1/r

(2.1) p= m

Extensions of the Moran process to networks depend on specific update rules to be
assumed. The network may be directed or weighted. A major variant of the updating
rule that we consider in the present paper is the birth-death process with selection
on the birth, or the Bd rule [6, 16, 36], which operates as follows. At each time
step, an individual is selected as the parent, denoted by wu, for reproduction with
probability proportional to its fitness. This step is the same as in the Moran process.
Then, u’s type replaces the type of a neighbor of u, which is selected with probability
proportional to the edge weight between u and itself. We use the Bd rule because a
majority of work on constant-selection evolutionary dynamics on networks do so [4,
15,37-43]. However, death-birth processes also give important insights into constant-
selection evolutionary dynamics [10, 36,44, 45], and we briefly examine it with our
two-layer network model in section 5.7.

In a directed and weighted network, the edge direction indicates a one-way rela-
tionship between the two nodes. A network is an isothermal graph if the weighted
in-degree (i.e., sum of the edge weight over all incoming edges to a node) is the same
for all nodes. Unweighted regular graphs are examples of isothermal graph. The
fixation probability for an isothermal graph is given by Eq. (2.1) [1,4].

The fixation probability for a single mutant of the Moran process is 1/N at
r =1 [46-48]. Relative to the Moran process, many networks are either amplifiers or
suppressors of selection [4,10-13,15,39-42]. Amplifiers of selection are networks in
which the fixation probability is larger than that for the Moran process (i.e., Eq. (2.1))
for any r > 1 and smaller than that for the Moran process for any r < 1. Suppressors
of selection are networks in which the fixation probability is smaller and larger than
for the Moran process for any » > 1 and r < 1, respectively.

3. Models. We introduce two models of constant-selection evolutionary dynam-
ics for a population of N individuals in undirected and possibly weighted multilayer
networks. The assumption of the undirected network is for simplicity, and it is
straightforward to generalize the following models to the case of directed multilayer
networks. We assume a two-layer network as the population structure, whereas it is
straightforward to generalize the models to the case of more than two layers. Each
layer is assumed to be a connected network with N nodes. It represents one of the
two types of relationship between individuals, such as physical proximity contact or
online social relationship in the case of human social networks. We call each node in
one layer the replica node; there are 2N replica nodes in the entire two-layer network.
Each replica node has a corresponding replica node in the other layer. A pair of the
corresponding replica nodes, one in each layer, represents an individual (see Figure 1
for a schematic). Each edge within a layer represents direct connectivity between two
replica nodes in the same layer. Each pair of individuals may be adjacent to each
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other in both layers, just one layer, or neither layer. For example, two people may
directly interact both in person and online, or in only one of the two ways.

individual j individual k
fitness=r+1 fitness = 2r

/. replica node
T

individual i r
fitness = 2
Layer 1 f @ resident
@ mutant
/.—’ replica node
: 1 T
Layer 2 1

Fia. 1. An example of a two-layer network. Each individual occupies a replica node in layer 1
and the corresponding replica node in layer 2, as indicated by dashed lines. A resident replica node
and a mutant replica node are shown in blue and red, respectively.

Both models extend the Bd process on conventional (i.e., mono-layer) networks
and the Moran process in well-mixed populations to the case of two-layer networks.
We assume that each of the 2N replica nodes takes either the resident or mutant
type at any discrete time. The resident and mutant have fitness 1 and r, respectively,
which are constant over time. We define the fitness of each individual by the sum of
the fitness of the corresponding replica nodes in both layers [35]. In other words, the
individual has fitness 2 if it is of the resident type in both layers, r + 1 if it is of the
mutant type in one layer and the resident type in the other layer, and 2r if it is of the
mutant type in both layers. We allow each individual to adopt different types in the
opposite layers (i.e., the resident type in one layer and the mutant type in the other
layer) because they may behave differently in different types of social relationship.
Furthermore, success or failure of an individual in one type of social relationship may
affect the same in the other domain, which motivates us to couple the fitness of each
individual across the two layers [35].

The model assumptions up to this point are shared by models 1 and 2. Next, in
model 1, in each time step, we select one individual (i.e., parent) for reproduction with
probability proportional to its fitness. Then, we select one of the two layers to operate
the Bd process with the equal probability, i.e., 1/2. Then, the parent selects one of
its neighbors in the selected layer with probability proportional to the weight of the
edge between the two individuals. Finally, the parent converts the type of the selected
neighbor into the parent’s type in the selected layer. This concludes one time step of
the Bd process. We repeat this procedure until the entire population settles into an
absorbing state in which all individuals are either of the resident or mutant type in
each layer. It should be noted that the final state in the two layers may be different,
i.e., resident in one layer and mutant in the other layer. This phenomenon may
represent the situation in which two opinions or behaviors, O; and Os, are competing
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FIXATION DYNAMICS ON MULTILAYER NETWORKS 5

in one layer, and two others, O3 and Oy, are competing in the other layer. Then, all
individuals may adopt the combination of O; and Os in the end, or the combination
of 01 and Oy, for example.

In each time step in model 2, we first select an individual i as the parent with
probability proportional to its fitness in each time step. This process is the same as
that in model 1. However, differently from model 1, we then do not select the layer
but draw a neighbor of i in layer 1, denoted by j, with probability proportional to
the edge weight wl[;-], and j copies i’s type. At the same time, we select an individual
k as another parent with probability proportional to its fitness. Then, we select a
neighbor of k in layer 2, denoted by ¢, with probability proportional to the edge
weight w@], and /£ copies k’s type. Individual k£ may be the same as individual i. This
model is the same as the main model proposed in [35] except that their model used
a death-birth instead of birth-death process and that the fitness for each individual
is determined by two-player games in their model and therefore not constant for each
type in general. We consider model 2 in addition to model 1 because model 2 is a
direct extension of the model proposed in [35]. On the other hand, model 1 is more
amenable to mathematical analysis of fixation dynamics than model 2.

4. Theoretical results.

4.1. Neutral drift. In this section, we focus on the case of neutral mutants, i.e.,
r = 1. The fixation probability for the neutral mutant type when there is initially
just one mutant node selected uniformly at random must be equal to 1/N for one to
be able to discuss amplifiers and suppressors of selection. We start by proving this
property for two-layer networks.

THEOREM 4.1. Consider model 1 under r = 1. When there are initially i mutants
selected uniformly at random from the N replica nodes in one layer, the fixation
probability for the mutant for that layer is equal to i/N.

Proof. When r = 1, the fitness of each individual is always equal to 2. Then, the
Bd process in layer 1 is independent of that in layer 2. Therefore, the proof is exactly
the same as that for conventional networks as shown in [20,46—48]. a

Remark 4.2. This theorem also holds true for model 2 with the proof being un-
changed.

4.2. Complete graph layer in a two-layer network is always a suppressor
of selection. In this section, we show that the complete graph layer in an arbitrary
two-layer network is always a suppressor of selection under model 1. To this end, we
let & € {0,1}2Y, with t € {0,1,...}, be the state of the Bd process on the two-layer
network at time ¢. The initial condition is given by £;. We conveniently define ¢ as the
number of the state changes in layer 1, which we assumed to be the complete graph.
In other words, when counting ¢, we ignore the updating steps in which a replica node
in layer 1 is selected as the parent but does not induce the actual change of the state
of the network (because the child node has the same type as that of the parent) or
a replica node in layer 2 is selected as the parent (because there is then no change
in the state in layer 1). We consider model 1 in the following text unless we state
otherwise.

LEMMA 4.3. Consider the Bd process on the two-layer network in which layer 1
is the unweighted complete graph and layer 2 is an arbitrary connected network. We
let X; be the number of mutants in the first layer at time t and set Y, = r—X¢. Then,
sequence {Y,} is a submartingale for any r > 0.

This manuscript is for review purposes only.
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6 R. LIU AND N. MASUDA

Proof. Let {B;} be the filtration, i.e., an increasing sequence of the o-algebras,
generated by the Bd process on the two-layer network. We obtain X413 = Xy + 1
or X171 = X; — 1 because we count the time t if and only if the number of the
mutants changes in the complete graph layer. For an arbitrary state of the two-layer
network with X; mutants, &, we denote by p(&) and ¢(&;) the probabilities with
which X¢41 = X; + 1 and X;41 = X; — 1, respectively. Note that p(&) + q(&) = 1.

To calculate p(&;) and ¢(&;), we denote by N; the number of individuals that
have the mutant type in both layers, by N5 the number of individuals that have
the mutant type in layer 1 and the resident type in layer 2, by N3 the number of
individuals that have the resident type in layer 1 and the mutant type in layer 2, and
by N, the number of individuals that have the resident type in both layers. Note that
N1+ N3+ N3+ Ny, = N. In a single time step of the original Bd process, X; increases
by one with probability

27’N1+(’)”‘+1)N2 N3+N4

1
4.1 = S
( ) p 2TN1+(7"+1)(N2—|—N3)—|—2N4 2 N1—|—N2+N3+N4—1

and decreases by one with probability
(r+1)N3 + 2N, I Ni + N,

- 27”N1+(T+1)(N2+N3)+2N4.2 N1+N2+N3+N4—1.
)

By combining Eqs. (4.1) and (4.2) with p(&)/q(&) = p'/q and p(&) + q(&) = 1, we
obtain

(12) ¢

(4'3) p(ft) :r 1 — &,
1
(44) a(&) =+
where
(45) &= (r — 1) [Ny N3 + (r 4+ 1)Na N3 + Ny Ny

(r+1){[2rNy + (r 4+ 1)Na] (N3 + Nyg) + [(r + 1)N3 + 2N4] (N1 + No)}
We obtain

E[Yi41|By] =p(&)r~ X 4 g(g)r= X
_ r 1 1 v
B Kr+1 _€> Pt <r+1 +€>r} t
(46) = |:1 + (7‘ — ::) 5:| }/b

where E|[-|-] represents the conditional expectation. If r > 1, we obtain E[Y;y1|B:] >
Y; because r —r~! > 0 and € > 0. If r < 1, we also obtain E[Y;;1|B;] > Y; because
r —r~1 <0 and € < 0. Therefore, in both cases, Y; is a submartingale. If r = 1, we
obtain € = 0 such that Y; is a martingale, which is a submartingale. ]

Remark 4.4. Our choice of Y; is inspired by the construction of a martingale for
the biased random walk on Z (see, e.g., [49,50]) and its application to constant-
selection evolutionary dynamics [14,43,51].

THEOREM 4.5. Consider the Bd process on the two-layer network in which layer
1 is the unweighted complete graph and layer 2 is an arbitrary connected network.
Then, the complete graph layer is a suppressor of selection.

This manuscript is for review purposes only.
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FIXATION DYNAMICS ON MULTILAYER NETWORKS 7

Proof. Sequence {Y;} is a submartingale and bounded because r—V < Y; < 1
V¢t when r > 1 and 1 <Y, < v~V Vt when r < 1. Therefore, Y; converges almost
surely and E[Y,] is finite owing to the martingale convergence theorem [49,50]. The
present Bd process has four absorbing states in which all the nodes in each layer are
unanimously occupied by the resident or mutant. The two absorbing states in which
all the nodes in layer 1 are occupied by the resident yields X; = 0. The other two
absorbing states in which all the nodes in layer 1 are occupied by the mutant yields
X; = N. Because an absorbing state is ultimately reached with probability 1,

(4.7) ElYx] > Yo
yields
(4.8) w(&)yr N + 1 —z(&)]r 0 =,

where z(£y) is the fixation probability of the mutant under an initial condition &y
with Xy mutants in layer 1; therefore, there are initially N — X residents in the same
layer. Equation (4.8) yields

(4.9)

{w(éo) <2 (>,

z(&0) > 11__7;);0 (r<1).

Our goal is to exclude the equalities in Eq. (4.9) for 1 < Xy < N — 1 because
then it will hold true that the complete graph layer is a suppressor of selection. To
show this, we distinguish among the following three cases.

To state the first case, we note that e =0 for r # 1 and 1 < Xy < N — 1 if and
only if No = N3 = 0. Therefore, if the initial condition &y satisfies No > 0 or N3 > 0,
then Eq. (4.6) implies that

(4.10) E[Yﬂ&)} > Yo

for r # 1. By combining E[Y2|B;] > Y7, which follows from Lemma 4.3, with
Eq. (4.10), we obtain E[Y3|¢] > Yb.

The second and third cases concern the initial condition & satisfying No = N3 =0
such that each individual has the same type (i.e., resident or mutant) in both layers.
Then, we obtain E[Y1]§] = Yo because ¢ = 0. As the second case, we consider
the situation in which &, satisfies Ny < N — 2 in addition to Ny = N3 = 0. In this
case, the network’s state after the first state transition, &;, satisfies (N1, Na, N5, Ny) =
(N1,1,0, N—N;—1) with probability p(§y) = r/(r+1). Conditioned on this transition,
we obtain E[Y3|¢1] > Y3 for r # 1, which is an adaptation of Eq. (4.10). We obtain
E[Y5]&1] > Y7 because this particular &; yields Ny = 1, which implies (r — r~1)e > 0.
If we start from the same £ and a different &; is realized with probability 1 —p(&), we
still obtain E[Y3|€1] > Y7 owing to Lemma 4.3. Therefore, we obtain E[Y3|] > Yo
when &, satisfies Ny < N — 2 and N, = N3 = 0.

As the third case, we consider the situation in which &, satisfies Ny = N — 1,
which implies that No = N3 = 0. In this case, & satisfies (N1, Na, N3, Ny) = (N7 —
2,0,1, N — Ny) with probability ¢(&y) = 1/(r + 1). Conditioned on this transition,
we obtain E[Y32|&1] > Y for r # 1 because this particular &; yields N3 = 1, which
implies (r —r~1)e > 0. If we start from the same & and a different ¢; is realized with
probability 1 — ¢(&), we still obtain E[Y3]£1] > Y7 owing to Lemma 4.3. Therefore,
we obtain E[Y3|&] > Yp when &, satisfies Ny = N — 1.

This manuscript is for review purposes only.
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8 R. LIU AND N. MASUDA

Because E[Y2|¢] > Y} holds true in all the three cases, we obtain E[Y3|By] > Yo,
which together with E[Y;y1|B:] > Y, Vt € {2,3,...} leads to Eq. (4.7) with the strict
inequality. Therefore, Egs. (4.8) and (4.9) hold true with the strict inequality when
r# 1. O

4.3. Cycle graph layer in a two-layer network is always a suppressor
of selection. We use the same method as that for the complete graph layer to show
that Lemma 4.3 also holds true when one replaces the complete graph layer by the
cycle graph. The cycle graph, which we assumed to form layer 1, is defined by wg] =1

if j=4+1 mod N, and wl[-;-] = 0 otherwise. For simplicity, we assume that the replica
nodes of the mutant type are initially consecutive (i.e., forming just one connected
component of mutants) in the cycle graph layer.

LEMMA 4.6. Consider the Bd process on the two-layer network in which layer 1
is the unweighted cycle graph and layer 2 is an arbitrary connected network. We let
X; the number of mutants in layer 1 at time t and set Y; = r~Xt. The individuals of
the mutant type are assumed to be initially located at consecutive replica nodes on the
cycle. Then, sequence {Y,} is a submartingale for any r > 0.

We prove Lemma 4.6 in section S1.

THEOREM 4.7. Consider the Bd process on the two-layer network in which layer
1 is the unweighted cycle graph and layer 2 is an arbitrary connected network. Then,
the cycle graph layer is a suppressor of selection, given that the individuals of the
mutant type are initially located at consecutive replica nodes on the cycle.

We prove Theorem 4.7 in section S2.

4.4. Complete bipartite graph layer in a two-layer network. In this sec-
tion, we consider the two-layer network in which layer 1 is the unweighted complete
bipartite graph and layer 2 is an arbitrary connected network. The complete bipartite
graph, denoted by Kn, n,, where N; + Ny = N, consists of two disjoint subsets of

nodes V7 and V5 with N7 and N3 nodes, respectively. It is defined by wl[;] =1lifieV;

and j € Vo, or ¢ € V5 and 5 € Vi, and wl[;] = 0 otherwise. We construct a similar
proof to that for the complete graph or cycle graph layer to show that the complete
bipartite graph layer in an arbitrary two-layer network is more suppressing than the
one-layer complete bipartite graph.

LEMMA 4.8. Consider the Bd process on the two-layer network in which layer
1 is the unweighted complete bipartite graph and layer 2 is an arbitrary connected
network. We let Xy = [X1 4, Xo 4], where X1 4 and Xa, are the number of nodes in Vq
and Va, respectively, that are occupied by the mutant in layer 1 at time t. We define
Y, = h ' he >t where

Nl +N27‘
411 hy = o
(411) LT N2 £ N

Ny + Nyr
4.12 hy = il
(4.12) 27 Nyr2 + Nyr

Then, sequence {Y,} is a submartingale for any r > 0.
We prove Lemma 4.8 in section S3.

Remark 4.9. Our choice of Y; is inspired by the application of martingales to the
Bd process in one-layer complete bipartite graphs [43].

This manuscript is for review purposes only.
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THEOREM 4.10. Consider the Bd process on the two-layer network in which layer
1 is the unweighted complete bipartite graph and layer 2 is an arbitrary connected
network. Then, the complete bipartite graph layer is more suppressing than the one-
layer complete bipartite graph.

Proof. Equation (4.7) holds true in the present case as well. It is equivalent to
(4.13) 2(Eo)hy" 3 + [1 = (&) hhS = O hy ™,

where x(&p) is the fixation probability of the mutant type under an initial condition
&o with X, o mutants on the nodes in V; and X5 ¢ mutants on the nodes in V5; there
are initially X7 0 + X2 mutants and N — (X9 + X2,) residents in the complete
bipartite graph layer. Equation (4.13) yields

P'e p'e
h 1,0h2 2,0_4

x(EO) < W (7" > 1),
4.14
( ) hfl’ohfz’ofl

f(fo) Z hi\h héVQ—li (7" < 1)

To exclude the equalities in Eq. (4.14) for 1 < X9+ X209 < N — 1, we distinguish
among 12 cases that are different in terms of the number of individuals in V; and that
in V5 with different fitness values. We obtain

(4.15) E[Y3|60] > Yo

for all the 12 cases; see section S4 for the proof.

Because Eq. (4.15) holds true in all the cases, we obtain E[Y3|Bg] > Yp, which
together with E[Yiy1|B:] > Y, ¥t € {3,4,...} leads to Eq. (4.7) with the strict
inequality. Therefore, Egs. (4.13) and (4.14) hold true with the strict inequality when
r # 1, proving that the complete bipartite graph layer in a two-layer network is more
suppressing than the mono-layer complete bipartite graph. 0

Remark 4.11. If Ny = 1 and No = N — 1, the complete bipartite graph layer
reduces to a star graph. Therefore, Lemma 4.8 and Theorem 4.10 also hold true when
one layer of the two-layer network is a star graph.

Remark 4.12. All lemmas and theorems also hold true for model 2 with the proof
being essentially unchanged (see section S4 for more).

5. Semi-analytical results for two-layer networks with high symmetry.

5.1. Exact computation of the fixation probability in two-layer net-
works. In this section, we explain how to exactly calculate the fixation probability
for the mutant type when there is initially one replica node of mutant type that is se-
lected uniformly at random in layer 1, and one replica node of mutant type in layer 2.
This initial state is the same as that assumed in [35]. Let sgl] €{0,1} and SEQ] €{0,1}
be individual ¢’s type in layer 1 and layer 2, respectively, where values 0 and 1 repre-
sent resident and mutant, respectively. Then, the state of the evolutionary dynamics
is specified by a 2/N-dimensional binary vector s = (5[11], ey sg\l,] , 3[12], ceey 35\2,]). There-
fore, there are 22V states in total. We number the states from 1 to 22V by a bijective
map, denoted by ¢, given by

0: 8 —={1,...,22M,
(5.1) s p(s),
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where S is the set of all states. Let P = [p; ;] denote the 22V x 22N transition
probability matrix, where p; ; is the probability that the state moves from the ith state
to the jth state in a time step of the birth-death process. Denote the probability that

the mutant fixates in layer 1 by acEl] starting from the ith state, where i € {1,... 22V},
Similarly, denote the probability that the mutant fixates in layer 2 by x?] starting
from the ith state. We can obtain $£1] by solving the linear system

(5.2) zl = palll,

where 2zl = (J:[ll],...,x[;Q]N)T, and | represents the transposition, with bound-

‘s (1] _ (1] _ (1] _
ary conditions T o1yl 1,1)) = 1, T (1,.1,0,.,0) = 1, T (0,.0,1,1)) = 0, and

(1]

x 0,0,...0) = 0. Similarly, we can obtain x?] by solving the same linear system

©((0,...,

(5.3) zl? = pal?
w{l;}ere zl? = (x[lz],..[é]xgjv)—r, with boundar}zz]conditions xfg(lj_4.71’17__471)) = 1,
To((1,..,1,0,...,0)) — 0, T((0,...,0,1,...,1)) — 1, and Z((0,...,0,0,...,0)) — 0. Let C' C S be

the set of initial states that contain only one replica node of mutant type in layer 1
and one replica node of mutant type in layer 2. The cardinality of C' is N2. Denote
the numerical labels of states in C' by {ki,...,kyn2}. Then, the fixation probability
for the mutant type in layer 1 and 2 starting with the initial configuration with just

one mutant in each layer, denoted by x[cl,] and ac[cz], respectively, is given by

1 L
(5.4) W= Y A

i€{k1,....kn2}

2 €,
(5.5) = Y N

i€{k1,....ky2}

For an arbitrary two-layer network, we need to solve a linear system with 22V — 4
unknowns to obtain the fixation probability of the mutant type. This is computation-

ally prohibitive when N is large. Although we can exploit that x[lg(o 0.5 oBl) = 0
®((0,...,0,877 ...,
and z' =1 for any (5[12], e 553]) € {0,1}" and similar relationships

e((1, 1885l
for z!?, the number of unknowns still scales with 22V as N increases. Therefore,
to drastically reduce the dimension of the linear system to be solved, we analyze
two-layer networks with a highly symmetric structure for each layer, in which all or
most replica nodes are structurally equivalent to other replica nodes. This strategy has
been used for exactly calculating fixation probabilities on conventional networks [1,4],
hypergraphs [20], and temporal networks [19].

In the following text, we consider model 1 except in section 5.8, where we briefly
consider model 2.

5.2. Coupled complete graphs. We first consider the case in which each layer
is the complete graph with N nodes. Because all nodes in each layer are structurally
equivalent to each other, we only need to track the number of individuals with the
mutant type in both layers, denoted by #1, the number of individuals with the mutant
type in layer 1 and the resident type in layer 2, denoted by 45, the number of individuals
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with the resident type in layer 1 and the mutant type in layer 2, denoted by 73, and the
number of individuals with the resident type in both layers, denoted by ¢4. One can
specify the state of the evolutionary dynamics by a 4-tuple ¢ = (i1,12,i3,44), where
i1,42,13,14 € {0,1,..., N} and 41 +45 +i3+1i4 = N. Therefore, there are (N;':;) states
in total, where () represents the binomial coefficient. For visual clarity, we denote the
transition probability matrix by P = [p;—;], where p;_,; is the probability that the
state moves from @ = (i1, i2,3,%4) to j = (J1,Jo, j3,j4) in a time step. Assume that
the current state is ¢ = (41, 42, 43,%4). There are nine types of events that can occur
next.

In the first type of event, an individual that has the mutant type in layer 1
(and either type in layer 2) is selected as the parent, which occurs with probability
[2ri1 + (147)i2] /2131 + (147) (i2+1i3) +244], and layer 1 is selected for the reproduction
event with probability 1/2. Then, we select a neighbor of the parent in layer 1 for
death, and the selected individual, which we refer to as the child, has the resident type
in layer 1 and the mutant type in layer 2 with probability i5/(N —1). Then, the child
copies the parent’s type in layer 1. The state after this event is (i; + 1,142,435 — 1,44).
Therefore, we obtain

. 2ri; + (1 + ’I”)iz 1 i3
P(iy ig,is,ia) = (i1+1i2,i3—1,44) = iy + (1 ¥ T)(iQ ¥ 7/3) +2i, 2 N-— 1

(5.6)

In the second type of event, an individual that has the mutant type in layer 1
is selected as the parent, which occurs with probability [2ri1 + (1 + r)ia]/[2ri1 +
(1 4+ 7)(i2 + i3) + 2i4], and layer 1 is selected for reproduction with probability 1/2.
Then, we select a neighbor of the parent in layer 1 as the child, and the child has the
resident type in both layers, which occurs with probability i4/(N —1). Then, the child
copies the parent’s type in layer 1. The state after this event is (iy,i3 + 1,i3,44 — 1).
Therefore, we obtain

2riq + (1 + )iz 1 n
2rip + (L +7)(ig + 13) +2ig 2 N-1

(57) Py ,in iz ia)— (31,324 1,i3,i4—1) =

In the third type of event, an individual that has the resident type in layer 1 is
selected as the parent, which occurs with probability [(1 + r)iz + 2i4]/[2741 + (1 +
r)(i2 +i3) + 2i4], and layer 1 is selected for reproduction with probability 1/2. Then,
we select a neighbor of the parent in layer 1 as the child, and the child has the mutant
type in both layers, which occurs with probability i;/(N — 1). The state after this
event is (i1 — 1,492,143 + 1,44). Therefore, we obtain

o (1 + T)ig + 2i4 1 il
Piy i, iz, ia)—=(i1—1,i2,03+1,ia) = iy + (1 + T)(ig + 7/3) +2i, 2 N—1

(5.8)

In the fourth type of event, an individual that has the resident type in layer
1 is selected as the parent, which occurs with probability [(1 + r)isz + 2i4]/[27i1 +
(1 +7)(42 + i3) + 2i4], and layer 1 is selected for reproduction with probability 1/2.
Then, we select a neighbor of the parent in layer 1 as the child, and the child has the
mutant type in layer 1 and the resident type in layer 2, which occurs with probability
ia/(N —1). The state after this event is (i1,i2 — 1,143,144 + 1). Therefore, we obtain

B (1 +1)is + 2i4 1 i
P(iy,ia,isz,ia)—(i1,i2—1,i3,ia+1) — 27“i1 T (1 T T)(ig T 2,3) T 2i4 5 N_1°

(5.9)
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In the fifth type of event, an individual that has the mutant type in layer 2 is
selected as the parent, which occurs with probability [2ri; + (1 + r)is]/[2ri1 + (1 +
r) (i3 +i3) + 2i4], and layer 2 is selected for reproduction with probability 1/2. Then,
we select a neighbor of the parent in layer 2 as the child, and the child has the
mutant type in layer 1 and the resident type in layer 2, which occurs with probability
i2/(N — 1). The state after this event is (i; + 1,42 — 1,i3,44). Therefore, we obtain

2ri; + (1 + ’I“)ig 1 19

5.10 i1 insisyia)—= (i1+1ia—1,i5,i4) = B — — .- .
( ) P(i1 iz, is,ia)— (3141 ,i2—1,i5,i4) 27‘%1+(1+7’)(12+23)+214 2 N—-1

In the sixth type of event, an individual that has the mutant type in layer 2 is
selected as the parent, which occurs with probability [2riq + (1 + r)isg]/[2ri1 + (1 +
r)(i2 + i3) + 2i4], and layer 2 is selected for reproduction with probability 1/2. Then,
we select a neighbor of the parent in layer 2 as the child, and the child has the resident
type in both layers, which occurs with probability i4/(N — 1). The state after this
event is (i1,42,43 + 1,74 — 1). Therefore, we obtain

2riy + (1 + T)i3 1 14
27’i1+(1+7‘)(i2+i3)+2i4 2 N-1

(5-11) P(iy,ia,iz,ia)—(i1,92,03+1,ia—1) =

In the seventh type of event, an individual that has the resident type in layer 2
is selected as the parent, which occurs with probability [(1 + r)ia + 2i4]/[2ri1 + (1 +
r)(i2 + i3) + 2i4], and layer 2 is selected for reproduction with probability 1/2. Then,
we select a neighbor of the parent in layer 2 as the child, and the child has the mutant
type in both layers, which occurs with probability i;/(N — 1). The state after this
event is (i1 — 1,42 + 1,43,44). Therefore, we obtain

(14 r)ig + 2iy 1 g

5.12 i1yin,ia,ia) = (i1 —1yia+1yis,ia) = 53 — — . = .
( ) p( 1727374)9(1 1, 2+173,4) 2T21+(1+T)(22+l3)+224 2 N—l

In the eighth type of event, an individual that has the resident type in layer
2 is selected as the parent, which occurs with probability [(1 + r)is + 2i4]/[27%1 +
(1 + r)(i2 + i3) + 2i4], and layer 2 is selected for reproduction with probability 1/2.
Then, we select a neighbor of the parent in layer 2 as the child, and the child has the
resident type in layer 1 and the mutant type in layer 2, which occurs with probability
i3/(N — 1). The state after this event is (i1,42,i3 — 1,44 + 1). Therefore, we obtain

(14 7)ig + 2iy4 1 3
2riy + (L +7r)(ia+i3)+2i4 2 N—-1

(5.13) P(iy i is,ia)—(i1,i2,i5—1,4a+1) =
If any other event occurs, the state remains unchanged. Therefore, we obtain

P(iy,ia,iz,ia)—(i1,02,i3,04) — 1- P(iy,ia,ig,ia)— (i141,i0,i3—1,i4) — P(i1,i0,i3,i4)—(i1,i2+1,i3,i4—1)
= P(i1,iayiz,ia)— (i1—1yi2,i3+1,44) — P(i1,ia,is,04)— (41,52 —1,i3,ia+1)
— P(i1,i2,i3,04) = (i14+1,42—1,i3,44) — P(i1,i2,i3,44)—(i1,i2,i3+1,i4—1)
(5~14) = P(i1,ia,i3,04)—(i1—1,i0+1,i3,i4) — P(i1,02,i3,04)—(i1,i2,i3—1,i4+1)"

By slightly adapting the notations introduced in section 5.1, we denote by xgl]

and x?] the fixation probability of the mutant type in layer 1 and layer 2, respectively,
when the initial state is ¢ = (41, 42,3, 44). To obtain fixation probabilities in layer 1,
we solve Eq. (5.2), where 2! is a column vector of which each entry is the fixation
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probability for the mutant type starting from one of the (V) initial states. The

boundary conditions are given by zE\],O 0,0)

(1]

xT

(1]

(1]

=1, T(0.N,0,0) = 1, T(0.0,N,0) = 0, and

0. To obtain fixation probabilities in layer 2, we solve Eq. (5.3) with

(0,0,0,N) —
_ (2] _ (2] _ 2] _

=1 20 n00 =0 Zioone = 1 and 2 o4 ) = 0.
There are two initial states with one mutant in each layer, i.e., (1,0,0, N — 1) and
(0,1,1, N — 2). These initial states occur with probability 1/N and (N — 1)/N,

respectively. Therefore, we obtain

boundary conditions f%,o,o,o)

N -1 1]

m_ 1
+ N F0.1,1,N-2)

T = yraoonN-1) te{l,2},

(5.15)

where we remind that m[(fj is the fixation probability for the mutant type in layer ¢

when there is initially one mutant in each layer.

We obtained x[cl] (= :c[é]) by numerically solving Eq. (5.2) for N = 6 and N = 30.
The results shown in Figure 2(a) and 2(b) for N = 6 and N = 30, respectively,
indicate that these coupled complete graphs are suppressors of selection. This result
is consistent with Theorem 4.5.

@)y g N=6 (b) N =30
> —— Model 1
e
= ---- Model 2
% —— Moran process
8 0.1645875495 0.0312794675
5_ 0.4 oresserseo =TT 1 00312704665 { =" " T 7
—— 0.166668458497 s ¢ 558018436 1 o —
= =1 S $ 10
© 0166668458496 = | ° as018435 |
.5 & ‘;q‘* Er &
L st?’@ Q@@ & @%ﬁ@
S Q o
0 T N 4 S
1 2 3 0 1 2 3

Fic. 2. Fization probability for coupled complete graphs under models 1 and 2. (a) N =6. (b)
N = 30. The insets to the left within each panel magnify the results for r values less than and close
to r = 1. Those to the right within each panel magnify the results for r values greater than and
close tor =1.

5.3. Combination of the complete graph and star graph. Next, we con-
sider the two-layer network in which layer 1 is the complete graph and layer 2 is the
star graph. All the N nodes in the complete graph are structurally equivalent, and so
are all the N — 1 leaf nodes (i.e., nodes with degree 1) in the star graph. Therefore,
we represent the state of the evolutionary dynamics by @ = (hy, ha, i1,12,13,14), i.€.,
an ordered 6-tuple, where h;y = 0 or 1 if the individual that is the hub node (i.e.,
the replica node with degree N — 1) in layer 2 is of resident or mutant type in layer
1, respectively; ho = 0 or 1 if the hub node in layer 2 is of the resident or mutant
type, respectively; 47 is the number of the remaining N — 1 individuals that have the
mutant type in both layers, i is the number of the remaining NV — 1 individuals that
have the mutant type in layer 1 and the resident type in layer 2; i3 is the number of
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the remaining N — 1 individuals that have the resident type in layer 1 and the mutant
type in layer 2; i4 is the number of the remaining N — 1 individuals that have the
resident type in both layers. There are 22 (Ng'z) states in total.

Similarly to the case in which both layers are the complete graph, we distinguish
nine types of state transitions from each state. We derive the probability of each state
transition in section S5.

We use the same numerical method for solving Eqs. (5.2) and (5.3) as that for
the coupled complete graphs. We show the fixation probability for the mutant type
for N =6 and N = 30 in Figure 3(a) and 3(b), respectively. The figure suggests that
the two-layer networks composed of a complete graph layer and a star graph layer are
suppressors of selection.

(a)08 N=6 (b) N =30

> —— complete graph layer
)
= —— star graph layer
% —— Moran process
o)
o
o 0.4
C
0
-
©
X
L

O_

0 1 2 3 0 1 2 3

Fic. 3. Fization probability for two-layer networks composed of a complete graph layer and a
star graph layer under model 1. (a) N =6. (b) N = 30.

5.4. Coupled star graphs. Here we consider the case in which each layer is the
star graph with N nodes. We assume that the hub replica node in layer 1 corresponds
to a leaf replica node in layer 2, and vice versa. Then, we can specify the network’s
state by an ordered 8-tuple ¢ = (hq, ha, h3, ha,i1,42,13,14), where hy = 0 or 1 if the
hub node in layer 1 is of resident or mutant type, respectively; ho = 0 or 1 if the
individual that is the hub node in layer 1 is of resident or mutant type in layer 2,
respectively; hs = 0 or 1 if the individual that is the hub node in layer 2 is of resident
or mutant type in layer 1, respectively; hy = 0 or 1 if the hub node in layer 2 is of
resident or mutant type, respectively; We reuse i1, 12, i3, and i4 defined in section 5.3
with a slight difference. Here, we count iy, io, i3, and i4 among the N — 2 individuals
that are leaf nodes in both layers. There are 2* (N3+1) states in total.

We distinguish all types of state transitions from each state and derive the proba-
bility of each state transition in section S6. The number of the type of state transitions
varies between seven and nine and depends on the current state.

We use the same numerical method for solving Eqgs. (5.2) and (5.3) as that for the
coupled complete graphs. We show the fixation probability for the mutant type for
N =6 and N = 30 in Figure 4(a) and 4(b), respectively. Figure 4 indicates that the
coupled star graph is a suppressor of selection when N = 6, but is neither a suppressor
nor an amplifier of selection when N = 30. However, in both cases, the coupled star
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graph is more suppressing than the one-layer star graph, which is a strong amplifier
of selection. This last result is consistent with Theorem 4.10 and Remark 4.11.

(a)08 N=6 (b) N =30
> —— star + star
= —— Moran process
o) single-layer
(] star graph
QO 003
g 041 1 002 7
C 0.01 T
.9 0.97 0.?8 0.99
-+
©
X
L
0
0 1 2 3 0 1 2 3

FiG. 4. Fization probability for coupled star graphs under model 1. We compare the results for
the coupled star graphs, shown in blue, with those for the Moran process, shown in black, and those
for the single-layer star graphs, shown in green. (a) N =6. (b) N = 30. The inset in (b) magnifies
the result for r values less than and close to r = 1.

5.5. Combination of the complete graph and complete bipartite graph.
Consider two-layer networks in which layer 1 is the complete graph and layer 2 is the
complete bipartite graph Ky, n,, where Ny + No = N. The complete bipartite
graph Ky, n, has two disjoint subsets of nodes V; and V, with N; and Ny nodes,
respectively. Each node in V; is adjacent to each node in V5. We can describe the state
of the evolutionary dynamics by an 8-tuple. For each 8-tuple state, we distinguish 17
types of transition events and can derive the transition probability of each state to
each state. We show the calculations of the transition probability matrix in section S7.

We use the same numerical method to solve Egs. (5.2) and (5.3) for this two-layer
network. We show the fixation probability for N = 6 in Figure 5(a) and 5(b), and
N =20 in Figure 5(c) and 5(d), respectively. We reduce the larger N value to 20 due
to large memory requirement for this network. We set Ny = Ny = N/2 in Figure 5(a)
and 5(c). In this case, a one-layer network Ky, n, is a regular graph and therefore an
isothermal graph. We set Ny &~ 2N7, where = represents “approximately equal to”,
in Figure 5(b) and 5(d). Figure 5 shows that these two-layer networks are suppressors
of selection.
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(3)0_8 Kss (b) Ks.a

—— complete graph layer

complete bipartite
graph layer
—— Moran process

0.4
>
=
e
@
O 0
o 0 1 2 3 0 1 2 3
—_
o
c (C)os Kio,10 (d) K713
5 .
2
]
X
L
0.4
0
0 1 2 3 0 1 2 3
r

Fic. 5. Fization probability for two-layer networks composed of a complete graph layer and a
complete bipartite graph layer under model 1. (a) N = 6 with K3z 3. (b) N = 6 with Ko 4. (c)
N = 20 with Ki0,10. (d) N = 20 with K713. In panels (a) and (c), the results for the complete
graph layer are close to those for the complete bipartite graph layer such that the blue lines are
almost hidden behind the green lines.

5.6. Combination of the complete graph and two-community networks.
Empirical networks often have community (i.e., group) struture [52]. Therefore, in
this section, we consider two-layer networks in which layer 1 is the complete graph and
layer 2 is a weighted network with two communities. Specifically, layer 2 is composed
of two disjoint sets of nodes V; and V5 with N7 and Ny nodes, respectively, where
N; + Ny = N. Each set of nodes forms a clique (i.e., complete graph as a subgraph)
with edge weight 1. In addition, each node in V; is connected with each node in V5
with edge weight €. A small € implies a strong community structure. It should also be
noted that the combination of the complete graph and the complete bipartite graph
corresponds to this model in the limit of € — co. Similar to the case of combination
of the complete graph and the complete bipartite network, we use an 8-tuple and
distinguish 17 types of transition events from each state to another state. We show
the calculations of the transition probability matrix in section S8.

We numerically solve Egs. (5.2) and (5.3) for N = 6 and N = 20 with € = 0.1.
We show the results for N = 6 in Figure 6(a) and 6(b), and N = 20 in Figure 6(c)
and 6(d), respectively. In Figure 6(a) and 6(c), we set N; = Ny = N/2, and the two-
community network is an isothermal graph. In Figure 6(b) and 6(d), we set Ny & 2N5.
Figure 6 indicates that these two-layer networks are suppressors of selection.
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@), N,=N,=3 (b) N,=2, N,=4

—— complete graph layer

two-community
network layer

—— Moran process

0.4
>
=
o)
©
0 0
o) 0 1 2 3 0 1 2 3
—
o
- (¢ N,=N,=10 (d) N,=7,N,=13
o 0.8
ie)
©
X
i
0.4
0
0 1 2 3 0 1 2 3

Fic. 6. Fization probability for two-layer networks composed of a complete graph layer and a
two-community network layer under model 1. (a) N1 = No =3 and €¢ = 0.1. (b) N1 =2, Ny =4,
and €=0.1. (¢) Ny = N2 =10 and €=0.1. (d) N1 =7, N2 =13, and e =0.1.

5.7. Death-birth process variant of model 1. We have analyzed model 1,
which is a two-layer Bd process. To assess the robustness of our main result that
two-layer networks are mostly suppressors of selection, in this section, we consider
a variant of model 1 in which we replace the Bd updating rule by the death-birth
updating rule with selection on the birth, often referred to as the dB rule [6,8,16,36].
According to the dB rule, we select an individual uniformly at random for death in
each time step. Then, the neighbors of the dying individual compete to reproduce
its type on the vacant site with probability proportional to their fitness. The fixation
probability for this death-birth process in the case of the well-mixed population (i.e.,
unweighted complete graph) is [44]

1y 1-1
5.16 B — (1 ) —r
(5.16) ’ ( N)erl_l

We extend the dB process to the case of two-layer networks. For simplicity,
we only consider the case in which both layers are complete graphs (i.e., coupled
complete graph). In each time step, an individual selected uniformly at random (i.e.,
with probability 1/N) dies. We then select one of the two layers to operate the dB
process with equal probability, i.e., 1/2. The neighbors of the dying individual in
the selected layer compete for filling the empty site with probability proportional to
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the product of their fitness and the edge weight (which we set to 1 because we are
considering unweighted complete graphs for both layers). As we show in section S9,
we can derive the set of (N ;‘ 3) —4 linear equations with which to calculate the fixation
probability similarly to the case of the Bd process on the coupled complete graph.

We show the fixation probability for this death-birth process on coupled complete
graphs with N = 6 and N = 30 in Figure 7(a) and 7(b), respectively. We find that
these coupled complete graphs are suppressors of selection under the dB rule, relative
to the Moran process. The green lines in Figure 7 represent Eq. (5.16). We find that
the coupled complete graphs under the dB rule are also more suppressing than the
one-layer complete graphs under the same dB rule.

(@), 5 N=6 (b) N =30

> —— complete + complete
e
= —— Moran process
% —— complete graph + dB
O
o
o 0.4+
[
5]
e
©
X
L

0

0 1 2 3 0 1 2 3
r

Fic. 7. Fization probability for coupled complete graphs under the variant of model 1 with the
dB updating. (a) N =6. (b) N =30. The green lines represent Eq. (5.16).

5.8. Model 2 on coupled complete graphs. In this section, we consider
model 2 in which both layers are complete graphs. We can describe the state of the
network by the same 4-tuple ¢ = (iy,12,43,14) as that we used in section 5.2 and
derive a set of (") — 4 linear equations to determine the fixation probability. For
each state (i1,1i2,13,14), we distinguish 21 types of events and obtain the transition
probability from each state to another state, as shown in section S10.

We show the fixation probability for the mutant type for N = 6 and N = 30 by
the dashed lines in Figure 2(a) and 2(b), respectively. We find that these coupled
complete graphs are suppressors of selection. Furthermore, the results for model 2
are close to those for model 1, while model 2 is slightly less suppressing than model
1.

6. Numerical results. In this section, we carry out numerical simulations of
the Bd process on four two-layer networks without particular symmetry, i.e., a coupled
Erdds-Rényi (ER) random graph, a coupled Barabdsi-Albert (BA) network, and two
empirical two-layer networks. To generate a two-layer ER random graph with N = 100
individuals, in each layer, we connected each pair of nodes with probability 0.1. We
iterated generating networks from the ER random graph with N = 100 nodes until
we obtained two connected networks, which we used as two layers. The two generated
networks had M; = 498 edges and My = 500 edges, respectively. To generate a two-
layer BA network, we sampled two networks with N = 100 nodes each from the BA
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model [53]. In the network growth process of the BA model, each incoming node is
connected to five already existing nodes according to the linear preferential attachment
rule. We use the star graph on 6 nodes as the initial network in each layer. Each of the
two generated networks was more heterogeneous than the ER graph in terms of the
node’s degree, was connected, and had M = 475 edges. Without loss of generality, we
uniformly randomly permuted the label of all nodes in layer 2. Otherwise, there would
be strong positive correlation between the degree of the two replica nodes of the same
individual. One empirical network is the Vickers-Chan TthGraders (VCT7) network,
which is a two-layer network of scholastic and friendship relationships among N = 29
seventh grade students in a school in Victoria, Australia, with M; = 126 edges in
layer 1 and M = 152 edges in layer 2 [54]. The second empirical network is the
Lazega Law Firm (LLF) network, which is a two-layer network of professional and
cooperative relationships among N = 71 partners at the LLF, with M; = 717 edges
in layer 1 and My = 726 edges in layer 2 [55].

We focus on model 1 and examine whether these two-layer networks tend to be
suppressors of selection. We initially placed a mutant on just one replica node in each
layer. Therefore, there are N x N possible initial states. To calculate the fixation
probability for a single mutant for each layer, we run the Bd process until the mutant
type or the resident type fixates in the selected layer. For each value of r, we run
20N?2 simulations starting from each of the N? initial conditions 20 times. We obtain
the fixation probability of the mutant type for each layer as the number of the runs
in which the mutant type has fixated in the selected layer divided by 20N 2.

Figure 8 shows the relationship between the fixation probability for a single mu-
tant and r for the four two-layer networks, one per panel. The figure shows that both
layers are suppressors of selection in all the four two-layer networks. Unexpectedly,
we also find that the fixation probability as a function of r is similar between the
two layers, which are different networks in terms of edges, in all the four two-layer
networks.
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Fic. 8. Fization probability in model and empirical two-layer networks. (a) Two-layer ER
graph. (b) Two-layer BA model. (c) Vickers-Chan 7thGraders network (VC7). (d) Lazega Law
Firm network (LLF). The insets of (a), (b), and (d) magnify the results for values of r less than
and close to r = 1.

7. Discussion. Inspired by an evolutionary game model on two-layer net-
works [35], we formulated and analyzed constant-selection dynamics on two-layer
networks in which each individual’s fitness is defined to be the sum of the fitness
of the replica node over the two layers. Using martingales, we proved that two-
layer networks are suppressors of selection if one layer is a particular network with
high symmetry, at least relative to that network considered as a single-layer network.
The single-layer regular graphs, including the complete graph, cycle, and bipartite
complete graphs in which the two parts have same number of nodes, are isothermal
graphs [4,56], i.e., equivalent to the Moran process. Therefore, these theorems show
that two-layer networks that have any of these networks as one layer are suppressors
of selection regardless of the second layer. Furthermore, we semi-analytically analyzed
some two-layer networks in which both layers are highly symmetric networks to show
that they are also suppressors of selection except the coupled star graph with N = 30
nodes. Nonetheless, the couple star graph with N = 30 is more suppressing than
the single star graph with N = 30. Numerical simulations of stochastic evolutionary
dynamics on four larger two-layer networks without particular symmetry have also
shown that these networks are suppressors of selection. Overall, we have provided
mathematical results and compelling numerical evidence that two-layer networks are
suppressors of selection unless both layers are strong amplifiers of selection such as
the star graph (see Figure 4).

We argue that the intuitive reason behind this result is the key assumption of our
model that the total fitness of a replica node depends on the fitness of the corresonding
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replica node in the other layer as well as its own fitness. Suppose that r > 1 and that
a replica node 7 in layer 1 is of resident type. Then, intuitively, it is more likely to be
invaded by a mutant type, if a neighbor is a mutant because the mutant’s fitness (= )
is higher than the resident’s fitness (= 1). However, if the replica node 4 in layer 2 is
of mutant type, the total fitness for the ith individual is equal to 14 7. Therefore, the
mutant type in layer 2 boosts the likelihood that ith individual reproduces in layer 1
relative to the case of a single-layer network. In this manner, the two-layer nature of
the model blurs the effect of fitness due to the interference of one layer into constant-
selection dynamics in the other layer. This is why two-layer networks are expected
to be suppressors of selection, at least relative to their one-layer counterparts. We
note that we exploited this intuition in formulating and proving our theorems using
martingales.

As we reviewed in section 1, most networks are amplifiers of selection under the Bd
process and uniform initialization. However, small directed networks [16], metapopu-
lation model networks [17,18], a type of temporal network called a switching network
(i.e., in which the network switches between two static network with regular or irreg-
ular time intervals) when NV is small [19], and hypergraphs [20] tend to be suppressors
of selection under the same conditions (i.e., the Bd process with uniform initialization)
even if the undirected variant of them is an amplifier of selection. Here we add two-
layer networks as another case in which suppressors of selection are common. These
results altogether suggest that amplifiers of selection under the Bd process with uni-
form initialization are not so common as was initially considered. It is straightforward
to extend our models to the case of more than two layers. Constant-selection dynam-
ics under adaptive networks (i.e., time-varying networks in which network changes are
induced by the state, or type, of the nodes) are underexplored [57,58]. Whether or
not these networks are amplifying or suppressing would be a worthwhile investigation.

We have exploited some highly symmetric networks to be used as network layers
with the aim of reducing the number of linear equations to be solved from O(22V) to
a polynomial order of N. We used the same strategy to analyze hypergraphs [20] and
switching temporal networks [19]. The same technique was exploited for analytically
solving the fixation probability in the complete bipartite graphs [59,60], stars [4,56],
and so-called superstars [4]. However, the size of the two-layer networks for which
we exactly calculated the fixation probability is still modest, i.e., up to N = 20 or
N = 30 depending on the network. This is because, the network in our models has
two layers, and we need to track the type (i.e., resident or mutant) of the replica nodes
in both layers to specify the state of an individual. It would be ideal if this type of
mathematical technique leads to analytical solutions of the fixation probability, not
just to reduce the dimension of the problem. This is left for future work.
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