

1 **FIXATION DYNAMICS ON MULTILAYER NETWORKS**

2 RUODAN LIU* AND NAOKI MASUDA†

3 **Abstract.** Network structure has a large impact on constant-selection evolutionary dynamics,
4 with which multiple types of different fitnesses (i.e., strengths) compete on the network. Here we
5 study constant-selection dynamics on two-layer networks in which the fitness of a node in one layer
6 affects that in the other layer, under birth-death processes and uniform initialization, which are com-
7 monly assumed. We show mathematically and numerically that two-layer networks are suppressors
8 of selection, which suppresses the effects of the different fitness values between the different types on
9 final outcomes of the evolutionary dynamics (called fixation probability), relative to the constituent
10 one-layer networks. In fact, many two-layer networks are suppressors of selection relative to the most
11 basic baseline, the Moran process. This result is in stark contrast with the results for conventional
12 one-layer networks for which most networks are amplifiers of selection.

13 **Key words.** Evolutionary dynamics, fixation probability, constant selection, multilayer net-
14 works, amplifier, suppressor

15 **MSC codes.** 60J20, 91D30, 92D15, 92D25

16 **1. Introduction.** Evolutionary dynamics is a mathematical modeling frame-
17 work that allows us to investigate how the composition of different traits in a popula-
18 tion changes over time under the assumption that fitter individuals tend to reproduce
19 more often. For example, evolutionary game theory focuses on situations in which
20 the fitness is determined by the game interaction between individuals, such as the
21 prisoner’s dilemma game [1–3]. Another example, which we focus on in the present
22 study, is evolutionary graph theory in which one investigates the effects of network
23 structure and possibly its variation over time on evolution of traits [1, 4–7]. In par-
24 ticular, studies of evolutionary games on networks have revealed that the conditions
25 under which cooperation occurs in social dilemma games heavily depend on the net-
26 work structure and that these conditions can be mathematically derived using random
27 walk theory [8, 9].

28 Let us consider the constant-selection evolutionary dynamics on networks. In
29 this dynamics, different types are assigned with different constant fitness values, each
30 node of the given network is occupied by either of these types, and the different types
31 compete for survival. One can view this dynamics as competition between resident
32 and mutant phenotypes in structured populations, or social dynamics of opinions in
33 which people switch between different opinions, influenced by their neighbors in the
34 network.

35 A core property of constant-selection evolutionary dynamics on networks is the
36 fixation probability. It is the likelihood that the mutant type initially occupying a
37 single node of the network ultimately fixates, i.e., the mutant type eventually occupies
38 all the nodes of the network, under the assumption that there is no mutation (i.e.,
39 the type on any node does not spontaneously change during the dynamics except due
40 to the influence by their neighbors). The fixation probability depends on the network
41 structure, the fitness of the mutant type, denoted by r , relative to the fitness of the
42 resident type, which is normalized to be 1, as well as the initial condition [1, 4, 6]. The
43 mutant type is more likely to fixate if r is large. The extent to which the fixation

*Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260-2900,
USA (rliu8@buffalo.edu).

†Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260-2900,
USA (naokimas@gmail.com).

44 probability of the mutant type increases with rising r hinges on the network structure.
 45 Some networks are known to be amplifiers of selection. By definition, in a network
 46 amplifying selection, a single mutant has a larger fixation probability than the case
 47 of the well-mixed population with the same number of nodes, which is equivalent to
 48 the so-called Moran process, at any $r > 1$, and has a lower fixation probability than
 49 the case of the Moran process at any $r < 1$. In amplifying networks, the effect of the
 50 difference between the mutant and resident type in terms of the fitness (i.e., r versus
 51 1) is magnified by the network. In contrast, other networks are suppressors of selection
 52 such that a single mutant has a lower fixation probability than the case of the Moran
 53 process at any $r > 1$ and vice versa at any $r < 1$. Under a standard assumption of the
 54 birth-death process with selection on the birth and uniform initialization, it has been
 55 shown that most networks are amplifiers of selection [10–12]. Suppressors of selection
 56 are rare [11, 13].

57 Studies have shown that the amplifiers of selection under the birth-death process
 58 are not necessarily common when we introduce additional factors into evolutionary
 59 graph dynamics models, such as the non-uniform initialization [14, 15], directed net-
 60 works [16], metapopulation models [17, 18], temporal (i.e., time-varying) networks [19],
 61 and hypergraphs [20]. These results encourage us to study evolutionary dynamics on
 62 other extensions of conventional networks with an expectation that the dynamics on
 63 them may be drastically different from those on conventional networks.

64 In the present study, we explore constant-selection evolutionary dynamics on mul-
 65 tilayer networks. Multilayer networks express the situation in which the individuals
 66 in a population are pairwise connected by different types of edges, such as different
 67 types of social relationships; the same pair of individuals may be directly connected
 68 by multiple types of edges [21–24]. In evolutionary dynamics on multilayer networks,
 69 each layer, corresponding to one type of edge, is a network, and evolutionary dynamics
 70 in different network layers are coupled in some manner. This setting has been inves-
 71 tigated for evolutionary social dilemma games. See [25] for a review. Earlier work
 72 considered two-layer networks in which the game interaction occurs in one network
 73 layer and imitation of strategies between players occurs in the other network layer.
 74 Cooperation is more enhanced in this model if the edges overlap more heavily between
 75 the two layers [26–29] or under other conditions [30, 31] (but see [32]). When players
 76 are assumed to be engaged in game interactions, not just imitation of strategies, in
 77 the different layers, multilayer networks promote cooperation under some conditions
 78 such as positive degree correlation between two layers [33] and asynchronous strategy
 79 updating [34]. Cooperation can thrive in this class model even if each network layer
 80 in isolation does not support cooperation [35]. However, to the best of our knowl-
 81 edge, constant-selection evolutionary dynamics on multilayer networks have not been
 82 studied.

83 We particularly use two-layer networks. We introduce two models of constant-
 84 selection dynamics in multilayer networks, which are analogues of an evolutionary
 85 game model in multilayer networks [35], and semi-analytically calculate the fixation
 86 probability of mutants for each network layer for two-layer networks with high sym-
 87 metry. Using martingale techniques, we also theoretically prove that the complete
 88 graph layer and the cycle graph layer in a two-layer network are suppressors of se-
 89 lection, and that the star graph layer and the complete bipartite layer in a two-layer
 90 network are more suppressing than the corresponding one-layer network. We numer-
 91 ically show that all the two-layer networks that we have numerically investigated are
 92 suppressors of selection, except for the coupled star networks. However, the coupled
 93 star networks are more suppressing than the one-layer star graphs. In this manner,

94 we conclude that two-layer networks suppress the effects of selection.

95 **2. Moran process.** The Moran process is a model of stochastic constant-
 96 selection evolutionary dynamics in a well-mixed finite population with N individuals.
 97 The population consists of two types of individuals, i.e., the resident and mutant,
 98 with constant fitness values, 1 and r , respectively. At each time step, an individual
 99 is selected as the parent for reproduction with probability proportional to its fitness
 100 and an individual dies uniformly at random. Then, the parent's offspring replaces the
 101 dead individual. The fixation probability for a single mutant is given by [1, 4]

102 (2.1)
$$\rho = \frac{1 - 1/r}{1 - 1/r^N}.$$

103 Extensions of the Moran process to networks depend on specific update rules to be
 104 assumed. The network may be directed or weighted. A major variant of the updating
 105 rule that we consider in the present paper is the birth-death process with selection
 106 on the birth, or the Bd rule [6, 16, 36], which operates as follows. At each time
 107 step, an individual is selected as the parent, denoted by u , for reproduction with
 108 probability proportional to its fitness. This step is the same as in the Moran process.
 109 Then, u 's type replaces the type of a neighbor of u , which is selected with probability
 110 proportional to the edge weight between u and itself. We use the Bd rule because a
 111 majority of work on constant-selection evolutionary dynamics on networks do so [4,
 112 15, 37–43]. However, death-birth processes also give important insights into constant-
 113 selection evolutionary dynamics [10, 36, 44, 45], and we briefly examine it with our
 114 two-layer network model in section 5.7.

115 In a directed and weighted network, the edge direction indicates a one-way rela-
 116 tionship between the two nodes. A network is an isothermal graph if the weighted
 117 in-degree (i.e., sum of the edge weight over all incoming edges to a node) is the same
 118 for all nodes. Unweighted regular graphs are examples of isothermal graph. The
 119 fixation probability for an isothermal graph is given by Eq. (2.1) [1, 4].

120 The fixation probability for a single mutant of the Moran process is $1/N$ at
 121 $r = 1$ [46–48]. Relative to the Moran process, many networks are either amplifiers or
 122 suppressors of selection [4, 10–13, 15, 39–42]. Amplifiers of selection are networks in
 123 which the fixation probability is larger than that for the Moran process (i.e., Eq. (2.1))
 124 for any $r > 1$ and smaller than that for the Moran process for any $r < 1$. Suppressors
 125 of selection are networks in which the fixation probability is smaller and larger than
 126 for the Moran process for any $r > 1$ and $r < 1$, respectively.

127 **3. Models.** We introduce two models of constant-selection evolutionary dynam-
 128 ics for a population of N individuals in undirected and possibly weighted multilayer
 129 networks. The assumption of the undirected network is for simplicity, and it is
 130 straightforward to generalize the following models to the case of directed multilayer
 131 networks. We assume a two-layer network as the population structure, whereas it is
 132 straightforward to generalize the models to the case of more than two layers. Each
 133 layer is assumed to be a connected network with N nodes. It represents one of the
 134 two types of relationship between individuals, such as physical proximity contact or
 135 online social relationship in the case of human social networks. We call each node in
 136 one layer the replica node; there are $2N$ replica nodes in the entire two-layer network.
 137 Each replica node has a corresponding replica node in the other layer. A pair of the
 138 corresponding replica nodes, one in each layer, represents an individual (see Figure 1
 139 for a schematic). Each edge within a layer represents direct connectivity between two
 140 replica nodes in the same layer. Each pair of individuals may be adjacent to each

141 other in both layers, just one layer, or neither layer. For example, two people may
 142 directly interact both in person and online, or in only one of the two ways.

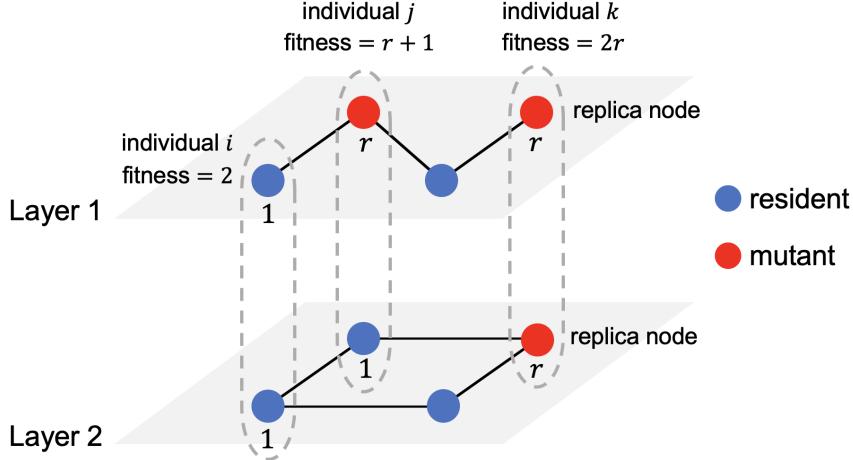


FIG. 1. An example of a two-layer network. Each individual occupies a replica node in layer 1 and the corresponding replica node in layer 2, as indicated by dashed lines. A resident replica node and a mutant replica node are shown in blue and red, respectively.

143 Both models extend the Bd process on conventional (i.e., mono-layer) networks
 144 and the Moran process in well-mixed populations to the case of two-layer networks.
 145 We assume that each of the $2N$ replica nodes takes either the resident or mutant
 146 type at any discrete time. The resident and mutant have fitness 1 and r , respectively,
 147 which are constant over time. We define the fitness of each individual by the sum of
 148 the fitness of the corresponding replica nodes in both layers [35]. In other words,
 149 the individual has fitness 2 if it is of the resident type in both layers, $r+1$ if it is of the
 150 mutant type in one layer and the resident type in the other layer, and $2r$ if it is of the
 151 mutant type in both layers. We allow each individual to adopt different types in the
 152 opposite layers (i.e., the resident type in one layer and the mutant type in the other
 153 layer) because they may behave differently in different types of social relationship.
 154 Furthermore, success or failure of an individual in one type of social relationship may
 155 affect the same in the other domain, which motivates us to couple the fitness of each
 156 individual across the two layers [35].

157 The model assumptions up to this point are shared by models 1 and 2. Next, in
 158 model 1, in each time step, we select one individual (i.e., parent) for reproduction with
 159 probability proportional to its fitness. Then, we select one of the two layers to operate
 160 the Bd process with the equal probability, i.e., $1/2$. Then, the parent selects one of
 161 its neighbors in the selected layer with probability proportional to the weight of the
 162 edge between the two individuals. Finally, the parent converts the type of the selected
 163 neighbor into the parent's type in the selected layer. This concludes one time step of
 164 the Bd process. We repeat this procedure until the entire population settles into an
 165 absorbing state in which all individuals are either of the resident or mutant type in
 166 each layer. It should be noted that the final state in the two layers may be different,
 167 i.e., resident in one layer and mutant in the other layer. This phenomenon may
 168 represent the situation in which two opinions or behaviors, O_1 and O_2 , are competing

169 in one layer, and two others, O_3 and O_4 , are competing in the other layer. Then, all
 170 individuals may adopt the combination of O_1 and O_3 in the end, or the combination
 171 of O_1 and O_4 , for example.

172 In each time step in model 2, we first select an individual i as the parent with
 173 probability proportional to its fitness in each time step. This process is the same as
 174 that in model 1. However, differently from model 1, we then do not select the layer
 175 but draw a neighbor of i in layer 1, denoted by j , with probability proportional to
 176 the edge weight $w_{ij}^{[1]}$, and j copies i 's type. At the same time, we select an individual
 177 k as another parent with probability proportional to its fitness. Then, we select a
 178 neighbor of k in layer 2, denoted by ℓ , with probability proportional to the edge
 179 weight $w_{k\ell}^{[2]}$, and ℓ copies k 's type. Individual k may be the same as individual i . This
 180 model is the same as the main model proposed in [35] except that their model used
 181 a death-birth instead of birth-death process and that the fitness for each individual
 182 is determined by two-player games in their model and therefore not constant for each
 183 type in general. We consider model 2 in addition to model 1 because model 2 is a
 184 direct extension of the model proposed in [35]. On the other hand, model 1 is more
 185 amenable to mathematical analysis of fixation dynamics than model 2.

186 **4. Theoretical results.**

187 **4.1. Neutral drift.** In this section, we focus on the case of neutral mutants, i.e.,
 188 $r = 1$. The fixation probability for the neutral mutant type when there is initially
 189 just one mutant node selected uniformly at random must be equal to $1/N$ for one to
 190 be able to discuss amplifiers and suppressors of selection. We start by proving this
 191 property for two-layer networks.

192 **THEOREM 4.1.** *Consider model 1 under $r = 1$. When there are initially i mutants
 193 selected uniformly at random from the N replica nodes in one layer, the fixation
 194 probability for the mutant for that layer is equal to i/N .*

195 *Proof.* When $r = 1$, the fitness of each individual is always equal to 2. Then, the
 196 Bd process in layer 1 is independent of that in layer 2. Therefore, the proof is exactly
 197 the same as that for conventional networks as shown in [20, 46–48]. \square

198 *Remark 4.2.* This theorem also holds true for model 2 with the proof being un-
 199 changed.

200 **4.2. Complete graph layer in a two-layer network is always a suppressor
 201 of selection.** In this section, we show that the complete graph layer in an arbitrary
 202 two-layer network is always a suppressor of selection under model 1. To this end, we
 203 let $\xi_t \in \{0, 1\}^{2N}$, with $t \in \{0, 1, \dots\}$, be the state of the Bd process on the two-layer
 204 network at time t . The initial condition is given by ξ_0 . We conveniently define t as the
 205 number of the state changes in layer 1, which we assumed to be the complete graph.
 206 In other words, when counting t , we ignore the updating steps in which a replica node
 207 in layer 1 is selected as the parent but does not induce the actual change of the state
 208 of the network (because the child node has the same type as that of the parent) or
 209 a replica node in layer 2 is selected as the parent (because there is then no change
 210 in the state in layer 1). We consider model 1 in the following text unless we state
 211 otherwise.

212 **LEMMA 4.3.** *Consider the Bd process on the two-layer network in which layer 1
 213 is the unweighted complete graph and layer 2 is an arbitrary connected network. We
 214 let X_t be the number of mutants in the first layer at time t and set $Y_t \equiv r^{-X_t}$. Then,
 215 sequence $\{Y_n\}$ is a submartingale for any $r > 0$.*

216 *Proof.* Let $\{\mathcal{B}_t\}$ be the filtration, i.e., an increasing sequence of the σ -algebras,
 217 generated by the Bd process on the two-layer network. We obtain $X_{t+1} = X_t + 1$
 218 or $X_{t+1} = X_t - 1$ because we count the time t if and only if the number of the
 219 mutants changes in the complete graph layer. For an arbitrary state of the two-layer
 220 network with X_t mutants, ξ_t , we denote by $p(\xi_t)$ and $q(\xi_t)$ the probabilities with
 221 which $X_{t+1} = X_t + 1$ and $X_{t+1} = X_t - 1$, respectively. Note that $p(\xi_t) + q(\xi_t) = 1$.

222 To calculate $p(\xi_t)$ and $q(\xi_t)$, we denote by N_1 the number of individuals that
 223 have the mutant type in both layers, by N_2 the number of individuals that have
 224 the mutant type in layer 1 and the resident type in layer 2, by N_3 the number of
 225 individuals that have the resident type in layer 1 and the mutant type in layer 2, and
 226 by N_4 the number of individuals that have the resident type in both layers. Note that
 227 $N_1 + N_2 + N_3 + N_4 = N$. In a single time step of the original Bd process, X_t increases
 228 by one with probability

$$229 \quad (4.1) \quad p' = \frac{2rN_1 + (r+1)N_2}{2rN_1 + (r+1)(N_2 + N_3) + 2N_4} \cdot \frac{1}{2} \cdot \frac{N_3 + N_4}{N_1 + N_2 + N_3 + N_4 - 1}$$

230 and decreases by one with probability

$$231 \quad (4.2) \quad q' = \frac{(r+1)N_3 + 2N_4}{2rN_1 + (r+1)(N_2 + N_3) + 2N_4} \cdot \frac{1}{2} \cdot \frac{N_1 + N_2}{N_1 + N_2 + N_3 + N_4 - 1}.$$

232 By combining Eqs. (4.1) and (4.2) with $p(\xi_t)/q(\xi_t) = p'/q'$ and $p(\xi_t) + q(\xi_t) = 1$, we
 233 obtain

$$234 \quad (4.3) \quad p(\xi_t) = \frac{r}{r+1} - \varepsilon,$$

$$235 \quad (4.4) \quad q(\xi_t) = \frac{1}{r+1} + \varepsilon,$$

237 where

$$238 \quad (4.5) \quad \varepsilon = \frac{(r-1)[rN_1N_3 + (r+1)N_2N_3 + N_2N_4]}{(r+1)\{[2rN_1 + (r+1)N_2](N_3 + N_4) + [(r+1)N_3 + 2N_4](N_1 + N_2)\}}.$$

239 We obtain

$$240 \quad E[Y_{t+1}|\mathcal{B}_t] = p(\xi_t)r^{-(X_t+1)} + q(\xi_t)r^{-(X_t-1)} \\ 241 \quad = \left[\left(\frac{r}{r+1} - \varepsilon \right) \frac{1}{r} + \left(\frac{1}{r+1} + \varepsilon \right) r \right] Y_t \\ 242 \quad = \left[1 + \left(r - \frac{1}{r} \right) \varepsilon \right] Y_t, \\ 243$$

244 where $E[\cdot|\cdot]$ represents the conditional expectation. If $r > 1$, we obtain $E[Y_{t+1}|\mathcal{B}_t] \geq$
 245 Y_t because $r - r^{-1} > 0$ and $\varepsilon \geq 0$. If $r < 1$, we also obtain $E[Y_{t+1}|\mathcal{B}_t] \geq Y_t$ because
 246 $r - r^{-1} < 0$ and $\varepsilon \leq 0$. Therefore, in both cases, Y_t is a submartingale. If $r = 1$, we
 247 obtain $\varepsilon = 0$ such that Y_t is a martingale, which is a submartingale. \square

248 *Remark 4.4.* Our choice of Y_t is inspired by the construction of a martingale for
 249 the biased random walk on \mathbb{Z} (see, e.g., [49, 50]) and its application to constant-
 250 selection evolutionary dynamics [14, 43, 51].

251 **THEOREM 4.5.** *Consider the Bd process on the two-layer network in which layer*
 252 *1 is the unweighted complete graph and layer 2 is an arbitrary connected network.*
 253 *Then, the complete graph layer is a suppressor of selection.*

Proof. Sequence $\{Y_t\}$ is a submartingale and bounded because $r^{-N} \leq Y_t \leq 1$ $\forall t$ when $r \geq 1$ and $1 \leq Y_t \leq r^{-N}$ $\forall t$ when $r \leq 1$. Therefore, Y_t converges almost surely and $E[Y_\infty]$ is finite owing to the martingale convergence theorem [49, 50]. The present Bd process has four absorbing states in which all the nodes in each layer are unanimously occupied by the resident or mutant. The two absorbing states in which all the nodes in layer 1 are occupied by the resident yields $X_t = 0$. The other two absorbing states in which all the nodes in layer 1 are occupied by the mutant yields $X_t = N$. Because an absorbing state is ultimately reached with probability 1,

$$262 \quad (4.7) \quad E[Y_\infty] \geq Y_0$$

263 yields

$$264 \quad (4.8) \quad x(\xi_0)r^{-N} + [1 - x(\xi_0)]r^{-0} \geq r^{-X_0},$$

265 where $x(\xi_0)$ is the fixation probability of the mutant under an initial condition ξ_0
 266 with X_0 mutants in layer 1; therefore, there are initially $N - X_0$ residents in the same
 267 layer. Equation (4.8) yields

$$268 \quad (4.9) \quad \begin{cases} x(\xi_0) \leq \frac{1-r^{X_0}}{1-r^N} & (r \geq 1), \\ x(\xi_0) \geq \frac{1-r^{X_0}}{1-r^N} & (r < 1). \end{cases}$$

269 Our goal is to exclude the equalities in Eq. (4.9) for $1 \leq X_0 \leq N - 1$ because
 270 then it will hold true that the complete graph layer is a suppressor of selection. To
 271 show this, we distinguish among the following three cases.

To state the first case, we note that $\varepsilon = 0$ for $r \neq 1$ and $1 \leq X_0 \leq N - 1$ if and only if $N_2 = N_3 = 0$. Therefore, if the initial condition ξ_0 satisfies $N_2 > 0$ or $N_3 > 0$, then Eq. (4.6) implies that

$$275 \quad (4.10) \quad E[Y_1|\xi_0] > Y_0$$

276 for $r \neq 1$. By combining $E[Y_2|\mathcal{B}_t] \geq Y_1$, which follows from Lemma 4.3, with
 277 Eq. (4.10), we obtain $E[Y_2|\xi_0] > Y_0$.

The second and third cases concern the initial condition ξ_0 satisfying $N_2 = N_3 = 0$ such that each individual has the same type (i.e., resident or mutant) in both layers. Then, we obtain $E[Y_1|\xi_0] = Y_0$ because $\varepsilon = 0$. As the second case, we consider the situation in which ξ_0 satisfies $N_1 \leq N - 2$ in addition to $N_2 = N_3 = 0$. In this case, the network's state after the first state transition, ξ_1 , satisfies $(N_1, N_2, N_3, N_4) = (N_1, 1, 0, N - N_1 - 1)$ with probability $p(\xi_0) = r/(r+1)$. Conditioned on this transition, we obtain $E[Y_2|\xi_1] > Y_1$ for $r \neq 1$, which is an adaptation of Eq. (4.10). We obtain $E[Y_2|\xi_1] > Y_1$ because this particular ξ_1 yields $N_2 = 1$, which implies $(r - r^{-1})\varepsilon > 0$. If we start from the same ξ_0 and a different ξ_1 is realized with probability $1 - p(\xi_0)$, we still obtain $E[Y_2|\xi_1] \geq Y_1$ owing to Lemma 4.3. Therefore, we obtain $E[Y_2|\xi_0] > Y_0$ when ξ_0 satisfies $N_1 \leq N - 2$ and $N_2 = N_3 = 0$.

As the third case, we consider the situation in which ξ_0 satisfies $N_1 = N - 1$, which implies that $N_2 = N_3 = 0$. In this case, ξ_1 satisfies $(N_1, N_2, N_3, N_4) = (N_1 - 2, 0, 1, N - N_1)$ with probability $q(\xi_0) = 1/(r + 1)$. Conditioned on this transition, we obtain $E[Y_2|\xi_1] > Y_1$ for $r \neq 1$ because this particular ξ_1 yields $N_3 = 1$, which implies $(r - r^{-1})\varepsilon > 0$. If we start from the same ξ_0 and a different ξ_1 is realized with probability $1 - q(\xi_0)$, we still obtain $E[Y_2|\xi_1] \geq Y_1$ owing to Lemma 4.3. Therefore, we obtain $E[Y_2|\xi_0] > Y_0$ when ξ_0 satisfies $N_1 = N - 1$.

296 Because $E[Y_2|\xi_0] > Y_0$ holds true in all the three cases, we obtain $E[Y_2|\mathcal{B}_0] > Y_0$,
 297 which together with $E[Y_{t+1}|\mathcal{B}_t] \geq Y_t, \forall t \in \{2, 3, \dots\}$ leads to Eq. (4.7) with the strict
 298 inequality. Therefore, Eqs. (4.8) and (4.9) hold true with the strict inequality when
 299 $r \neq 1$. \square

300 **4.3. Cycle graph layer in a two-layer network is always a suppressor**
 301 **of selection.** We use the same method as that for the complete graph layer to show
 302 that Lemma 4.3 also holds true when one replaces the complete graph layer by the
 303 cycle graph. The cycle graph, which we assumed to form layer 1, is defined by $w_{ij}^{[1]} = 1$
 304 if $j = i \pm 1 \pmod{N}$, and $w_{ij}^{[1]} = 0$ otherwise. For simplicity, we assume that the replica
 305 nodes of the mutant type are initially consecutive (i.e., forming just one connected
 306 component of mutants) in the cycle graph layer.

307 **LEMMA 4.6.** *Consider the Bd process on the two-layer network in which layer 1*
 308 *is the unweighted cycle graph and layer 2 is an arbitrary connected network. We let*
 309 *X_t the number of mutants in layer 1 at time t and set $Y_t \equiv r^{-X_t}$. The individuals of*
 310 *the mutant type are assumed to be initially located at consecutive replica nodes on the*
 311 *cycle. Then, sequence $\{Y_n\}$ is a submartingale for any $r > 0$.*

312 We prove Lemma 4.6 in section S1.

313 **THEOREM 4.7.** *Consider the Bd process on the two-layer network in which layer*
 314 *1 is the unweighted cycle graph and layer 2 is an arbitrary connected network. Then,*
 315 *the cycle graph layer is a suppressor of selection, given that the individuals of the*
 316 *mutant type are initially located at consecutive replica nodes on the cycle.*

317 We prove Theorem 4.7 in section S2.

318 **4.4. Complete bipartite graph layer in a two-layer network.** In this sec-
 319 tion, we consider the two-layer network in which layer 1 is the unweighted complete
 320 bipartite graph and layer 2 is an arbitrary connected network. The complete bipartite
 321 graph, denoted by K_{N_1, N_2} , where $N_1 + N_2 = N$, consists of two disjoint subsets of
 322 nodes V_1 and V_2 with N_1 and N_2 nodes, respectively. It is defined by $w_{ij}^{[1]} = 1$ if $i \in V_1$
 323 and $j \in V_2$, or $i \in V_2$ and $j \in V_1$, and $w_{ij}^{[1]} = 0$ otherwise. We construct a similar
 324 proof to that for the complete graph or cycle graph layer to show that the complete
 325 bipartite graph layer in an arbitrary two-layer network is more suppressing than the
 326 one-layer complete bipartite graph.

327 **LEMMA 4.8.** *Consider the Bd process on the two-layer network in which layer*
 328 *1 is the unweighted complete bipartite graph and layer 2 is an arbitrary connected*
 329 *network. We let $\mathbf{X}_t = [X_{1,t}, X_{2,t}]$, where $X_{1,t}$ and $X_{2,t}$ are the number of nodes in V_1*
 330 *and V_2 , respectively, that are occupied by the mutant in layer 1 at time t . We define*
 331 *$Y_t \equiv h_1^{X_{1,t}} h_2^{X_{2,t}}$, where*

$$332 \quad (4.11) \quad h_1 = \frac{N_1 + N_2 r}{N_1 r^2 + N_2 r},$$

$$333 \quad (4.12) \quad h_2 = \frac{N_2 + N_1 r}{N_2 r^2 + N_1 r}.$$

335 Then, sequence $\{Y_n\}$ is a submartingale for any $r > 0$.

336 We prove Lemma 4.8 in section S3.

337 **Remark 4.9.** Our choice of Y_t is inspired by the application of martingales to the
 338 Bd process in one-layer complete bipartite graphs [43].

339 THEOREM 4.10. Consider the Bd process on the two-layer network in which layer
 340 1 is the unweighted complete bipartite graph and layer 2 is an arbitrary connected
 341 network. Then, the complete bipartite graph layer is more suppressing than the one-
 342 layer complete bipartite graph.

343 *Proof.* Equation (4.7) holds true in the present case as well. It is equivalent to

344 (4.13)
$$x(\xi_0)h_1^{N_1}h_2^{N_2} + [1 - x(\xi_0)]h_1^0h_2^0 \geq h_1^{X_{1,0}}h_2^{X_{2,0}},$$

345 where $x(\xi_0)$ is the fixation probability of the mutant type under an initial condition
 346 ξ_0 with $X_{1,0}$ mutants on the nodes in V_1 and $X_{2,0}$ mutants on the nodes in V_2 ; there
 347 are initially $X_{1,0} + X_{2,0}$ mutants and $N - (X_{1,0} + X_{2,0})$ residents in the complete
 348 bipartite graph layer. Equation (4.13) yields

349 (4.14)
$$\begin{cases} x(\xi_0) \leq \frac{h_1^{X_{1,0}}h_2^{X_{2,0}} - 1}{h_1^{N_1}h_2^{N_2} - 1} & (r \geq 1), \\ x(\xi_0) \geq \frac{h_1^{X_{1,0}}h_2^{X_{2,0}} - 1}{h_1^{N_1}h_2^{N_2} - 1} & (r < 1). \end{cases}$$

350 To exclude the equalities in Eq. (4.14) for $1 \leq X_{1,0} + X_{2,0} \leq N - 1$, we distinguish
 351 among 12 cases that are different in terms of the number of individuals in V_1 and that
 352 in V_2 with different fitness values. We obtain

353 (4.15)
$$E[Y_3|\xi_0] > Y_0$$

354 for all the 12 cases; see section S4 for the proof.

355 Because Eq. (4.15) holds true in all the cases, we obtain $E[Y_3|\mathcal{B}_0] > Y_0$, which
 356 together with $E[Y_{t+1}|\mathcal{B}_t] \geq Y_t$, $\forall t \in \{3, 4, \dots\}$ leads to Eq. (4.7) with the strict
 357 inequality. Therefore, Eqs. (4.13) and (4.14) hold true with the strict inequality when
 358 $r \neq 1$, proving that the complete bipartite graph layer in a two-layer network is more
 359 suppressing than the mono-layer complete bipartite graph. \square

360 *Remark 4.11.* If $N_1 = 1$ and $N_2 = N - 1$, the complete bipartite graph layer
 361 reduces to a star graph. Therefore, Lemma 4.8 and Theorem 4.10 also hold true when
 362 one layer of the two-layer network is a star graph.

363 *Remark 4.12.* All lemmas and theorems also hold true for model 2 with the proof
 364 being essentially unchanged (see section S4 for more).

365 5. Semi-analytical results for two-layer networks with high symmetry.

366 **5.1. Exact computation of the fixation probability in two-layer net-
 367 works.** In this section, we explain how to exactly calculate the fixation probability
 368 for the mutant type when there is initially one replica node of mutant type that is se-
 369 lected uniformly at random in layer 1, and one replica node of mutant type in layer 2.
 370 This initial state is the same as that assumed in [35]. Let $s_i^{[1]} \in \{0, 1\}$ and $s_i^{[2]} \in \{0, 1\}$
 371 be individual i 's type in layer 1 and layer 2, respectively, where values 0 and 1 repre-
 372 sent resident and mutant, respectively. Then, the state of the evolutionary dynamics
 373 is specified by a $2N$ -dimensional binary vector $\mathbf{s} = (s_1^{[1]}, \dots, s_N^{[1]}, s_1^{[2]}, \dots, s_N^{[2]})$. There-
 374 fore, there are 2^{2N} states in total. We number the states from 1 to 2^{2N} by a bijective
 375 map, denoted by φ , given by

376
$$\varphi : S \rightarrow \{1, \dots, 2^{2N}\},$$

 377 (5.1)
$$\mathbf{s} \mapsto \varphi(\mathbf{s}),$$

379 where S is the set of all states. Let $P = [p_{i,j}]$ denote the $2^{2N} \times 2^{2N}$ transition
 380 probability matrix, where $p_{i,j}$ is the probability that the state moves from the i th state
 381 to the j th state in a time step of the birth-death process. Denote the probability that
 382 the mutant fixates in layer 1 by $x_i^{[1]}$ starting from the i th state, where $i \in \{1, \dots, 2^{2N}\}$.
 383 Similarly, denote the probability that the mutant fixates in layer 2 by $x_i^{[2]}$ starting
 384 from the i th state. We can obtain $x_i^{[1]}$ by solving the linear system

385 (5.2)
$$\mathbf{x}^{[1]} = P\mathbf{x}^{[1]},$$

386 where $\mathbf{x}^{[1]} = (x_1^{[1]}, \dots, x_{2^{2N}}^{[1]})^\top$, and $^\top$ represents the transposition, with bound-
 387 ary conditions $x_{\varphi((1, \dots, 1, 1, \dots, 1))}^{[1]} = 1$, $x_{\varphi((1, \dots, 1, 0, \dots, 0))}^{[1]} = 1$, $x_{\varphi((0, \dots, 0, 1, \dots, 1))}^{[1]} = 0$, and
 388 $x_{\varphi((0, \dots, 0, 0, \dots, 0))}^{[1]} = 0$. Similarly, we can obtain $x_i^{[2]}$ by solving the same linear system

389 (5.3)
$$\mathbf{x}^{[2]} = P\mathbf{x}^{[2]},$$

390 where $\mathbf{x}^{[2]} = (x_1^{[2]}, \dots, x_{2^{2N}}^{[2]})^\top$, with boundary conditions $x_{\varphi((1, \dots, 1, 1, \dots, 1))}^{[2]} = 1$,
 391 $x_{\varphi((1, \dots, 1, 0, \dots, 0))}^{[2]} = 0$, $x_{\varphi((0, \dots, 0, 1, \dots, 1))}^{[2]} = 1$, and $x_{\varphi((0, \dots, 0, 0, \dots, 0))}^{[2]} = 0$. Let $C \subset S$ be
 392 the set of initial states that contain only one replica node of mutant type in layer 1
 393 and one replica node of mutant type in layer 2. The cardinality of C is N^2 . Denote
 394 the numerical labels of states in C by $\{k_1, \dots, k_{N^2}\}$. Then, the fixation probability
 395 for the mutant type in layer 1 and 2 starting with the initial configuration with just
 396 one mutant in each layer, denoted by $x_C^{[1]}$ and $x_C^{[2]}$, respectively, is given by

397 (5.4)
$$x_C^{[1]} = \sum_{i \in \{k_1, \dots, k_{N^2}\}} \frac{x_i^{[1]}}{N^2},$$

398 (5.5)
$$x_C^{[2]} = \sum_{i \in \{k_1, \dots, k_{N^2}\}} \frac{x_i^{[2]}}{N^2}.$$

400 For an arbitrary two-layer network, we need to solve a linear system with $2^{2N} - 4$
 401 unknowns to obtain the fixation probability of the mutant type. This is computa-
 402 tionally prohibitive when N is large. Although we can exploit that $x_{\varphi((0, \dots, 0, s_1^{[2]}, \dots, s_N^{[2]}))}^{[1]} = 0$
 403 and $x_{\varphi((1, \dots, 1, s_1^{[2]}, \dots, s_N^{[2]}))}^{[1]} = 1$ for any $(s_1^{[2]}, \dots, s_N^{[2]}) \in \{0, 1\}^N$ and similar relationships
 404 for $x^{[2]}$, the number of unknowns still scales with 2^{2N} as N increases. Therefore,
 405 to drastically reduce the dimension of the linear system to be solved, we analyze
 406 two-layer networks with a highly symmetric structure for each layer, in which all or
 407 most replica nodes are structurally equivalent to other replica nodes. This strategy has
 408 been used for exactly calculating fixation probabilities on conventional networks [1, 4],
 409 hypergraphs [20], and temporal networks [19].

410 In the following text, we consider model 1 except in section 5.8, where we briefly
 411 consider model 2.

412 **5.2. Coupled complete graphs.** We first consider the case in which each layer
 413 is the complete graph with N nodes. Because all nodes in each layer are structurally
 414 equivalent to each other, we only need to track the number of individuals with the
 415 mutant type in both layers, denoted by i_1 , the number of individuals with the mutant
 416 type in layer 1 and the resident type in layer 2, denoted by i_2 , the number of individuals

417 with the resident type in layer 1 and the mutant type in layer 2, denoted by i_3 , and the
 418 number of individuals with the resident type in both layers, denoted by i_4 . One can
 419 specify the state of the evolutionary dynamics by a 4-tuple $\mathbf{i} = (i_1, i_2, i_3, i_4)$, where
 420 $i_1, i_2, i_3, i_4 \in \{0, 1, \dots, N\}$ and $i_1 + i_2 + i_3 + i_4 = N$. Therefore, there are $\binom{N+3}{3}$ states
 421 in total, where $\binom{\cdot}{\cdot}$ represents the binomial coefficient. For visual clarity, we denote the
 422 transition probability matrix by $P = [p_{\mathbf{i} \rightarrow \mathbf{j}}]$, where $p_{\mathbf{i} \rightarrow \mathbf{j}}$ is the probability that the
 423 state moves from $\mathbf{i} = (i_1, i_2, i_3, i_4)$ to $\mathbf{j} = (j_1, j_2, j_3, j_4)$ in a time step. Assume that
 424 the current state is $\mathbf{i} = (i_1, i_2, i_3, i_4)$. There are nine types of events that can occur
 425 next.

426 In the first type of event, an individual that has the mutant type in layer 1
 427 (and either type in layer 2) is selected as the parent, which occurs with probability
 428 $[2ri_1 + (1+r)i_2]/[2ri_1 + (1+r)(i_2 + i_3) + 2i_4]$, and layer 1 is selected for the reproduction
 429 event with probability $1/2$. Then, we select a neighbor of the parent in layer 1 for
 430 death, and the selected individual, which we refer to as the child, has the resident type
 431 in layer 1 and the mutant type in layer 2 with probability $i_3/(N-1)$. Then, the child
 432 copies the parent's type in layer 1. The state after this event is $(i_1 + 1, i_2, i_3 - 1, i_4)$.
 433 Therefore, we obtain

$$434 \quad (5.6) \quad p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1 + 1, i_2, i_3 - 1, i_4)} = \frac{2ri_1 + (1+r)i_2}{2ri_1 + (1+r)(i_2 + i_3) + 2i_4} \cdot \frac{1}{2} \cdot \frac{i_3}{N-1}.$$

435 In the second type of event, an individual that has the mutant type in layer 1
 436 is selected as the parent, which occurs with probability $[2ri_1 + (1+r)i_2]/[2ri_1 +$
 437 $(1+r)(i_2 + i_3) + 2i_4]$, and layer 1 is selected for reproduction with probability $1/2$.
 438 Then, we select a neighbor of the parent in layer 1 as the child, and the child has the
 439 resident type in both layers, which occurs with probability $i_4/(N-1)$. Then, the child
 440 copies the parent's type in layer 1. The state after this event is $(i_1, i_2 + 1, i_3, i_4 - 1)$.
 441 Therefore, we obtain

$$442 \quad (5.7) \quad p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1, i_2 + 1, i_3, i_4 - 1)} = \frac{2ri_1 + (1+r)i_2}{2ri_1 + (1+r)(i_2 + i_3) + 2i_4} \cdot \frac{1}{2} \cdot \frac{i_4}{N-1}.$$

443 In the third type of event, an individual that has the resident type in layer 1 is
 444 selected as the parent, which occurs with probability $[(1+r)i_3 + 2i_4]/[2ri_1 + (1+$
 445 $r)(i_2 + i_3) + 2i_4]$, and layer 1 is selected for reproduction with probability $1/2$. Then,
 446 we select a neighbor of the parent in layer 1 as the child, and the child has the mutant
 447 type in both layers, which occurs with probability $i_1/(N-1)$. The state after this
 448 event is $(i_1 - 1, i_2, i_3 + 1, i_4)$. Therefore, we obtain

$$449 \quad (5.8) \quad p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1 - 1, i_2, i_3 + 1, i_4)} = \frac{(1+r)i_3 + 2i_4}{2ri_1 + (1+r)(i_2 + i_3) + 2i_4} \cdot \frac{1}{2} \cdot \frac{i_1}{N-1}.$$

450 In the fourth type of event, an individual that has the resident type in layer
 451 1 is selected as the parent, which occurs with probability $[(1+r)i_3 + 2i_4]/[2ri_1 +$
 452 $(1+r)(i_2 + i_3) + 2i_4]$, and layer 1 is selected for reproduction with probability $1/2$.
 453 Then, we select a neighbor of the parent in layer 1 as the child, and the child has the
 454 mutant type in layer 1 and the resident type in layer 2, which occurs with probability
 455 $i_2/(N-1)$. The state after this event is $(i_1, i_2 - 1, i_3, i_4 + 1)$. Therefore, we obtain

$$456 \quad (5.9) \quad p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1, i_2 - 1, i_3, i_4 + 1)} = \frac{(1+r)i_3 + 2i_4}{2ri_1 + (1+r)(i_2 + i_3) + 2i_4} \cdot \frac{1}{2} \cdot \frac{i_2}{N-1}.$$

457 In the fifth type of event, an individual that has the mutant type in layer 2 is
 458 selected as the parent, which occurs with probability $[2ri_1 + (1+r)i_3]/[2ri_1 + (1+r)(i_2 + i_3) + 2i_4]$, and layer 2 is selected for reproduction with probability 1/2. Then,
 460 we select a neighbor of the parent in layer 2 as the child, and the child has the
 461 mutant type in layer 1 and the resident type in layer 2, which occurs with probability
 462 $i_2/(N-1)$. The state after this event is $(i_1 + 1, i_2 - 1, i_3, i_4)$. Therefore, we obtain

$$463 \quad (5.10) \quad p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1 + 1, i_2 - 1, i_3, i_4)} = \frac{2ri_1 + (1+r)i_3}{2ri_1 + (1+r)(i_2 + i_3) + 2i_4} \cdot \frac{1}{2} \cdot \frac{i_2}{N-1}.$$

464 In the sixth type of event, an individual that has the mutant type in layer 2 is
 465 selected as the parent, which occurs with probability $[2ri_1 + (1+r)i_3]/[2ri_1 + (1+r)(i_2 + i_3) + 2i_4]$, and layer 2 is selected for reproduction with probability 1/2. Then,
 467 we select a neighbor of the parent in layer 2 as the child, and the child has the resident
 468 type in both layers, which occurs with probability $i_4/(N-1)$. The state after this
 469 event is $(i_1, i_2, i_3 + 1, i_4 - 1)$. Therefore, we obtain

$$470 \quad (5.11) \quad p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1, i_2, i_3 + 1, i_4 - 1)} = \frac{2ri_1 + (1+r)i_3}{2ri_1 + (1+r)(i_2 + i_3) + 2i_4} \cdot \frac{1}{2} \cdot \frac{i_4}{N-1}.$$

471 In the seventh type of event, an individual that has the resident type in layer 2
 472 is selected as the parent, which occurs with probability $[(1+r)i_2 + 2i_4]/[2ri_1 + (1+r)(i_2 + i_3) + 2i_4]$, and layer 2 is selected for reproduction with probability 1/2. Then,
 474 we select a neighbor of the parent in layer 2 as the child, and the child has the mutant
 475 type in both layers, which occurs with probability $i_1/(N-1)$. The state after this
 476 event is $(i_1 - 1, i_2 + 1, i_3, i_4)$. Therefore, we obtain

$$477 \quad (5.12) \quad p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1 - 1, i_2 + 1, i_3, i_4)} = \frac{(1+r)i_2 + 2i_4}{2ri_1 + (1+r)(i_2 + i_3) + 2i_4} \cdot \frac{1}{2} \cdot \frac{i_1}{N-1}.$$

478 In the eighth type of event, an individual that has the resident type in layer 2
 479 is selected as the parent, which occurs with probability $[(1+r)i_2 + 2i_4]/[2ri_1 + (1+r)(i_2 + i_3) + 2i_4]$, and layer 2 is selected for reproduction with probability 1/2.
 481 Then, we select a neighbor of the parent in layer 2 as the child, and the child has the
 482 resident type in layer 1 and the mutant type in layer 2, which occurs with probability
 483 $i_3/(N-1)$. The state after this event is $(i_1, i_2, i_3 - 1, i_4 + 1)$. Therefore, we obtain

$$484 \quad (5.13) \quad p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1, i_2, i_3 - 1, i_4 + 1)} = \frac{(1+r)i_2 + 2i_4}{2ri_1 + (1+r)(i_2 + i_3) + 2i_4} \cdot \frac{1}{2} \cdot \frac{i_3}{N-1}.$$

485 If any other event occurs, the state remains unchanged. Therefore, we obtain

$$486 \quad p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1, i_2, i_3, i_4)} = 1 - p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1 + 1, i_2, i_3 - 1, i_4)} - p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1, i_2 + 1, i_3, i_4 - 1)} \\ 487 \quad - p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1 - 1, i_2, i_3 + 1, i_4)} - p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1, i_2 - 1, i_3, i_4 + 1)} \\ 488 \quad - p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1 + 1, i_2 - 1, i_3, i_4)} - p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1, i_2, i_3 + 1, i_4 - 1)} \\ 489 \quad - p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1 - 1, i_2 + 1, i_3, i_4)} - p_{(i_1, i_2, i_3, i_4) \rightarrow (i_1, i_2, i_3 - 1, i_4 + 1)}.$$

491 By slightly adapting the notations introduced in section 5.1, we denote by $x_i^{[1]}$
 492 and $x_i^{[2]}$ the fixation probability of the mutant type in layer 1 and layer 2, respectively,
 493 when the initial state is $\mathbf{i} = (i_1, i_2, i_3, i_4)$. To obtain fixation probabilities in layer 1,
 494 we solve Eq. (5.2), where $\mathbf{x}^{[1]}$ is a column vector of which each entry is the fixation

495 probability for the mutant type starting from one of the $\binom{N+3}{3}$ initial states. The
 496 boundary conditions are given by $x_{(N,0,0,0)}^{[1]} = 1$, $x_{(0,N,0,0)}^{[1]} = 1$, $x_{(0,0,N,0)}^{[1]} = 0$, and
 497 $x_{(0,0,0,N)}^{[1]} = 0$. To obtain fixation probabilities in layer 2, we solve Eq. (5.3) with
 498 boundary conditions $x_{(N,0,0,0)}^{[2]} = 1$, $x_{(0,N,0,0)}^{[2]} = 0$, $x_{(0,0,N,0)}^{[2]} = 1$, and $x_{(0,0,0,N)}^{[2]} = 0$.
 499 There are two initial states with one mutant in each layer, i.e., $(1, 0, 0, N-1)$ and
 500 $(0, 1, 1, N-2)$. These initial states occur with probability $1/N$ and $(N-1)/N$,
 501 respectively. Therefore, we obtain

502 (5.15)
$$x_C^{[\ell]} = \frac{1}{N} x_{(1,0,0,N-1)}^{[\ell]} + \frac{N-1}{N} x_{(0,1,1,N-2)}^{[\ell]}, \quad \ell \in \{1, 2\},$$

503 where we remind that $x_C^{[\ell]}$ is the fixation probability for the mutant type in layer ℓ
 504 when there is initially one mutant in each layer.

505 We obtained $x_C^{[1]}$ ($= x_C^{[2]}$) by numerically solving Eq. (5.2) for $N = 6$ and $N = 30$.
 506 The results shown in Figure 2(a) and 2(b) for $N = 6$ and $N = 30$, respectively,
 507 indicate that these coupled complete graphs are suppressors of selection. This result
 508 is consistent with Theorem 4.5.

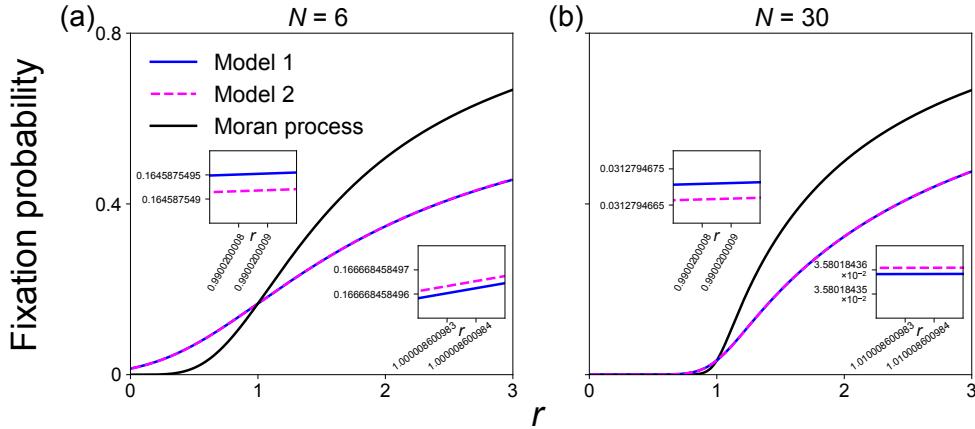


FIG. 2. Fixation probability for coupled complete graphs under models 1 and 2. (a) $N = 6$. (b) $N = 30$. The insets to the left within each panel magnify the results for r values less than and close to $r = 1$. Those to the right within each panel magnify the results for r values greater than and close to $r = 1$.

509 **5.3. Combination of the complete graph and star graph.** Next, we con-
 510 sider the two-layer network in which layer 1 is the complete graph and layer 2 is the
 511 star graph. All the N nodes in the complete graph are structurally equivalent, and so
 512 are all the $N - 1$ leaf nodes (i.e., nodes with degree 1) in the star graph. Therefore,
 513 we represent the state of the evolutionary dynamics by $\mathbf{i} = (h_1, h_2, i_1, i_2, i_3, i_4)$, i.e.,
 514 an ordered 6-tuple, where $h_1 = 0$ or 1 if the individual that is the hub node (i.e.,
 515 the replica node with degree $N - 1$) in layer 2 is of resident or mutant type in layer
 516 1, respectively; $h_2 = 0$ or 1 if the hub node in layer 2 is of the resident or mutant
 517 type, respectively; i_1 is the number of the remaining $N - 1$ individuals that have the
 518 mutant type in both layers, i_2 is the number of the remaining $N - 1$ individuals that
 519 have the mutant type in layer 1 and the resident type in layer 2; i_3 is the number of

520 the remaining $N - 1$ individuals that have the resident type in layer 1 and the mutant
 521 type in layer 2; i_4 is the number of the remaining $N - 1$ individuals that have the
 522 resident type in both layers. There are $2^2 \binom{N+2}{3}$ states in total.

523 Similarly to the case in which both layers are the complete graph, we distinguish
 524 nine types of state transitions from each state. We derive the probability of each state
 525 transition in section S5.

526 We use the same numerical method for solving Eqs. (5.2) and (5.3) as that for
 527 the coupled complete graphs. We show the fixation probability for the mutant type
 528 for $N = 6$ and $N = 30$ in Figure 3(a) and 3(b), respectively. The figure suggests that
 529 the two-layer networks composed of a complete graph layer and a star graph layer are
 530 suppressors of selection.

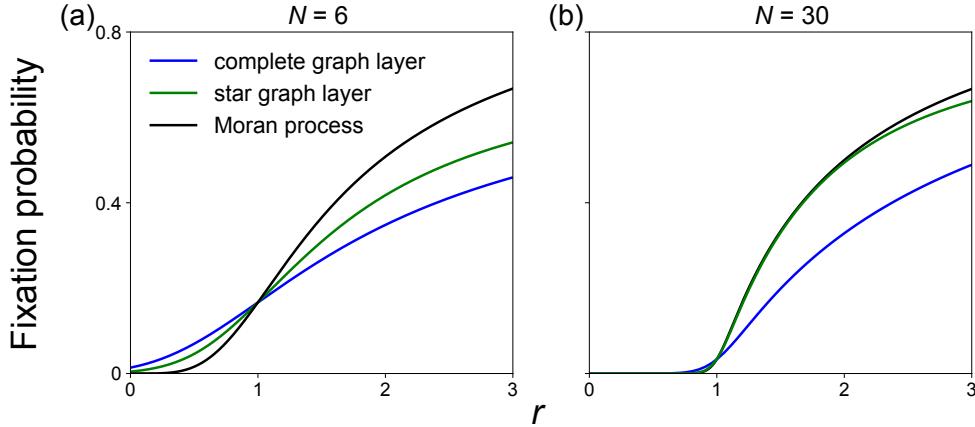


FIG. 3. Fixation probability for two-layer networks composed of a complete graph layer and a star graph layer under model 1. (a) $N = 6$. (b) $N = 30$.

531 **5.4. Coupled star graphs.** Here we consider the case in which each layer is the
 532 star graph with N nodes. We assume that the hub replica node in layer 1 corresponds
 533 to a leaf replica node in layer 2, and vice versa. Then, we can specify the network's
 534 state by an ordered 8-tuple $\mathbf{i} = (h_1, h_2, h_3, h_4, i_1, i_2, i_3, i_4)$, where $h_1 = 0$ or 1 if the
 535 hub node in layer 1 is of resident or mutant type, respectively; $h_2 = 0$ or 1 if the
 536 individual that is the hub node in layer 1 is of resident or mutant type in layer 2,
 537 respectively; $h_3 = 0$ or 1 if the individual that is the hub node in layer 2 is of resident
 538 or mutant type in layer 1, respectively; $h_4 = 0$ or 1 if the hub node in layer 2 is of
 539 resident or mutant type, respectively; We reuse i_1, i_2, i_3 , and i_4 defined in section 5.3
 540 with a slight difference. Here, we count i_1, i_2, i_3 , and i_4 among the $N - 2$ individuals
 541 that are leaf nodes in both layers. There are $2^4 \binom{N+1}{3}$ states in total.

542 We distinguish all types of state transitions from each state and derive the probability
 543 of each state transition in section S6. The number of the type of state transitions
 544 varies between seven and nine and depends on the current state.

545 We use the same numerical method for solving Eqs. (5.2) and (5.3) as that for the
 546 coupled complete graphs. We show the fixation probability for the mutant type for
 547 $N = 6$ and $N = 30$ in Figure 4(a) and 4(b), respectively. Figure 4 indicates that the
 548 coupled star graph is a suppressor of selection when $N = 6$, but is neither a suppressor
 549 nor an amplifier of selection when $N = 30$. However, in both cases, the coupled star

graph is more suppressing than the one-layer star graph, which is a strong amplifier of selection. This last result is consistent with Theorem 4.10 and Remark 4.11.

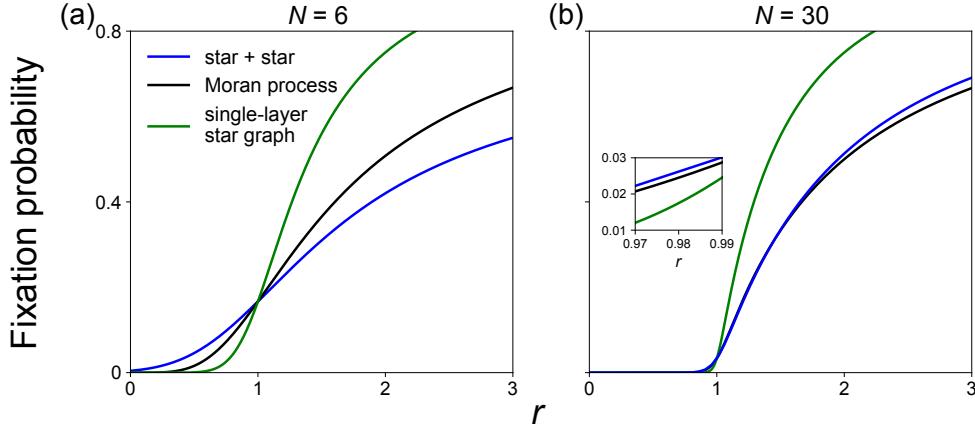


FIG. 4. Fixation probability for coupled star graphs under model 1. We compare the results for the coupled star graphs, shown in blue, with those for the Moran process, shown in black, and those for the single-layer star graphs, shown in green. (a) $N = 6$. (b) $N = 30$. The inset in (b) magnifies the result for r values less than and close to $r = 1$.

552 **5.5. Combination of the complete graph and complete bipartite graph.**
 553 Consider two-layer networks in which layer 1 is the complete graph and layer 2 is the
 554 complete bipartite graph K_{N_1, N_2} , where $N_1 + N_2 = N$. The complete bipartite
 555 graph K_{N_1, N_2} has two disjoint subsets of nodes V_1 and V_2 with N_1 and N_2 nodes,
 556 respectively. Each node in V_1 is adjacent to each node in V_2 . We can describe the state
 557 of the evolutionary dynamics by an 8-tuple. For each 8-tuple state, we distinguish 17
 558 types of transition events and can derive the transition probability of each state to
 559 each state. We show the calculations of the transition probability matrix in section S7.

560 We use the same numerical method to solve Eqs. (5.2) and (5.3) for this two-layer
 561 network. We show the fixation probability for $N = 6$ in Figure 5(a) and 5(b), and
 562 $N = 20$ in Figure 5(c) and 5(d), respectively. We reduce the larger N value to 20 due
 563 to large memory requirement for this network. We set $N_1 = N_2 = N/2$ in Figure 5(a)
 564 and 5(c). In this case, a one-layer network K_{N_1, N_2} is a regular graph and therefore an
 565 isothermal graph. We set $N_2 \approx 2N_1$, where \approx represents ‘‘approximately equal to’’,
 566 in Figure 5(b) and 5(d). Figure 5 shows that these two-layer networks are suppressors
 567 of selection.

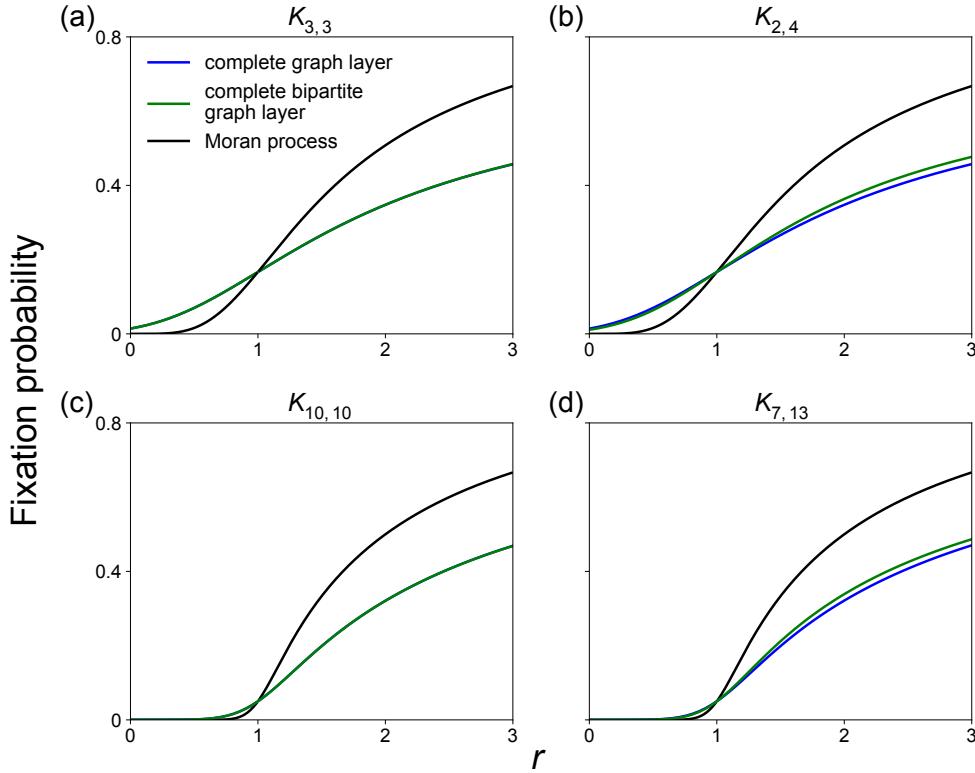


FIG. 5. Fixation probability for two-layer networks composed of a complete graph layer and a complete bipartite graph layer under model 1. (a) $N = 6$ with $K_{3,3}$. (b) $N = 6$ with $K_{2,4}$. (c) $N = 20$ with $K_{10,10}$. (d) $N = 20$ with $K_{7,13}$. In panels (a) and (c), the results for the complete graph layer are close to those for the complete bipartite graph layer such that the blue lines are almost hidden behind the green lines.

568 5.6. Combination of the complete graph and two-community networks.

569 Empirical networks often have community (i.e., group) structure [52]. Therefore, in
 570 this section, we consider two-layer networks in which layer 1 is the complete graph and
 571 layer 2 is a weighted network with two communities. Specifically, layer 2 is composed
 572 of two disjoint sets of nodes V_1 and V_2 with N_1 and N_2 nodes, respectively, where
 573 $N_1 + N_2 = N$. Each set of nodes forms a clique (i.e., complete graph as a subgraph)
 574 with edge weight 1. In addition, each node in V_1 is connected with each node in V_2
 575 with edge weight $\bar{\epsilon}$. A small $\bar{\epsilon}$ implies a strong community structure. It should also be
 576 noted that the combination of the complete graph and the complete bipartite graph
 577 corresponds to this model in the limit of $\bar{\epsilon} \rightarrow \infty$. Similar to the case of combination
 578 of the complete graph and the complete bipartite network, we use an 8-tuple and
 579 distinguish 17 types of transition events from each state to another state. We show
 580 the calculations of the transition probability matrix in section S8.

581 We numerically solve Eqs. (5.2) and (5.3) for $N = 6$ and $N = 20$ with $\bar{\epsilon} = 0.1$.
 582 We show the results for $N = 6$ in Figure 6(a) and 6(b), and $N = 20$ in Figure 6(c)
 583 and 6(d), respectively. In Figure 6(a) and 6(c), we set $N_1 = N_2 = N/2$, and the two-
 584 community network is an isothermal graph. In Figure 6(b) and 6(d), we set $N_2 \approx 2N_1$.
 585 Figure 6 indicates that these two-layer networks are suppressors of selection.

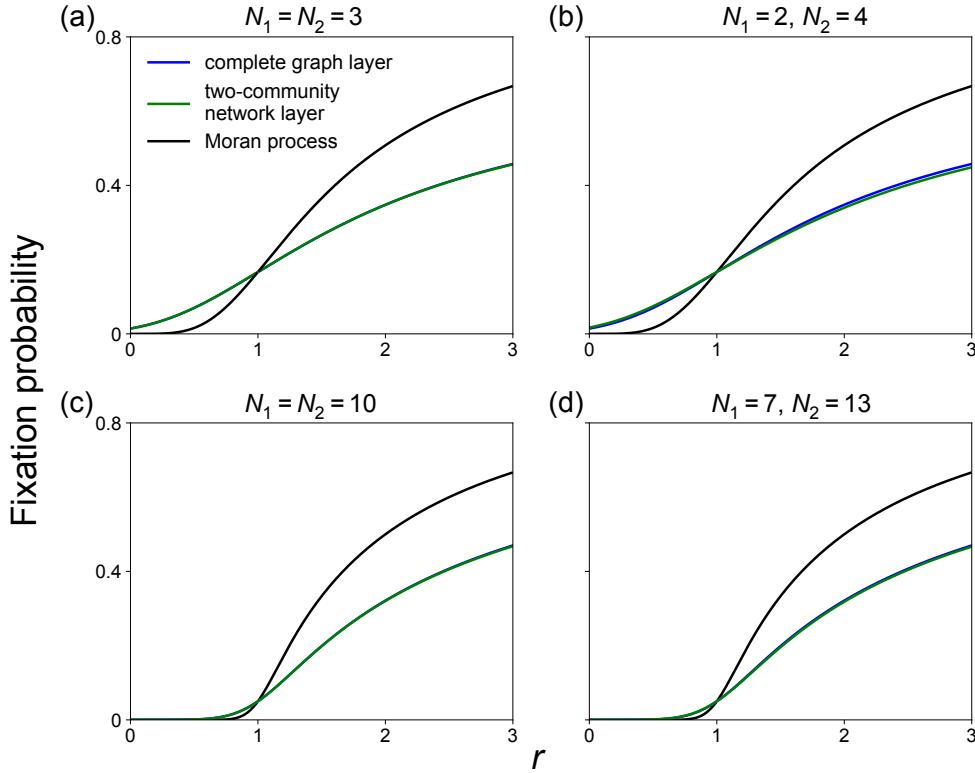


FIG. 6. Fixation probability for two-layer networks composed of a complete graph layer and a two-community network layer under model 1. (a) $N_1 = N_2 = 3$ and $\bar{\epsilon} = 0.1$. (b) $N_1 = 2$, $N_2 = 4$, and $\bar{\epsilon} = 0.1$. (c) $N_1 = N_2 = 10$ and $\bar{\epsilon} = 0.1$. (d) $N_1 = 7$, $N_2 = 13$, and $\bar{\epsilon} = 0.1$.

5.7. Death-birth process variant of model 1. We have analyzed model 1, which is a two-layer Bd process. To assess the robustness of our main result that 2-layer networks are mostly suppressors of selection, in this section, we consider a variant of model 1 in which we replace the Bd updating rule by the death-birth updating rule with selection on the birth, often referred to as the dB rule [6, 8, 16, 36]. According to the dB rule, we select an individual uniformly at random for death in each time step. Then, the neighbors of the dying individual compete to reproduce their type on the vacant site with probability proportional to their fitness. The fixation probability for this death-birth process in the case of the well-mixed population (i.e., weighted complete graph) is [44]

$$596 \quad (5.16) \quad \rho^{\text{dB}} = \left(1 - \frac{1}{N}\right) \frac{1 - \frac{1}{r}}{1 - \frac{1}{r^{N-1}}}.$$

597 We extend the dB process to the case of two-layer networks. For simplicity,
 598 we only consider the case in which both layers are complete graphs (i.e., coupled
 599 complete graph). In each time step, an individual selected uniformly at random (i.e.,
 600 with probability $1/N$) dies. We then select one of the two layers to operate the dB
 601 process with equal probability, i.e., $1/2$. The neighbors of the dying individual in
 602 the selected layer compete for filling the empty site with probability proportional to

603 the product of their fitness and the edge weight (which we set to 1 because we are
 604 considering unweighted complete graphs for both layers). As we show in section S9,
 605 we can derive the set of $\binom{N+3}{3} - 4$ linear equations with which to calculate the fixation
 606 probability similarly to the case of the Bd process on the coupled complete graph.

607 We show the fixation probability for this death-birth process on coupled complete
 608 graphs with $N = 6$ and $N = 30$ in Figure 7(a) and 7(b), respectively. We find that
 609 these coupled complete graphs are suppressors of selection under the dB rule, relative
 610 to the Moran process. The green lines in Figure 7 represent Eq. (5.16). We find that
 611 the coupled complete graphs under the dB rule are also more suppressing than the
 612 one-layer complete graphs under the same dB rule.

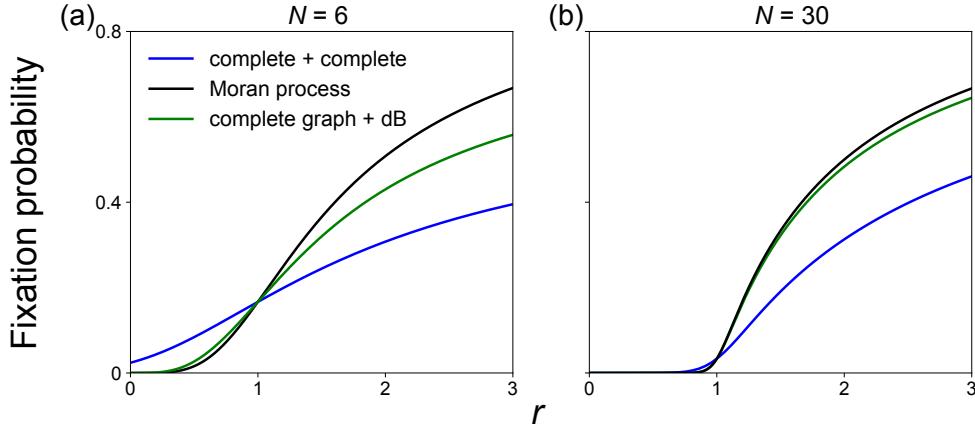


FIG. 7. Fixation probability for coupled complete graphs under the variant of model 1 with the dB updating. (a) $N = 6$. (b) $N = 30$. The green lines represent Eq. (5.16).

613 **5.8. Model 2 on coupled complete graphs.** In this section, we consider
 614 model 2 in which both layers are complete graphs. We can describe the state of the
 615 network by the same 4-tuple $\mathbf{i} = (i_1, i_2, i_3, i_4)$ as that we used in section 5.2 and
 616 derive a set of $\binom{N+3}{3} - 4$ linear equations to determine the fixation probability. For
 617 each state (i_1, i_2, i_3, i_4) , we distinguish 21 types of events and obtain the transition
 618 probability from each state to another state, as shown in section S10.

619 We show the fixation probability for the mutant type for $N = 6$ and $N = 30$ by
 620 the dashed lines in Figure 2(a) and 2(b), respectively. We find that these coupled
 621 complete graphs are suppressors of selection. Furthermore, the results for model 2
 622 are close to those for model 1, while model 2 is slightly less suppressing than model
 623 1.

624 **6. Numerical results.** In this section, we carry out numerical simulations of
 625 the Bd process on four two-layer networks without particular symmetry, i.e., a coupled
 626 Erdős-Rényi (ER) random graph, a coupled Barabási-Albert (BA) network, and two
 627 empirical two-layer networks. To generate a two-layer ER random graph with $N = 100$
 628 individuals, in each layer, we connected each pair of nodes with probability 0.1. We
 629 iterated generating networks from the ER random graph with $N = 100$ nodes until
 630 we obtained two connected networks, which we used as two layers. The two generated
 631 networks had $M_1 = 498$ edges and $M_2 = 500$ edges, respectively. To generate a two-
 632 layer BA network, we sampled two networks with $N = 100$ nodes each from the BA

633 model [53]. In the network growth process of the BA model, each incoming node is
 634 connected to five already existing nodes according to the linear preferential attachment
 635 rule. We use the star graph on 6 nodes as the initial network in each layer. Each of the
 636 two generated networks was more heterogeneous than the ER graph in terms of the
 637 node's degree, was connected, and had $M = 475$ edges. Without loss of generality, we
 638 uniformly randomly permuted the label of all nodes in layer 2. Otherwise, there would
 639 be strong positive correlation between the degree of the two replica nodes of the same
 640 individual. One empirical network is the Vickers-Chan 7thGraders (VC7) network,
 641 which is a two-layer network of scholastic and friendship relationships among $N = 29$
 642 seventh grade students in a school in Victoria, Australia, with $M_1 = 126$ edges in
 643 layer 1 and $M_2 = 152$ edges in layer 2 [54]. The second empirical network is the
 644 Lazega Law Firm (LLF) network, which is a two-layer network of professional and
 645 cooperative relationships among $N = 71$ partners at the LLF, with $M_1 = 717$ edges
 646 in layer 1 and $M_2 = 726$ edges in layer 2 [55].

647 We focus on model 1 and examine whether these two-layer networks tend to be
 648 suppressors of selection. We initially placed a mutant on just one replica node in each
 649 layer. Therefore, there are $N \times N$ possible initial states. To calculate the fixation
 650 probability for a single mutant for each layer, we run the Bd process until the mutant
 651 type or the resident type fixates in the selected layer. For each value of r , we run
 652 $20N^2$ simulations starting from each of the N^2 initial conditions 20 times. We obtain
 653 the fixation probability of the mutant type for each layer as the number of the runs
 654 in which the mutant type has fixated in the selected layer divided by $20N^2$.

655 Figure 8 shows the relationship between the fixation probability for a single mu-
 656 tant and r for the four two-layer networks, one per panel. The figure shows that both
 657 layers are suppressors of selection in all the four two-layer networks. Unexpectedly,
 658 we also find that the fixation probability as a function of r is similar between the
 659 two layers, which are different networks in terms of edges, in all the four two-layer
 660 networks.

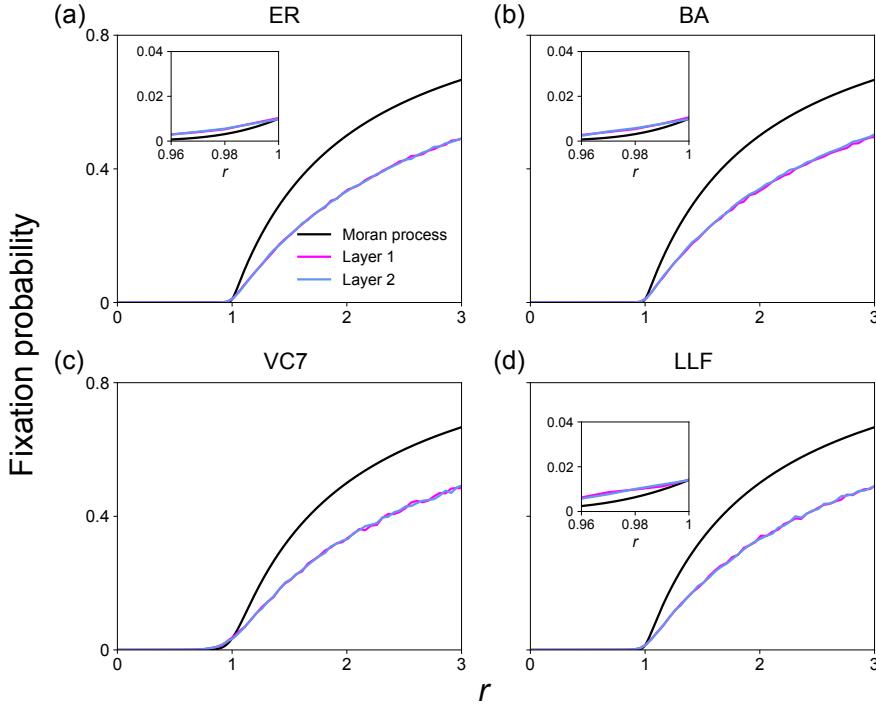


FIG. 8. Fixation probability in model and empirical two-layer networks. (a) Two-layer ER graph. (b) Two-layer BA model. (c) Vickers-Chan 7thGraders network (VC7). (d) Lazega Law Firm network (LLF). The insets of (a), (b), and (d) magnify the results for values of r less than and close to $r = 1$.

661 **7. Discussion.** Inspired by an evolutionary game model on two-layer net-
662 works [35], we formulated and analyzed constant-selection dynamics on two-layer net-
663 works in which each individual's fitness is defined to be the sum of the fitness
664 of the replica node over the two layers. Using martingales, we proved that two-
665 layer networks are suppressors of selection if one layer is a particular network with
666 high symmetry, at least relative to that network considered as a single-layer network.
667 The single-layer regular graphs, including the complete graph, cycle, and bipartite
668 complete graphs in which the two parts have same number of nodes, are isothermal
669 graphs [4, 56], i.e., equivalent to the Moran process. Therefore, these theorems show
670 that two-layer networks that have any of these networks as one layer are suppressors
671 of selection regardless of the second layer. Furthermore, we semi-analytically analyzed
672 some two-layer networks in which both layers are highly symmetric networks to show
673 that they are also suppressors of selection except the coupled star graph with $N = 30$
674 nodes. Nonetheless, the couple star graph with $N = 30$ is more suppressing than
675 the single star graph with $N = 30$. Numerical simulations of stochastic evolutionary
676 dynamics on four larger two-layer networks without particular symmetry have also
677 shown that these networks are suppressors of selection. Overall, we have provided
678 mathematical results and compelling numerical evidence that two-layer networks are
679 suppressors of selection unless both layers are strong amplifiers of selection such as
680 the star graph (see Figure 4).

681 We argue that the intuitive reason behind this result is the key assumption of our
682 model that the total fitness of a replica node depends on the fitness of the corresponding

683 replica node in the other layer as well as its own fitness. Suppose that $r > 1$ and that
 684 a replica node i in layer 1 is of resident type. Then, intuitively, it is more likely to be
 685 invaded by a mutant type, if a neighbor is a mutant because the mutant's fitness ($= r$)
 686 is higher than the resident's fitness ($= 1$). However, if the replica node i in layer 2 is
 687 of mutant type, the total fitness for the i th individual is equal to $1 + r$. Therefore, the
 688 mutant type in layer 2 boosts the likelihood that i th individual reproduces in layer 1
 689 relative to the case of a single-layer network. In this manner, the two-layer nature of
 690 the model blurs the effect of fitness due to the interference of one layer into constant-
 691 selection dynamics in the other layer. This is why two-layer networks are expected
 692 to be suppressors of selection, at least relative to their one-layer counterparts. We
 693 note that we exploited this intuition in formulating and proving our theorems using
 694 martingales.

695 As we reviewed in section 1, most networks are amplifiers of selection under the Bd
 696 process and uniform initialization. However, small directed networks [16], metapopu-
 697 lation model networks [17,18], a type of temporal network called a switching network
 698 (i.e., in which the network switches between two static network with regular or irreg-
 699 ular time intervals) when N is small [19], and hypergraphs [20] tend to be suppressors
 700 of selection under the same conditions (i.e., the Bd process with uniform initialization)
 701 even if the undirected variant of them is an amplifier of selection. Here we add two-
 702 layer networks as another case in which suppressors of selection are common. These
 703 results altogether suggest that amplifiers of selection under the Bd process with uni-
 704 form initialization are not so common as was initially considered. It is straightforward
 705 to extend our models to the case of more than two layers. Constant-selection dynam-
 706 ics under adaptive networks (i.e., time-varying networks in which network changes are
 707 induced by the state, or type, of the nodes) are underexplored [57,58]. Whether or
 708 not these networks are amplifying or suppressing would be a worthwhile investigation.

709 We have exploited some highly symmetric networks to be used as network layers
 710 with the aim of reducing the number of linear equations to be solved from $O(2^{2N})$ to
 711 a polynomial order of N . We used the same strategy to analyze hypergraphs [20] and
 712 switching temporal networks [19]. The same technique was exploited for analytically
 713 solving the fixation probability in the complete bipartite graphs [59,60], stars [4,56],
 714 and so-called superstars [4]. However, the size of the two-layer networks for which
 715 we exactly calculated the fixation probability is still modest, i.e., up to $N = 20$ or
 716 $N = 30$ depending on the network. This is because, the network in our models has
 717 two layers, and we need to track the type (i.e., resident or mutant) of the replica nodes
 718 in both layers to specify the state of an individual. It would be ideal if this type of
 719 mathematical technique leads to analytical solutions of the fixation probability, not
 720 just to reduce the dimension of the problem. This is left for future work.

721 **Acknowledgments.** We thank Alex McAvoy for fruitful discussion. N.M. ac-
 722 knowledges support from the Japan Science and Technology Agency (JST) Moonshot
 723 R&D (under Grant No. JPMJMS2021), the National Science Foundation (under Grant
 724 Nos. 2052720 and 2204936), and JSPS KAKENHI (under grant Nos. JP 21H04595 and
 725 23H03414).

726

REFERENCES

727 [1] Nowak MA, Evolutionary Dynamics, Harvard Press, Cambridge, MA, 2006.
 728 [2] Sigmund K, The calculus of selfishness, Princeton University Press, Princeton, NJ, 2010.
 729 [3] Perc M, Jordan JJ, Rand DG, Wang Z, Boccaletti S, and Szolnoki A, Statistical physics of
 730 human cooperation, Phys. Rep., 687 (2017), 1–51.

[4] Lieberman E, Hauert C, and Nowak MA, Evolutionary dynamics on graphs, *Nature*, 433 (2005), 312–316.

[5] Szabó G and Fáth G, Evolutionary games on graphs, *Phys. Rep.*, 446 (2007), 97–216.

[6] Shakarian P, Roos P, Johnson A, A review of evolutionary graph theory with applications to game theory, *Biosystems*, 107 (2012), 66–80.

[7] Perc M, Gómez-Gardeñes J, Szolnoki A, Floría LM, and Moreno Y, Evolutionary dynamics of group interactions on structured populations: a review, *J. R. Soc. Interface.*, 10 (2013), 20120997.

[8] Ohtsuki H, Hauert C, Lieberman E, Nowak MA, A simple rule for the evolution of cooperation on graphs and social networks, *Nature*, 441 (2006), 502–505.

[9] Allen B, Lippner G, Chen Y, Fotouhi B, Momeni N, Yau S, et al, Evolutionary dynamics on any population structure, *Nature*, 544 (2017), 227–230.

[10] Hindersin L and Traulsen A, Most undirected random graphs are amplifiers of selection for birth-death dynamics, but suppressors of selection for death-birth dynamics, *PLoS Comput. Biol.*, 11 (2015), e1004437.

[11] Cuesta FA, Sequeiros PG, and Rojo ÁL, Evolutionary regime transitions in structured populations, *PLoS ONE*, 13 (2018), e0200670.

[12] Allen B, Sample C, Steinhagen P, Shapiro J, King M, Hedspeth T, et al, Fixation probabilities in graph-structured populations under weak selection, *PLoS Comput. Biol.*, 17 (2021), e1008695.

[13] Cuesta FA, Sequeiros PG, and Rojo ÁL, Suppressors of selection, *PLoS ONE*, 12 (2017), e0180549.

[14] Adlam B, Chatterjee K, Nowak MA, Amplifiers of selection, *Proc. Math. Phys. Eng. Sci.*, 471 (2015), 20150114.

[15] Pavlogiannis A, Tkadlec J, Chatterjee K, and Nowak MA, Construction of arbitrarily strong amplifiers of natural selection using evolutionary graph theory, *Commun. Biol.*, 1 (2018), 71.

[16] Masuda N, Directionality of contact networks suppresses selection pressure in evolutionary dynamics, *J. Theoret. Biol.*, 258 (2009), 323–334.

[17] Yagoobi S, Traulsen A, Fixation probabilities in network structured metapopulations, *Sci. Rep.*, 11 (2021), 17979.

[18] Marrec L, Lamberti I, Bitbol A, Toward a universal model for spatially structured populations, *Phys. Rev. Lett.*, 127 (2021), 218102.

[19] Bhaumik J and Masuda N, Fixation probability in evolutionary dynamics on switching temporal networks, *J. Math. Biol.*, 87 (2023), 64.

[20] Liu R and Masuda N, Fixation dynamics on hypergraphs, *PLoS Comput. Biol.*, 19 (2023), e1011494.

[21] Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, and Porter MA, Multilayer networks, *J. Complex Netw.*, 2 (2014), 203–271.

[22] Boccaletti S, Bianconi G, Criado R, del Genio CI, Gómez-Gardeñes J, Romance M, et al, The structure and dynamics of multilayer networks, *Phys. Rep.*, 544 (2014), 1–122.

[23] Bianconi C, Multilayer networks, Oxford University Press, Oxford, UK, 2018.

[24] De Domenico M, More is different in real-world multilayer networks, *Nat. Phys.*, 19 (2023), 1247–1262.

[25] Wang Z, Wang L, Szolnoki A, and Perc M, Evolutionary games on multilayer networks: a colloquium, *Eur. Phys. J. B*, 88 (2015), 124.

[26] Ohtsuki H, Nowak MA, and Pacheco JM, Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs, *Phys. Rev. Lett.*, 98 (2007), 108106.

[27] Ohtsuki H, Pacheco JM, and Nowak MA, Evolutionary graph theory: Breaking the symmetry between interaction and replacement, *J. Theoret. Biol.*, 246 (2007), 681–694.

[28] Wang Z, Wang L, Perc M, Degree mixing in multilayer networks impedes the evolution of cooperation, *Phys. Rev. E*, 89 (2014), 052813.

[29] Su Q, Li A, Wang L, and Eugene Stanley H, Spatial reciprocity in the evolution of cooperation, *Proc. Royal Soc. B*, 286 (2019), 20190041.

[30] Li G and Sun X, Evolutionary game on a growing multilayer network, *Physica A*, 578 (2021), 126110.

[31] Chen W and Wu T, Adaptive multilayer networks resolve the cooperation dilemma induced by breaking the symmetry between interaction and learning, *New J. Phys.*, 23 (2021), 093019.

[32] Inaba M and Akiyama E, Evolution of cooperation in multiplex networks through asymmetry between interaction and replacement, *Sci. Rep.*, 13 (2023), 9814.

[33] Duh M, Gosak M, Slavinec M, and Perc M, Assortativity provides a narrow margin for enhanced cooperation on multilayer networks, *New J. Phys.*, 21 (2019), 123016.

793 [34] Allen JM and Hoyle RB, Asynchronous updates can promote the evolution of cooperation on
 794 multiplex networks, *Physica A*, 471 (2017), 607–619.

795 [35] Su Q, McAvoy A, Mori Y, and Plotkin JB, Evolution of prosocial behaviours in multilayer
 796 populations, *Nat. Hum. Behav.*, 6 (2022), 338–348.

797 [36] Pattni K, Broom M, Rychtář J, and Silvers J, Evolutionary graph theory revisited: when is an
 798 evolutionary process equivalent to the Moran process? *Proc. Math. Phys. Eng. Sci.*, 471
 799 (2015), 20150334.

800 [37] Chalub FACC, An asymptotic expression for the fixation probability of a mutant in star graphs,
 801 *J. Dyn. Games*, 3 (2016), 217–223.

802 [38] Askari M, Samani KA, Analytical calculation of average fixation time in evolutionary graphs,
 803 *Phys. Rev. E*, 92 (2015), 042707.

804 [39] Pavlogiannis A, Tkadlec J, Chatterjee K, and Nowak MA, Amplification on undirected popu-
 805 lation structures: Comets beat stars, *Sci. Rep.*, 7 (2017), 82.

806 [40] Giakkoupis G, Amplifiers and suppressors of selection for the Moran process on undirected
 807 graphs, *arXiv:1611.01585* (2016).

808 [41] Galanis A, Göbel A, Goldberg LA, Lapinskas J, and Richerby D, Amplifiers for the Moran
 809 process, *J. ACM*, 64 (2017), 5, 1–90.

810 [42] Goldberg LA, Lapinskas J, Lengler J, Meier F, Panagiotou K, and Pfister P, Asymptotically
 811 optimal amplifiers for the Moran process, *Theor. Comput. Sci.*, 758 (2019), 73–93.

812 [43] Monk T, Green P, and Paulin M, Martingales and fixation probabilities of evolutionary graphs,
 813 *Proc. Math. Phys. Eng. Sci.*, 470 (2014), 20130730.

814 [44] Kaveh K, Komarova NL, and Kohandel M, The duality of spatial death–birth and birth–death
 815 processes and limitations of the isothermal theorem, *R. Soc. Open Sci.*, 2 (2015), 140465.

816 [45] Allen B, Sample C, Jencks R, Withers J, Steinhagen P, Brizuela L, et al, Transient amplifiers
 817 of selection and reducers of fixation for death-Birth updating on graphs, *PLoS Comput.
 818 Biol.*, 16 (2020), e1007529.

819 [46] Donnelly P, Welsh D, Finite particle systems and infection models, *Math Proc. Camb. Phil.
 820 Soc.*, 94 (1983), 167–182.

821 [47] Masuda N, Ohtsuki H, Evolutionary dynamics and fixation probabilities in directed networks,
 822 *New J. Phys.*, 11 (2009), 033012.

823 [48] Broom M, Hadjichrysanthou C, and Rychtář J, Two results on evolutionary processes on general
 824 non-directed graphs, *Proc. Math. Phys. Eng. Sci.*, 466 (2010), 2795–2798.

825 [49] Feller W, *An Introduction to Probability Theory and Its Applications*, Volume II. John Wiley
 826 & Sons, New York, NY, 1971.

827 [50] Durrett R, *Probability Theory and Examples*, Duxbury Press, Belmont, CA, 1996.

828 [51] Monk T, Martingales and the fixation probability of high-dimensional evolutionary graphs, *J.
 829 Theoret. Biol.*, 451 (2018), 10–18.

830 [52] Fortunato S, Community detection in graphs, *Phys. Rep.*, 486 (2010), 75–174.

831 [53] Barabási A-L and Albert R, Emergence of scaling in random networks, *Science*, 286 (1999),
 832 509–512.

833 [54] Vickers M and Chan S, Representing Classroom Social Structure, Melbourne: Victoria Institute
 834 of Secondary Education, 1981. Available at https://networks.skewed.de/net/7th_graders,
 835 accessed on July 20, 2023.

836 [55] Emmanuel L, *The Collegial Phenomenon: The Social Mechanisms of Cooperation Among Peers
 837 in a Corporate Law Partnership*, Oxford University Press, Oxford, UK, 2001.

838 [56] Broom M, Rychtář J, An analysis of the fixation probability of a mutant on special classes of
 839 non-directed graphs, *Proc. Math. Phys. Eng. Sci.*, 464 (2008), 2609–2627.

840 [57] Tkadlec J, Kaveh K, Chatterjee K, Nowak MA, Natural selection of mutants that modify
 841 population structure, *arXiv preprint*, *arXiv: 2111.10890* (2021).

842 [58] Melissourgos T, Nikoletseas SE, Raptopoulos CL, and Spirakis PG, An extension of the moran
 843 process using type-specific connection graphs, *J. Comput. System Sci.*, 124 (2022), 77–96.

844 [59] Zhang C, Wu Y, Liu W, and Yang X, Fixation probabilities on complete star and bipartite
 845 digraphs, *Disc. Dyn. Nat. Soc.*, 2012 (2012), 940465.

846 [60] Voorhees B and Murray A, Fixation probabilities for simple digraphs, *Proc. Math. Phys. Eng.
 847 Sci.*, 469 (2013), 20120676.