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ABSTRACT10

Real systems showing regime shifts, such as ecosystems, are often composed of many dynamical elements interacting on
a network. Various early warning signals have been proposed for anticipating regime shifts from observed data. However,
it is unclear how one should combine early warning signals from different nodes for better performance. Based on theory
of stochastic differential equations, we propose a method to optimize the node set from which to construct an early warning
signal. The proposed method takes into account that uncertainty as well as the magnitude of the signal affects its predictive
performance, that a large magnitude or small uncertainty of the signal in one situation does not imply the signal’s high
performance, and that combining early warning signals from different nodes is often but not always beneficial. The method
performs well particularly when different nodes are subjected to different amounts of dynamical noise and stress.

11

Introduction12

Real complex systems often experience sudden and substantial changes, also referred to as regime shifts or tipping events,13

as environments or the system’s internal properties gradually change. Such sudden changes often alter functions of the14

system, sometimes in an irreversible manner. Tipping phenomena have been used to explain, for example, mass extinctions in15

ecosystems1, 2, deforestation3, 4, onset of epidemic spreading5, and progression of mental disorders6–8 and other diseases9, 10. No16

matter whether the system transits from a desirable state to an undesirable one (e.g., species’ extinctions, epidemic spreading)17

or vice versa (e.g., recovery from disease), one is generally interested in anticipating a large regime shift due to a tipping event18

before it occurs. From dynamical systems points of view, a tipping event probably most famously corresponds to a change in19

the stability of an equilibrium. Theory suggests that critical slowing down happens near such a tipping point, which one can20

exploit to construct early warning signals for an impending tipping event1, 11. Various early warning signals for tipping events,21

which can be applied to observed data without knowledge of the dynamical system equations, have been proposed1, 5, 10–15.22

Complex systems whose tipping points we want to anticipate are more often than not composed of dynamical elements23

interacting on a network. In an ecosystem, animals, plants, or microbial species, for example, are interconnected by mutualistic,24

prey-predator, and other types of interactions. In a climate system, geographical regions are interconnected by, for example,25

water and heat transport. Network resilience is a comprehensive approach with which to understand how dynamics on networks26

respond to perturbations and system failures16. For dynamics on networks that possibly show tipping events and are relevant to27

these applications, it is highly likely that the network structure is complex17, 18 and that, related to this, all the nodes do not emit28

equally useful early warning signals19–24. Specifically, nodes that are about to tip may be emitting more useful early warning29

signals than other nodes in the same system that are still far from tipping. Evidence in favor of this view is that, as a dynamical30

system gradually changes, some nodes may tip earlier than others, showing multistage transitions11, 25–29. Therefore, selecting31

an appropriate set of sentinel nodes from which one calculates the early warning signal may improve the quality of the signal in32

addition to saving the cost of observing uninformative nodes.33

Several methods for selecting a sentinel node set, denoted by S, for constructing early warning signals have been proposed.34

The dynamical network biomarker theory searches for an S that maximizes a composite index9, 10, 30, 31. The index is the average35

pairwise correlation of the sample of data between the nodes within S multiplied by the standard deviation of the samples across36

the nodes in S, which is divided by the average pairwise correlation of the samples between a node in S and a node outside37

S. Another analytical approach is to identify a multidimensional linear dynamics model near the bifurcation point only from38

observed data and then use the dominant eigenvector associated with the estimated dynamics to select S (i.e., as the set of39
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the ith nodes such that the ith entry of the dominant eigenvector is the largest in terms of the absolute value)23. Note that an40

earlier study pointed out the usefulness of the dominant eigenvector19. Participation of the node in the dominant eigenvector is41

also used for selecting S in other studies21, 24. In addition, an eigenvector-based method has also been proposed for ranking42

the nodes most sensitive to perturbations32. A different study numerically showed that nodes with small degrees (i.e., small43

number of the neighboring nodes) are good performers20. A method to determine S based on network control theory also found44

an advantage of selecting nodes with small degrees27. Using the nodes receiving the highest total input from other nodes is45

also a powerful heuristic for setting S29. Simply using the nodes with the highest fluctuations also improves upon other naive46

methods29. Note that the last two methods are often better than using all the nodes in the network as S, and the same may be47

true for other node selection methods.48

Except for the dynamical network biomarker theory, these methods provide ranking of nodes and suggest that we should49

include the top-ranked nodes in S. It is unclear whether combining the nodes in S improves an early warning signal compared50

to when the single top node in S is used. Any early warning signal (e.g., variance of the signal, lagged autocorrelation) is51

noisy because, by design, an early warning signal exploits the information about impending tipping events hidden in noisy52

observations. If a given early warning signal measured for each ith node is independent for the different nodes in S, then53

averaging them including the case of a weighted average is expected to produce a better early warning signal owing to the54

central limit theorem. Quantitatively, the standard deviation of the early warning signal should decrease according to ∝ n−1/2,55

where n is the number of nodes in S, and ∝ represents “in proportion to”. However, nodes in a complex system are interrelated,56

such as through edges in the case of conventional networks, and the states of different nodes are correlated in general33–35.57

Therefore, it is not a trivial concern whether or not combination of the top-ranked nodes generates a high-quality early warning58

signal. For example, suppose that S is composed of n nodes close to each other in the network and that the states of these n59

nodes are hence strongly correlated. In this case, averaging the early warning signals over the n nodes does not help much to60

reduce their fluctuation because the n early warning signals are similar to each other. We may be then tempted to select n nodes61

that are far from each other on the network even if some of the n nodes do not provide early warning signals of top quality.62

In fact, the aforementioned dynamical network biomarker theory aims to optimize the set S, which the original authors call63

the dominant group, implicitly resolving this problem9, 10, 30, 31. However, the composite index that they propose is heuristic,64

and why this method works well in medical applications10, 36 and how the effectiveness of their method translates to other65

applications such as in ecology are elusive. Furthermore, this theory and most other proposals of early warning signals neglect66

that early warning signals are themselves noisy. Considering fluctuations of early warning signals in their design is necessary67

for at least two reasons. First, if a candidate early warning signal carries a lot of noise, then that signal may not be useful even68

if its expected value is sensitive to the approach of the system towards the tipping point. A recent study highlighted interplay69

of the dominant eigenvector direction of the Jacobian matrix of the dynamics and the primary noise direction that is dragged70

towards the nodes receiving high dynamical noise24. Second, in the aforementioned example of n nodes, let us assume that71

the expectation of the single-node early warning signal is the same for all the n nodes. We stated that averaging over the n72

early warning signals would be beneficial relative to the single-node early warning signals only if the n signals are not strongly73

correlated with each other. In this situation, the expectation of the averaged early warning signal is the same as that of the74

single-node early warning signal. The bonus of the averaging is only present in the reduced fluctuation in the averaged as75

opposed to the single-node early warning signal. To enable such discussion, we need to assess the fluctuation as well as the76

magnitude of early warning signals.77

In the present study, we develop a mathematical framework for node set selection for early warning signals based on78

stochastic differential equations on networks. By assuming dynamics near the equilibrium and using the variance of the node’s79

state as the early warning signal, we propose an index whose maximization gives an optimal node set for constructing an early80

warning signal. We demonstrate our method with analytically solvable networks with two or three nodes and with numerically81

investigated larger networks combined with various dynamics models.82

Results83

Theory84

We consider an N-dimensional noisy nonlinear dynamical system in continuous time. We regard each of the N dynamical
elements as a node and the entire dynamical system as stochastic dynamics on a network with N nodes. We denote by xi(t) ∈ R
the state of the ith node at time t ∈ R. We write x(t) = (x1(t), . . . ,xN(t))>, where > represents the transposition. We assume
that x(t) obeys a set of stochastic differential equations in the Itô sense given by

dx(t) = F(x(t))dt +BdW (t), (1)

where F : RN → RN ; B is an N ×N matrix; W (t) represents a N-dimensional vector of independent Wiener processes (i.e.,85

white noise).86
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Assume that the dynamics given by Eq. (1) has an equilibrium in the absence of noise, which we denoted by x∗ =
(x∗1, . . . ,x

∗
n)

>. By linearizing Eq. (1) around x∗, we obtain a set of linear stochastic differential equations given by

dz(t) =−Az(t)dt +BdW (t), (2)

where z(t) = x(t)− x∗, and the N ×N matrix A is the sign-flipped Jacobian matrix of F at x(t) = x∗. Equation (2) is a87

multivariate Ornstein-Uhlenbeck (OU) process24, 37, and x∗ is asymptotically stable in the absence of noise if and only if A is88

positive definite.89

The covariance matrix in the equilibrium, corresponding to z∗ = (0, . . . ,0)>, is given as the solution to the Lyapunov
equation given by

AC+CA> = BB>, (3)

where C = (Ci j) is the N ×N covariance matrix, and Ci j represents the covariance between zi(t) and z j(t), which is equal to the90

covariance between xi(t) and x j(t), at equilibrium37, 38. The solution C is unique if the real part of all the eigenvalues of A is91

positive38.92

Outcomes of the covariance matrix such as the standard deviation and correlation coefficient are often used as early warning93

signals for noisy multivariate dynamics. In practice, we need to estimate these quantities from samples. Therefore, we consider94

the sample variance of xi(t), which is a major early warning signal1, 39–41, and its average over a given node set29, 42, as95

candidates of early warning signals. The choice of the variance rather than the standard deviation is because of mathematical96

tractability. We emphasize that the rationale behind averaging the sample variance over nodes is that we may be then able to97

obtain a less fluctuating early warning signal than that calculated from a single node.98

Assume that we observe L samples of xi(t) from each node i in the given node set S. We denote by V̂i the unbiased sample
variance of xi(t) calculated from the L samples. Let us consider the average of V̂i over the n = |S| nodes in set S as an early
warning signal. Without loss of generality, we assume that S = {1,2, . . . ,n}, where n ≤ N. We denote this average by

V̂S =
1
n

n

∑
i=1

V̂i. (4)

By assuming that zi,1, . . . ,zi,L are i.i.d. and using E[zi,`] = 0, we obtain

E[V̂S] =
1
n

n

∑
i=1

E[V̂i] =
1
n

n

∑
i=1

Cii =
1
n

Tr(C) =
1
n

n

∑
i=1

λi, (5)

where E denotes the expectation, Tr denotes the trace, C is the leading principal minor of order n of C (i.e., the submatrix of C
composed of Ci j with i, j ∈ {1, . . . ,n}), and λi is the ith eigenvalue of C. As shown in Supplementary Note 1, we also obtain
the variance of V̂S, denoted by var[V̂S], as follows:

var[V̂S] =
2

n2(L−1)

n

∑
i=1

n

∑
j=1

(Ci j)
2

=
2

n2(L−1)
Tr
(

C2
)

=
2

n2(L−1)

n

∑
i=1

λ
2
i . (6)

The coefficient of variation (CV), i.e., the standard deviation divided by the mean, of V̂S, which quantifies the relative
uncertainty in the estimation of V̂S, is given by

CV =

√
2

L−1

√
∑

n
i=1 λ 2

i

∑
n
i=1 λi

. (7)

Equation (7) has a couple of implications. First, the CV decays according to ∝ L−1/2 as the number of samples, L, increases,99

regardless of the node set S. This scaling corresponds to the central limit theorem. Second, in the case of a single node,100

CV =
√

2/(L−1) regardless of the node. Therefore, a large value of the sample covariance, V̂i, or its expectation, E[V̂i], at a101

node i compared to at other nodes does not imply that V̂i is better than V̂j’s (with j 6= i) as an early warning signal. A large signal102

carries a proportionately large amount of noise. This property also holds true when one uses the sample standard deviation,103
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Figure 1. Schematic of two networks. (a) A network with N = 2 nodes connected by a directed edge. (b) A symmetric chain
network with N = 3 nodes. The coupling strength is denoted by w. The stress given to each node is either r or r−∆r.

instead of the sample variance, of single nodes as early warning signal. Third, the CV with n ≥ 2 is always smaller than the CV104

with n = 1 (i.e.,
√

2/(L−1)) unless all but one eigenvalues of C are equal to 0. Note that this result holds true owing to λi ≥ 0105

∀i, which follows from the fact that C is a covariance matrix and therefore positive semidefinite. This result motivates us to use106

the average of V̂i over nodes as opposed to V̂i at a single node with the aim of improving the performance of the early warning107

signal. We will investigate this possibility in the following sections.108

Coupled nonlinear dynamics on networks with two or three nodes109

In this section, we analyze coupled nonlinear dynamics on networks with N = 2 and N = 3 nodes. Through this analysis, we110

highlight relevance of multistage transitions, impact of averaging V̂i over nodes, heterogeneous amount of dynamical noise111

given to different nodes, and uncertainty of early warning signals, among other things. We then propose a measure of the quality112

of early warning signals in the form of V̂S and a method to select an optimal node set for constructing early warning signals.113

Two nodes connected by a directed edge114

We consider a network composed of two nodes and a directed edge of weight w(≥ 0); see Fig. 1(a) for a schematic. We assume
that node 1 influences node 2 but not vice versa. We also assume that, as a bifurcation parameter, denoted by r, gradually
increases, node 1 undergoes a saddle-node bifurcation and that node 2 also undergoes a saddle-node bifurcation either almost at
the same time as node 1 or after r has further increased. The model is given by

dx1(t) = f (x1(t),r)dt +σ1dW1(t), (8)
dx2(t) =[ f (x2(t),r−∆r)+w(x1(t)+1)]dt +σ2dW2(t), (9)

where ∆r (≥ 0) is a constant, σ1 and σ2 are the intensities of dynamical noise applied to nodes 1 and 2, respectively, and115

f (x) satisfies the following conditions. First, we assume f (x,r) = r+ x2 when r ≤ 0 and x ≤
√
−r+∆x, where ∆x (> 0)116

is a small constant. This condition guarantees that, in the absence of coupling and dynamical noise, Eqs. (8) and (9) are117

both the topological normal form of the saddle-node bifurcation43. In other words, dx/dt = f (x,r) with r < 0 has a stable118

equilibrium x∗ =−
√
−r and an unstable equilibrium x∗ =

√
−r, which collide at x∗ = 0 when r = 0. In Fig. 2, we show an119

example bifurcation diagram of single-node deterministic dynamics given by dx/dt = f (x,r). If σ1 = 0, then x1(t) undergoes120

a saddle-node bifurcation at r = 0 as r increases starting with a negative value. If σ2 = 0 and w = 0, then x2(t) undergoes a121

saddle-node bifurcation at r = ∆r. Second, we assume that f (x,r) is continuous in terms of x and r for simplicity. Third, we122

assume that f (c,r) = 0 for ∀r ≥ 0 for a unique positive value of c, which is larger than ∆x. This implies that, in the absence123

of noise, x = c is the unique stable equilibrium after a node undergoes a saddle-node bifurcation as r gradually increases.124

This assumption in combination with the continuity assumption for f (x,r) also implies that the stable equilibrium apart from125

x∗ = −
√
−r persists for some r < 0 although its position changes from x = c in general. Therefore, there are two stable126

equilibria at least in some range of x < 0 near x = 0, as shown in Fig. 2.127

We assume that w > 0 and consider this dynamical system in the range of bifurcation parameter r ∈ [−1,0), with (x1,x2)128

satisfying −1 ≤ x1,x2 < 0 in the absence of dynamical noise. In other words, we assume that x1 and x2 are both near the lower129

stable equilibrium in Fig. 2. In this situation, the input that node 2 receives from node 1, i.e., w(x1 +1), is positive. To prevent130

node 2 from transiting from its lower to the upper state through a saddle-node bifurcation earlier than node 1 when r gradually131

increases, we assume that w ≤ ∆r, which guarantees that −∆r+w(x1 +1)≤ 0. Let us gradually increase r starting with r =−1.132

Then, x1 jumps from 0 to c at r = 0 via a saddle-node bifurcation. We distinguish between two cases depending on the change133

in x2 right after the transition of node 1 from x1 = 0 to x1 = c. If −∆r+w(c+1)> 0, then x2 transits from x2 = 0 to x2 = c134

immediately after x1 does without a further increase in r (i.e., at r = 0). Otherwise, x2 does not transit at r = 0, and x2 does so135

at a positive value of r if we further increase r. The latter case is a multistage transition28, 29.136

The lower equilibrium of the coupled dynamical system, which exists if and only if r ≤ 0 and is locally stable when r < 0,

4/23



−1.0 −0.5 0.0 0.5

r

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x

Figure 2. An example bifurcation diagram of single-node dynamics given by Eq. (8) without dynamical noise. The solid and
dashed lines represent stable and unstable equilibria, respectively.

is given by

x∗ =

(
x∗1
x∗2

)
=

(
−
√
−r

−
√
−r+∆r+w(

√
−r−1)

)
. (10)

The linearized dynamics around x∗ is given by Eq. (2) with

A =

(
−2x∗1 0
−w −2x∗2

)
. (11)

By combining Eqs. (3) and (11), we obtain

C11 =− σ2
1

4x∗1
, (12)

C12 =
σ2

1 w
8x∗1(x

∗
1 + x∗2)

, (13)

C22 =− σ2
1 w2

16x∗1x∗2(x
∗
1 + x∗2)

− σ2
2

4x∗2
. (14)

Note that x∗1 and x∗2 are negative such that C11, C12, and C22 are positive.137

Here we recall that E denotes the expectation, and we let std denote the standard deviation. Because x∗1 = 0− as r → 0−, all138

of C11, C12, and C22 diverge as r → 0−. Therefore, E[V̂1], E[V̂2], and E[V̂{1,2}], which are equal to C11, C22, and (C11 +C22)/2,139

respectively, all diverge as r → 0− according to ∝ (−r)−1/2. However, we argue that this fact does not immediately imply that140

V̂1, V̂2, or V̂{1,2} is a high-quality early warning signal for the saddle-node bifurcation occurring at r = 0 because std[V̂1], std[V̂2],141

and std[V̂{1,2}], which are proportional to C11,
√

C2
11 +2C2

12 +C2
22, and C22, respectively, also diverge.142

To investigate the quality of V̂1, V̂2, and V̂{1,2} as early warning signals, we set w = 0.5, σ1 = 0.1, L = 100, and used143

three pairs of ∆r and σ2 values, which we refer to as scenarios. In Fig. 3, we show E[V̂1], E[V̂2], E[V̂{1,2}], std[V̂1], std[V̂2],144

and std[V̂{1,2}] as we gradually increase r under the three scenarios. In Fig. 3(a), we show the results for the first scenario,145
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Figure 3. Early warning signals with different node sets in a network with N = 2 nodes connected by a directed edge. The
solid lines represent the mean. The shaded regions represent the standard deviation. We set w = 0.5, σ1 = 0.1, and L = 100. (a)
(σ2,∆r) = (0.1,1). (b) (σ2,∆r) = (0.1,0.5). (c) (σ2,∆r) = (0.2,1).

for which we set ∆r = 1 and σ2 = σ1 = 0.1. The solid lines represent the expected value of each early warning signal. The146

shaded area represents the mean ± standard deviation. With these parameter values, when node 1 transits from x1 = 0 to x1 = c147

at r = 0, node 2 is still far from the bifurcation point. This is because the input from node 1 to node 2, which is equal to148

w(x1+1)≈ 0.5, is substantially smaller than −∆r (= 1) such that x2 approximately obeys dx2 = (−0.5+x2)dt+σ2dW2(t) near149

r = 0. Right after node 1 transits from x1 = 0 to x1 = c at r = 0, the input from node 1 to node 2 jumps to w(x1+1)≈ 0.5(c+1).150

Therefore, a multistage transition in which nodes 1 and 2 transit from their lower to the upper state at different r values occurs if151

0.5(c+1)< 1, i.e., 0 < c < 1. Otherwise (i.e., c ≥ 1), node 2 also transits from its lower to the upper state at r = 0. Regardless152

of whether or not a multistage transition occurs, Fig. 3(a) indicates that E[V̂1] is more sensitive to increases in r than E[V̂2] and153

E[V̂{1,2}], and that std[V̂1] is larger than std[V̂2] and std[V̂{1,2}]. Therefore, it is not obvious which of V̂1, V̂2, or V̂{1,2} is a better154

early warning signal.155

To rank these different candidates of early warning signals, we define the following index. We measure each early warning
signal’s mean and standard deviation at r =−0.3 and r =−0.1. We do so based on the premise that it is necessary to measure
signals at least at two r values to estimate how responsive the signal is to the change in the environment, i.e., r. As we explained
in the “Theory” section, V̂1, V̂2, and V̂{1,2} obey a normal distribution at equilibrium. Therefore, we measure a distance, denoted
by d, between the normal distribution at r =−0.3 and that at r =−0.1 for each early warning signal. If d is large, it is relatively
easy to tell the increase in the signal with relatively small uncertainty as r increases from −0.3 to −0.1, approaching a tipping
point. Therefore, we propose that an early warning signal attaining a larger d value is better. Although there are various
measures of the separability of two normal distributions44, inspired by the t-statistic, we define

d =
|µ1 −µ2|√
var1 +var2

, (15)

where µ1 and var1 are the mean and variance of the normal distribution at r =−0.3, and µ2 and var2 are those at r =−0.1. We156

show in Supplementary Note 2 that the results shown in the remainder of this section are robust with respect to the choice of the157

two r values for calculating d. Note that d can be small even if the mean of the early warning signal grows by a large amount158

between the two r values. This is the case when var1 or var2 is large, i.e., when the uncertainty of r is large. In this situation,159

tracking the early warning signal is relatively uninformative. In contrast, even if the absolute magnitude of the increase in the160

signal is small (i.e., small |µ1 −µ2|), the signal provides a good early warning if the uncertainty of r is small.161

We have found that d(V̂1) = 2.58, d(V̂2) = 1.27, and d(V̂{1,2}) = 2.78. Therefore, we suggest that V̂1 is a better early162

warning signal than V̂2. We emphasize that it is not because V̂1 is larger than V̂2 but because V̂1 responds more strongly to an163

increase in r than V̂2 does with relatively small uncertainty. Furthermore, V̂{1,2}, i.e., the average of V̂1 and V̂2, realizes a larger164

value of d than V̂1. Therefore, we suggest that V̂{1,2} is a better early warning signal than V̂1 and V̂2. This is intuitively because165

the averaging cancels out noise in the two signals, while V̂1 and V̂2 are not independent of each other due to the edge between166

nodes 1 and 2. We note that E[V̂{1,2}] is smaller than E[V̂1] (see Fig. 3(a)), challenging a natural idea of using single nodes or167

node sets with the largest variance as sentinel nodes.168

We show in Fig. 3(b) the mean and standard deviation of the signals for the second scenario; we changed ∆r from 1 to169

0.5. In this scenario, x2(t) always transits from its lower to the upper state immediately after node 1 does so at r = 0. This is170

because, when r → 0−, Eq. (8) implies that x1(t)→ 0− if we ignore the noise term, and r−∆r+w(x1(t)+1)≈ 0 combined171

with Eq. (9) implies that x2(t)→ 0−. Therefore, even with a small c value, both nodes 1 and 2 sequentially transit from its172
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lower to the upper state at r = 0. Figure 3(b) indicates that E[V̂2] is responsive to increases in r to an extent similar to E[V̂1] is.173

The d values confirm this, i.e., d(V̂1) = 2.58, d(V̂2) = 2.50, and d(V̂{1,2}) = 3.40. Because the quality of V̂2 is much better than174

in the first scenario, the average signal, V̂{1,2}, is substantially better than V̂1 in terms of d in the present second scenario, while175

V̂{1,2} was only marginally better than V̂1 in the first scenario.176

In addition to different amounts of constant stress as parametrized by ∆r, different nodes may be subject to different177

amounts of dynamical noise. We show in Fig. 3(c) the results for the third scenario, in which we set ∆r = 1 and σ2 = 0.2.178

In this scenario, the saddle-node bifurcation for node 2 is delayed such that a multistage transition may occur, as in the first179

scenario. The difference to the first scenario is that, in the present scenario, node 2 receives a larger dynamical noise than node180

1. Therefore, V̂2 is noisier than V̂1 and V̂{1,2}, which is apparent in Fig. 3(c). If we only measure the early warning signals at one181

r value (e.g., r =−0.3 or r =−0.1), then one may be tempted to regard that V̂2 is a better early warning signal than V̂1 and182

V̂{1,2} because E[V̂2] is larger than E[V̂1] and E[V̂{1,2}]. However, this conclusion is erroneous for two reasons. First, std[V̂2] is183

larger than std[V̂1] and std[V̂{1,2}]. Second, V̂2 is not much sensitive to the change in r, as Fig. 3(c) shows. In fact, we obtain184

d(V̂1) = 2.58, d(V̂2) = 0.97, and d(V̂{1,2}) = 2.12. This result suggests that V̂1 is a better signal than V̂2 and V̂{1,2}. In this case,185

taking the average of V̂1 and V̂2 does not help because V̂2 is too poor. Lessons from the analysis of the present scenario are that186

(i) a large signal value does not necessarily imply a better early warning signal and that (ii) it is sometimes better to exclude187

some nodes from the calculation of the early warning signal if those nodes are either only marginally responsive to the change188

in the bifurcation parameter or they carry larger fluctuations than other nodes.189

Chain with three nodes190

In this section, we consider three nodes of identical nonlinear dynamics, except possible differences in the noise strength,
coupled as an undirected chain network with N = 3 nodes. We show a schematic of the network in Fig. 1(b). Specifically, we
consider the set of stochastic differential equations given by

dx1 =[ f (x1)+w(x2 +1)]dt +σ1dW1, (16)
dx2 =[ f (x2)+w(x1 +1)+w(x3 +1)]dt +σ2dW2, (17)
dx3 =[ f (x3)+w(x2 +1)]dt +σ3dW3, (18)

where f (x) is given in the “Two nodes connected by a directed edge” section. If c is small enough and σ1 = σ2 = σ3, node 2191

transits from its lower to the upper state earlier than nodes 1 and 3 as r (≥−1) increases from a negative value because node 2192

receives positive input from nodes 1 and 3 while node 1 and 3 each receive input solely from node 2.193

When −1 ≤ r ≤ 0, the equilibrium in the absence of noise satisfying x∗1,x
∗
2,x

∗
3 < 0 is a solution of

r+(x∗1)
2 +w(x∗2 +1) =0, (19)

r+(x∗2)
2 +2w(x∗1 +1) =0, (20)

and x∗3 = x∗1. If we ignore the dynamical noise, the first saddle-node bifurcation, which is the transition of node 2 from its194

lower to the upper state, occurs at r = rc, where rc satisfies 0 > rc > r′′c ≡ 2w[−(w+1)+
√

w(w+1)], as r gradually increases195

from r =−1. At r = rc, the two parabolas given by Eqs. (19) and (20) are tangent to each other. See Supplementary Note 3196

for the derivation including that of the uniqueness of the stable solution satisfying x∗1(= x∗3)< 0 and x∗2 < 0 when r ≤ rc. We197

set w = 0.05, which leads to rc ≈ r′′c ≈−0.082. Therefore, we calculate the d values at r =−0.3 and −0.1 as we did in the198

“Two nodes connected by a directed edge” section. We show in Supplementary Note 2 that the following results are reasonably199

robust against variation in the two r values.200

We obtain the mean and standard deviation of the early warning signals, and then d, as follows. Equations (16), (17), and
(18) lead to

A =

−2x∗1 −w 0
−w −2x∗2 −w
0 −w −2x∗1

 . (21)

To facilitate further analyses, we assume σ1 = σ3. Then, by substituting Eq. (21) and B = diag(σ1,σ2,σ1), which is by
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definition the diagonal matrix whose diagonal entries are σ1, σ2, and σ1 in this order, into Eq. (3), we obtain

C11 =C33 =
−4x∗1x∗2(x

∗
1 + x∗2)σ

2
1 +w2

[
(2x∗1 + x∗2)σ

2
1 − x∗1σ2

2
]

8x∗1(2x∗1x∗2 −w2)(x∗1 + x∗2)
, (22)

C12 =C23 =
w(x∗2σ2

1 + x∗1σ2
2 )

4(2x∗1x∗2 −w2)(x∗1 + x∗2)
, (23)

C13 =− w2(x∗2σ2
1 + x∗1σ2

2 )

8x∗1(2x∗1x∗2 −w2)(x∗1 + x∗2)
, (24)

C22 =
−2x∗1x∗2(x

∗
1 + x∗2)σ

2
2 +w2x∗2(−σ2

1 +σ2
2 )

4x∗2(2x∗1x∗2 −w2)(x∗1 + x∗2)
. (25)

By substituting Eqs. (22)–(25) into Eqs. (5) and (6), we obtain the mean and standard deviation of each early warning signal for201

any node set S. Because V̂1 and V̂3 obey the same normal distribution, we obtain E[V̂{1,3}] = E[(V̂1 +V̂3)/2] = E[V̂1] = E[V̂3].202

We also obtain std[V̂{1,3}] = (C11 +2C13 +C33)/[2(L−1)] = std[V̂1]× 1+Corr
2 , where Corr is the Pearson correlation coefficient203

between x1(t) and x3(t) in the equilibrium. Therefore, std[V̂{1,3}] is smaller than std[V̂1] unless x1(t) and x3(t) are perfectly204

correlated, which does not happen because they are subjected to independent Wiener processes dW1(t) and dW3(t). Therefore,205

V̂{1,3} is always better than V̂1 and V̂3 for this model. In addition, due to the assumed symmetry between nodes 1 and 3,206

S = {1,2}, {1,3}, and {1,2,3} exhaust all possibilities of combining multiple nodes’ signals into one early warning signal.207

Therefore, it suffices to compare the performance of V̂2, V̂{1,2}, V̂{1,3}, and V̂all ≡ (V̂1 +V̂2 +V̂3)/3, i.e., V̂S with S = {1,2,3}.208

We set σ2 = 0.1 and L = 100, and consider three values of σ1. In the first scenario, we set σ1 = σ2 = 0.1. For this case,209

we show the mean and standard deviation of V̂2, V̂{1,2}, V̂{1,3}, and V̂all as a function of r in Fig. 4(a). Note that the result for210

V̂1 is the same as that for V̂{1,3} except that std[V̂1] is 2/(1+Corr) (> 1) times larger than std[V̂{1,3}]. It is not straightforward211

to tell from Fig. 4(a) which signal is better than others. However, we expect that V̂2 provides a better early warning signal212

than V̂1 because the transition of node 2 from the lower to the upper state as r increases from r ≈ −0.5 is more impending213

than the transition of nodes 1 and 3. In fact, we obtain d(V̂1) = 3.52, d(V̂2) = 4.72, d(V̂{1,2}) = 5.84, d(V̂{1,3}) = 4.97, and214

d(V̂all) = 6.77, verifying this prediction. Furthermore, it is the best to use V̂all, i.e., the average of the sample covariance over all215

nodes.216

In the second scenario, we set σ1 = 0.7 such that nodes 1 and 3 receive larger dynamical noise than node 2. We show the217

behavior of the early warning signals in this case in Fig. 4(b). The figure indicates that the mean magnitude of any signals218

including V̂1 (i.e., V̂1,2, V̂1,3, and V̂all) is much larger than that of V̂2. However, this phenomenon does not imply that it is better219

to use a signal including V̂1 because the enhanced signal size owes to the increased amount of dynamical noise. We obtain220

d(V̂1) = 3.49, d(V̂2) = 5.49, d(V̂{1,2}) = 3.74, d(V̂{1,3}) = 4.93, and d(V̂all) = 5.10. Therefore, we suggest that we should only221

use node 2 as early warning signal under the present scenario because V̂2 is the least affected by the dynamical noise. Note that222

the magnitude of V̂2 in the present scenario is similar to that in the first scenario (see Fig. 4(a)).223

In the third scenario, we set σ1 = 0.015 such that node 2 receives large dynamical noise than nodes 1 and 3. We show the224

behavior of the early warning signals in this case in Fig. 4(c). We find that E[V̂2] is much larger than E[V̂{1,3}] (= E[V̂1]), which225

does not use V̂2. Note that, the magnitude of V̂2 is similar to that in the last two scenarios because we kept σ2 = 0.1 in all the226

three scenarios. We obtain d(V̂1) = 4.50, d(V̂2) = 4.69, d(V̂{1,2}) = 4.77, d(V̂{1,3}) = 6.08, and d(V̂all) = 4.84. Therefore, we227

suggest that V̂{1,3} is the best early warning signal under the present scenario. In the second and third scenarios, the best early228

warning signal turns out to be the one having the smallest mean magnitude at both r =−0.3 and r =−0.1.229

Numerical results for larger networks and various dynamical systems230

We propose to use the node set S maximizing d as the sentinel node set from which we calculate the early warning signal, V̂S.231

In the networks with two or three nodes analyzed in the “Coupled nonlinear dynamics on networks with two or three nodes”232

section, the maximizers of d are composed of nodes with small dynamical noise (i.e., small σi). However, in networks with233

larger numbers of nodes, it may not be the best to select nodes with small dynamical nodes. It is because xi’s of these nodes234

may be strongly correlated with each other, which typically occurs when these nodes are closely located in the network. In this235

case, averaging V̂i over these nodes, which yields V̂S, does not help much to reduce the fluctuation, potentially making this V̂S a236

poor early warning signal. Therefore, to test the performance of our method to select the sentinel node set in networks with237

larger numbers of nodes, we carry out numerical simulations with different networks and dynamical systems in this section.238

Setup for numerical simulations239

We use six undirected and unweighted networks with N nodes and denote a network’s adjacency matrix by (wi j), with wii = 0240

and wi j = w ji ∈ {0,1} ∀ i, j ∈ {1, . . . ,N}.241
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Figure 4. Early warning signals with different node sets in the undirected chain network with N = 3 nodes. We set w = 0.05,
σ2 = 0.1, and L = 100. (a) σ1 = 0.1. (b) σ1 = 0.7. (c) σ1 = 0.015.

Our theory requires the covariance matrix, C, or at least its eigenvalues, estimated at two values of the bifurcation parameter.242

In the previous sections, we theoretically calculated C by linearizing the original dynamics around the equilibrium and solving243

the Lyapunov equation given by Eq. (3). However, to know matrix A in Eq. (3), we need to know the term driving the dynamics244

of the node, i.e., the derivative of F in Eq. (1), which depends on the single node’s intrinsic dynamics and form of the coupling245

between nodes. However, we usually do not have access to such detailed information given empirical data, while estimating246

them from observed data is an active research field (e.g., Ref.23). Therefore, we use the sample covariance matrix as an247

estimator of C. This choice is for simplicity, and there are better estimators of the covariance matrix that are useful especially248

when the number of samples, L, is small relative to the number of variables, N45; we will discuss this limitation of the present249

study in the “Discussion” section.250

Results for the coupled double-well model251

We first consider a coupled double-well model on networks with dynamical noise given by

dxi =

[
−(xi − r1)(xi − r2)(xi − r3)+D

N

∑
j=1

wi jx j +ui

]
dt +σidWi, i ∈ {1, . . . ,N}. (26)

Equation (26) represents dynamics of species abundance25 or climates in interconnected regions26. Parameters r1, r2, and r3252

control the location of the equilibria and satisfy r1 < r2 < r3; D (≥ 0) is the strength of coupling between nodes, and ui is a253

constant stress given to the ith node, equivalent to −∆r in Eq. (9). When D or ui ∀i is sufficiently small, x = (x1, . . . ,xN)
> in254

which all the nodes are in their lower state near r1 is the unique stable equilibrium. In contrast, when D or ui ∀i is sufficiently255

large, x in which all the nodes are in their upper state near r3 is the unique stable equilibrium. In between, we initially set all256

the nodes in their lower state at the start of each simulation, and as one gradually increases D or ui, all nodes may flip to the257

upper stable state at once or in multiple stages28, 29.258

For this system, we numerically assess the performance of the variance of a single node or its average over the nodes in259

set S as early warning signal to anticipate the first transition from the lower state to the upper state. We use either ui or D as260

the bifurcation parameter in a given sequence of simulations. If the bifurcation parameter is ui, we started with D = 0.05 and261

ui = u = 0 ∀i and gradually increased u until the first transition occurs (see the Methods section for the precise definition of the262

transition and parameter values for the numerical simulations). We computed the covariance matrix at reasonably separated263

two values of u, denoted by u(1) and u(2) (see the Methods section for details). At each of u = u(1) and u = u(2), we collected264

L = 100 samples of each xi, i ∈ S and calculated d using Eq. (15). As a demonstration, we show how noisy early warning265

signals gradually increase as we gradually increase u in one series of simulations in Fig. 5. When we select n = 5 nodes266

uniformly at random, the sample covariance averaged over the nodes in S (i.e., V̂S) gradually increases until the first node267

transits from its lower to the upper state (see the orange line). When we use the set of n = 5 nodes maximizing d, the sensitivity268

of V̂S to the increase in u is notably larger near the first tipping point (see the blue line). Therefore, the maximizer of d provides269

an apparently better early warning signal than a uniformly randomly selected node set.270

We assessed the performance of the sample covariance averaged over the nodes in S using the Kendall’s τ , which is271

conventionally used13. We evaluated S with n = {1,2,3,4,5} nodes and also the S composed of all N nodes, which refer to as272

“all”, as a control. We exhaustively examined all possible S with n = 1 or n = 2 and uniformly randomly sampled 5000 sets of273

S for each n ∈ {3,4,5} due to a large number of combinations. In Supplementary Note 4, we also provide a stopping criterion274

and a numerical demonstration when one wants to explore S with n > 5 nodes for better solutions (i.e., S with larger d values).275
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Figure 5. Early warning signal, V̂S, for the maximizer of d (blue line) and a set of nodes selected uniformly at random (orange
line). Both sentinel node sets are composed of n = 5 nodes. We also show x∗i for each node at each value of u. We used the
coupled double-well dynamics on a BA network with N = 50 nodes and gradually increased u.

We show the results of one set of simulations on the Barabási-Albert (BA) model network with 50 nodes and average degree276

〈k〉= 3.88 in Fig. 6. We gradually increased u as the bifurcation parameter. Figure 6(a) shows the relationship between the277

Kendall’s τ and d when the early warning signal is the variance of a single xi. Each symbol corresponds to a node. We find278

that the node maximizing d, indicated by the intersection of the two dashed lines, is the third best performer in terms of τ . At279

each value of n ∈ {2,3,4,5}, the maximizer of d is not the top performer in terms of τ but is a reasonably good performer (see280

Figs. 6(b)–(e)). For example, the pair of nodes attaining the largest d, corresponding to the symbol at the intersection of the two281

dashed lines in Fig. 6(b), provides the eighth best early warning signal among all the N(N −1)/2 = 1225 pairs of nodes. At282

each value of n ∈ {1, . . . ,5}, we find that τ and d are positively correlated; the Pearson correlation coefficient between τ and283

d is equal to 0.42, 0.46, 0.45, 0.44, and 0.43 for n = 1,2,3,4, and 5, respectively. It should also be noted that both d and τ284

generally increase as n increases. When all nodes are used, d and τ are the largest (see Fig. 6(f)). Therefore, in the present285

case, using all the nodes is a better choice than using particular combinations of n ≤ 5 nodes. However, a reasonably large τ286

is attained only using n ≤ 5 nodes if we choose appropriate node sets based on d. One can find S that maximizes d only by287

observing the covariance matrix at two bifurcation parameter values.288

We quantified the performance of the optimized node set, i.e., the node set that maximizes d at each value of n, using p1289

and p2. For a given n, we define p1 as twice the fraction of node sets whose τ is larger than that for the optimized node set.290

We note that 0 ≤ p1 ≤ 2. We define p2 as (τmax − τ∗)/(τmax −〈τ〉), where 〈τ〉 is the average of τ over all the node sets with291

n nodes examined, τmax is the largest (i.e., best) τ value among the node sets with n nodes examined, and τ∗ is the τ value292

realized by the maximizer of d with n nodes. Although we have assumed that a larger positive τ is better, the definition of p1293

and p2 are similar when the nodes transit from their upper to lower states through tipping points and therefore a larger negative294

τ implies a better performance of an early warning signal (Supplementary Note 5). If the maximizer of d is the best node set,295

realizing the largest τ , then both p1 and p2 are equal to 0 and the smallest. Smaller p1 and p2 values are better. If half the node296

sets are better than the maximizer of d, meaning that the maximizer of d is no better than a uniformly random pick, then we297

obtain p1 = 1. Similarly, p2 = 1 is equivalent to τ∗ = 〈τ〉, implying that the maximizer of d is no better than a random pick. If298

the maximizer of d is the worst performer, we obtain p1 = 2 and a value of p2 larger than 1.299

We show in Fig. 7(a) the p1 and p2 values for the double-well dynamics on the BA network with n ∈ {1, . . . ,5}. Each300

small symbol represents the p1 and p2 values for a single series of simulations in which we gradually increased the value of u301

towards the first transition. Figure 6 shows the relationship between τ and d in one of the 50 series of simulations whose results302

are shown in Fig. 7(a). The larger symbols in Fig. 7 indicate the average over the 50 series of simulations. We find that the303

optimizer of d is not a top but reasonably good performer because the p1 and p2 values are substantially smaller than 1 in most304

runs. The performance of the maximizer of d relative to that of uniformly randomly selected node sets with the same number of305

nodes, n, degrades as n increases.306
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Figure 6. Relationships between the Kendall’s τ and d before the first major transition in the coupled double-well dynamics
on a BA network with N = 50 nodes. We gradually increased u. We considered node sets S with n ∈ {1,2,3,4,5,N} nodes. (a)
n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5. (f) n = N. The τ and d values for the node set maximizing d for each n value
are highlighted by the dashed lines. The cross represents “Large SD”, i.e., the node set comprised of the n nodes with the
largest sample standard deviation of xi(t).

Robustness of node set optimization under different heterogeneity scenarios, networks, dynamical systems, and other307

factors308

To examine the generality of the effectiveness of the node set optimization, we ran simulations, assessed the performance of the309

early warning signals in terms of the Kendall’s τ , and calculated p1 and p2 for the following variations. First, we have assumed310

that all nodes are homogeneous except with regard to the position in the network. However, as we examined with Figs. 3(a) and311

(b), different nodes may have different propensity to tip, yielding a multistage transition for the entire system. To examine this312

case, we set ui = u+∆ui in Eq. (26), where ∆ui independently obeys the uniform density on [−0.25,0.25]. We continue to use313

u as the bifurcation parameter. A node with large ui tends to transit from its lower state to the upper state earlier as u gradually314

increases. Note that a heterogeneous distribution of ui makes it more difficult to find a good node set S only from the information315

on the network structure. We show the p1 and p2 values when ui is heterogeneous and σi is homogeneous in Fig. 7(b). The316

results are qualitatively the same as those for the case in which both ui and σi are homogeneous (see Fig. 7(a)). Separately, we317

also consider the case in which both the node stress ui and the strength of the dynamical noise σi are heterogeneous. We set318

σi = σ +∆σi, where σ = 0.05, and ∆σi independently obeys the uniform density on [−0.9σ ,0.9σ ]. We show p1 and p2 for319

this case in Fig. 7(c). The results are qualitatively the same as those when both ui and σi are homogeneous (Fig. 7(a)) and when320

only ui is heterogeneous (Fig. 7(b)).321

Second, we have considered six networks including the BA model, three of which are model networks and the other three322

are empirical networks (see Methods for the networks). Third, we have considered four dynamical system models on networks323

including the coupled double-well dynamics; the other three dynamics are a model of mutualistic interaction dynamics among324
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Figure 7. Performance of the optimized node set in anticipating the tipping point in the double-well dynamics on the BA
model network with N = 50 nodes. (a) Homogeneous stress and homogeneous noise. (b) Heterogeneous stress and
homogeneous noise. (c) Heterogeneous stress and heterogeneous noise. The smaller symbols show the p1 and p2 values for the
individual series of simulations. The larger symbols show the average over 50 series of simulations.

species46, a gene regulatory system governed by the Michaelis-Menten equation46, and the deterministic approximation of the325

susceptible-infectious-susceptible (SIS) model on networks47. These four models of dynamics are diverse in the sense that326

the SIS model shows a transcritical bifurcation to mark the onset of epidemic spreading, while the other three models show327

saddle-node bifurcations. In addition, we started the mutualistic interaction and gene regulatory dynamics from the upper state328

for each node and gradually decreased the bifurcation parameter value, which is the opposite to the case of the double-well329

and SIS dynamics. This is because the loss of resilience such as species loss in mutualistic dynamics and cell death in gene330

regulatory dynamics is of a practical concern for these dynamical systems46. Fourth, we also varied D instead of u as bifurcation331

parameter until the first bifurcation occurs. For the SIS model, we only considered an equivalent to D, which is the infection332

rate parameter, but not u because introducing and varying u is unrealistic for the SIS model; see Methods for the discussion.333

We show the p1 and p2 values for n ∈ {1, . . . ,5}, the three different scenarios for ui and σi (i.e., constant across all nodes334

or heterogeneous), two networks, four different dynamical systems, and two different bifurcation parameters (i.e., u or D) in335

Fig. 8. Each figure panel contains the average of p1 and p2 over 50 series of simulations for the three scenarios of heterogeneity336

(i.e., both ui and σi are homogeneous, only ui is heterogeneous, and both of them are heterogeneous) for one network and one337

dynamical system. Note that Fig. 8(a) is for the double-well dynamics on the BA network, corresponding to Figs. 6 and 7. We338

find that the node set based on the largest d value performs reasonably well for the two networks (see Figs. 8(a)–(g) for the BA339

network and Figs. 8(h)–(n) for the Chesapeake Bay carbon flow network) and for all the four models of dynamics. The node set340

maximizing d tends to work better relative to uniformly randomly picked node sets, yielding smaller p1 and p2 values, when ui341

and σi are both heterogeneous across the nodes (shown by the dotted lines) than when either ui or σi is homogeneous (shown342

by the solid and dashed lines). This is presumably because the proposed method actively discards nodes with high intrinsic343

noise by comparing the distribution of the signal variance at two values of the bifurcation parameter. The node set maximizing344

d tends to work better relative to uniformly random node sets with the same number of nodes, n, when n is smaller. However,345

even at n = 5, the p1 and p2 values are at most approximately 0.7 and much smaller in a majority of cases. The results are346

qualitatively the same for the other four networks, with a caveat that the maximizer of d performs poorly for the gene regulatory347

dynamics model on some networks (see Supplementary Note 6).348

We also carried out the following robustness tests.349

Our choice of the two bifurcation parameter values at which we sample the covariance matrix and then calculate d (see350

Methods for the definition of the two bifurcation parameter values) has been arbitrary. We used one bifurcation parameter351

value close to the start of each series of simulation and the other value close to the first tipping point, regardless of the type of352

bifurcation. This is because, with this choice, the difference between µ1 and µ2, which is the numerator of d (see Eq. (15)), is353

larger than when the two bifurcation parameter values are closer. Then, the contrast of d for different choices of S may be354

larger, potentially helping to single out the S that maximizes d. To test the robustness of our results with respect to the choice of355

the two bifurcation parameter values, we measured p1 and p2 for various pairs of the bifurcation parameter value, which are356

different in terms of the separation between the two values and the closeness to the first tipping point. For the three scenarios357

for ui and σi (i.e., constant across all nodes or heterogeneous), six networks, four dynamical systems, and two bifurcation358
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Figure 8. Performance of the node set maximizing d on the BA and Chesapeake Bay networks. The squares and circles
represent p1 and p2, respectively, for the given n, dynamics, network, and condition (i.e., whether ui or σi is homogeneously or
heterogeneously distributed) averaged over 50 series of simulations. (a)–(g): BA network. (h)–(n): Chesapeake Bay carbon
flow network. The panels on the leftmost column correspond to the double-well dynamics, and the second to the fourth
columns to the mutualistic interaction, gene regulatory, and SIS dynamics, respectively. The combination of the dynamics
model and bifurcation parameter is as follows. (a) and (h): double-well, u. (b) and (i): mutualistic interaction, u. (c) and (j):
gene regulatory, u. (d) and (k): double-well, D. (e) and (l): mutualistic interaction, D. (f) and (m): gene regulatory, D. (g) and
(n): SIS, λ .
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parameters (i.e., u or D), we have found that the result that p1 and p2 are small in most cases is robust. Specifically, p1 and p2359

are considerably smaller than 1 when they are so for the original pairs of the bifurcation parameter value, the two bifurcation360

parameter values are not too close to each other, and the larger bifurcation parameter value is reasonably close to the first361

tipping point. (See Supplementary Note 2 for the numerical results.)362

Not all the regime shifts accompany critical slowing down. Early warning signals based on critical slowing down, including363

V̂S for any node set S, should be insensitive to such types of regime shifts1, 11, 14, 48. To verify that this is the case, we investigated364

coupled double-well dynamics on the BA network experiencing a state transition from the lower to the upper state of xi(t) driven365

by either dynamical noise or impulse input given to xi(t)’s. Dynamical noise and impulse input are two major scenarios in366

which regime shifts occur without critical slowing down11, 14. It should be noted that, in both scenarios, all the system parameter367

values remain the same throughout a simulation. As expected, V̂S is found to be insensitive to impending regime shifts until368

they are about to occur, and therefore, τ is close to 0. These results hold true for any choice of S, and the S maximizing d does369

not yield a particularly large τ value. See Supplementary Note 7 for details.370

In contrast to the last case, critical slowing down can occur even when there is no sudden regime shift. Representative371

examples of this phenomenon are transcritical and Hopf bifurcations14, 49. The gene regulatory and SIS models that we have372

employed show transcritical bifurcations, at least in well-mixed populations. We showed that V̂S increases just before the373

bifurcation, which is captured by large τ values, in the gene regulatory and SIS models (see Supplementary Note 8 for numerical374

evidence). Therefore, consistent with the previous studies14, 49, we are not claiming that V̂S specifically increases when a375

bifurcation accompanying a large regime shift, which is typically a saddle-node bifurcation, is being approached.376

Last, we derived theory for the variance of xi(t) and its average over nodes for mathematical convenience. However, the377

standard deviation of xi(t) rather than the variance of xi(t) is also a common early warning signal for anticipating tipping378

points13, 50, 51. We verified that the results on the advantage of the maximizer of d remained almost the same when we used the379

average of the sample standard deviation of xi(t) over i ∈ S as the early warning signal (see Supplementary Note 9).380

Comparison with other node selection methods381

A simple heuristic to select a node set for constructing early warning signals by averaging is to use the n nodes with the largest382

standard deviation of xi
29, which we refer to as “Large SD”. While there are also other strategies to select node sets, here we383

compare ours with Large SD because the measurement of the standard deviation of xi does not require the information about384

the network structure, and therefore it is fair to compare Large SD and the present method. The crosses in Fig. 6 indicate385

the Kendall’s τ value for the double-well dynamics on the BA network when we use the n nodes with the largest standard386

deviation to calculate the early warning signal. Large SD detects the best single node, which the maximization of d does not (see387

Fig. 6(a)), Large SD also outperforms the maximizer of d, yielding larger τ values, when n ∈ {2,3,4,5} (see Figs. 6(b)–(e)),388

whereas the advantage of Large SD is marginal for n = 5. Therefore, when ui and σi are homogeneous, Large SD beats the389

maximizer of d, at least for this example. However, the maximizer of d usually behaves much better than Large SD when σi390

is heterogeneous. Figure 9 shows an example. In this figure, we used the double-well dynamics on the BA network, as we391

did for Fig. 6, and assumed that both ui and σi are heterogeneous. The figure indicates that the maximizer of d substantially392

outperforms Large SD except when n = 4 and n = 5, for which the maximizer of d only slightly outperforms Large SD. The393

compromised performance of Large SD in this scenario is because Large SD tends to select nodes with large σi although a394

large σi value simply reflects that the ith node is inherently noisier than others.395

To compare between the maximizer of d and Large SD more systematically, we compared the Kendall’s τ values attained by396

these two strategies for the six networks, the four dynamics models, and whether the stress or dynamical noise is homogeneous397

or heterogeneous across the nodes. As we show in Supplementary Note 8, we confirmed that the maximizer of d outperforms398

Large SD in a majority of cases when both the stress, ui, and the noise strength, σi, are node-dependent. The maximizer of d399

outperforms Large SD even when σi is node-independent for the mutualistic interaction dynamics and D being used as the400

bifurcation parameter. In the other cases, the maximizer of d is either on par with or slightly inferior to Large SD. However,401

there is no case in which Large SD substantially outperforms the maximizer of d (i.e., Large SD outperforms the maximizer of402

d in terms of τ by at most ≈ 0.078), whereas the maximizer of d often substantially outperforms Large SD.403

Furthermore, we compared the maximizer of d with another heuristic algorithm with which one selects the n nodes that404

receive the highest total input (or lowest total input, depending on the direction of the bifurcation being considered) from405

the other nodes near the bifurcation point29, which we refer to as High/Low Input. The results of comparison between the406

maximizer of d and High/Low Input were similar to the case of the comparison between the maximizer of d and Large LD (see407

Supplementary Note 10 for the methods and results). In other words, the maximizer of d tends to be better than the High/Low408

Input algorithm, in particular when the nodes’ dynamics are assumed to be heterogeneous. We note that High/Low Input409

requires the adjacency matrix of the network, i.e., complete information on the network structure, which neither the maximizer410

of d nor Large SD requires.411
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Figure 9. Relationships between the Kendall’s τ and d in the coupled double-well dynamics on the BA network with N = 50
nodes under heterogeneous node stress and heterogeneous dynamical noise. The network is the same as the one used in Fig. 6.
We considered node sets S with n ∈ {1,2,3,4,5,N} nodes. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5. (f) n = N. The
τ and d values for the node set maximizing d are highlighted by the dashed lines. The cross represents “Large SD”, i.e., the
node set comprised of the n nodes with the largest sample standard deviation of xi(t).
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Discussion412

Based on theory of OU processes, we proposed an objective function d for identifying sets of nodes, S, that are expected to413

reliably alert impending tipping events when we combine the early warning signals from S by averaging. While we focused on414

anticipating the first bifurcation in the entire network, the proposed method is equally applicable to anticipating the second and415

later transitions in the case of multistage transitions in which different nodes experience regime shifts at different timings11, 25–29.416

We numerically demonstrated the proposed method with various dynamics models, networks, and system heterogeneity417

scenarios to confirm its good performances. Application to domain-specific problems such as in ecology, climate dynamics,418

and disease progression is saved for future work. In these and other applications, further complexity of systems in question419

in addition to the network structure and nonlinearity that we have neglected, such as the mixture of positive and negative420

interactions18 and nonequilibrium dynamics32, may require alternations of our method, posing further research questions.421

Nonetheless, our method is readily applicable to empirical data because it does not require the information about the422

network structure or the dynamical model equations. It only requires the covariance matrix among the observables measured423

at two values of the bifurcation parameter, or two different states of the networked system, to determine an optimal sentinel424

node set, S. In ecological52, 53 and psychopathological54 applications of early warning signals, it is customary to calculate425

fluctuation-based early warning signals such as the variance or covariance from multivariate time series data with sliding time426

windows, thus obtain time series of early warning signals, and use them to give alerts for impending tipping points. To apply427

our methods to empirical multivariate time series data, once one has determined S as the maximizer of d, one only needs to428

collect signals from the nodes in S in each of the sliding time windows, calculate the early warning signal (i.e., V̂S), and monitor429

it.430

The proposed method tended to outperform other heuristics when the amount of dynamical noise depended on nodes.431

The assumption of heterogeneous noise, also made in a previous analytical study24, is probably realistic because the nodes432

constituting a complex dynamical system correspond to different species or geographical patches in ecosystems, different genes433

or symptoms in complex systems of diseases, different firms or countries in a financial network, and so on. Although it is434

not easy to measure dynamical noise for each node in isolation in empirical complex systems, there is no a priori reason to435

assume that different nodes are subject to the same amount of intrinsic noise. As we have shown, heterogeneous noise across436

nodes generally confuses early warning signals estimated from observed data because, in heterogeneous noise cases, a larger437

variance of an xi does not imply that xi provides a better early warning signal. We overcame this problem by quantifying438

fluctuations of the early warning signal, not just fluctuations of xi, and measuring it at two bifurcation parameter values. We439

propose that we should observe the system at two sufficiently distant bifurcation parameter values (practically, two distant440

times) for identifying good early warning signals. The early warning signals at nodes whose fluctuation is large due to large441

intrinsic noise do not substantially grow between the two bifurcation parameter values. In contrast, the early warning signals at442

nodes closely approaching their tipping point substantially grow between the two bifurcation parameter values. An alternative443

strategy is to use lagged autocorrelation as early warning signal because nodes with large intrinsic noise may produce small444

autocorrelation. Autocorrelation of multivariate OU processes is analytically tractable, whereas it is more complicated than the445

variance and covariance37. Analysis of autocorrelation and its average over nodes as early warning signals with the present446

theoretical framework warrants future work.447

In numerical simulations, we examined the size of the node set n ∈ {1, . . . ,5}. For n = 1 and 2, we inspected all the448

node sets for their performance and d values. In contrast, we randomly sampled node sets for n ≥ 3 due to the combinatorial449

explosion. If the number of nodes, N, is less than approximately 20, it may be feasible to exhaustively investigate all the node450

sets across all values of n to find the exact maximizer of d. Note that the calculation of a single d only involves the square and451

summation of the entry of the N ×N covariance matrix and therefore is not costly. When N is larger, we need to find node452

sets that only approximately maximize d. This combinatorial problem has scarcely been discussed in early warning signal453

research community. It is because prior studies highlighting that different nodes can emit early warning signals of different454

quality either used systems with a small number of nodes, typically with N ≤ 519, 21–24 or linearly ranked the N nodes20, 27, 29,455

thus implicitly abandoning the potential benefit of wisely combining different nodes. However, real-world complex systems456

whose tipping events are of practical interest are more often than not larger complex networks17, 18. Although we provided a457

stopping criterion for exploring different n values and showed a demonstration (see Supplementary Note 4), further deploying458

heuristics for combinatorial optimization to approximate maximization of d for reasonably large n and N is left for future work.459

We used the sample covariance matrix as the estimator of the true covariance matrix for simplicity. In fact, although the460

sample covariance matrix is an unbiased estimator in the limit of L → ∞, it is an unreliable estimator when L is small relative to461

N, and there are better choices such as different sparse estimators and covariance shrinkage methods45. In the present study, the462

sample covariance matrix is not problematic because we used a relatively small N and large L. However, in practical situations,463

we may only have a small number of samples, in which case one should consider a different covariance estimator. Furthermore,464

we confined ourselves to linear combinations of early warning signals measured at single nodes. However, a natural extension465

is to exploit covariance of xi and x j, where i 6= j, to construct early warning signals. Examples of such early warning signals466
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include the leading eigenvalue of the covariance matrix21, 55, 56 and Moran’s I57–59. It should be noted that we used the cross467

covariance, C(1)
i j and C(2)

i j , where i 6= j, only to evaluate the uncertainty of our early warning signals, not to construct early468

warning signals. Early warning signals for heterogeneous networks when the number of samples is limited are a challenging469

open question.470

Methods471

Dynamical system models472

We used the following four types of dynamics on networks with dynamical noise.473

A coupled double-well model on networks with dynamical noise is given by Eq. (26). We set (r1,r2,r3) = (1,3,5). In474

the presence of coupling (i.e., D > 0), the lower and the upper state of each node is around xi = r1 and xi = r3, respectively.475

Here we succinctly regard that the nodes with xi < r2 and xi ≥ r2 are in the lower and the upper state, respectively. We set476

ui = u+∆ui ∀i. If u is the bifurcation parameter, we initially set u = 0 and D = 0.05. If D is the bifurcation parameter, we477

initially set u = 0 and D = 0. In the case of homogeneous stress, we set ∆ui = 0 ∀i. In the case of heterogeneous stress, we478

draw each ∆ui independently from the uniform density on [−0.25,0.25] for this and the following three models of dynamics.479

We set σi = σ +∆σi, where σ = 0.05 for this model. We set ∆σi = 0 ∀i in the homogeneous noise case and draw ∆σi from480

the uniform density on [−0.9σ ,0.9σ ] in the heterogeneous noise case, including for the other three dynamical system models481

described in the remainder of this section.482

The mutualistic interaction dynamics among species is given by

dxi =

[
Bi + xi

(
1− xi

Ki

)(
xi

Ci
−1
)
+D

N

∑
j=1

wi j
xix j

D̃i +Eixi +H jx j

]
dt +σidWi, (27)

where xi represents the abundance of the ith species, and Bi, Ci, D̃i, Ei, Hi, and Ki (with i ∈ {1, . . . ,N}) are constants46. Constant483

Bi represents the migration rate of the ith species from outside the entire ecosystem. The second term on the right-hand side of484

Eq. (27) represents the logistic growth with carrying capacity Ki and Allee constant Ci. The third term represents the mutualistic485

effect of the jth species on the ith species under the assumption that wi j ≥ 0. This term is bounded by definition for preventing486

xi to exceed Ki to break down the logistic growth nature of the second term. We set Bi = 0.1+u+∆ui, Ci = 1, D̃i = 5, Ei = 0.9,487

Hi = 0.1, and Ki = 5 ∀i ∈ {1, . . . ,N}, following Ref.46. Regardless of whether u or D is the bifurcation parameter, we initially488

set u = 0 and D = 1. We confirmed that all xi were in their upper state (i.e., � 0) at equilibrium when (u,D) = (0,1). We set489

σi = σ +∆σi with σ = 0.25.490

The gene regulatory dynamics is given by

dxi =

(
−Bx f

i +D
N

∑
j=1

wi j
xh

j

xh
j +1

+ui

)
dt +σidWi, (28)

where xi represents the expression level of the ith gene46. We set B = 1, f = 1, and h = 2 by following Ref.46, and also491

ui = u+∆ui. Regardless of whether u or D is the bifurcation parameter, we initially set u = 0 and D = 1. Then, we obtain492

xi > 0.1 ∀i at equilibrium if the initial values of xi ∀i are sufficiently large, which we assume. We set σi = σ +∆σi, where493

σ = 5×10−6.494

The SIS dynamics on networks with dynamical noise is given by

dxi =

(
λ

N

∑
j=1

wi j(1− xi)x j −µxi

)
dt +σidWi, (29)

where xi represents the probability that the ith node is infectious, λ is the infection rate (specifically, the rate at which the ith495

node is infected by an infectious neighbor) and is equivalent to D in the coupled double-well, mutualistic interaction, and496

gene regulatory dynamics models, and µ is the recovery rate. The first term on the right-hand side of Eq. (29) represents497

that the jth node infects the ith node. The second term represents the recovery of the ith node. We set µ = 1 without loss of498

generality; multiplying λ , µ , and σi by the same positive constant is equivalent to changing the time scale and not to change499

these parameter values. For this model, we only use λ as the bifurcation parameter. This is because adding a term uidt on the500

right-hand side of Eq. (29) would imply that infectious individuals can spontaneously appear in the population in the absence501

of any infected host, which is unrealistic. For the same reason, we do not have a concept of heterogeneous node stress in502

this model. We initially set λ = 0. In the absence of dynamical noise, it holds true that 0 ≤ xi < 1 ∀i at equilibrium. We set503

σi = σ +∆σi, where σ = 5×10−4.504
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Networks505

We used the following three model networks and three empirical networks in our numerical simulations. All networks are506

undirected and unweighted by construction, or coerced to be so.507

The first network was generated by the Erdős-Rényi random graph with 50 nodes and exactly 125 edges. We connected a508

uniformly randomly selected pair of nodes that had not yet been adjacent to each other, one by one, until we had 125 edges. It509

happened that the generated network was connected. By construction, the average degree 〈k〉= 5.510

The second network is a network generated by the BA model with N = 50 nodes. We set the number of edges per each511

additional node to m = 2. The initial condition was the complete graph with 3 nodes (i.e., triangle). In the limit N → ∞, the512

model produces a degree distribution with a power-law tail, i.e., p(k) ∝ k−3, where k is the degree, and p(k) is the probability513

that the degree is equal to k. The resulting network was connected and had 97 edges, yielding 〈k〉= 3.88.514

The third network is the largest connected component of the node fitness model proposed by Goh et al. 60–62. This model515

produces networks with heterogeneous degree distributions as follows. We start with an empty network with N = 50 nodes and516

assign to each node i a fitness score fi = (i+ i0 −1)−α , where α is a parameter that controls the heterogeneity of the degree517

distribution, and i0 = N1− 1
α

[
10
√

2(1−α)
] 1

α

constrains the maximum degree. We set α = 2. Then, we independently connect518

each pair of nodes (i, j) by an edge with probability fi f j/
(
∑

N
`=1 f`

)2. We took the largest connected component of the resulting519

network, which included N = 49 nodes and 125 edges, yielding 〈k〉= 5.1.520

The fourth network is a record of carbon flows in the Chesapeake Bay marine ecosystem63. The original carbon flow data is521

directed and forms a connected network. We used the undirected, unweighted version of the network stored by the Koblenz522

Network Collection64. This network has 39 nodes, 170 edges, and 〈k〉= 8.72.523

The fifth network is the food web of a freshwater stream collected in southern New Zealand65. Two species are connected if524

there was evidence of one consuming the other. The original data is a directed and unweighted network with 49 nodes and 110525

edges66. We coerced the network to be undirected and retained the largest connected component, resulting in a network with 48526

nodes, 110 edges, and 〈k〉= 4.58527

The sixth network is a social network of wild dolphins observed in Doubtful Sound, New Zealand67. The network is528

connected, undirected, and unweighted, with 62 nodes, 159 edges, and 〈k〉= 5.13.529

Calculation and performance assessment of early warning signals530

We conducted 50 independent series of simulations for each combination of dynamics model, network, and whether both node531

stress (i.e., ui) and noise strength (i.e., σi) were homogeneous, only ui was heterogeneous, or both ui and σi were heterogeneous.532

Each series consisted of simulations at linearly increasing values of a bifurcation parameter in the case of the double-well or SIS533

dynamics, and linearly decreasing values of a bifurcation parameter in the case of the mutualistic interaction or gene regulatory534

dynamics. When we moved to a next value of the bifurcation parameter, we increased it by ∆u = 0.025 or ∆D = 0.0025 for535

the double-well dynamics, decreased it by ∆u = 0.1 or ∆D = 0.01 for the mutualistic interaction dynamics, decreased it by536

∆u = 0.01 or ∆D = 0.01 for the gene regulatory dynamics, and increased it by ∆λ = 0.0025 for the SIS dynamics.537

Each simulation given the dynamics model began from the same value of xi ∀i (double-well: xi = 1, mutualistic interaction:538

xi = 5, gene regulatory: xi = 5, SIS: xi = 0.001) regardless of the bifurcation parameter value. We used the Euler-Maruyama539

method with ∆t = 0.01 to simulate each dynamics. In the SIS and gene regulatory dynamics, whenever we obtain a negative540

value of xi(t) for any i due to dynamical noise, we reset xi(t) = 0. We allowed 100 generic time units (TU) to discard transients,541

except in the case of the mutualistic dynamics, for which we allowed 10 TU due to a shorter characteristic time scale of the542

mutualistic dynamics model. After discarding transients, we considered the system at equilibrium and took L = 100 evenly543

spaced samples from each xi(t), i ∈ {1,2, . . . ,N}; samples were spaced 1 TU apart, with the exception of the mutualistic544

dynamics model for which the samples were spaced 0.1 TU apart. We stopped a series of simulations with a gradually545

changing bifurcation parameter value once any xi was no longer near its initial state, specifically, once any xi satisfies the546

following condition: xi ≥ 3 for the double-well dynamics, xi < 0.1 for the mutualistic interaction dynamics, xi < 0.1 for the547

gene regulatory dynamics, and xi ≥ 0.1 for the SIS dynamics.548

After all simulations in a given series were complete, we calculated the early warning signals for each node set S549

with |S| = n, based on the L samples taken at each value of the bifurcation parameter. In addition, to calculate d, we550

used Eq. (5) to obtain µ1 = 1
n ∑

n
i=1 C(1)

ii and µ2 = 1
n ∑

n
i=1 C(2)

ii , and Eq. (6) to obtain var1 = 2
n2(L−1) ∑

n
i=1 ∑

n
j=1

(
C(1)

i j

)2
and551

var2 =
2

n2(L−1) ∑
n
i=1 ∑

n
j=1

(
C(2)

i j

)2
. Then, we used Eq. (15) to calculate d for the node set S. Note that this computation is easy552

once we have calculated C(1) and C(2). We selected the two values of the bifurcation parameter at which we calculated C(1) and553

C(2) as follows. Suppose that the bifurcation parameter is u and that we have simulated the dynamics at u = uk, k ∈ {1,2, . . . , K̃}.554

Thus, the simulation with uK̃ was the last simulation in which all xi remained near their initial state at equilibrium. We selected555

k(1) = round(0.1K̃) and k(2) = round(0.9K̃), where round() denotes rounding to the closest integer. Then, we calculated C(1)
556
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and C(2) from the L samples obtained at u = u(1) ≡ uk(1) and u = u(2) ≡ uk(2) , respectively. We followed the same procedure to557

select the two values of D at which we calculated C(1) and C(2) when the bifurcation parameter was D.558

In addition to by maximizing d, we also determined node set S by the Large SD algorithm29 for comparison purposes,559

which proceeds as follows. First, we collected L samples from each xi(t) at u = u(2) (or D = D(2) when D instead of u was the560

bifurcation parameter) and calculated its sample standard deviation. Second, we defined S as the set of the n nodes with the561

largest sample standard deviation of xi(t). Third, we averaged the sample standard deviation of xi(t) over i ∈ S and used it as562

early warning signal.563

We quantify the extent to which a given node set S signals the proximity of tipping by the Kendall’s τ rank correlation564

between the early warning signal (i.e., the sample variance averaged over the nodes in S unless we state otherwise) and the565

bifurcation parameter13. Because of critical slowing down, the variance of xi(t) grows large as the dynamical system approaches566

a tipping point1. In our simulations, when the bifurcation parameter linearly increases (i.e., double-well and SIS dynamics),567

the value of a perfect early warning signal would monotonically increase, resulting in τ = 1. When the bifurcation parameter568

linearly decreases (i.e., mutualistic interaction and gene regulatory dynamics), a perfect early warning signal yields τ =−1.569

Data availability570

The numerical data that are generated during the current study and underlie the figures in this article are available on Github at571

https://github.com/ngmaclaren/mixing-EWS.572

Code availability573

The code for generating the results and figures in this article is publicly available on Github at https://github.com/ngma-574

claren/mixing-EWS.575
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Figure captions713

Figure 1. Schematic of two networks. (a) A network with N = 2 nodes connected by a directed edge. (b) A symmetric chain714

network with N = 3 nodes. The coupling strength is denoted by w. The stress given to each node is either r or r−∆r.715

Figure 2. An example bifurcation diagram of single-node dynamics given by Eq. (8) without dynamical noise. The solid and716

dashed lines represent stable and unstable equilibria, respectively.717

Figure 3. Early warning signals with different node sets in a network with N = 2 nodes connected by a directed edge. The718

solid lines represent the mean. The shaded regions represent the standard deviation. We set w = 0.5, σ1 = 0.1, and L = 100. (a)719

(σ2,∆r) = (0.1,1). (b) (σ2,∆r) = (0.1,0.5). (c) (σ2,∆r) = (0.2,1).720

Figure 4. Early warning signals with different node sets in the undirected chain network with N = 3 nodes. We set w = 0.05,721

σ2 = 0.1, and L = 100. (a) σ1 = 0.1. (b) σ1 = 0.7. (c) σ1 = 0.015.722

Figure 5. Early warning signal, V̂S, for the maximizer of d (blue line) and a set of nodes selected uniformly at random (orange723

line). Both sentinel node sets are composed of n = 5 nodes. We also show x∗i for each node at each value of u. We used the724

coupled double-well dynamics on a BA network with N = 50 nodes and gradually increased u.725

Figure 6. Relationships between the Kendall’s τ and d before the first major transition in the coupled double-well dynamics726

on a BA network with N = 50 nodes. We gradually increased u. We considered node sets S with n ∈ {1,2,3,4,5,N} nodes.727

(a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5. (f) n = N. The τ and d values for the node set maximizing d for each n728

value are highlighted by the dashed lines. The cross represents “Large SD”, i.e., the node set comprised of the n nodes with the729

largest sample standard deviation of xi(t).730

Figure 7. Performance of the optimized node set in anticipating the tipping point in the double-well dynamics on the BA model731

network with N = 50 nodes. (a) Homogeneous stress and homogeneous noise. (b) Heterogeneous stress and homogeneous732

noise. (c) Heterogeneous stress and heterogeneous noise. The smaller symbols show the p1 and p2 values for the individual733

series of simulations. The larger symbols show the average over 50 series of simulations.734

Figure 8. Performance of the node set maximizing d on the BA and Chesapeake Bay networks. The squares and circles735

represent p1 and p2, respectively, for the given n, dynamics, network, and condition (i.e., whether ui or σi is homogeneously or736

heterogeneously distributed) averaged over 50 series of simulations. (a)–(g): BA network. (h)–(n): Chesapeake Bay carbon737

flow network. The panels on the leftmost column correspond to the double-well dynamics, and the second to the fourth columns738

to the mutualistic interaction, gene regulatory, and SIS dynamics, respectively. The combination of the dynamics model and739

bifurcation parameter is as follows. (a) and (h): double-well, u. (b) and (i): mutualistic interaction, u. (c) and (j): gene740
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regulatory, u. (d) and (k): double-well, D. (e) and (l): mutualistic interaction, D. (f) and (m): gene regulatory, D. (g) and (n):741

SIS, λ .742

Figure 9. Relationships between the Kendall’s τ and d in the coupled double-well dynamics on the BA network with N = 50743

nodes under heterogeneous node stress and heterogeneous dynamical noise. The network is the same as the one used in Fig. 6.744

We considered node sets S with n ∈ {1,2,3,4,5,N} nodes. (a) n = 1. (b) n = 2. (c) n = 3. (d) n = 4. (e) n = 5. (f) n = N. The745

τ and d values for the node set maximizing d are highlighted by the dashed lines. The cross represents “Large SD”, i.e., the746

node set comprised of the n nodes with the largest sample standard deviation of xi(t).747
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