SOBOLEYV ESTIMATES FOR SINGULAR-DEGENERATE
QUASILINEAR EQUATIONS BEYOND THE A, CLASS

HONGIIE DONG, TUOC PHAN, AND YANNICK SIRE

ABsTrACT. We study a conormal boundary value problem for a class of quasi-
linear elliptic equations in bounded domain € whose coefficients can be degen-
erate or singular of the type dist(x, 0Q)*, where 0Q is the boundary of Q and
a € (—1,00) is a given number. We establish weighted Sobolev type estimates
for weak solutions under a smallness assumption on the weighted mean oscil-
lations of the coeflicients in small balls. Our approach relies on a perturbative
method and several new Lipschitz estimates for weak solutions to a class of
singular-degenerate quasilinear equations.

1. INTRODUCTION AND PROBLEM SETTING

Let Q be a nonempty open bounded set in R” with Lipschitz boundary 0.
We consider the following class of quasilinear equations with singular-degenerate
coefficients and with conormal boundary condition

(1.1)

divu(x)A(x, Vu(x))]
lim p(0)( A, Vu() = F() - 70

div[u(x)F(x)] in Q,
0 with  xy €0Q.

Here, ¥ : 9Q — R” is the unit outward vector, F : Q — R” is a given measurable
vector field, A : Q X R" — R" is a given vector field that is measurable in x € Q
and Lipschitzin ¢ e R" \ {0}, and u : Q- [0, c0) is a weight function. We assume
that u is continuous in  and there is a sufficiently small constant ry € (0, diam(€2))
such that

(1.2) u(x) = { dist(x, 0€2) when dist(x, 0Q) < ry

1 when dist(x, 0Q2) > 2rg

with a € (-1, ). We also assume that the vector field A : Q X R” — R” satisfies
the following ellipticity and growth conditions: there exists « € (0, 1) such that

e —n? < (A& - Alun),E—n), YERER, YxeQ,

(1.3) g ;
A(x,0) =0, [As(x, &) < k7, YEER'\ {0}, V xeQ.
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Observe that under the assumptions (1.2) and (1.3), the equation (1.1) is singular
on 0Q when @ < 0 and degenerate when @ > 0. If @« = 0, (1.1) reduces to the
classical uniformly quasilinear elliptic equation.

The main purpose of the present paper is to develop a weighted Sobolev theory
for weak solutions to the class of singular-degenerate equations (1.1), in which
the weight 4 may not be in the A, class of Muckenhoupt weights as classically
considered in the literature.

Assuming F € L,(Q, ) for p € [2,00) and @ € (—1, o), we prove the following
weighted estimate of Calderén-Zygmund type

1/p l/p
(1.4) ( / IVu(x)I”u(x)dx) <N ( / IF(x)Ipu(X)dx)
Q Q

for any weak solution u to (1.1), where N > 0 is a positive constant independent of
u and F. See Theorem 2.5 below for the precise statement of the result.

To motivate the present investigation, let us discuss briefly a few applications
of the study of (1.1). Quasilinear problems of the form (1.1) appear naturally
in the theory of relativistic Euler equations with a physical vacuum condition, as
investigated recently in [8]. Our system (1.1) corresponds to a stationary version
of it. In fact, in [8], the authors considered a similar situation as ours with a =
1. We believe that our results complement theirs in a very natural way. Also,
linear and nonlinear operators of the type considered in (1.1) appear in the study
of some special geometric structures known as conic-edge metrics (see e.g. [19]).
The techniques involved in [19] and many subsequent works in this area are of
geometric microlocal nature and completely different from our techniques here.
Harmonic maps between conic manifolds were considered for instance in [15] (see
also the references therein). The equation under consideration here is an instance
of those maps between a manifold with conic-edge metric and a smooth closed
manifold. More interestingly, the presence of conormal data is reminiscent of a
free boundary version of those as in [21, 24]. Applications to geometric variational
problems of this type will be addressed in a subsequent work.

We emphasize that the estimate (1.4) is new even when (1.1) is linear with
A(x, &) = & for (x,€) € Q x R" as it deals with equations in general domains.
Indeed, when the domains are upper-half spaces, more general results on the exis-
tence and regularity estimates in weighted and mixed-norm Sobolev spaces for a
similar class of linear parabolic equations can be found firstin [12] witha € (-1, 1)
and then in [13] with @ € (-1, 00). Similar results for problems with homoge-
neous Dirichlet boundary conditions can be found in [10, 11]. See also a se-
ries of papers [26, 27, 25] in which the authors investigated some properties of
degenerate-singular linear equations of the form (1.1) in domains with flat bound-
aries under sufficiently smooth and symmetry assumptions on the leading coeffi-
cients. Schauder estimates, Liouville theorems, and geometric properties of the
solutions are derived in these papers.

We also note that when @ € (-1, 1), in the influential paper [4] the authors
showed that in the linear setting, Equation (1.1) is related to the realization as a
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Dirichlet-to-Neumann map of the fractional Laplacian. In this case, u belongs to
Muckenhoupt class of A, weights, and in the framework of non-local fractional
elliptic equations, the weighted Sobolev theory was developed in [20]. See also [6]
for similar results on W; -estimates for solutions of linear elliptic equations whose
coeflicients can be singular or degenerate with general A,-weights instead of the
distance function u as in (1.1), but with some restrictive smallness assumption on
the weighted mean oscillations of the coefficients that cannot be applied to our
setting here. The same class of linear elliptic equations whose coefficients are
singular or degenerate as general A>-Muckenhoupt weights were also studied in the
classical papers [14, 28, 22] in which Holder regularity of solutions were proved.

2. FuncTioNnAL SPACES, DEFINITIONS, AND STATEMENTS OF MAIN RESULTS

Let us introduce some notation and definitions used in the paper. For a given
nonnegative weight o on Q and for 1 < p < oo, a measurable function f defined
on € is said to be in the weighted Lebesgue space L,(L2, o) if

1/p
1Al .0 = (/Q [f )P or(x) dx) < co.

For k € N, a function f € L,(,0) is said to belong to the weighted Sobolev
space W’;(Q, o) if all of its distributional derivatives D? f are in L,(Q,0) for g =

B1,B2,--..8,) € NU{O}" and |8] = 51 + B2 + ... + B,y < k. The space W’p‘(Q, o)
is equipped with the norm

1/p
||f||W,’§(Q,(T) = (V;C”DB]C”[L),,(Q,(T)] :

Next, we give the definition of weak solutions to (1.1).

Definition 2.1. Assume that (1.3) holds, ¥ € L,(Q,u)" with 1 < p < oo, and p
satisfies (1.2). A functionu € WFI,(Q,,u) is said to be a weak solution of (1.1) if

2.1 /Q HA(x, Vu(x), Vo) dx = /Q p(F(x), V() dx, Yo € C¥(Q).

For each p > 0 and x € R", we denote B,(x) to be the ball in R" of radius p and
centered at x. When x = 0, we simply write B, = B,,(0). Also, for each x € Q and
p > 0, we write

Q,(x) = QN By(x).
We give the following definition of bounded mean oscillations with weight u for
the vector field A.

Definition 2.2. For every xo € Q and p > 0, and for a given measurable vector
field A : Q X R" — R" satisfying (1.3), the mean oscillation of A in Q,(xo) with
respect to the weight u is defined by

1A §) — Agyxp) (@)
22) Oy (A u) = ’u(x)( up %8) = Ag, ()

H(p(x0)) JQ,(x0) £ERM\(0) €] ’
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where pu(€,(xp)) = / p(x) dx, and Aq x,)(§) is the weighted average of A in
Qp(x0)
Q,(xo), which is defined by

(23) Ag,x) () = Alx, Hu(x) dx.

.
H(Qp(x0)) JQ,(x0)
Below for each x’ € R""! and p > 0, we denote B/(x") the ball in R with
radius p and centered at x’.

Definition 2.3. For given positive numbers & and pgy, we say that Q is of (6, po)-
Lipschitz if for any xo = (x, 1Y) € 0Q, there exists a Lipschitz continuous function
v : R = R such that upon relabelling and reorienting the coordinates

{x =¥, x,) € B;O(xé) XR:y(x") < x, < y(x) +po} cQ,
(@ y(x)) 1 ¥ € B (x)} € 09,
and
y(xg) = x5, Vy(x) =0, (IVYllp @) < 6.

Remark 2.4. If Q is (6, po)-Lipschitz, then it is (6, p)-Lipschitz for any p € (0, pg).
If dQ € C', then it is (6, po)-Lipschitz for any sufficiently small § > O and for
po = po(Q,6,n) > 0.

The following theorem on gradient estimates of weak solutions to (1.1) is the main
result of the paper.

Theorem 2.5. Let @ € (—1,00), x,r9,00 € (0,1), and p € [2,00). There exists a
sufficiently small number 6 = 6(x, n, p, ro, po, @) > 0 such that the following asser-
tions hold. Assume that (1.2) and (1.3) hold, and Q is (6, po)-Lipschitz. Assume
also that there is Ry € (0, 1) so that
2.4) sup sup®, (A, u) < 6.

PE(O,R0) xeQ
Then for any weak solution u € WZI(Q,;[) to (1.1) with some F € L,(Q,u)", we
have u € W;(Q, W), and it satisfies the estimates
2.5) IVl < NIFllL, @ and

’ lullz, ) < N llullzy@p + NIFL @y »

where N is a positive constant depending on n, p, k, a, ro, Rg, po, @, Q, and u. More-
over, for any ¥ € L,(Q, )", there is a weak solution u € W},(Q,u) to the equation
(1.1) and it is unique up to a constant.

In this paper, we also establish local interior and boundary regularity estimates
for weak solutions to (1.1), which could be useful for other purposes. In particular,
in Theorem 4.2 below, we prove local regularity estimates of weak solutions to
(1.1) when the boundaries of the domains are flat, and similarly in Theorem 5.2 for
general domains. We also note that in Theorem 4.2, we require the vector field A
to be only partially VMO, a condition which was introduced in [17] in the study
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of linear equations with uniformly elliptic and bounded coefficients. The interior
regularity gradient estimates are also proved in Theorem 5.1.

The proof of Theorem 2.5 is based on a perturbation method using the freezing
coeflicient technique. To establish the integrability of the gradients of solutions, we
employ the method introduced in [3] that relies on estimates of the level sets of Vu.
See also [5, 7] for the classical approach using solution representation formulas
and [18] for an approach using the Fefferman-Stein sharp function theorem. To
obtain the regularity estimate (2.5), it is crucial to derive Lipschitz estimates of
solutions to a class of homogeneous quasilinear equations with singular-degenerate
coeflicients as in (1.1). We accomplish this by first employing the Moser iteration
to derive the estimates of the tangential derivatives of solutions. To estimate the
normal derivative of solutions, we exploit the structure of the PDE in (1.1) and
its boundary condition. The results and techniques developed here to derive the
Lipschitz estimates are of independent interest.

The remaining part of the paper is organized as follows. In Section 3, we de-
rive the Lipschitz estimates of solutions to a class of homogeneous equations in
domains with flat boundaries. In Section 4, we prove local L, regularity estimate
for the gradients of solutions in domains with flat boundaries. In the last section,
Section 5, we provide the proof of Theorem 2.5 which is based on the flattening of
the domain boundaries and the local interior and boundary estimates developed in
the previous sections.

3. LIPSCHITZ ESTIMATES OF HOMOGENEOUS EQUATIONS IN FLAT DOMAINS
We denote R} = R™ ! % (0, 00) and for r > 0 and xy = (x’, xg) e R%, we write

B (x0) = Bx(xo) "R, Ty(x0) = Br(x0) N {x, = 0}.

We study the following class of equations

3.1) div(x? Ag(x,, Vu(x))) =0 for x = (x,x,) € Bf (x0)
with the homogeneous conormal boundary condition
(3.2) }imo Xyan(Xy, Vu(x)) =0 on  T.(xo) if T.(xp) # 0.

Here, @ > —1 is a given constant, and
Ag = (ar,az,....ay)  (x° =1y, X0+ 1) xR" 5 R”

is a given vector field, where we denote s, = max{s, 0} for any real number s.
The main result of this section, Lemma 3.3, gives Lipschitz estimates for weak
solutions to (3.1)-(3.2).

We assume that Ag is measurable in x, € ((x0 — r),,x? + r), Lipschitz in & €
R™ \ {0}, and it satisfies the following ellipticity and growth conditions: there is
k € (0, 1) such that

43 K€ =l < (Ao(xn, &) — Ag(xn, ), €= 1), Y &R,
' Ag(xs,0) =0,  |DeAg(x,, &) < k71, VEeR"\{0)
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for all x, € (x) — 1)+, X9 + r). A function u € W, (B (xo),u) is said to be a weak
solution to (3.1)-(3.2) if

(3.4 / X, (Ao(xn, Vi), Voydx = 0, YV ¢ € Cy'(By(x0)).
B (x0)
For convenience, we also denote

du(x) = x5y dx'dxy,

which is a doubling measure. Also, for a measurable function f with some suitable
integrability condition defined in a non-empty open set B C R", we write

(s = l—;l /B f()dx and ]i £ doolx) = ﬁ /B £ do®)

where w is some locally finite measure.
We start with the following lemma on local energy estimates of weak solutions
to (3.1)-(3.2).

Lemma 3.1 (Caccioppoli inequality). Let r > 0, xg € @ and u € W2l (B (x0), 1)

be a weak solution to (3.1)-(3.2). Then for any c € R and ¢’ = (cy,¢2,...,Cy-1) €
Rn—l)
(3.5) / VU dya(x) < Nr~2 / u(x) — P du(x)
B:/Z(XO) Bj(x())
and
(3.6) / VYt da(x) < Ni~2 / IV ) — P du(),
B:/z(-xo) Br(xo)

where N = N(k,n) > 0and Vy = (0y,, 0x,,...,0x, )
Proof. Let { € C7(B(xo)) be a non-negative cut-off function satisfying

. No
=1 in Byp(xg) and [V{|L, < -
for some generic constant Ny > 0. Using (u — ¢){ 2 as the test function in (3.4), we
obtain

| Gt ST +2 [ (ol Vi, 92 - du) = 0.
B} (xo) Bf (x0)
From this, and (3.3), we infer that

[ PR <N [ IR - i)

where N = N(«,n) > 0. From this, we follow the standard method using Young
inequality to derive the estimate (3.5).

Next, we prove (3.6). By using a different quotient method if needed, we can
formally differentiate the equation (3.1) with respect to xz,k = 1,2,...,n—1, to
see that u := Oku satisfies a linear elliptic equation

3.7) div(xy 0, Ao(x,, V)djur) =0 in - B} (xo)
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with the natural homogeneous conormal boundary condition; and where d; = dy,
and the Einstein summation convention is used. Now we test the equation with
(ux — cx)¢? and use the ellipticity and boundedness condition in (3.3) as we just did
to derive (3.6). The proof of the lemma is completed. O

Lemma 3.2. Letr > 0, xy € @, and u € Wz1 (B} (x0), ) be a weak solution to
(3.1)-(3.2). Then

Vil s, o) < N(][
B

where N = N(k,n,a) > 0.

1/2
IV uu(x)? d,u(X)) ,

¥ (x0)

Proof. By Lemma 3.1, we see that diu is in W21 (B} (x0)) locally and it is a weak
solution to the linear equation (3.7) with the associated conormal boundary condi-
tion, fork = 1,2,...,n — 1. Then, the assertion of the lemma follows by applying
the Moser iteration argument to the linear equation (3.7). See [13, Lemma 4.3] for
a similar result but for linear parabolic equations, and also [26, Proposition 2.17]
for a result for linear elliptic equations. We skip the details. O

The following lemma is our main result on Lipschitz estimates for weak solu-
tions to (3.1)-(3.2).

Lemma 3.3. Letr > 0, xo = (xg),xg) € @, and u € Wzl(B:(xo),,u) be a weak
solution to (3.1)-(3.2). Then

1/2
(3.8) ||Vu||Lw<B;/2<xo)>SN(][ |Vu(x>|2dy<x>) :
B

where N = N(k,n,a) > 0.

¥ (x0)

Proof. By Lemma 3.2, it remains to prove the estimate of d,u. Denote
U(x) = x,an(%n, Vu(x)),  x = (¥, x) € B} (x0).

Note that from (3.1), it follows that
n—1

U, x) = = ) Xy, Vu(x))]
i=1

n-1 n

(3.9) = = D D OjaiCn, Vu(0)3;ju(x).

i=1 j=1

On the other hand, by a direct calculation, we also have

n
(3.10) VoUW xp) = X5 Z Og;an(Xn, Vu(x))0;V v u(x).
j=1
By a covering argument, we only need to discuss two cases: the interior case when
xY > 2r and the boundary case when xq € IR

Case 1: Interior case. By scaling, for simplicity we also assume that x” = 1. Then
for x = (x’,x,) € By3(xp), x, ~ 1 such that du ~ dx, and the equation (3.7) is
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uniformly elliptic in B2;3(xp). It follows that Vvu is Holder continuous in Bs /8(x0).
By the Poincaré inequality, (3.9), (3.10), the conormal boundary condition and
Lemma 3.1, for any yo € B,2(xp) and s < r/4,

][ |U(x)—(U)BS/2@0)|2dxsst][ IVU(x)]* dx
Bs2(y0) Bg2(yo)

< Ns? ][ IVV v u(x) dx
Bs2(y0)

<N V() = (Vartt) g, 5| d,
B;(yo)
which together with the Holder estimate of V,-u implies that U is Holder continu-
ous by using Campanato’s characterization of Holder spaces. In particular,

12
GBI Man, VllLwB,2(0)) < NINUNLoy(B,2(x0)) < N(][ V() dx) ,
B

(X0)

which together with (3.3) and the estimate for V- u, implies

10ntllLos(B, (o)) < N ( ][
B,-(X())

Therefore, (3.8) is proved as du ~ dx in this case.

1/2
IVu(x)? dx) )

Case 2: Boundary case. Without loss of generality, we take xo = 0 and r = 1. We

claim that for any yg = (yé,y?l) € Bf/z and s < 1/20,

12
(3.12) f |an<xn,Vu<x>>|du<x>SN[][ Ifou(X)Izdﬂ(X)] .
B (o) Bf

This and the Lebesgue differentiation theorem (with the doubling measure y) give

12

1/2
lanC, Vi Dl < N(]i V(P dy(x)]

and consequently (3.8).
Next we prove the claim. First we assume that yg = 0. Using (3.9), (3.10), the
boundedness condition in (3.3), and Lemma 3.1, we have for any s < 1/4,

][ IVU(x, x)*x,%dx < N IVV v u(x’, x,)2x% dx
B (y0) BY (y0)

< Ns_z][ |V u(x', xn)lzx;f dx.
B3 (y0)

This together with Holder’s inequality gives

12 12
][ [VU(x)|dx < (][ IVU(x’,xn)sz;“ dx) (][ Xy a’x)
B (o) B3 (yo) B3 (yo)

1/2
< N1 (][ |vx,u(x',xn)|2xgdx) .
B3 (y0)
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By using the zero boundary condition for U at {x,, = 0} and the boundary Poincaré
inequality, we then get

][ |U(xX', xp)|dx < Ns][ 10, U(x', x,)| dx
B3 (yo) B3 (yo)

172
< Ns?/? (][ |Vx/u(x’,xn)|2x§f dx) ,
B3 (yo)

which implies that

1/2
][ |an<xn,Vu<x>>|duSN(][ |Vx/u(x>|2du<x>] .
B} (o) B3 (vo)

By Lemma 3.2, we obtain (3.12) in this case.
For the general case, when s > y?l /4, we have Bg(yg) C Bss(y{),O), and (3.12)
follows from the first case because 55 < 1/4. When s < yg /4, we use (3.11) to get

][ i o, Vi) it < Nl Vil 000
Bs(y())

1/2
<l VuOMeeing o0 SN[ IVeuoP duco
" B:()/z()’O)
Then the claim follows from the previous case with s = y0/2. O

Remark 3.4. Since we can have a Holder estimate instead of the L, estimate
in Lemma 3.2, it is possible to bound the Holder norm of a,(y,Vu) in the above
lemma. However, we will not use this in the proofs below.

4. BouNDARY L p REGULARITY ESTIMATES IN FLAT DOMAINS

In this section, we establish local boundary L, estimates for the gradients of
solutions to the quasilinear equation of the form (1.1) when the boundary 0Q is
flat. Its main result is Theorem 4.2 below. To state the result, we need some
notation and definitions. For each x = (¥, x,) € R*! x R, we write Dy(x) =
B;,(x’) X (X, — p, Xp + p) and

D} () = Dy(0) N,

where B/ (x") denotes the ball in R""! of radius p > 0 and centered at x’ € R
We also denote

f,(x) = 4D} (x) N {x, = O}.
When x = 0, we simply write D} = D (0), etc. Let
A=(A1 A ..., Ay): D} XR" - R

be measurable with respect to x € D; and Lipschitz in ¢ € R" \ {0}. We assume
that A satisfies the ellipticity and growth conditions as (1.3) in DJ. Precisely, there
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exists k € (0, 1) such that

@ {mf — P <(AGE - A.E-m), VENER", VxeDs,
Ax,00=0,  |Adxdl<k,  YEER'\{0}, VY xeDj.

Letw: D_; — R, be a weight defined by

4.2) w(x) = x5 (1 = h(x))*, VYx=(x",x,) € D]

witha € (—1,00)and A : D_g — [0, 1) is a measurable function satisfying ||A|| Lo(D}) <
1.
We study the following equation

4.3) div [w(xX)A(x, Vu(x))] = div[w(x)F] in Dj
‘ WA, Vu(x) = w@Fy(x)  on I
where F = (Fy,Fp,...,F,) : D; — R" is a given measurable vector-field. For

p € (1,00), we say that u € W(D3, w) is a weak solution of (4.3) if

/ w(X)(A(x, Vu(x)), Vo(x)) dx = / w(x)(F(x), Vo(x)) dx
D3 D3
for any ¢ € C7 (D).
We also need the following partial mean oscillation of the coefficients A which
was introduced in [17].

Definition 4.1. For p > 0 and xy = (xé,xO DT,

) € D, the partial mean oscillation of
a given vector field A : D7 X R" — R" in D (xo) with respect to the weight w is

defined by

|A(x, &) — Ap (v (xn, E)|
w(x)[ sup Bo(xy) dx,
£ERM\(0) €]

1
(D5 (x0)) J D (x0)

C:)p,xo (A) =

where ABi)(x(f))(x,,,f) is the average of A in the (n — 1)-dimensional ball B/’)(xz))
defined by

_ 1
/() . = — , d /.
B0 = i [ A

The main result of this section is the following theorem.

Theorem 4.2. For every k € (0,1), p € [2, ), and a € (-1, ), there exists a suf-
ficiently small positive number 6y = do(k, p, @, n) such that the following assertion
holds. Assume that A and w satisfy (4.1), (4.2), ||Al| Lo(D}) < 00, and

sup sup (:)p,x(A) < 9o,
PEOR0) 1eDF

for some Ry € (0,1). Then, if u € WZI(DJ“,a)) is a weak solution of (4.3) with
F € L,(D;,w), we have Vu € L,(D},w) and

IVulle, ot w) < NlIVull, 3,0y + NIFllL, D3 w)

for some constant N = N(k, p, a, Ry, n) > 0.
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The remaining part of the section is devoted to the proof of Theorem 4.2. We
prove Theorem 4.2 using the level set argument introduced in [3]. For our imple-
mentation, the following result is the main ingredient.

Proposition 4.3. For every « € (0, 1) and a € (-1, o), there exist sufficiently small
numbers 0 = 6((k,n,@) > 0 and A9 = Ao(k,n,a) > 0 such that the following
assertions hold. Suppose that A and w satisfy (4.1), (4.2), and |h|| Lo(D}) < 66.
Then, for any weak solution u € W21 (DY, w) of (4.3), and for any p € (0,1/2), xg €
D_T, and any A € (0, Ay), there exists w € W21 (D;(xo), w) satisfying

1/2
( ][ [Vu(x) — Vw(x)l2 dw(x))
Df (x0)

A

1/2
(4.4) < N(OZ7 (&) + Ihll..ot)) [][ IVu(x)? dw(x)}
D} (x0)

1/2
+ N( ][ IF(x)|> dw(x))
D3 (x0)

and

1/2
VWl < N ][ V(o deo()
p/2 Dt (x0)
2p 0

1/2
+N [ ][ [F(x) dw(x))
D} (x0)

Below, we give the proof of Proposition 4.3, which is divided into two steps. In
the first step, for each xo = (x{, 10y e D_f and p € (0, 1/2), we perturb the equation
(4.3) and compare the solution u € W21 (D}, w) with the solution v € W21 (D;p(xo), w)
of the following boundary value problem

div [x2A(x, Vv(x))] 0 in D;p(xo),
(4.6) v = u on 4D (x0) \ To(x0),
X2 An(x, V(X)) 0 on Io(xg) if Top(xo) #0.

4.5)

where N = N(k,a,n, 1) > 0.

We note that w(x) ~ x when ||Al|., < 1 and therefore
W,(D3,(x0), x7) = Wy (D3, (x0), w).
We say that v € W2] (D;p(xo), w) is a weak solution of (4.6) if v —u = 0 on Dgp \

fgp(xo) in the sense of trace and

/ (A(x, Vv(x)), Vo(x)x,dx =0, YV ¢ € C5(Dap(x0)).
DS (x0)
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Lemma 4.4. There exist sufficiently small positive numbers 1y = Ao(k,n, @) and
6(’) = 66(/(, n, @) such that the following assertions hold. For each u € W21 (DY, w),

Xo € Df and p € (0,1/2), there exists a unique weak solution v € W21 (D;p(xo), w)
to (4.6) satisfying

4.7) ( ][ IVv()|7 dw
D5 (xo)

for any A € (0, Ag). Moreover, ifIIhIILw(D;) < 66, then

1/2+2) 1/2
] < N, n,a,d) ][ IVv(x)I2 dw
D3, (x0)

[Vu(x) — Vv(x)]* dw
D} (x0)

(4.8)
< N(x, a)llhllim(D;) ][ . IVu(x)]* dw + N(k) IF(0)? dw.
0

sz(x D;p(xo)

Proof. To prove the existence of solution v € W21 (D;(xo), w) to the equation (4.6),
let us denote

A, &) = (A1(x, &), A2(x,8), ..., Ap(x, &) = Alx, Vu(x) + €) — A(x, Vu(x)),
and
G =(G1,Gy,...,Gy) = —A(x,Vu(x)), xeD;,éeR"

We consider the equation
4.9)

div [x2A(x, Vi(x))] div[x¢G]  in D3, (x),
7 =0 on 4D (x0) \ [2p(x0),
lim x¢ (A(x, Vi(x)) - Gy) 0 on [, (x0) if [, (x0) # 0.

x,—0

Note that due to (4.1) and u € W21 (D}, w), we have G € Ly(D}, w). Moreover, it

is simple to check that A satisfies the ellipticity and growth conditions as in (4.1).
Also, let

E={ge W;(D;(xo),w) : glaD;p\f“z,,(xo) = 0 in the sense of trace}.

It can be checked that E is uniformly convex, and thus it is reflexive. Therefore,
it follows from the Minty-Browder theorem (see [2]) that there is a unique weak
solution 7 € E to (4.9). From this, we obtain the existence and uniqueness of a
weak solution v := ¥+ u € WZ1 (D;(xo), w) to the equation (4.6).

Next, observe that the estimate (4.7) is well known as the reverse Holder’s in-
equality. The proof of (4.7) follows from the standard method using Caccioppoli
inequalities, the weighted Sobolev inequality (see, for instance, [13, Lemma 3.1
and Remark 3.2 (ii)], the doubling property of w as @ € (-1, o), and Gerhing’s
lemma. As those are standard techniques, we skip the details.
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It remains to prove the estimate (4.8). We observe that by testing the equations
(4.3) and (4.6) with u — v, we obtain

/ w(x){(A(x,Vu),Vu — Vv)dx = / W(x){F,Vu - Vv)dx
D3 (x0)

2 D3 (x0)

and

/ W(X){A(x, Vv),Vu — Vv)dx = / (w(x) = x))(A(x, Vv), Vu — Vv) dx.
D3, (x0) D

5(X0)

Therefore, it follows from (4.1) that

K / IVu(x) — Vv(x)w(x) dx
D3, (x0)
< / w(x){A(x, Vu) — A(x, Vv),Vu — Vv)dx
D3 (x0)

< / WX)|F(x)||Vu(x) — Vv(x)| dx
D3 (x0)

+x! sup |1 — x, /w(x)] W(X)|Vv(x)||[Vu(x) — Vv(x)| dx
xED; D;p(xo)
<z / IVu(x) — Vv(x)Pw(x) dx + N(x) IF(x0)Pw(x) dx
2 Jby () D, (x0)

+ N(x) sup |1 — x%/w(x)]? / IVv(x)PPw(x) dx.
D3, (x0)

N
)ceD2

This implies that

/ IVu(x) — Vv(x)Pw(x) dx < N(K) IF ()| w(x) dx
D3, (x0)

D3, (x0)

+ N(x, a)llhllim(D;)/ )IVv(x)|2w(x) dx.
DY (xo

2p

Then, for 5(’) € (0, 1) sufficiently small such that
N @)lIRI} s, < Nk, @)(6)” < 1/4,
we have

/ IVu(x) — Vv(x)Pw(x) dx < N(k) IF(0)PPw(x) dx
DY (x0)

3o D3 (x0)

1
*+3 / Vu(x) = Vv(0Pw(x) dx + N, a)llBll;_ s, / IVu(x)Pw(x) dx.
D3 (x0) > J D3 (x0)

From this, the assertion (4.8) follows, and the proof of the lemma is completed. O
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Next, recall that
AB;(xg))(xn,f) = ][ A(x, &) dx’
By (xp)
and we write
Ay (n, €) = (Agy 0001 Cins ), Ay ) 26y ), -+, Ay a0y 0 (Xns €))-

In the next step of the perturbation, we consider the equation with frozen coeffi-
cients

div [x§Ap ()0, VW(x)] = 0 in D} (xo),
(4.10) oW v on dD;(x0) \ Tp(xo),

xliglong B;)(x/)’,,(xn, Vw(x)) 0 on I,(xo) if Ty(xo) # 0,

where v is defined in Lemma 4.4. The definition of a weak solution w € Wz1 (D;(xo), w)
to (4.10) can be formulated exactly the same as that of (4.6). In this step, we obtain
the following approximation estimate.

Lemma 4.5. Let 6 and Ay be as in Lemma 4.4 and assume that ||h||Lm(D;) < 0y

Then, for each u € W21 (DY, w)yand p € (0,1),x € E there exists a weak solution
w € W(Dj} (x0), w) to (4.10) satisfying

1/2
( ][ [Vw(x) — Vv(x)P dw(x)]
Df (xo)

1 1

f |w<x>|2dw<x>] +[][ |F<x>|2dw(x>] ]
D3, (xo) D3 (x0)

where N = N(k,n,a, ) > 0 and A € (0, Ap).

4
S NC:) 2(2+2) (A)

PsX0

Proof. As in the proof of Lemma 4.4, the existence of a weak solution
w € Wy (D} (x0), w)

to (4.10) follows by the Minty-Browder theorem. As w—v = 0 in the sense of trace
on 5D;(x0) \ I'y(x0), we can use w — v as a test function for (4.10) to obtain

/ xZ(AB;(xf)(xn, Vw), Vw — Vv)dx = 0.
D (x0)

On the other hand, as fp(xo) - fzp(xo), we can also use w — v as a test function for
(4.6) and obtain

/ X (A(x, Vv), Vw — Vv) dx = 0.
D} (x0)
Then, it follows that

/ X (B gy () (X0, VW) = Ay (1) (20, V), VW = V) dx
D (x0)

= / Xy (A(x, Vv) — AB;(xr)(xn, Vv), Vw — Vv) dx.
D} (xo)
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Next, by using the conditions in (4.1), Holder’s inequality, and the fact that w(x) ~
X7, we obtain

][ [Vw(x) — Vv(x) dw(x)
D} (xo)

|A(x, Vv) = Apy () (X, YY)
<N [Vv(x)|Vw(x) — Vv(x)| dw(x)
D (x0)

[Vv(x)l

<N

_ 202+1) ﬁ

IA(X’ 6) - AB;,(x’)(xna §)| 1

sup dw(x)
D} (xo) [éeR\(0) €]

x(][ |Vv(x)|2”dw(x)] ' [][ IVw(x)—Vv(x)Izdw(x)]
Dj;(x0) D};(x0)

A

<NOG (A) (][ ( )|Vv(x)|2” dw(x)] ) (][ ( )IVw(x)—Vv(x)Iz da)(x))
D} (xo D} (xo

1
2
s

where in the last step we used the growth condition in (4.1) and N = N(k,n,a, 1)
is a positive constant for 4 € (0, Ag). It then follows that

A

1/2 =
( ][ IVw(x) — Vv(x)|? dw(x)] <NOLV(A) ( ][ [Vv(x)P dw(x)] .
D} (x0) D/ (x0)

From this and (4.7), we infer that

][ [Vv(x)|? da)(x)] .
D3, (x0)

Now, by using the triangle inequality and (4.8), we obtain

1/2 |
(][ Vi(x) — Vo()? dw<x)) < NOS (A)
D (xo)

1/2
( ][ [Vw(x) — Vv(x)P dw(x))
D (xo)

][ |Vu(x)|2da)(x)] +[][ |F(x)|2dcu(x)] ]
D3, (xo) D3 (x0)

The lemma is proved. O

4
S N@ 22+1) (A)

PsX0

We are now ready to prove Proposition 4.3.

Proof of Proposition 4.3. Let 6 > 0 and Ap be as in Lemma 4.4. Then, we see
that (4.4) follows easily from Lemma 4.4, Lemma 4.5, and the triangle inequality.



16 H. DONG, T. PHAN, AND Y. SIRE

Similarly, by the triangle inequality, we also obtain

12
( ][ |VW(x>|2dw<x>]
D} (x0)

1/2 1/2
< N( ][ IVu(x)? da)(x)] +N [ ][ [F(x)? dw(x))
D3, (x0) D} (x0)

for N = N(k,a,n) > 0. As ||h||LM(D§) < 1, we see that w ~ xi. Therefore, by ap-
plying the results on the Lipschitz estimates ( see Lemma 3.3) of the homogeneous
equation (4.10), we obtain (4.5). O

Proof of Theorem 4.2. From Proposition 4.3, Theorem 4.2 follows from the level
set argument introduced in [3]. See also [9]. Since it is standard now, we skip the
details. O

5. GLoBAL Lp REGULARITY ESTIMATES

This section is devoted to the proof of Theorem 2.5. As usual, we divide the
proof into two main steps: establishing interior estimates and boundary ones.

5.1. Interior estimates. For every pe (0, diam(Q)/2), we write
O = {xeQ:dist(x,00) > p}.
For p € (1,00),p > 0, we say that u € W;,(Qp,,u) is a weak solution of
(5.1 div[pu(x)A(x, Vu(x))] = divfu(x)F(x)] in Q°
if
/ (A, Vu(x)), Ve()iu(x) dx = /QJ(F(x), Veux)dx ¥ € C3E¥).

The following theorem on interior estimates for (5.1) is the main result of this
subsection.

Theorem 5.1. Let k € (0, 1), a € (—1,0), p € [2,00), and p € (0, ry). There exists
01 = 01(x, a, p,n, p) > 0 sufficiently small such that the following assertions hold.
Suppose that A and u satisfy (1.2), (1.3), and

(5.2) O(A, 1) <51, VxeQ¥, Vre(0,Ry)

for some Ry € (0,1), where O, (A, ) is defined in (2.2). Then, for any weak
solution u € W21 (P, ) to (5.1), if F € Ly(, u), we have Vu € Lp(QZP,,u) and

IVullz, ) < NlIVullLye ) + NIFlL, @0 40,

where N > 0 is a constant depending on p, p, n, k, Ry, a, diam(¥), and the modulus
continuity of u on Q.
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Proof. Let us define
A(x, &) = p()A(x, &) and  F(x) = u(x)F(x).

We observe that the vector field A is uniformly elliptic and bounded in Q with the

ellipticity and boundedness constants depend on «, p, and a. For any xy € Q% and
for r € (0, min{Ry, p}), we write

IA(x, &) — A (O I
[Br(x0)| JB,(xy) £er7\(0} €] ’

®r,x0 (A) =

where

Ar,xo(f) = f A(X’ é:) dx.
By (x0)

Asin Q°, u = O(1), we see that W,(Q°, ) = W, (Q°). Then, u € W, (€*) is a weak
solution of

div [A(x, Vu(x))] = div[F(x)] in QF.

Therefore, by the standard L,-regularity theory for uniformly elliptic equations
(see [1, Theorem 5] and [23, Theorem 1.1] for instance), there exists a sufficiently
small € = &(k, n, p) > 0 such that if

(5.3) @A) <&, VxgeQ¥, Vre(0p)
for some p; € (0, min{Ry, p}), then
p/2 .
/ IVu(x)|P dx < Nf»"1=p/?) ( / [Vu(x)]? dx) +N IF(x)IP dx
B, (x0) Bar(x0) Bar(x0)

forall xp € Q¥ and forr > 0 s@that By (xg) € QF, where for N = N(p, n,k, @) >
0. From this, and by covering Q2 by a finite number of balls, we obtain

p/2
/ [Vu(x)|P dx < N( IVu(x)|? dx) +N |F(x)|P dx
Q2 Qp Qr

for N = N(p, n, k, @, diam(Q), p1) > 0. From this and as u(x) = O(1), we see that if
(5.3) holds, then

IVull, 2 ) < NlIVullzy@ow + NIFlL, @ p0)-

It remains to prove that under the condition (5.2) and with suitable choices of d;

and p; > 0, (5.3) holds. For any & € R" \ {0} and xy € Q2, recall the definition of
the weighted average Ap (,,)(€) given in (2.3) and also let

Mrxg = u(x) dx.

1B (x0)| JB,(xy)
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Then, we have
IACX, &) = frxgAB, (x) (&)l

€]
< HOIA(x, &) — A (x)(&)] N IAB, (xo) EN(x) = x|
- €] €]
A(x, &) — Ap
< H(x)A(x §)|§I B,(x0) (&)l NGO — o], VxeQ.
As a result,
A 5 _Arx
][ sup |A(x, &) 10 ()l dx
B,(x) £€R"\{0} I€1
<2 ][ sup JA(X, &) = HrxAB,(x)(E i
By (x0) £€R"\{0} €1
|A(x, &) — A, (x)(é)I
<2 ][ p(x) sup GO dx + NG sup  Ju(x) — u(y)|
B(xp)  £€RM\(0) €1 x,yeB,(x0)
|A(x, &) — A, (x)(&)I
< N(a,n,p) sup Br(xm) du(x)+ N(x) sup |u(x) —u@®)|
B, (xp) £€R"\(0) €1 x,yeB,(x0)
(5.4)
< N(a,n,p)0,x,(A,u) + N(x)  sup  |u(x) — u(y)l.
x,yeB,(xo)

Next, we choose 91 = d1(k, @, n, p,p) > 0 sufficiently small such that
[N(a,n,p) + N(K)]61 < &.
As p is uniformly continuous on @, we can find p; € (0, min{Ry, p}) sufficiently
small such that
() - <61, Yx,y e, x—y <pi.
Then with this choice of py, (5.3) follows from (5.2) and (5.4). The proof of the
theorem is completed. O

5.2. Local boundary estimates. Recall that for R > 0, Bx(x") denotes the ball in

R™! of radius R centered at x’ € R""!, and also By = By(0). Letrg € (0,1) be

as in (1.2). As Q is (6, pg)-Lipschitz, it follows that for R € (0, min{py, ro}/2], and
xo € 09, by Definition 2.3 and with a rotation and translation, we may assume that
xo =0 and

Cori={x=("x) € BiYg xR :y(x') <x, <y(x')+2R} CcQ and
o = {(X', (X)) : X' € Bhy) € 0Q,
where y : BTR — R is a Lipschitz function which satisfies
YO)=0, Vy(0) =0, and [VyliL ) <.

Recall also that
u(x) = dist(x, 0Q)*, x € Cog.
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In this subsection, we study the equation (1.1) locally near 0 € 9Q2:

div [u(x)A(x, Vu(x))] div (u(x)F) in Cop,
(5:5) lim p(x)(ACx, Vu(x) - F(x) - ¥ 0 xo€ Dag.

For p € (1, 0), we say u € WI],(CZR,,u) is a weak solution of (5.5) if

(5.6) /c H)(A(x, Vu(x), Ve(x)) dx = /c p)CF(x), Vo(x)) dx

2R

for all ¢ € C®(Cag) vanishing on the neighborhood of Cz \ T'az.
This subsection is devoted to the proof of the following result on local regularity
estimates of weak solutions to (5.5).

Theorem 5.2. Let R € (0, min{pg, r0}/2). For each p € [2,00), there exists a
sufficiently small constant 6; = 6(k, p,n,a) > 0 such that if (1.3) holds, Q is
(0, po)-Lipschitz with 6 € (0, 06,), and

(5.7) ®pxy (A, 1) <82 Vxo € Cr, ¥ p € (0,Ro)

for some Ry € (0, 1), then for any weak solution u € W21(C2R,,u) of (5.5) with
F € L,(Cor, )", we have Vu € L,(Cr, u) and

1/p
( [Vu(x)l? u(x) dX)
(5.8) Cr

. 12 1/p
SN,U(CzR)”_Z( / |Vu(x>|2u<x>dx) +N( / IF(X)I”M(X)dx) ,
Cor C

where N = N(k,a,n, p, Ry) > 0.

2R

To prove Theorem 5.2, we flatten the boundary I';z and then apply Theorem 4.2.
We begin with the following simple lemma on the properties of the weight u.

Lemma 5.3. Assume that Q is (6, po)-Lipschitz. Then, there exist h : Cop — R and
N = N(a) > 0 satisfying

u(x) = (x, —y(xX)* (A = h(x)* and 0<h(x)<6
for all x € Cyp.
Proof. As R € (0, min{rg, pg}/2), for each x = (x’, x,,) € Cyg, we have

P =d() and d(x) = inf (X =& +x -y
£eB,
By the definition, it is clear that
d(x) < x, —y(xX') Yx=(,x,) € Caxp.
On the other hand, as the cone with vertex at (y(x), x,) and slope ¢ stays above the
graph of I'»g, we also have
Xp — y(x')

d >
Y
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From the last two estimates and by taking

d
h(x)=1- L), x = (X', xy) € Cag,
Xn — 7(x )
we see that |
0<h(x)<1- <o
V1 + 62
The lemma is proved. O

Next, we flatten the boundary I';z and transfer the equation (5.5) into the equa-
tion in the upper-half space as in (4.3). Let @ : Cog — D3, := B}, X (0,2R) and
v D;R — (Cop be defined by

O(x) = (X', x, —y(x)) Vx=(,x,)€Con,
YY) =y +v0") Yy =0",yn) € Dag.

By a simple calculation, we see that

(5.9) VO(x) = (_ alj[:;(x') (1))
for all x = (X', x,) € Cag, and
(5.10) vro =, )

fory = (y/,y,) € Dag, where [,_; is the (n — 1) X (n — 1) identity matrix. We note
that det(VY¥) = det(V®) = 1 and

O =¥, V¥() = [VOWYOI', VyeD.

Moreover, as ¢ € (0, 1),

IVOIL () <1+ IVYI gy <n+6° <n+1 and
(5.11) 5
||V‘P||LM(D;R) <n+1.
Now, let us recall

T = B,2R x {0} = aD;R N {yn = 0},

and denote
(5.12)  w@) =u(Py) and A@y,&) = AYQ), VPG DIVO(YO)]*

for y € D3,. We then consider the equation

{ divw()A(y, Vw(y))]
(5.13)

divlw()GO]  in D3,

0 on T2R.

lim w(y) (4,0, VW) = Ga(»))

yn—0

We note that a function w € W;(D;R, w) 1s said to be a weak solution of (5.13) if

(5.14) /D  WOAG. T, Ve())dy = /D  WOXGO). Ve()dy

2R 2R

for all ¢ € CW(D;R) which vanishes on the neighborhood of aDgR \ Tog.
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Lemma 5.4. Assume that Q is (6, po)-Lipschitz. If u € WII,(CZR, W) is a weak solu-
tion of (5.5) for some p € (1, ), then for

w(y) = u(¥()), € Dy,
we have w € W;(D;D, w) is weak a solution of (5.13) with
G(y) = F(PG)IVOYO)]*, vy € Dy

Proof. Since u € W},(CQR, ) and by a change of variables, we see that w €

W[l, (D3, w). The lemma follows directly by writing the solutions in the weak forms
(5.6) and (5.14), and using a change of variables. O

Next, let us denote

[AlBMOg,(Cruwy = SUP sup Op (A, p),
pE(O,Ro) xeCr

where O, (A, u) is defined in (2.2). A similar definition can be made also for
[A]BMORO(D;’Q,). Our next result gives the estimate of the mean oscillation of A
with the weight w.

Lemma 5.5. Assume that Q is (6, po)-Lipschitz. If A satisfies (1.3), then so does A
on D;R. Moreover, there is Ny = No(k,n) > 0 such that

[AlBMOg, (D5w) < No([A]BM02RO(CR,u) + 5),
where A is defined in (5.12).

Proof. The first assertion of the lemma follows directly from a direct calculation,
so we skip it. To prove the second assertion in the lemma, we observe that by the
mean value theorem, there is 7 € R" such that

AN ), VRPN = A1), &) + A:(Y (), DIVO(Y () - Ln]¢,
where [, is the n X n identity matrix. Then, we can write
AG.6) =B(.6) +D0.§),
where
B = A(Y(), S[VOYMDIVOY () — L™ + Ae(Y ), VO () — 1,6

and D(y, &) = A(Y(y), £)-VO(YW(y)). Then, it follows from the boundedness and the
growth condition of A in (1.3), and the explicit formulas in (5.9) and (5.10) that

[BleMog, (D5.0) < N lIVYIIL, < N(n, «)6.
By a change of variables and subtracting the weighted average, we also have
[DlgmOg, (Dpw) S N)IAIBMO, (Crop)-
The proof of the lemma is then completed. O

Now we give the proof of Theorem 5.2.
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Proof of Theorem 5.2. Let g = d¢(k, a,n, p) > 0 be the number defined in Theo-
rem 4.2. Choose 6, € (0, dp) such that 2Nyd, < &y, where Ny is a number defined
in Lemma 5.5. Then, it follows from ¢ < 85, (5.7), and Lemma 5.5 that

sup sup O, (A, w) < 6.
0€(0,Ry/2) xeDl*e

From this and Definition 4.1, we apply Theorem 4.2 to the equation (5.13) with a
scaling and obtain

I/p
( f wor dw(y)]

R

1/2 1/p
sN(ji ) |Vw<y)|2dw<y)) +N(]f) 6o dw(y))

2R 2R

for N = N(k,a, p,n) > 0. From this, the definition of w and G in Lemma 5.4, and
the estimates in (5.11), (5.8) follows by using the change of variables y — x =
Y(y). The proof of Theorem 5.2 is completed. O

5.3. Global L,-estimates. This subsection gives the proof of Theorem 2.5.

Proof of Theorem 2.5. Let p = min{pg, r9}/8 and & = min{d;, d,}, where 6; =
01(x, p,n, @, p) is defined in Theorem 5.1 and &, = d1(k, p, n, @) is defined Theorem
5.2. We prove Theorem 2.5 with this choice of 6.

Note thatas p > 2, F € Ly(Q, ) if F € L,(Q, ). Then, by the Minty-Browder
theorem, it follows that there exists a weak solution u € W21 (Q, ) to the equation
(1.1), and this weak solution is unique up to a constant. More precisely, let X be the
space consisting of all functions v € Lj joc(€2) such its weak derivative Vv exists,

1/2
(/ |Vv(x)|2 d,u(x)) < oo, and / v(x)dx =0
Q B

for some fixed ball B ¢ Q. The space X is endowed with the norm

1/2
||Vllx=( /Q |VV<x>|2du<x)) . veXx.

It is easy to show that X is a Banach space and the norm is uniformly convex.
Therefore, X is reflexive and the Minty-Browder theorem is applicable which gives
the existence of a weak solution u € W21 (Q, w) to the equation (1.1).

It remains to prove (2.5). Observe that with our choice of ¢ and under the as-
sumptions of Theorem 2.5, the conditions in Theorems 5.1 and 5.2 are satisfied.
Due to this, we apply Theorem 5.1 to get

IVully, @2, < NlIVullL,p + NIFllz,@u-
Similarly, applying Theorem 5.2, we obtain

IVullL, o) < NlIVullLyp + NIFIlL, @



WEIGHTED GRADIENT ESTIMATES, DEGENERATE ELLIPTIC EQUATIONS 23

for any xo € AQ. Then it follows from the compactness of Q that

IVull, @ < NlIVully@p + NIFllL, .0

for ﬁ > (0 depending on p, k, n, ro, R, po, @, Q, and the modulus of continuity of u
on . On the other hand, by the energy estimate and Holder’s inequality, we have

IVullLy ) < NWFll @ < Nk, p, DIIFIIL,@p)-
Therefore,
IVullz, @) < NIFIL, @
and the first assertion in (2.5) is proved.

It remains to prove the second assertion in (2.5). To this end, we apply the
weighted Sobolev embedding theorem [13, Remark 3.2 (ii)], see also [16, Theorem
6]. In fact, by flattening the boundary of the domain Q, and using Lemma 5.3 and
a partition of unity, we can apply the Sobolev embedding [13, Remark 3.2 (ii)] to
obtain

(5.15) el 0 < Nl
where p; € (2, o] satisfying
n+a; <1+ n+a;
2 P1
and N = N(Q, @, rg) > 0. Then, by the energy estimate and Holder’s inequality, we
infer from (5.15) that

llullz,, @ < Nllullzy@u + NIFllLy @
< Nllully@p + NIFllL, @)

If p1 > p, the second estimate in (2.5) follows. Otherwise, we repeat the process
by applying the Sobolev embedding [13, Remark 3.2 (ii)] again to obtain

lullz,,, @ < Nllullwll,l(g,,l) < Nlullzy@p + NIFIlL, .0

with py € (p1, o] satisfying

n+auoa n+auoa
f <1+ .

P1 P2
By doing this, we obtain an increasing sequence of numbers {py}; defined as above
and obtain the second estimate in (2.5) when py > p for some k > 1. The proof of
the theorem is completed. O

Remark 5.6. By using the Sobolev embedding, Holder’s inequality, and a standard
iteration argument, the second estimate in (2.5) can be replaced with

el g0 < N[l g + IFIL @]

for p* € (p, ) satisfying
n+ <1+ n+ g+
p r’
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and if the strict inequality holds p* = +oo is allowed. We also point out that the
weighted Poincaré inequality of the type

1
lu — dollL, @ < NIVullL, @, where g = —/ u(x) du(x)
1) Jo

obtained in [14] cannot be directly applied as u ¢ A, when a > p — 1.

REFERENCES

[1] A.L.Baisén, A. Clop, R. Giova, J. Orobitg, and A. Passarelli di Napoli, Fractional differentia-
bility for solutions of nonlinear elliptic equations, Potential Anal. 46 (2017), no. 3, 403—430.

[2] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces.
Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill.,
1968), pp. 1-308. Amer. Math. Soc., Providence, R.I., 1976.

[3] L.A. Caffarelli, and I. Peral. On W' estimates for elliptic equations in divergence form,
Comm. Pure Appl. Math. 51 (1998), no. 1, 1-21.

[4] L. Caffarelli, and L. Silvestre, An extension problem related to the fractional Laplacian,
Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260.

[5] F. Chiarenza, M. Frasca, and P. Longo, Interior W>P estimates for nondivergence elliptic
equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149-168.

[6] D. Cao, T. Mengesha, and T. Phan, Weighted W'? estimates for weak solutions of degenerate
and singular elliptic equations, Indiana Univ. Math. J. 67 (2018), no. 6, 2225-2277.

[7] G. Di Fazio, L? estimates for divergence form elliptic equations with discontinuous coeffi-
cients, Boll. Un. Mat. Ital. A (7) 10 (1996), no. 2, 409-420.

[8] M. M. Disconzi, M. Ifrim, and D. Tataru, The relativistic Euler equations with a physical vac-
uum boundary: Hadamard local wellposedness, rough solutions and continuation criterion,
Arch. Rational Mech. Anal. 245, 127-182 (2022).

[9] Hongjie Dong and Doyoon Kim, Higher order elliptic and parabolic systems with variably
partially BMO coefficients in regular and irregular domains, J. Funct. Anal. 261 (2011), no.
11, 3279-3327.

[10] Hongjie Dong and Tuoc Phan, Weighted mixed-norm estimates for equations in non-
divergence form with singular coefficients: the Dirichlet problem, J. Funct. Anal. 285, no.
2, 109964.

[11] Hongjie Dong and Tuoc Phan, Parabolic and elliptic equations with singular or degenerate
coefficients: the Dirichlet problem, Trans. Amer. Math. Soc. 374 (2021), 6611-6647.

[12] Hongjie Dong and Tuoc Phan, Regularity for parabolic equations with singular or degenerate
coefficients, Calc. Var. Partial Differential Equations 60 (2021), no. 1, Paper No. 44, 39 pp.

[13] Hongjie Dong and Tuoc Phan, On parabolic and elliptic equations with singular or degenerate
coefficients, Indiana U. Math. J., 73 (2023), no. 4, 1461-1502.

[14] E. B. Fabes, C. E. Kenig, and R. P. Serapioni, The local regularity of solutions of degenerate
elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77-116.

[15] J. Gell-Redman, Harmonic maps of conic surfaces with cone angles less than 2w, Comm.
Anal. Geom. 23 (2015), no. 4, 717-796.

[16] P. Hajlasz, Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996), no. 4, 403—
415.

[17] Doyoon Kim and N. V. Krylov, Elliptic differential equations with coefficients measurable
with respect to one variable and VMO with respect to the others, SIAM J. Math. Anal., 39
(2007), 489-506.

[18] N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, volume 96 of
Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.

[19] R. Mazzeo, Elliptic theory of differential edge operators. 1. Comm. Partial Differential Equa-
tions 16 (1991), no. 10, 1615-1664.



WEIGHTED GRADIENT ESTIMATES, DEGENERATE ELLIPTIC EQUATIONS 25

[20] T. Mengesha and T. Phan, Weighted W' estimates for weak solutions of degenerate elliptic
equations with coefficients degenerate in one variable, Nonlinear Anal. 179 (2019), 184-236.

[21] R. Moser and J. Roberts, Partial regularity for harmonic maps into spheres at a singular or
degenerate free boundary, J. Geom. Anal. 32 (2022), no. 2, Paper No. 58, 39 pp.

[22] M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate-elliptic
operators, Ann. Mat. Pura Appl. (4) 80, 1968, 1-122.

[23] T. Phan, Interior gradient estimates for weak solutions of quasilinear p-Laplacian type equa-
tions, Pacific J. Math. 297 (2018), no. 1, 195-224.

[24] J. Roberts, A regularity theory for intrinsic minimising fractional harmonic maps, Calc. Var.
Partial Differential Equations 57 (2018), no. 4, Paper No. 109.

[25] Y. Sire, S. Terracini, and G. Tortone, On the nodal set of solutions to degenerate or singular
elliptic equations with an application to s—harmonic functions, J. Math. Pures Appl. (9) 143
(2020), 376-441.

[26] Y. Sire, S. Terracini, and S. Vita, Liouville type theorems and regularity of solutions to de-
generate or singular problems part I: even solutions, Comm. Partial Differential Equations 46
(2021), no. 2, 310-361.

[27] Y. Sire, S. Terracini, and S. Vita, Liouville type theorems and regularity of solutions to degen-
erate or singular problems part 11: odd solutions, Math. Eng. 3 (2021), no. 1, 1-50.

[28] M. Surnachev, A Harnack inequality for weighted degenerate parabolic equations, J. Differ-
ential Equations 248 (2010), no. 8, 2092-2129.

DivisioN oF APPLIED MATHEMATICS, BROWN UNIVERSITY, 182 GEORGE STREET, PROVIDENCE, RI 02912,
USA
Email address: hongjie_dong@brown.edu

DEPARTMENT OF M ATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, 227 AYRES HaLL, 1403 CIRCLE
Drive, KnoxviLLge, TN 37996, USA
Email address: tphan2@utk.edu

DEPARTMENT OF MATHEMATICS, JOoHNS HoPkiNs UNIVERsITY, 404 KRIEGER HALL, 3400 N. CHARLES
STREET, BALTIMORE, MD 21218, USA
Email address: ysirel@jhu.edu



	1. Introduction and problem setting
	2. Functional spaces, definitions, and statements of main results 
	3. Lipschitz estimates of homogeneous equations in flat domains
	4. Boundary  regularity estimates in flat domains
	5. Global Lp regularity estimates
	5.1. Interior estimates
	5.2. Local boundary estimates
	5.3. Global Lp-estimates

	References

