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Abstract. We study a conormal boundary value problem for a class of quasi-

linear elliptic equations in bounded domain Ω whose coefficients can be degen-

erate or singular of the type dist(x, ∂Ω)α, where ∂Ω is the boundary of Ω and

α ∈ (−1,∞) is a given number. We establish weighted Sobolev type estimates

for weak solutions under a smallness assumption on the weighted mean oscil-

lations of the coefficients in small balls. Our approach relies on a perturbative

method and several new Lipschitz estimates for weak solutions to a class of

singular-degenerate quasilinear equations.

1. Introduction and problem setting

Let Ω be a nonempty open bounded set in Rn with Lipschitz boundary ∂Ω.

We consider the following class of quasilinear equations with singular-degenerate

coefficients and with conormal boundary condition

(1.1)














div[µ(x)A(x,∇u(x))] = div[µ(x)F(x)] in Ω,

lim
x→x0

µ(x)
(

A(x,∇u(x)) − F(x)
)

· ~ν(x) = 0 with x0 ∈∂Ω.

Here, ~ν : ∂Ω → Rn is the unit outward vector, F : Ω → Rn is a given measurable

vector field, A : Ω × Rn → Rn is a given vector field that is measurable in x ∈ Ω
and Lipschitz in ξ ∈ Rn \ {0}, and µ : Ω→ [0,∞) is a weight function. We assume

that µ is continuous inΩ and there is a sufficiently small constant r0 ∈ (0, diam(Ω))

such that

(1.2) µ(x) =

{

dist(x, ∂Ω)α when dist(x, ∂Ω) < r0

1 when dist(x, ∂Ω) > 2r0

with α ∈ (−1,∞). We also assume that the vector field A : Ω × Rn → Rn satisfies

the following ellipticity and growth conditions: there exists κ ∈ (0, 1) such that

(1.3)















κ|ξ − η|2 ≤ 〈A(x, ξ) − A(x, η), ξ − η〉, ∀ ξ, η ∈ Rn, ∀ x ∈ Ω,
A(x, 0) = 0, |Aξ(x, ξ)| ≤ κ−1, ∀ ξ ∈ Rn \ {0}, ∀ x ∈ Ω.
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Observe that under the assumptions (1.2) and (1.3), the equation (1.1) is singular

on ∂Ω when α < 0 and degenerate when α > 0. If α = 0, (1.1) reduces to the

classical uniformly quasilinear elliptic equation.

The main purpose of the present paper is to develop a weighted Sobolev theory

for weak solutions to the class of singular-degenerate equations (1.1), in which

the weight µ may not be in the A2 class of Muckenhoupt weights as classically

considered in the literature.

Assuming F ∈ Lp(Ω, µ) for p ∈ [2,∞) and α ∈ (−1,∞), we prove the following

weighted estimate of Calderón-Zygmund type

(1.4)

(
ˆ

Ω

|∇u(x)|pµ(x) dx

)1/p

≤ N

(
ˆ

Ω

|F(x)|pµ(x) dx

)1/p

for any weak solution u to (1.1), where N > 0 is a positive constant independent of

u and F. See Theorem 2.5 below for the precise statement of the result.

To motivate the present investigation, let us discuss briefly a few applications

of the study of (1.1). Quasilinear problems of the form (1.1) appear naturally

in the theory of relativistic Euler equations with a physical vacuum condition, as

investigated recently in [8]. Our system (1.1) corresponds to a stationary version

of it. In fact, in [8], the authors considered a similar situation as ours with α =
1. We believe that our results complement theirs in a very natural way. Also,

linear and nonlinear operators of the type considered in (1.1) appear in the study

of some special geometric structures known as conic-edge metrics (see e.g. [19]).

The techniques involved in [19] and many subsequent works in this area are of

geometric microlocal nature and completely different from our techniques here.

Harmonic maps between conic manifolds were considered for instance in [15] (see

also the references therein). The equation under consideration here is an instance

of those maps between a manifold with conic-edge metric and a smooth closed

manifold. More interestingly, the presence of conormal data is reminiscent of a

free boundary version of those as in [21, 24]. Applications to geometric variational

problems of this type will be addressed in a subsequent work.

We emphasize that the estimate (1.4) is new even when (1.1) is linear with

A(x, ξ) = ξ for (x, ξ) ∈ Ω × Rn as it deals with equations in general domains.

Indeed, when the domains are upper-half spaces, more general results on the exis-

tence and regularity estimates in weighted and mixed-norm Sobolev spaces for a

similar class of linear parabolic equations can be found first in [12] with α ∈ (−1, 1)

and then in [13] with α ∈ (−1,∞). Similar results for problems with homoge-

neous Dirichlet boundary conditions can be found in [10, 11]. See also a se-

ries of papers [26, 27, 25] in which the authors investigated some properties of

degenerate-singular linear equations of the form (1.1) in domains with flat bound-

aries under sufficiently smooth and symmetry assumptions on the leading coeffi-

cients. Schauder estimates, Liouville theorems, and geometric properties of the

solutions are derived in these papers.

We also note that when α ∈ (−1, 1), in the influential paper [4] the authors

showed that in the linear setting, Equation (1.1) is related to the realization as a
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Dirichlet-to-Neumann map of the fractional Laplacian. In this case, µ belongs to

Muckenhoupt class of A2 weights, and in the framework of non-local fractional

elliptic equations, the weighted Sobolev theory was developed in [20]. See also [6]

for similar results on W1
p-estimates for solutions of linear elliptic equations whose

coefficients can be singular or degenerate with general A2-weights instead of the

distance function µ as in (1.1), but with some restrictive smallness assumption on

the weighted mean oscillations of the coefficients that cannot be applied to our

setting here. The same class of linear elliptic equations whose coefficients are

singular or degenerate as general A2-Muckenhoupt weights were also studied in the

classical papers [14, 28, 22] in which Hölder regularity of solutions were proved.

2. Functional spaces, definitions, and statements of main results

Let us introduce some notation and definitions used in the paper. For a given

nonnegative weight σ on Ω and for 1 ≤ p < ∞, a measurable function f defined

on Ω is said to be in the weighted Lebesgue space Lp(Ω, σ) if

‖ f ‖Lp(Ω,σ) =

(
ˆ

Ω

| f (x)|pσ(x) dx

)1/p

< ∞.

For k ∈ N, a function f ∈ Lp(Ω, σ) is said to belong to the weighted Sobolev

space Wk
p(Ω, σ) if all of its distributional derivatives Dβ f are in Lp(Ω, σ) for β =

(β1, β2, . . . , βn) ∈ (N ∪ {0})n and |β| = β1 + β2 + . . . + βn ≤ k. The space Wk
p(Ω, σ)

is equipped with the norm

‖ f ‖Wk
p(Ω,σ) =



















∑

|β|≤k

∥

∥

∥Dβ f
∥

∥

∥

p

Lp(Ω,σ)



















1/p

.

Next, we give the definition of weak solutions to (1.1).

Definition 2.1. Assume that (1.3) holds, F ∈ Lp(Ω, µ)n with 1 < p < ∞, and µ

satisfies (1.2). A function u ∈ W1
p(Ω, µ) is said to be a weak solution of (1.1) if

(2.1)

ˆ

Ω

µ(x)〈A(x,∇u(x)),∇ϕ〉 dx =

ˆ

Ω

µ(x)〈F(x),∇ϕ(x)〉 dx, ∀ϕ ∈ C∞(Ω).

For each ρ > 0 and x ∈ Rn, we denote Bρ(x) to be the ball in Rn of radius ρ and

centered at x. When x = 0, we simply write Bρ = Bρ(0). Also, for each x ∈ Ω and

ρ > 0, we write

Ωρ(x) = Ω ∩ Bρ(x).

We give the following definition of bounded mean oscillations with weight µ for

the vector field A.

Definition 2.2. For every x0 ∈ Ω and ρ > 0, and for a given measurable vector

field A : Ω × Rn → Rn satisfying (1.3), the mean oscillation of A in Ωρ(x0) with

respect to the weight µ is defined by

(2.2) Θρ,x0
(A, µ) =

1

µ(Ωρ(x0))

ˆ

Ωρ(x0)

µ(x)













sup
ξ∈Rn\{0}

|A(x, ξ) − AΩρ(x0)(ξ)|
|ξ|













dx,
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where µ(Ωρ(x0)) =

ˆ

Ωρ(x0)

µ(x) dx, and AΩρ(x0)(ξ) is the weighted average of A in

Ωρ(x0), which is defined by

(2.3) AΩρ(x0)(ξ) =
1

µ(Ωρ(x0))

ˆ

Ωρ(x0)

A(x, ξ)µ(x) dx.

Below for each x′ ∈ Rn−1 and ρ > 0, we denote B′ρ(x′) the ball in Rn−1 with

radius ρ and centered at x′.

Definition 2.3. For given positive numbers δ and ρ0, we say that Ω is of (δ, ρ0)-

Lipschitz if for any x0 = (x′
0
, x0

n) ∈ ∂Ω, there exists a Lipschitz continuous function

γ : Rn−1 → R such that upon relabelling and reorienting the coordinates
{

x = (x′, xn) ∈ B′ρ0
(x′0) × R : γ(x′) < xn < γ(x′) + ρ0

}

⊂ Ω,
{

(x′, γ(x′)) : x′ ∈ B′ρ0
(x′0)

}

⊂ ∂Ω,
and

γ(x′0) = x0
n, ∇γ(x′0) = 0, ‖∇γ‖L∞(Rn−1) ≤ δ.

Remark 2.4. If Ω is (δ, ρ0)-Lipschitz, then it is (δ, ρ)-Lipschitz for any ρ ∈ (0, ρ0).

If ∂Ω ∈ C1, then it is (δ, ρ0)-Lipschitz for any sufficiently small δ > 0 and for

ρ0 = ρ0(Ω, δ, n) > 0.

The following theorem on gradient estimates of weak solutions to (1.1) is the main

result of the paper.

Theorem 2.5. Let α ∈ (−1,∞), κ, r0, ρ0 ∈ (0, 1), and p ∈ [2,∞). There exists a

sufficiently small number δ = δ(κ, n, p, r0, ρ0, α) > 0 such that the following asser-

tions hold. Assume that (1.2) and (1.3) hold, and Ω is (δ, ρ0)-Lipschitz. Assume

also that there is R0 ∈ (0, 1) so that

(2.4) sup
ρ∈(0,R0)

sup
x∈Ω
Θρ,x(A, µ) ≤ δ.

Then for any weak solution u ∈ W1
2
(Ω, µ) to (1.1) with some F ∈ Lp(Ω, µ)n, we

have u ∈ W1
p(Ω, µ), and it satisfies the estimates

‖∇u‖Lp(Ω,µ) ≤ N ‖F‖Lp(Ω,µ) and

‖u‖Lp(Ω,µ) ≤ N ‖u‖L2(Ω,µ) + N ‖F‖Lp(Ω,µ) ,
(2.5)

where N is a positive constant depending on n, p, κ, α, r0,R0, ρ0, α,Ω, and µ. More-

over, for any F ∈ Lp(Ω, µ)n, there is a weak solution u ∈ W1
p(Ω, µ) to the equation

(1.1) and it is unique up to a constant.

In this paper, we also establish local interior and boundary regularity estimates

for weak solutions to (1.1), which could be useful for other purposes. In particular,

in Theorem 4.2 below, we prove local regularity estimates of weak solutions to

(1.1) when the boundaries of the domains are flat, and similarly in Theorem 5.2 for

general domains. We also note that in Theorem 4.2, we require the vector field A

to be only partially VMO, a condition which was introduced in [17] in the study
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of linear equations with uniformly elliptic and bounded coefficients. The interior

regularity gradient estimates are also proved in Theorem 5.1.

The proof of Theorem 2.5 is based on a perturbation method using the freezing

coefficient technique. To establish the integrability of the gradients of solutions, we

employ the method introduced in [3] that relies on estimates of the level sets of ∇u.

See also [5, 7] for the classical approach using solution representation formulas

and [18] for an approach using the Fefferman-Stein sharp function theorem. To

obtain the regularity estimate (2.5), it is crucial to derive Lipschitz estimates of

solutions to a class of homogeneous quasilinear equations with singular-degenerate

coefficients as in (1.1). We accomplish this by first employing the Moser iteration

to derive the estimates of the tangential derivatives of solutions. To estimate the

normal derivative of solutions, we exploit the structure of the PDE in (1.1) and

its boundary condition. The results and techniques developed here to derive the

Lipschitz estimates are of independent interest.

The remaining part of the paper is organized as follows. In Section 3, we de-

rive the Lipschitz estimates of solutions to a class of homogeneous equations in

domains with flat boundaries. In Section 4, we prove local Lp regularity estimate

for the gradients of solutions in domains with flat boundaries. In the last section,

Section 5, we provide the proof of Theorem 2.5 which is based on the flattening of

the domain boundaries and the local interior and boundary estimates developed in

the previous sections.

3. Lipschitz estimates of homogeneous equations in flat domains

We denote Rn
+ = R

n−1 × (0,∞) and for r > 0 and x0 = (x′, x0
n) ∈ Rn

+, we write

B+r (x0) = Br(x0) ∩ Rn
+, Tr(x0) = Br(x0) ∩ {xn = 0}.

We study the following class of equations

(3.1) div(xαnA0(xn,∇u(x))) = 0 for x = (x′, xn) ∈ B+r (x0)

with the homogeneous conormal boundary condition

(3.2) lim
xn→0

xαn an(xn,∇u(x)) = 0 on Tr(x0) if Tr(x0) , ∅.

Here, α > −1 is a given constant, and

A0 = (a1, a2, . . . , an) : ((x0
n − r)+, x

0
n + r) × Rn → Rn

is a given vector field, where we denote s+ = max{s, 0} for any real number s.

The main result of this section, Lemma 3.3, gives Lipschitz estimates for weak

solutions to (3.1)-(3.2).

We assume that A0 is measurable in xn ∈ ((x0
n − r)+, x

0
n + r), Lipschitz in ξ ∈

R
n \ {0}, and it satisfies the following ellipticity and growth conditions: there is

κ ∈ (0, 1) such that

(3.3)















κ|ξ − η|2 ≤ 〈A0(xn, ξ) − A0(xn, η), ξ − η〉, ∀ ξ, η ∈ Rn,

A0(xn, 0) = 0, |DξA0(xn, ξ)| ≤ κ−1, ∀ ξ ∈ Rn \ {0}
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for all xn ∈ (x0
n − r)+, x

0
n + r). A function u ∈ W1

2
(B+r (x0), µ) is said to be a weak

solution to (3.1)-(3.2) if

(3.4)

ˆ

B+r (x0)

xαn 〈A0(xn,∇u),∇ϕ〉dx = 0, ∀ ϕ ∈ C∞0 (Br(x0)).

For convenience, we also denote

dµ(x) = xαn dx′dxn,

which is a doubling measure. Also, for a measurable function f with some suitable

integrability condition defined in a non-empty open set B ⊂ Rn, we write

( f )B =
1

|B|

ˆ

B

f (x) dx and

 

B

f (x) dω(x) =
1

ω(B)

ˆ

B

f (x) dω(x)

where ω is some locally finite measure.

We start with the following lemma on local energy estimates of weak solutions

to (3.1)-(3.2).

Lemma 3.1 (Caccioppoli inequality). Let r > 0, x0 ∈ Rn
+, and u ∈ W1

2
(B+r (x0), µ)

be a weak solution to (3.1)-(3.2). Then for any c ∈ R and c′ = (c1, c2, . . . , cn−1) ∈
R

n−1,

(3.5)

ˆ

B+
r/2

(x0)

|∇u(x)|2 dµ(x) ≤ Nr−2

ˆ

B+r (x0)

|u(x) − c|2 dµ(x)

and

(3.6)

ˆ

B+
r/2

(x0)

|∇∇x′u(x)|2 dµ(x) ≤ Nr−2

ˆ

B+r (x0)

|∇x′u(x) − c′|2 dµ(x),

where N = N(κ, n) > 0 and ∇x′ = (∂x1
, ∂x2
, . . . , ∂xn−1

).

Proof. Let ζ ∈ C∞
0

(Br(x0)) be a non-negative cut-off function satisfying

ζ = 1 in Br/2(x0) and ‖∇ζ‖L∞ ≤
N0

r
,

for some generic constant N0 > 0. Using (u − c)ζ2 as the test function in (3.4), we

obtain
ˆ

B+r (x0)

〈A0(xn,∇u),∇u〉ζ2dµ(x) + 2

ˆ

B+r (x0)

〈A0(xn,∇u),∇ζ〉ζ(u − c)dµ(x) = 0.

From this, and (3.3), we infer that
ˆ

B+r (x0)

|∇u(x)|2ζ(x)2dµ(x) ≤ N

ˆ

B+r (x0)

|∇u(x)||∇ζ(x)||u(x) − c||ζ |dµ(x)

where N = N(κ, n) > 0. From this, we follow the standard method using Young

inequality to derive the estimate (3.5).

Next, we prove (3.6). By using a different quotient method if needed, we can

formally differentiate the equation (3.1) with respect to xk, k = 1, 2, . . . , n − 1, to
see that uk := ∂ku satisfies a linear elliptic equation

(3.7) div(xαn∂ξ j
A0(xn,∇u)∂ juk) = 0 in B+r (x0)
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with the natural homogeneous conormal boundary condition; and where ∂k = ∂xk

and the Einstein summation convention is used. Now we test the equation with

(uk − ck)ζ2 and use the ellipticity and boundedness condition in (3.3) as we just did

to derive (3.6). The proof of the lemma is completed. �

Lemma 3.2. Let r > 0, x0 ∈ Rn
+, and u ∈ W1

2
(B+r (x0), µ) be a weak solution to

(3.1)-(3.2). Then

‖∇x′u‖L∞(B+
r/2

(x0)) ≤ N

(
 

B+r (x0)

|∇x′u(x)|2 dµ(x)

)1/2

,

where N = N(κ, n, α) > 0.

Proof. By Lemma 3.1, we see that ∂ku is in W1
2
(B+r (x0)) locally and it is a weak

solution to the linear equation (3.7) with the associated conormal boundary condi-

tion , for k = 1, 2, . . . , n − 1. Then, the assertion of the lemma follows by applying

the Moser iteration argument to the linear equation (3.7). See [13, Lemma 4.3] for

a similar result but for linear parabolic equations, and also [26, Proposition 2.17]

for a result for linear elliptic equations. We skip the details. �

The following lemma is our main result on Lipschitz estimates for weak solu-

tions to (3.1)-(3.2).

Lemma 3.3. Let r > 0, x0 = (x′
0
, x0

n) ∈ Rn
+, and u ∈ W1

2
(B+r (x0), µ) be a weak

solution to (3.1)-(3.2). Then

(3.8) ‖∇u‖L∞(B+
r/2

(x0)) ≤ N

(
 

B+r (x0)

|∇u(x)|2 dµ(x)

)1/2

,

where N = N(κ, n, α) > 0.

Proof. By Lemma 3.2, it remains to prove the estimate of ∂nu. Denote

U(x) = xαn an(xn,∇u(x)), x = (x′, xn) ∈ B+r (x0).

Note that from (3.1), it follows that

∂nU(x′, xn) = −
n−1
∑

i=1

∂i[xαn ai(xn,∇u(x))]

= −xαn

n−1
∑

i=1

n
∑

j=1

∂ξ j
ai(xn,∇u(x))∂i ju(x).(3.9)

On the other hand, by a direct calculation, we also have

(3.10) ∇x′U(x′, xn) = xαn

n
∑

j=1

∂ξ j
an(xn,∇u(x))∂ j∇x′u(x).

By a covering argument, we only need to discuss two cases: the interior case when

x0
n ≥ 2r and the boundary case when x0 ∈ ∂Rn

+.

Case 1: Interior case. By scaling, for simplicity we also assume that x0
n = 1. Then

for x = (x′, xn) ∈ B2/3(x0), xn ∼ 1 such that dµ ∼ dx, and the equation (3.7) is
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uniformly elliptic in B2/3(x0). It follows that ∇x′u is Hölder continuous in B5/8(x0).

By the Poincaré inequality, (3.9), (3.10), the conormal boundary condition and

Lemma 3.1, for any y0 ∈ Br/2(x0) and s < r/4,
 

Bs/2(y0)

|U(x) − (U)Bs/2(y0)|2 dx ≤ Ns2

 

Bs/2(y0)

|∇U(x)|2 dx

≤ Ns2

 

Bs/2(y0)

|∇∇x′u(x)|2 dx

≤ N

 

Bs(y0)

|∇x′u(x) − (∇x′u)Bs(y0)|2 dx,

which together with the Hölder estimate of ∇x′u implies that U is Hölder continu-

ous by using Campanato’s characterization of Hölder spaces. In particular,

(3.11) ‖an(y,∇u)‖L∞(Br/2(x0)) ≤ N‖U‖L∞(Br/2(x0)) ≤ N

(
 

Br(x0)

|∇u(x)|2 dx

)1/2

,

which together with (3.3) and the estimate for ∇x′u, implies

‖∂nu‖L∞(Br/2(x0)) ≤ N

(
 

Br(x0)

|∇u(x)|2 dx

)1/2

.

Therefore, (3.8) is proved as dµ ∼ dx in this case.

Case 2: Boundary case. Without loss of generality, we take x0 = 0 and r = 1. We

claim that for any y0 = (y′
0
, y0

n) ∈ B+
1/2

and s < 1/20,

 

B+s (y0)

|an(xn,∇u(x))| dµ(x) ≤ N















 

B+
1

|∇x′u(x)|2 dµ(x)















1/2

.(3.12)

This and the Lebesgue differentiation theorem (with the doubling measure µ) give

‖an(·,∇u(·))‖L∞(B+
1/2

) ≤ N















 

B+
1

|∇u(x)|2 dµ(x)















1/2

and consequently (3.8).

Next we prove the claim. First we assume that y0
n = 0. Using (3.9), (3.10), the

boundedness condition in (3.3), and Lemma 3.1, we have for any s < 1/4,
 

B+s (y0)

|∇U(x, xn)|2x−αn dx ≤ N

 

B+s (y0)

|∇∇x′u(x′, xn)|2xαn dx

≤ Ns−2

 

B+
2s

(y0)

|∇x′u(x′, xn)|2xαn dx.

This together with Hölder’s inequality gives
 

B+s (y0)

|∇U(x)| dx ≤
(
 

B+s (y0)

|∇U(x′, xn)|2x−αn dx

)1/2 (
 

B+s (y0)

xαn dx

)1/2

≤ Nsα/2−1















 

B+
2s

(y0)

|∇x′u(x′, xn)|2xαn dx















1/2

.
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By using the zero boundary condition for U at {xn = 0} and the boundary Poincaré

inequality, we then get
 

B+s (y0)

|U(x′, xn)| dx ≤ Ns

 

B+s (y0)

|∂nU(x′, xn)| dx

≤ Nsα/2















 

B+
2s

(y0)

|∇x′u(x′, xn)|2xαn dx















1/2

,

which implies that

 

B+s (y0)

|an(xn,∇u(x))| dµ ≤ N















 

B+
2s

(y0)

|∇x′u(x)|2 dµ(x)















1/2

.

By Lemma 3.2, we obtain (3.12) in this case.

For the general case, when s ≥ y0
n/4, we have Bs(y0) ⊂ B5s(y

′
0
, 0), and (3.12)

follows from the first case because 5s < 1/4. When s < y0
n/4, we use (3.11) to get

 

Bs(y0)

|an(xn,∇u(x))| dµ ≤ ‖an(·,∇u(·))‖L∞(Bs(y0))

≤ ‖an(·,∇u(·))‖L∞(B
y0
n/4

(y0)) ≤ N





















 

B+
y0
n/2

(y0)

|∇x′u(x)|2 dµ(x)





















1/2

.

Then the claim follows from the previous case with s = y0
n/2. �

Remark 3.4. Since we can have a Hölder estimate instead of the L∞ estimate

in Lemma 3.2, it is possible to bound the Hölder norm of an(y,∇u) in the above

lemma. However, we will not use this in the proofs below.

4. Boundary Lp regularity estimates in flat domains

In this section, we establish local boundary Lp estimates for the gradients of

solutions to the quasilinear equation of the form (1.1) when the boundary ∂Ω is

flat. Its main result is Theorem 4.2 below. To state the result, we need some

notation and definitions. For each x = (x′, xn) ∈ Rn−1 × R, we write Dρ(x) =

B′ρ(x′) × (xn − ρ, xn + ρ) and

D+ρ (x) = Dρ(x) ∩ Rn
+,

where B′ρ(x′) denotes the ball in Rn−1 of radius ρ > 0 and centered at x′ ∈ Rn−1.

We also denote

Γ̂ρ(x) = ∂D+ρ (x) ∩ {xn = 0}.
When x = 0, we simply write D+ρ = D+ρ (0), etc. Let

A = (A1, A2, . . . , An) : D+2 × Rn → Rn

be measurable with respect to x ∈ D+
2

and Lipschitz in ξ ∈ Rn \ {0}. We assume

that A satisfies the ellipticity and growth conditions as (1.3) in D+
2

. Precisely, there
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exists κ ∈ (0, 1) such that

(4.1)















κ|ξ − η|2 ≤ 〈A(x, ξ) − A(x, η), ξ − η〉, ∀ ξ, η ∈ Rn, ∀ x ∈ D+2 ,

A(x, 0) = 0, |Aξ(x, ξ)| ≤ κ−1, ∀ ξ ∈ Rn \ {0}, ∀ x ∈ D+2 .

Let ω : D+
2
→ R+ be a weight defined by

(4.2) ω(x) = xαn (1 − h(x))α, ∀x = (x′, xn) ∈ D+2

with α ∈ (−1,∞) and h : D+
2
→ [0, 1) is a measurable function satisfying ‖h‖L∞(D+

2
) <

1.

We study the following equation

(4.3)

{

div [ω(x)A(x,∇u(x))] = div [ω(x)F] in D+
2

ω(x)An(x,∇u(x)) = ω(x)Fn(x) on Γ̂2,

where F = (F1, F2, . . . , Fn) : D+
2
→ Rn is a given measurable vector-field. For

p ∈ (1,∞), we say that u ∈ W1
p(D+

2
, ω) is a weak solution of (4.3) if

ˆ

D+
2

ω(x)〈A(x,∇u(x)),∇ϕ(x)〉 dx =

ˆ

D+
2

ω(x)〈F(x),∇ϕ(x)〉 dx

for any ϕ ∈ C∞
0

(D2).

We also need the following partial mean oscillation of the coefficients A which

was introduced in [17].

Definition 4.1. For ρ > 0 and x0 = (x′
0
, x0

n) ∈ D+
1

, the partial mean oscillation of

a given vector field A : D+
2
× Rn → Rn in D+ρ (x0) with respect to the weight ω is

defined by

Θ̂ρ,x0
(A) =

1

ω(D+ρ (x0))

ˆ

D+ρ (x0)

ω(x)















sup
ξ∈Rn\{0}

|A(x, ξ) − ĀB′ρ(x′
0
)(xn, ξ)|

|ξ|















dx,

where ĀB′ρ(x′
0
)(xn, ξ) is the average of A in the (n − 1)-dimensional ball B′ρ(x′

0
)

defined by

ĀB′ρ(x′
0
)(xn, ξ) =

1

|B′ρ(x′
0
)|

ˆ

B′ρ(x′
0
)

A(x, ξ) dx′.

The main result of this section is the following theorem.

Theorem 4.2. For every κ ∈ (0, 1), p ∈ [2,∞), and α ∈ (−1,∞), there exists a suf-

ficiently small positive number δ0 = δ0(κ, p, α, n) such that the following assertion

holds. Assume that A and ω satisfy (4.1), (4.2), ‖h‖L∞(D+
2

) ≤ δ0, and

sup
ρ∈(0,R0)

sup
x∈D+

1

Θ̂ρ,x(A) ≤ δ0,

for some R0 ∈ (0, 1). Then, if u ∈ W1
2
(D+

2
, ω) is a weak solution of (4.3) with

F ∈ Lp(D+
2
, ω), we have ∇u ∈ Lp(D+

1
, ω) and

‖∇u‖Lp(D+
1
,ω) ≤ N‖∇u‖L2(D+

2
,ω) + N‖F‖Lp(D+

2
,ω)

for some constant N = N(κ, p, α,R0, n) > 0.
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The remaining part of the section is devoted to the proof of Theorem 4.2. We

prove Theorem 4.2 using the level set argument introduced in [3]. For our imple-

mentation, the following result is the main ingredient.

Proposition 4.3. For every κ ∈ (0, 1) and α ∈ (−1,∞), there exist sufficiently small

numbers δ′
0
= δ′

0
(κ, n, α) > 0 and λ0 = λ0(κ, n, α) > 0 such that the following

assertions hold. Suppose that A and ω satisfy (4.1), (4.2), and ‖h‖L∞(D+
2

) ≤ δ′0.

Then, for any weak solution u ∈ W1
2
(D+

2
, ω) of (4.3), and for any ρ ∈ (0, 1/2), x0 ∈

D+
1

, and any λ ∈ (0, λ0), there exists w ∈ W1
2
(D+ρ (x0), ω) satisfying















 

D+ρ (x0)

|∇u(x) − ∇w(x)|2 dω(x)















1/2

≤ N
(

Θ̂

λ
2(2+λ)
ρ,x0

(A) + ‖h‖L∞(D+
2

)

)

















 

D+
2ρ

(x0)

|∇u(x)|2 dω(x)

















1/2

+ N

















 

D+
2ρ

(x0)

|F(x)|2 dω(x)

















1/2

(4.4)

and

‖∇w‖L∞(D+
ρ/2

(x0)) ≤ N

















 

D+
2ρ

(x0)

|∇u(x)|2 dω(x)

















1/2

+ N

















 

D+
2ρ

(x0)

|F(x)|2 dω(x)

















1/2
(4.5)

where N = N(κ, α, n, λ) > 0.

Below, we give the proof of Proposition 4.3, which is divided into two steps. In

the first step, for each x0 = (x′
0
, x0

n) ∈ D+
1

and ρ ∈ (0, 1/2), we perturb the equation

(4.3) and compare the solution u ∈ W1
2
(D+

2
, ω) with the solution v ∈ W1

2
(D+

2ρ
(x0), ω)

of the following boundary value problem

(4.6)























div [xαnA(x,∇v(x))] = 0 in D+
2ρ

(x0),

v = u on ∂D+
2ρ

(x0) \ Γ̂2ρ(x0),

xαn An(x,∇v(x)) = 0 on Γ̂2ρ(x0) if Γ̂2ρ(x0) , ∅.

We note that ω(x) ∼ xαn when ‖h‖L∞ < 1 and therefore

W1
2 (D+2ρ(x0), xαn ) = W1

2 (D+2ρ(x0), ω).

We say that v ∈ W1
2
(D+

2ρ
(x0), ω) is a weak solution of (4.6) if v − u = 0 on D+

2ρ
\

Γ̂2ρ(x0) in the sense of trace and
ˆ

D+
2ρ

(x0)

〈A(x,∇v(x)),∇ϕ(x)〉xαn dx = 0, ∀ ϕ ∈ C∞0 (D2ρ(x0)).
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Lemma 4.4. There exist sufficiently small positive numbers λ0 = λ0(κ, n, α) and

δ′
0
= δ′

0
(κ, n, α) such that the following assertions hold. For each u ∈ W1

2
(D+

2
, ω),

x0 ∈ D+
1

and ρ ∈ (0, 1/2), there exists a unique weak solution v ∈ W1
2
(D+

2ρ
(x0), ω)

to (4.6) satisfying

(4.7)















 

D+ρ (x0)

|∇v(x)|2+λ dω















1/(2+λ)

≤ N(κ, n, α, λ)

















 

D+
2ρ

(x0)

|∇v(x)|2 dω

















1/2

for any λ ∈ (0, λ0). Moreover, if ‖h‖L∞(D+
2

) ≤ δ′0, then

 

D+
2ρ

(x0)

|∇u(x) − ∇v(x)|2 dω

≤ N(κ, α)‖h‖2
L∞(D+

2
)

 

D+
2ρ

(x0)

|∇u(x)|2 dω + N(κ)

 

D+
2ρ

(x0)

|F(x)|2 dω.

(4.8)

Proof. To prove the existence of solution v ∈ W1
2
(D+ρ (x0), ω) to the equation (4.6),

let us denote

Â(x, ξ) = (Â1(x, ξ), Â2(x, ξ), . . . , Ân(x, ξ)) = A(x,∇u(x) + ξ) − A(x,∇u(x)),

and

G = (G1,G2, . . . ,Gn) = −A(x,∇u(x)), x ∈ D+2 , ξ ∈ Rn.

We consider the equation

(4.9)


























div [xαn Â(x,∇ṽ(x))] = div [xαn G] in D+
2ρ

(x0),

ṽ = 0 on ∂D+
2ρ

(x0) \ Γ̂2ρ(x0),

lim
xn→0

xαn

(

Ân(x,∇ṽ(x)) −Gn

)

= 0 on Γ̂2ρ(x0) if Γ̂2ρ(x0) , ∅.

Note that due to (4.1) and u ∈ W1
2
(D+

2
, ω), we have G ∈ L2(D+

2
, ω). Moreover, it

is simple to check that Â satisfies the ellipticity and growth conditions as in (4.1).

Also, let

E =
{

g ∈ W1
2 (D+ρ (x0), ω) : g|∂D+

2ρ
\Γ̂2ρ(x0) = 0 in the sense of trace

}

.

It can be checked that E is uniformly convex, and thus it is reflexive. Therefore,

it follows from the Minty-Browder theorem (see [2]) that there is a unique weak

solution ṽ ∈ E to (4.9). From this, we obtain the existence and uniqueness of a

weak solution v := ṽ + u ∈ W1
2
(D+ρ (x0), ω) to the equation (4.6).

Next, observe that the estimate (4.7) is well known as the reverse Hölder’s in-

equality. The proof of (4.7) follows from the standard method using Caccioppoli

inequalities, the weighted Sobolev inequality (see, for instance, [13, Lemma 3.1

and Remark 3.2 (ii)], the doubling property of ω as α ∈ (−1,∞), and Gerhing’s

lemma. As those are standard techniques, we skip the details.
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It remains to prove the estimate (4.8). We observe that by testing the equations

(4.3) and (4.6) with u − v, we obtain
ˆ

D+
2ρ

(x0)

ω(x)〈A(x,∇u),∇u − ∇v〉 dx =

ˆ

D+
2ρ

(x0)

ω(x)〈F,∇u − ∇v〉 dx

and
ˆ

D+
2ρ

(x0)

ω(x)〈A(x,∇v),∇u − ∇v〉 dx =

ˆ

D+
2ρ

(x0)

(ω(x) − xαn )〈A(x,∇v),∇u − ∇v〉 dx.

Therefore, it follows from (4.1) that

κ

ˆ

D+
2ρ

(x0)

|∇u(x) − ∇v(x)|2ω(x) dx

≤
ˆ

D+
2ρ

(x0)

ω(x)〈A(x,∇u) − A(x,∇v),∇u − ∇v〉 dx

≤
ˆ

D+
2ρ

(x0)

ω(x)|F(x)||∇u(x) − ∇v(x)| dx

+ κ−1 sup
x∈D+

2

|1 − xαn/ω(x)|
ˆ

D+
2ρ

(x0)

ω(x)|∇v(x)||∇u(x) − ∇v(x)| dx

≤ κ
2

ˆ

D+
2ρ

(x0)

|∇u(x) − ∇v(x)|2ω(x) dx + N(κ)

ˆ

D+
2ρ

(x0)

|F(x)|2ω(x) dx

+ N(κ) sup
x∈D+

2

|1 − xαn/ω(x)|2
ˆ

D+
2ρ

(x0)

|∇v(x)|2ω(x) dx.

This implies that
ˆ

D+
2ρ

(x0)

|∇u(x) − ∇v(x)|2ω(x) dx ≤ N(κ)

ˆ

D+
2ρ

(x0)

|F(x)|2ω(x) dx

+ N(κ, α)‖h‖2
L∞(D+

2
)

ˆ

D+
2ρ

(x0)

|∇v(x)|2ω(x) dx.

Then, for δ′
0
∈ (0, 1) sufficiently small such that

N(κ, α)‖h‖2
L∞(D+

2
)
≤ N(κ, α)(δ′0)2 ≤ 1/4,

we have
ˆ

D+
2ρ

(x0)

|∇u(x) − ∇v(x)|2ω(x) dx ≤ N(κ)

ˆ

D+
2ρ

(x0)

|F(x)|2ω(x) dx

+
1

2

ˆ

D+
2ρ

(x0)

|∇u(x) − ∇v(x)|2ω(x) dx + N(κ, α)‖h‖2
L∞(D+

2
)

ˆ

D+
2ρ

(x0)

|∇u(x)|2ω(x) dx.

From this, the assertion (4.8) follows, and the proof of the lemma is completed. �
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Next, recall that

ĀB′ρ(x′
0
)(xn, ξ) =

 

B′ρ(x′
0
)

A(x, ξ) dx′

and we write

ĀB′ρ(x′
0
)(xn, ξ) = (ĀB′ρ(x′

0
),1(xn, ξ), ĀB′ρ(x′

0
),2(xn, ξ), . . . , ĀB′ρ(x′

0
),n(xn, ξ)).

In the next step of the perturbation, we consider the equation with frozen coeffi-

cients

(4.10)



























div [xαn ĀB′ρ(x′)(xn,∇w(x))] = 0 in D+ρ (x0),

w = v on ∂D+ρ (x0) \ Γ̂ρ(x0),

lim
xn→0

xαn ĀB′ρ(x′),n(xn,∇w(x)) = 0 on Γ̂ρ(x0) if Γ̂ρ(x0) , ∅,

where v is defined in Lemma 4.4. The definition of a weak solution w ∈ W1
2
(D+ρ (x0), ω)

to (4.10) can be formulated exactly the same as that of (4.6). In this step, we obtain

the following approximation estimate.

Lemma 4.5. Let δ′
0

and λ0 be as in Lemma 4.4 and assume that ‖h‖L∞(D+
2

) ≤ δ′0.

Then, for each u ∈ W1
2
(D+

2
, ω) and ρ ∈ (0, 1), x0 ∈ D+

1
, there exists a weak solution

w ∈ W1
2
(D+ρ (x0), ω) to (4.10) satisfying















 

D+ρ (x0)

|∇w(x) − ∇v(x)|2 dω(x)















1/2

≤ NΘ̂
λ

2(2+λ)
ρ,x0

(A)





































 

D+
2ρ

(x0)

|∇u(x)|2 dω(x)

















1
2

+

















 

D+
2ρ

(x0)

|F(x)|2 dω(x)

















1
2





















,

where N = N(κ, n, α, λ) > 0 and λ ∈ (0, λ0).

Proof. As in the proof of Lemma 4.4, the existence of a weak solution

w ∈ W1
2 (D+ρ (x0), ω)

to (4.10) follows by the Minty-Browder theorem. As w−v = 0 in the sense of trace

on ∂D+ρ (x0) \ Γ̂ρ(x0), we can use w − v as a test function for (4.10) to obtain
ˆ

D+ρ (x0)

xαn 〈ĀB′ρ(x′)(xn,∇w),∇w − ∇v〉 dx = 0.

On the other hand, as Γ̂ρ(x0) ⊂ Γ̂2ρ(x0), we can also use w − v as a test function for

(4.6) and obtain
ˆ

D+ρ (x0)

xαn 〈A(x,∇v),∇w − ∇v〉 dx = 0.

Then, it follows that
ˆ

D+ρ (x0)

xαn 〈ĀB′ρ(x′)(xn,∇w) − ĀB′ρ(x′)(xn,∇v),∇w − ∇v〉 dx

=

ˆ

D+ρ (x0)

xαn 〈A(x,∇v) − ĀB′ρ(x′)(xn,∇v),∇w − ∇v〉 dx.
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Next, by using the conditions in (4.1), Hölder’s inequality, and the fact that ω(x) ∼
xαn , we obtain

 

D+ρ (x0)

|∇w(x) − ∇v(x)|2 dω(x)

≤ N

 

D+ρ (x0)

|A(x,∇v) − ĀB′ρ(x′)(xn,∇v)|
|∇v(x)| |∇v(x)|∇w(x) − ∇v(x)| dω(x)

≤ N





















 

D+ρ (x0)















sup
ξ∈Rn\{0}

|A(x, ξ) − ĀB′ρ(x′)(xn, ξ)|
|ξ|















2(2+λ)
λ

dω(x)





















λ
2(2+λ)

×














 

D+ρ (x0)

|∇v(x)|2+λ dω(x)















1
2+λ















 

D+ρ (x0)

|∇w(x) − ∇v(x)|2 dω(x)















1
2

≤ NΘ̂
λ

2(2+λ)
ρ,x0

(A)















 

D+ρ (x0)

|∇v(x)|2+λ dω(x)















1
2+λ















 

D+ρ (x0)

|∇w(x) − ∇v(x)|2 dω(x)















1
2

,

where in the last step we used the growth condition in (4.1) and N = N(κ, n, α, λ)
is a positive constant for λ ∈ (0, λ0). It then follows that















 

D+ρ (x0)

|∇w(x) − ∇v(x)|2 dω(x)















1/2

≤ NΘ̂
λ

2(2+λ)
ρ,x0

(A)















 

D+ρ (x0)

|∇v(x)|2+λ dω(x)















1
2+λ

.

From this and (4.7), we infer that















 

D+ρ (x0)

|∇w(x) − ∇v(x)|2 dω(x)















1/2

≤ NΘ̂
λ

2(2+λ)
ρ,x0

(A)

















 

D+
2ρ

(x0)

|∇v(x)|2 dω(x)

















1
2

.

Now, by using the triangle inequality and (4.8), we obtain















 

D+ρ (x0)

|∇w(x) − ∇v(x)|2 dω(x)















1/2

≤ NΘ̂
λ

2(2+λ)
ρ,x0

(A)





































 

D+
2ρ

(x0)

|∇u(x)|2 dω(x)

















1
2

+

















 

D+
2ρ

(x0)

|F(x)|2 dω(x)

















1
2





















.

The lemma is proved. �

We are now ready to prove Proposition 4.3.

Proof of Proposition 4.3. Let δ′
0
> 0 and λ0 be as in Lemma 4.4. Then, we see

that (4.4) follows easily from Lemma 4.4, Lemma 4.5, and the triangle inequality.
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Similarly, by the triangle inequality, we also obtain















 

D+ρ (x0)

|∇w(x)|2 dω(x)















1/2

≤ N

















 

D+
2ρ

(x0)

|∇u(x)|2 dω(x)

















1/2

+ N

















 

D+
2ρ

(x0)

|F(x)|2 dω(x)

















1/2

for N = N(κ, α, n) > 0. As ‖h‖L∞(D+
2

) < 1, we see that ω ∼ xαn . Therefore, by ap-

plying the results on the Lipschitz estimates ( see Lemma 3.3) of the homogeneous

equation (4.10), we obtain (4.5). �

Proof of Theorem 4.2. From Proposition 4.3, Theorem 4.2 follows from the level

set argument introduced in [3]. See also [9]. Since it is standard now, we skip the

details. �

5. Global Lp regularity estimates

This section is devoted to the proof of Theorem 2.5. As usual, we divide the

proof into two main steps: establishing interior estimates and boundary ones.

5.1. Interior estimates. For every ρ∈ (0, diam(Ω)/2), we write

Ω
ρ
=

{

x ∈ Ω : dist(x, ∂Ω) > ρ
}

.

For p ∈ (1,∞), ρ > 0, we say that u ∈ W1
p(Ωρ, µ) is a weak solution of

(5.1) div[µ(x)A(x,∇u(x))] = div[µ(x)F(x)] in Ω
ρ

if
ˆ

Ωρ

〈A(x,∇u(x)),∇ϕ(x)〉µ(x) dx =

ˆ

Ωρ

〈F(x),∇ϕ(x)〉µ(x) dx ∀ ϕ ∈ C∞0 (Ωρ).

The following theorem on interior estimates for (5.1) is the main result of this

subsection.

Theorem 5.1. Let κ ∈ (0, 1), α ∈ (−1,∞), p ∈ [2,∞), and ρ ∈ (0, r0). There exists

δ1 = δ1(κ, α, p, n, ρ) > 0 sufficiently small such that the following assertions hold.

Suppose that A and µ satisfy (1.2), (1.3), and

(5.2) Θr,x(A, µ) ≤ δ1, ∀ x ∈ Ω2ρ, ∀r ∈ (0,R0)

for some R0 ∈ (0, 1), where Θr,x(A, µ) is defined in (2.2). Then, for any weak

solution u ∈ W1
2
(Ωρ, µ) to (5.1), if F ∈ Lp(Ωρ, µ), we have ∇u ∈ Lp(Ω2ρ, µ) and

‖∇u‖Lp(Ω2ρ,µ) ≤ N‖∇u‖L2(Ωρ,µ) + N‖F‖Lp(Ωρ,µ),

where N > 0 is a constant depending on ρ, p, n, κ,R0, α, diam(Ωρ), and the modulus

continuity of µ on Ωr0 .



WEIGHTED GRADIENT ESTIMATES, DEGENERATE ELLIPTIC EQUATIONS 17

Proof. Let us define

Ã(x, ξ) = µ(x)A(x, ξ) and F̃(x) = µ(x)F(x).

We observe that the vector field Ã is uniformly elliptic and bounded in Ωρ with the

ellipticity and boundedness constants depend on κ, ρ, and α. For any x0 ∈ Ω2ρ and

for r ∈ (0,min{R0, ρ}), we write

Θr,x0
(Ã) =

1

|Br(x0)|

ˆ

Br(x0)

sup
ξ∈Rn\{0}

|Ã(x, ξ) − Ãr,x0
(ξ)|

|ξ| dx,

where

Ãr,x0
(ξ) =

 

Br(x0)

Ã(x, ξ) dx.

As in Ωρ, µ = O(1), we see that W1
2
(Ωρ, µ) = W1

2
(Ωρ). Then, u ∈ W1

2
(Ωρ) is a weak

solution of

div [Ã(x,∇u(x))] = div [F̃(x)] in Ω
ρ.

Therefore, by the standard Lp-regularity theory for uniformly elliptic equations

(see [1, Theorem 5] and [23, Theorem 1.1] for instance), there exists a sufficiently

small ε = ε(κ, n, p) > 0 such that if

(5.3) Θr,x0
(Ã) ≤ ε, ∀ x0 ∈ Ω2ρ, ∀ r ∈ (0, ρ1)

for some ρ1 ∈ (0,min{R0, ρ}), then

ˆ

Br(x0)

|∇u(x)|p dx ≤ Nrn(1−p/2)

(
ˆ

B2r(x0)

|∇u(x)|2 dx

)p/2

+ N

ˆ

B2r(x0)

|F̃(x)|p dx

for all x0 ∈ Ω2ρ and for r > 0 such that B2r(x0) ⊂ Ωρ, where for N = N(p, n, κ, α) >

0. From this, and by covering Ω2ρ by a finite number of balls, we obtain

ˆ

Ω2ρ

|∇u(x)|p dx ≤ N

(
ˆ

Ωρ

|∇u(x)|2 dx

)p/2

+ N

ˆ

Ωρ

|F̃(x)|p dx

for N = N(p, n, κ, α, diam(Ω), ρ1) > 0. From this and as µ(x) = O(1), we see that if

(5.3) holds, then

‖∇u‖Lp(Ω2ρ,µ) ≤ N‖∇u‖L2(Ωρ,µ) + N‖F‖Lp(Ωρ,µ).

It remains to prove that under the condition (5.2) and with suitable choices of δ1

and ρ1 > 0, (5.3) holds. For any ξ ∈ Rn \ {0} and x0 ∈ Ω2ρ, recall the definition of

the weighted average ABr(x0)(ξ) given in (2.3) and also let

µr,x0
=

1

|Br(x0)|

ˆ

Br(x0)

µ(x) dx.
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Then, we have

|Ã(x, ξ) − µr,x0
ABr(x0)(ξ)|

|ξ|

≤
µ(x)|A(x, ξ) − ABr(x0)(ξ)|

|ξ| +
|ABr(x0)(ξ)||µ(x) − µr,x0

|
|ξ|

≤
µ(x)|A(x, ξ) − ABr(x0)(ξ)|

|ξ| + N(κ)|µ(x) − µr,x0
|, ∀ x ∈ Ω.

As a result,
 

Br(x0)

sup
ξ∈Rn\{0}

|Ã(x, ξ) − Ãr,x0
(ξ)|

|ξ| dx

≤ 2

 

Br(x0)

sup
ξ∈Rn\{0}

|Ã(x, ξ) − µr,x0
ABr(x0)(ξ)|

|ξ| dx

≤ 2

 

Br(x0)

µ(x) sup
ξ∈Rn\{0}

|A(x, ξ) − ABr(x0)(ξ)|
|ξ| dx + N(κ) sup

x,y∈Br(x0)

|µ(x) − µ(y)|

≤ N(α, n, ρ)

 

Br(x0)

sup
ξ∈Rn\{0}

|A(x, ξ) − ABr(x0)(ξ)|
|ξ| dµ(x) + N(κ) sup

x,y∈Br(x0)

|µ(x) − µ(y)|

≤ N(α, n, ρ)Θr,x0
(A, µ) + N(κ) sup

x,y∈Br(x0)

|µ(x) − µ(y)|.
(5.4)

Next, we choose δ1 = δ1(κ, α, n, p, ρ) > 0 sufficiently small such that

[N(α, n, ρ) + N(κ)]δ1 ≤ ε.
As µ is uniformly continuous on Ωρ, we can find ρ1 ∈ (0,min{R0, ρ}) sufficiently

small such that

|µ(x) − µ(y)| ≤ δ1, ∀x, y ∈ Ωρ, |x − y| ≤ ρ1.

Then with this choice of ρ1, (5.3) follows from (5.2) and (5.4). The proof of the

theorem is completed. �

5.2. Local boundary estimates. Recall that for R > 0, B′
R
(x′) denotes the ball in

R
n−1 of radius R centered at x′ ∈ Rn−1, and also B′

R
= B′

R
(0). Let r0 ∈ (0, 1) be

as in (1.2). As Ω is (δ, ρ0)-Lipschitz, it follows that for R ∈ (0,min{ρ0, r0}/2], and

x0 ∈ ∂Ω, by Definition 2.3 and with a rotation and translation, we may assume that

x0 = 0 and

C2R :=
{

x = (x′, xn) ∈ B′2R × R : γ(x′) < xn < γ(x′) + 2R
} ⊂ Ω and

Γ2R :=
{

(x′, γ(x′)) : x′ ∈ B′2R

}

⊂ ∂Ω,

where γ : B′
2R
→ R is a Lipschitz function which satisfies

γ(0) = 0, ∇γ(0) = 0, and ‖∇γ‖L∞(B′
2R

) ≤ δ.
Recall also that

µ(x) = dist(x, ∂Ω)α, x ∈ C2R.
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In this subsection, we study the equation (1.1) locally near 0 ∈ ∂Ω:

(5.5)















div [µ(x)A(x,∇u(x))] = div (µ(x)F) in C2R,

lim
x→x0

µ(x)
(

A(x,∇u(x)) − F(x)
)

· ~ν = 0 x0 ∈ Γ2R.

For p ∈ (1,∞), we say u ∈ W1
p(C2R, µ) is a weak solution of (5.5) if

(5.6)

ˆ

C2R

µ(x)〈A(x,∇u(x)),∇ϕ(x)〉 dx =

ˆ

C2R

µ(x)〈F(x),∇ϕ(x)〉 dx

for all ϕ ∈ C∞(C2R) vanishing on the neighborhood of ∂C2R \ Γ2R.

This subsection is devoted to the proof of the following result on local regularity

estimates of weak solutions to (5.5).

Theorem 5.2. Let R ∈ (0,min{ρ0, r0}/2). For each p ∈ [2,∞), there exists a

sufficiently small constant δ2 = δ2(κ, p, n, α) > 0 such that if (1.3) holds, Ω is

(δ, ρ0)-Lipschitz with δ ∈ (0, δ2), and

(5.7) Θρ,x0
(A, µ) < δ2 ∀x0 ∈ CR, ∀ ρ ∈ (0,R0)

for some R0 ∈ (0, 1), then for any weak solution u ∈ W1
2
(C2R, µ) of (5.5) with

F ∈ Lp(C2R, µ)
n, we have ∇u ∈ Lp(CR, µ) and

(
ˆ

CR

|∇u(x)|pµ(x) dx

)1/p

≤ Nµ(C2R)
1
p
− 1

2

(
ˆ

C2R

|∇u(x)|2µ(x) dx

)1/2

+ N

(
ˆ

C2R

|F(x)|pµ(x) dx

)1/p

,

(5.8)

where N = N(κ, α, n, p,R0) > 0.

To prove Theorem 5.2, we flatten the boundary Γ2R and then apply Theorem 4.2.

We begin with the following simple lemma on the properties of the weight µ.

Lemma 5.3. Assume that Ω is (δ, ρ0)-Lipschitz. Then, there exist h : C2R → R and

N = N(α) > 0 satisfying

µ(x) =
(

xn − γ(x′)
)α(

1 − h(x)
)α

and 0 ≤ h(x) ≤ δ
for all x ∈ C2R.

Proof. As R ∈ (0,min{r0, ρ0}/2), for each x = (x′, xn) ∈ C2R, we have

µ(x) = dα(x) and d(x) = inf
ξ∈B′

2R

(|x′ − ξ|2 + |xn − γ(ξ)|2
)1/2
.

By the definition, it is clear that

d(x) ≤ xn − γ(x′) ∀ x = (x′, xn) ∈ C2R.

On the other hand, as the cone with vertex at (γ(x′), xn) and slope δ stays above the

graph of Γ2R, we also have

d(x) ≥ xn − γ(x′)
√

1 + δ2
.
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From the last two estimates and by taking

h(x) = 1 − d(x)

xn − γ(x′)
, x = (x′, xn) ∈ C2R,

we see that

0 ≤ h(x) ≤ 1 − 1
√

1 + δ2
≤ δ.

The lemma is proved. �

Next, we flatten the boundary Γ2R and transfer the equation (5.5) into the equa-

tion in the upper-half space as in (4.3). Let Φ : C2R → D+
2R

:= B′
2R
× (0, 2R) and

Ψ : D+
2R
→ C2R be defined by

Φ(x) = (x′, xn − γ(x′)) ∀ x = (x′, xn) ∈ C2R,

Ψ(y) = (y′, yn + γ(y
′)) ∀y = (y′, yn) ∈ D2R.

By a simple calculation, we see that

(5.9) ∇Φ(x) =

(

In−1 0

−∂x′γ(x′) 1

)

for all x = (x′, xn) ∈ C2R, and

(5.10) ∇Ψ(y) =

(

In−1 0

∂y′γ(y
′) 1

)

for y = (y′, yn) ∈ D2R, where In−1 is the (n − 1) × (n − 1) identity matrix. We note

that det(∇Ψ) = det(∇Φ) = 1 and

Φ = Ψ
−1, ∇Ψ(y) = [∇Φ(Ψ(y)]−1, ∀ y ∈ D+2R.

Moreover, as δ ∈ (0, 1),

‖∇Φ‖2L∞(C2R) ≤ n + ‖∇γ‖2
L∞(B′

R
) ≤ n + δ2 ≤ n + 1 and

‖∇Ψ‖2
L∞(D+

2R
)
≤ n + 1.

(5.11)

Now, let us recall

T2R = B′2R × {0} = ∂D+2R ∩ {yn = 0},
and denote

(5.12) ω(y) = µ(Ψ(y)) and Â(y, ξ) = A(Ψ(y), ξ[∇Φ(Ψ(y))])[∇Φ(Ψ(y))]∗

for y ∈ D+
2R

. We then consider the equation

(5.13)















div[ω(y)Â(y,∇w(y))] = div[ω(y)G(y)] in D+
2R
,

lim
yn→0
ω(y)

(

Ân(y,∇w(y)) −Gn(y)
)

= 0 on T2R.

We note that a function w ∈ W1
p(D+

2R
, ω) is said to be a weak solution of (5.13) if

(5.14)

ˆ

D+
2R

ω(y)〈Â(y,∇w(y)),∇ϕ(y)〉dy =

ˆ

D+
2R

ω(y)〈G(y),∇ϕ(y)〉dy

for all ϕ ∈ C∞(D+
2R

) which vanishes on the neighborhood of ∂D+
2R
\ T2R.
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Lemma 5.4. Assume that Ω is (δ, ρ0)-Lipschitz. If u ∈ W1
p(C2R, µ) is a weak solu-

tion of (5.5) for some p ∈ (1,∞), then for

w(y) = u(Ψ(y)), y ∈ D+2R,

we have w ∈ W1
p(D+

2D
, ω) is weak a solution of (5.13) with

G(y) = F(Ψ(y))[∇Φ(Ψ(y))]∗, y ∈ D+2R.

Proof. Since u ∈ W1
p(C2R, µ) and by a change of variables, we see that w ∈

W1
p(D+

2R
, ω). The lemma follows directly by writing the solutions in the weak forms

(5.6) and (5.14), and using a change of variables. �

Next, let us denote

[A]BMOR0
(CR,µ) = sup

ρ∈(0,R0)

sup
x∈CR

Θρ,x(A, µ),

where Θρ,x(A, µ) is defined in (2.2). A similar definition can be made also for

[Â]BMOR0
(D+

R
,ω). Our next result gives the estimate of the mean oscillation of Â

with the weight ω.

Lemma 5.5. Assume that Ω is (δ, ρ0)-Lipschitz. If A satisfies (1.3), then so does Â

on D+
2R

. Moreover, there is N0 = N0(κ, n) > 0 such that

[Â]BMOR0
(D+

R
,ω) ≤ N0

(

[A]BMO2R0
(CR,µ) + δ

)

,

where Â is defined in (5.12).

Proof. The first assertion of the lemma follows directly from a direct calculation,

so we skip it. To prove the second assertion in the lemma, we observe that by the

mean value theorem, there is η ∈ Rn such that

A(Ψ(y), ξ[∇Φ(Ψ(y))]) = A(Ψ(y), ξ) + Aξ(Ψ(y), η)[∇Φ(Ψ(y)) − In]ξ,

where In is the n × n identity matrix. Then, we can write

Â(y, ξ) = B(y, ξ) + D(y, ξ),

where

B = A(Ψ(y), ξ[∇Φ(Ψ(y))])[∇Φ(Ψ(y)) − In]∗ + Aξ(Ψ(y), η)[∇Φ(Ψ(y)) − In]ξ

and D(y, ξ) = A(Ψ(y), ξ)·∇Φ(Ψ(y)). Then, it follows from the boundedness and the

growth condition of A in (1.3), and the explicit formulas in (5.9) and (5.10) that

[B]BMOR0
(D+

R
,ω) ≤ N(n, κ)‖∇γ‖L∞ ≤ N(n, κ)δ.

By a change of variables and subtracting the weighted average, we also have

[D]BMOR0
(D+

R
,ω) ≤ N(n)[A]BMO2R0

(CR,µ).

The proof of the lemma is then completed. �

Now we give the proof of Theorem 5.2.
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Proof of Theorem 5.2. Let δ0 = δ0(κ, α, n, p) > 0 be the number defined in Theo-

rem 4.2. Choose δ2 ∈ (0, δ0) such that 2N0δ2 < δ0, where N0 is a number defined

in Lemma 5.5. Then, it follows from δ ≤ δ2, (5.7), and Lemma 5.5 that

sup
ρ∈(0,R0/2)

sup
x∈D+

R

Θρ,x(Â, ω) ≤ δ0.

From this and Definition 4.1, we apply Theorem 4.2 to the equation (5.13) with a

scaling and obtain















 

D+
R

|∇w(y)|p dω(y)















1/p

≤ N















 

D+
2R

|∇w(y)|2 dω(y)















1/2

+ N















 

D+
2R

|G(y)|p dω(y)















1/p

for N = N(κ, α, p, n) > 0. From this, the definition of w and G in Lemma 5.4, and

the estimates in (5.11), (5.8) follows by using the change of variables y 7→ x =

Ψ(y). The proof of Theorem 5.2 is completed. �

5.3. Global Lp-estimates. This subsection gives the proof of Theorem 2.5.

Proof of Theorem 2.5. Let ρ = min{ρ0, r0}/8 and δ = min{δ1, δ2}, where δ1 =
δ1(κ, p, n, α, ρ) is defined in Theorem 5.1 and δ2 = δ2(κ, p, n, α) is defined Theorem

5.2. We prove Theorem 2.5 with this choice of δ.

Note that as p ≥ 2, F ∈ L2(Ω, µ) if F ∈ Lp(Ω, µ). Then, by the Minty-Browder

theorem, it follows that there exists a weak solution u ∈ W1
2
(Ω, µ) to the equation

(1.1), and this weak solution is unique up to a constant. More precisely, letX be the

space consisting of all functions v ∈ L1,loc(Ω) such its weak derivative ∇v exists,

(
ˆ

Ω

|∇v(x)|2 dµ(x)

)1/2

< ∞, and

ˆ

B

v(x)dx = 0

for some fixed ball B ⊂ Ω. The space X is endowed with the norm

‖v‖X =
(
ˆ

Ω

|∇v(x)|2 dµ(x)

)1/2

, v ∈ X.

It is easy to show that X is a Banach space and the norm is uniformly convex.

Therefore,X is reflexive and the Minty-Browder theorem is applicable which gives

the existence of a weak solution u ∈ W1
2
(Ω, µ) to the equation (1.1).

It remains to prove (2.5). Observe that with our choice of δ and under the as-

sumptions of Theorem 2.5, the conditions in Theorems 5.1 and 5.2 are satisfied.

Due to this, we apply Theorem 5.1 to get

‖∇u‖Lp(Ω2ρ,µ) ≤ N‖∇u‖L2(Ω,µ) + N‖F‖Lp(Ω,µ).

Similarly, applying Theorem 5.2, we obtain

‖∇u‖Lp(C3ρ(x0),µ) ≤ N‖∇u‖L2(Ω,µ) + N‖F‖Lp(Ω,µ)
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for any x0 ∈ ∂Ω. Then it follows from the compactness of Ω that

‖∇u‖Lp(Ω,µ) ≤ N‖∇u‖L2(Ω,µ) + N‖F‖Lp(Ω,µ)

for N > 0 depending on p, κ, n, r0,R0, ρ0, α,Ω, and the modulus of continuity of µ

on Ωρ. On the other hand, by the energy estimate and Hölder’s inequality, we have

‖∇u‖L2(Ω,µ) ≤ N(κ)‖F‖L2(Ω,µ) ≤ N(κ, p,Ω)‖F‖Lp(Ω,µ).

Therefore,

‖∇u‖Lp(Ω,µ) ≤ N‖F‖Lp(Ω,µ)

and the first assertion in (2.5) is proved.

It remains to prove the second assertion in (2.5). To this end, we apply the

weighted Sobolev embedding theorem [13, Remark 3.2 (ii)], see also [16, Theorem

6]. In fact, by flattening the boundary of the domain Ω, and using Lemma 5.3 and

a partition of unity, we can apply the Sobolev embedding [13, Remark 3.2 (ii)] to

obtain

(5.15) ‖u‖Lp1
(Ω,µ) ≤ N‖u‖W1

2
(Ω,µ),

where p1 ∈ (2,∞] satisfying

n + α+

2
≤ 1 +

n + α+

p1

and N = N(Ω, α, r0) > 0. Then, by the energy estimate and Hölder’s inequality, we

infer from (5.15) that

‖u‖Lp1
(Ω,µ) ≤ N‖u‖L2(Ω,µ) + N‖F‖L2(Ω,µ)

≤ N‖u‖L2(Ω,µ) + N‖F‖Lp(Ω,µ).

If p1 ≥ p, the second estimate in (2.5) follows. Otherwise, we repeat the process

by applying the Sobolev embedding [13, Remark 3.2 (ii)] again to obtain

‖u‖Lp2
(Ω,µ) ≤ N‖u‖W1

p1
(Ω,µ) ≤ N‖u‖L2(Ω,µ) + N‖F‖Lp(Ω,µ),

with p2 ∈ (p1,∞] satisfying

n + α+

p1

≤ 1 +
n + α+

p2

.

By doing this, we obtain an increasing sequence of numbers {pk}k defined as above

and obtain the second estimate in (2.5) when pk ≥ p for some k ≥ 1. The proof of

the theorem is completed. �

Remark 5.6. By using the Sobolev embedding, Hölder’s inequality, and a standard

iteration argument, the second estimate in (2.5) can be replaced with

‖u‖Lp∗ (Ω,µ) ≤ N
[

‖u‖L1(Ω,µ) + ‖F‖Lp(Ω,µ)

]

for p∗ ∈ (p,∞) satisfying
n + α+

p
≤ 1 +

n + α+

p∗



24 H. DONG, T. PHAN, AND Y. SIRE

and if the strict inequality holds p∗ = +∞ is allowed. We also point out that the

weighted Poincaré inequality of the type

‖u − ūΩ‖Lp(Ω,µ) ≤ N‖∇u‖Lp(Ω,µ), where ūΩ =
1

µ(Ω)

ˆ

Ω

u(x) dµ(x)

obtained in [14] cannot be directly applied as µ < Ap when α ≥ p − 1.
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