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Abstract. Suppose that Σn ⊂ Sn+1 is a closed embedded minimal hypersurface. We
prove that the first non-zero eigenvalue λ1 of the induced Laplace-Beltrami operator
on Σ satisfies λ1 ≥ n

2 + an(Λ6 + bn)−1, where an and bn are explicit dimensional
constants and Λ is an upper bound for the length of the second fundamental form of
Σ. This provides the first explicitly computable improvement on Choi and Wang’s
lower bound λ1 ≥ n

2 without any further assumptions on Σ.
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1. Introduction

An important problem in geometric analysis is to understand the spectrum of the
Laplace-Beltrami operator on a Riemannian manifold, and to study its relation to the
underlying intrinsic and/or ambient geometry. From the geometric perspective, it is
of particular interest to address such questions for manifolds embedded in spaces of
constant curvature. In this paper, we obtain a new lower bound for the first non-zero
eigenvalue λ1(Σ) of the induced Laplace-Beltrami operator −∆Σ on a smooth closed
hypersurface Σn minimally embedded in the unit sphere Sn+1 (which we always assume
to be equipped with the round metric g).

In this direction, an argument of Choi and Wang [6], later refined by Brendle [1],
gives the lower bound

λ1(Σ) >
n

2
. (1.1)

An important application of (1.1) and the Yang-Yau inequality [16] is an area bound
for embedded minimal surfaces in S3 in terms of their genus; this plays a crucial role
in the compactness theory of Choi and Schoen [5]. Moreover, (1.1) provides evidence
towards a famous conjecture of Yau [17], which predicts that λ1(Σ) is equal to n. Note
that the restriction to Sn+1 of each coordinate function on Rn+2 is an eigenfunction for
−∆Σ with eigenvalue n, and thus the upper bound λ1(Σ) ≤ n is clear.

Despite an extensive literature relating to the study of λ1(Σ) under additional as-
sumptions on Σ since the work of Choi and Wang (see e.g. [4, 15] and the references
therein), (1.1) has remained the strongest explicit lower bound that is known to hold
for a general embedded minimal hypersurface in Sn+1. In this paper, we obtain an
explicit improvement on (1.1) which depends only on the dimension n and an up-

per bound for ‖A‖ ··=
√

trace(g−1A)2, where for a fixed choice of orientation N on Σ,
A(X, Y ) ··= −g(∇XN, Y ) is the second fundamental form of Σ and (g−1A)X ··= −∇XN
is the corresponding shape operator, obtained by raising an index of A using the inverse
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metric g−1. We recall that the mean curvature of Σ is defined to be the trace of the
shape operator, and that Σ is called minimal if its mean curvature is identically zero.
Our main result is as follows:

Theorem 1.1. Let Σn ⊂ Sn+1 be a closed embedded minimal hypersurface and denote
Λ = maxΣ ‖A‖. Then there exist constants

an ≥
(n− 1)n2

32000
and bn ≤

5n2

216
(1.2)

such that

λ1(Σ) ≥ n

2
+

an
Λ6 + bn

. (1.3)

Remark 1.2. In the proof of Theorem 1.1, we will actually show that one can take

an ≥
3(n− 1)n7/2

3200
arctan3

(
1

3
√
n

)
and bn ≤

5n7/2

8
arctan3

(
1

3
√
n

)
.

The inequalities in (1.2) follow since for n ≥ 2 we have 7
200
≤ n3/2 arctan3( 1

3
√
n
) ≤ 1

27
.

Remark 1.3. In recent related work [18], Zhao obtained an estimate of the form (1.3)
when n = 2, although his constants are not explicit.

Whilst we are only interested in explicitly computable lower bounds for λ1(Σ) in this
paper, we note that upper bounds for either λ1(Mn, g) or λ1(Mn, g) ·Vol(Mn, g)2/n on
Riemannian manifolds (Mn, g) have also been studied extensively – see for instance the
classical works of Cheng [3], Li and Yau [10,11], Yang and Yau [16] and Korevaar [9].
In particular, recall that for a closed orientable Riemannian surface (Σ2, g) of genus γ,
the Yang-Yau inequality [7, 16] states that λ1(Σ, g) Area(Σ, g) ≤ 8πbγ+3

2
c, where bxc

denotes the integer part of x. The following result is then an immediate corollary of
the Yang-Yau inequality and Theorem 1.1:

Corollary 1.4. Let Σ2 ⊂ S3 be a closed embedded minimal surface of genus γ and
denote Λ = maxΣ ‖A‖. Then there exist constants an and bn satisfying (1.2) such that

Area(Σ) ≤
(
n

2
+

an
Λ6 + bn

)−1

8π

⌊
γ + 3

2

⌋
.

Remark 1.5. As a consequence of our method for proving Theorem 1.1, we will also
obtain an explicit volume bound for closed embedded mean-convex hypersurfaces in
Sn+1 in terms of n and Λ – see Proposition 2.2. We note that our proof of Proposition
2.2 does not invoke any lower bound for λ1.

To put Theorem 1.1 into context, we now briefly discuss some related results. We
first observe that, in light of the strictness of the inequality in (1.1), non-explicit im-
proved lower bounds depending only on quantities such as dimension, index, topological
type and curvature bounds follow from suitable compactness results. For example, if
A(Λ, n) denotes the class of closed embedded minimal hypersurfaces in Sn+1 satisfying
maxΣ ‖A‖ ≤ Λ, then it is well-known that A(Λ, n) is compact in the Ck topology for
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any k ≥ 2. Combined with (1.1), it follows that there exists a constant α(Λ, n) > 0
such that

λ1(Σ) ≥ n

2
+ α(Λ, n) for all Σ ∈ A(Λ, n). (1.4)

We stress that, in contrast with (1.4), the estimate (1.3) obtained in Theorem 1.1
provides an explicitly computable improvement on (1.1). Moreover, our lower bound
(1.3) is obtained by arguing more directly in the spirit of [6], rather than appealing to
any compactness theory.

Ck compactness results have also been established in other classes. For example, Choi
and Schoen showed in [5] that the class B(γ) of closed embedded minimal surfaces in
S3 with genus less than γ is compact in the Ck topology for any k ≥ 2. In combination
with (1.1), this implies the existence of a constant β(γ) > 0 such that

λ1(Σ) ≥ 1 + β(γ) for all Σ ∈ B(γ).

A more recent compactness of result of Sharp [13, Corollary 2.6] shows that the class
C(V, I, n) of closed embedded minimal hypersurfaces in Sn+1 with volume bounded
from above by V and index bounded from above by I is compact in the Ck topology for
k ≥ 2 when 2 ≤ n ≤ 6. Combined with (1.1), this implies the existence of a constant
δ(V, I, n) > 0 such that

λ1(Σ) ≥ n

2
+ δ(V, I, n) for all Σ ∈ C(V, I, n) when 2 ≤ n ≤ 6.

In a similar vein to Theorem 1.1, it would be interesting to derive improved lower
bounds for λ1(Σ) with explicit dependence on quantities such as genus (when n = 2),
volume and/or index. Such results could provide a step towards proving Yau’s conjec-
ture within certain classes of minimal hypersurfaces in Sn+1. Recently, Yau’s conjecture
was established for the class of embedded isoparametric minimal hypersurfaces in Sn+1

– see Tang and Yan [15] and the references therein. We refer also to the work of Choe
and Soret [4], where Yau’s conjecture was established for a class of symmetric minimal
surfaces in S3.

Remark 1.6. The aforementioned results of [5,6,13] apply more generally when Sn+1

is replaced by a closed manifold (Mn+1, g) whose Ricci curvature satisfies Ricg ≥ kg for
some constant k > 0. The bound (1.1) is then replaced by λ1(Σ) > k

2
, and our subse-

quent discussion generalises in the obvious way. In attempting to generalise Theorem
1.1 to this more general context, it seems that our method introduces constants that
depend on sectional curvature bounds. To keep the exposition simple, and since the
case of the sphere is the one of most interest, we will not discuss such generalisations
in this paper.

The plan of the paper is as follows. In Section 2 we prove a preliminary result on the
embeddedness of parallel hypersurfaces in Sn+1. As a corollary, we obtain an explicit
volume bound for closed embedded mean-convex hypersurfaces in Sn+1 in terms of an
upper bound for ‖A‖. In Section 3 we prove Theorem 1.1. The key here is to estimate
a positive term which is dropped in the estimate of Choi and Wang in [6]. Here, our
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integral estimates require working in a neighbourhood of Σ whose thickness is controlled
away from zero; this control is provided by our results in Section 2.

2. Embeddedness of parallel hypersurfaces

Suppose that Σn is a smooth, closed and embedded hypersurface in Sn+1. As observed
in [6], Σ divides the sphere into two components Sn+1 = M1∪M2, where ∂M1 = ∂M2 =
Σ. Let NΣ denote the normal bundle of Σ ⊂ Sn+1 and expNΣ the corresponding
exponential map. We fix the orientation on Σ determined by the unit normal vector
field X on Σ pointing into M1, and for t ∈ R we define

Σt = {expNΣ(p, tXp) ∈ Sn+1 : p ∈ Σ}.
Geometrically, Σt is the hypersurface parallel to Σ and of signed distance t to Σ. It
is well-known (see e.g. Theorems 2.1 and 2.2 in [2]) that if κ1(p), . . . , κn(p) are the
principal curvatures of Σ at p and κmax = maxp∈Σ,i∈{1,...,n} |κi(p)|, then Σt is a smooth
immersed hypersurface in Sn+1 for

|t| < arctan(κ−1
max) =·· TΣ.

Moreover, we may consider n continuous functions κi(·, ·) : Σ× (−TΣ, TΣ)→ R defined
by

κi(·, t) =
κi(·, 0) + tan t

1− κi(·, 0) tan t
, κi(·, 0) ··= κi(·). (2.1)

Then for each t ∈ (−TΣ, TΣ), the quantities κ1(p, t), . . . , κn(p, t) are the principal cur-
vatures of Σt at expNΣ(p, tXp), with respect to the orientation on Σt determined by
parallel transporting X along geodesics normal to Σ by a signed distance t. The for-
mula (2.1) can be derived somewhat directly following the proof of Theorem 2.2 in [2].
Alternatively, it can be derived from the more general fact that the principal curvatures
of parallel hypersurfaces in a Riemannian manifold satisfy a certain Riccati equation,
which in the case of the sphere can be integrated directly – see Corollary 3.5 in [8].

Whilst it is well-known that Σt remains embedded for t sufficiently small, in general
the range of t for which Σt is embedded is not controlled by the curvature of Σ, since
Σ may be arbitrarily close to ‘self-touching’. We show that in the case that Σ is mean-
convex (that is, the mean curvature HΣ of Σ is nonnegative), we do in fact have such
control:

Proposition 2.1. Suppose Σn ⊂ Sn+1 is a smooth, closed and embedded mean-convex
hypersurface. Then Σt is a smooth, closed and embedded strictly mean-convex hyper-
surface in Sn+1 for |t| ∈ (0, TΣ).

Proof. We consider the case t > 0; the case t < 0 is similar. Let

t∗ = sup{t > 0 : Σt is smooth and embedded},
and suppose for a contradiction that t∗ = arctan(εκ−1

max) for some 0 < ε < 1. Since t∗ <
TΣ, by the discussion above Σt∗ is a smooth, immersed, non-embedded hypersurface.
Therefore, for some point x ∈ Σt∗ , there exist distinct points p, q ∈ Σ such that x =
expNΣ(p, t∗Xp) = expNΣ(q, t∗Xq). Now, locally near p (resp. q), Σt is a smooth graph
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x

Σ̃t∗
p

Σt∗
q

Br(x)
ν

d1 > 0, d2 > 0

d1 < 0, d2 > 0

d1 < 0, d2 < 0

Figure 1.

over a neighbourhood of the origin in TpΣ (resp. TqΣ) for t ≤ t∗. Denote these graphs
by Σt

p and Σt
q, respectively. Then by (2.1), on Σt

p we have

κi(p, t∗) =
κi(p, 0) + tan t∗

1− κi(p, 0) tan t∗
= κi(p, 0) +

(1 + κi(p, 0)2) tan t∗
1− κi(p, 0) tan t∗

> κi(p, 0) +
(1 + κi(p, 0)2) tan t∗

1 + ε
, (2.2)

and likewise on Σt
q we have

κi(q, t∗) > κi(q, 0) +
(1 + κi(q, 0)2) tan t∗

1 + ε
. (2.3)

Summing over i in (2.2) and (2.3), and using mean-convexity of Σ to assert
∑

i κi(p, 0) ≥
0 and

∑
i κi(q, 0) ≥ 0, we see that the mean curvature HΣt∗

p
of Σt∗

p at the point x satisfies

HΣt∗
p

(x) >
(n+ ‖A(p)‖2) tan t∗

1 + ε
> 0, (2.4)

and likewise

HΣt∗
q

(x) >
(n+ ‖A(q)‖2) tan t∗

1 + ε
> 0. (2.5)

Now, by minimality of t∗, the graphs Σt∗
p and Σt∗

q meet tangentially at x and thus

have opposite orientations at x. Let us denote by Σ̃t∗
p the hypersurface Σt∗

p but with
the opposite orientation. Then by (2.4) and (2.5), we have

HΣ̃t∗
p

(x) < 0 < HΣt∗
q

(x). (2.6)

Now denote by d1 the signed distance to Σ̃t∗
p and d2 the signed distance to Σt∗

q , so

that the functions di are positive in the direction ν of the common orientation of Σ̃t∗
p

and Σt∗
q ; note that the functions di are well defined in a sufficiently small geodesic ball

Br(x) (see Figure 1). Since the orientation on Σ̃t∗
p is given by ∇d1 and the orientation

on Σt∗
q is given by ∇d2, the definition of the mean curvature as the trace of the shape
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operator implies that HΣ̃t∗
p

(x) = −∆d1(x) and HΣt∗
q

(x) = −∆d2(x). Therefore, (2.6)

can be rewritten as

−∆d1(x) < 0 < −∆d2(x),

and by continuity it follows that −∆d1 < 0 < −∆d2 in Br(x)∩{d1 > 0} for sufficiently
small r, i.e. ∆(d2 − d1) < 0 in Br(x) ∩ {d1 > 0}. But d2 − d1 ≥ 0 in Br(x) ∩ {d1 > 0}
and (d2−d1)(x) = 0. By the Hopf lemma, either d2−d1 is constant in Br(x)∩{d1 > 0},
or ∇ν(d2 − d1)(x) > 0. In either case we obtain a contradiction: the first possibility
contradicts the strict inequality ∆(d2 − d1) < 0 in Br(x) ∩ {d1 > 0}, and the second
possibility contradicts the fact that ∇νd1(x) = ∇νd2(x) = 1.

We have therefore shown that t∗ = TΣ. It is also clear from the computations (2.2)–
(2.5) that Σt is strictly mean convex for t ∈ (0, TΣ), which completes the proof of the
proposition. �

As a corollary of Proposition 2.1 we obtain an explicit volume bound for closed
embedded mean-convex hypersurfaces in Sn+1:

Proposition 2.2. Suppose Σn ⊂ Sn+1 is a smooth, closed and embedded mean-convex
hypersurface with maxΣ ‖A‖ ≤ Λ, and define

IΛ =

∫ arctan(Λ−1)

0

(cos t)n(1− Λ tan t)n dt.

Then

Vol(Σn) ≤ 1

2 IΛ

Vol(Sn+1). (2.7)

In particular, there exists a dimensional constant cn ≤ 25
3

(
5
4

)n−2
such that

Vol(Σn) ≤ cnΛ Vol(Sn+1) (2.8)

whenever Λ ≥ 1
4
.

Remark 2.3. Suppose in addition to the hypotheses of Proposition 2.2 that Σ is
minimal and not totally geodesic. Then by the inequality

∫
Σ
‖A‖2(‖A‖2 − n) dSg ≥ 0

of Simons [14], Λ ≥
√
n and thus the assumption Λ ≥ 1

4
is automatically satisfied.

Note that the restriction Λ ≥ 1
4

is somewhat arbitrary, allowing us to make a crude
estimation of the quantity IΛ in the proof below.

Proof. Let V ±(R) denote the volume of region swept out by the parallel hypersurfaces
Σ±t for 0 ≤ t ≤ R. Then by [8, Exercise 3.5] and Proposition 2.1, the following
formula is valid for R ≤ arctan(Λ−1):

V ±(R) =

∫
Σ

(∫ R

0

(cos t)n
n∏
i=1

(1∓ κi tan t) dt

)
dS.
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Taking R = arctan(Λ−1), we therefore see that

Vol(Sn+1) ≥ V +(arctan(Λ−1)) + V −(arctan(Λ−1))

≥ 2

∫
Σ

(∫ arctan(Λ−1)

0

(cos t)n(1− Λ tan t)n dt

)
dS = 2 IΛ Vol(Σn), (2.9)

which proves (2.7).

Now suppose that Λ ≥ 1
4
. Then on the interval [0, 5

54Λ
] it is easy to verify that

cos t ≥ 9
10

and tan t ≤ 27t
25
≤ 1

10Λ
, and moreover 5

54Λ
≤ arctan(Λ−1). Therefore, by (2.9)

we obtain

Vol(Sn+1) ≥ 2 Vol(Σn)

∫ 5
54Λ

0

(cos t)n(1− Λ tan t)n dt ≥ 5

27

(
9

10

)2n
Vol(Σn)

Λ
,

from which the estimate (2.8) easily follows with cn ≤ 25
3

(
5
4

)n−2
. �

3. The improved estimate

In this section we prove Theorem 1.1. We begin in Section 3.1 by recalling the
argument of Choi and Wang [6]. In Section 3.2 we give the proof of Theorem 1.1
assuming the validity of two propositions. In Sections 3.3 and 3.4 we give the proofs of
these two propositions.

3.1. The estimate of Choi and Wang. Our proof of Theorem 1.1 initially proceeds
in the same way as in [6]; we derive the relevant estimate of [6] here for the convenience
of the reader. The starting point is the following identity due to Reilly [12], which is
an integral version of Bochner’s formula:

Lemma 3.1 (Reilly’s formula). Let (Xn+1, g) be a smooth orientable Riemannian man-
ifold with boundary Σn ··= ∂Xn+1. Denote by dvg the volume element on (Xn+1, g), dSg
the volume element of the induced metric on Σ, uν the outward normal derivative of u
on Σ, ∇Σ the gradient operator of the induced metric on Σ, A the second fundamental
form of Σ defined with respect to the inward unit normal, and H the mean curvature of
Σ with respect to the inward unit normal. Then for u ∈ C2(X),∫

X

(
(∆u)2 − |∇2u|2

)
dvg =

∫
X

RicX(∇u,∇u) dvg +

∫
Σ

(∆Σu+Huν)uν dSg

−
∫

Σ

〈∇Σu,∇Σuν〉 dSg +

∫
Σ

A(∇Σu,∇Σu) dSg.

Remark 3.2. Our convention that A and H be defined with respect to the inward unit
normal on Σ is opposite to the convention used in [6].

Recall that under the setup of Theorem 1.1, we may write Sn+1 = M1 ∪M2, where
∂M1 = ∂M2 = Σ. Denote by Ψ an L2-normalised eigenfunction corresponding to the
first non-zero eigenvalue λ1 of −∆Σ, so that −∆ΣΨ = λ1Ψ and ‖Ψ‖L2(Σ) = 1, and let u
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be the unique solution to {
∆u = 0 in M1

u = Ψ on Σ.
(3.1)

In what follows, we fix the orientation on Σ pointing into M1, and we denote by g the
round metric on Sn+1. We may assume that

∫
Σ
A(∇Σu,∇Σu) dSg ≥ 0, otherwise we

work on M2 instead. Then by Reilly’s formula and minimality of Σ, the solution u to
(3.1) satisfies

−
∫
M1

|∇2u|2 dvg ≥ n

∫
M1

|∇u|2 dvg +

∫
Σ

uν∆
Σu dSg −

∫
Σ

〈∇Σu,∇Σuν〉 dSg

= n

∫
M1

|∇u|2 dvg + 2

∫
Σ

uν∆
Σu dSg

= n

∫
M1

|∇u|2 dvg − 2λ1

∫
Σ

uνu dSg. (3.2)

On the other hand, integration by parts and the fact that ∆u = 0 on M1 gives∫
Σ

uνu dSg =

∫
M1

(
|∇u|2 + u∆u

)
dvg =

∫
M1

|∇u|2 dvg, (3.3)

and substituting (3.3) back into (3.2) yields

2

(
λ1 −

n

2

)∫
M1

|∇u|2 dvg ≥
∫
M1

|∇2u|2 dvg ≥ 0. (3.4)

This is precisely the estimate derived in [6]; the lower bound λ1 ≥ n
2

follows immediately
from (3.4), since |∇u| 6≡ 0. We note that in [1], Brendle gave a refinement of the above
argument to show that λ1 >

n
2
, although we will not need to use this strict inequality

in our subsequent arguments.

3.2. Proof of Theorem 1.1. As seen above, the term
∫
M1
|∇2u|2 dvg in (3.4) is simply

dropped in the argument of Choi and Wang. In order to prove Theorem 1.1, we obtain
a lower bound for

∫
M1
|∇2u|2 dvg in terms of

∫
M1
|∇u|2 dvg.

Our proof of Theorem 1.1 can be decomposed into two main propositions, which
we describe now. We introduce parameters 0 < ε ≤ Λ

2
and β > 0, which are to be

fixed later in the proof of Theorem 1.1 but assumed sufficiently small for now so that
γ ··=

√
2n− Λε

Λ−ε(
n

Λ2 + 1)− β > 0. We also define δ = n arctan( ε
n
) and T = δ

2Λ2 , and for

t ≥ 0 we denote M t
1 = {x ∈ M1 : d(x) > t}, where d is the distance to Σ in M1. Note

∂M t
1 = Σt is a smooth embedded hypersurface for 0 ≤ t < arctan(Λ−1) by Proposition

2.1, and in particular this holds for 0 ≤ t < 2T . Our two main propositions are then
as follows:

Proposition 3.3. Suppose ε, β, γ, δ and T are as above, and Λ ≥
√
n. Then∫

M1

|∇u|2 dvg ≤
2Λ2

δγ

∫
MT

1 \M2T
1

|∇u|2 dvg +
1

βγ

∫
M1

|∇2u|2 dvg. (3.5)
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Proposition 3.4. Suppose ε, β, γ, δ and T are as above. Then∫
MT

1

|∇u|2 dvg ≤
16Λ4

(n− 1)δ2

∫
M1

|∇2u|2 dvg. (3.6)

Assuming the validity of Propositions 3.3 and 3.4 for now, we proceed to give the
proof of Theorem 1.1:

Proof of Theorem 1.1. By Simons’ inequality
∫

Σ
‖A‖2(‖A‖2 − n) dSg ≥ 0 for minimal

hypersurfaces in Sn+1 [14], if Λ <
√
n then A ≡ 0 and thus Σ is a totally geodesic

n-sphere. In this case, it is well-known that λ1(Σ) = n, and so (1.3) clearly holds. For
the remainder of the proof, we may therefore assume that Λ ≥

√
n.

Substituting the estimate (3.6) of Proposition 3.4 back into the estimate (3.5) of
Proposition 3.3, we obtain∫

M1

|∇u|2 dvg ≤
(

32Λ6

(n− 1)δ3γ
+

1

βγ

)∫
M1

|∇2u|2 dvg.

Therefore ∫
M1

|∇2u|2 dvg ≥
an

Λ6 + bn

∫
M1

|∇u|2 dvg

where

an =
(n− 1)δ3γ

32
and bn =

(n− 1)δ3

32β
.

Now, since we assume ε ≤ Λ
2

we have Λ
Λ−ε ≤ 2, and since we assume Λ ≥

√
n we have

n
Λ2 ≤ 1. Substituting these inequalities back into the definition of γ, we see

γ =
√

2n− Λε

Λ− ε

(
n

Λ2
+ 1

)
− β ≥

√
n

(√
2− 4ε√

n
− β√

n

)
.

Choosing β =
√
n

20
and ε =

√
n

3
, we then see that γ ≥

√
n(
√

2 − 4
3
− 1

20
) ≥ 3

√
n

100
and

δ = n arctan( ε
n
) = n arctan( 1

3
√
n
). Therefore

an ≥
3(n− 1)n7/2

3200
arctan3

(
1

3
√
n

)
and bn ≤

5n7/2

8
arctan3

(
1

3
√
n

)
.

As explained in Remark 1.2, this completes the proof of the theorem. �

The rest of the paper is devoted to the proofs of Propositions 3.3 and 3.4.

3.3. Proof of Proposition 3.3. To describe our setup for the proof of Proposition
3.3, let d be the signed distance to Σ in Sn+1:

d(x) =

{
− dist(x,Σ) if x ∈M2

dist(x,Σ) if x ∈M1.

As before, we equip the surfaces Σd with the orientation induced by Σ, i.e. the orien-
tation given by the normal vector field ∇d on Σd. Then the mean curvature of Σd is
given by HΣd = − div∇d = −∆d.
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By Proposition 2.1, the parallel hypersurfaces Σd are smooth and embedded for

|d| ∈
[
0, arctan(Λ−1)

)
. (3.7)

However, to gain control on the mean curvature of the hypersurfaces parallel to Σ,
in the proof of Proposition 3.3 we will need to work in a neighbourhood around Σ of
thickness smaller than that determined by (3.7). To this end, for 0 < ε ≤ Λ

2
we define

Dε = arctan(εΛ−2).

Since ε
Λ
< 1, clearly Dε < arctan(Λ−1) and thus Σt is a smooth embedded hypersurface

for |t| ∈ [0, Dε]. Our first estimate towards the proof of Proposition 3.3 is an upper
bound on the mean curvature of the hypersurfaces Σt parallel to Σ when t ∈ [0, Dε]:

Lemma 3.5. Let 0 < ε ≤ Λ
2

. Then for t ∈ [0, Dε],

HΣt ≤ ε̃ ··=
Λε

Λ− ε

(
n

Λ2
+ 1

)
.

Proof. Summing over i in (2.1) and appealing to minimality of Σ, we see that for
t ∈ [0, Dε] we have

HΣt =
n∑
i=1

(
κi(·, 0) +

(1 + κi(·, 0)2) tan t

1− κi(·, 0) tan t

)
=

n∑
i=1

(1 + κi(·, 0)2) tan t

1− κi(·, 0) tan t
. (3.8)

Now, by definition of Dε, we have 1 − κi(·, 0) tan t ≥ Λ−ε
Λ

on [0, Dε] for each i, and it
therefore follows from (3.8) that for t ∈ [0, Dε],

HΣt ≤ Λ

Λ− ε
(n+ Λ2) tan t =

Λ

Λ− ε

(
n

Λ2
+ 1

)
Λ2 tan t ≤ Λε

Λ− ε

(
n

Λ2
+ 1

)
,

as claimed. �

We now use Lemma 3.5 to show:

Lemma 3.6. Let 0 < ε ≤ Λ
2

and suppose v is a smooth function defined on M1. Then
for t ∈ [0, Dε] and any β > 0,∫

Σ

|∇v|2 dSg ≤
∫

Σt

|∇v|2 dSg + (ε̃+ β)

∫
M1\Mt

1

|∇v|2 dvg + β−1

∫
M1\Mt

1

|∇2v|2 dvg.

(3.9)

Proof. Recall that if x ∈ Sn+1 is a signed distance s from Σ, then HΣs(x) = −∆d(x).
By Lemma 3.5, we therefore have

−
∫
M1\Mt

1

|∇v|2∆d dvg ≤ ε̃

∫
M1\Mt

1

|∇v|2 dvg. (3.10)

On the other hand, by the divergence theorem

−
∫
M1\Mt

1

|∇v|2∆d dvg =

∫
M1\Mt

1

〈∇d,∇|∇v|2〉 dvg −
∫

Σ∪Σt

|∇v|2〈∇d, ν〉 dSg, (3.11)
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where ν is the outward pointing unit normal to the region M1\M t
1. By definition of d,

we have 〈∇d, ν〉 = −1 on Σ and 〈∇d, ν〉 = 1 on Σt. Therefore, by (3.11), for any β > 0
we have

−
∫
M1\Mt

1

|∇v|2∆d dvg ≥ −2

∫
M1\Mt

1

|∇v||∇2v| dvg +

∫
Σ

|∇v|2 dSg −
∫

Σt

|∇v|2 dSg

≥ −β
∫
M1\Mt

1

|∇v|2 dvg − β−1

∫
M1\Mt

1

|∇2v|2 dvg +

∫
Σ

|∇v|2 dSg

−
∫

Σt

|∇v|2 dSg. (3.12)

Substituting (3.12) into (3.10) and rearranging, we arrive at (3.9). �

Whilst the desired estimate in Proposition 3.3 involves
∫
M1
|∇u|2 dvg on the LHS, the

estimate in Lemma 3.6 (therein taking v = u) involves
∫

Σ
|∇u|2 dSg on the LHS. These

two quantities are related by the following lemma:

Lemma 3.7. The solution u to (3.1) satisfies∫
Σ

|∇u|2 dSg ≥
√

2n

∫
M1

|∇u|2 dvg. (3.13)

Proof. Integrating by parts, using ∆u = 0 in M1 and the fact that ‖u|Σ‖L2(Σ) =
‖Ψ‖L2(Σ) = 1, we have(∫

M1

|∇u|2 dvg
)2

=

(∫
Σ

uνu dSg

)2

≤
∫

Σ

u2
ν dSg

∫
Σ

u2 dSg =

∫
Σ

u2
ν dSg. (3.14)

On the other hand,∫
Σ

u2
ν dSg =

∫
Σ

|∇u|2 dSg −
∫

Σ

|∇Σu|2 dSg =

∫
Σ

|∇u|2 dSg − λ1, (3.15)

with the second identity in (3.15) following from the variational characterisation of
λ1 and the fact that u|Σ = Ψ. Substituting (3.15) into (3.14) and applying Young’s
inequality, we obtain∫

Σ

|∇u|2 dSg ≥ λ1 +

(∫
M1

|∇u|2 dvg
)2

≥ 2λ
1/2
1

∫
M1

|∇u|2 dvg. (3.16)

The desired estimate (3.13) then follows from (3.16) and the fact that λ1 ≥ n
2
. �

We are now in a position to give the proof of Proposition 3.3:

Proof of Proposition 3.3. We first take v = u in the estimate (3.9) of Lemma 3.6, where
u is the solution to (3.1). Substituting (3.13) back into (3.9), we therefore arrive at

(
√

2n− ε̃− β)︸ ︷︷ ︸
=:γ

∫
M1

|∇u|2 dvg ≤
∫

Σt

|∇u|2 dSg + β−1

∫
M1

|∇2u|2 dvg. (3.17)

Now recall that we define δ = n arctan( ε
n
). Noting that δ

x2 ≤ arctan( ε
x2 ) for x ≥

√
n, we

see that δ
Λ2 ≤ arctan( ε

Λ2 ) = Dε for Λ ≥
√
n. In particular, we are justified in integrating
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both sides of (3.17) with respect to t over the interval [T, 2T ], where T = δ
2Λ2 . This

yields (3.5), completing the proof of Proposition 3.3. �

3.4. Proof of Proposition 3.4. The proof of Proposition 3.4 is a consequence of two
lemmas. The first of these is as follows:

Lemma 3.8. Let Ω ⊂ Sn+1 be a domain and v a smooth function defined on Ω satisfying
∆v = 0 in Ω. Then

∆|∇v|2 = 2|∇2v|2 + 2n|∇v|2 in Ω. (3.18)

Proof. This is an immediate consequence of the Bochner formula

∆|∇w|2 = 2〈∇∆w,∇w〉+ 2|∇2w|2 + 2 Ricg(∇w,∇w)

for a smooth function w defined on a Riemannian manifold (N, g), and the fact that
Ricg = ng on Sn+1 equipped with the round metric g. �

For a domain Ω ⊂ Sn+1 with smooth boundary, we denote by Ωs the set of points in
Ω whose distance to ∂Ω is greater than s. We now use Lemma 3.8 to show:

Lemma 3.9. Let Ω ⊂ Sn+1 be a domain with smooth boundary ∂Ω, and v a smooth
function defined on Ω satisfying ∆v = 0 in Ω. Suppose that t > 0 is sufficiently small
so that ∂(Ω2t) is a smooth embedded hypersurface in Sn+1. Then∫

Ω2t

|∇v|2 dvg ≤
1

n− 1
t−2

∫
Ω

|∇2v|2 dvg. (3.19)

Proof. Let ζ ∈ C∞c (Ω) be a cutoff function whose properties will be specified later in
the proof. Multiplying the inequality (3.18) by ζ2 and integrating over Ω, we see∫

Ω

ζ2(n|∇v|2 + |∇2v|2) dvg =
1

2

∫
Ω

ζ2∆|∇v|2 dvg

= −
∫

Ω

ζ〈∇ζ,∇|∇v|2〉 dvg

= −2

∫
Ω

ζ∇2v(∇v,∇ζ) dvg

≤
∫

Ω

ζ2|∇v|2 dvg +

∫
Ω

|∇ζ|2|∇2v|2 dvg.

Therefore

0 ≥ (n− 1)

∫
Ω

ζ2|∇v|2 dvg +

∫
Ω

(ζ2 − |∇ζ|2)|∇2v|2 dvg

≥ (n− 1)

∫
Ω

ζ2|∇v|2 dvg −
∫

Ω

|∇ζ|2|∇2v|2 dvg,

which yields ∫
Ω

ζ2|∇v|2 dvg ≤
1

n− 1

∫
Ω

|∇ζ|2|∇2v|2 dvg. (3.20)
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Now, for each ε > 0, one can choose a smooth cutoff function ζ such that ζ ≡ 0 in
Ω\Ωt, ζ ≡ 1 in Ω2t and |∇ζ| ≤ (1 + ε)t−1. Thus (3.20) implies∫

Ω2t

|∇v|2 dvg ≤
(1 + ε)2

n− 1
t−2

∫
Ω

|∇2v|2 dvg, (3.21)

and the estimate (3.19) then follows after taking ε→ 0 in (3.21). �

Proof of Proposition 3.4. In the statement of Lemma 3.9, let Ω = M1 and let v = u,
where u is the solution to (3.1). Following the reasoning given in the proof Proposition
3.3, we are then justified in taking t = T/2 in Lemma 3.9, where T = δ

2Λ2 as before.
The desired estimate (3.6) then follows. �

Having established Propositions 3.3 and 3.4, the proof of Theorem 1.1 is complete,
as explained in Section 3.2.
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