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ABSTRACT. Suppose that ¥ C S"*! is a closed embedded minimal hypersurface. We
prove that the first non-zero eigenvalue A; of the induced Laplace-Beltrami operator
on ¥ satisfies \y > § + an(A® + b,)~1, where a, and b, are explicit dimensional
constants and A is an upper bound for the length of the second fundamental form of
3. This provides the first explicitly computable improvement on Choi and Wang’s
lower bound A\; > % without any further assumptions on 3.
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1. INTRODUCTION

An important problem in geometric analysis is to understand the spectrum of the
Laplace-Beltrami operator on a Riemannian manifold, and to study its relation to the
underlying intrinsic and/or ambient geometry. From the geometric perspective, it is
of particular interest to address such questions for manifolds embedded in spaces of
constant curvature. In this paper, we obtain a new lower bound for the first non-zero
eigenvalue A\;(X) of the induced Laplace-Beltrami operator —A* on a smooth closed
hypersurface 3" minimally embedded in the unit sphere S"™! (which we always assume
to be equipped with the round metric g).

In this direction, an argument of Choi and Wang [6], later refined by Brendle [1],
gives the lower bound

(D) > g (1.1)

An important application of (1.1) and the Yang-Yau inequality [16] is an area bound
for embedded minimal surfaces in S? in terms of their genus; this plays a crucial role
in the compactness theory of Choi and Schoen [5]. Moreover, (1.1) provides evidence
towards a famous conjecture of Yau [17], which predicts that A;(X) is equal to n. Note
that the restriction to S™*! of each coordinate function on R"*?2 is an eigenfunction for
—A* with eigenvalue n, and thus the upper bound \;(X) < n is clear.

Despite an extensive literature relating to the study of A;(X) under additional as-
sumptions on ¥ since the work of Choi and Wang (see e.g. [4, 15| and the references
therein), (1.1) has remained the strongest explicit lower bound that is known to hold
for a general embedded minimal hypersurface in S**!. In this paper, we obtain an
explicit improvement on (1.1) which depends only on the dimension n and an up-
per bound for ||Al| := y/trace(¢g~1A)?2, where for a fixed choice of orientation N on ¥,
A(X,)Y) := —g(VxN,Y) is the second fundamental form of ¥ and (971 A)X := —VxN

is the corresponding shape operator, obtained by raising an index of A using the inverse
1
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metric g~. We recall that the mean curvature of ¥ is defined to be the trace of the
shape operator, and that ¥ is called minimal if its mean curvature is identically zero.
Our main result is as follows:

Theorem 1.1. Let ¥ C S"*! be a closed embedded minimal hypersurface and denote
A = maxy ||Al|. Then there exist constants

(n —1)n? 5n?
= a0 e S o (1.2)
such that
n an
A (X) > CRNG T (1.3)

Remark 1.2. In the proof of Theorem 1.1, we will actually show that one can take

3(n—1 7/2 7/2
> u arctan® (

Qn

- 3200

arctan® L and b, < L
3v/n " 3vn)
1

The inequalities in (1.2) follow since for n > 2 we have ;&= < n3/2 arctan’(5.=) <

Remark 1.3. In recent related work [18], Zhao obtained an estimate of the form (1.3)
when n = 2, although his constants are not explicit.

1
27"

Whilst we are only interested in explicitly computable lower bounds for A;(X) in this
paper, we note that upper bounds for either A\;(M™", g) or A\;(M™, g) - Vol(M™, g)*/™ on
Riemannian manifolds (M™, g) have also been studied extensively — see for instance the
classical works of Cheng [3], Li and Yau [10,11], Yang and Yau [16] and Korevaar [9].
In particular, recall that for a closed orientable Riemannian surface (32, g) of genus 7,
the Yang-Yau inequality [7,16] states that A;(X, g) Area(S, g) < 87|22, where |z]
denotes the integer part of x. The following result is then an immediate corollary of
the Yang-Yau inequality and Theorem 1.1:

Corollary 1.4. Let X2 C S? be a closed embedded minimal surface of genus vy and
denote A = maxy, |Al|. Then there exist constants a,, and b, satisfying (1.2) such that

Area(X) < Py n _1877 y+s .
—\2 AS+y, 2

Remark 1.5. As a consequence of our method for proving Theorem 1.1, we will also
obtain an explicit volume bound for closed embedded mean-convex hypersurfaces in
S**! in terms of n and A — see Proposition 2.2. We note that our proof of Proposition
2.2 does not invoke any lower bound for A;.

To put Theorem 1.1 into context, we now briefly discuss some related results. We
first observe that, in light of the strictness of the inequality in (1.1), non-explicit im-
proved lower bounds depending only on quantities such as dimension, index, topological
type and curvature bounds follow from suitable compactness results. For example, if
A(A, n) denotes the class of closed embedded minimal hypersurfaces in S*™! satisfying
maxy, |A|| < A, then it is well-known that A(A,n) is compact in the C* topology for
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any k > 2. Combined with (1.1), it follows that there exists a constant a(A,n) > 0
such that

AM(X) > g + a(A,n) for all ¥ € A(A,n). (1.4)

We stress that, in contrast with (1.4), the estimate (1.3) obtained in Theorem 1.1
provides an explicitly computable improvement on (1.1). Moreover, our lower bound
(1.3) is obtained by arguing more directly in the spirit of [6], rather than appealing to
any compactness theory.

C* compactness results have also been established in other classes. For example, Choi
and Schoen showed in [5] that the class B(7) of closed embedded minimal surfaces in
S? with genus less than 7 is compact in the C* topology for any k > 2. In combination
with (1.1), this implies the existence of a constant S(y) > 0 such that

AM(X) > 14 B(y) forall ¥ e B(7).

A more recent compactness of result of Sharp [13, Corollary 2.6] shows that the class
C(V,I,n) of closed embedded minimal hypersurfaces in S"*! with volume bounded
from above by V' and index bounded from above by I is compact in the C* topology for
k > 2 when 2 < n < 6. Combined with (1.1), this implies the existence of a constant
d(V,I,n) > 0 such that

(D) > g +6(V,I,n) forall © € C(V,I,n) when 2 < n < 6.

In a similar vein to Theorem 1.1, it would be interesting to derive improved lower
bounds for A;(X) with explicit dependence on quantities such as genus (when n = 2),
volume and/or index. Such results could provide a step towards proving Yau’s conjec-
ture within certain classes of minimal hypersurfaces in S"*1. Recently, Yau’s conjecture
was established for the class of embedded isoparametric minimal hypersurfaces in S™*1
— see Tang and Yan [15] and the references therein. We refer also to the work of Choe
and Soret [4], where Yau’s conjecture was established for a class of symmetric minimal
surfaces in S?.

Remark 1.6. The aforementioned results of [5,6,13] apply more generally when S+
is replaced by a closed manifold (M™*!, g) whose Ricci curvature satisfies Ric, > kg for
some constant k& > 0. The bound (1.1) is then replaced by A;(X) > %, and our subse-
quent discussion generalises in the obvious way. In attempting to generalise Theorem
1.1 to this more general context, it seems that our method introduces constants that
depend on sectional curvature bounds. To keep the exposition simple, and since the
case of the sphere is the one of most interest, we will not discuss such generalisations
in this paper.

The plan of the paper is as follows. In Section 2 we prove a preliminary result on the
embeddedness of parallel hypersurfaces in S"*1. As a corollary, we obtain an explicit
volume bound for closed embedded mean-convex hypersurfaces in S in terms of an
upper bound for ||A||. In Section 3 we prove Theorem 1.1. The key here is to estimate
a positive term which is dropped in the estimate of Choi and Wang in [6]. Here, our
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integral estimates require working in a neighbourhood of ¥ whose thickness is controlled
away from zero; this control is provided by our results in Section 2.

2. EMBEDDEDNESS OF PARALLEL HYPERSURFACES

Suppose that X" is a smooth, closed and embedded hypersurface in S*™!. As observed
in [6], ¥ divides the sphere into two components S"*' = M; U My, where OM; = OM, =
Y. Let NY denote the normal bundle of ¥ C S"*! and exp™¥* the corresponding
exponential map. We fix the orientation on ¥ determined by the unit normal vector
field X on X pointing into M, and for ¢ € R we define

¥t = {exp™V*¥(p, tX,) € S 1 p € X}

Geometrically, X is the hypersurface parallel to ¥ and of signed distance t to X. It
is well-known (see e.g. Theorems 2.1 and 2.2 in [2]) that if x1(p),...,k,(p) are the
principal curvatures of ¥ at p and Kpmax = maxyesic(i,..n} |Ki(p)], then X is a smooth
immersed hypersurface in S for

|t| < arctan(xl ) =: Tk.

max

Moreover, we may consider n continuous functions k;(-,-) : X X (=T%,Ts) — R defined
by

0= P G 00 =0 @1

Then for each t € (—=T%,T%), the quantities x1(p,t),. .., k,(p,t) are the principal cur-
vatures of Xt at exp™*(p,tX,), with respect to the orientation on X! determined by
parallel transporting X along geodesics normal to > by a signed distance t. The for-
mula (2.1) can be derived somewhat directly following the proof of Theorem 2.2 in [2].
Alternatively, it can be derived from the more general fact that the principal curvatures
of parallel hypersurfaces in a Riemannian manifold satisfy a certain Riccati equation,
which in the case of the sphere can be integrated directly — see Corollary 3.5 in [8].

Whilst it is well-known that ¥! remains embedded for ¢ sufficiently small, in general
the range of ¢ for which X is embedded is not controlled by the curvature of X, since
Y} may be arbitrarily close to ‘self-touching’. We show that in the case that > is mean-
convex (that is, the mean curvature Hy of ¥ is nonnegative), we do in fact have such
control:

Proposition 2.1. Suppose X" C S™*! is a smooth, closed and embedded mean-convex
hypersurface. Then X' is a smooth, closed and embedded strictly mean-convex hyper-
surface in S*Tt for |t| € (0, Ty).

Proof. We consider the case ¢t > 0; the case t < 0 is similar. Let
t, = sup{t > 0 : ¥’ is smooth and embedded},

and suppose for a contradiction that ¢, = arctan(ex_ ! ) for some 0 < & < 1. Since t, <
Ts, by the discussion above X% is a smooth, immersed, non-embedded hypersurface.
Therefore, for some point x € X', there exist distinct points p,q € X such that z =

exp™*(p, t.X,) = exp">(q, t.X,). Now, locally near p (resp. ¢), ¥ is a smooth graph
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it* di1 >0, do>0

d1<0, d2>0

st
d1 < 0, d2 <0

FIGURE 1.

over a neighbourhood of the origin in 7% (resp. T,X) for t < t,. Denote these graphs
by ! and X, respectively. Then by (2.1), on X! we have

(1 + k4(p,0)?) tant,
1 — ki(p,0) tant,
(1+ x;i(p,0)?) tan t,
1+e

ki(p,0) + tant,
7 at* = = R\p, 0
Filp, ) 1 — ki(p,0) tant, wilp,0) +

> ki(p,0) + : (2.2)

and likewise on Efl we have

(1 + ki(q,0)?) tant,
1+e¢ '

Summing over ¢ in (2.2) and (2.3), and using mean-convexity of ¥ to assert > . x;(p,0) >
0and ) . x;(g,0) > 0, we see that the mean curvature Hyy. of Xl at the point x satisfies

(n+ [[A(p)|I*) tant,

Kli(Qa t*) > KJZ'(Q? 0) +

(2.3)

Heeo () > >0 2.4
and likewise
A(Q)|I?) tan t,
Hy. (z) > (n+ Al tant. (2.5)

1+e¢
Now, by minimality of t,, the graphs Z;* and ZZ: meet tangentially at x and thus
have opposite orientations at x. Let us denote by Z;* the hypersurface Z;* but with

the opposite orientation. Then by (2.4) and (2.5), we have
Hf)f,* (:E) <0< Hzé* (:13) (2.6)

Now denote by d; the signed distance to f]; and dy the signed distance to ¥, so
that the functions d; are positive in the direction v of the common orientation of f]fg
and Ef]*; note that the functions d; are well defined in a sufficiently small geodesic ball
B,(x) (see Figure 1). Since the orientation on i; is given by Vd; and the orientation
on X is given by Vd,, the definition of the mean curvature as the trace of the shape
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operator implies that Hgr. (z) = —Ady(z) and Hy. (x) = —Ady(z). Therefore, (2.6)
can be rewritten as

—Adi(x) <0< —Ady(z),

and by continuity it follows that —Ad; < 0 < —Ady in B, (x) N{d; > 0} for sufficiently
small T, i.e. A(dQ — dl) < 0in Br(l’) N {dl > O} But ds —d; > 01in BT(.T) N {dl > O}
and (dy —dy)(x) = 0. By the Hopf lemma, either dy —d; is constant in B,(z)N{d; > 0},
or V,(dy — dy)(z) > 0. In either case we obtain a contradiction: the first possibility
contradicts the strict inequality A(dy — dy) < 0 in B,.(z) N {dy > 0}, and the second
possibility contradicts the fact that V,d;(x) = V,da(z) = 1.

We have therefore shown that t, = T%. It is also clear from the computations (2.2)-
(2.5) that ¢ is strictly mean convex for ¢ € (0,7%), which completes the proof of the
proposition. ]

As a corollary of Proposition 2.1 we obtain an explicit volume bound for closed
embedded mean-convex hypersurfaces in S***:

Proposition 2.2. Suppose ¥ C S"* is a smooth, closed and embedded mean-convex
hypersurface with maxy, | Al < A, and define

arctan(A~1)
Iy = / (cost)"(1 — Atant)" dt.
0
Then

1
Vol(¥") < — Vol(S™). (2.7)
21y

In particular, there exists a dimensional constant ¢, < %(%)R_Q such that

Vol(¥") < ¢, A Vol(S™H1) (2.8)
whenever A > %.

Remark 2.3. Suppose in addition to the hypotheses of Proposition 2.2 that X is
minimal and not totally geodesic. Then by the inequality [, [|A[*(||A[[* —n)dS, > 0
of Simons [14], A > /n and thus the assumption A > 1 is automatically satisfied.
Note that the restriction A > }L is somewhat arbitrary, allowing us to make a crude

estimation of the quantity I, in the proof below.

Proof. Let VE(R) denote the volume of region swept out by the parallel hypersurfaces
Yt for 0 < t < R. Then by [8, Exercise 3.5] and Proposition 2.1, the following
formula is valid for R < arctan(A™!):

Vi(R):/z (/OR(cost)”ﬁ(1$/fitant)dt) ds.

=1
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Taking R = arctan(A~'), we therefore see that
Vol(S™*1) > V*(arctan(A™!)) + V~ (arctan(A™1))

arctan(A~1)
> 2/ (/ (cost)™(1 — Atant)” dt> dS =21, Vol(X"), (2.9)
= \Jo

which proves (2.7).

Now suppose that A > i. Then on the interval |0, 5%\] it is easy to verify that
cost > % and tant < 22 < -~ and moreover =+ < arctan(A™'). Therefore, by (2.9)
we obtain

_5_ 2n
(2
Vol(S™) > 2 Vol(3") / " cost) (1 — Atant)dt > - (L) YOUET)
; 27\ 10 A

from which the estimate (2.8) easily follows with ¢, < %(%)n_Q. O

3. THE IMPROVED ESTIMATE

In this section we prove Theorem 1.1. We begin in Section 3.1 by recalling the
argument of Choi and Wang [6]. In Section 3.2 we give the proof of Theorem 1.1
assuming the validity of two propositions. In Sections 3.3 and 3.4 we give the proofs of
these two propositions.

3.1. The estimate of Choi and Wang. Our proof of Theorem 1.1 initially proceeds
in the same way as in [6]; we derive the relevant estimate of [6] here for the convenience
of the reader. The starting point is the following identity due to Reilly [12], which is
an integral version of Bochner’s formula:

Lemma 3.1 (Reilly’s formula). Let (X", g) be a smooth orientable Riemannian man-
ifold with boundary X" := X" Denote by dv, the volume element on (X", g), dS,
the volume element of the induced metric on 3, u, the outward normal derivative of u
on Y, V= the gradient operator of the induced metric on 3, A the second fundamental
form of ¥ defined with respect to the inward unit normal, and H the mean curvature of
Y with respect to the inward unit normal. Then for u € C?(X),

/X ((Aw)? — |V?uP) dv, = /X Ricx (Vu, V) du, + /E (Au + Hu, )u, dS,

- /(Vzu, V*u,) dS, + / A(VZu, V¥u) dS,.
) by
Remark 3.2. Our convention that A and H be defined with respect to the inward unit
normal on ¥ is opposite to the convention used in [6].

Recall that under the setup of Theorem 1.1, we may write S"*! = M; U M,, where
OM, = OM, = Y. Denote by ¥ an L?-normalised eigenfunction corresponding to the
first non-zero eigenvalue A\; of —A¥, so that —A*¥ = A\ and || ¥||2(x) = 1, and let u
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be the unique solution to

(3.1)

Au=0 ian
u=Ww on ..

In what follows, we fix the orientation on ¥ pointing into M;, and we denote by ¢ the
round metric on S"*'. We may assume that [, A(V>u, V¥u)dS,; > 0, otherwise we
work on Ms instead. Then by Reilly’s formula and minimality of 3, the solution u to
(3.1) satisfies

—/ IV2ul|? dv, Zn/ \Vu\zdvg+/u,,AZung—/(VZu, V*u,) dS,
My My b p)

:n/ |Vul? dvg—{—Q/ul,AZung
M, >

= n/ |Vul? dv, — 2\ / u,udS,. (3.2)
M, >
On the other hand, integration by parts and the fact that Au = 0 on M; gives
/ u,udS, = / (IVul® + uAu) dv, = / (Vul® do,, (3.3)
> My My

and substituting (3.3) back into (3.2) yields

2(n-5) [ vuP e,z [ 9P, =0 (3.4)
2 M1 Ml

This is precisely the estimate derived in [6]; the lower bound A; > # follows immediately
from (3.4), since |Vu| # 0. We note that in [1], Brendle gave a refinement of the above
argument to show that A\; > 7, although we will not need to use this strict inequality
in our subsequent arguments.

3.2. Proof of Theorem 1.1. As seen above, the term [, [V?u|*dv, in (3.4) is simply
dropped in the argument of Choi and Wang. In order to prove Theorem 1.1, we obtain
a lower bound for [, [V?ul*dv, in terms of [, |Vul* dv,.

Our proof of Theorem 1.1 can be decomposed into two main propositions, which
we describe now. We introduce parameters 0 < ¢ < % and 8 > 0, which are to be
fixed later in the proof of Theorem 1.1 but assumed sufficiently small for now so that
vi=v2n— L2 (& +1) — B> 0. We also define § = narctan(<) and T' = 535, and for
t > 0 we denote M{ = {x € M : d(x) > t}, where d is the distance to ¥ in M;. Note
OM! = X is a smooth embedded hypersurface for 0 < ¢t < arctan(A~') by Proposition
2.1, and in particular this holds for 0 <t < 27. Our two main propositions are then

as follows:

Proposition 3.3. Suppose ¢, 3,7, and T are as above, and A > \/n. Then
2

2 1
Vul? dv S—/ Vul? dv +—/ V2ul? do,. 3.5
J v, <7 [ [y 65)
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Proposition 3.4. Suppose ,3,7v,0 and T are as above. Then

16A*
/J\/]T |VU’2 dUg S m /Iw |V2U|2 dUg. (36)

Assuming the validity of Propositions 3.3 and 3.4 for now, we proceed to give the
proof of Theorem 1.1:

Proof of Theorem 1.1. By Simons’ inequality [y, [ A||*(]|A]|> = n)dS, > 0 for minimal
hypersurfaces in S"™! [14], if A < y/n then A = 0 and thus ¥ is a totally geodesic
n-sphere. In this case, it is well-known that A;(X) = n, and so (1.3) clearly holds. For
the remainder of the proof, we may therefore assume that A > /n.

Substituting the estimate (3.6) of Proposition 3.4 back into the estimate (3.5) of
Proposition 3.3, we obtain

32A6 1
Vul|? dv §(——|——)/ V2ul|? dv,.
/M IVl du, (n—=1)0%  6v) Jun Vuldv,

Therefore
an
/Ml |V2u]2 dvg Z m /M1 |VU‘2dU9
where
_ 3 _ 3
P Gl e A P Gt L
32 3203

Now, since we assume € < % we have AL_E < 2, and since we assume A > /n we have
1z < 1. Substituting these inequalities back into the definition of v, we see

’yzx/%—AA_gg(%Jrl)—52%(@—%—%).

Choosing § = ‘2/—? and ¢ = ‘/Tﬁ we then see that v > /n(v2 — s — ) = %Oﬁ and

d =narctan(£) = n arctan(#ﬁ). Therefore

3(n — 1)n"/? s 1 5n7/? s 1
a, > ———— arctan” | ——= and b, < ——arctan®’ | ——= |.
3200 3vn 8 3vn

As explained in Remark 1.2, this completes the proof of the theorem. O

The rest of the paper is devoted to the proofs of Propositions 3.3 and 3.4.

3.3. Proof of Proposition 3.3. To describe our setup for the proof of Proposition
3.3, let d be the signed distance to ¥ in S"*!:

d( —dist(z,%) if x € My
xTr) =
dist(z, X) if v € M.
As before, we equip the surfaces X¢ with the orientation induced by ¥, i.e. the orien-

tation given by the normal vector field Vd on X¢. Then the mean curvature of ¥¢ is
given by Hye = —divVd = —Ad.
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By Proposition 2.1, the parallel hypersurfaces ¢ are smooth and embedded for
|d| € [0,arctan(A™1)). (3.7)

However, to gain control on the mean curvature of the hypersurfaces parallel to X,
in the proof of Proposition 3.3 we will need to work in a neighbourhood around 3 of
thickness smaller than that determined by (3.7). To this end, for 0 < e < % we define

D, = arctan(eA™?).

Since £ < 1, clearly D, < arctan(A~') and thus X' is a smooth embedded hypersurface
for |t| € [0, D.]. Our first estimate towards the proof of Proposition 3.3 is an upper
bound on the mean curvature of the hypersurfaces 3* parallel to 3 when ¢t € [0, D.]:

Lemma 3.5. Let 0 < e < 4. Then fort € [0, D.],

- Ae (n
Hzt §5:: A_€<F+1)
Proof. Summing over i in (2.1) and appealing to minimality of ¥, we see that for
t € [0, D.] we have

Hy: = zn: (m(-)()) + (1 + ri(+,0)%) tant) _ Zn: (1+r4(,0)%) tant' (3.8)

— 1 — k;(+,0) tant 1 — k;(+,0) tant

Now, by definition of D., we have 1 — k;(-,0) tant > AXE on [0, D.] for each ¢, and it
therefore follows from (3.8) that for ¢ € [0, D,],

n 9 Ae ['n
_— < -
(A2+1)A tant_A—5<A2+1)’

as claimed. O

A A
t< 2 prmnd
Hy, _A_g(n+A)tant T

We now use Lemma 3.5 to show:

Lemma 3.6. Let 0 < e < % and suppose v is a smooth function defined on M,. Then
fort €[0,D.] and any B > 0,

/ [Vo|?dS, < / |Vo|?dS, + (€ + 6)/ |Vol? dv, + 87" IV20]? dv,.
s t My \M¢ M\ M
(3.9)

Proof. Recall that if x € S"™! is a signed distance s from X, then Hys(x) = —Ad(z).
By Lemma 3.5, we therefore have

—/ |V|?Ad dv, < g/ |Vo|? dv,. (3.10)
Mi\M! Mi\M?
On the other hand, by the divergence theorem
—/ VP Ad dv, = / (Vd,V|Vv|?) dv, — / IVo|*(Vd,v)dS,, (3.11)
Mi\M} Mi\M}

zuxt
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where v is the outward pointing unit normal to the region M;\M;{. By definition of d,
we have (Vd,v) = —1 on ¥ and (Vd,v) = 1 on X'. Therefore, by (3.11), for any 3 > 0
we have

—/ |Vu]?Ad dv, > —2/ ]VUHV%]dvg—i—/ |Vv\2ng—/ |Vo|? dS,
Ml\M{‘ ]\41\]\41t > >t

> -3 IVol* dv, — B~ (V20]? do, +/ |Vu|? dS,
>

M\ M} M\ M
/ [Vul? dS,. (3.12)

Substituting (3.12) into (3.10) and rearranging, we arrive at (3.9). O

Whilst the desired estimate in Proposition 3.3 involves [, [Vu|?dv, on the LHS, the

estimate in Lemma 3.6 (therein taking v = u) involves [, [Vul*dS, on the LHS. These
two quantities are related by the following lemma:

Lemma 3.7. The solution u to (3.1) satisfies

/ |Vu|>dS, > v2n |Vul® dv,. (3.13)
by My

Proof. Integrating by parts, using Au = 0 in M; and the fact that |lu|g|2x) =
H\IJHLQ(E) = 1, we have

(/M |Vu|2dvg)2: (/uyudS) /u ds, /u ds, _/u is,  (3.14)

On the other hand,
/ uZ dS, = / |Vu|*dS, — / (VZul?dS, = / |Vu|?dS, — A\, (3.15)
b > b b

with the second identity in (3.15) following from the variational characterisation of
A1 and the fact that uly = W. Substituting (3.15) into (3.14) and applying Young’s
inequality, we obtain

2
/|vu\2dsg > A+ (/ |Vu]2dvg> > 2/\}/2/ Vul? dv,. (3.16)

Y M, My
The desired estimate (3.13) then follows from (3.16) and the fact that A\, > 2. O

We are now in a position to give the proof of Proposition 3.3:

Proof of Proposition 3.3. We first take v = w in the estimate (3.9) of Lemma 3.6, where
u is the solution to (3.1). Substituting (3.13) back into (3.9), we therefore arrive at

(Van—F— 8 )/ Vul? dv, < /|Vu|2dS 457 [ VRl dv,. (3.17)
N———"JM My
=y

Now recall that we define § = narctan(£). Noting that % < arctan(%) for z > v/n, we
see that % < arctan(4z) = D, for A > \/_ In partlcular we are justified in integrating
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both sides of (3.17) with respect to t over the interval [T, 27T, where T = %. This

yields (3.5), completing the proof of Proposition 3.3. O

3.4. Proof of Proposition 3.4. The proof of Proposition 3.4 is a consequence of two
lemmas. The first of these is as follows:

Lemma 3.8. Let Q C S™"! be a domain and v a smooth function defined on € satisfying
Av =0 . Then

A|Vo]? = 2|V20|* + 2n|Vu|]*  in Q. (3.18)
Proof. This is an immediate consequence of the Bochner formula
AlVw|? = 2(VAw, Vw) + 2|V?w|* + 2 Ric,(Vw, Vw)

for a smooth function w defined on a Riemannian manifold (N, g), and the fact that
Ric, = ng on S"™ equipped with the round metric g. O

For a domain 2 C S"*! with smooth boundary, we denote by Q° the set of points in
2 whose distance to 0f) is greater than s. We now use Lemma 3.8 to show:

Lemma 3.9. Let Q C S*™! be a domain with smooth boundary OS2, and v a smooth
function defined on 2 satisfying Av = 0 in Q. Suppose that t > 0 is sufficiently small
so that O(2*%) is a smooth embedded hypersurface in S™™'. Then

1
/ |Vv|? dv, < mt_Q/ |V20|? du,. (3.19)
032t - Q

Proof. Let ¢ € C°(Q2) be a cutoff function whose properties will be specified later in
the proof. Multiplying the inequality (3.18) by ¢? and integrating over ), we see

/Q (n|Vo|? + |V*0]?) dv, = /C AVl du,
- [ v Vv du,
— _z/ch%(vv,vg) dv,
g/QCQIVdevgﬂL/Q’VC\szv‘zdvg-

Therefore

02 (n=1) [ GVl do, + [ (¢~ V6Tl oy
Q Q
> (n-1) [ CITofdu, — [ 96V du,
Q Q

which yields
1
/g?yw?dvg < —/ VPRIV du,. (3.20)
Q n—1Jg
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Now, for each € > 0, one can choose a smooth cutoff function ¢ such that { = 0 in

O\Q, ¢ =1in Q% and [V(| < (1 +¢)t~1. Thus (3.20) implies

1 2
/ Vo] dv, < ﬂt”/ V20 ]2 dv,, (3.21)
Q2t n — 1 9]
and the estimate (3.19) then follows after taking e — 0 in (3.21). O

Proof of Proposition 3.4. In the statement of Lemma 3.9, let 2 = M; and let v = u,

where u is the solution to (3.1). Following the reasoning given in the proof Proposition

3.3, we are then justified in taking ¢ = 7'/2 in Lemma 3.9, where T' = % as before.

The desired estimate (3.6) then follows. O]

Having established Propositions 3.3 and 3.4, the proof of Theorem 1.1 is complete,
as explained in Section 3.2.
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