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Numerical solution of discrete PDEs corresponding to saddle point problems is highly relevant to physical systems
such as Stokes flow. However, scaling up numerical solvers for such systems is often met with challenges in
efficiency and convergence. Multigrid is an approach with excellent applicability to elliptic problems such as the
Stokes equations, and can be a solution to such challenges of scalability and efficiency. The degree of success
of such methods, however, is highly contingent on the design of key components of the multigrid scheme,
including the hierarchy of discretizations, and the relaxation scheme used. Additionally, in many practical cases,
it may be more effective to use a multigrid scheme as a preconditioner to an iterative Krylov subspace solver, as
opposed to striving for maximum efficacy of the relaxation scheme in all foreseeable settings. In this paper, we
propose an efficient symmetric multigrid preconditioner for the Stokes Equations on a staggered finite difference
discretization. Our contribution is focused on crafting a preconditioner that (a) is symmetric indefinite, matching
the property of the Stokes system itself, (b) is appropriate for preconditioning the SQMR iterative scheme [1],
and (c) has the requisite symmetry properties to be used in this context. In addition, our design is efficient in

terms of computational cost and facilitates scaling to large domains.

1. Introduction

Saddle-point problems arise in many fields such as fluid dynam-
ics [2,3], structure mechanics [4,5] and magnetohydrodynamics [6].
As modern computational platforms advance, the demand for solving
large-scale problems becomes more pronounced. However, the perfor-
mance potential of modern computing platforms is often hindered by
existing algorithms, which may lack the necessary efficiency in design.
Multigrid methods [7] are designed specifically for their potential scal-
ability in handling large-scale problems with the advantage of linear
time and space complexity in principle. Although the convergence rates
of multigrid methods are — in the best-case scenario — independent of
problem sizes, the design and optimization of multigrid components,
such as relaxation schemes, can significantly impact this property. The
relaxation scheme, often referred to as a smoother in multigrid, can be
designed according to various classical techniques, including the dis-
tributive smoother [8], Uzawa smoother [9], Braess-Sarazin smoother
[10] and Vanka smoother [11]. The distributive smoother transforms
the original equations into a right-preconditioned system, aiming to
improve properties such as conditioning or numerical structure that fa-
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cilitates the applicability of the relaxation scheme. This has been studied
for solving problems like the Stokes equations [8,12,13] and the Oseen
equations [14]. The Uzawa smoother transforms indefinite systems into
positive definite formulations by using Schur complement, with applica-
tions in solving the Stokes equations [15] and poroelasticity equations
[16]. The Braess-Sarazin smoother is a variant of the pressure correction
steps in SIMPLE-type algorithms [17]. It also relies on the approxima-
tion of Schur complement and has been introduced for tackling chal-
lenges such as the Stokes equations [10,18] and magnetohydrodynamic
equations [19]. In contrast to the previous three smoothers, the Vanka
smoother focuses on solving local overlapping saddle-point problems
and updating several local degrees of freedom collectively. While the
Vanka smoother is highly effective in reducing local residuals, it comes
with higher per-iteration costs compared to other smoothing methods. It
has proven effective in the Stokes equations [11,20] and poroelasticity
equations [21]. In addition to the choice of smoother, the convergence
of multigrid also depends on factors like grid-operators [22] and dis-
cretization methods [23].

Considering the sensitivity of multigrid methods, they are often
more effective when used as a preconditioner to an iterative Krylov
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subspace solver. The multigrid-preconditioned conjugate gradient (MG-
PCG) method [24] is the prototypical approach for solving positive
definite systems such as the Poisson equation. However, for saddle-
point problems, a more general Krylov subspace solver is required,
due to the indefiniteness of the discretized equations. The generalized
minimal residual (GMRes) method [25] emerges as the most common
choice in this context, promising convergence for any asymmetric indef-
inite system. The multigrid-preconditioned GMRes has been employed
in addressing transport equations [26], advection-diffusion equations
[27,28] and Navier-Stokes equations [29]. Despite the indefiniteness of
saddle-point problems, symmetry is present as a property in many sit-
uations such as the Stokes equation, Oseen equations and Helmholtz
equation. The minimal residual (Minres) [30] method, designed for
symmetric indefinite systems, consumes both less memory and less com-
putational time than GMRes per iteration while maintaining similar
convergence rates. Thus, it is a more appropriate option in such sym-
metric scenarios. However, Minres has the limitation that it can only be
paired with positive definite preconditioners, making it incompatible
with multigrid preconditioning (which for a problem like ours would
yield a symmetric indefinite preconditioner). For this reason, we turn
our attention to the symmetric quasi-minimal residual (SQMR) method
[1], a variant of MINRES with identical work and storage requirements.
SQMR supports symmetric indefinite preconditioners, opening up op-
portunities for the use of multigrid as the preconditioning scheme. To
the best of our knowledge, no multigrid-preconditioned SQMR has been
developed for symmetric saddle-point problems.

Since SQMR requires a symmetric (indefinite) preconditioner, care
must be taken to preserve the symmetry property if multigrid is used in
this context. This requires a number of design choices, many of which
are trivial to implement (e.g. making sure that the prolongation and re-
striction are adjoint operators), but also requires a more delicate design
of the relaxation scheme, so to not hinder the symmetry property. In-
spired by the steps needed to preserve symmetry within the Gauss-Seidel
method, we design an effective symmetric distributive smoother and
Vanka smoother in our work. The main idea behind the design of a sym-
metric smoother involves relaxation in a specific order, followed by re-
laxation in the exact reverse order. For distributive relaxation, this also
needs to be paired with a combination of left- and right-preconditioning
in order to preserve symmetry. Our primary focus is on the multigrid-
preconditioned SQMR method, utilizing a staggered finite difference
discretization of the Stokes equations as the model problem. The main
contributions of this work can be summarized as follows:

» We propose a multigrid-preconditioned SQMR method for symmet-
ric saddle-point problems within the context of the Stokes equa-
tions.

We design two multigrid smoothers, based on distributive relax-
ation and Vanka relaxation respectively, taking care to preserve
the symmetry of the operators. We combine these relaxation op-
erators selectively, to achieve a balance between convergence rates
and computational time per iteration.

We compare the performance of our new multigrid-preconditioned
solver with the classical multigrid method on both 2D and 3D
benchmarks.

The remaining structure of the paper is as follows: In section 2, we
introduce the finite difference discretization of the Stokes equation and
explain how we apply multigrid. In section 3, we discuss how we en-
sure the symmetry of the distributive smoother and Vanka smoother.
In section 4, we propose our approach to use multigrid as a precondi-
tioner for SQMR. In section 5, we describe our discrete domain design
used for setting boundary conditions. In section 6, we compare the
performance of our multigrid-preconditioned solver with the classical
multigrid method on both 2D and 3D benchmarks, and also benchmark
against un-preconditioned approaches. In section 7, we present addi-
tional experiments to understand how problems of different resolutions

169

Computers and Mathematics with Applications 172 (2024) 168-180

and conditioning, and multigrid cycle schemes can affect our results.
Finally, we draw our conclusions in section 8.

2. Multigrid for the Stokes equations

In this work, we consider the Stokes equations as written below,
which apply to both 2D and 3D scenarios:

—nAu+Vp=f
v 0 @)
—V.-u=

where u = (x,v)" (2D) or u = (u, v, w)T (3D) is the fluid velocity vector
field, p is the scalar pressure field, f is the body force vector field and
n is the fluid viscosity, together with suitable boundary conditions. In
this work, we treat the viscosity parameter # as spatially constant.

For the discretization of the Stokes equations, we employ the stan-
dard marker-and-cell (MAC) staggered finite difference scheme [7]. As
shown in Fig. 1, the velocity components are centered at grid faces,
while pressure variables are stored at cell centers. Although this dis-
cretization can be extended to non-uniform grid sizes h, # hy # h, we
focus on uniform meshes with a grid size of h = h, = h, = h,. The dis-
cretization employs central differences for the operators in the Stokes
equations. Specifically, the Laplacian A operator is discretized using a
five-point stencil in 2D and a seven-point stencil in 3D, while V op-
erator is discretized via central difference approximation for velocity
components. The V- operator is discretized using central differences
for pressure. This leads to the linear system discretized from the Stokes

equations (1):
u f
)(5)-(o)->

A BT
Lx = (B 0
where A, B and B represent discrete approximations of operators —A,
—V- and V operators respectively.

We proceed to describe the details and composition of our multigrid
method. For our approach, which ultimately will be used to craft a pre-
conditioner for an iterative Krylov solver, we adopt a V-cycle paradigm
[31]; while our contributions related to symmetric relaxation schemes
are equally applicable to other types of multigrid cycles such as W-cycle.

The recursive V-cycle procedure is outlined in Algorithm 1, where
the superscript & denotes the discretization grid size at every level of
the multigrid hierarchy. We highlight that the operators L2, L%, ...
at coarser multigrid levels are constructed in our work based on a re-
discretization of a coarsened description of the domain at successively
coarser resolutions, as opposed to an algebraic Galerkin coarsening ap-
proach [23] for example; for details of our domain coarsening approach
see section 5. The locations of u and p components of the 2D fine coarse
grids are shown in Fig. 2. The placement of variables and grids is analo-
gous in 3D, with an 8-to-1 cell subdivision, and retaining face-centered
velocities and cell-centered pressures.

As we mentioned above, the restriction operator R and prolongation
operator P can also influence convergence rates for the Stokes equa-
tions. Some common combinations have been investigated by Niestegge
[22]. Although this is not strictly necessary if multigrid is to be used
as a solver outright, if we seek to use it as a symmetric preconditioner,
we must select restriction and prolongation operators R and P that are
the transpose of each other up to scaling, meaning that P = cR” with
¢ typically being 4 for 2D and 8 for 3D. This scale factor (which does
not impact the symmetry property) is typically selected to make both
the prolongation and the restriction operators a partition of unity. To
balance symmetry and the convergence rates, we use bilinear interpo-
lation for velocities and constant per-cell interpolation for pressures as
the prolongation operator. The restriction operator is thus defined as the
transposed prolongation operator divided by c. Fig. 3 illustrates how the
restriction stencil on u component (the horizontal velocity component,
the vertical one being analogous and symmetrical) and p component in
2D cases.

(2)
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Fig. 1. The staggered grid discretization in 2D (left) and 3D (right).
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Fig. 2. 2D discretization on fine and coarse level; just the horizontal component u of the velocity field u = (u, v) is illustrated on the left, the placement of vertical
velocity components v is analogous, but on faces perpendicular to the y-axis.
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Fig. 3. 2D restriction operator; just the horizontal component u of the velocity field u = (u, v) is illustrated on the left, the placement of vertical velocity components
v is analogous, but on faces perpendicular to the y-axis.
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Algorithm 1 Recursive V-cycle.

1: Input: System matrix L”, right hand side b”, initial guess x! with grid size
h and multigrid level n > 1

2: Qutput: Solution x”

3: procedure V-CYCLE(L", b", x", n)

4: if n=1 then

5 Solve L"x" = b" exactly

6 else

7: x" < SMOOTH(L", x/, b")

8 r’ « b" — Lx"

9

r?" « R'r” > R” is the restriction operator

L?" < Rediscretized from coarser level
11: e « Recursively call V-CYCLE(L?",r?",0%" n—1)
12: e « Phe?’; > P" is the prolongation operator
13: X" —x" 4+ e"
14: x" « SMOOTH(L",x", b")
15: end if

16: end procedure

3. Design of smoothing operator and preserving symmetry

Algorithm 1 details the procedure implementing a multigrid V-cycle.
Iterative application of this cycle can be used to materialize an iterative
solver, if used outright and not in the context of preconditioning. The
same cycle can also be used to design a preconditioner appropriate for
Krylov Subspace iterative methods. Tatebe [24] presented this process
in the context of multigrid-preconditioned Conjugate Gradients, but the
process by which the preconditioner is applied is more general across
Krylov subspace solvers, and as follows: The preconditioner is intended
to be a matrix W' ~ L~! approximating the inverse of the system matrix
L. For our purposes the preconditioner must be a symmetric matrix,
although we will use it in the context of a Krylov subspace solver that
allows it to be indefinite; let us highlight that in the context of Stokes
equations, an excellent preconditioner would easily be expected to be
symmetric indefinite, as the Stokes equations themselves are.

As detailed in section 4, a matrix-vector multiplication t < WTs is
implicitly implemented as t « V-cYCLE(L”,b" < s, xg « 0,n) via a call
to the V-Cycle routine. Note that we have used the input vector s in the
place of the right-hand-side vector b”, and used a zero initial guess x(’)’
(the latter is essential in making sure the resulting operator is truly lin-
ear, as opposed to affine). Tatebe [24] identified the requirements for
an operator W' constructed in this way to be symmetric. Two of the re-
quirements are enforced by design, namely that the prolongation and
restriction operators are transposed (up to scaling) of each other, and
that the operator applied at the coarsest level of discretization is sym-
metric (here, by virtue of being an exact solution, i.e. an exact inverse
of a symmetric matrix).

The more delicate requirement for the symmetry of W is that the
smoothing operators at the restriction and prolongation phases of the
V-cycle (lines 7 and 14 of Algorithm 1) are transposed of each other.
A straightforward way to enforce that would be to ensure that these
smoothing operators are symmetric in their own right. The smoothing
operator can be formalized as:

X =xk £ S(b — Lx") 3)

where k denotes the iteration step and S is the iteration matrix. For
example, classical Gauss-Seidel smoothing can be expressed as Sgg =
G~! with G being the lower triangular component of system matrix L.
Similarly, the weighted Jacobi method can be written as S, ; = @D/,
where w is the damping factor and D is the diagonal component of L.
Equation (3) can be unrolled to yield x* = Cb + Nx,. As detailed
by Tatebe [24], the symmetry of the smoothing operator for the pur-
poses of crafting a symmetric preconditioner reduces to the symmetry
of the matrix C. We focus in our present work on the case where the
same smoothing process is used in both the restriction and prolongation
phases of the V-cycle; should it be an option to use different smooth-
ing procedures at each phase, the corresponding C matrix for the two
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should be the transpose of each other; we do not focus on this case in
our work though.

In the remainder of this section, we detail the steps that need to be
taken such that this matrix C can be guaranteed to be symmetric, both
when we use a distributive relaxation paradigm or a Vanka relaxation.
We also explore how these operators can be combined while maintaining
symmetry.

3.1. Symmetric distributive smoother

The design principle of a distributive smoother is that it can be
viewed as a transformation of the original system Lx = b into a right-
preconditioned system LMy = b, where My = x. The hope is that the
numerical properties of the combined matrix LM are more favorable for
applying a standard relaxation procedure, rather than using the same
procedure directly on L. Furthermore, any relaxation on the system
LMy = b can be implicitly emulated on the original system, without
having to enact a change of variables from x to y beforehand. Specif-
ically, any update y; < y; + 6 to one of the components of y can be
emulated as X < x + 6Me; =X + ém; on the x, where e; is the i-th basis
vector (or, equally, m; is the i-th column of M)

For the Stokes equations, the transformed system can be formulated

as
A BT 1 -BT i}
= %) (o ) (3)
which yields
Mo (A BT\ (L BT\ _ (-nat VRN (T —vh
“\B 0 0 #BBT ]\ -v2 0 0 —yV.-hvh
—pAl gARVE — Vi AR —nAl 0
=\ _y.h Al =\ _yr an
)

Here the superscript /4 indicates the operator is discretized by a finite
difference method with a grid size of h. The top right block is 0 due to
two facts. First, V/ - V” is equivalent to A", which is a classical 5(2D)
or 7(3D)-point Laplacian stencil in finite difference method. Secondly,
the A and V operators are commutative, which is a property that Stokes
equation specifically preserves under a finite difference discretization.
It’s important to note that when alternative discretization methods like
Finite Elements are employed, the top-right block may not be exactly
zero but only asymptotically zero up to truncation error. Furthermore,
we should also note that the discrete matrix structure illustrated in equa-
tion (5) is specific to the interior of the computational domain, since the
presence of boundary equations could affect it (e.g. the triangular prop-
erty of the combined matrix).

The introduction of the distribution matrix M is motivated by the
fact that LM forms a block upper triangular matrix with the Laplacian
operator on the diagonal block. This structure allows us to apply clas-
sical smoothing methods like Gauss-Seidel or weighted Jacobi on LM
matrix, leveraging their effectiveness on the Laplacian operator. The
smoother for each component block will be applied in sequence. One
way to appreciate this process would be as follows: If instead of a re-
laxation procedure, we applied a full solution for the Laplacian at each
diagonal block (or, equivalently, if we smoothed to full convergence), it-
erating from one block component to the next would have been a block
forward-substitution process. In practice, following the same relaxation
schedule is a highly effective overall smoother, even if only a small num-
ber of relaxation steps are used at each block.

From that, §y is obtained to compute corrections §x = Mdy. The
smoothing operator of, respectively, distributive Gauss-Seidel (DGS)
and distributive weighted Jacobi (DWJ) can be represented as Sps¢ =
MG~! and S ; = wMD~! where G and D is the upper triangular and
diagonal component of system matrix LM. Instead of computing the
entire LM matrix and applying Gauss-Seidel or weighted Jacobi, this
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process can be simplified by storing the diagonal part of LM and using
the connection x = My. Algorithm 2 provides a detailed example of the
simplification of DGS smoothing. A similar approach can be employed
for DWJ smoothing.

Algorithm 2 Distributive Gauss-Seidel smoothing.

1: Input: System matrix L, initial guess x,, and right hand side b
2: Output: Solution x
3: procedure DGS(L, x,, b)

4: Compute distributive matrix M
5: d=0
6: for j=1,2,... do
7: d, <L, -M;
8: > where L; is the jth row of L and M ; is the jth column of M
9: end for

10: x" « Xg

11: for j=1,2,...do

12: r« bj - Lj_X

13: X <X+ iM'j

14:  end for

15: end procedure

As mentioned above, we aim to design a symmetric smoother. How-
ever, the symmetry of distributive smoothing is hindered by right-
preconditioning; we can easily show that applying an otherwise sym-
metric smoother (like Gauss-Seidel) to the non-symmetric distributed
operator LM would compromise symmetry. In order to restore the sym-
metry property, we introduce left-preconditioning of the distributive

smoother as follows
) < ) < > =M'b
p

I 0
-B #BBT

It’s obvious that MTL = (LM)” due to the symmetry of L. Our com-
bined, symmetric distributive smoother operates as follows: In a first
sweep, we choose a given traversal order of the degrees of freedom, and
apply DGS according to Equation (4) at each point. In a second sweep,
we use exactly the reverse traversal order of the first step, and apply
DGS, but in accordance with the left-preconditioned system in Equation
(6). The smoother constructed in this way is symmetric; a full proof of
this fact is given in Appendix A, and a similar proof applies to DWJ. De-
spite the efficiency of the distributive smoother, its convergence heavily
relies on the commutativity of A and V operators in the interior re-
gion. This property does not discretely hold near the boundary, where
this smoothing procedure is no longer applicable. Thus, we employ a
different, more general and robustly convergent (albeit not as computa-
tionally efficient) smoother in the vicinity of the domain boundary.

A BT

B 0 ®)

MTLx = <

3.2. Symmetric Vanka smoother

The Vanka smoother is more powerful and broadly applicable, but
incurs a higher computational cost per iteration compared to the dis-
tributive smoother. It can be viewed as a specific type of Schwarz
smoother [32]. The fundamental idea behind the Vanka smoother is to
solve the Stokes equations locally, subdomain by subdomain, wherein
all degrees of freedom within one subdomain are updated simultane-
ously. Like other smoothers, Vanka relaxation can be expressed in the
format of Equation (3). In the Vanka smoother, we divide the entire dis-
crete domain D into n potentially overlapping subdomains {Dy,...,D,}
as shown in Fig. 4. Each subdomain can be viewed as a local saddle-
point problem. Solving each subdomain problem sequentially, akin to
Gauss-Seidel, is known as multiplicative Vanka relaxation. The smoother
operator can be defined as

n
Syy=0- H(I - C,'T(C:'LC,'T)_lCiL)]L_1
i=1

)
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Fig. 4. Vanka smoother on 2D example.

where C; represents the selection matrix from domain D to domain D;.
Alternatively, solving each subdomain problem simultaneously as Ja-
cobi method, is known as the additive Vanka smoother. The smoother
operator for this approach is defined as

n
Sw = clcLeh'c

i=1

(®

We prove that the additive Vanka smoother is always symmetric in Ap-
pendix B. To ensure the symmetry in the multiplicative Vanka smoother,
we adopt a similar approach to symmetric Gauss-Seidel. We solve each
subdomain from domain D; to D,, and then in reverse order from D,
to D, again. The proof of symmetry for our symmetric multiplicative
Vanka smoother is given in Appendix C.

3.3. Symmetric integration of smoother

As previously discussed, these two smoothers provide advantages
depending on the region of the computational domain. The symmet-
ric distributive smoother provides reliable convergence and attractive
computational cost when applied to the interior region, while the sym-
metric Vanka smoother exhibits greater suitability near the boundary,
albeit at a higher cost. However, despite the fact that each can be made
symmetric on its own, it’s not trivially true that any combination will in-
herently retain symmetry. To ensure strict symmetry with the multigrid
framework, we propose the following smoothing step algorithm:

First, we partition the unknowns into two non-overlapping sets:
boundary set V| and interior set V,. Then we apply symmetric Vanka
smoother to ¥}, symmetric distributive smoother to V, and another sym-
metric Vanka smoother to V, again. The detailed algorithm is shown
in Algorithm 3, with a formal proof for its symmetry provided in Ap-
pendix D. In practice for our implementation, DGS smoother is used
instead of DWJ, because it achieves a more attractive convergence rate
but a similar runtime cost.

Algorithm 3 Smoothing.

: Input: System matrix L”, initial guess X and right hand side b"
: Output: Solution x”
: procedure SMOOTH(L", x{)‘, b")
Partition x”* into two non-overlapping sets: boundary set ¥; and interior
set V,
5 x" SymmetriC_Vanka(L",x(’)', b") on the boundary set ¥,
6 x" « Symmetric_Distributive(L”, xg,bh ) on the interior set V,
7 x" < Symmetric_Vanka(L",x/,b") on the boundary set ¥,
8: end procedure

AW N =

This approach leverages the strengths of both smoothers. On one
hand, the larger size of V, ensures that the symmetric Vanka smoother
isn’t overused, enhancing computational efficiency. On the other hand,
employing symmetric Vanka smoother near the boundary helps prevent
the potential divergence issues of the symmetric distributive smoother.
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Fig. 5. 2D discrete domain example.

Therefore, this integrated approach is a balanced and effective choice
in practical applications compared to using either smoother alone.

4. Preconditioning

Although the use of the Vanka smoother significantly improves con-
vergence near the boundary, multigrid is more stable when used as
the preconditioner for a Krylov subspace solver. SQMR is known for
its lower computational time and storage requirements, and supports
arbitrary symmetric preconditioners, including indefinite ones from a
multigrid V-cycle. Therefore, we propose using our multigrid as the pre-
conditioner for SQMR. The application of the multigrid preconditioner
is outlined in Algorithm 4. It’s worth mentioning that not just any multi-
grid V-cycle can be used as the preconditioner. This procedure must be
equivalent to t — M~!s, where matrix M is symmetric. Fortunately, as
we prove in the appendix, our multigrid formulation indeed satisfies this
condition with the initial guess x, =0.

Algorithm 4 Multigrid-preconditioned SQMR.
1: Input: System matrix L, initial guess X, = 0, right hand side b and multigrid
level n > 1
2: Output: Solution x
3: procedure MG-SQMR(L, x,,, b)
4 sy < b—Lxg, t « V-CYCLE(L,s,,0,n), qy < t, 75 < ||t||5, vy < 0, py <

$7qp, d <0
5: for j=1,2,...do
e
6: t<Lq,_;, 0, <—q}llt, a_, eﬁ,sjw—sj_l —a;_t
i (113173 1
7: t « V-CYCLE(L,s;,0,n), v, « =2, ¢, « ,T; < T;_1VC;
( J ) J T J W J J=17i%i
. 2.2 2
8: dj<—cjvj_|dj71+cja/-71qj71,x/<—xj71+dj
9: if x; has converged then
10: X < X;, stop
11: end if
P
12: pj<—szt, ﬂj(_ﬂ/_il,qj(—t"'ﬁjqj—l
13: end for

14: end procedure

Another potential benefit of using multigrid as the preconditioner is
that it allows us to use different matrices for SQMR and V-cycle, which
means we can use some approximation L instead of L in our multigrid
V-cycle. For example, in order to prevent L from failing to be full rank
when applying all Dirichlet boundary conditions, we modify it as

T
i— A B
B —yI

where y is an adequately small number. This modification corresponds
to the classical penalty method. Since the modification is only applied

©)]
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as a preconditioner instead of as a replacement of the system matrix,
the divergence-free property can be always exactly maintained.

5. Discrete domain design

In this section, we describe our design decisions for the discrete de-
scription of the computational domains we target. We highlight that,
as a matter of scope, we focus on a first-order accurate discretization of
the Stokes equations, at grid-cell precision. This is primarily a choice for
simplicity of exposition; our solver architecture and specifically our use
of Vanka relaxation near the boundary could have been combined with
a higher order scheme to provide sub-cell resolution of boundary con-
ditions if desired. In addition, even if the finest level of discretization
in the multigrid hierarchy was discretized at higher order, it would still
be an option to use first-order accurate discretizations at coarser levels,
especially when the multigrid cycle is intended as a preconditioner.

We adopt a domain description where every cell is labeled as Dirich-
let, exterior or interior as illustrated in Fig. 5. Using this designation of
cells as input, we proceed to also classify velocity or pressure variables
as “Dirichlet”, “active” or “inactive” as well. Specifically, any velocity
variables on faces of Dirichlet cells are treated as Dirichlet boundary
conditions. Velocities on faces between two “interior” cells are treated
as active degrees of freedom and are solved by our scheme. Any velocity
variables that do not neighbor an active cell are treated as inactive, and
excluded from our solve. Finally, pressures at centers of interior cells
are active degrees of freedom, while others (at centers of Dirichlet or
exterior cells) are inactive and excluded from the solve.

We adopt this cell-based designation, as opposed to, e.g. designating
individual grid faces as Neumann faces, because our design leads itself
naturally to coarsening this cell-level designation as follows: A cell at
a coarser level inherits its label based on the labels of the finer-level
cells within it. Specifically, a coarser-level cell is labeled as Dirichlet
if it encloses any finer-level Dirichlet cell, otherwise as interior if it
contains any finer-level interior cell. A cell remains an exterior one
if all enclosed finer-level cells are exterior. This discrete domain de-
sign enables a straightforward partition of degrees of freedom into two
non-overlapping sets for the use of symmetric Vanka and symmetric dis-
tributive smoothers. If a cell is proximal to any Dirichlet cell or exterior
cell, all the degrees of freedom on this cell are smoothed by symmetric
Vanka smoother. Conversely, symmetric distributive smoother is used
for all other degrees of freedom.

Every interior velocity (on the face between two interior cells) or
pressure variable is paired with a discrete equation, according to a fi-
nite difference scheme. Dirichlet velocities are similarly paired with a
Dirichlet boundary condition. Velocity variables on a face between one
interior and one exterior cell are treated as Neumann conditions; we
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Fig. 6. 2D 10242 driven cavity example.

Table 1

The numbers of total and boundary degrees of freedom.

2D examples #total degrees of freedom

#boundary degrees of freedom

boundary percentage

10242 Driven Cavity 3143680
2200 x 410 Cylinder 2680020
1100 x 205 Cylinder 669372
440 x 82 Cylinder 106812
220 x 41 Cylinder 26580
10242 Hollow Square 3463768
10242 Brancher 2546560

12272 0.38%
18493 0.69%
9243 1.38%
3693 3.45%
1843 6.93%
29305 0.85%
61077 2.39%

3D examples #total degrees of freedom

#boundary degrees of freedom

boundary percentage

128° Driven Cavity 8339456
255% 82 % 82 Cylinder 6788860
128% Brancher 8013824
1283 Porous 9156798

385580 4.62%
425856 6.27%
1119980 13.98%
614304 6.71%

treat those Neumann conditions as zero in our numerical examples, with
the understanding that any nonzero conditions can be moved to the
right-hand-side of the discretized equations without further alteration
of the discrete operator.

6. Numerical convergence experiments

In this section, we present the results of our numerical convergence
experiments, which compare the performance of our method with the
pure multigrid method under several different boundary scenarios. We
set the fluid viscosity to # = 10~3m? /s, and y = 1073, To enhance the ef-
ficiency of Vanka smoothing, we pre-factorize 3* in 2D or 3° in 3D local
saddle point problems, based on whether neighboring cells are Dirichlet,
exterior or interior. It’s straightforward to parallelize the additive Vanka
smoother, and an 8-color scheme is applied to parallelize the multiplica-
tive Vanka smoother. All examples are implemented in C++ code, and
we utilize Intel Pardiso and Eigen as the direct solvers for the bottom
level of the V-cycle and for solving local saddle-point problems in the
Vanka smoother respectively. The experiments are performed on a com-
puter with an Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30 GHz and 128
GB of main memory. Paraview is used for postprocessing the results. In
the following section, we’ll discuss the results in 2D examples and 3D
examples separately.

6.1. 2D numerical examples

In this subsection, we explore four 2D examples to assess the per-
formance of our approach. Specifically, we examine the driven cavity
example and the Poiseuille flow around a cylinder example to evaluate
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the convergence rates in comparison to pure multigrid methods. Addi-
tionally, the remaining two examples demonstrate the capability of our
method to effectively handle more complex scenarios beyond the scope
of pure multigrid methods.

6.1.1. Driven cavity example

The driven cavity example is a well-established benchmark in the
field of computational fluid dynamics. In the 2D scenario, the computa-
tional domain is a unit square, where no-slip boundary conditions are
imposed on the left, right and bottom sides. On the top side, a zero
vertical velocity and a constant horizontal velocity of u = 1.0m/s is im-
posed. We use a 10242 unit square as our computational domain and
an 8-level multigrid as our preconditioner and solver. The solved ve-
locity field with streamline and the convergence of pure multigrid on
L and multigrid-preconditioned SQMR on L are shown in Fig. 6. The
iterations are terminated when the relative residual goes below 1078,
and the legend indicates the type and number of smoothers used for
the boundary and interior regions. We consistently apply a symmetric
distributive Gauss-Seidel smoother only once in each V-cycle to the in-
terior region. This approach significantly reduces the execution time per
V-cycle, given that the boundary degrees of freedom are typically less
than 3% of the total degrees of freedom. Table. 1 provides more detailed
information about the percentage of the number of boundary degrees of
freedom.

The convergence plots reveal that our preconditioner achieves faster
convergence compared to the pure multigrid method. Furthermore, the
multiplicative Vanka smoother is more efficient than the additive one,
even when the latter is applied three times per V-cycle. The convergence
rates of both multiplicative and additive methods closely match the ideal
scenario where a direct solver is employed for the boundary domains.
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Fig. 8. Convergence of 2D cylinder example in different dimensions.

6.1.2. Poiseuille flow around a cylinder example

The case of 2D Poiseuille flow represents the steady, laminar flow of
an incompressible fluid through a channel driven by a pressure gradient.
This flow scenario is commonly studied in benchmarks [33,34], partic-
ularly with the presence of a cylindrical obstacle. In our 2D scenario,
the channel dimensions are 2.2m X 0.41m, and a cylindrical obstacle is
placed at position (0.2m, 0.2m) with a radius of 0.05m. The inflow bound-
ary conditions are described by

day(H —y)

u0.9 = ="

v(0,y)=0

(10)

where & = 0.3m/s is the average horizontal velocity, and H = 0.41m
is the width of the channel. On the outflow boundary, a homogeneous
Neumann boundary condition is applied, while no-slip boundary con-
ditions are enforced on the top and bottom sides. The computational
domain has dimensions 2200 x 410, and a 6-level multigrid is used to
solve the problem with 4 = 0.001m. The partially solved velocity field
and the convergence results are shown in Fig. 7, which shows that the
effectiveness of the symmetric multiplicative Vanka smoother. Addition-
ally, the scalability of our multiplicative preconditioner and multigrid
is demonstrated through various domain sizes in Fig. 8.

6.1.3. Poiseuille flow around hollow square example

In this example, we explore a more complex scenario involving
Poiseuille flow around a hollow square obstacle. While pure multigrid
suffices for simple applications, it may encounter divergence in more
complicated scenarios. Here we use similar boundary conditions as those
used in the cylindrical obstacle with & = 1.0m/s. The key difference lies
in the presence of a hollow square obstacle, as depicted in Fig. 9. We
perform our simulations on a 1024? computational domain with an 8-
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level multigrid. It is observed that only the multiplicative preconditioner
yields fast convergence, while the additive preconditioner and the pure
multigrid method fail to converge. This behavior can be attributed to the
closing of the hollow square as the multigrid coarsens. Consequently,
the solutions derived at coarser levels become increasingly inaccurate.
However, when employed as a preconditioner, the multigrid method
continues to guide SQMR towards successful convergence.

6.1.4. Brancher example

In the hollow square example, we explored the limitations of pure
multigrid methods. Now we present a more practical example to em-
phasize the defects of pure multigrid methods and the reliability of the
multiplicative preconditioner. We keep the same boundary conditions
and computational domain as those used in the hollow square obstacle.
Instead of a single obstacle, we apply multiple rectangular obstacles near
the outflow boundary to branch a single inflow into several outflows,
forming a structure referred to as a “brancher”. As shown in Fig. 10,
our multiplicative preconditioner converges very fast. In contrast, the
additive preconditioner and the pure multigrid methods still struggle to
converge. The hollow square example and the brancher example clearly
show the effectiveness and reliability of the multiplicative precondi-
tioner. This fact leads us to focus on the multiplicative methods in our
upcoming 3D examples, without considering the additive method. Addi-
tionally, we investigate the impact of the number of boundary smoother
iterations on the convergence rate of the multiplicative preconditioner
in Fig. 11. The result indicates that increasing the numbers of boundary
smoother iterations leads to faster convergence rates.

6.2. 3D numerical examples

In this subsection, we consider four 3D examples using only mul-
tiplicative preconditioner and multigrid. The driven cavity example
and the Poiseuille flow with a cylindrical obstacle example show that
our multigrid preconditioner achieves comparable convergence rates to
pure multigrid methods. The last two examples highlight the capabil-
ity of our approach to address more complicated scenarios beyond the
capabilities of pure multigrid solvers.

6.2.1. Driven cavity example

The 3D driven cavity example is similar to the 2D version. In this
case, we consider a unit cube instead of a unit square as our computa-
tional domain, applying no-slip boundary conditions to all sides except
the top. The top side is subject to a constant horizontal velocity of
u=1.0m/s. A 5-level multiplicative multigrid is used within a 128> unit
cube. We present the sliced velocity field and the convergence results
in Fig. 12. We can see that our preconditioner method converges faster
than the multigrid method, closely resembling where the boundary do-
mains are solved using a direct solver.
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Fig. 11. Convergence of 2D brancher example with different numbers of bound-
ary smoothers.

6.2.2. Poiseuille flow around cylinder example

In the 3D scenario, we also consider Poiseuille flow around a cylin-
der. The channel dimensions are 1.275m X 0.41m X 0.41m, and a cylin-
drical obstacle is positioned along the (0.5m,0.2m, z) axis with a radius
of 0.05m. The inflow boundary conditions are described as

16iyz(H, — y)(H, - z)
H4

u(0,y,z) =

v(0,y,2)=0 11
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w(0,y,2) =0

where @ = 0.45m /s represents the average horizontal velocity, and H,, =
H, =0.41m are the inflow widths of the channel. Homogeneous Neu-
mann boundary conditions are applied on the outflow boundary, while
the surrounding sides are subject to no-slip conditions. The computa-
tional domain has dimensions of 255 X 82 x 82, and a 4-level multigrid
is used to solve the problem with 4 = 0.005m. Fig. 13 b) shows the sliced
velocity field and the convergence results. In this example, applying our
symmetric multiplicative Vanka smoother only once does not yield con-
vergence rates that match the ideal scenario where a direct solver is
utilized on the boundary domains. Instead, we achieve the ideal conver-
gence by increasing the number of smoothers applied to the boundary
to 2.

6.2.3. Brancher example

To highlight the effectiveness of our preconditioner, we present a
3D brancher example. We keep the same boundary condition as 3D
Poiseuille flow around cylinder example except that we substitute the
cylinder with multiple cuboids near the outflow boundary and use
i =1.0m/s. A 5-level multigrid is used within a 128> unit cube. The
sliced velocity field and the convergence results are shown in Fig. 14.
We can see that our multiplicative preconditioner converges very fast
but the pure SQMR and multigrid method fails. This example shows the
advantage of our approach in 3D case.

6.2.4. Porous example
The final example we show is the porous example. In this exam-
ple, we use the same boundary condition and computational domain as
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Fig. 13. 3D 255 x 82 x 82 cylinder example.
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brancher example, but we use a porous layer as shown in Fig. 15 a) to
replace the multiple cuboid obstacles. Our multiplicative preconditioner
exhibits rapid convergence, while the pure SQMR and multigrid meth-
ods prove ineffective, as illustrated in Fig. 15 b). This example further
exemplifies the robustness and efficiency of our multiplicative precon-
ditioner.

7. Stability and efficiency analysis

We present some additional experiments to assess the stability of our
method under problems of different resolutions and conditioning, and
multigrid cycle schemes.
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7.1. Resolution and conditioning

We seek to investigate the effect of domain resolution on the ef-
ficacy of our scheme. Although the increased spatial resolution does
impact the condition number of the modified system matrix L used in
multigrid, a healthy multi-resolution scheme would be expected to be
consistently convergent, largely independent of resolution, even if the
condition number itself increases. We illustrate the convergence of the
2D driven cavity example at different resolutions as shown in Fig. 16.
We observe consistent convergence rates in this refinement analysis. We
should indicate that the geometric complexity of a domain is another fac-
tor that can certainly affect convergence, especially in the presence of
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Fig. 16. Convergence of 2D driven cavity example at different resolutions.

fine geometric features that are not well resolved or consistently repre-
sented across resolutions.

7.2. Cycle schemes

We also design experiments using different cycle schemes. Specifi-
cally, we compare the convergence rates by using W-cycle and V-cycle
on 10242 Driven Cavity Example and 2200 x 410 Poiseuille Flow around
Cylinder Example as shown in Fig. 17 and 18. The results indicate that
the W-cycle can indeed accelerate convergence rates (independent of
runtime) in the cases where even pure multigrid methods converge.
However, the increased time required for the W-cycle does not fully
compensate for the improved convergence rates. Additionally, the deep-
level W-cycle scheme fails to converge in our 10242 Poiseuille flow
around a hollow square example and brancher example. This suggests
that the V-cycle is a more reliable scheme and potentially economical
in terms of runtime.

8. Conclusions

In this work, we propose and evaluate a novel multigrid precon-
ditioner for solving the Stokes equations in both 2D and 3D scenar-
ios. Our approach leverages the strengths of a symmetric distributive
smoother and Vanka smoother, which are well-suited for handling inte-
rior and boundary regions respectively. By combining these smoothers
carefully, we achieve an efficient symmetric multigrid preconditioner
which can be used by the SQMR method. We demonstrate the efficacy
of our scheme in numerical experiments in both 2D and 3D scenarios.
Our method achieves comparable convergence rates to pure multigrid
methods, and also maintains fast convergence even when pure multigrid
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Fig. 17. Different cycle schemes on 2D 10242 driven cavity example.
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Fig. 18. Different cycle schemes on 2D 2200 X 410 Poiseuille flow around a
cylinder example.

methods struggle with divergence. The application of our preconditioner
as a robust and reliable solver, particularly in challenging 3D cases,
shows its potential to significantly enhance the efficiency of solving the
Stokes equations. Our future endeavors will focus on GPU acceleration
to enhance the scalability of our methods, allowing for the efficient res-
olution of larger-scale problems.

Data availability

Data will be made available on request.
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Appendix A. Symmetry proof for symmetric distributive
Gauss-Seidel

Lemma 1. Consider a sequence x**+1 = Ax®) +b with x©
formula is x*) = ¥ A'b.

= 0. The general

This conclusion is obvious by using mathematical induction. []

Theorem 1. In symmetric DGS smoother, when L is symmetric and x© = 0,
then x = Cx©) and C is a symmetric matrix.

Splitting L = G + H with a lower triangular matrix and a strictly
upper triangular matrix, GS can be written as

xF+D = x® 4 g1 (b - Lx(k)) (A.1)

After introducing the distributive preconditioner M and defining G and
H as the lower and strictly upper triangular part of LM instead of L,
the distributive GS can be written as

x*D =x® 1 MG~ (b - Lx®) (A.2)

For the symmetric DGS smoother, the smoothing step can be written as
1 ~

x*2) =x® + MG~ (b - Lx¥)

o . (A3)

X(k+l) — X(k+§) + G—TMT(b _ Lx(k+§))

Substitute the first equation in Equation (A.3) into the second one and
denote P=MG~! + GTM” - G-TMTLMG™!, and we get

x*+D = 1 - PL)x® + Pb A4
By using Lemma 1, the general formula of x is
n—1 i
x" = Z(I PL)'Pb = Z Z ( )( —PL)'Pb=Cb (A.5)

i=0 j=0

Since (—PL)'P is always symmetric when L and P are symmetric, C is
symmetric. []

Appendix B. Symmetry proof for additive Vanka smoother

Theorem 2. In additive Vanka smoother, when L is symmetric and x© = 0,
x" = Cx© and C is a symmetric matrix.

We know that the series of additive Vanka smoother can be written
as

xFD =x® 48, (b-Lx®)=A-8,, L)x® +S,,b (B.1)
By using Lemma 1, the general formula of x is

n—1 i

x<">—Z(1 SayLSyb=Y Y

()( S, LS, b=Cb  (B.2)
i=0 j=0

Since (-S4, L)'S 4, is always symmetric when L and S, are symmet-
ric, C is symmetric. []

Appendix C. Symmetry proof for symmetric multiplicative Vanka
smoother

Theorem 3. In symmetric multiplicative Vanka smoother, when L is sym-
metric and x© = 0, then x* = Cx and C is a symmetric matrix.
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We know that the series of multiplicative Vanka smoother can be
written as
xkHD =x® 4 g

y(b—Lx®) = (1 -8,,,L)x* +8,,,b (c.n

For the symmetric multiplicative Vanka smoother, the smoothing step
can be written as

*k+3) — - & Lyx® 4 gD
xTY = S(Q;IVL)X +S§/”,b c2)
X6 =@-8P Lx® +87) b
where SSW)V is solving in the order from domain D, to D,, and S(MZ)V

solving in the order from domain D, to D,. Before we prove that this
smoother is symmetric, let’s prove that S(z) (S(I)V)T Denoting that
K, = CT(C,LCT)~'C;, We can rewrite the transpose of S(]) as

S =a-Ja-kLiH =L - [Ja-gny”

i=1 i=1

1 1
=L !'-L! H(I -LK,)=L"'- [H(I -K,L)L™! (C.3)

i=n i=n

1
=[I-[Ja-KLL'=sP,

i=n

Substitute the first equation in Equation (C.2) into the second one and

denote P = S(MI)V + [S(MI)V]T - [S(}\;)V]TLS(AI/I)V, we can get

x**+D = 1= PL)x® + Pb (C.4)
By using Lemma 1, the general formula of x is

x = Z(I PL)'Pb = Z Z < > (=PL)'Pb=Cb (C.5)

i=0 j=0

Since (—PL)'P is always symmetric when L and P are symmetric, C is
symmetric. []

Appendix D. Symmetry proof for symmetric integration of
smoother

Lemma 2. Consider a sequence xX**D = Ax®) 4+ b. The general formula is
x = A"xO 4 Z::()l A'b.

It’s obvious by using mathematical induction. []

Theorem 4. For smoother shown in Algorithm 3, when L is symmetric and
x© =0, then x® = Cx© and C is a symmetric matrix.

Since we decouple the unknowns into two sets V; and V,, we can
reorder our system equations into
Ly

el 1) () ()

where x| and x, represent unknowns for V; and V, separately.
For symmetric Vanka smoothing, it can be seen as solving the system

L12

D.1
L, (®.1)
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Li;x; =b; —Li7x, (D.2)

And for symmetric distributive smoothing, it can be seen as solving the
system

Lypxy =b; —Lyx (D.3)

For the first symmetric Vanka smoothing, x® = 0. By Theorem 2 or
3, we know that [XI,XZ]T [C,b,,0]" after smoothing, where C, has
the form Y17 3" i=0 ( ')(=PL)"Pb with some symmetric matrix P.
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For the symmetric Vanka smoothing, x© = [C;b;,0]”. By The-
orem 1, we know that [x,,x,]7 = [C;by,Cy(b, — Ly;C;b)]7 after
smoothing, where C, is also some symmetric matrix.

For the second symmetric Vanka smoothing, x© = [Cb,,C,(b, —
L,,C,b))]”. By Lemma 2 and Equation (C.4), we know that

() ) o

after smoothing. And we can rewrite it in the matrix form

Ci(b; —L{,Cy(by, —L,;C;b))+ I—-PL)"C;b;
Cy(by — Ly C1by)

<x1) B (C1 +C,L,C,L,,C, + (I -PL)"C, —C1L12C2> <b1>
X2 -GL,,C G b,
=Cb
(D.5)
Since C; has the form Y/~ 25.=0 (;)(—PL)"Pb with some symmetric

matrix P, (I - PL)"C, is still symmetric. Therefore, C is symmetric. []
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