
Computers and Mathematics with Applications 172 (2024) 168–180

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A symmetric multigrid-preconditioned Krylov subspace solver

for Stokes equations

Yutian Tao ∗, Eftychios Sifakis

The computer sciences department, University of Wisconsin-Madison, 1210 W Dayton St, Madison, 53706, WI, United States

A R T I C L E I N F O A B S T R A C T

Keywords:

Stokes equations
Geometric multigrid
Preconditioner

Krylov subspace solver
Staggered finite difference method

Numerical solution of discrete PDEs corresponding to saddle point problems is highly relevant to physical systems
such as Stokes flow. However, scaling up numerical solvers for such systems is often met with challenges in
efficiency and convergence. Multigrid is an approach with excellent applicability to elliptic problems such as the
Stokes equations, and can be a solution to such challenges of scalability and efficiency. The degree of success
of such methods, however, is highly contingent on the design of key components of the multigrid scheme,
including the hierarchy of discretizations, and the relaxation scheme used. Additionally, in many practical cases,
it may be more effective to use a multigrid scheme as a preconditioner to an iterative Krylov subspace solver, as
opposed to striving for maximum efficacy of the relaxation scheme in all foreseeable settings. In this paper, we
propose an efficient symmetric multigrid preconditioner for the Stokes Equations on a staggered finite difference
discretization. Our contribution is focused on crafting a preconditioner that (a) is symmetric indefinite, matching
the property of the Stokes system itself, (b) is appropriate for preconditioning the SQMR iterative scheme [1],
and (c) has the requisite symmetry properties to be used in this context. In addition, our design is efficient in
terms of computational cost and facilitates scaling to large domains.
1. Introduction

Saddle-point problems arise in many fields such as fluid dynam-
ics [2,3], structure mechanics [4,5] and magnetohydrodynamics [6].
As modern computational platforms advance, the demand for solving
large-scale problems becomes more pronounced. However, the perfor-
mance potential of modern computing platforms is often hindered by
existing algorithms, which may lack the necessary efficiency in design.
Multigrid methods [7] are designed specifically for their potential scal-
ability in handling large-scale problems with the advantage of linear
time and space complexity in principle. Although the convergence rates
of multigrid methods are – in the best-case scenario – independent of
problem sizes, the design and optimization of multigrid components,
such as relaxation schemes, can significantly impact this property. The
relaxation scheme, often referred to as a smoother in multigrid, can be
designed according to various classical techniques, including the dis-
tributive smoother [8], Uzawa smoother [9], Braess-Sarazin smoother
[10] and Vanka smoother [11]. The distributive smoother transforms
the original equations into a right-preconditioned system, aiming to
improve properties such as conditioning or numerical structure that fa-

* Corresponding author.
E-mail address: ytao37@wisc.edu (Y. Tao).

cilitates the applicability of the relaxation scheme. This has been studied
for solving problems like the Stokes equations [8,12,13] and the Oseen
equations [14]. The Uzawa smoother transforms indefinite systems into
positive definite formulations by using Schur complement, with applica-
tions in solving the Stokes equations [15] and poroelasticity equations
[16]. The Braess-Sarazin smoother is a variant of the pressure correction
steps in SIMPLE-type algorithms [17]. It also relies on the approxima-
tion of Schur complement and has been introduced for tackling chal-
lenges such as the Stokes equations [10,18] and magnetohydrodynamic
equations [19]. In contrast to the previous three smoothers, the Vanka
smoother focuses on solving local overlapping saddle-point problems
and updating several local degrees of freedom collectively. While the
Vanka smoother is highly effective in reducing local residuals, it comes
with higher per-iteration costs compared to other smoothing methods. It
has proven effective in the Stokes equations [11,20] and poroelasticity
equations [21]. In addition to the choice of smoother, the convergence
of multigrid also depends on factors like grid-operators [22] and dis-
cretization methods [23].

Considering the sensitivity of multigrid methods, they are often
more effective when used as a preconditioner to an iterative Krylov
https://doi.org/10.1016/j.camwa.2024.08.018

Received 26 February 2024; Received in revised form 14 July 2024; Accepted 12 Au
Available online 21 August 2024
0898-1221/© 2024 Elsevier Ltd. All rights are reserved, including those for text and
gust 2024

 data mining, AI training, and similar technologies.

https://doi.org/10.1016/j.camwa.2024.08.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2024.08.018&domain=pdf
mailto:ytao37@wisc.edu
https://doi.org/10.1016/j.camwa.2024.08.018

Y. Tao and E. Sifakis Computers and Mathematics with Applications 172 (2024) 168–180
subspace solver. The multigrid-preconditioned conjugate gradient (MG-
PCG) method [24] is the prototypical approach for solving positive
definite systems such as the Poisson equation. However, for saddle-
point problems, a more general Krylov subspace solver is required,
due to the indefiniteness of the discretized equations. The generalized
minimal residual (GMRes) method [25] emerges as the most common
choice in this context, promising convergence for any asymmetric indef-
inite system. The multigrid-preconditioned GMRes has been employed
in addressing transport equations [26], advection-diffusion equations
[27,28] and Navier-Stokes equations [29]. Despite the indefiniteness of
saddle-point problems, symmetry is present as a property in many sit-
uations such as the Stokes equation, Oseen equations and Helmholtz
equation. The minimal residual (Minres) [30] method, designed for
symmetric indefinite systems, consumes both less memory and less com-
putational time than GMRes per iteration while maintaining similar
convergence rates. Thus, it is a more appropriate option in such sym-
metric scenarios. However, Minres has the limitation that it can only be
paired with positive definite preconditioners, making it incompatible
with multigrid preconditioning (which for a problem like ours would
yield a symmetric indefinite preconditioner). For this reason, we turn
our attention to the symmetric quasi-minimal residual (SQMR) method
[1], a variant of MINRES with identical work and storage requirements.
SQMR supports symmetric indefinite preconditioners, opening up op-
portunities for the use of multigrid as the preconditioning scheme. To
the best of our knowledge, no multigrid-preconditioned SQMR has been
developed for symmetric saddle-point problems.

Since SQMR requires a symmetric (indefinite) preconditioner, care
must be taken to preserve the symmetry property if multigrid is used in
this context. This requires a number of design choices, many of which
are trivial to implement (e.g. making sure that the prolongation and re-
striction are adjoint operators), but also requires a more delicate design
of the relaxation scheme, so to not hinder the symmetry property. In-
spired by the steps needed to preserve symmetry within the Gauss-Seidel
method, we design an effective symmetric distributive smoother and
Vanka smoother in our work. The main idea behind the design of a sym-
metric smoother involves relaxation in a specific order, followed by re-
laxation in the exact reverse order. For distributive relaxation, this also
needs to be paired with a combination of left- and right-preconditioning
in order to preserve symmetry. Our primary focus is on the multigrid-
preconditioned SQMR method, utilizing a staggered finite difference
discretization of the Stokes equations as the model problem. The main
contributions of this work can be summarized as follows:

• We propose a multigrid-preconditioned SQMR method for symmet-
ric saddle-point problems within the context of the Stokes equa-
tions.

• We design two multigrid smoothers, based on distributive relax-
ation and Vanka relaxation respectively, taking care to preserve
the symmetry of the operators. We combine these relaxation op-
erators selectively, to achieve a balance between convergence rates
and computational time per iteration.

• We compare the performance of our new multigrid-preconditioned
solver with the classical multigrid method on both 2D and 3D
benchmarks.

The remaining structure of the paper is as follows: In section 2, we
introduce the finite difference discretization of the Stokes equation and
explain how we apply multigrid. In section 3, we discuss how we en-
sure the symmetry of the distributive smoother and Vanka smoother.
In section 4, we propose our approach to use multigrid as a precondi-
tioner for SQMR. In section 5, we describe our discrete domain design
used for setting boundary conditions. In section 6, we compare the
performance of our multigrid-preconditioned solver with the classical
multigrid method on both 2D and 3D benchmarks, and also benchmark
against un-preconditioned approaches. In section 7, we present addi-
tional experiments to understand how problems of different resolutions
169
and conditioning, and multigrid cycle schemes can affect our results.
Finally, we draw our conclusions in section 8.

2. Multigrid for the Stokes equations

In this work, we consider the Stokes equations as written below,
which apply to both 2D and 3D scenarios:

−𝜂Δ𝐮+∇𝑝 = 𝐟

−∇ ⋅ 𝐮 = 𝟎
(1)

where 𝐮 = (𝑢, 𝑣)𝑇 (2D) or 𝐮 = (𝑢, 𝑣, 𝑤)𝑇 (3D) is the fluid velocity vector
field, 𝑝 is the scalar pressure field, 𝐟 is the body force vector field and
𝜂 is the fluid viscosity, together with suitable boundary conditions. In
this work, we treat the viscosity parameter 𝜂 as spatially constant.

For the discretization of the Stokes equations, we employ the stan-
dard marker-and-cell (MAC) staggered finite difference scheme [7]. As
shown in Fig. 1, the velocity components are centered at grid faces,
while pressure variables are stored at cell centers. Although this dis-
cretization can be extended to non-uniform grid sizes ℎ𝑥 ≠ ℎ𝑦 ≠ ℎ𝑧, we
focus on uniform meshes with a grid size of ℎ = ℎ𝑥 = ℎ𝑦 = ℎ𝑧. The dis-
cretization employs central differences for the operators in the Stokes
equations. Specifically, the Laplacian Δ operator is discretized using a
five-point stencil in 2D and a seven-point stencil in 3D, while ∇ op-

erator is discretized via central difference approximation for velocity
components. The ∇⋅ operator is discretized using central differences
for pressure. This leads to the linear system discretized from the Stokes
equations (1):

𝐋𝐱 =
(
𝐀 𝐁𝑇

𝐁 𝟎

)(
𝐮
𝑝

)
=
(
𝐟
0

)
= 𝐛 (2)

where 𝐀, 𝐁 and 𝐁𝑇 represent discrete approximations of operators −𝜂Δ,
−∇⋅ and ∇ operators respectively.

We proceed to describe the details and composition of our multigrid
method. For our approach, which ultimately will be used to craft a pre-
conditioner for an iterative Krylov solver, we adopt a V-cycle paradigm
[31]; while our contributions related to symmetric relaxation schemes
are equally applicable to other types of multigrid cycles such as W-cycle.

The recursive V-cycle procedure is outlined in Algorithm 1, where
the superscript ℎ denotes the discretization grid size at every level of
the multigrid hierarchy. We highlight that the operators 𝐋2ℎ, 𝐋4ℎ, …
at coarser multigrid levels are constructed in our work based on a re-
discretization of a coarsened description of the domain at successively
coarser resolutions, as opposed to an algebraic Galerkin coarsening ap-
proach [23] for example; for details of our domain coarsening approach
see section 5. The locations of 𝑢 and 𝑝 components of the 2D fine coarse
grids are shown in Fig. 2. The placement of variables and grids is analo-
gous in 3D, with an 8-to-1 cell subdivision, and retaining face-centered
velocities and cell-centered pressures.

As we mentioned above, the restriction operator 𝐑 and prolongation
operator 𝐏 can also influence convergence rates for the Stokes equa-
tions. Some common combinations have been investigated by Niestegge
[22]. Although this is not strictly necessary if multigrid is to be used
as a solver outright, if we seek to use it as a symmetric preconditioner,
we must select restriction and prolongation operators 𝐑 and 𝐏 that are
the transpose of each other up to scaling, meaning that 𝐏 = 𝑐𝐑𝑇 with
𝑐 typically being 4 for 2D and 8 for 3D. This scale factor (which does
not impact the symmetry property) is typically selected to make both
the prolongation and the restriction operators a partition of unity. To
balance symmetry and the convergence rates, we use bilinear interpo-
lation for velocities and constant per-cell interpolation for pressures as
the prolongation operator. The restriction operator is thus defined as the
transposed prolongation operator divided by 𝑐. Fig. 3 illustrates how the
restriction stencil on 𝑢 component (the horizontal velocity component,
the vertical one being analogous and symmetrical) and 𝑝 component in
2D cases.

Y. Tao and E. Sifakis Computers and Mathematics with Applications 172 (2024) 168–180

Fig. 1. The staggered grid discretization in 2D (left) and 3D (right).

Fig. 2. 2D discretization on fine and coarse level; just the horizontal component 𝑢 of the velocity field 𝐮 = (𝑢, 𝑣) is illustrated on the left, the placement of vertical
velocity components 𝑣 is analogous, but on faces perpendicular to the 𝑦-axis.

Fig. 3. 2D restriction operator; just the horizontal component 𝑢 of the velocity field 𝐮 = (𝑢, 𝑣) is illustrated on the left, the placement of vertical velocity components
𝑣 is analogous, but on faces perpendicular to the 𝑦-axis.
170

Y. Tao and E. Sifakis Computers and Mathematics with Applications 172 (2024) 168–180
Algorithm 1 Recursive V-cycle.
1: Input: System matrix 𝐋ℎ, right hand side 𝐛ℎ, initial guess 𝐱ℎ0 with grid size

ℎ and multigrid level 𝑛 ≥ 1
2: Output: Solution 𝐱ℎ
3: procedure V-cycle(𝐋ℎ, 𝐛ℎ, 𝐱ℎ0 , 𝑛)
4: if 𝑛 = 1 then
5: Solve 𝐋ℎ𝐱ℎ = 𝐛ℎ exactly
6: else

7: 𝐱ℎ ← SMOOTH(𝐋ℎ, 𝐱ℎ0 , 𝐛ℎ)
8: 𝐫ℎ ← 𝐛ℎ −𝐋ℎ𝐱ℎ
9: 𝐫2ℎ ←𝐑ℎ𝐫ℎ ⊳ 𝐑ℎ is the restriction operator
10: 𝐋2ℎ ← Rediscretized from coarser level

11: 𝐞2ℎ ← Recursively call V-CYCLE(𝐋2ℎ, 𝐫2ℎ, 𝟎2ℎ, 𝑛 − 1)
12: 𝐞ℎ ← 𝐏ℎ𝐞2ℎ; ⊳ 𝐏ℎ is the prolongation operator
13: 𝐱ℎ ← 𝐱ℎ + 𝐞ℎ
14: 𝐱ℎ ← SMOOTH(𝐋ℎ, 𝐱ℎ, 𝐛ℎ)
15: end if

16: end procedure

3. Design of smoothing operator and preserving symmetry

Algorithm 1 details the procedure implementing a multigrid V-cycle.
Iterative application of this cycle can be used to materialize an iterative
solver, if used outright and not in the context of preconditioning. The
same cycle can also be used to design a preconditioner appropriate for
Krylov Subspace iterative methods. Tatebe [24] presented this process
in the context of multigrid-preconditioned Conjugate Gradients, but the
process by which the preconditioner is applied is more general across
Krylov subspace solvers, and as follows: The preconditioner is intended
to be a matrix 𝐖† ≈ 𝐋−1 approximating the inverse of the system matrix
𝐋. For our purposes the preconditioner must be a symmetric matrix,
although we will use it in the context of a Krylov subspace solver that
allows it to be indefinite; let us highlight that in the context of Stokes
equations, an excellent preconditioner would easily be expected to be
symmetric indefinite, as the Stokes equations themselves are.

As detailed in section 4, a matrix-vector multiplication 𝐭 ←𝐖†𝐬 is
implicitly implemented as 𝐭 ← V-cycle(𝐋ℎ, 𝐛ℎ ← 𝐬, 𝐱ℎ0 ← 0, 𝑛) via a call
to the V-Cycle routine. Note that we have used the input vector 𝐬 in the
place of the right-hand-side vector 𝐛ℎ, and used a zero initial guess 𝐱ℎ0
(the latter is essential in making sure the resulting operator is truly lin-
ear, as opposed to affine). Tatebe [24] identified the requirements for
an operator 𝐖† constructed in this way to be symmetric. Two of the re-
quirements are enforced by design, namely that the prolongation and
restriction operators are transposed (up to scaling) of each other, and
that the operator applied at the coarsest level of discretization is sym-
metric (here, by virtue of being an exact solution, i.e. an exact inverse
of a symmetric matrix).

The more delicate requirement for the symmetry of 𝐖† is that the
smoothing operators at the restriction and prolongation phases of the
V-cycle (lines 7 and 14 of Algorithm 1) are transposed of each other.
A straightforward way to enforce that would be to ensure that these
smoothing operators are symmetric in their own right. The smoothing
operator can be formalized as:

𝐱𝑘+1 = 𝐱𝑘 + 𝐒(𝐛−𝐋𝐱𝑘) (3)

where 𝑘 denotes the iteration step and 𝐒 is the iteration matrix. For
example, classical Gauss-Seidel smoothing can be expressed as 𝐒𝐺𝑆 =
𝐆−1 with 𝐆 being the lower triangular component of system matrix 𝐋.
Similarly, the weighted Jacobi method can be written as 𝐒𝑊 𝐽 = 𝜔𝐃−1,
where 𝜔 is the damping factor and 𝐃 is the diagonal component of 𝐋.

Equation (3) can be unrolled to yield 𝐱𝑘 = 𝐂𝐛 + 𝐍𝐱0. As detailed
by Tatebe [24], the symmetry of the smoothing operator for the pur-
poses of crafting a symmetric preconditioner reduces to the symmetry
of the matrix 𝐂. We focus in our present work on the case where the
same smoothing process is used in both the restriction and prolongation
phases of the V-cycle; should it be an option to use different smooth-
ing procedures at each phase, the corresponding 𝐂 matrix for the two
171
should be the transpose of each other; we do not focus on this case in
our work though.

In the remainder of this section, we detail the steps that need to be
taken such that this matrix 𝐂 can be guaranteed to be symmetric, both
when we use a distributive relaxation paradigm or a Vanka relaxation.
We also explore how these operators can be combined while maintaining
symmetry.

3.1. Symmetric distributive smoother

The design principle of a distributive smoother is that it can be
viewed as a transformation of the original system 𝐋𝐱 = 𝐛 into a right-
preconditioned system 𝐋𝐌𝐲 = 𝐛, where 𝐌𝐲 = 𝐱. The hope is that the
numerical properties of the combined matrix 𝐋𝐌 are more favorable for
applying a standard relaxation procedure, rather than using the same
procedure directly on 𝐋. Furthermore, any relaxation on the system
𝐋𝐌𝐲 = 𝐛 can be implicitly emulated on the original system, without
having to enact a change of variables from 𝐱 to 𝐲 beforehand. Specif-
ically, any update 𝑦𝑖 ← 𝑦𝑖 + 𝛿 to one of the components of 𝐲 can be
emulated as 𝐱← 𝐱 + 𝛿𝐌𝐞𝑖 = 𝐱 + 𝛿𝐦𝑖 on the 𝐱, where 𝐞𝑖 is the 𝑖-th basis
vector (or, equally, 𝐦𝑖 is the 𝑖-th column of 𝐌)

For the Stokes equations, the transformed system can be formulated
as

𝐋𝐌𝐲 =
(
𝐀 𝐁𝑇

𝐁 𝟎

)(
𝐈 −𝐁𝑇

𝟎 𝜂𝐁𝐁𝑇

)(
𝐮̃
𝑝̃

)
= 𝐛 (4)

which yields

𝐋𝐌 =
(
𝐀 𝐁𝑇

𝐁 𝟎

)(
𝐈 −𝐁𝑇

𝟎 𝜂𝐁𝐁𝑇

)
=
(
−𝜂Δℎ ∇ℎ

−∇⋅ℎ 𝟎

)(
𝐈 −∇ℎ

𝟎 −𝜂∇ ⋅ℎ ∇ℎ

)

=
(
−𝜂Δℎ 𝜂Δℎ∇ℎ − 𝜂∇ℎΔℎ

−∇⋅ℎ Δℎ

)
=
(
−𝜂Δℎ 𝟎
−∇⋅ℎ Δℎ

)
(5)

Here the superscript ℎ indicates the operator is discretized by a finite
difference method with a grid size of ℎ. The top right block is 𝟎 due to
two facts. First, ∇ℎ ⋅∇ℎ is equivalent to Δℎ, which is a classical 5(2D)
or 7(3D)-point Laplacian stencil in finite difference method. Secondly,
the Δ and ∇ operators are commutative, which is a property that Stokes
equation specifically preserves under a finite difference discretization.
It’s important to note that when alternative discretization methods like
Finite Elements are employed, the top-right block may not be exactly
zero but only asymptotically zero up to truncation error. Furthermore,
we should also note that the discrete matrix structure illustrated in equa-
tion (5) is specific to the interior of the computational domain, since the
presence of boundary equations could affect it (e.g. the triangular prop-
erty of the combined matrix).

The introduction of the distribution matrix 𝐌 is motivated by the
fact that 𝐋𝐌 forms a block upper triangular matrix with the Laplacian
operator on the diagonal block. This structure allows us to apply clas-
sical smoothing methods like Gauss-Seidel or weighted Jacobi on 𝐋𝐌
matrix, leveraging their effectiveness on the Laplacian operator. The
smoother for each component block will be applied in sequence. One
way to appreciate this process would be as follows: If instead of a re-
laxation procedure, we applied a full solution for the Laplacian at each
diagonal block (or, equivalently, if we smoothed to full convergence), it-
erating from one block component to the next would have been a block
forward-substitution process. In practice, following the same relaxation
schedule is a highly effective overall smoother, even if only a small num-
ber of relaxation steps are used at each block.

From that, 𝛿𝐲 is obtained to compute corrections 𝛿𝐱 = 𝐌𝛿𝐲. The
smoothing operator of, respectively, distributive Gauss-Seidel (DGS)
and distributive weighted Jacobi (DWJ) can be represented as 𝐒𝐷𝐺𝑆 =
𝐌𝐆̃−1 and 𝐒𝐷𝑊 𝐽 = 𝜔𝐌𝐃̃−1 where 𝐆̃ and 𝐃̃ is the upper triangular and
diagonal component of system matrix 𝐋𝐌. Instead of computing the
entire 𝐋𝐌 matrix and applying Gauss-Seidel or weighted Jacobi, this

Y. Tao and E. Sifakis Computers and Mathematics with Applications 172 (2024) 168–180
process can be simplified by storing the diagonal part of 𝐋𝐌 and using
the connection 𝐱 =𝐌𝐲. Algorithm 2 provides a detailed example of the
simplification of DGS smoothing. A similar approach can be employed
for DWJ smoothing.

Algorithm 2 Distributive Gauss-Seidel smoothing.
1: Input: System matrix 𝐋, initial guess 𝐱0 and right hand side 𝐛
2: Output: Solution 𝐱
3: procedure DGS(𝐋, 𝐱0, 𝐛)
4: Compute distributive matrix 𝐌
5: 𝐝 = 𝟎
6: for 𝑗 = 1, 2, ... do
7: 𝐝𝑗 ← 𝐋𝑗, ⋅𝐌,𝑗

8: ⊳ where 𝐋𝑗, is the 𝑗th row of 𝐋 and 𝐌,𝑗 is the 𝑗th column of 𝐌
9: end for

10: 𝐱ℎ ← 𝐱ℎ0
11: for 𝑗 = 1, 2, ... do
12: 𝑟 ← 𝐛𝑗 −𝐋𝑗,𝐱
13: 𝐱← 𝐱 + 𝑟

𝐝𝑗
𝐌,𝑗

14: end for

15: end procedure

As mentioned above, we aim to design a symmetric smoother. How-
ever, the symmetry of distributive smoothing is hindered by right-
preconditioning; we can easily show that applying an otherwise sym-
metric smoother (like Gauss-Seidel) to the non-symmetric distributed
operator 𝐋𝐌 would compromise symmetry. In order to restore the sym-
metry property, we introduce left-preconditioning of the distributive
smoother as follows

𝐌𝑇𝐋𝐱 =
(

𝐈 𝟎
−𝐁 𝜂𝐁𝐁𝑇

)(
𝐀 𝐁𝑇

𝐁 𝟎

)(
𝐮
𝑝

)
=𝐌𝑇 𝐛 (6)

It’s obvious that 𝐌𝑇𝐋 = (𝐋𝐌)𝑇 due to the symmetry of 𝐋. Our com-
bined, symmetric distributive smoother operates as follows: In a first
sweep, we choose a given traversal order of the degrees of freedom, and
apply DGS according to Equation (4) at each point. In a second sweep,
we use exactly the reverse traversal order of the first step, and apply
DGS, but in accordance with the left-preconditioned system in Equation
(6). The smoother constructed in this way is symmetric; a full proof of
this fact is given in Appendix A, and a similar proof applies to DWJ. De-
spite the efficiency of the distributive smoother, its convergence heavily
relies on the commutativity of Δ and ∇ operators in the interior re-
gion. This property does not discretely hold near the boundary, where
this smoothing procedure is no longer applicable. Thus, we employ a
different, more general and robustly convergent (albeit not as computa-
tionally efficient) smoother in the vicinity of the domain boundary.

3.2. Symmetric Vanka smoother

The Vanka smoother is more powerful and broadly applicable, but
incurs a higher computational cost per iteration compared to the dis-
tributive smoother. It can be viewed as a specific type of Schwarz
smoother [32]. The fundamental idea behind the Vanka smoother is to
solve the Stokes equations locally, subdomain by subdomain, wherein
all degrees of freedom within one subdomain are updated simultane-
ously. Like other smoothers, Vanka relaxation can be expressed in the
format of Equation (3). In the Vanka smoother, we divide the entire dis-
crete domain 𝐷 into 𝑛 potentially overlapping subdomains {𝐷1, ..., 𝐷𝑛}
as shown in Fig. 4. Each subdomain can be viewed as a local saddle-
point problem. Solving each subdomain problem sequentially, akin to
Gauss-Seidel, is known as multiplicative Vanka relaxation. The smoother
operator can be defined as

𝐒𝑀𝑉 = [𝐈−
𝑛∏
(𝐈−𝐂𝑇

𝑖
(𝐂𝑖𝐋𝐂𝑇

𝑖
)−1𝐂𝑖𝐋)]𝐋−1 (7)
𝑖=1

172
Fig. 4. Vanka smoother on 2D example.

where 𝐂𝑖 represents the selection matrix from domain 𝐷 to domain 𝐷𝑖.
Alternatively, solving each subdomain problem simultaneously as Ja-
cobi method, is known as the additive Vanka smoother. The smoother
operator for this approach is defined as

𝐒𝐴𝑉 =
𝑛∑
𝑖=1

𝐂𝑇
𝑖
(𝐂𝑖𝐋𝐂𝑇

𝑖
)−1𝐂𝑖 (8)

We prove that the additive Vanka smoother is always symmetric in Ap-
pendix B. To ensure the symmetry in the multiplicative Vanka smoother,
we adopt a similar approach to symmetric Gauss-Seidel. We solve each
subdomain from domain 𝐷1 to 𝐷𝑛, and then in reverse order from 𝐷𝑛

to 𝐷1 again. The proof of symmetry for our symmetric multiplicative
Vanka smoother is given in Appendix C.

3.3. Symmetric integration of smoother

As previously discussed, these two smoothers provide advantages
depending on the region of the computational domain. The symmet-
ric distributive smoother provides reliable convergence and attractive
computational cost when applied to the interior region, while the sym-
metric Vanka smoother exhibits greater suitability near the boundary,
albeit at a higher cost. However, despite the fact that each can be made
symmetric on its own, it’s not trivially true that any combination will in-
herently retain symmetry. To ensure strict symmetry with the multigrid
framework, we propose the following smoothing step algorithm:

First, we partition the unknowns into two non-overlapping sets:
boundary set 𝑉1 and interior set 𝑉2. Then we apply symmetric Vanka
smoother to 𝑉1, symmetric distributive smoother to 𝑉2 and another sym-
metric Vanka smoother to 𝑉1 again. The detailed algorithm is shown
in Algorithm 3, with a formal proof for its symmetry provided in Ap-
pendix D. In practice for our implementation, DGS smoother is used
instead of DWJ, because it achieves a more attractive convergence rate
but a similar runtime cost.

Algorithm 3 Smoothing.
1: Input: System matrix 𝐋ℎ, initial guess 𝐱ℎ0 and right hand side 𝐛ℎ
2: Output: Solution 𝐱ℎ
3: procedure Smooth(𝐋ℎ, 𝐱ℎ0 , 𝐛ℎ)
4: Partition 𝐱ℎ into two non-overlapping sets: boundary set 𝑉1 and interior
set 𝑉2

5: 𝐱ℎ ← Symmetric_Vanka(𝐋ℎ, 𝐱ℎ0 , 𝐛ℎ) on the boundary set 𝑉1
6: 𝐱ℎ ← Symmetric_Distributive(𝐋ℎ, 𝐱ℎ0 , 𝐛ℎ) on the interior set 𝑉2
7: 𝐱ℎ ← Symmetric_Vanka(𝐋ℎ, 𝐱ℎ0 , 𝐛ℎ) on the boundary set 𝑉1
8: end procedure

This approach leverages the strengths of both smoothers. On one
hand, the larger size of 𝑉2 ensures that the symmetric Vanka smoother
isn’t overused, enhancing computational efficiency. On the other hand,
employing symmetric Vanka smoother near the boundary helps prevent
the potential divergence issues of the symmetric distributive smoother.

Y. Tao and E. Sifakis Computers and Mathematics with Applications 172 (2024) 168–180

Fig. 5. 2D discrete domain example.
Therefore, this integrated approach is a balanced and effective choice
in practical applications compared to using either smoother alone.

4. Preconditioning

Although the use of the Vanka smoother significantly improves con-
vergence near the boundary, multigrid is more stable when used as
the preconditioner for a Krylov subspace solver. SQMR is known for
its lower computational time and storage requirements, and supports
arbitrary symmetric preconditioners, including indefinite ones from a
multigrid V-cycle. Therefore, we propose using our multigrid as the pre-
conditioner for SQMR. The application of the multigrid preconditioner
is outlined in Algorithm 4. It’s worth mentioning that not just any multi-
grid V-cycle can be used as the preconditioner. This procedure must be
equivalent to 𝐭 ←𝐌−1𝐬0 where matrix 𝐌 is symmetric. Fortunately, as
we prove in the appendix, our multigrid formulation indeed satisfies this
condition with the initial guess 𝐱0 = 𝟎.

Algorithm 4 Multigrid-preconditioned SQMR.
1: Input: System matrix 𝐋, initial guess 𝐱0 = 𝟎, right hand side 𝐛 and multigrid
level 𝑛 ≥ 1

2: Output: Solution 𝐱
3: procedure MG-SQMR(𝐋, 𝐱0, 𝐛)
4: 𝐬0 ← 𝐛 − 𝐋𝐱0, 𝐭 ← V-CYCLE(𝐋̃, 𝐬0,𝟎, 𝑛), 𝐪0 ← 𝐭, 𝜏0 ← ||𝐭||2, 𝜈0 ← 0, 𝜌0 ←

𝐬𝑇0 𝐪0, 𝐝 ← 𝟎
5: for 𝑗 = 1, 2, ... do
6: 𝐭 ← 𝐋𝐪𝑗−1, 𝜎𝑗−1 ← 𝐪𝑇

𝑗−1𝐭, 𝛼𝑗−1 ←
𝜌𝑗−1

𝜎𝑗−1
, 𝐬𝑗 ← 𝐬𝑗−1 − 𝛼𝑗−1𝐭

7: 𝐭 ← V-CYCLE(𝐋̃, 𝐬𝑗 ,𝟎, 𝑛), 𝜈𝑗 ←
||𝐭||2
𝜏𝑗−1

, 𝑐𝑗 ← 1√
1+𝜈2

𝑗

, 𝜏𝑗 ← 𝜏𝑗−1𝜈𝑗𝑐𝑗

8: 𝐝𝑗 ← 𝑐2
𝑗
𝜈2
𝑗−1𝐝𝑗−1 + 𝑐2

𝑗
𝛼𝑗−1𝐪𝑗−1, 𝐱𝑗 ← 𝐱𝑗−1 + 𝐝𝑗

9: if 𝐱𝑗 has converged then
10: 𝐱← 𝐱𝑗 , stop
11: end if

12: 𝜌𝑗 ← 𝐬𝑇
𝑗
𝐭, 𝛽𝑗 ←

𝜌𝑗

𝜌𝑗−1
, 𝐪𝑗 ← 𝐭 + 𝛽𝑗𝐪𝑗−1

13: end for

14: end procedure

Another potential benefit of using multigrid as the preconditioner is
that it allows us to use different matrices for SQMR and V-cycle, which
means we can use some approximation 𝐋̃ instead of 𝐋 in our multigrid
V-cycle. For example, in order to prevent 𝐋 from failing to be full rank
when applying all Dirichlet boundary conditions, we modify it as

𝐋̃ =
(
𝐀 𝐁𝑇

𝐁 −𝛾𝐈

)
(9)

where 𝛾 is an adequately small number. This modification corresponds
to the classical penalty method. Since the modification is only applied
173
as a preconditioner instead of as a replacement of the system matrix,
the divergence-free property can be always exactly maintained.

5. Discrete domain design

In this section, we describe our design decisions for the discrete de-
scription of the computational domains we target. We highlight that,
as a matter of scope, we focus on a first-order accurate discretization of
the Stokes equations, at grid-cell precision. This is primarily a choice for
simplicity of exposition; our solver architecture and specifically our use
of Vanka relaxation near the boundary could have been combined with
a higher order scheme to provide sub-cell resolution of boundary con-
ditions if desired. In addition, even if the finest level of discretization
in the multigrid hierarchy was discretized at higher order, it would still
be an option to use first-order accurate discretizations at coarser levels,
especially when the multigrid cycle is intended as a preconditioner.

We adopt a domain description where every cell is labeled as Dirich-
let, exterior or interior as illustrated in Fig. 5. Using this designation of
cells as input, we proceed to also classify velocity or pressure variables
as “Dirichlet”, “active” or “inactive” as well. Specifically, any velocity
variables on faces of Dirichlet cells are treated as Dirichlet boundary
conditions. Velocities on faces between two “interior” cells are treated
as active degrees of freedom and are solved by our scheme. Any velocity
variables that do not neighbor an active cell are treated as inactive, and
excluded from our solve. Finally, pressures at centers of interior cells
are active degrees of freedom, while others (at centers of Dirichlet or
exterior cells) are inactive and excluded from the solve.

We adopt this cell-based designation, as opposed to, e.g. designating
individual grid faces as Neumann faces, because our design leads itself
naturally to coarsening this cell-level designation as follows: A cell at
a coarser level inherits its label based on the labels of the finer-level
cells within it. Specifically, a coarser-level cell is labeled as Dirichlet
if it encloses any finer-level Dirichlet cell, otherwise as interior if it
contains any finer-level interior cell. A cell remains an exterior one
if all enclosed finer-level cells are exterior. This discrete domain de-
sign enables a straightforward partition of degrees of freedom into two
non-overlapping sets for the use of symmetric Vanka and symmetric dis-
tributive smoothers. If a cell is proximal to any Dirichlet cell or exterior
cell, all the degrees of freedom on this cell are smoothed by symmetric
Vanka smoother. Conversely, symmetric distributive smoother is used
for all other degrees of freedom.

Every interior velocity (on the face between two interior cells) or
pressure variable is paired with a discrete equation, according to a fi-
nite difference scheme. Dirichlet velocities are similarly paired with a
Dirichlet boundary condition. Velocity variables on a face between one
interior and one exterior cell are treated as Neumann conditions; we

Y. Tao and E. Sifakis Computers and Mathematics with Applications 172 (2024) 168–180

Fig. 6. 2D 10242 driven cavity example.

Table 1

The numbers of total and boundary degrees of freedom.
2D examples #total degrees of freedom #boundary degrees of freedom boundary percentage

10242 Driven Cavity 3143680 12272 0.38%

2200 × 410 Cylinder 2680020 18493 0.69%

1100 × 205 Cylinder 669372 9243 1.38%

440 × 82 Cylinder 106812 3693 3.45%

220 × 41 Cylinder 26580 1843 6.93%

10242 Hollow Square 3463768 29305 0.85%

10242 Brancher 2546560 61077 2.39%

3D examples #total degrees of freedom #boundary degrees of freedom boundary percentage

1283 Driven Cavity 8339456 385580 4.62%

255 × 82 × 82 Cylinder 6788860 425856 6.27%

1283 Brancher 8013824 1119980 13.98%

1283 Porous 9156798 614304 6.71%
treat those Neumann conditions as zero in our numerical examples, with
the understanding that any nonzero conditions can be moved to the
right-hand-side of the discretized equations without further alteration
of the discrete operator.

6. Numerical convergence experiments

In this section, we present the results of our numerical convergence
experiments, which compare the performance of our method with the
pure multigrid method under several different boundary scenarios. We
set the fluid viscosity to 𝜂 = 10−3𝑚2∕𝑠, and 𝛾 = 10−3. To enhance the ef-
ficiency of Vanka smoothing, we pre-factorize 34 in 2D or 36 in 3D local
saddle point problems, based on whether neighboring cells are Dirichlet,
exterior or interior. It’s straightforward to parallelize the additive Vanka
smoother, and an 8-color scheme is applied to parallelize the multiplica-
tive Vanka smoother. All examples are implemented in C++ code, and
we utilize Intel Pardiso and Eigen as the direct solvers for the bottom
level of the V-cycle and for solving local saddle-point problems in the
Vanka smoother respectively. The experiments are performed on a com-
puter with an Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30 GHz and 128
GB of main memory. Paraview is used for postprocessing the results. In
the following section, we’ll discuss the results in 2D examples and 3D
examples separately.

6.1. 2D numerical examples

In this subsection, we explore four 2D examples to assess the per-
formance of our approach. Specifically, we examine the driven cavity
example and the Poiseuille flow around a cylinder example to evaluate
174
the convergence rates in comparison to pure multigrid methods. Addi-
tionally, the remaining two examples demonstrate the capability of our
method to effectively handle more complex scenarios beyond the scope
of pure multigrid methods.

6.1.1. Driven cavity example
The driven cavity example is a well-established benchmark in the

field of computational fluid dynamics. In the 2D scenario, the computa-
tional domain is a unit square, where no-slip boundary conditions are
imposed on the left, right and bottom sides. On the top side, a zero
vertical velocity and a constant horizontal velocity of 𝑢 = 1.0𝑚∕𝑠 is im-
posed. We use a 10242 unit square as our computational domain and
an 8-level multigrid as our preconditioner and solver. The solved ve-
locity field with streamline and the convergence of pure multigrid on
𝐋̃ and multigrid-preconditioned SQMR on 𝐋 are shown in Fig. 6. The
iterations are terminated when the relative residual goes below 10−8 ,
and the legend indicates the type and number of smoothers used for
the boundary and interior regions. We consistently apply a symmetric
distributive Gauss-Seidel smoother only once in each V-cycle to the in-
terior region. This approach significantly reduces the execution time per
V-cycle, given that the boundary degrees of freedom are typically less
than 3% of the total degrees of freedom. Table. 1 provides more detailed
information about the percentage of the number of boundary degrees of
freedom.

The convergence plots reveal that our preconditioner achieves faster
convergence compared to the pure multigrid method. Furthermore, the
multiplicative Vanka smoother is more efficient than the additive one,
even when the latter is applied three times per V-cycle. The convergence
rates of both multiplicative and additive methods closely match the ideal
scenario where a direct solver is employed for the boundary domains.

Y. Tao and E. Sifakis Computers and Mathematics with Applications 172 (2024) 168–180

Fig. 7. 2D 2200 × 410 Poiseuille flow around cylinder example.
Fig. 8. Convergence of 2D cylinder example in different dimensions.

6.1.2. Poiseuille flow around a cylinder example
The case of 2D Poiseuille flow represents the steady, laminar flow of

an incompressible fluid through a channel driven by a pressure gradient.
This flow scenario is commonly studied in benchmarks [33,34], partic-
ularly with the presence of a cylindrical obstacle. In our 2D scenario,
the channel dimensions are 2.2𝑚 × 0.41𝑚, and a cylindrical obstacle is
placed at position (0.2𝑚, 0.2𝑚)with a radius of 0.05𝑚. The inflow bound-
ary conditions are described by

𝑢(0, 𝑦) = 4𝑢̄𝑦(𝐻 − 𝑦)
𝐻2

𝑣(0, 𝑦) = 0
(10)

where 𝑢̄ = 0.3𝑚∕𝑠 is the average horizontal velocity, and 𝐻 = 0.41𝑚
is the width of the channel. On the outflow boundary, a homogeneous
Neumann boundary condition is applied, while no-slip boundary con-
ditions are enforced on the top and bottom sides. The computational
domain has dimensions 2200 × 410, and a 6-level multigrid is used to
solve the problem with ℎ = 0.001𝑚. The partially solved velocity field
and the convergence results are shown in Fig. 7, which shows that the
effectiveness of the symmetric multiplicative Vanka smoother. Addition-
ally, the scalability of our multiplicative preconditioner and multigrid
is demonstrated through various domain sizes in Fig. 8.

6.1.3. Poiseuille flow around hollow square example
In this example, we explore a more complex scenario involving

Poiseuille flow around a hollow square obstacle. While pure multigrid
suffices for simple applications, it may encounter divergence in more
complicated scenarios. Here we use similar boundary conditions as those
used in the cylindrical obstacle with 𝑢̄ = 1.0𝑚∕𝑠. The key difference lies
in the presence of a hollow square obstacle, as depicted in Fig. 9. We
perform our simulations on a 10242 computational domain with an 8-
175
level multigrid. It is observed that only the multiplicative preconditioner
yields fast convergence, while the additive preconditioner and the pure
multigrid method fail to converge. This behavior can be attributed to the
closing of the hollow square as the multigrid coarsens. Consequently,
the solutions derived at coarser levels become increasingly inaccurate.
However, when employed as a preconditioner, the multigrid method
continues to guide SQMR towards successful convergence.

6.1.4. Brancher example
In the hollow square example, we explored the limitations of pure

multigrid methods. Now we present a more practical example to em-
phasize the defects of pure multigrid methods and the reliability of the
multiplicative preconditioner. We keep the same boundary conditions
and computational domain as those used in the hollow square obstacle.
Instead of a single obstacle, we apply multiple rectangular obstacles near
the outflow boundary to branch a single inflow into several outflows,
forming a structure referred to as a “brancher”. As shown in Fig. 10,
our multiplicative preconditioner converges very fast. In contrast, the
additive preconditioner and the pure multigrid methods still struggle to
converge. The hollow square example and the brancher example clearly
show the effectiveness and reliability of the multiplicative precondi-
tioner. This fact leads us to focus on the multiplicative methods in our
upcoming 3D examples, without considering the additive method. Addi-
tionally, we investigate the impact of the number of boundary smoother
iterations on the convergence rate of the multiplicative preconditioner
in Fig. 11. The result indicates that increasing the numbers of boundary
smoother iterations leads to faster convergence rates.

6.2. 3D numerical examples

In this subsection, we consider four 3D examples using only mul-
tiplicative preconditioner and multigrid. The driven cavity example
and the Poiseuille flow with a cylindrical obstacle example show that
our multigrid preconditioner achieves comparable convergence rates to
pure multigrid methods. The last two examples highlight the capabil-
ity of our approach to address more complicated scenarios beyond the
capabilities of pure multigrid solvers.

6.2.1. Driven cavity example
The 3D driven cavity example is similar to the 2D version. In this

case, we consider a unit cube instead of a unit square as our computa-
tional domain, applying no-slip boundary conditions to all sides except
the top. The top side is subject to a constant horizontal velocity of
𝑢 = 1.0𝑚∕𝑠. A 5-level multiplicative multigrid is used within a 1283 unit
cube. We present the sliced velocity field and the convergence results
in Fig. 12. We can see that our preconditioner method converges faster
than the multigrid method, closely resembling where the boundary do-
mains are solved using a direct solver.

Y. Tao and E. Sifakis Computers and Mathematics with Applications 172 (2024) 168–180

Fig. 9. 2D 10242 Poiseuille flow around hollow square example.

Fig. 10. 2D 10242 brancher example.
Fig. 11. Convergence of 2D brancher example with different numbers of bound-
ary smoothers.

6.2.2. Poiseuille flow around cylinder example
In the 3D scenario, we also consider Poiseuille flow around a cylin-

der. The channel dimensions are 1.275𝑚 × 0.41𝑚 × 0.41𝑚, and a cylin-
drical obstacle is positioned along the (0.5𝑚, 0.2𝑚, 𝑧) axis with a radius
of 0.05𝑚. The inflow boundary conditions are described as

𝑢(0, 𝑦, 𝑧) =
16𝑢̄𝑦𝑧(𝐻𝑦 − 𝑦)(𝐻𝑧 − 𝑧)

𝐻4

𝑣(0, 𝑦, 𝑧) = 0 (11)
176
𝑤(0, 𝑦, 𝑧) = 0

where 𝑢̄ = 0.45𝑚∕𝑠 represents the average horizontal velocity, and 𝐻𝑦 =
𝐻𝑧 = 0.41𝑚 are the inflow widths of the channel. Homogeneous Neu-
mann boundary conditions are applied on the outflow boundary, while
the surrounding sides are subject to no-slip conditions. The computa-
tional domain has dimensions of 255 × 82 × 82, and a 4-level multigrid
is used to solve the problem with ℎ = 0.005𝑚. Fig. 13 b) shows the sliced
velocity field and the convergence results. In this example, applying our
symmetric multiplicative Vanka smoother only once does not yield con-
vergence rates that match the ideal scenario where a direct solver is
utilized on the boundary domains. Instead, we achieve the ideal conver-
gence by increasing the number of smoothers applied to the boundary
to 2.

6.2.3. Brancher example
To highlight the effectiveness of our preconditioner, we present a

3D brancher example. We keep the same boundary condition as 3D
Poiseuille flow around cylinder example except that we substitute the
cylinder with multiple cuboids near the outflow boundary and use
𝑢̄ = 1.0𝑚∕𝑠. A 5-level multigrid is used within a 1283 unit cube. The
sliced velocity field and the convergence results are shown in Fig. 14.
We can see that our multiplicative preconditioner converges very fast
but the pure SQMR and multigrid method fails. This example shows the
advantage of our approach in 3D case.

6.2.4. Porous example
The final example we show is the porous example. In this exam-

ple, we use the same boundary condition and computational domain as

Y. Tao and E. Sifakis Computers and Mathematics with Applications 172 (2024) 168–180

Fig. 12. 3D 1283 driven cavity example.

Fig. 13. 3D 255 × 82 × 82 cylinder example.

Fig. 14. 3D 1283 brancher example.
brancher example, but we use a porous layer as shown in Fig. 15 a) to
replace the multiple cuboid obstacles. Our multiplicative preconditioner
exhibits rapid convergence, while the pure SQMR and multigrid meth-
ods prove ineffective, as illustrated in Fig. 15 b). This example further
exemplifies the robustness and efficiency of our multiplicative precon-
ditioner.

7. Stability and efficiency analysis

We present some additional experiments to assess the stability of our
method under problems of different resolutions and conditioning, and
multigrid cycle schemes.
177
7.1. Resolution and conditioning

We seek to investigate the effect of domain resolution on the ef-
ficacy of our scheme. Although the increased spatial resolution does
impact the condition number of the modified system matrix 𝐋̃ used in
multigrid, a healthy multi-resolution scheme would be expected to be
consistently convergent, largely independent of resolution, even if the
condition number itself increases. We illustrate the convergence of the
2D driven cavity example at different resolutions as shown in Fig. 16.
We observe consistent convergence rates in this refinement analysis. We
should indicate that the geometric complexity of a domain is another fac-
tor that can certainly affect convergence, especially in the presence of

Y. Tao and E. Sifakis Computers and Mathematics with Applications 172 (2024) 168–180

Fig. 15. 3D 1283 brancher example.
Fig. 16. Convergence of 2D driven cavity example at different resolutions.

fine geometric features that are not well resolved or consistently repre-
sented across resolutions.

7.2. Cycle schemes

We also design experiments using different cycle schemes. Specifi-
cally, we compare the convergence rates by using W-cycle and V-cycle
on 10242 Driven Cavity Example and 2200 ×410 Poiseuille Flow around
Cylinder Example as shown in Fig. 17 and 18. The results indicate that
the W-cycle can indeed accelerate convergence rates (independent of
runtime) in the cases where even pure multigrid methods converge.
However, the increased time required for the W-cycle does not fully
compensate for the improved convergence rates. Additionally, the deep-
level W-cycle scheme fails to converge in our 10242 Poiseuille flow
around a hollow square example and brancher example. This suggests
that the V-cycle is a more reliable scheme and potentially economical
in terms of runtime.

8. Conclusions

In this work, we propose and evaluate a novel multigrid precon-
ditioner for solving the Stokes equations in both 2D and 3D scenar-
ios. Our approach leverages the strengths of a symmetric distributive
smoother and Vanka smoother, which are well-suited for handling inte-
rior and boundary regions respectively. By combining these smoothers
carefully, we achieve an efficient symmetric multigrid preconditioner
which can be used by the SQMR method. We demonstrate the efficacy
of our scheme in numerical experiments in both 2D and 3D scenarios.
Our method achieves comparable convergence rates to pure multigrid
methods, and also maintains fast convergence even when pure multigrid
178
Fig. 17. Different cycle schemes on 2D 10242 driven cavity example.

Fig. 18. Different cycle schemes on 2D 2200 × 410 Poiseuille flow around a
cylinder example.

methods struggle with divergence. The application of our preconditioner
as a robust and reliable solver, particularly in challenging 3D cases,
shows its potential to significantly enhance the efficiency of solving the
Stokes equations. Our future endeavors will focus on GPU acceleration
to enhance the scalability of our methods, allowing for the efficient res-
olution of larger-scale problems.

Data availability

Data will be made available on request.

Y. Tao and E. Sifakis Computers and Mathematics with Applications 172 (2024) 168–180
Acknowledgements

This work was supported in part by NSF Grant IIS-2106768.

Appendix A. Symmetry proof for symmetric distributive
Gauss-Seidel

Lemma 1. Consider a sequence 𝐱(𝑘+1) =𝐀𝐱(𝑘) +𝐛with 𝐱(0) = 𝟎. The general
formula is 𝐱(𝑛) =∑𝑛−1

𝑖=0 𝐀
𝑖𝐛.

This conclusion is obvious by using mathematical induction. □

Theorem 1. In symmetric DGS smoother, when 𝐋 is symmetric and 𝐱(0) = 𝟎,
then 𝐱(𝑛) =𝐂𝐱(0) and 𝐂 is a symmetric matrix.

Splitting 𝐋 = 𝐆 + 𝐇 with a lower triangular matrix and a strictly
upper triangular matrix, GS can be written as

𝐱(𝑘+1) = 𝐱(𝑘) +𝐆−1(𝐛−𝐋𝐱(𝑘)) (A.1)

After introducing the distributive preconditioner 𝐌 and defining 𝐆̃ and
𝐇̃ as the lower and strictly upper triangular part of 𝐋𝐌 instead of 𝐋,
the distributive GS can be written as

𝐱(𝑘+1) = 𝐱(𝑘) +𝐌𝐆̃−1(𝐛−𝐋𝐱(𝑘)) (A.2)

For the symmetric DGS smoother, the smoothing step can be written as

𝐱(𝑘+
1
2) = 𝐱(𝑘) +𝐌𝐆̃−1(𝐛−𝐋𝐱(𝑘))

𝐱(𝑘+1) = 𝐱(𝑘+
1
2) + 𝐆̃−𝑇𝐌𝑇 (𝐛−𝐋𝐱(𝑘+

1
2))

(A.3)

Substitute the first equation in Equation (A.3) into the second one and
denote 𝐏 =𝐌𝐆̃−1 + 𝐆̃−𝑇𝐌𝑇 − 𝐆̃−𝑇𝐌𝑇𝐋𝐌𝐆̃−1, and we get

𝐱(𝑘+1) = (𝐈− 𝐏𝐋)𝐱(𝑘) + 𝐏𝐛 (A.4)

By using Lemma 1, the general formula of 𝐱(𝑛) is

𝐱(𝑛) =
𝑛−1∑
𝑖=0

(𝐈− 𝐏𝐋)𝑖𝐏𝐛 =
𝑛−1∑
𝑖=0

𝑖∑
𝑗=0

(
𝑖

𝑗

)
(−𝐏𝐋)𝑖𝐏𝐛 =𝐂𝐛 (A.5)

Since (−𝐏𝐋)𝑖𝐏 is always symmetric when 𝐋 and 𝐏 are symmetric, 𝐂 is
symmetric. □

Appendix B. Symmetry proof for additive Vanka smoother

Theorem 2. In additive Vanka smoother, when 𝐋 is symmetric and 𝐱(0) = 𝟎,
𝐱(𝑛) =𝐂𝐱(0) and 𝐂 is a symmetric matrix.

We know that the series of additive Vanka smoother can be written
as

𝐱(𝑘+1) = 𝐱(𝑘) + 𝐒𝐴𝑉 (𝐛−𝐋𝐱(𝑘)) = (𝐈− 𝐒𝐴𝑉 𝐋)𝐱(𝑘) + 𝐒𝐴𝑉 𝐛 (B.1)

By using Lemma 1, the general formula of 𝐱(𝑛) is

𝐱(𝑛) =
𝑛−1∑
𝑖=0

(𝐈− 𝐒𝐴𝑉 𝐋)𝑖𝐒𝐴𝑉 𝐛 =
𝑛−1∑
𝑖=0

𝑖∑
𝑗=0

(
𝑖

𝑗

)
(−𝐒𝐴𝑉 𝐋)𝑖𝐒𝐴𝑉 𝐛 =𝐂𝐛 (B.2)

Since (−𝐒𝐴𝑉 𝐋)𝑖𝐒𝐴𝑉 is always symmetric when 𝐋 and 𝐒𝐴𝑉 are symmet-
ric, 𝐂 is symmetric. □

Appendix C. Symmetry proof for symmetric multiplicative Vanka
smoother

Theorem 3. In symmetric multiplicative Vanka smoother, when 𝐋 is sym-
metric and 𝐱(0) = 𝟎, then 𝐱(𝑛) =𝐂𝐱(0) and 𝐂 is a symmetric matrix.
179
We know that the series of multiplicative Vanka smoother can be
written as

𝐱(𝑘+1) = 𝐱(𝑘) + 𝐒𝑀𝑉 (𝐛−𝐋𝐱(𝑘)) = (𝐈− 𝐒𝑀𝑉 𝐋)𝐱(𝑘) + 𝐒𝑀𝑉 𝐛 (C.1)

For the symmetric multiplicative Vanka smoother, the smoothing step
can be written as

𝐱(𝑘+
1
2) = (𝐈− 𝐒(1)

𝑀𝑉
𝐋)𝐱(𝑘) + 𝐒(1)

𝑀𝑉
𝐛

𝐱(𝑘+1) = (𝐈− 𝐒(2)
𝑀𝑉

𝐋)𝐱(𝑘) + 𝐒(2)
𝑀𝑉

𝐛
(C.2)

where 𝐒(1)
𝑀𝑉

is solving in the order from domain 𝐷1 to 𝐷𝑛, and 𝐒
(2)
𝑀𝑉

is
solving in the order from domain 𝐷𝑛 to 𝐷1. Before we prove that this
smoother is symmetric, let’s prove that 𝐒(2)

𝑀𝑉
= (𝐒(1)

𝑀𝑉
)𝑇 . Denoting that

𝐊𝑖 =𝐂𝑇
𝑖
(𝐂𝑖𝐋𝐂𝑇

𝑖
)−1𝐂𝑖, We can rewrite the transpose of 𝐒

(1)
𝑀𝑉

as

(𝐒(1)
𝑀𝑉

)𝑇 = ([𝐈−
𝑛∏
𝑖=1

(𝐈−𝐊𝑖𝐋)]𝐋−1)𝑇 = 𝐋−1[𝐈−
𝑛∏
𝑖=1

(𝐈−𝐊𝑖𝐋)]𝑇

= 𝐋−1 −𝐋−1
1∏
𝑖=𝑛

(𝐈−𝐋𝐊𝑖) = 𝐋−1 − [
1∏
𝑖=𝑛

(𝐈−𝐊𝑖𝐋)]𝐋−1

= [𝐈−
1∏
𝑖=𝑛

(𝐈−𝐊𝑖𝐋)]𝐋−1 = 𝐒(2)
𝑀𝑉

(C.3)

Substitute the first equation in Equation (C.2) into the second one and
denote 𝐏 = 𝐒(1)

𝑀𝑉
+ [𝐒(1)

𝑀𝑉
]𝑇 − [𝐒(1)

𝑀𝑉
]𝑇𝐋𝐒(1)

𝑀𝑉
, we can get

𝐱(𝑘+1) = (𝐈− 𝐏𝐋)𝐱(𝑘) + 𝐏𝐛 (C.4)

By using Lemma 1, the general formula of 𝐱(𝑛) is

𝐱(𝑛) =
𝑛−1∑
𝑖=0

(𝐈− 𝐏𝐋)𝑖𝐏𝐛 =
𝑛−1∑
𝑖=0

𝑖∑
𝑗=0

(
𝑖

𝑗

)
(−𝐏𝐋)𝑖𝐏𝐛 =𝐂𝐛 (C.5)

Since (−𝐏𝐋)𝑖𝐏 is always symmetric when 𝐋 and 𝐏 are symmetric, 𝐂 is
symmetric. □

Appendix D. Symmetry proof for symmetric integration of
smoother

Lemma 2. Consider a sequence 𝐱(𝑘+1) =𝐀𝐱(𝑘) + 𝐛. The general formula is
𝐱(𝑛) =𝐀𝑛𝐱(0) +∑𝑛−1

𝑖=0 𝐀
𝑖𝐛.

It’s obvious by using mathematical induction. □

Theorem 4. For smoother shown in Algorithm 3, when 𝐋 is symmetric and
𝐱(0) = 𝟎, then 𝐱(𝑛) =𝐂𝐱(0) and 𝐂 is a symmetric matrix.

Since we decouple the unknowns into two sets 𝑉1 and 𝑉2, we can
reorder our system equations into

𝐋𝐱 =
(
𝐋11 𝐋12
𝐋21 𝐋22

)(
𝐱1
𝐱2

)
=
(
𝐛1
𝐛2

)
= 𝐛 (D.1)

where 𝑥1 and 𝑥2 represent unknowns for 𝑉1 and 𝑉2 separately.
For symmetric Vanka smoothing, it can be seen as solving the system

𝐋11𝐱1 = 𝐛1 −𝐋12𝐱2 (D.2)

And for symmetric distributive smoothing, it can be seen as solving the
system

𝐋22𝐱2 = 𝐛2 −𝐋21𝐱1 (D.3)

For the first symmetric Vanka smoothing, 𝐱(0) = 𝟎. By Theorem 2 or
3, we know that [𝐱1, 𝐱2]𝑇 = [𝐂1𝐛1, 𝟎]𝑇 after smoothing, where 𝐂1 has
the form

∑𝑛−1
𝑖=0

∑𝑖

𝑗=0
(𝑖)(−𝐏𝐋)𝑖𝐏𝐛 with some symmetric matrix 𝐏.

𝑗

Y. Tao and E. Sifakis Computers and Mathematics with Applications 172 (2024) 168–180
For the symmetric Vanka smoothing, 𝐱(0) = [𝐂1𝐛1, 𝟎]𝑇 . By The-
orem 1, we know that [𝐱2, 𝐱2]𝑇 = [𝐂1𝐛1, 𝐂2(𝐛2 − 𝐋21𝐂1𝐛1)]𝑇 after
smoothing, where 𝐂2 is also some symmetric matrix.

For the second symmetric Vanka smoothing, 𝐱(0) = [𝐂1𝐛1, 𝐂2(𝐛2 −
𝐋21𝐂1𝐛1)]𝑇 . By Lemma 2 and Equation (C.4), we know that(
𝐱1
𝐱2

)
=
(
𝐂1(𝐛1 −𝐋12𝐂2(𝐛2 −𝐋21𝐂1𝐛1)) + (𝐈− 𝐏𝐋)𝑛𝐂1𝐛1

𝐂2(𝐛2 −𝐋21𝐂1𝐛1)

)
(D.4)

after smoothing. And we can rewrite it in the matrix form(
𝐱1
𝐱2

)
=
(
𝐂1 +𝐂1𝐋12𝐂2𝐋21𝐂1 + (𝐈− 𝐏𝐋)𝑛𝐂1 −𝐂1𝐋12𝐂2

−𝐂2𝐋21𝐂1 𝐂2

)(
𝐛1
𝐛2

)
=𝐂𝐛

(D.5)

Since 𝐂1 has the form
∑𝑛−1

𝑖=0
∑𝑖

𝑗=0
(𝑖
𝑗

)
(−𝐏𝐋)𝑖𝐏𝐛 with some symmetric

matrix 𝐏, (𝐈 − 𝐏𝐋)𝑛𝐂1 is still symmetric. Therefore, 𝐂 is symmetric. □

References

[1] R.W. Freund, N.M. Nachtigal, A new Krylov-subspace method for symmetric indefi-
nite linear systems, Tech. Rep., Oak Ridge National Lab., TN, United States, 1994.

[2] H.C. Elman, Preconditioners for saddle point problems arising in computational fluid
dynamics, Appl. Numer. Math. 43 (1–2) (2002) 75–89.

[3] A.C. de Niet, F.W. Wubs, Two preconditioners for saddle point problems in fluid
flows, Int. J. Numer. Methods Fluids 54 (4) (2007) 355–377.

[4] C. Farhat, A saddle-point principle domain decomposition method for the solution
of solid mechanics problems, in: Domain Decomposition Methods for Partial Differ-
ential Equations, 1992, pp. 271–292.

[5] A. Franceschini, N. Castelletto, M. Ferronato, Block preconditioning for fault/frac-
ture mechanics saddle-point problems, Comput. Methods Appl. Mech. Eng. 344
(2019) 376–401.

[6] E.G. Phillips, J.N. Shadid, E.C. Cyr, H.C. Elman, R.P. Pawlowski, Block precondition-
ers for stable mixed nodal and edge finite element representations of incompressible
resistive mhd, SIAM J. Sci. Comput. 38 (6) (2016) B1009–B1031.

[7] U. Trottenberg, C.W. Oosterlee, A. Schuller, Multigrid, Elsevier, 2000.
[8] C.W. Oosterlee, F.J.G. Lorenz, Multigrid methods for the Stokes system, Comput. Sci.

Eng. 8 (6) (2006) 34–43.
[9] H.C. Elman, G.H. Golub, Inexact and preconditioned Uzawa algorithms for saddle

point problems, SIAM J. Numer. Anal. 31 (6) (1994) 1645–1661.
[10] D. Braess, R. Sarazin, An efficient smoother for the Stokes problem, Appl. Numer.

Math. 23 (1) (1997) 3–19.
[11] S.P. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in primitive

variables, J. Comput. Phys. 65 (1) (1986) 138–158.
[12] C. Bacuta, P.S. Vassilevski, S. Zhang, A new approach for solving Stokes systems

arising from a distributive relaxation method, Numer. Methods Partial Differ. Equ.
27 (4) (2011) 898–914.

[13] M. Wang, L. Chen, Multigrid methods for the Stokes equations using distributive
Gauss–Seidel relaxations based on the least squares commutator, J. Sci. Comput. 56
(2013) 409–431.

[14] L. Chen, X. Hu, M. Wang, J. Xu, A multigrid solver based on distributive smoother
and residual overweighting for Oseen problems, Numer. Math., Theory Methods
Appl. 8 (2) (2015) 237–252.

[15] J. Maitre, F. Musy, P. Nigon, A fast solver for the Stokes equations using multigrid
with a Uzawa smoother, in: Advances in Multi-Grid Methods: Proceedings of the Con-
ference Held in Oberwolfach, December 8 to 13, 1984, Springer, 1985, pp. 77–83.

[16] P. Luo, C. Rodrigo, F.J. Gaspar, C.W. Oosterlee, Uzawa smoother in multigrid for the
coupled porous medium and Stokes flow system, SIAM J. Sci. Comput. 39 (5) (2017)
S633–S661.

[17] S.V. Patankar, D.B. Spalding, A calculation procedure for heat, mass and momentum
transfer in three-dimensional parabolic flows, in: Numerical Prediction of Flow, Heat
Transfer, Turbulence and Combustion, Elsevier, 1983, pp. 54–73.

[18] Y. He, S.P. MacLachlan, Local Fourier analysis of block-structured multigrid relax-
ation schemes for the Stokes equations, Numer. Linear Algebra Appl. 25 (3) (2018)
e2147.

[19] J.H. Adler, T.R. Benson, E.C. Cyr, S.P. MacLachlan, R.S. Tuminaro, Monolithic multi-
grid methods for two-dimensional resistive magnetohydrodynamics, SIAM J. Sci.
Comput. 38 (1) (2016) B1–B24.

[20] S. Saberi, G. Meschke, A. Vogel, A restricted additive Vanka smoother for geometric
multigrid, J. Comput. Phys. 459 (2022) 111123.

[21] S. Franco, C. Rodrigo, F. Gaspar, M. Pinto, A multigrid waveform relaxation method
for solving the poroelasticity equations, Comput. Appl. Math. 37 (2018) 4805–4820.

[22] Analysis of a multigrid strokes solver, Appl. Math. Comput. 35 (3) (1990) 291–303.
[23] A. Brandt, O.E. Livne, Multigrid Techniques: 1984 Guide with Applications to Fluid

Dynamics, revised edition, SIAM, 2011.
[24] O. Tatebe, The multigrid preconditioned conjugate gradient method, in: NASA, Lan-

gley Research Center, the Sixth Copper Mountain Conference on Multigrid Methods,
Part 2, 1993.

[25] Y. Saad, M.H. Schultz, Gmres: a generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (3) (1986) 856–869.

[26] S. Oliveira, Y. Deng, Preconditioned Krylov subspace methods for transport equa-
tions, Prog. Nucl. Energy 33 (1–2) (1998) 155–174.

[27] C. Oosterlee, T. Washio, On the use of multigrid as a preconditioner, in: Proceed-
ings of Ninth International Conference on Domain Decomposition Methods, Citeseer,
1996, pp. 441–448.

[28] A. Ramage, A multigrid preconditioner for stabilised discretisations of advection–
diffusion problems, J. Comput. Appl. Math. 110 (1) (1999) 187–203.

[29] M. Anselmann, M. Bause, Efficiency of local Vanka smoother geometric multigrid
preconditioning for space-time finite element methods to the Navier–Stokes equa-
tions, Proc. Appl. Math. Mech. 23 (1) (2023) e202200088.

[30] C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal. 12 (4) (1975) 617–629.

[31] K. Stüben, U. Trottenberg, Multigrid methods: fundamental algorithms, model prob-
lem analysis and applications, in: Multigrid Methods: Proceedings of the Conference
Held at Köln-Porz, November 23–27, 1981, Springer, 2006, pp. 1–176.

[32] J. Schöberl, W. Zulehner, On Schwarz-type smoothers for saddle point problems,
Numer. Math. 95 (2) (2003) 377–399.

[33] M. Schafer, S. Turek, F. Durst, E. Krause, R. Rannacher, Benchmark computations of
laminar flow around a cylinder, Notes Numer. Fluid Mech. 52 (1996) 547–566.

[34] X. Nicolas, M. Medale, S. Glockner, S. Gounand, Benchmark solution for a three-
dimensional mixed-convection flow, part 1: reference solutions, Numer. Heat
Transf., Part B, Fundam. 60 (5) (2011) 325–345.
180

http://refhub.elsevier.com/S0898-1221(24)00372-9/bibFE3826173DCA91B78DDF8E5708588D52s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibFE3826173DCA91B78DDF8E5708588D52s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib1F55B2BBA508517800E58C1AD1508978s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib1F55B2BBA508517800E58C1AD1508978s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib688C388E1C542FDA6DD0ACDDFEC3616Fs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib688C388E1C542FDA6DD0ACDDFEC3616Fs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibA84C316287CA599B9F11EF4D1D77B75Cs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibA84C316287CA599B9F11EF4D1D77B75Cs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibA84C316287CA599B9F11EF4D1D77B75Cs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib20BC7C043C274863A67A13C9EE61B336s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib20BC7C043C274863A67A13C9EE61B336s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib20BC7C043C274863A67A13C9EE61B336s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibDB0ED5203D64EC6CEFA30440C516FBEBs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibDB0ED5203D64EC6CEFA30440C516FBEBs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibDB0ED5203D64EC6CEFA30440C516FBEBs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibE19D7A6E5E6C9633E6BB8A1902A31834s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibEAEF10B190CB57090BDD0C2D0203AE9Ds1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibEAEF10B190CB57090BDD0C2D0203AE9Ds1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib846E18087CA1664D29FA36DC4559424Fs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib846E18087CA1664D29FA36DC4559424Fs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibFF8DDB869E532B38FCC527E18317D002s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibFF8DDB869E532B38FCC527E18317D002s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib44F786D6261E57546B6F588F90472B31s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib44F786D6261E57546B6F588F90472B31s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibF6BAB4D3504E1C1FA7E2E487C113CF5Es1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibF6BAB4D3504E1C1FA7E2E487C113CF5Es1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibF6BAB4D3504E1C1FA7E2E487C113CF5Es1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibDBF5D92040BC30E9D0B0F08AF85E147Ds1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibDBF5D92040BC30E9D0B0F08AF85E147Ds1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibDBF5D92040BC30E9D0B0F08AF85E147Ds1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib4CDFC8078B3F3C924561162EB690CCE8s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib4CDFC8078B3F3C924561162EB690CCE8s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib4CDFC8078B3F3C924561162EB690CCE8s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib18C4658F0DF3AD3BE65664EB17245808s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib18C4658F0DF3AD3BE65664EB17245808s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib18C4658F0DF3AD3BE65664EB17245808s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib66FFDF497990F222FA82FD95DE052D0Cs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib66FFDF497990F222FA82FD95DE052D0Cs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib66FFDF497990F222FA82FD95DE052D0Cs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib6ECAA94B453E03ACB5A2B7D846FEBAF6s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib6ECAA94B453E03ACB5A2B7D846FEBAF6s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib6ECAA94B453E03ACB5A2B7D846FEBAF6s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib45D3252A997A4CDAB9FB5D995383C718s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib45D3252A997A4CDAB9FB5D995383C718s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib45D3252A997A4CDAB9FB5D995383C718s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibEFD980709866642AAF9917BCADBE15CEs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibEFD980709866642AAF9917BCADBE15CEs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibEFD980709866642AAF9917BCADBE15CEs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibFE6CAB12B3EA11DB49609D19CD1306ECs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibFE6CAB12B3EA11DB49609D19CD1306ECs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib9576664BEE6B1ACD9FA22721D30C098Es1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib9576664BEE6B1ACD9FA22721D30C098Es1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib3D19951934EF27E1FB95A511C0041B21s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib6D4626FF2783C35F0CD57F68ED0202CCs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib6D4626FF2783C35F0CD57F68ED0202CCs1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib9C94DE237B7162392DF42D93DC13B468s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib9C94DE237B7162392DF42D93DC13B468s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib9C94DE237B7162392DF42D93DC13B468s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibFCE760C30C742555A60CA44B97BAA815s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibFCE760C30C742555A60CA44B97BAA815s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib4EBF0F72F56DAAEE1C35D864816F1C26s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib4EBF0F72F56DAAEE1C35D864816F1C26s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib9954E482A42A845CA4636DC50D3D4653s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib9954E482A42A845CA4636DC50D3D4653s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib9954E482A42A845CA4636DC50D3D4653s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibE8B931ACEA59643969B865C73AE4E887s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibE8B931ACEA59643969B865C73AE4E887s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib143D7398F2123E306CD32C8F2928D367s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib143D7398F2123E306CD32C8F2928D367s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib143D7398F2123E306CD32C8F2928D367s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibA1A5DE8CBC85916819EE956D1DF41116s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibA1A5DE8CBC85916819EE956D1DF41116s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibB2E032132772B6015EB7DFC6A3123F75s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibB2E032132772B6015EB7DFC6A3123F75s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibB2E032132772B6015EB7DFC6A3123F75s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib46F3A7BBE6D6C539C7F5D1E4DC597030s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib46F3A7BBE6D6C539C7F5D1E4DC597030s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibF7B3B3AB8310470BDBD10E1313070674s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bibF7B3B3AB8310470BDBD10E1313070674s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib952A4AA72F6ABF770E5F23D12EA25759s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib952A4AA72F6ABF770E5F23D12EA25759s1
http://refhub.elsevier.com/S0898-1221(24)00372-9/bib952A4AA72F6ABF770E5F23D12EA25759s1

	A symmetric multigrid-preconditioned Krylov subspace solverfor Stokes equations
	1 Introduction
	2 Multigrid for the Stokes equations
	3 Design of smoothing operator and preserving symmetry
	3.1 Symmetric distributive smoother
	3.2 Symmetric Vanka smoother
	3.3 Symmetric integration of smoother

	4 Preconditioning
	5 Discrete domain design
	6 Numerical convergence experiments
	6.1 2D numerical examples
	6.1.1 Driven cavity example
	6.1.2 Poiseuille flow around a cylinder example
	6.1.3 Poiseuille flow around hollow square example
	6.1.4 Brancher example

	6.2 3D numerical examples
	6.2.1 Driven cavity example
	6.2.2 Poiseuille flow around cylinder example
	6.2.3 Brancher example
	6.2.4 Porous example

	7 Stability and efficiency analysis
	7.1 Resolution and conditioning
	7.2 Cycle schemes

	8 Conclusions
	Data availability
	Acknowledgements
	Appendix A Symmetry proof for symmetric distributive Gauss-Seidel
	Appendix B Symmetry proof for additive Vanka smoother
	Appendix C Symmetry proof for symmetric multiplicative Vanka smoother
	Appendix D Symmetry proof for symmetric integration of smoother
	References

