
Toward Understanding the Security of Plugins in Continuous
Integration Services

Xiaofan Li∗
The University of Delaware

Newark, DE, USA
xiaofan@udel.edu

Yacong Gu∗
Tsinghua University
QI-ANXIN Group
Beijing, China

guyacong@tsinghua.edu.cn

Chu Qiao
The University of Delaware

Newark, DE, USA
qiaochu@udel.edu

Zhenkai Zhang
Clemson University
Clemson, SC, USA

zhenkai@clemson.edu

Daiping Liu
Palo Alto Networks
Santa Clara, CA, USA

dpliu@paloaltonetworks.com

Lingyun Ying
QI-ANXIN Technology

Research Institute
Beijing, China

yinglingyun@qianxin.com

Haixin Duan
Tsinghua University

Zhongguancun Laboratory
Beijing, China

duanhx@tsinghua.edu.cn

Xing Gao
The University of Delaware

Newark, DE, USA
xgao@udel.edu

ABSTRACT
Mainstream Continuous Integration (CI) platforms have provided
the plugin functionality to accelerate the development of CI pipelines.
Unfortunately, CI plugins, which are essentially reusable code snip-
pets, also expose new attack surfaces as plugins might be developed
by less trusted users. In this paper, we present an in-depth study
to understand potential security risks in existing CI plugins. We
conduct a comprehensive analysis of plugin implementations on
four mainstream CI platforms (GitHub Actions, GitLab CI, CircleCI,
and Azure Pipelines), and investigate several weak links in exist-
ing plugin distributions and isolation mechanisms. We investigate
seven attack vectors that can enable attackers to hijack plugins
and distribute malicious code without plugins users being aware,
and further exploit hijacked plugins to manipulate the work�ow
execution. Additionally, we �nd that plugin dependency (a plugin
references other plugins) might further amplify the attack impact of
our disclosed attacks. To evaluate the potential impact, we conduct
a large-scale measurement on GitHub and GitLab, covering a total
of 1,328,912 repositories using the aforementioned CI platforms.
Our measurement results show that a large number of repositories
and existing plugins, including many widely used ones, are poten-
tially vulnerable to the proposed attacks. We have duly reported
the identi�ed vulnerabilities and received positive responses.

CCS CONCEPTS
• Security and privacy;

KEYWORDS
Software Supply Chain, Continuous Integration, Security
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670366

ACM Reference Format:
Xiaofan Li, Yacong Gu, Chu Qiao, Zhenkai Zhang, Daiping Liu, Lingyun
Ying, Haixin Duan, and Xing Gao. 2024. Toward Understanding the Security
of Plugins in Continuous Integration Services. In Proceedings of the 2024
ACM SIGSAC Conference on Computer and Communications Security (CCS
’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3658644.3670366

1 INTRODUCTION
Continuous Integration (CI) work�ows have been widely used for
automated code build, integration, and testing in the existing soft-
ware industry. Many organizations have adopted CI work�ows for
packaging and releasing software updates. For example, the curl
repository on GitHub [13], pytorch repository on GitHub [72], and
GitLab itself on GitLab [47] have adopted CI for code integration. It
has been reported that the CI tools market is estimated at USD 1.43
billion in 2024 and will reach USD 3.72 billion by 2029 [1]. To accel-
erate the development of custom CI pipelines and enable seamless
integration with external systems, many CI Platforms (CIPs) allow
developers to create reusable code snippets (i.e., plugins) that can be
shared within an organization or with the public. CI plugins have
been a core component in existing CI ecosystems and are widely
used by many repositories. For example, in GitHub Actions, almost
all CI pipelines have adopted plugins (i.e., actions). GitHub Actions
has operated an o�cial plugin marketplace [36] maintaining public
open-source plugins and providing o�cial actions for many basic
functionalities such as code cloning. Other mainstream CIPs includ-
ing GitLab CI [46], CircleCI [11], and Azure Pipelines [67], have
also provided the plugin functionality.

Unfortunately, the wide adoption of CI plugins also exposes new
attack surfaces, potentially enabling attackers to inject malicious
code during the build process. Researchers have discovered several
GitHub Actions plugins that are vulnerable to code injection vul-
nerabilities [64]. In 2023, thousands of public GitHub repositories
were found to be vulnerable to malicious code injection via self-
hosted GitHub Actions runners, allowing attackers to compromise
PyTorch and Microsoft Deepspeed releases [2]. Moreover, sensitive
data (e.g., secrets) is often used and passed to CI plugins. If a plugin
improperly uses secrets, it can lead to a serious risk of sensitive data
leakage. However, despite that several recent works have studied CI

482

https://orcid.org/0009-0003-5951-1948
https://orcid.org/0000-0003-2221-5689
https://orcid.org/0000-0001-7491-310X
https://orcid.org/0000-0002-9025-3460
https://orcid.org/0000-0002-9660-4444
https://orcid.org/0000-0001-7445-9103
https://orcid.org/0000-0003-0083-733X
https://orcid.org/0009-0000-2574-029X
https://doi.org/10.1145/3658644.3670366
https://doi.org/10.1145/3658644.3670366
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3670366&domain=pdf&date_stamp=2024-12-09

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xiaofan Li et al.

security [48, 64], we still lack a systematic study on understanding
the security of CI plugins.

In this paper, we present an in-depth study to reveal potential
security vulnerabilities that could be exploited by CI plugins to
abuse existing CI services. We �rst conduct a comprehensive anal-
ysis of existing plugin implementations on four mainstream CIPs
(GitHub Actions, GitLab CI, CircleCI, and Azure Pipelines), from
the plugin distribution, parsing, and version control, to resource
isolation and sharing. We investigate several weak links in the CI
plugin ecosystem that could potentially cause security risks, en-
abling attackers to perform various software supply chain attacks
such as code injection and data leakage. For example, we �nd that
the distribution channel of CI plugins might be unsafe, and existing
CIPs generally lack su�cient resource isolation for plugins.

We investigate two types of threats, including seven potential
attack vectors, that can enable attackers to (1) hijack plugins with-
out plugin users being aware (i.e., unsafe plugin distribution), and
(2) further abuse hijacked plugins to potentially manipulate the
execution of other plugins, even across di�erent jobs and a�ecting
the entire work�ow (i.e., improper plugin isolation). For example, CI
users largely utilize plugins with unsafe version control methods,
allowing plugin maintainers to modify the code of a speci�c ver-
sion (e.g., inject malicious code/vulnerability) without changing the
version number. For improper plugin isolation, we investigate secu-
rity threats posed by plugins both within a job (inner) and across
di�erent jobs (inter). Some CIPs parse plugins using the CI runner,
while they only adopt weak isolation (e.g., process-based resource
isolation) in the runner. Thus, one plugin process can easily ac-
cess/manipulate �les and environment variables belonging to other
plugins inside one job, and/or steal various types of sensitive data
(e.g., secrets). Particularly, we �nd attacking methods allowing a ma-
licious plugin to break the plugin order to hijack any plugin within
a job. Moreover, although CIPs mostly adopt job-level isolation as a
base security policy, vulnerabilities that can be exploited to launch
inter-job attacks still exist. A preceding job with malicious plugins
might hijack the control �ow or inject arbitrary commands into
(of) subsequent jobs (e.g., input injection attack). Finally, we �nd
that CI plugins can utilize external resources (e.g., reference other
plugins), which form plugin dependency chains. Unfortunately, a
plugin and its references will be downloaded and executed in the
same step without strong isolation. Thus, plugin dependencies can
largely amplify the attack impact of our disclosed attacks.

To evaluate the potential impact of our disclosed attacks, we
conduct a large-scale measurement on GitHub and GitLab, cover-
ing a total of 1,328,912 repositories using four CIPs. We further
analyze the collected repositories and adopt di�erent strategies
for collecting plugins in di�erent CIPs, with a total of 43,169 plug-
ins collected. Then, we utilize pre-de�ned rules to detect potential
plugin vulnerabilities. Our measurement results show that a large
number of repositories and existing plugins are vulnerable to the
proposed attacks. For example, 369 GitHub Actions and 52 GitLab
CI standard plugins can be immediately hijacked by any attackers,
a�ecting 4,918 repositories. Also, most of the repositories do not
use plugins and version controls in a safe way. In addition, we �nd
both inner-job and inter-job threats are common. 1,097 potentially
problematic plugins in GitHub Actions use secrets improperly, po-
tentially causing secret leakage. Also, many repositories, including

several widely used repositories, are potentially vulnerable to the
inter-job input injection attack. Finally, we have discussed practical
mitigation and timely disclosed our �ndings to impacted stakehold-
ers and received positive feedback.

In summary, the major contributions of this work include:
• We present the �rst systematic study on the security threats in
CI plugins. We present an in-depth analysis of existing plugin im-
plementation and identify several risks caused by unsafe plugin
distribution and weak resource isolation.

• We show that attackers can exploit multiple attack vectors to
potentially distribute malicious code to users without user aware-
ness, break the CI isolation to a�ect the CI work�ow, and steal
high-value sensitive data.

• We conduct a large-scale measurement on open-source reposito-
ries, revealing that our proposed attacks may present signi�cant
security risks to CI users.

• We have disclosed our �ndings to the impacted stakeholders and
received positive feedback.

2 BACKGROUND
2.1 CI Introduction
CI is a software development practice where developers can in-
tegrate code changes into a central repository with automated
build and test. The pipeline contains a series of steps with di�erent
tasks (e.g., code testing, quality assurance, and product releasing) to
streamline the software delivery process. For example, a developer
can create a new branch of code and commit it after some code
modi�cations. The CI services will automatically build the code,
run the automated test suite, and then deploy a new version of the
application to a staging server, enabling other teams to test the
changes in a production-like environment.

A typical CI work�ow involves multiple stakeholders. First, code
hosting platforms (CHPs) such as GitHub and GitLab are widely
used to manage source code in repositories. CI platforms (CIPs)
execute CI tasks of a repository on runners hosts. Popular CHPs
often provide their own CIPs (e.g., GitHub Actions and GitLab CI),
or they can also integrate independent CIPs (e.g., CircleCI). Third-
party services (TPSs) like cloud services might also be involved in
storing intermediate �les generated during CI tasks.

The owner of a repository can set multiple con�gurations of
CI tasks using a con�guration �le, including execution triggers
events (e.g., a new push event or pull request), runner con�guration
(e.g., the running environment), secrets, and artifacts. Speci�cally,
secrets can be used to access TPSs during the CI task execution. It
is recommended to use secrets as key-value pairs so that sensitive
data (e.g., plaintext passwords) will not be exposed in the CI task
con�guration [4, 30]. In addition, artifacts are �les generated during
the execution of a CI task. Examples include package release �les,
intermediate �les, and test-related �les (e.g., test reports).
CI work�ow. When executing CI tasks, a CI controller will au-
thorize with CHPs, parse the CI task con�guration, and further
schedule and distribute CI tasks to runners. The runner �nally
dispatches executors (e.g., shell) to execute CI tasks. Particularly,
runners can run on servers provided by CIPs (i.e., CIP-hosted run-
ners) or on an organization’s ownmachines (i.e., self-hosted runners),
which enables the organization to customize the environment and

483

Toward Understanding the Security of Plugins in Continuous Integration Services CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1 # GitHub Actions Standard Plugin Examples
2 steps:
3 - name: Upload Artifacts
4 uses: actions/upload-artifact@694cdab
5 with:
6 name: homework
7 path: artifact/math-homework.txt
8 # GitHub File Reference Plugin Example
9 call-workflow-passing-data:
10 uses: my-org/my-repo/.github/workflows/demo.yml@main
11 with:
12 who-to-greet: �GitHub�
13 secrets:
14 envPAT: ${{ secrets.envPAT }}
15 # CircleCI Standard Plugin Example
16 orbs:
17 node: circleci/node@5.1.0
18 jobs:
19 steps:
20 - node/install

Listing 1: CI plugin examples in CI platforms.

save costs [31]. A CI task consists of a set of jobs, which is the small-
est unit of CI permissions [32, 45]. A job further has a sequence of
steps, which share the same permissions. While jobs are typically
isolated, they can be dependent on data transfer: a job can take
the output of another job as input. Files generated during the CI
execution such as dependent packages can be stored in CI caches
so that these �les can be reused by subsequent tasks.

2.2 CI Plugin Type and Lifecycle
CI plugins essentially are reusable code snippets that can be shared
within an organization or with the public. There are two types of
plugins based on their development and deployment approaches.
Standard plugin follows the CIP o�cially de�ned standard for de-
velopment. Line 1 in Listing 1 shows an example. Standard plugins
contain (1) various attributes (e.g., name and version), (2) a set of in-
puts and (optional) outputs, and (3) the execution environment. CIP
usually provides an index function for plugins, enabling developers
to obtain a speci�c plugin based on its name and version. The in-
puts specify the data that can be used by the plugin during runtime,
while the outputs declare the generated output data, which can be
further used by subsequent steps in a CI task. Additionally, some
CIPs (e.g., GitHub Action and Azure Pipeline) maintain a metadata
�le for each standard plugin de�ning all the above information, as
well as entry points of code �les (or commands) that run at di�er-
ent stages in a plugin’s lifecycle. Examples include action.yml or
action.yaml in GitHub Actions, and task.json in Azure Pipeline.

Standard plugins support three runtime environments: (1) JavaScript
engine: GitHub Actions and Azure Pipeline support JavaScript-
based standard plugins. (2) Docker container, supported by GitHub
Actions, which can customize environment con�gurations in the
Dockerfile so that developers can run actions written in any lan-
guage. (3) Shell commands: themain logic of plugins is implemented
using shell commands, used by composite action in GitHub Actions,
CircleCI Orbs, and GitLab CI Components. Particularly, GitHub com-
posite actions can bundle a sequence of actions into one, which
means that a composite action can reference other actions.

File Reference Plugin. In addition to standard plugins, GitHub
Actions [37], GitLab CI [46], and Azure Pipelines [68] support de-
velopers to import a CI con�guration �le from another repository
(and reuse its code) via their syntaxes. Line 8 in Listing 1 shows an
example of GitHub Actions using a �le reference plugin: the refer-
enced CI task �le will be downloaded using the plugin’s location
information in its hosting repository (line 10). We refer to this type
as the �le reference plugin, which essentially is a CI con�guration
�le (i.e., YAML �le) stored in another repository. Unlike standard
plugins, there is no plugin marketplace nor versions for �le ref-
erence plugins. However, users can specify the git tag or commit
hash value in the syntax of a �le reference plugin to set restrictions.
Particularly, GitHub Actions and GitLab CI can directly reference a
�le reference plugin, while Azure Pipelines requires establishing a
service connection before using it in other repositories.
General CI Plugin Lifecycle. Typically, plugin maintainers �rst
register an account on either CHP or CIP’s plugin marketplace, and
then can publish, update, and unpublish CI plugins with speci�c ver-
sion numbers. Depending on policies, the plugin might be stored in
CHPs or directly managed by the CIP (details in Section 3.1). CI plu-
gins can be then introduced into the CI work�ow, with input/output
set up by developers. For example, GitHub Actions utilizes “uses:”
for importing plugins and “with:” for con�guring inputs (lines
4-7 in Listing 1). Developers can further specify the plugin version
(as line 17 in Listing 1). Section 3.3 presents a detailed discussion
on plugin version control. When executing CI work�ows, CIP can
execute plugin code after acquiring plugins and initializing inputs.
It �rst reads the plugin’s metadata data to extract code entry points
and execution environments. Based on the plugin type, the runner
uses the corresponding engine (e.g., JavaScript, shell, or Docker) to
execute the action. After the execution, the plugin might generate
output for subsequent steps in the CI task.

2.3 Threats in Software Development
Software registries have been amajor target of various software sup-
ply chain attacks [7, 58], and thus have attracted extensive research
e�orts [49, 50, 60, 76, 84, 86]. Gu et al. [49] investigated 12 threats in
package registries. One threat is the package redirection hijacking
attack, which enables attackers to hijack packages in decentralized
registries without compromising accounts. Particularly, decentral-
ized software registries utilize CHPs to manage packages. When
CHP users change their username [34] or transfer their projects to
another account [40], CHPs will automatically create a link between
the old and new repository locations, so that both locations can
be used to download the package. However, the link is terminated
immediately if the old location is re-registered by attackers, and
future users using the old location will be hijacked. Another threat
is the package reference attack. Attackers can reference a malicious
package in a normal package. When users download the normal
package, the malicious package will also be silently obtained by the
users without awareness. Finally, package version reuse is known
to be dangerous, as it potentially allows attackers to inject malicious
code stealthily (as the version number remains unchanged even
when the code has changed). Thus, package registries normally pro-
hibit version reuse, and provide the version pinning functionality
so that developers can specify versions.

484

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xiaofan Li et al.

Table 1: Overview of CI plugin implementations. (/' denote the plugin type: (- Standard Plugin, ' - File Reference Plugin.
⇡/⇠ mean the storage of the plugin: ⇡ - Distribute, ⇠ - Centralize. � /" denote the plugin run from: � - File," - Memory. % /⇡/+
mean the isolation of plugin: % - Process, ⇡ - Docker, + - Virtual Machine.

Version Control Secrets
CIPs Plugin

Type Storage Resolving
By

Plugin
Run From Git Tag Branch Commit Hash Version Code Isolation On-demand?

(⇡ Runner � 3 3 3 %,⇡ 3GitHub Actions
' ⇡ Controller " 3 3 3 + 3
(⇡ Controller " 3 3 3 ⇡GitLab CI
' ⇡ Controller " 3 3 3 ⇡

CircleCI (⇠ Controller " 3 ⇡ 3
(⇠ Runner � 3 % 3Azure Pipeline
' ⇡ Controller " 3 3 3 + 3

There are some previous works that focus on CI security, partic-
ularly on code injection related vulnerabilities. Such vulnerabilities
pose a signi�cant threat to CI work�ows, as the code executed in CI
may come from untrusted users. Argus [64] is a static taint analysis
tool for identifying code injection vulnerabilities in GitHub Actions.
Argus sets sensitive taint sinks derived from GitHub documentation
and tracks data �ows in GitHub Work�ow and Actions. Argus has
discovered code injection vulnerabilities in 4,307 work�ows and
80 GitHub Actions. In addition, resource isolation can also cause
security risks in CI systems [48]. The weak isolation among CI
components can leak various tokens used for authorization, and
further cause privilege escalation or code injection.

3 CI PLUGIN IMPLEMENTATIONS
Using plugins in the CI pipeline essentially introduces the exe-
cution of code snippets in CI tasks. As plugins might come from
anyone including unethical developers, it thus enables new attack
surfaces for software supply chain attacks targeting the software
build process. Understanding the implementation details of plug-
ins is important for investigating its security issues. This section
introduces the details of plugins in four CIPs (i.e., GitHub Actions,
GitLab CI, Azure Pipelines, and CircleCI).

We interpret CIP plugin implementations by carefully analyz-
ing their o�cial documents and source code (if open-sourced like
GitHub Actions). We also conduct black-box testing on both self-
hosted and CIP-hosted runners. Particularly, in each CIP, we create a
pipeline for a public repository and set up a runner for this pipeline.
In this pipeline, we use mitmproxy [71] to monitor networking
tra�c when executing our pipeline. We also record the pipeline
execution logs (if saved by CIPs). GitLab CI does not save logs, but
its debug mode can print the details in the terminal. In addition,
we create two types of secrets, a group/organization secret, and a
repository/project secret, to observe how secrets are processed and
isolated. The overall features of di�erent CIPs are shown in Table 1.

3.1 Plugin Storage and Distribution
Azure Pipelines and CircleCI provide a centralized marketplace for
storing standard plugins, and standard plugins must be published in
their o�cial marketplace to become available. Other plugins can be
used in a distributed approach: users can directly download plugin
code fromCHPs, although there are still o�cial pluginmarketplaces
(e.g., GitHub Marketplace for GitHub).

The accessibility of distributed plugins depends on their hosting
repositories: if the hosting repository is public, the plugin can also

be used by any users; Otherwise, for a repository that can only be
accessed within an organization, its plugin can only be used within
the organization. For centralized plugins, plugin maintainers can
choose to publicize the plugin. For example, Azure Pipelines main-
tainers can set the public attribute in the vss-extension.json
(an extension manifest �le including plugin information on the
marketplace) to publish a standard plugin.

3.2 Plugin Parsing
We �nd that there are two ways for CIPs to acquire and parse
plugins during CI task execution, either by (1) CI runner or (2)
CI controller. GitHub Actions and Azure Pipelines adopt the �rst
approach for standard plugins: at the beginning of a CI task (before
executing any code), the CI runner will download all required plug-
ins (into the runner host), and later execute them during the CI task
execution. Particularly, GitHub Actions and Azure Pipelines down-
load standard plugins into the default folders _actions and _tasks
in the runner, respectively. For this approach, if plugins are not
properly isolated in the runner, one plugin might modify the code
of other plugins. CircleCI adopts the second approach for parsing
standard plugins. The code of plugins will be downloaded into the
controller for initial parsing. Then the controller will distribute the
complete CI job work�ow to the runner.

For �le reference plugins, CIPs generally apply the second ap-
proach: download plugins into the CI controller �rst for initial
processing (e.g., parsing CI jobs). Then, the CI controller will dis-
tribute the complete CI job �ow, including �le reference plugins,
to the corresponding CI runner. In particular, GitHub Actions and
Azure Pipeline import �le reference plugins into separate jobs. Git-
Lab CI instead introduces �le reference plugins as parts of a job.
The controller parses the code and variables into the job work�ows,
which are sent to the runners.
Input Initialization. Some plugins need input arguments for exe-
cution. For example, circleci/aws-cli plugin needs to read AWS
access token for login. These arguments that are explicitly declared
by plugins can be passed by the CI runner via environment vari-
ables. In addition, the CI controller might dispatch some hidden
sensitive data, which might be accessible by plugins, to runners. For
example, GitHub Actions generates an AccessToken for each CI
task to access various resources. Such token can be read by plugins.

3.3 Version Control
There are four di�erent approaches for plugin version control: (1)
via git tag; (2) via git branch name; (3) via commit hash value; and

485

Toward Understanding the Security of Plugins in Continuous Integration Services CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

(4) via the version code in centralized plugin markets. The �rst
three methods are supported by GitHub Actions and GitLab CI, as
well as the �le reference plugins in Azure Pipelines. The (4) method
is adopted by Azure Pipeline and CircleCI for standard plugins.
Particularly, they both utilize semantic versioning, which consists
of Major.Minor.Patch versions [69]. In addition, Azure Pipeline
and CircleCI provide developers with the option to only specify
the Major version. In this case, subsequently, they will retrieve the
latest version within that Major version. For instance, if developers
specify the plugin circleci/aws-cli@4, it will retrieve the latest
version within the 4.x.x series, such as 4.1.2.

3.4 Plugin Isolation and Sharing
Inner-Job Isolation. From our experiments, we �nd that almost
all plugins adopt a process-based isolation strategy inside one job:
a new process is spawned for launching a plugin. However, CI
runners use one user namespace for all running plugin processes.
Also, in our tested CIPs, the CI runners do not o�er sandboxes for
executing plugins. Thus, inside one job, all plugins and the runner
have the same permission for accessing system resources (e.g., �les).

The only exception is the Docker mode of standard plugins in
GitHub Actions: the runner starts a Docker container, and runs the
plugin inside the container. Thus, plugins are better isolated from
each other as they are running in di�erent containers.
Inter-Job Isolation.All CIPs adopt job-level isolation in a CI work-
�ow: a separate virtual machine (VM) is launched for each job in
self-hosted runners. For CIP-hosted runners, GitLab CI and CircleCI
use Docker containers for inter-job isolation, while GitHub and
Azure Pipeline still adopt VM-based isolation. With the isolation, a
plugin cannot access system resources of other jobs by default.

We �nd that CIPs provide three methods for data transfer be-
tween jobs. (1) Supposing 9>11 would like to transfer data to 9>12,
9>11 can con�gure the data as outputs (e.g., using the outputs
variables), and then 9>12 can read it as inputs. For example, GitHub
Actions will �rst store 9>11’s outputs. When executing 9>12 later,
GitHub Actions will include 9>11’s outputs into 9>12 during the
parsing procedure, and then launch the VM for running. (2) The sec-
ond approach is via artifacts. 9>11 can generate artifacts for storing
data, which can be loaded when 9>12 is executing. For example, Cir-
cleCI can set a workspace (e.g., persist_to_workspace) to specify
the path for storing data (e.g., AWS S3 storage), and other jobs can
download it from using the workspace (e.g., attach_workspace).
(3) The third approach is using cache objects for inter-job data trans-
fer. Similar to artifacts, jobs can generate cache objects in TPSs,
which can be used by other jobs later. We �nd that the (2)(3) meth-
ods are supported by all CIPs, while the (1) method is supported by
GitHub Actions and Azure Pipeline.
Cached Plugin. Interestingly, we �nd that Azure Pipelines will
cache plugins when running in a self-hosted runner. Particularly,
Azure Pipelines automatically store used plugins into the runner
host machine (i.e., _task), which can be used by subsequent CI tasks.
Plugin Cleanup. After �nishing a CI task, all involved plugins
should be cleanup, including deleting plugin �les and cleaning
input/output environment variables. The purpose is to prevent
plugins from a�ecting subsequent CI tasks, which might be from a
di�erent repository.

3.5 Secrets Accessibility
As secrets are one of themost valuable data in CIwork�ow [62], CIPs
may adopt additional mechanisms to secure secrets. We �nd that
GitHub Actions, Azure Pipeline, and CircleCI take an on-demand
approach for managing secrets for plugins in CI jobs: a plugin can
access a secret only if the plugin explicitly uses this secret (e.g.,
Line 14 in Listing 1). Among them, CircleCI and Azure Pipeline
support using secrets in plugins directly. The CI controller will
pass the requested secret to the runner via the corresponding API,
and further pass it to the plugin as environment variables. GitHub
Action adopts a stricter way: all secrets must be passed to plugins
as inputs. We �nd that GitLab CI has not adopted the on-demand
mechanism. By default, it passes all secrets in the pipeline to all
jobs and plugins.

4 CI PLUGIN THREATS
This paper investigates potential security vulnerabilities in the CI
plugin ecosystem, which might be exploited to perform various
software supply chain attacks (e.g., injecting malicious code/vul-
nerabilities into a repository [48, 64] and sensitive data leakage [23,
62, 74, 78]). We aim to understand what potential threats could be
brought when integrating CI plugins, which essentially are reusable
code snippets and might be developed by less trusted users. In the
following, we �rst introduce the threat model (Section 4.1) and
then elaborate on potential vulnerabilities related to unsafe code
distribution (Section 4.2) and improper plugin isolation (Section 4.3).
Finally, we also discuss how plugin dependency can amplify the
attack impact (Section 4.4).

4.1 Threat Model
Overall, we consider a typical CI scenario adopted by an organi-
zation, similar to recent research [48]. The organization utilizes
code hosting platforms to maintain multiple repositories, and CI
with plugins enabled for software development. We consider all
main stakeholders, including CHPs, CIPs, and TPSs, to be trust-
worthy. Also, the communication channels among them are secure
and cannot be exploited by attackers. In addition, unless explicitly
mentioned, we assume vulnerabilities disclosed by [48] have been
�xed and cannot be exploited.

With the above common assumptions, we consider adversaries as
unethical plugin maintainers, who have almost no privileges in the
victim repository.We assume the adversaries can control a CI plugin
that is used by the target organization. To achieve this, attackers
can hijack an existing used plugin (by the target) by exploiting
vulnerabilities in the plugin distribution system. Or attackers can
bait the target to use their published plugins. For example, attackers
can �rst publish a benign plugin to attract victims, and upgrade the
plugin later for malicious activities. Finally, they can also exploit
typosquatting techniques [20, 49, 55, 61] to attract victims into
downloading their plugins.

After controlling a used plugin, attackers then attempt to se-
cretly inject malicious code into the plugin without being suspi-
cious. For example, if attackers upgrade the plugin with malicious
code injected, the modi�cation should not be noticed by victims
throughout the CI pipeline unless victims speci�cally look into the
code in detail. Moreover, we assume the adversaries’ capabilities

486

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xiaofan Li et al.

Table 2: Overview of potential threats on each CI platform.
The 3 means vulnerable.

Threats GitHub
Actions GitLab CI CircleCI Azure

Pipelines

D1 3 3

D2 3 3 3 3

D3 3

A1 3 3 3

A2 - A 3 3 3 3
A2 - B 3 3 3 3
A2 - C 3 3 3

A3 3 3 3

A4 3 3 3

A5 3 3 3 3

are limited within the CI plugin, which means that all malicious
activities can only be initiated from the controlled plugin. Thus,
attackers need to escape the sandbox of plugins and launch attacks
against di�erent levels of isolation.

Particularly, referencing a malicious CI plugin exposes new at-
tacking surfaces compared to introducing a malicious third-party
library (e.g., linking a malicious library statically). With the exten-
sive functionality provided by the CI task, CI plugins can not only
inject malicious code into software artifacts (similar to a library),
but also manipulate the software development process (e.g., a�ect
the release of an artifact that has been injected with malicious code),
as well as steal high-value data (i.e., secrets) that is only visible
during CI execution.

In summary, we focus on CI plugin vulnerabilities that allow
attackers to (1) hijack existing benign plugins; (2) update plugins
without being noticed; and (3) escape the isolation and gain access to
unauthorized resources. Table 2 presents a summary of investigated
CIPs with potential threats.
Ethical Concerns. All experiments are conducted in an ethical
way. First, we never attempt to compromise existing CIP systems
or vulnerable repositories. Instead, all security threat tests are con-
ducted and con�rmed on our own resources, including repositories,
projects, and plugins. Particularly, we register all accounts legally
through the web interface, and create corresponding resources in
a legitimate way. During our experiments, repositories and plug-
ins are set as private when possible. At the end of our study, we
have manually deleted all of our published resources. Moreover,
Section 6.2 details our disclosure.

4.2 Unsafe Plugin Distribution
Unsafe code distribution is a classical security risk in the software
supply chain [9, 49, 57]. Unfortunately, CI plugins also su�er from
various threats that can potentially distribute malicious code to
users without plugin users being aware.

4.2.1 Plugin Redirection Hijacking A�ack (D1). Plugins that
are decentralized stored rely on CHPs (e.g., GitHub and GitLab) for
plugin storing and distribution. When the CHP account hosting
the plugin has changed (e.g., user rename or user account deletion),

such change might be unknown to plugin users, who might still
use the old location (e.g., account name) for downloading. Thus,
CHP will create a redirection to link the old and new locations, and
both locations can be used to download the plugin.

The problem is that the old location becomes available and can be
hijacked by attackers, similar to the package redirection hijacking
attack in decentralized software registries [49]. As a result, CI users
who still use the plugin’s old location will also be hijacked and
download malicious plugins maintained by attackers.

In this attack, attackers simply need to locate the redirection
where the old location is available (e.g., the user account for the old
location is available for re-register). Attackers can take over the old
location and hijack CI users without (1) compromising any existing
accounts or (2) executing a CI task in the victim repository.

We �nd that the standard plugin of GitHub Actions, and GitLab
CI are vulnerable to this attack. CircleCI and Azure pipeline adopt
a centralized plugin marketplace for standard plugins, and thus not
vulnerable. In addition, the �le reference plugins of GitHub Actions,
GitLab CI, and Azure Pipeline are also vulnerable to this attack.

4.2.2 Plugin Version Reuse A�ack (D2). CI Users can use ver-
sion pinning to specify the version of a CI plugin that can be adopted,
ensuring the same codebase is always used so that potentially vul-
nerable/malicious versions can be avoided. However, if the plugin
maintainer can change the code of a speci�c version without chang-
ing the version number, the version pinning functionality becomes
invalid. Thus, allowing plugin version reuse can be problematic and
even cause potential security risks. Obviously, directly publishing
a malicious plugin is suspicious as users can easily identify mali-
cious code. Instead, attackers can �rst publish a normal plugin to
attract users. After victim users have referenced this normal plugin,
attackers can update the plugin with malicious code injected, while
keeping the version number unchanged. Similarly, with the same
version number, users might not notice the malicious code change.

Typically, mainstream package registries, such as npm, PyPI, and
Maven, explicitly prohibit changing the code of a package’s pub-
lished version. However, similar restrictions might not be applied to
plugins. As mentioned in Section 3.2, CIPs adopt four di�erent ap-
proaches for plugin version control, using: (1) git tag; (2) git branch
name; (3) commit hash value; (4) version code in a centralized
marketplace.

Among them, only the (3) approach is a safe choice, as the commit
hash is bound with the code. Git used to use SHA-1 hash function,
which was demonstrated to be vulnerable to practical hash collision
(i.e., the SHAttered attack [77]) on 2/23/2017. Git later switched to a
hardened SHA-1 implementation by default, which is not vulnerable
to the SHAttered attack [29]. In late 2018, Git eventually picked
SHA-256 as the hash method [26, 27]. In addition, we �nd that
some users use the abbreviated commit hash (e.g., the �rst seven
characters) to reference a plugin. In this case, Git mentioned that
a short and unique abbreviation for the commit hash is enough
to be unique within a project, but still suggests users use a longer
commit hash to avoid ambiguity [28]. Thus, we consider the hash
method is not vulnerable to the version reuse attack.

Both methods (1) and (2) are vulnerable to version reuse. Par-
ticularly, Git allows deleting a git tag. Attackers can simply delete
a git tag, modify the code, and then re-publish the same git tag.

487

Toward Understanding the Security of Plugins in Continuous Integration Services CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

When using the git branch/tag name for version control, we �nd
that CIPs will always obtain the plugin with the latest code in that
branch/tag. So users will always get the latest plugin when the
branch/tag name has remained the same. It means that users will
always get the latest plugin even if the branch name has remained
the same. It a�ects GitHub Actions, GitLab CI, and �le reference
plugins in Azure Pipeline.

Additionally, we observe that both GitHub Actions and GitLab CI
allow the creation of branches and tags with the same name. In the
case that both branch and tag exist with the same name when ref-
erencing a standard plugin, GitHub Actions prioritizes the branch
version by default, while GitLab CI prefers the tag version instead.
When referencing a �le reference plugin, both GitHub Actions and
GitLab CI prioritize the tag version. This mechanism potentially
enables attackers to launch the version reuse attack without mod-
ifying the existing version. For example, suppose GitHub users
utilize tag as plugin version control, plugin maintainers can publish
a new branch with the same version number, which will lead to
the following users obtaining the newly published branch version
without being noticed by users.

Finally, whether the (4) approach is vulnerable or not depends
on the CIP’s implementation, which is unknown to us. We �nd that
neither Azure Pipelines nor CircleCI allows a published plugin (in
the marketplace) to change its version code. However, if developers
only specify the Major version of a standard plugin, the associ-
ated repository may still be vulnerable as it always automatically
retrieves the latest minor or patch versions under the Major ver-
sion (as discussed in Section 3.2). In this case, the Major version is
reused, while its minor or patch versions may contain potentially
malicious code. In summary, all CIPs are potentially vulnerable to
the plugin version reuse attack.

4.2.3 Cached Plugin Poisoning A�ack (D3). As mentioned in
Section 3.4, CI plugins might be cached by CIP to enhance CI tasks’
performance. A cached plugin can be reused by subsequent tasks
without re-downloading it again. However, if there is no proper
checking/protection mechanism on cached plugins, a poisoned plu-
gin (e.g., with malicious code injected) can also pose security risks
on subsequent CI tasks. For example, if the runner can be shared by
di�erent repositories in an organization, a poisoned plugin might
be reused by CI tasks from a di�erent repository that attackers have
no permissions. Thus, depending on the plugin caching policy (e.g.,
cross-repository or cross-job), it enables attackers to launch attacks
to break di�erent isolation mechanisms.

We �nd that the standard plugin of Azure Pipeline with a self-
hosted runner is vulnerable to this attack. In Azure Pipeline, the
self-hosted runner (i.e., agent) will check the existence of the target
plugin’s latest version in the _task folder before downloading. If
exists, the agent will simply skip the download process, and reuse
the one stored in _task. Even worse, Azure Pipeline manages an
agent pool containing multiple agents. If the agent pool belongs
to an organization, Azure Pipeline will select an agent (from the
pool) that meets the requirement (e.g., has a plugin) for running
a task. Thus, within the agent pool, a malicious plugin from one
repository might be selected later for running CI tasks from other
repositories. Particularly, when a job containing a malicious plugin
is running on a self-hosted agent, the malicious plugin can iterate

the cached plugins in the _task folder, and then inject malicious
code to them (e.g., their code �les). The cached tampered plugins
will be executed in another repository in the same organization if
it also picks this agent to run a job.

4.3 Improper Plugin Isolation
Below we introduce several inner-job and inter-job security threats
caused by weak plugin isolation.

4.3.1 Inner-Job Cross-Plugin Hijacking A�ack (A1). A CI job
might contain multiple plugins from di�erent sources. Some CIPs
parse plugins using the CI runner (discussed in Section 3.2). The
plugin’s code is �rst downloaded and stored locally in the CI run-
ner’s hosting machine, and will be loaded later when executing
particular steps. Obviously, this will cause security issues if a CIP
only adopts process-based resource isolation in the runner. Basi-
cally, the processes of all plugins and the runner are running in the
same user namespace and share similar privileges. Thus, one plugin
process can access �les and environment variables belonging to
other plugins.

In this situation, during the loading/executing procedures by the
CI runner, a malicious plugin can easily modify other plugins’ code
�les to inject malicious code. Injecting malicious code into other
plugins can help attackers to hide themselves to some extent. But
more importantly, it may enable attackers to further escalate their
privileges, such as accessing secrets or modifying artifacts. As we
tested in Section 3.5, some CIPs such as GitHub Actions adopt the
on-demand approach for managing secrets, and only pass secrets
to plugins that explicitly use secrets. Malicious attackers can then
inject code into benign plugins to steal sensitive data.
Breaking the plugin order. The aforementioned method can only
enable a malicious plugin to hijack its subsequent plugins. If the
malicious plugin attempts to hijack a preceding plugin, although
the malicious code can be successfully injected, the code will not
be executed in practice. However, we �nd that the pre-steps for
plugins can be exploited by attackers to hijack all plugins inside a
job, regardless of the plugin executing sequence.

Particularly, the plugin execution can be further divided into
three stages: pre-steps, main steps, and post-steps. The main steps
contains plugin’s core function, so every plugin must have main
steps. The pre-steps allow a plugin to run code at the start of a job
(before the main step begins) after the job setup. The post-steps
allow a plugin to run code at the end of a job (once the main steps
have been completed). For example, for two plugins (A and B) that
contain both pre- and post-steps, if A locates before B, the execution
sequence is: A.pre, B.pre, A.main, B.main, B.post, and A.post. As
pre-steps will always be executed before the �rst plugin’s main
code, attackers can simply de�ne a pre-step to inject malicious code
and hijack any other plugins.

We �nd that, the standard plugins of GitHub Actions and Azure
Pipelines, as well as both types of GitLab CI, are vulnerable to
this attack. Particularly, in GitHub Actions, both JavaScript and
shell execution environments are vulnerable to this attack; but
the Docker execution environment is not. The reason is that the
plugin’s code is isolated by containers, which are not accessible to
malicious plugins without root privilege. Azure Pipeline and GitLab
CI also support setting pre-steps (or similar concepts).

488

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xiaofan Li et al.

4.3.2 Sensitive Data Leakage Threat (A2). Sensitive data leak-
age is a severe security risk in CI. Unfortunately, we �nd there are
vast spaces for malicious plugins to steal various types of sensitive
data, a�ecting all CIPs.
Inner-Job Secrets Leakage (A2-A). As introduced before, CIPs
have adopted on-demand secret management to mitigate secret
leakage. The problem is that, even secrets are isolated between
plugins, a malicious plugin can still mount cross-plugin hijacking
attacks to extract secrets from any plugins in the same CI job.
Token Leakage (A2-B). Tokens are largely utilized in CI for autho-
rization, and token leakage can cause various security risks such
as privilege escalation [48]. With only process-based isolation, a
malicious plugin in a CI task can also obtain vulnerable tokens
introduced in the previous work [48]. We have two new �ndings.

First, we �nd a new vulnerable GitHub Actions token, namely
ACTION_RUNTIME_TOKEN, that can be exploited by attackers
to break the cache isolation of branches and tags. This token is
used to access CI cache objects, identifying the cache’s scope (e.g.,
branches or tags). Particularly, the token is preserved in the runtime
environment variables (i.e., process.env) during executing CI actions,
which can be directly read by malicious plugins as they are running
in the same namespace as the runner.

Second, in self-hosted runners, some essential tokens are stored
in local �les (e.g., .credentials). These tokens are generated when
self-hosted runners register with the CI controllers, and are used
for CI task assignments. The runners do not restrict plugins from
accessing local �les. Thus, attackers can inject codes to traverse the
�les in the runner to obtain these credentials. Even worse, we �nd
that runners are not properly isolated, and plugins can access �les
beyond their own runner. If multiple runners are running on the
same host machine, credentials from all runners can be leaked to
malicious plugins.
Source Code Leakage (A2-C). In self-hosted runners, the source
code of repositories is downloaded before executing the CI actions,
and the downloaded code remains in the runners. Similarly, the
source code in runners can also be leaked to malicious plugins. Even
if there are multiple runners (e.g., a runner for a public repository
and a runner for a private repository), because the �lesystems of
runners are not properly isolated, malicious plugins in one runner
can obtain source code stored in all runners in the host.

In summary, we �nd that all four CIPs are vulnerable to the
secrets leakage. All four CIPs support using self-hosted runners,
which register and restore tokens in local �les, are vulnerable to
the token leakage. For the source code leakage, GitHub Actions,
GitLab CI, and Azure Pipelines are vulnerable to this threat.

4.3.3 Inter-Job Control Flow Hijacking A�ack (A3). CI job is
the smallest unit of CI permission, and jobs are typically isolated. All
CIPs investigated in this paper have adopted VM-level or Container-
level isolation for isolating jobs. Thus, a plugin can execute code
within its hosting job in a CI task, but cannot a�ect other jobs or
tasks. The problem is that CIPs allow data transfer between jobs: the
subsequent job can take the output of a previous job as input, and
further take di�erent actions correspondingly. Without a proper
sanitation method on jobs’ outputs, a malicious plugin might escape
the sandbox of its hosting job and a�ect the entire CI work�ow
(e.g., a�ecting subsequent jobs), potentially causing severe security

1 # Vulnerable CI configuration file
2 steps:
3 - name: Check PR title
4 run: title=�${{ github.event.pull_request.title }}�
5 # Based on a malicious input (i.e., a�; ls /��), the code that

is actually executed is as follows
6 run: title=�a�; ls /��

Listing 2: Example of a normal input injection attack in
GitHub Actions.
risks. GitHub also states that "a compromise of a single action within
a work�ow can be very signi�cant." [43]

Malicious plugins in one job cannot directly a�ect other jobs
(e.g., cross-job attacks). However, if the execution of subsequent
jobs depends on the job containing the malicious plugin (e.g., the
subsequent job can take the output of a previous job as input, and
take di�erent actions corresponding to di�erent inputs), a malicious
plugin can inject code in its hosting job to hijack the control �ow
of the CI work�ow, potentially causing serious security risks.

For example, it is quite common to deploy a static application
security testing (SAST) job to conduct security testing before re-
leasing the software. The subsequent release job will take the SAST
job’s output, and only release software when the output shows that
the SAST is passed. A malicious plugin can then modify the SAST
job’s output and execute software release if the SAST is failed, so
that malicious code can be injected into the victim repository.

We �nd that the output of a job can easily be tempered by a
malicious plugin in multiple CIPs, including GitHub Actions, Azure
Pipeline, and CircleCI. In particular, for GitHub Actions and Azure
Pipeline that support job outputs, attackers can simply launch the
aforementioned inner-job cross-plugin hijacking attack (e.g., ex-
ploiting pre-steps) to hijack the benign plugin that generates outputs.
In CircleCI, inter-job communication is achieved by workspace. At-
tackers can modify the shared workspace before it is attached to
subsequent jobs.
1 # Vulnerable CI configuration file
2 jobs:
3 info:
4 outputs:

5 ... ∏ � Passed to the output job
6 mod_id: ${steps.mod_id.outputs.value}
7 steps:
8 ...
9 - name: Action 1

10 id: mod_id ∑ �
11 uses: dreamli0/my-action@main
12 ...
13 - name: Action 2
14 id: action_2

15 uses: ciplugins-poc/my-action@v1.0.1 ∂ � Inject code
to the mod_id step to rewrite mod_id�s value in
the pre-step

16 ...
17 output:
18 needs: [info]

19 steps: π � Cross-job input injection triggered
20 - run: echo �${{needs.info.outputs.mod_id}} version

${{needs.info.outputs.version}};��

Listing 3: PoC (based on a real example) of an inter-job input
injection attack in GitHub Actions [19].

489

Toward Understanding the Security of Plugins in Continuous Integration Services CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

4.3.4 Inter-Job Input Injection A�ack (A4). If CIPs do not prop-
erly sanitize inputs, they may be vulnerable to code injection, simi-
lar to SQL injection. Input injection in the CI task is a well-known se-
curity threat [64]. Listing 2 demonstrates an input injection example
in GitHub Actions. The run step (Line 4) is vulnerable, as it reads in-
put from GitHub (�${{ github.event.pull_request.title}}�.
The input indicates that the pull request name (which can trigger
the CI task) can be set by the pull request initiator, who could po-
tentially be an attacker. The attacker can develop a string a�;ls/��
as the pull request title. During the CI task execution, it actually
executes title=�a�;ls/��, allowing attackers to execute any com-
mand. To mitigate the input injection attack, CIPs have adopted
many defensemechanisms. For example, GitHubActions have listed
10 types of input that might be exploited by attackers [41].

However, CI plugins can largely expand the attacking surface of
input injection (e.g., not limited to some special inputs like title),
as malicious plugins can launch cross-step or cross-job attacks to
tamper with any inputs. Particularly, if a plugin’s output is directly
used as the input to be run (i.e., use the ‘run’ keyword) by the next
job, the plugin can inject commands into the next job.

Even worse, a plugin’s output might be modi�ed by another plu-
gin in the same job using inner-job plugin hijacking attack. Basically,
if the output is generated from a JavaScript plugin, the output is
set using JavaScript code (i.e., core.setOutput). Then, a malicious
JavaScript plugin can inject code into victim plugin’s code �le in
the pre-step to modify the output (which is controlled by victim plu-
gin). Listing 3 demonstrates a proof-of-concept that can be abused
by a plugin to mount the inter-job input injection attack. In the
job info (Line 3), the plugin ciplugins-poc/my-action@v1.0.1
(Line 15), which is developed by a di�erent user, can inject code
(core.setOutput(�value�,‘�;id;echo �‘);) to the mod_id ac-
tion in the pre-step (step ∂), when mod_id action is executed, the
injected code is executed to set the output of mod_id with the ma-
licious value (i.e., �;id;echo �) (step ∑). After the job info is
�nished, the malicious output of mod_id is passed (step ∏) to the
output job (Line 17) within the same CI task. Then, the malicious
output is injected into the command in the run step (Line 20) to
form a malicious command (echo ��;id;echo � version main�),
thus the cross-job input injection (i.e., id) is triggered (step π). Due
to the page limit, the detailed steps are illustrated in our PoC [19].

4.4 Plugin Dependencies: Attack Ampli�cation
(A5)

Like software packages, CI plugins also utilize external resources
(e.g., other plugins) for accelerating development, which forms plu-
gin dependency chains. Unfortunately, plugin dependencies might
largely enlarge the attack surface. When executing a CI work�ow,
a plugin and its reference plugins will both be executed in the same
step, which lacks strong isolation. Thus, if a plugin is malicious/vul-
nerable, all its dependent plugins and their CI work�ows become
vulnerable. For example, if a plugin is vulnerable to the redirection
hijacking attack or version reuse attack, attackers can hijack this
plugin, and further attack its dependent plugins.
Cross-plugin Sensitive Data Leakage. A malicious plugin can
leak sensitive data via its reference plugins. For example, a plugin
can pass secrets to its reference plugin (as input), which further
leaks the secret to external servers (e.g., sending an HTTP request).

Dependency. There are three di�erent methods for external depen-
dency. The �rst method is to directly reference other plugins. For
example, GitHub composite plugins can reference other plugins in
the metadata �le (i.e., action.yml). Other CIP plugins supporting
this approach include GitLab CI and CircleCI. The second method
is to reference an external software package (e.g., npm packages)
to extend functions in JavaScrpt plugins. Lastly, a plugin can also
rely on external web resources by sending HTTP requests.

5 MEASUREMENT
To investigate the current security status of plugins and understand
the potential impact in the open source community, we conduct a
large-scale measurement on GitHub and GitLab.

5.1 Data Collection and Methodologies
Repositories Collection.We adopt multiple strategies for repos-
itory data collection, similar to previous works [48, 56]. Our tar-
get is repositories (in CHPs) that contain a CIP con�guration �le
(e.g., .github/workflows/ for GitHub Actions, .gitlab-ci.yml
for GitLab CI, azure-pipelines.yml for Azure Pipelines, and
.circleci/config.yml for CircleCI). For repositories hosted on
GitLab, we retrieve all public repositories and their contents through
GitLab’s public APIs [17, 18]. For repositories hosted on GitHub,
we are unable to perform a full crawl since GitHub has adopted API
rate limits (i.e., 5,000 requests/hour) with only the �rst 1,000 results
returned for each search query [56]. We then extract repositories
using GitHub Actions from the GHArchive [70] data. In addition,
we parsing the GitHub Activity Data [8] to gather information on
repositories that utilize CircleCI and Azure Pipelines.

In GitHub, we have collected 686,896 repositories using GitHub
Actions, 12,771 repositories using CircleCI, and 2,773 repositories
using Azure Pipelines. In GitLab, the number of repositories for
GitLab CI, CircleCI, and Azure Pipelines is 612,469, 10,619, and
3,384, respectively. We �nd that the number of repositories using
Azure Pipelines is limited in the open-source community. It is likely
because most of their customers are large enterprises, based on
recent reports [21]. Unfortunately, we cannot collect them as most
of them are private repositories.
Plugin Collection. For standard plugins, we adopt two strategies
for collecting plugins in di�erent CIPs. First, CircleCI and Azure
Pipelines provide centralizedmarketplaces.We thus crawl bothmar-
ketplaces, and obtain 1,000 and 1,625 standard plugins in CircleCI
and Azure Pipelines, respectively. For GitHub Actions, although
there is an o�cial plugin marketplace [36] maintaining 20,943 stan-
dard plugins, maintainers actually do not have to publish their
plugins in the marketplace. Developers can use plugins that are not
published in the market but exist in the public repositories. Thus,
instead of crawling the market, we analyze all repositories using
GitHub Actions and successfully extract 29,755 standard plugins
via interpreting the uses statement (which is used for referencing
plugins). GitLab CI has not provided a plugin marketplace yet, so
we adopt a similar method and extract 52 standard plugins.

For �le reference plugins, none of the CIPs provide plugin mar-
kets. We thus extract �le reference plugins from repositories’ con-
�guration �les based on their CIP’s referencing rules. For example,
GitHub references it using uses: .../reusable-workflow.yml).

490

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xiaofan Li et al.

Table 3: Some vulnerable repositories that reference plugins
with redirection. (Gray color indicates that the repository
has �xed the issue after our reports.)

Repositories Stars Referenced Plugins w/ Redirection

vercel/hyper 42.2k jungwinter/comment
vlang/v 35.1k jungwinter/split

pankod/re�ne 20.1k probablyup/wait-for-netlify-action
symless/synergy-core 9.8k jungwinter/comment
devicons/devicon 8.6k jungwinter/comment

ripperhefork/git-mirror-actionripperhe/Bob 8.5k ripperhefork/gitee-pages-action

The numbers are 4,840, 5,810, and 87, for GitHub Actions, GitLab
CI, and Azure Pipelines, respectively.

After obtaining plugins, we further extract their inputs and out-
puts based on the formats de�ned in CIPs. Additionally, for plugins
that are potentially vulnerable to the redirection hijacking attack,
we use HTTP to download each of them and record their return
status code (e.g., HTTP 301).
Threat Analysis. For the plugin redirection hijacking attack, we
�rst identify all plugins that have redirection using their HTTP
return code. We then utilize CHP APIs [38, 44] to check whether or
not the username on the old location can be registered. If there is
no username on the old location, attackers can simply register the
old username and hijack the redirection by publishing a repository
with the same name (as the target plugin).

For the plugin version reuse attack on GitHub Actions and Git-
Lab CI, we analyze their con�guration �les. We collect potentially
vulnerable repositories if they use plugins but do not employ the
commit hash for version control. For repositories using standard
plugins in Azure Pipelines and CircleCI, we consider repositories
as vulnerable if they only specify the Major version of plugins.

For the cached plugin poisoning attack, we consider repositories
using Azure Pipelines with plugins on self-hosted runner as vulner-
able. Particularly, we analyze the con�guration �les to examine the
usage of the self-hosted runner using the keyword ‘pool: MyPool’,
which indicates the pipeline is running on one runner fromMyPool.

For inner-job cross-plugin hijacking attack, we consider a reposi-
tory is vulnerable if multiple plugins are used in one job. We further
evaluate the attack impact if one of the plugins is vulnerable to
redirection hijacking attack or version reuse attack.

For both inter-job control �ow hijacking attack and input injec-
tion attack, we conduct data �ow analysis on con�guration �les.
Particularly, we extract jobs that take other jobs’ outputs as inputs,
and further analyze their operations. If there is a conditional branch
based on previous job’s output, we consider the repository as poten-
tially vulnerable to control �ow hijacking. If the job executes shell
scripts (e.g., run: in GitHub Actions), the repository is marked as
vulnerable to input injection attack.

Finally, for sensitive data leakage attack, we focus on analyzing
GitHub Actions to identify potential secret leakage in existing ac-
tions. We have integrated and modi�ed Argus [64], a static taint
analysis tool for GitHub Actions to identify code injection vul-
nerabilities, to perform source code analysis on GitHub Actions,
with the dependency being considered. The details are presented
in Sections 5.8 and 5.9.
Ethical Concerns. All measurement studies are conducted in an
ethical way. We only collect data on open-source repositories and

public plugin markets, which are publicly available to everyone.
We either legally use the o�cial public APIs or query from public
datasets. As some platforms have rate limits on API queries, the
entire data collection process lasts a couple of months to minimize
any potential impacts. Our method is consistent with previous
works [48, 56]. We have never attacked any collected repositories/-
plugins. The detailed disclosure is presented in Section 6.2.

5.2 Plugin Redirection Hijacking Attack
From 29,755 GitHub Actions standard plugins, we �nd 1,391 (4.67%)
plugins with redirection. Among them, we �nd 369 plugins are
potentially vulnerable : their accounts corresponding to the old lo-
cation have been deleted. In addition, many repositories still use the
vulnerable plugin’s old location. For example, the old location for
plugin stupidloud/cachewrtbuild (i.e., klever1988/cachewrt-
build) is used by at least 726 distinct repositories. Table 3 shows
some additional a�ected repositories, their number of stars on
GitHub, and vulnerable plugins. For �le reference plugins in GitHub
Actions, we �nd 2 �le reference plugins whose repositories have
been deleted. For GitLab CI, among 52 standard plugins and 5,758
�le reference plugins, there are 266 (4.58%) �le reference plugins
with redirection (i.e., vulnerable), a�ecting 449 repositories.

5.3 Plugin Version Reuse Attack
We consider repositories that use plugins in GitHub Actions or
GitLab CI, but do not use git commit hash for version control as vul-
nerable. 684,558 GitHub repositories use at least one plugin in their
con�guration �les. Surprisingly, 682,872 (99.75%) repositories use
plugins with either branch or tag, and only 18,974 repositories use
git commit hash. The number is similar in GitLab CI: among 96,776
repositories that use at least one plugin, 76,694 (79.2%) repositories
use plugins with either branch or tag.

In addition, we use GitHub Archive data to identify whether or
not existing plugins have modi�ed code but still use the same git
tag or branch. We have collected GitHub tag and branch creation
and deletion events between January, 2019 and October, 2023. From
29,755 GitHub Action plugins, we �nd that 6,610 (22.24%) plugins
have at least one git tag based version reuse that occurred in their
plugins. 10,380 (34.88%) plugins have at least one git branch based
version reuse occurred in their plugins. For example, scala-steward-
org/scala-steward-action repository [75] is a popular plugin that
has been starred by 130 times. One tag (i.e., v2) was recreated 26
times between Feb/2021 and Nov/2022. Our results indicate that
not only version reuse is actually quite common in plugins, but
developers also have no sense that plugin version reuse might be
dangerous (largely use the unsafe method for referencing plugins).
Branch-Tag Mix Reuse.We �nd that 264 plugins have both the
branch and tag sharing the same name on GitHub Actions. These
plugins are referenced by 14,105 repositories. One of the most
referenced actions is codecov/codecov-action@v3 (used by 7,681
repositories), where ’v3’ serves as both the branch and tag name.
Major Version Reuse.We �nd that 274 repositories use the major
version to reference plugins in CircleCI. Among them, 93 reposito-
ries use volatile to reference plugins, which always pull the latest
version of the plugins. In Azure Pipeline, it is very common to use

491

Toward Understanding the Security of Plugins in Continuous Integration Services CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 1: CircleCI Plugins’ Release Version Count.

the major version for referencing plugins.We only detect 4 reposito-
ries to reference plugins using full version (i.e., major.minor.patch),
which is not vulnerable. Most of them (4,087 repositories) refer-
ence plugins only using major versions (e.g., UseDotNet@2 in the
repository con�guration �le [5]).

We further crawl the version information of 1,000 collected plug-
ins in the CircleCI marketplace. Then, we use the major number as
the key to count the version release number under the same major
version. Figure 1 shows the CDF of the plugins’ release versions un-
der the same major version among CircleCI plugins. It shows that
such version updates are very common, and some of the plugins
have been released under the same major version for hundreds of
times. Thus, if attackers mount a version reuse attack abusing the
Major version, it might a�ect many victims without being aware.

5.4 Cached Plugin Poisoning Attack
The repositories using Azure Pipelines with plugins on self-hosted
runner are considered vulnerable to the cached plugin poisoning
attack. In open source projects, we �nd 233 such repositories. While
this number is not signi�cant, it does not include private reposito-
ries such as enterprises that we are unable to measure. As Azure
Pipelines are largely used by large enterprises/organizations (e.g.,
38% of their customers have revenue larger than 1 billion dollars
per year [21]), the attack might still cause severe consequences.

5.5 Inner-Job Cross-Plugin Hijacking Attack
Theoretically, if multiple plugins are used in one job, the repository
is potentially vulnerable to this attack. We �nd many repositories
fall in this category. Among them, we further evaluate the practical
impact of this threat in two aspects.
Impact of Redirection Hijack-able Plugins. For a repository,
if one plugin can be hijacked by the plugin redirection hijacking
attack, other plugins (in the same jobs) are likely under threat.
Among 369 plugins that can be hijacked in GitHub Actions, we �nd
4,469 repositories have used these hijack-able plugins, and 1,846
repositories have adopted other plugins in the same job. Further-
more, in 456 repositories, their “other” plugins (i.e., non-hijack-able
plugins) have used secrets, which could be leaked. Similarly, we
�nd that 318 hijack-able GitLab CI plugins potentially a�ect 423
repositories, and 26 of them might have secrets leaked.
Impact of Version Reuse Plugins. Similarly, we evaluate the
impact if one plugin (in GitHub Actions) is vulnerable to the ver-
sion reuse attack. Among 26,058 repositories that have used such
GitHub Actions plugins, we �nd 2,031 repositories that have other

plugins read secrets. Thus, if plugin maintainers launch version
reuse attacks, they can potentially exploit the inner-job cross-plugin
hijacking attack to further amplify the attack.

5.6 Inter-Job Control Flow Hijacking Attack
We �rst use the following conditions to �nd potentially vulnerable
repositories: there are multiple jobs in the repositories; the preced-
ing job uses at least one plugin; and the subsequent job relies on
the output of the previous job for determining branch conditions.
Our results show that this threat is not uncommon: the number of
repositories is, 8,701 (1.27%), 577 (2.47%), and 23 (0.37%) in GitHub
Actions, CircleCI, and Azure Pipelines, respectively.

To understand the impact of control �ow hijacking, we further
analyze the branch conditions and �nd several categories. One
common usage is that the previous job’s output is used by the
subsequent job to decide whether or not to conduct unit tests
or static code analysis for detecting potential code errors. For
example, the home-assistant/core [3] has con�gured that the
unit test and static code analysis tool are only launched when
the changes are pushed to predetermined branches. Attackers can
then exploit the vulnerability to pass the testing procedures. An-
other common use is to decide whether or not to create releases or
further publish the package to registries (e.g., npm). For example,
the JanDeDobbeleer/oh-my-posh repository [54] has con�gured
a skipped output in the changelog job. Based on this output, the
following artifacts job will execute packaging/releasing opera-
tions. Similar usages include deploying websites and other products.
Attackers can then force the release even if it fails particular tests.

5.7 Inter-Job Input Injection Attack
We have analyzed repositories that are potentially vulnerable to
the cross-job input injection attack in GitHub Actions. Particularly,
we consider the input from other jobs as potential malicious inputs,
and examine whether or not the input will be used in the run:
statement. In addition, the preceding job should use actions, which
can modify the job’s output (e.g., exploit inner-job cross-plugin
hijacking attack). We further remove the case that the preceding
job only uses o�cial actions maintained by GitHub. In total, we �nd
7,033 such repositories, including several widely used repositories
that have thousands of stars on GitHub.

5.8 Sensitive Data Leakage
In general, plugins can obtain secrets as input. As introduced be-
fore, many CIPs adopt on-demand secrets management on plugins.
GitHub limits the accessibility of plugin inputs to the individual
plugin level. A plugin can only access its own inputs, but not the
inputs of other plugins in the same work�ow. However, a plugin
might accidentally or intentionally leak its secrets. We consider a
plugin to be problematic and there is a potential secrets leakage if
it has one of the following four behaviors:

• Set secrets as an output. Other plugins after this plugin in
the same work�ow can access the output (i.e., secrets).

• Set secrets as environment variables. In general, the envi-
ronment variables can be accessed by the plugins in the same
work�ow. Thus, secrets should not be set as environment
variables, otherwise, it can cause potential leakages.

492

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xiaofan Li et al.

Figure 2: Dependent Actions in Action RepositoryWork�ow.

• Write secrets into local �les. Local �les can be accessed
by all the plugins in the work�ow.

• Use secrets as a parameter in the outgoing HTTP re-
quest. The secrets are potentially leaked to external re-
sources.

Method.We extend Argus to analyze the source code of GitHub
Actions to identify potential problematic actions. Argus employs
CodeQL [12] (a JavaScript code analysis engine) to perform static
analysis on GitHub work�ows (take repository as input). We ex-
tend Argus to track the data�ow of secrets in plugins, and add the
above sinks (e.g., HTTP). With detected problematic plugins, we
further �nd potentially vulnerable repositories by checking the
con�guration �le.

We do not consider cleanups in the data leakage analysis. One
reason is that data might be leaked even with cleanup, since attack-
ers could monitor generated �les. For example, a malicious plugin
can abuse the pre-step to monitor �les generated in the following
steps during the execution (before cleanup).
Results.We �nd 1,097 potentially problematic plugins in GitHub
Actions. Among them, 149 plugins use the secrets as a parameter
in the outgoing HTTP request; 130 of them write the secrets to the
local �les; 161 set the secrets as environment variables; and 749 set
the secrets as an output. Note that some plugins may set the secrets
as environment variables and an output at the same time.

Moreover, we �nd 384 repositories pass secrets to these problem-
atic plugins. For a detailed breakdown, 4 repositories pass secrets
to plugins that use secrets as a parameter in outgoing HTTP re-
quests. 15 repositories pass secrets to plugins that write secrets into
local �les. 330 repositories pass secrets to plugins that set secrets
as environment variables. 299 repositories pass secrets to plugins
that set secrets as an output.

5.9 Plugin Dependency Ampli�cation
We further analyze GitHub Actions to understand the impact of
plugin dependency on several identi�ed threats. We focus on two
dependency ways in GitHub Actions: (1) Dependent actions in com-
posite actions. A GitHub composite action can run a combination
of multiple commands or plugins. So, in a composite action, users
can reference other actions, such as Javascript actions and other
composite actions. (2) JavaScript actions can import npm packages.

We �rst extend Argus to analyze both composite actions and
npm packages. We �rst check whether plugins have passed secrets
to their referenced action or npm package, then utilize Argus to
analyze them. Speci�cally, for npm packages, we extract them from
JavaScript actions using regular expressions and further obtain
their source code. We hook all functions (in npm packages) used by
plugins, and check whether the npm package leaks its parameters
to dangerous sinks (e.g., HTTP). Finally, we also check whether
these referenced actions are vulnerable to redirection hijacking
attacks and version reuse attacks.

Results. We �nd 6,565 composite actions that reference JavaScript
actions. Among the referenced JavaScript actions, 169 potentially
leak sensitive data to dangerous sinks, a�ecting 603 composite
actions. Speci�cally, the number of plugins that leak secrets via
HTTP, local �les, environment variables, and outputs are 3, 16, 78,
and 95, respectively. In addition, we �nd 17 repositories indeed pass
secrets to them.

8 composite actions su�er from the plugin redirection hijacking
attack: their referenced plugins are vulnerable to redirection. For the
version reuse threat, unfortunately, only 627 out of 6,565 composite
actions reference other plugins using commit hash. The rest can
potentially be a�ected by the version reuse attack.

For npm packages referenced by JavaScript Actions, we �nd
a total of 2,404 npm packages. No sensitive data leakage issues
are found in them. However, 109 npm packages introduced by 337
plugins are not found in the npm registry. As these plugins rely
on these npm packages, they might be malfunctioned in future
versions, since the npm package is no longer available.
Dependent actions in actions’ work�ow �les. We further �nd
another interesting dependency among GitHub actions: dependent
actions can exist in an action’s work�ow �le. GitHub recommends
storing a plugin in an independent repository, which can have a
work�ow �le (i.e., the plugin’s repository work�ow). This work-
�ow �le can further reference other plugins. As shown in Figure 2,
repository A references action B (step ∂), which is stored in an
independent repository. In the work�ow �le of action B, it further
references another action C (step ∑). In this case, the CI pipeline ex-
ecution of repository A will not directly involve action C. However,
action C might a�ect the build of action B, which in turn a�ects
repository A. So, if action C is vulnerable to the redirection hijack-
ing attack or the version reuse attack (step ∏), both action B (step
π) and repository A (step ∫) might be a�ected. We �nd 19,503 plu-
gins contain dedicated plugin repository work�ows. Unfortunately,
we �nd that 121 have referenced plugins that are vulnerable to the
redirection hijacking attack. 460 plugins have referenced plugins
using branch or tag names in their dedicated plugin repository
work�ows, which are vulnerable to the version reuse attack.

6 COUNTERMEASURES AND DISCLOSURE
6.1 Defense Practices
In this section, we propose several defensive practices that can
potentially mitigate the discovered threats.
Improve the PluginManagementMechanism.CIP can enhance
plugin management practices following the software package man-
agement in software registries (such as adopting Multi-Factor Au-
thentication). Particularly, for decentralized stored plugins, CIPs
should regularly check plugin redirection on CHPs to prevent plu-
gin redirection attacks. In addition, CIPs should enforce stricter
version control mechanisms and explicitly prohibit version reuse
in plugins. For plugins relying on external resources (e.g., exter-
nal plugins), CIPs can provide additional services to examine ex-
ternal resources and their dependencies, similar to Open Source
Insights [53] and DependaBot [16], notifying developers about
potential threats and consequences.
Enforce Proper Isolation Between Plugins. This paper demon-
strates that the process-level isolation adopted by plugins has severe

493

Toward Understanding the Security of Plugins in Continuous Integration Services CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

security risks, as a malicious plugin can easily modify others. Thus,
CIPs should adopt stronger isolation mechanisms on plugins. For
example, running plugins in Docker containers is generally better
isolated than other mechanisms. CIP can also borrow other sandbox
techniques (such as from Web browsers) to enforce isolation while
keeping lightweight. Overall, a plugin should be limited in its own
scope, without having the capability to access plugins’ �le systems
or environment variables.
Protect Valuable Secrets. Secrets are one of the most sensitive data
in CI work�ows, and their access should be strictly con�ned. CIPs
may adopt allowlists on secrets: only when developers explicitly
specify in the CI con�guration �le that secrets can be accessed by
a plugin, CI runner can transfer the secrets to the target plugin as
inputs. Meanwhile, CI runners should carefully store and process
secrets to avoid secret leakage. For example, CI runners should not
store/set secrets into a shared global �le or environment variables
that are accessible by plugins.

6.2 Disclosure and Response
We have promptly disclosed our �ndings with a�ected CIPs and
vulnerable repositories. We have followed the 90-day vulnerability
disclosure policy [10]: we started our disclosure in November 2023,
and completed all of them in May 2024, which is more than 90 days
before the potential publication date of the paper (October 2024).
Speci�cally, we did not communicate a time window but considered
the time between disclosure and publication to be su�cient.

For vulnerable repositories, we attempted to collect their con-
tact information from CHPs through their corresponding APIs [35].
However, not all repositories have contact emails (i.e., the repo’s
email �eld is empty [42]), as CHPs allow users to hide their contact
emails [39]. In total, we have collected 365 repositories’ emails.
For these repositories, we then sent individual emails, by (1) men-
tioning the vulnerable repositories and plugins; (2) explaining the
vulnerability; (3) indicating our recommended actions (e.g., update
the plugin name to its latest location). During the disclosure, we got
some email delivery failures as these emails were already outdated.
For the rest emails, we have followed up with them if we have not
received any response. In total, we have received 58 responses, with
39 of them replying that they have �xed the issue after receiving
our emails. The rest replied that (1) they would �x it in the future;
or (2) the repository is no longer in use thus there is no need to
�x it. One repository owner has provided us with a redemption
code as a gift to express their appreciation. For repositories that we
could not collect emails, we �nd that 81% of them are not starred.
Thus, we believe the impact is minimal.

For disclosures to CIPs, we have summarized all uncovered vul-
nerabilities (for each CIP), including the threat model, the ways to
exploit them (e.g., version reuse, malicious code injection), impacts,
and suggestions, and submitted them to their o�cial channels (e.g.,
GitHub Support [33], Microsoft Developer Community [63]) and/or
their bug bounty platforms (e.g., HackerOne [51]). For all CIPs, we
have followed up with them if there is no response. For most �nd-
ings, CIPs indicate that they are intentional designs and working as
expected. However, they state that they will make some functional-
ities more strict in the future, or make corresponding suggestions
in their o�cial documents. For example, GitHub responded that

“This is an intentional design and is working as expected, we may
make this functionally more strict in the future”. Azure Pipeline has
converted our report to a suggestion, which “will allow other devel-
opers to easily �nd it and engage on it”. Particularly, for the version
reuse related issues, CircleCI responded that in the document they
strongly suggest users reference the orbs (i.e., plugins) in the full
version, which is the safest way. GitHub has con�rmed our report
and plans to update their documents to clarify the branch and tag
case (i.e., same name issue).

In addition, for cached plugin and token leakage issues, we have
further provided additional materials and tested repositories (with
detailed explanations) as requested. GitHub has acknowledged our
�ndings and stated that they might make changes to the token
in the future. However, at the current stage, they do not plan to
announce it. Azure Pipeline replies that they have investigated the
issues and have forwarded our report/feedback to the appropriate
engineering team.

7 RELATEDWORK
CI Security Analysis. Extensive research e�orts have been de-
voted to understanding CI security in recent years. As the most
popular CI platform for open source projects, GitHub Actions also
attracted much research attention. Benedetti et al. [6] identi�ed 7
types of security issues in GitHub Actions, and developed GHAST
tool to analyze GitHub Actions con�guration �les. Koishybayev
et al. [56] found that most GitHub Actions’ work�ows are over-
privileged and many secrets are leaked in plaintext. Li et al. [59]
measured GitHub Actions work�ows, revealing that lots of CI
jobs were actually abused for illicit crypto-mining. In addition,
improper con�gurations in CI work�ow have been studied exten-
sively [22, 25, 66, 73, 82, 83, 85]. For example, Vassallo et al. [82]
developed CD-Linter, a static analysis tool, to identify and �x con-
�guration smells in CI con�guration �les. Unlike previous works
focusing on vulnerable/buggy work�ows, we are the �rst to sys-
tematically study security risks focusing on CI plugins. Our work
shows that, even with proper-privileged work�ows, a malicious
plugin can still cause security risks (e.g., leak secrets).

One closely related work is ARGUS [64], which is a static taint
analysis tool to detect command injection vulnerabilities in GitHub
Actions work�ows. They focused on the command injection attack
that the source can be initiated by CI users, and later are passed to
various sinks for execution (e.g., shell run or exec in JavaScript).
For example, github.event.pull_request.title allows users to
initiate a pull request, and its title might contain code that can be
executed later. Di�erent from them, our research analyzes command
injection vulnerabilities that cannot be triggered by users, but from
malicious plugins. We demonstrate that, a malicious plugin can
modify the output generated by other plugins (via the inner-job
cross-plugin hijacking attack), and then inject command cross-jobs.

Gu et al. [48] studied the authentication/authorization process
of CI and unveiled multiple security issues related to tokens. With
insecure work�ows, malicious users or collaborators (as attackers)
can inject code into the insecure work�ows to steal tokens. The
leaked tokens might be further exploited to escalate the privileges
of attackers. In contrast, we assume secure work�ows in which
malicious users/collaborators cannot inject code, but a malicious

494

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xiaofan Li et al.

plugin can exploit some vulnerabilities to inject code and poten-
tially a�ect the entire pipeline. Particularly, we �nd that malicious
plugins can steal some essential tokens stored in local �les (e.g.,
.credentials). Finally, we also conduct an analysis of the impact of
plugin dependencies, which are not studied by previous works.
Software Supply Chain Security.With the ever-increasing signif-
icance of the software supply chain in software development, many
recent research works have been focused on understanding and
enhancing the security of the software supply chain, including vul-
nerable packages [14, 15, 52, 79, 80], attack vectors in open-source
software supply chains [49, 86], and malicious code in popular reg-
istries [24, 50, 60, 76, 84]. For example, Ladisa et al. [57] introduced
a taxonomy of attacks on open-source software supply chains by
surveying 17 domain experts and hundreds of software developers.
Duan et al. [20] designed a tool to identify security threats in three
popular registries, and detected 339 new malicious packages. Our
work focuses on the security of CI plugins in the software devel-
opment process, which is another perspective of software supply
chain security that has not been systematically explored before.

Particularly, Gu et al. [49] identi�ed twelve potential attack vec-
tors in software registries, and uncovered many popular registries
are threatened through a large-scale measurement study spanning
one year over six software registries and seventeen popular mirrors.
One of the threats disclosed by [49] is the package redirection hijack-
ing attack. They �nd that package redirection can be hijacked in the
Go registry, where package maintainers utilize GitHub or GitLab
repositories to manage packages. One attack (plugin redirection
hijacking attack) disclosed in this paper is motivated by their work.
We demonstrate that, CI plugins in CIPs are also vulnerable to this
threat. We have conducted a large-scale measurement study and
demonstrated that many plugins used by many repositories can be
hijacked immediately.

Finally, version reuse is known as a security risk in software
package management, and thus has been disabled/banned by most
package registries, including PyPI [81] and npm [65]. The semantic
versioning speci�cation has explicitly declared that "Once a ver-
sioned package has been released, the contents of that version must
not be modi�ed. Any modi�cations must be released as a new ver-
sion" [69]. Gu et al. [49] also investigated the version reuse problem
in existing software registries, and found that npm has reused pack-
age versions even after the ban of version reuse features in 2014.
Unlike software packages, little attention has been paid to the CI
plugin version control. However, we demonstrate that existing CI
users largely utilize branch/tag for referencing speci�c versions of
CI plugins. These methods are unsafe as CHPs allow plugin owners
to delete a branch/tag and then recreate one with the same name.
To the best of our knowledge, we are the �rst to comprehensively
investigate the version reuse problem in CI plugins.

8 CONCLUSION
This paper systematically analyzes plugin-related security vulnera-
bilities in existing CI services. We have presented a detailed study
of existing plugin implementation on mainstream CI platforms,
and investigated seven security threats that can be exploited by
attackers to inject malicious code and steal sensitive information.
We have conducted a large scale measurement study on GitHub
and GitLab, covering 1,328,912 open source repositories using CI

plugins. Our experimental results show that many repositories and
plugins are vulnerable to identi�ed security threats. We have dis-
cussed potential mitigation, reported our �ndings to corresponding
stakeholders, and received positive responses.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their insightful
comments. The University of Delaware team is partially supported
by National Science Foundation (NSF) grants CNS-2054657, CNS-
2317830, and OAC-2319975. Yacong Gu is partially supported by
the Postdoctoral Fellowship Program of CPSF grants GZC20231361.

REFERENCES
[1] 2024. Continuous Integration Solutions Market Size. https://www.

mordorintelligence.com/industry-reports/continuous-integration-tools-
market

[2] Ionut Arghire. 2024. Major IT, Crypto Firms Exposed to Supply Chain Compro-
mise via New Class of CI/CD Attack. https://www.securityweek.com/major-it-
crypto-�rms-exposed-to-supply-chain-compromise-via-new-class-of-ci-cd-
attack/?utm_source=dlvr.it&utm_medium=twitter

[3] Home Assistant. 2024. Open source home automation that puts local control and
privacy �rst. https://github.com/home-assistant/core

[4] Atlassian. 2023. Bitbucket Cloud Variables and Secrets. https://support.atlassian.
com/bitbucket-cloud/docs/variables-and-secrets/

[5] AvaloniaUI. 2024. Avalonia. https://github.com/AvaloniaUI/Avalonia/blob/
master/azure-pipelines.yml#L9

[6] Giacomo Benedetti, Luca Verderame, and Alessio Merlo. 2022. Automatic Security
Assessment of GitHub Actions Work�ows. In 2022 ACM Workshop on Software
Supply Chain O�ensive Research and Ecosystem Defenses.

[7] Bertus. 2018. Cryptocurrency Clipboard Hijacker Discovered in PyPI Repos-
itory. https://bertusk.medium.com/cryptocurrency-clipboard-hijacker-
discovered-in-pypi-repository-b66b8a534a8

[8] GitHub Blog. 2017. GitHub Data, Ready for You to Explore with Big-
Query. https://github.blog/2017-01-19-github-data-ready-for-you-to-explore-
with-bigquery/

[9] Justin Cappos, Justin Samuel, Scott Baker, and John H Hartman. 2008. A Look in
the Mirror: Attacks on Package Managers. In 2008 ACM Conference on Computer
and Communications Security.

[10] IEEE S&P 2024 CFP. 2024. Ethical Considerations for Vulnerability Disclosure.
https://sp2024.ieee-security.org/cfpapers.html

[11] CircleCI. 2024. CircleCI Orb Registry. https://circleci.com/developer/orbs
[12] CodeQL. 2024. CodeQL. https://codeql.github.com/
[13] curl. 2024. curl. https://github.com/curl/curl
[14] James C Davis, Eric R Williamson, and Dongyoon Lee. 2018. A Sense of Time

for JavaScript and Node.js: First-Class Timeouts as a Cure for Event Handler
Poisoning. In 2018 USENIX Security Symposium.

[15] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the Impact
of Security Vulnerabilities in the npm Package Dependency Network. In 2018
International Conference on Mining Software Repositories.

[16] Dependabot. 2024. Dependabot Automated dependency updates built into GitHub.
https://github.com/dependabot

[17] GitLab Documentation. 2023. Projects API - GitLab. https://docs.gitlab.com/ee/
api/projects.html

[18] GitLab Documentation. 2023. Repository Files API - GitLab. https://docs.gitlab.
com/ee/api/repository_�les.html

[19] dreamli0. 2024. dreamli0/Inter-Job-PoC. https://github.com/dreamli0/Inter-Job-
PoC/blob/main/.github/work�ows/blank.yml

[20] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-
gio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on Package
Managers for Interpreted Languages. In 2021 Network and Distributed System
Security Symposium.

[21] enlyft. 2024. Companies using Azure Pipelines. https://enlyft.com/tech/products/
azure-pipelines

[22] Wagner Felidré, Leonardo Furtado, Daniel A da Costa, Bruno Cartaxo, and Gus-
tavo Pinto. 2019. Continuous Integration Theater. In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement.

[23] Runhan Feng, Ziyang Yan, Shiyan Peng, and Yuanyuan Zhang. 2022. Auto-
mated Detection of Password Leakage from Public GitHub Repositories. In 2022
International Conference on Software Engineering.

[24] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner. 2021. Con-
tainingMalicious Package Updates in npmwith a Lightweight Permission System.
In 2021 IEEE/ACM International Conference on Software Engineering.

495

https://www.mordorintelligence.com/industry-reports/continuous-integration-tools-market
https://www.mordorintelligence.com/industry-reports/continuous-integration-tools-market
https://www.mordorintelligence.com/industry-reports/continuous-integration-tools-market
https://www.securityweek.com/major-it-crypto-firms-exposed-to-supply-chain-compromise-via-new-class-of-ci-cd-attack/?utm_source=dlvr.it&utm_medium=twitter
https://www.securityweek.com/major-it-crypto-firms-exposed-to-supply-chain-compromise-via-new-class-of-ci-cd-attack/?utm_source=dlvr.it&utm_medium=twitter
https://www.securityweek.com/major-it-crypto-firms-exposed-to-supply-chain-compromise-via-new-class-of-ci-cd-attack/?utm_source=dlvr.it&utm_medium=twitter
https://github.com/home-assistant/core
https://support.atlassian.com/bitbucket-cloud/docs/variables-and-secrets/
https://support.atlassian.com/bitbucket-cloud/docs/variables-and-secrets/
https://github.com/AvaloniaUI/Avalonia/blob/master/azure-pipelines.yml#L9
https://github.com/AvaloniaUI/Avalonia/blob/master/azure-pipelines.yml#L9
https://bertusk.medium.com/cryptocurrency-clipboard-hijacker-discovered-in-pypi-repository-b66b8a534a8
https://bertusk.medium.com/cryptocurrency-clipboard-hijacker-discovered-in-pypi-repository-b66b8a534a8
https://github.blog/2017-01-19-github-data-ready-for-you-to-explore-with-bigquery/
https://github.blog/2017-01-19-github-data-ready-for-you-to-explore-with-bigquery/
https://sp2024.ieee-security.org/cfpapers.html
https://circleci.com/developer/orbs
https://codeql.github.com/
https://github.com/curl/curl
https://github.com/dependabot
https://docs.gitlab.com/ee/api/projects.html
https://docs.gitlab.com/ee/api/projects.html
https://docs.gitlab.com/ee/api/repository_files.html
https://docs.gitlab.com/ee/api/repository_files.html
https://github.com/dreamli0/Inter-Job-PoC/blob/main/.github/workflows/blank.yml
https://github.com/dreamli0/Inter-Job-PoC/blob/main/.github/workflows/blank.yml
https://enlyft.com/tech/products/azure-pipelines
https://enlyft.com/tech/products/azure-pipelines

Toward Understanding the Security of Plugins in Continuous Integration Services CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[25] Keheliya Gallaba and Shane McIntosh. 2020. Use and Misuse of Continuous
Integration Features: An Empirical Study of Projects That (Mis)Use Travis CI.
2020 IEEE Transactions on Software Engineering (2020).

[26] Git. 2018. Doc Hash-function-transition: Pick SHA-256 as NewHash. https://lore.
kernel.org/git/20180725083024.16131-3-avarab@gmail.com/

[27] Git. 2024. Choice of Hash. https://git-scm.com/docs/hash-function-transition#
_choice_of_hash

[28] Git. 2024. Git Tools - Revision Selection. https://git-scm.com/book/en/v2/Git-
Tools-Revision-Selection#Short-SHA-1

[29] Git. 2024. Hash Function Transition Background. https://git-scm.com/docs/hash-
function-transition#_background

[30] GitHub. 2023. Encrypted secrets - GitHub Docs. https://docs.github.com/en/
actions/security-guides/encrypted-secrets

[31] GitHub. 2024. About Self-hosted Runners - GitHub Doc. https://docs.github.
com/en/actions/hosting-your-own-runners/about-self-hosted-runners

[32] GitHub. 2024. Assigning permissions to jobs - GitHub Doc. https://docs.github.
com/en/actions/using-jobs/assigning-permissions-to-jobs

[33] GitHub. 2024. Bug Report. https://support.github.com/contact/bug-report
[34] GitHub. 2024. Changing Your GitHub Username - GitHub Doc.

https://docs.github.com/en/account-and-pro�le/setting-up-and-managing-
your-github-user-account/managing-user-account-settings/changing-your-
github-username

[35] GitHub. 2024. Get a user. https://api.github.com/users/{USERNAME}
[36] GitHub. 2024. GitHub Actions Marketplace. https://github.com/marketplace?

type=actions
[37] GitHub. 2024. GitHub Actions Reusing work�ows. https://docs.github.com/en/

actions/using-work�ows/reusing-work�ows
[38] GitHub. 2024. GitHub Docs - Get a repository. https://docs.github.com/en/rest/

repos/repos?apiVersion=2022-11-28#get-a-repository
[39] GitHub. 2024. Setting your commit email address on GitHub. https:

//docs.github.com/en/account-and-pro�le/setting-up-and-managing-your-
personal-account-on-github/managing-email-preferences/setting-your-
commit-email-address

[40] GitHub. 2024. Transferring a Repository. https://docs.github.com/en/
repositories/creating-and-managing-repositories/transferring-a-repository

[41] GitHub. 2024. Understanding the risk of script injections - GitHub
Docs. https://docs.github.com/en/actions/security-guides/security-hardening-
for-github-actions#understanding-the-risk-of-script-injections

[42] GitHub. 2024. A user does not set a public email address. https://api.github.com/
users/dynamoose

[43] GitHub. 2024. Using Third-party Actions. https://docs.github.com/en/actions/
security-guides/security-hardening-for-github-actions#using-third-party-
actions

[44] GitLab. 2024. GitLab Docs - Get single project. https://docs.gitlab.com/ee/api/
projects.html#get-single-project/

[45] GitLab. 2024. Job permissions - Permissions and roles. https://docs.gitlab.com/
ee/user/permissions.html#job-permissions

[46] GitLab. 2024. Use CI/CD con�guration from other �les. https://docs.gitlab.com/
ee/ci/yaml/includes.html

[47] GitLab.org. 2024. GitLab. https://gitlab.com/gitlab-org/gitlab
[48] Yacong Gu, Lingyun Ying, Huajun Chai, Chu Qiao, Haixin Duan, and Xing

Gao. 2023. Continuous Intrusion: Characterizing the Security of Continuous
Integration Services. In 2023 IEEE Symposium on Security and Privacy.

[49] Yacong Gu, Lingyun Ying, Yingyuan Pu, Xiao Hu, Huajun Chai, Ruimin Wang,
Xing Gao, and Haixin Duan. 2023. Investigating Package Related Security Threats
in Software Registries. In 2023 IEEE Symposium on Security and Privacy.

[50] Wenbo Guo, Zhengzi Xu, Chengwei Liu, Cheng Huang, Yong Fang, and Yang
Liu. 2023. An Empirical Study of Malicious Code In PyPI Ecosystem. In 2023
IEEE/ACM International Conference on Automated Software Engineering.

[51] HackerOne. 2024. HackerOne | #1 Trusted Security Platform and Hacker Program.
https://www.hackerone.com

[52] JI Hejderup. 2015. In Dependencies We Trust: How Vulnerable Are Dependencies in
Software Modules?

[53] Open Source Insights. 2024. Open Source Insights Understand your dependencies.
https://deps.dev//

[54] JanDeDobbeleer. 2024. oh-my-posh. https://github.com/JanDeDobbeleer/oh-
my-posh

[55] Panagiotis Kintis, Najmeh Miramirkhani, Charles Lever, Yizheng Chen, Rosa
Romero-Gómez, Nikolaos Pitropakis, Nick Nikiforakis, and Manos Antonakakis.
2017. Hiding in Plain Sight: A Longitudinal Study of Combosquatting Abuse. In
2017 ACM SIGSAC Conference on Computer and Communications Security.

[56] Igibek Koishybayev, Aleksandr Nahapetyan, Raima Zachariah, SiddharthMuralee,
Bradley Reaves, Alexandros Kapravelos, and Aravind Machiry. 2022. Character-
izing the Security of Github CI Work�ows. In 2022 USENIX Security Symposium.

[57] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. 2023. SoK:
Taxonomy of Attacks on Open-Source Software Supply Chains. In 2023 IEEE
Symposium on Security and Privacy.

[58] Ravie Lakshmanan. 2021. Malicious NPM Libraries Caught Installing Password
Stealer and Ransomware. https://thehackernews.com/2021/10/malicious-npm-
libraries-caught.html

[59] Zhi Li, Weijie Liu, Hongbo Chen, XiaoFeng Wang, Xiaojing Liao, Luyi Xing,
Mingming Zha, Hai Jin, and Deqing Zou. 2022. Robbery on DevOps: Under-
standing and Mitigating Illicit Cryptomining on Continuous Integration Service
Platforms. In 2022 IEEE Symposium on Security and Privacy.

[60] Wentao Liang, Xiang Ling, Jingzheng Wu, Tianyue Luo, and Yanjun Wu. 2023. A
Needle is an Outlier in a Haystack: Hunting Malicious PyPI Packages with Code
Clustering. In 2023 IEEE/ACM International Conference on Automated Software
Engineering.

[61] Guannan Liu, Xing Gao, Haining Wang, and Kun Sun. 2022. Exploring the
Unchartered Space of Container Registry Typosquatting. In 2022 USENIX Security
Symposium.

[62] Michael Meli, Matthew R McNiece, and Bradley Reaves. 2019. How Bad Can
It Git? Characterizing Secret Leakage in Public GitHub Repositories. In 2019
Network and Distributed System Security Symposium.

[63] Microsoft. 2024. Developer Community. https://developercommunity.visualstudio.
com

[64] Siddharth Muralee, Igibek Koishybayev, Aleksandr Nahapetyan, Greg Tystahl,
Brad Reaves, Antonio Bianchi, William Enck, Alexandros Kapravelos, and Ar-
avind Machiry. 2023. ARGUS: A Framework for Staged Static Taint Analysis of
GitHub Work�ows and Actions. In 2023 USENIX Security Symposium.

[65] npm Docs. 2022. npm-unpublish. https://docs.npmjs.com/cli/v8/commands/npm-
unpublish

[66] Christina Paule, Thomas F Düllmann, and André Van Hoorn. 2019. Vulnerabilities
in Continuous Delivery Pipelines? A Case Study. In 2019 IEEE International
Conference on Software Architecture Companion.

[67] Azure Pipelines. 2024. Azure Pipelines Extensions. https://marketplace.
visualstudio.com/search?target=AzureDevOps&category=Azure%20Pipelines

[68] Azure Pipelines. 2024. Azure Pipelines Templates. https://learn.microsoft.com/en-
us/azure/devops/pipelines/process/templates?view=azure-devops&pivots=
templates-includes#use-other-repositories

[69] Tom Preston-Werner. 2023. Semantic Versioning 2.0.0. https://semver.org/
[70] GH Archive Project. 2023. GH Archive. https://www.gharchive.org/
[71] Mitmproxy Project. 2024. mitmproxy - an interactive HTTPS proxy. https:

//mitmproxy.org/
[72] pytorch. 2024. pytorch. https://github.com/pytorch/pytorch
[73] Akond Rahman, Chris Parnin, and Laurie Williams. 2019. The Seven Sins: Se-

curity Smells in Infrastructure as Code Scripts. In 2019 IEEE/ACM International
Conference on Software Engineering.

[74] Aakanksha Saha, Tamara Denning, Vivek Srikumar, and Sneha Kumar Kasera.
2020. Secrets in Source Code: Reducing False Positives using Machine Learning.
In 2020 International Conference on COMmunication Systems & NETworkS.

[75] scala-steward action. 2024. scala-steward-org/scala-steward-action. https://github.
com/scala-steward-org/scala-steward-action

[76] Adriana Sej�a andMax Schäfer. 2022. Practical Automated Detection of Malicious
npm Packages. In 2022 International Conference on Software Engineering.

[77] SHAttered. 2017. SHAttered. https://shattered.io/
[78] Vibha Singhal Sinha, Diptikalyan Saha, Pankaj Dhoolia, Rohan Padhye, and

Senthil Mani. 2015. Detecting and Mitigating Secret-Key Leaks in Source Code
Repositories. In 2015 IEEE/ACM Working Conference on Mining Software Reposito-
ries.

[79] Cristian-Alexandru Staicu andMichael Pradel. 2018. Freezing theWeb: A Study of
ReDoS Vulnerabilities in JavaScript-based Web Servers. In 2018 USENIX Security
Symposium.

[80] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. 2018. SYNODE:
Understanding and Automatically Preventing Injection Attacks on NODE.JS. In
2018 Network and Distributed System Security Symposium.

[81] Donald Stu�t. 2015. Closing the Delete File + Re-upload File Loophole. https:
//mail.python.org/pipermail/distutils-sig/2015-January/025683.html

[82] Carmine Vassallo, Sebastian Proksch, Harald C Gall, and Massimiliano Di Penta.
2019. Automated Reporting of Anti-Patterns andDecay in Continuous Integration.
In 2019 IEEE/ACM International Conference on Software Engineering.

[83] Carmine Vassallo, Sebastian Proksch, Anna Jancso, Harald C Gall, and Massimil-
iano Di Penta. 2020. Con�guration Smells in Continuous Delivery Pipelines: A
Linter and a Six-Month Study on GitLab. In 2020 Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering.

[84] Duc-Ly Vu, Zachary Newman, and John Speed Meyers. 2023. Bad Snakes: Un-
derstanding and Improving Python Package Index Malware Scanning. In 2023
IEEE/ACM International Conference on Software Engineering.

[85] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Canfora,
Harald Gall, and Massimiliano Di Penta. 2020. An Empirical Characterization of
Bad Practices in Continuous Integration. 2020 Empirical Software Engineering
(2020).

[86] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small World with High Risks: A Study of Security Threats in the npm
Ecosystem. In 2019 USENIX Security Symposium.

496

https://lore.kernel.org/git/20180725083024.16131-3-avarab@gmail.com/
https://lore.kernel.org/git/20180725083024.16131-3-avarab@gmail.com/
https://git-scm.com/docs/hash-function-transition#_choice_of_hash
https://git-scm.com/docs/hash-function-transition#_choice_of_hash
https://git-scm.com/book/en/v2/Git-Tools-Revision-Selection#Short-SHA-1
https://git-scm.com/book/en/v2/Git-Tools-Revision-Selection#Short-SHA-1
https://git-scm.com/docs/hash-function-transition#_background
https://git-scm.com/docs/hash-function-transition#_background
https://docs.github.com/en/actions/security-guides/encrypted-secrets
https://docs.github.com/en/actions/security-guides/encrypted-secrets
https://docs.github.com/en/actions/hosting-your-own-runners/about-self-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners/about-self-hosted-runners
https://docs.github.com/en/actions/using-jobs/assigning-permissions-to-jobs
https://docs.github.com/en/actions/using-jobs/assigning-permissions-to-jobs
https://support.github.com/contact/bug-report
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-github-user-account/managing-user-account-settings/changing-your-github-username
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-github-user-account/managing-user-account-settings/changing-your-github-username
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-github-user-account/managing-user-account-settings/changing-your-github-username
https://api.github.com/users/%7BUSERNAME%7D
https://github.com/marketplace?type=actions
https://github.com/marketplace?type=actions
https://docs.github.com/en/actions/using-workflows/reusing-workflows
https://docs.github.com/en/actions/using-workflows/reusing-workflows
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#get-a-repository
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#get-a-repository
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-email-preferences/setting-your-commit-email-address
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-email-preferences/setting-your-commit-email-address
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-email-preferences/setting-your-commit-email-address
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-email-preferences/setting-your-commit-email-address
https://docs.github.com/en/repositories/creating-and-managing-repositories/transferring-a-repository
https://docs.github.com/en/repositories/creating-and-managing-repositories/transferring-a-repository
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#understanding-the-risk-of-script-injections
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#understanding-the-risk-of-script-injections
https://api.github.com/users/dynamoose
https://api.github.com/users/dynamoose
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.gitlab.com/ee/api/projects.html#get-single-project/
https://docs.gitlab.com/ee/api/projects.html#get-single-project/
https://docs.gitlab.com/ee/user/permissions.html#job-permissions
https://docs.gitlab.com/ee/user/permissions.html#job-permissions
https://docs.gitlab.com/ee/ci/yaml/includes.html
https://docs.gitlab.com/ee/ci/yaml/includes.html
https://gitlab.com/gitlab-org/gitlab
https://www.hackerone.com
https://deps.dev//
https://github.com/JanDeDobbeleer/oh-my-posh
https://github.com/JanDeDobbeleer/oh-my-posh
https://thehackernews.com/2021/10/malicious-npm-libraries-caught.html
https://thehackernews.com/2021/10/malicious-npm-libraries-caught.html
https://developercommunity.visualstudio.com
https://developercommunity.visualstudio.com
https://docs.npmjs.com/cli/v8/commands/npm-unpublish
https://docs.npmjs.com/cli/v8/commands/npm-unpublish
https://marketplace.visualstudio.com/search?target=AzureDevOps&category=Azure%20Pipelines
https://marketplace.visualstudio.com/search?target=AzureDevOps&category=Azure%20Pipelines
https://learn.microsoft.com/en-us/azure/devops/pipelines/process/templates?view=azure-devops&pivots=templates-includes#use-other-repositories
https://learn.microsoft.com/en-us/azure/devops/pipelines/process/templates?view=azure-devops&pivots=templates-includes#use-other-repositories
https://learn.microsoft.com/en-us/azure/devops/pipelines/process/templates?view=azure-devops&pivots=templates-includes#use-other-repositories
https://semver.org/
https://www.gharchive.org/
https://mitmproxy.org/
https://mitmproxy.org/
https://github.com/pytorch/pytorch
https://github.com/scala-steward-org/scala-steward-action
https://github.com/scala-steward-org/scala-steward-action
https://shattered.io/
https://mail.python.org/pipermail/distutils-sig/2015-January/025683.html
https://mail.python.org/pipermail/distutils-sig/2015-January/025683.html

	Abstract
	1 Introduction
	2 Background
	2.1 CI Introduction
	2.2 CI Plugin Type and Lifecycle
	2.3 Threats in Software Development

	3 CI Plugin Implementations
	3.1 Plugin Storage and Distribution
	3.2 Plugin Parsing
	3.3 Version Control
	3.4 Plugin Isolation and Sharing
	3.5 Secrets Accessibility

	4 CI Plugin Threats
	4.1 Threat Model
	4.2 Unsafe Plugin Distribution
	4.3 Improper Plugin Isolation
	4.4 Plugin Dependencies: Attack Amplification (A5)

	5 Measurement
	5.1 Data Collection and Methodologies
	5.2 Plugin Redirection Hijacking Attack
	5.3 Plugin Version Reuse Attack
	5.4 Cached Plugin Poisoning Attack
	5.5 Inner-Job Cross-Plugin Hijacking Attack
	5.6 Inter-Job Control Flow Hijacking Attack
	5.7 Inter-Job Input Injection Attack
	5.8 Sensitive Data Leakage
	5.9 Plugin Dependency Amplification

	6 Countermeasures and Disclosure
	6.1 Defense Practices
	6.2 Disclosure and Response

	7 Related Work
	8 Conclusion
	References

