Benchmarking Spiking Neural Network Learning
Methods with Varying Locality

Jiaqi Lin, Sen Lu, Malyaban Bal, Abhronil Sengupta

Abstract—Spiking Neural Networks (SNNs), providing more
realistic neuronal dynamics, have been shown to achieve per-
formance comparable to Artificial Neural Networks (ANNs) in
several machine learning tasks. Information is processed as spikes
within SNNs in an event-based mechanism that significantly re-
duces energy consumption. However, training SNNs is challenging
due to the non-differentiable nature of the spiking mechanism.
Traditional approaches, such as Backpropagation Through Time
(BPTT), have shown effectiveness but come with additional com-
putational and memory costs and are biologically implausible. In
contrast, recent works propose alternative learning methods with
varying degrees of locality, demonstrating success in classification
tasks. In this work, we show that these methods share similarities
during the training process, while they present a trade-off
between biological plausibility and performance. Further, given
the implicitly recurrent nature of SNNs, this research investigates
the influence of the addition of explicit recurrence to SNNs.
We experimentally prove that the addition of explicit recurrent
weights enhances the robustness of SNNs. We also investigate
the performance of local learning methods under gradient and
non-gradient-based adversarial attacks.

Index Terms—Spiking Neural Networks, Local Learning,
Training Methods, Feedback Alignment, Direct Feedback Align-
ment, Adversarial Attack, Backdoor Attack.

I. INTRODUCTION

Spiking Neural Networks (SNNs) are a type of Artificial
Neural Networks (ANNs) that are inspired by biological
neurons in the brain [1], [2]. In contrast to traditional ANNSs,
SNNs use a more biologically realistic model of neuron behav-
ior, where information is processed through the propagation of
spikes between neurons in the network [3]. The timing and rate
of spikes are influenced by the strength of synaptic connections
between neurons, which can be modified through a process
called synaptic plasticity [4], [5]. In SNNs, neuronal activities
are based on discrete spikes, which occur only when the
membrane potential of a neuron exceeds a certain threshold.
This event-driven processing operates at significantly lower
energy levels than traditional computing architectures [6]-[8],
as the neuronal and synaptic state updates consume power only
when they are actively spiking [9]. Neuromorphic hardware
implementations, like Intel’s Loihi [10] and the SpiNNaker
project [11], are specifically designed to take advantage of
SNNs. The energy efficiency offered by SNNs integrated
with neuromorphic hardware provides efficient possibilities for
deploying machine learning applications in power-constrained
environments, such as mobile devices, wearable technology,
and remote sensing systems, among others.

J. Lin, S. Lu, M. Bal and A. Sengupta are with the School of Electrical
Engineering and Computer Science, The Pennsylvania State University, Uni-
versity Park, PA 16802, USA. E-mail: jkl6467 @psu.edu, sengupta@psu.edu.

Additionally, since membrane potentials are accumulated
over time retaining information from previous time steps,
SNNs are inherently recurrent [12]. This characteristic of
SNNs allows them to naturally process time-dependent data,
rendering them suitable for tasks such as speech recognition
or time-series prediction [12]-[16]. SNNs with explicit recur-
rent connections have been shown to further augment their
performance in speech processing tasks [13].

Although SNNs are demonstrated to provide multiple ben-
efits from algorithms to hardware by leveraging bio-realistic
computations, Backpropagation Through Time (BPTT), which
is widely used to train SNNs, is not biologically plausible.
Firstly, BPTT assumes weight symmetry for the forward and
backward passes, which is undesirable in biological neural
networks [17]. Secondly, BPTT requires global error propaga-
tion, which is inconsistent with the local learning mechanisms
observed in biological neural networks [18], [19]. Moreover,
the explicit calculation and back-propagation of gradients and
error signals in BPTT are not directly observed in the brain
[20], [21]. Lastly, BPTT maintains a history of the mem-
brane potential and spike history of each neuron over time.
This process can be memory-intensive and computationally
expensive [15], [19], [22]-[24]. To solve this problem, local
learning alternatives to BPTT have been proposed for training
SNNs [13], [19], [25]-[27]. These methods aim to address the
challenges associated with training SNNs while still maintain-
ing biologically plausible learning rules and enabling more
efficient and accurate learning in spiking networks.

Based on the locality of training methods [26], we revisit
these alternatives to BPTT. Figure 1 distinguishes SNN train-
ing methods based on varying levels of locality. Beginning
with BPTT, which is a global learning method, it unrolls neural
dynamics over time, and it involves backpropagating errors
and learning signals through layers. The connection used for
backpropagation is the same weight used for forward propaga-
tion. An alternative, named feedback alignment, replaces the
symmetric weight connections with random matrices during
backward passes. This method removes the need for symmetric
weights during learning. E-prop introduces a type of direct
feedback alignment that provides higher biological plausibility
[15]. In this method, the error calculated at the output layer is
propagated directly to each layer without propagating errors
layer by layer. To obtain better performance, e-prop employs
symmetric weights in the process of direct propagation. We
next consider a more localized method, DECOLLE, in the
regime of local error propagation [19]. In this learning rule,
errors are propagated at each layer. A cost function is assigned

Input Input

BPTT
Backward Propagation Feedback Alignment

e-prop
Direct Feedback Alignment

GLOBAL

Output
P IOutput
t | Layern
(Layer 1)
AN
r— 71 - \
| Layer 0

o
|

SNN T— Input |ANN

DECOLLE ANN-SNN Conversion
Local Error Conversion
$ LOCAL

i-th layer trained

== backward weights
backward random matrix

4= forward pass

4= target/input feed

<— weight mapping
.. hidden layers

Fig. 1: SNN training methods considered in this study from global learning to local learning: BPTT, Feedback Alignment,
e-prop, DECOLLE. ANN-SNN conversion is also depicted on the extreme right.

at each layer by a random matrix mapping the output from
each layer to the pseudo-targets. In general, all these learning
rules provide bio-plausible alternatives to global learning rules.

II. RELATED WORKS
A. Performance Evaluation

Recently, the development of novel learning algorithms to
train SNNs has gained traction, propelled by SNNs’ unique
spiking nature and energy advantage over ANNs. Whether
energy efficiency is a compromise of performance remains
a question. Ref. [28] explored such a co-design evaluation
with respect to ANN performance. Their results indicated that
SNNs maintained acceptable accuracy drops on simpler visual
tasks like MNIST classification with much better energy effi-
ciency, while in relatively more complicated visual tasks like
CIFARIO classification, the accuracy of SNNs degraded fur-
ther. Despite this, SNNs evaluated on neuromorphic datasets
were illustrated to outperform ANNs. Subsequent progress
in SNN training has produced state-of-the-art performance of
SNNs in several image recognition benchmarks, with recent
works indicating highly similar representations learned by
residual SNNs and ANNs using representational similarity
measurements [29].

Moreover, the inherently recurrent nature of SNNs resem-
bles the operation of recurrent neural networks (RNNs) in
terms of temporal and spatial neural dynamics. Inspired by
such characteristics, prior work has compared SNNs and
RNNs, highlighting the superior performance of SNNs over
RNNs on neuromorphic datasets [30]. Additionally, the work
investigated the influence of temporal resolution, leakage, and
reset mechanisms on the performance of SNNs, illustrating
that the exclusion of leakage and reset mechanisms negatively
impacted the performance, and the increment of temporal
resolution was not necessarily useful. In these benchmarking

works, SNNs were trained with the BPTT training method,
where surrogate functions were used to overcome the non-
differentiability of spiking neurons. To quantitatively analyze
the impact of surrogate functions on the performance of SNNs,
experimental results from previous work have demonstrated
that surrogate functions help recurrent SNNs outperform con-
ventional RNNs, and the choice of surrogate functions exhibits
negligible impact on performance [14]. Additionally, this work
examined the advantage of adaptive neurons [13], where
thresholds are updated based on firing rates, and illustrated
that recurrent SNNs with adaptive neurons gain performance
advantages over SNNs with fixed thresholds. Mixed usage of
both types of neurons was shown to improve the performance
of SNNs over LSTM architectures [13].

In conclusion, prior works have mainly targeted benchmark-
ing comparable performance of SNNs and ANNs. Some works
have investigated the influence of various SNN-specific control
knobs like leakage, temporal dynamics, among others, on SNN
performance. However, the majority of benchmarking efforts
optimize SNNs via the BPTT algorithm, thereby not providing
insights related to local learning methods. In contrast to
prior works, we perform an extensive benchmarking analysis
with a complementary perspective where we investigate the
performance of SNNs with regard to local learning methods
in terms of accuracy and robustness with both implicit and
explicit recurrent architectures.

B. Adversarial Attacks

The adversarial robustness of SNNs has been proven by
various researchers. Sharmin et al. [31] explored gradient-
based attacks and their variants on both the ANN-converted
SNN and SNN trained from scratch and found SNN’s robust-
ness against adversarial attacks. Similarly, Liang et al. [32]
conducted untargeted gradient attacks and found that SNNs
require more perturbations for successful attacks. Marchisio

et al. [33] considered a deep Spiking Deep Belief Network
(SDBN) using noise attacks with the same motive of backdoor
trigger attacks [34] and reached similar conclusions. However,
their studies were either focused on a single training method or
relied entirely on the gradient. While at its exploration stage,
many recent SNN training methods look for alternatives to
using local training methods [24], [35]. In this work, we aim
to bridge this gap by revisiting adversarial attacks on SNNs
trained by local learning methods and provide a benchmarking
analysis for non-gradient poisoning attacks as well. Although
adversarial training strategies strengthen machine learning
models against adversarial inputs in the domain of SNNs [36]-
[38], these mechanisms are out of the scope of this study.
The primary contributions of this work are the following:

o We extensively benchmark SNNs’ performance, concen-
trating on learning methods such as BPTT, e-prop, and
DECOLLE applied to both implicit and explicit recurrent
architectures. We highlight the trade-off between biologi-
cal plausibility and performance, as well as the enhance-
ment of accuracy achieved by incorporating additional
weights in explicit recurrent SNN.

o We perform an in-depth analysis to reveal that training
methods with similar locality share representational simi-
larities. Additionally, we find recurrent and linear weights
have comparable importance, with each linear layer’s
significance growing from input to output.

o This study offers insights into the robustness of local
learning methods by revisiting adversarial attacks for both
gradient-based and non-gradient poisoning attacks. SNNs
trained with local learning methods are more robust than
those using global learning methods for gradient-based
attacks. Analysis shows that explicit recurrent SNNs have
greater robustness, supported by the Centered Kernel
Alignment (CKA) metric.

III. METHODS

Sections A-B discuss SNN computational models and learn-
ing algorithms considered in this work. Section C analyzes
the computational complexity of learning methods. Sections
D-E introduce empirical tools used to understand the learning
dynamics of various SNN topologies and learning methods.

A. Spiking Neurons

In this study, we use SNNs with Leaky-Integrate-and-Fire
(LIF) neurons [14], [26]. The membrane potential u>? and
synaptic currents ¢5* for a layer [at time step ¢ in a discrete
time setting are expressed as:

bt = exp(— Yt gttt 4 glght=1
TSyl'l (1)
ubt = exp(——)ul"t_1 +. — Ry,
7-Il’lel’l’l
Here, w' represents the weight connection between the current
layer [and the previous layer [— 1, and v' represents the
recurrent weight connection of the current layer. s'~1* denotes
the activation of the previous layer [— 1 at time step t.

The parameters exp(%) and exp(z—) correspond to the
synaptic and membrane decay rates respectively. Each neuron
maintains a membrane potential ult, and if it surpasses the
threshold Vy, of the spiking neuron, a spike will be fired. The
membrane potential u'? is subtracted by the threshold Vyy, after
each firing event, which is captured by the refractory period
R.

B. Training Methods

Training a neural network consists of steps to optimize the
loss function L with respect to the parameter set w. In this
section, we will introduce typical training algorithms to train
an SNN.

1) Backpropagation Through Time (BPTT): Backpropa-
gation Through Time (BPTT) is an optimization algorithm
specifically designed for training Recurrent Neural Networks
(RNNs) as an extension of the standard backpropagation
algorithm to handle time-dependent sequences and recurrent
connections [22], [39]. As SNNs are inherently recurrent in
time, training SNNs through BPTT is similar to training RNNs
with BPTT. The algorithm functions by unfolding the network
through time to capture the temporal dependencies in the
input data and applying the backpropagation algorithm over
time. The weight update formula for BPTT can be written as
follows:

T t T
oL 0sj; OL Ost dut
A i = — el] — = 7 7
Wiy WZ dst. Ow;; K — Jst Jul Ow;;
t=1 g t=1 771 U @)
oL, , out
T2 547 (ul)ﬁw
t=1 "1 *

where, T is the total number of time steps, 7 is the learning
rate, and L is the loss function. At time step ¢, w;; represents
the weight connections between neurons ¢ and j, s is the
activation of neuron i, and o’ (u!) approximates the derivative
of the activation function with respect to the pre-activation

value u! for neuron i with a surrogate function.

2) E-prop: Recent studies of error propagation methods in
SNNs propose a new method called e-prop [15]. Compared
with BPTT, e-prop offers higher biological plausibility, as it is
inspired by the concept of synaptic eligibility traces observed
in neuroscience [40], which weigh the temporal differences
of presynaptic and postsynaptic neuronal activations. While
BPTT relies on a global learning rule that requires error
information to be propagated backward through the network
between layers, e-prop aims to derive a local learning rule, in
which the error signals are propagated directly from the output
layer to hidden units. The local learning rule in e-prop makes
it more suitable for neuromorphic hardware implementations.

In the e-prop method, the weight updates are based on the
product of eligibility traces and learning signals. The eligibility

trace eﬁj for a synapse connecting neuron ¢ to neuron j at time
step ¢t can be computed recursively by eligibility vector v:

t t
ol — ds; 8sivt
15 - t 719
J (9’(1)”‘ 8U2 7 (3)
t t
t Ouj 44 Ou;

T 0T By

The eligibility trace captures the recent history of a synapse’s
contribution to the post-synaptic neuron’s activation. The
learning signal L! for neuron ¢ at time step ¢, following direct
feedback alignment, routes the error calculated at the output
layer to the current neuron:

0Ly
l t __ .
7 E Gik 882 (4)

k

where g;1 is a fixed random matrix and 9Ly / 832 captures the
loss calculated at the output layer. The weight update can be
expressed as:

T
Awyy = —n Y Li-el)
t=1

3) DECOLLE: Deep Continuous Local Learning
(DECOLLE) is a biologically plausible online learning
algorithm for training SNNs [19]. DECOLLE combines
the principles of local learning with deep architectures,
enabling the training of SNNs in a layer-by-layer manner
without the need for backpropagation or weight transport. In
DECOLLE, each layer in the network learns features using
local information, which allows the network to adapt online
without relying on global error signals. This is achieved by
attaching an auxiliary cost function to the random readouts
at each layer. The layer-specific random readouts y! at time ¢
are calculated as:

OL; _ OL(y;, i)
dst — Ost (6)

K2

t_ ot
Yi = Gi$;

where g; is a fixed random matrix for layer [. Then, the loss
L is calculated as the sum of layerwise differences between
readouts y! and pseudo-target §;. Based on this, weight updates
at each layer for a specific time step ¢ are determined using a
local learning rule:

Ayt _ 0Lt OLL 0!
v ”awfj - ds} dwy;

D! L ot @
1] 9

where p! refers to the traces of the membrane potential of
neuron 4 driven solely by incoming spikes, 7! with a constant
factor p that captures the refractory dynamics depending on the
spiking history of the neuron ?. DECOLLE ignores the spiking
history dependencies, considering 7! to have a negligible

impact on the membrane potential. Consequently, the synaptic
weight updates become:

oL

Awij = =1y 50" (u)p] ®)
t=1 ¢

Ignoring refractory dynamics ensures that the learning pro-

cess relies exclusively on local information, adhering to the

principles of biologically plausible learning rules.

C. Computational Advantages of Local Learning Methods

TABLE I: Complexity analysis of gradient computation for
different training methods at a specific layer [19]. Here, we
assume neurons between layers are fully connected. Vi, is
the input size, N, represents the number of neurons in
current layer, T is time steps, NV, indicates the number of
readout neurons in DECOLLE. The calculations below does
not account for the gradient accumulation overhead in epoch-
wise learning.

[Method | Space | Time |
BPTT O(NinT) O(NinNneuT)
e-prop O(NinNneu) | O(NinNneu)
DECOLLE | O(1) O(NneuNro + NinNneu)

Table I provides the computational complexity for the afore-
mentioned training methods. BPTT performs backpropagation
on unrolled N;, neuron states across time 7', resulting in
a space complexity of O(N;,T) and a time complexity of
O(NinNpeuT), as it multiplies error signals with gradients
computed in the current layer with Ny, neurons over 7. The
e-prop learning rule maintains Nj, Ny, number of eligibility
traces (Equation 3) in forward manner for each synaptic
connection, leading to a space complexity of O(Ni,Npeu)
[15]. During the gradient computation, the error signals of size
Ny ey are multiplied by the eligibility traces (Equation 5) with a
time complexity of O(Nj, Nyew). DECOLLE performs online
weight updates at each time step [19], using available neuron
states without storing, resulting in a space complexity of O(1).
During the weight gradient computation, local errors of size
Nyey are computed (Equation 6) using Ny, Ny, multiplication
operations for Npe, neurons. Then these local errors are
multiplied by the number of inputs Nj,, yielding a total time
complexity of O(NpeuNro + NinNneu)-

D. Fisher information

In statistical modeling, Fisher information measures the
quantity of information that a given data sample holds about
an unknown parameter that the data sample depends on [41].
Previous work has applied Fisher information to analyze the
learning dynamics of SNNs [42].

As SNNs rely on accumulating input data over multiple
time steps to predict class probabilities, the amount of Fisher
information Matrix (FIM) M, accumulated in SNNs at a given

time step is the sum of information across all previous time
steps, from 1 to ¢.

My =Eon DBy, (yloiso) ©)

[vw lOg fw (y‘xigt)vw IOg fw (y‘xigt).r]
Here, z is input image sampled from data distribution D, y
is the output variable, and ¢ € {1, ..., ¢} represents the index
of the time step. Direct calculation on the Fisher information
Matrix (FIM) is computationally expensive, due to the large
number of parameters in an SNN. Consequently, computing
the trace of the FIM is a more efficient alternative [42]. Given
a dataset of N training samples, we can compute the Fisher
information at time ¢ as follows:

1
Fr= D |V log fuyleic)|? (10)
n=1

We will use this metric to quantify the relative importance of
recurrent weights in later sections.

E. Centered Kernel Alignment (CKA)

CKA is used to quantify the similarity between representa-
tions in two arbitrary layers through the normalized Hilbert-
Schmidt Independence Criterion (HSIC) [29], [43]. In this
work, the CKA calculation is adopted from Li et al. [29].

Let T, € R¥*TPo and T'y € R®*TPs be the representations
of layer o of one SNN with p, hidden neurons and layer 3
of another SNN with pg hidden neurons over T' time steps,
where b is the batch size. The representations across all time
steps are concatenated in SNNs. Then CKA is defined as:

CKA(K,L) = HSIC(K,L)
7 HSIC(K,K)HSIC(L, L)’

where, K =T,I'T and L = I‘,gl"g are the Gram matrices with
shape b x b representing the similarity between examples. The
HSIC is a statistical measure that assesses the independence
of two sets of variables [44]. HSIC is defined as following:

(1)

HSIC(K,L) = (b_;l)Qtr(KCLC)

h (12)
qy 1!
C=J-;0

where, J is the identity matrix and O is a matrix consisting
of all 1’s. HSIC score of 0 means independence between
two variables. CKA normalizes this into a similarity index
from O to 1, where higher values imply greater similarity. We
adhere to the use of an unbiased estimator for calculating HSIC
across mini-batches [29], [45], [46]. CKA metric will also be
used in later sections to empirically explain the performance
differences of various SNN learning methods in terms of
accuracy and robustness.

IV. RESULTS

A. Experimental Setup

Experiments conducted in this study include Neuromorphic-
MNIST (N-MNIST), DVS Gesture, and TIMIT for the inves-
tigation of the performance of various training methods.

N-MNIST: The N-MNIST dataset is a neuromorphic adap-
tation of the handwritten digits classification task [47]. In
contrast to the MNIST dataset [48], which consists of static
images, N-MNIST encapsulates changes in pixel values as
events unfold over time. N-MNIST is specifically designed for
the evaluation of neuromorphic algorithms and models [19],
[49].

DVS Gesture: The DVS Gesture dataset [SO] contains data
from 29 subjects under three lighting conditions. A time step
of 60 is used to evaluate performance [30].

TIMIT: The TIMIT dataset is a speech and audio pro-
cessing sequence-to-sequence task [13], [15], [S51]. Although
N-MNIST, DVS Gesture, and TIMIT datasets all involve the
temporal dimension, data in TIMIT exhibit a higher degree of
dependency between time steps.

It is worth mentioning here that the e-prop method is
currently limited to linear layers [15]. To ensure an equitable
comparison between training methods without performance
degradation, we therefore restrict our main experiments to
fully connected architectures. To assess the generalizability
of our conclusions, we further evaluate convolutional archi-
tectures trained with BPTT and DECOLLE in Appendix A.
In this work, performance and robustness measurements are
conducted for two types of SNN architectural designs. One
is a feed-forward SNN (FF) and another is a recurrent SNN
(REC) architecture, which introduces additional weights in the
linear layers in FF. To classify the N-MNIST dataset, both FF
and REC SNNs consisting of two hidden layers of 120 and
84 neurons are used. The DVS Gesture dataset is classified by
FF and REC SNNs with one hidden layer of 512 neurons.
The TIMIT classification task utilizes FF and REC SNNs
with one hidden layer of 400 neurons. Notably, due to the
configuration of e-prop, the output layer does not contain an
explicit recurrent weight connection.

To ensure a fair comparison between the training methods,
the hyperparameters of the SNN models trained with different
paradigms were optimized for the best performance (Appendix
B). The experiments were implemented using the snnTorch
and PyTorch libraries in Python and conducted on an Nvidia
RTX 2080 Ti GPU with 11GB of memory.

B. Performance Evaluation

Table II presents the outcomes of previous studies that have
benchmarked the performance of SNNs. These results show
promising performance of SNNs in several classification tasks
in comparison to state-of-the-art ANNs. However, due to the
lack of consistency in neural network architecture designs and
variations in training sets, direct comparison between different
training methods is infeasible. To address this problem, we
have conducted a series of benchmark tests with consistent
neural network architectures and training datasets. This work
aims to offer a more comprehensive and insightful assessment
of the performance of local learning methods and the impact
of explicit recurrence on SNNs.

In our investigations, we have observed that the introduction
of recurrent weights in the REC architecture yields significant

TABLE II: SNN accuracy (%) reported in prior works on
the N-MNIST, DVS Gesture, and TIMIT datasets. Diverse
architectures and datasets hinder direct comparison of each
training method.

Training N-MNIST DVS Gesture TIMIT
Methods FF | REC | FF | REC FF REC
BPTT 98.3? 87.52 57.7° | 67.1¢
e-prop 55.29 | 65.4°
DECOLLE | 99.0f 95.5¢

2This architecture uses one hidden layer with 512 neurons [30].
bThis architecture uses 3 hidden layers each with 900 neurons in an
LSNN architecture [13], which is an LSTM-equivalent architecture
in the spiking domain. In general, LSNN has better performance
compared to recurrent SNN. The performance is obtained from [15].
©This architecture uses one hidden layer with 400 neurons using an
LSNN architecture [15].

dwith 1 hidden layer of 1200 neurons, a feed-forward LSNN trained
with e-prop achieves 49.94% accuracy; With 3 hidden layers, each
of which consists of 900 neurons, a feed-forward LSNN trained
with e-prop achieves 55.2% accuracy [15].

©This architecture uses one hidden layer with 400 neurons using an
LSNN architecture [15].

£This architecture consists of 3 convolutional layers with 64, 128,
and 128 channels respectively [19].

TABLE III: SNN accuracy (%) is benchmarked on the N-
MNIST, DVS Gesture, and TIMIT datasets, with results av-
eraged across five independent runs. Performance degradation
in local learning methods highlights a trade-off between bio-
logical plausibility and performance.

Training N-MNIST DVS Gesture TIMIT
Methods FF REC FF REC FF REC
BPTT 97.12 | 97.77 | 87.73 | 89.23 | 52.31 | 56.93
e-prop 96.44 | 96.80 | 86.15 | 87.20 | 51.12 | 54.99
DECOLLE | 93.61 | 90.52 | 84.16 | 85.17 | 42.30 | 45.70

performance improvements when classifying the DVS Gesture
and TIMIT datasets, in contrast to the FF architecture. Table
IIT shows SNN performance across various training meth-
ods for N-MNIST, DVS Gesture, and TIMIT classification.
When trained with BPTT, the REC architecture exhibits a
notable enhancement in accuracy when compared to the FF
architecture. Similar accuracy improvements are also observed
in the case of e-prop and DECOLLE. Benefits of recurrent
weights are not evident in the N-MNIST classification task.
Here, the performance of SNNs trained with BPTT and e-
prop displays only slight differences between the REC module
and the FF module. Interestingly, the explicit inclusion of
recurrent weights leads to a performance degradation in SNNs
trained with DECOLLE for the N-MNIST dataset. Further
investigation is required to understand the underlying reason
for this degradation.

Additionally, a more local learning method slightly
degrades the performance of SNNs, which indicates a
trade-off between biological plausibility and performance.
In this study, the locality of the learning method is considered
to increase from BPTT (global learning method) to e-prop
and DECOLLE successively. In N-MNIST classification, a

slight accuracy difference is observed between BPTT and e-
prop in both REC and FF modules. DECOLLE exhibits an
accuracy reduction in both architectures compared with e-
prop. A similar trend is observed for DVS Gesture and TIMIT
classification tasks. In subsequent sections, we will focus on
analyzing the performance differences and robustness between
these methods. To provide a case study, we have selected the
N-MNIST dataset.

C. Representational Differences

In the previous section, we observed a trade-off between
biological plausibility and performance among various learn-
ing methods. Here, we investigate whether this performance
discrepancy can be attributed to variations in the learned rep-
resentations at corresponding layers across different training
methods.

CKA is a technique used to measure the similarity between
two sets of data, and it has been increasingly applied to under-
stand the internal representation in neural networks. Pioneering
work by Cortes et al. introduced CKA as an alignment measure
for kernels in the context of support vector machines [52].
Later, Kornblith et al. adapted CKA for deep learning, using
it to compare layers across different neural network models,
which provided insights into which layers of networks learn
similar features [43]. Williams et al. expanded this analysis
to study the similarity between representations learned by
convolutional neural networks [53]. Li et al. investigated how
SNNs differ from traditional ANNSs in learning representations,
using CKA to analyze both spatial and temporal dimensions
[29]. In this study, CKA is employed as a metric to assess
the similarity of representations across layers that are learned
using various methods with differing degrees of local learning.
Consistent with prior works, the CKA is averaged over 4096
instances from the testing set of the N-MNIST dataset [29],
[45]. We also compare the similarity of learned representations
of the various training methods with ANN-SNN conversion,
where the SNN is trained using conventional ANN training
methods [54], [55].

Firstly, significant difference is observed between the
representations learned from ANN-SNN conversion and
those obtained through other training methods. Figure 2
plots the normalized HSIC between representations learned at
each layer of SNN converted from ANN and that of SNNs
trained directly. All the layer-wise similarities between the
ANN-SNN conversion method and other direct SNN training
methods are low, underscoring the fact that SNNs and ANNs
learn very different representations.

Secondly, aside from ANN-SNN conversion, we observe
that methods with a closer level of locality exhibit a
substantial degree of representational similarity between
corresponding layers. Figure 2 plots the similarity between
the representations of a layer trained by pairs of training
methods. In particular, BPTT and e-prop, which have a closer
level of locality, show a strong correlation in the representation
of their first two layers based on CKA scores. E-prop and
DECOLLE pair also exhibit a similar trend. However, the

1.0 1.0
BPTT vs. e-prop BPTT
0.63
o1 0.54
0.54 0.5
0.17 0.15 0.1
0.0 T — 0.0 T T
1st 2nd 3rd 1st 2nd 3rd
1.0 1.0
BPTT vs. DECOLLE e-prop
> 0.53
5 051 057 0.39 0.38 0.35
E 0.28
£ .14
& 0.
0.0+ T — 0.0 - T T
1st 2nd 3rd 1st 2nd 3rd
1.0 1.0
73 —#— e-prop vs. DECOLLE —#— DECOLLE
058 08
0.5 0.5 ML/EQI
0.0 T — 0.0 T T
1st 2nd 3rd 1st 2nd 3rd
Layers

Fig. 2: (Left) Layer-wise similarity among training methods;
(Right) Similarity between ANN-SNN conversion method
and different direct SNN training methods. The experiments
are conducted on the N-MNIST dataset averaged over 4096
images from the test dataset. Significant differences exist
between representations from ANN-SNN conversion and other
methods. Additionally, training methods with closer locality
typically show representational similarity between layers.

TABLE IV: NN accuracy (%) under FGSM attack is evaluated
on the N-MNIST dataset. SNNs are trained by methods with
varying localities. Model robustness improves with explicit
recurrent weights as well as increasing locality of training
methods.

Epsilon 0.001 [0.005 [0.01 [0.02 [0.05
Training Methods FF

BPTT 83.82 | 16.78 | 4.34 1.22 0.73
e-prop 89.90 | 41.27 | 12.33 | 3.27 2.87
DECOLLE 83.48 | 45.11 | 2857 | 21.29 | 17.79
Training Methods REC

BPTT 94.66 | 80.76 | 58.73 | 27.69 | 18.55
e-prop 93.04 | 78.28 | 60.57 | 35.07 | 18.25
DECOLLE 86.76 | 84.14 | 72.81 | 47.56 | 23.75

small representational similarity between corresponding layers
trained by BPTT and DECOLLE is substantiated by a low
CKA score, which addresses the performance gap between
the two methods.

D. Robustness under Attack

In the previous section, we observed accuracy improvements
after the addition of recurrence in spiking architectures, espe-
cially for sequential data processing. However, their impact on
other aspects of SNN performance, like robustness to adver-
sarial attacks, remains unclear. In this section, we explore this
aspect along with empirical tools to explain our observations.

Specifically, the Fast Gradient Sign Method (FGSM) attack
leverages the sign of gradients to create adversarial instances
that maximize the loss of a neural network, misleading it
to make incorrect classifications [56]. However, due to the

non-differentiable nature of SNNs, the direct calculation of
gradients is not applicable. To solve this problem, previous
work has proposed an effective framework which involves
crafting an adversarial example for an SNN by creating
its ANN counterpart and then calculating gradients for the
corresponding ANN [57]. These gradients are subsequently
utilized to construct an adversarial example for the SNN.
We adopt this variation of the FGSM attack to compare the
robustness of various training methods and to investigate the
impact of recurrent weights on robustness.

Then, we employ a targeted backdoor attack, which is a
special type of poisoning attack. Such an attack involves
the process of injecting a malicious imperceptible trigger
during the training phase. Following the trigger mechanism
established in previous work [34], we initiate the poisoning
of images by modifying 4 pixel locations at all time steps in
the input data. For each poison ratio, five random sources and
targets are selected. To provide a more robust and unbiased
assessment, we calculate the average results from 5 runs
with randomly assigned sources and targets, thus mitigating
the potential bias introduced by specific poisoning choices.
To assess the impact of these backdoor attacks, we examine
changes in accuracy and attack success rate (ASR), which is
the proportion of labels for the source class that are predicted
as the target class. A lower ASR signifies greater robustness.

Table IV reports the performance of different training meth-
ods when subjected to FGSM attacks, where the perturbation
level, denoted as “Epsilon”, varies across a range from 0.001
to 0.05. The results of our benchmarking analysis for backdoor
attacks are illustrated in Table V. We mainly focus on poison
rates in realistic settings below 50% as shown in prior works
[34], [58]-[60]. Both attacks are evaluated on the N-MNIST
dataset.

Enhancement of the model’s robustness is observed
with the inclusion of explicit recurrent weights. Under
FGSM attacks, compared to FF models trained by the same
methods and subjected to the same “Epsilon” values, the REC
model retains more accuracy than the FF model. Besides, the
robustness advantage of explicit recurrence is also observed
under backdoor attack. Specifically, under more realistic set-
tings with poison rates at 10% and 30%, we observe that the
REC model consistently exhibits a lower ASR compared to
its corresponding FF model in all three training methods.

Local learning methods showed improved robustness un-
der FGSM attacks compared to global learning methods.
Specifically, the local learning method DECOLLE demon-
strates enhanced robustness against attacks with high perturba-
tion values. In contrast, the global training methods experience
a significant drop in accuracy under high “Epsilon” values,
which is consistent in both FF and REC architectures. This
advantage can be attributed to the local training methods’ use
of individual loss functions for each layer, which enhances
robustness in comparison to global loss functions that are
vulnerable to globally calculated gradients. Under backdoor
attacks, where global gradients are not used, such robust-
ness gains of local learning methods are not observed. In

TABLE V: Attack success rate (ASR) of targeted backdoor attack on SNNs along with their accuracy under attack is measured
on the N-MNIST dataset with 5 random selections of target and source classes. Local training methods do not demonstrate

robustness against backdoor attacks.

Poison Rate [0.1 [0.3 [0.5 0.7 0.9
FF
Training Methods | Accuracy | ASR Accuracy | ASR Accuracy | ASR Accuracy | ASR Accuracy | ASR
BPTT 96.23% 4.80% 93.34% 33.54% 91.62% 43.76% 89.64% 66.06% 87.47% 78.19%
e-prop 96.85% 1.93% 93.46% 33.35% 92.30% 46.94% 89.38% 75.09% 87.32% 96.95%
DECOLLE 92.74% 4.66% 89.88% 30.04% 88.14% 48.31% 85.12% 76.77% 83.62% 90.80%
REC
Training Methods | Accuracy | ASR Accuracy | ASR Accuracy | ASR Accuracy | ASR Accuracy | ASR
BPTT 96.43% 2.64% 94.19% 22.03% 92.24% 43.78% 91.22% 62.24% 87.38% 90.73%
e-prop 96.69% 0.45% 94.81% 17.65% 91.92% 44.56% 88.51% 74.15% 87.23% 93.15%
DECOLLE 90.21% 0.86% 87.46% 23.75% 81.55% 74.10% 81.29% 88.96% 80.81% 91.02%

the previous section, we show that there is a trade-off between
biological plausibility and performance. Such a trade-off is not
demonstrated for adversarial attacks. Local learning methods
retain robustness at par with global learning methods with
respect to non-gradient-based attacks and exhibit enhanced

robustness for gradient-based attacks.

E. CKA Measurements to Explain Robustness

BPTT

0.43
0.28 233

0.20 022 0-25

0.13 017 0.17

0.005

0.01

0.02

0.05

o
o

0.02 0.03 007
0.001

Similarity Differences

- o
5

0.005

e-prop

0.43 25
029

0.35 041043

0.17 018 0.18

0.01

0.02

°
&

0.03 0.02 0.01

027 0.30
0.06

DECOLLE

0.001

0.005

0.01

Layers
1st

® 2nd
® 3rd

Epsilon

Fig. 3: Layerwise representational similarity between clean
and adversarial input data of FF architecture subtracted from
the REC architecture for FGSM adversarial attacks. The
experiments are conducted on the N-MNIST dataset. Adding
recurrent weights improves the robustness leading to higher
similarity between clean and adversarial inputs. Robustness
improvements due to recurrent weights are more pronounced
in global methods.

In this section, we further assess the robustness of SNNs
from the perspective of CKA. Prior research has quantified the
robustness of SNNs directly trained under adversarial attacks
[29] and established a correlation between robustness against
adversarial attacks and the degree of representational similarity
of a particular network between clean and perturbed input
images [61]. Here, we employ the CKA metric to evaluate
the robustness of SNNs trained using each training method
under FGSM attacks with the same set of “Epsilon” values
used in the previous section. Figure 3 measures the layerwise
representational similarity between clean and adversarial in-
puts of REC architecture subtracted by the similarity of FF

architecture under FGSM attacks. Each similarity is computed
by contrasting representations of a layer by passing clean
data and a layer at the same architectural level by passing
adversarial data. Each color corresponds to one specific layer.

It is observed that the addition of recurrent weights
contributes to better preservation of the representations
learned at each layer across these training methods. In
these experiments, positive similarity differences are obtained
at all perturbation levels, revealing that REC SNNs maintain
larger representational similarity (implying more robust rep-
resentations learned in the presence of attacks) compared to
FF SNNs between clean and adversarial data. The results
also reveal that global learning methods exhibit a greater
enhancement in robustness with recurrent connections, as
the similarity differences are larger in BPTT than in e-prop and
DECOLLE. The trend matches the data provided in Table IV.
Through this analysis, we provide evidence that the inclusion
of recurrent weights enhances the robustness of neuromorphic
architectures.

F. Relative Importance of Recurrent Weights

In the previous section, we demonstrated that there is a
robustness advantage for explicit recurrent SNNs. Here, we
examine the importance of additional recurrence in SNNs
from the perspective of Fisher information. A high Fisher
information exhibited in weight connections is shown to play a
substantial role in making predictions for the given data [62],
[63]. Specifically, the Fisher information in SNNs evaluates
the accumulation of temporal information during the training
process. In previous work [42], normalized layer-wise Fisher
information was calculated across time steps, providing an
assessment of the relative importance of each layer. We follow
the same procedure to calculate Fisher information during the
training process by capturing the gradient of weights.

In Figure 4, we present the Fisher information of linear
weights in the FF architecture, denoted as LW-FF in the figure.
We then compare this Fisher information with both linear and
recurrent weights in the REC architecture, denoted as LW-
REC and RW-REC in the graph. It is important to note that
due to the nature of e-prop, the additional recurrent weights
are not added to the last layer in the REC architecture.

Recurrent weights are demonstrated to have comparable
importance with respect to linear weights. After the addition
of explicit recurrent weights, the importance of linear weights
(LW-REC) degrades in comparison to linear weights in the FF
model (LW-FF). On the other hand, the importance of recur-
rent weights (RW-REC) shows comparable Fisher information
values with regards to linear weights (LW-REC). Based on
these two observations, we can conclude that the degradation
of importance in linear weights from the values in the FF
model (LW-FF) is due to reallocation of importance to linear
weights (LW-REC) and recurrent weights (RW-REC) in the
REC model since Fisher information is normalized such that
the summation of values of all layers is one.

Additionally, it is found that layerwise increments in
the relative importance of linear weights are independent
of recurrent weights. Specifically, an increase of relative
importance from input layer to output layer is observed among
all training methods. Although the magnitude of this trend may
vary across different methods, this trend remains consistent
independent of the addition of extra recurrent weights (LW-
REC). The magnitude variations mainly come from the em-
phasis on input layers. In particular, as the locality of learning
methods shifts from global to local, the importance of the input
layer drops significantly.

BPTT e-prop DECOLLE

—e— LW-FF
. W-REC
RW-REC

Fisher Information
3
3
3

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd
Layers

Fig. 4: Layerwise Fisher information measured in SNNs
trained by learning methods with varying degrees of locality
on the N-MNIST dataset averaged over 5 independent runs.
Recurrent weights are as important as linear weights, and lay-
erwise increments in linear weights’ importance is independent
of recurrent weights.

V. CONCLUSIONS

Edge devices like smartphones, Internet of things (IoT)
gadgets, and embedded systems require improved energy
efficiency due to strict memory and computational constraints
[64], [65]. Recent advancements in local learning methods
enable on-chip learning [66], [67], allowing models to be
trained and updated directly on edge devices with significantly
reduced energy consumption compared to global learning
methods [15], [19], [68]. In this work, these local learning
methods are compared in terms of performance and robustness.
To understand the performance disparity of these methods,
representational differences are examined through the CKA
metric. SNN learning methods with a higher degree of locality
are shown to have performance degradation, but they show
better robustness under FGSM adversarial attacks. However,
the robustness advantages of local learning methods are not
observed for non-gradient-based attacks like backdoor attacks.

Additionally, we investigate the contribution of additional
recurrent weights on the performance of SNNs. Measurements
on the relative importance of recurrent weights are performed
using Fisher information. We illustrate that recurrent weights
not only have positive influences on the performance of SNNs
but also augment the robustness of SNNs. These observations
are further substantiated by the fact that recurrent weights and
linear weights exhibit comparable informative significance.
Overall, this work provides valuable insights into the selection
of learning methods for SNNs and offers a benchmarking
framework for future SNN designers. We acknowledge that
our conclusions may currently be limited to feed-forward
architectures. Our observations could potentially be general-
ized to more complex network topologies. Additionally, the
integration of more advanced analytical tools could further
enhance these insights. Future work could also focus on
extending our analysis to convolutional layers [69], [70] and
transformer-based SNN models [71]-[73].

ACKNOWLEDGMENTS

This material is based upon work supported in part by the
U.S. Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research, under Award Number
#DE-SC0021562, the U.S. National Science Foundation under
award No. CCF #1955815, CAREER # 2337646 and EFRI
BRAID #2318101 and by Oracle Cloud credits and related
resources provided by the Oracle for Research program.

REFERENCES

[1] W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, vol. 10, no. 9, pp. 1659-1671, 1997.

[2] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

[3] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, “Deep learning in spiking neural networks,” Neural networks,
vol. 111, pp. 47-63, 2019.

[4] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in computational
neuroscience, vol. 9, p. 99, 2015.

[5] G.-q. Bi and M.-m. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: dependence on spike timing, synaptic strength, and
postsynaptic cell type,” Journal of neuroscience, vol. 18, no. 24, pp.
10464-10472, 1998.

[6] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE,
vol. 78, no. 10, pp. 1629-1636, 1990.

[71 P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668-673, 2014.

[8] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chan-
drasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla,
and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system
for large-scale neural simulations,” Proceedings of the IEEE, vol. 102,
no. 5, pp. 699-716, 2014.

[9] K. Boahen, “Neuromorphic microchips,” Scientific American, vol. 16,
no. 3, pp. 20-27, 2006.

[10] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al.,, “Loihi: A neuromorphic
manycore processor with on-chip learning,” leee Micro, vol. 38, no. 1,
pp- 82-99, 2018.

[11] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker
project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652-665, 2014.

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

W. Ponghiran and K. Roy, “Spiking neural networks with improved
inherent recurrence dynamics for sequential learning,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 36, no. 7, 2022,
pp. 8001-8008.

G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass,
“Long short-term memory and learning-to-learn in networks of spiking
neurons,” Advances in neural information processing systems, vol. 31,
2018.

B. Yin, F. Corradi, and S. M. Bohté, “Accurate and efficient time-domain
classification with adaptive spiking recurrent neural networks,” Nature
Machine Intelligence, vol. 3, no. 10, pp. 905-913, 2021.

G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein,
and W. Maass, “A solution to the learning dilemma for recurrent
networks of spiking neurons,” Nature communications, vol. 11, no. 1,
p. 3625, 2020.

M. Bal and A. Sengupta, “Spikingbert: Distilling bert to train spik-
ing language models using implicit differentiation,” arXiv preprint
arXiv:2308.10873, 2023.

T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Ran-
dom synaptic feedback weights support error backpropagation for deep
learning,” Nature communications, vol. 7, no. 1, p. 13276, 2016.

P. Baldi, P. Sadowski, and Z. Lu, “Learning in the machine: the
symmetries of the deep learning channel,” Neural Networks, vol. 95,
pp. 110-133, 2017.

J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity dynamics for
deep continuous local learning (decolle),” Frontiers in Neuroscience,
vol. 14, p. 424, 2020.

F. Crick, “The recent excitement about neural networks,” Nature, vol.
337, pp. 129-132, 1989.

T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton,
“Backpropagation and the brain,” Nature Reviews Neuroscience, vol. 21,
no. 6, pp. 335-346, 2020.

P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.
R. J. Williams and D. Zipser, Gradient-Based Learning Algorithms for
Recurrent Networks and Their Computational Complexity. USA: L.
Erlbaum Associates Inc., 1995, p. 433-486.

S. Lu and A. Sengupta, “Neuroevolution guided hybrid spiking neural
network training,” Frontiers in neuroscience, vol. 16, p. 838523, 2022.
F. Zenke and S. Ganguli, “Superspike: Supervised learning in multilayer
spiking neural networks,” Neural computation, vol. 30, no. 6, pp. 1514—
1541, 2018.

E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based opti-
mization to spiking neural networks,” IEEE Signal Processing Magazine,
vol. 36, no. 6, pp. 51-63, 2019.

M. Bal and A. Sengupta, “Sequence learning using equilibrium propa-
gation,” arXiv preprint arXiv:2209.09626, 2022.

L. Deng, Y. Wu, X. Hu, L. Liang, Y. Ding, G. Li, G. Zhao, P. Li,
and Y. Xie, “Rethinking the performance comparison between snns and
anns,” Neural networks, vol. 121, pp. 294-307, 2020.

Y. Li, Y. Kim, H. Park, and P. Panda, “Uncovering the representation of
spiking neural networks trained with surrogate gradient,” arXiv preprint
arXiv:2304.13098, 2023.

W. He, Y. Wu, L. Deng, G. Li, H. Wang, Y. Tian, W. Ding, W. Wang,
and Y. Xie, “Comparing snns and rnns on neuromorphic vision datasets:
Similarities and differences,” Neural Networks, vol. 132, pp. 108-120,
2020.

S. Sharmin, P. Panda, S. S. Sarwar, C. Lee, W. Ponghiran, and K. Roy,
“A comprehensive analysis on adversarial robustness of spiking neural
networks,” in 2019 IJCNN. IEEE, 2019, pp. 1-8.

L. Liang, X. Hu, L. Deng, Y. Wu, G. Li, Y. Ding, P. Li, and Y. Xie,
“Exploring adversarial attack in spiking neural networks with spike-
compatible gradient,” IEEE transactions on neural networks and learn-
ing systems, 2021.

A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif, M. Martina, and
M. Shafique, “Is spiking secure? a comparative study on the security
vulnerabilities of spiking and deep neural networks,” in 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN). 1EEE, 2020, pp.
1-8.

T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabili-
ties in the machine learning model supply chain.(2017),” arXiv preprint
arXiv:1708.06733, 2019.

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

(571

A. Bhargava, M. R. Rezaei, and M. Lankarany, “Gradient-free neural
network training via synaptic-level reinforcement learning,” Applied-
Math, vol. 2, no. 2, pp. 185-195, 2022.

S. Kundu, M. Pedram, and P. A. Beerel, “Hire-snn: Harnessing the
inherent robustness of energy-efficient deep spiking neural networks
by training with crafted input noise,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 5209-5218.
J. Ding, T. Bu, Z. Yu, T. Huang, and J. Liu, “Snn-rat: Robustness-
enhanced spiking neural network through regularized adversarial train-
ing,” Advances in Neural Information Processing Systems, vol. 35, pp.
2478024793, 2022.

0. Ozdenizci and R. Legenstein, “Adversarially robust spiking neural
networks through conversion,” arXiv preprint arXiv:2311.09266, 2023.
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533-536, 1986.

W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil, and J. Brea,
“Eligibility traces and plasticity on behavioral time scales:
Experimental support of neohebbian three-factor learning rules,”
Frontiers in Neural Circuits, vol. 12, 2018. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fncir.2018.00053

R. A. Fisher, “Theory of statistical estimation,” in Mathematical pro-
ceedings of the Cambridge philosophical society, vol. 22, no. 5. Cam-
bridge University Press, 1925, pp. 700-725.

Y. Kim, Y. Li, H. Park, Y. Venkatesha, A. Hambitzer, and P. Panda,
“Exploring temporal information dynamics in spiking neural networks,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37,
no. 7, 2023, pp. 8308-8316.

S. Kornblith, M. Norouzi, H. Lee, and G. Hinton, “Similarity of
neural network representations revisited,” in International conference
on machine learning. PMLR, 2019, pp. 3519-3529.

D. Greenfeld and U. Shalit, “Robust learning with the hilbert-schmidt
independence criterion,” in International Conference on Machine Learn-
ing. PMLR, 2020, pp. 3759-3768.

T. Nguyen, M. Raghu, and S. Kornblith, “Do wide and deep networks
learn the same things? uncovering how neural network representations
vary with width and depth,” arXiv preprint arXiv:2010.15327, 2020.
L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt, “Feature
selection via dependence maximization.” Journal of Machine Learning
Research, vol. 13, no. 5, 2012.

G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting
static image datasets to spiking neuromorphic datasets using saccades,”
Frontiers in neuroscience, vol. 9, p. 437, 2015.

L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE signal processing magazine,
vol. 29, no. 6, pp. 141-142, 2012.

J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in neuroscience, vol. 10, p.
508, 2016.

A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo,
T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza et al., “A low
power, fully event-based gesture recognition system,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 7243-7252.

J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S.
Pallett, “Darpa timit acoustic-phonetic continous speech corpus cd-rom.
nist speech disc 1-1.1,” NASA STI/Recon technical report n, vol. 93, p.
27403, 1993.

C. Cortes, M. Mohri, and A. Rostamizadeh, “Algorithms for learning
kernels based on centered alignment,” The Journal of Machine Learning
Research, vol. 13, no. 1, pp. 795-828, 2012.

A. H. Williams, E. Kunz, S. Kornblith, and S. Linderman, “Generalized
shape metrics on neural representations,” Advances in Neural Informa-
tion Processing Systems, vol. 34, pp. 4738-4750, 2021.

A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: Vgg and residual architectures,” Frontiers in
neuroscience, vol. 13, p. 95, 2019.

S. Lu and A. Sengupta, “Exploring the connection between binary and
spiking neural networks,” Frontiers in neuroscience, vol. 14, 2020.

L. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

S. Sharmin, P. Panda, S. S. Sarwar, C. Lee, W. Ponghiran, and K. Roy,
“A comprehensive analysis on adversarial robustness of spiking neural

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

networks,” in 2019 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2019, pp. 1-8.

X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks by
backdooring,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 1615-1631.

Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“Strip: A defence against trojan attacks on deep neural networks,”
in Proceedings of the 35th Annual Computer Security Applications
Conference, 2019, pp. 113-125.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

A. Achille, M. Rovere, and S. Soatto, “Critical learning periods in deep
networks,” in International Conference on Learning Representations,
2018.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, vol. 114, no. 13, pp.
3521-3526, 2017.

E. Covi, E. Donati, X. Liang, D. Kappel, H. Heidari, M. Payvand, and
W. Wang, “Adaptive extreme edge computing for wearable devices,”
Frontiers in Neuroscience, vol. 15, p. 611300, 2021.

T. Gao, B. Deng, J. Wang, and G. Yi, “Presynaptic spike-driven plasticity
based on eligibility trace for on-chip learning system,” Frontiers in
Neuroscience, vol. 17, p. 1107089, 2023.

C. Pehle, S. Billaudelle, B. Cramer, J. Kaiser, K. Schreiber, Y. Strad-
mann, J. Weis, A. Leibfried, E. Miiller, and J. Schemmel, “The
brainscales-2 accelerated neuromorphic system with hybrid plasticity,”
Frontiers in Neuroscience, vol. 16, p. 795876, 2022.

C. Frenkel and G. Indiveri, “Reckon: A 28nm sub-mm?2 task-agnostic
spiking recurrent neural network processor enabling on-chip learning
over second-long timescales,” in 2022 IEEE International Solid-State
Circuits Conference (ISSCC), vol. 65. IEEE, 2022, pp. 1-3.

C. Liu, G. Bellec, B. Vogginger, D. Kappel, J. Partzsch, F. Neumirker,
S. Hoppner, W. Maass, S. B. Furber, R. Legenstein et al., “Memory-
efficient deep learning on a spinnaker 2 prototype,” Frontiers in neuro-
science, vol. 12, p. 840, 2018.

W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier, and Y. Tian,
“Deep residual learning in spiking neural networks,” Advances in Neural
Information Processing Systems, vol. 34, pp. 21 056-21 069, 2021.

Y. Hu, H. Tang, and G. Pan, “Spiking deep residual networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 34, no. 8,
pp- 5200-5205, 2021.

Z. Zhou, Y. Zhu, C. He, Y. Wang, S. Yan, Y. Tian, and L. Yuan,
“Spikformer: When spiking neural network meets transformer,” arXiv
preprint arXiv:2209.15425, 2022.

J. Zhang, B. Dong, H. Zhang, J. Ding, F. Heide, B. Yin, and X. Yang,
“Spiking transformers for event-based single object tracking,” in Pro-
ceedings of the IEEE/CVF conference on Computer Vision and Pattern
Recognition, 2022, pp. 8801-8810.

M. Bal and A. Sengupta, “Spikingbert: Distilling bert to train spiking
language models using implicit differentiation,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 38, no. 10, 2024, pp.
10998-11 006.

APPENDIX A
SNN ACCURACY IN CONVOLUTIONAL ARCHITECTURES

In this section, the DVS Gesture dataset is classified by FF
and REC SNNs consisting of 3 convolutional layers with 64,
128, and 128 channels respectively (each with a kernel size of
7, a stride of 1, and a padding of 1). The observations (Table
VI) are consistent with those in Section IV-B.

TABLE VI: SNN accuracy (%) is benchmarked on the DVS
Gesture dataset, with results averaged across five independent
runs. The observations align with prior findings.

Training DVS Gesture
Methods FF REC
BPTT 91.74 | 93.04
DECOLLE | 90.15 | 91.28
APPENDIX B

HYPERPARAMETER CONFIGURATION

Table VII summarizes the hyper-parameters for optimal
performance achieved by each method, where LR represents
learning rate and BS represents batch size.

TABLE VII: Hyper-parameters for optimal performance on
N-MNIST, DVS Gesture, and TIMIT datasets.

—T —
Model ‘ e 7syn ‘ € Tmem ‘ Vih ‘ LR ‘ BS ‘ Epochs
N-MNIST
BP FF 0.9 0.5 0.9 le-4 16 100
e-prop FF 0.99 0.95 0.2 | S5e-3 5 100
DECOLLE FF 0.97 0.92 1.0 | 1le-3 72 100
BP REC 0.9 0.5 0.9 le-2 | 256 100
e-prop REC 0.99 0.95 02 | 5e-3 4 100
DECOLLE REC 0.97 0.92 1.0 | le-5 72 100
DVS-Gesture
BP FF 0.9 0.5 1.0 | 1e-3 16 100
e-prop FF 0.95 0.65 0.3 le-3 15 100
DECOLLE FF 0.9 0.65 09 | 24 | 72 100
BP REC 0.95 0.5 0.9 le-3 32 100
e-prop REC 0.95 0.6 0.7 | 3e-3 15 100
DECOLLE REC 0.05 0.2 1.0 | 3e-5 72 100
TIMIT
BP FF 0.9 0.5 1.0 | le-3 8 100
e-prop FF 0.99 0.3 1.0 | Se-4 4 100
DECOLLE FF 0.97 0.9 09 | 2e4 | 128 100
BP REC 0.9 0.7 1.0 | 1le-3 8 100
e-prop REC 0.99 0.3 1.0 | Se-4 4 100
DECOLLE REC 0.97 0.3 1.0 | le-5 32 100

