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1 | INTRODUCTION AND MAIN RESULTS

We consider the following hydrodynamic system modeling the flow of liquid crystal materials in
dimension 2:

U, +u-Vu—vAu+VP=—-AV-(Vd® Vd — %|Vd|2|]2)
V.u=0 in Q% (0,7T), (L.1)
d, +u-Vd = y(Ad + |Vd|*d)

where domain Q C R? is assumed to be a connected bounded domain with boundary T' := Q of
class C®. Function u(x,t) : Q X (0,+00) — R? represents the velocity field of the flow, d(x, ) :
Q % (0,+00) — S? C R3isaunit vector that represents the director field of macroscopic molecular
orientation of the liquid crystal material, and P(x,t) : Q X (0,4+00) — R represents the pressure
function. Three positive constants v, 1, and y, respectively, quantify the viscosity, the competition
between kinetic energy and elastic energy, and the microscopic elastic relaxation time for the
director field. Here, we assume that v = 1 = y = 1 since the exact values of these constants play
no role in our qualitative results. V- denotes the divergence operator, and Vd © Vd denotes the
2 X 2 matrix whose (i, j)th entry is given by d, d - 6xjd fori, j € {1,2}.

The system (1.1) was first proposed by Lin in [40], and it is a simplified version of the Ericksen-
Leslie system [14, 31]. In fact, these models both share the same type of energy law, coupling
structure, and dissipative properties. There has been growing interest concerning the global exis-
tence of weak solutions, partial regularity results, singularity formation, and others. Lin and Liu
[41] established the global existence of weak and classical solutions in two and three dimensions.
A partial regularity result of Caffarelli-Kohn-Nirenberg type ([9]) for suitable weak solutions was
shown in [42]. In two dimensions, the global existence of Leray-Hopf-Struwe-type weak solutions
of (1.1) was proved in Lin-Lin-Wang [34], and the uniqueness of such weak solution was later
shown in [37]. See also [30] for the construction of finite-time singularities. Much less is known
in three dimensions due to the supercriticality. In [39], Lin and Wang proved the global existence
of suitable weak solutions that satisfy the global energy inequality, under the assumption that the
initial orientation field d,(Q) C Si. There are also blow-up examples and criteria for finite-time
singularities, for instance, [21, 23]. We refer to a comprehensive survey by Lin and Wang [38] for
recent vital developments in the mathematical analysis of nematic liquid crystals.

In this paper, our concern is a free boundary model of (1.1) recently introduced in [35]. We
consider the system (1.1) with partially free boundary conditions

u-i=0

(Du-f), =0
dix,t) ez
Vad(x,0) L Ty =

on dQ x (0,T),

where i and 7 are the unit outer normal vector and tangential vector of 0Q, and Du is deformation
tensor associated with the velocity field u

Du = %(Vu +(Vu)D),

d °S “vT0T “0SLL69YT

T £Q 8000L SWI/ZI11°01/10p/wod apim A

11§ Yorum

un surydoR suyor - 2

onIpuOD) put swa Ly 908 [SZ0Z/90/0] U0 A1e1qrT aUIUQ Ao[1AL © ANSIoAT

00 Ko Amaqupoutiuoy/:sdny) su

0f A1e1q1T SUITUQ A9[1A UO (SUONIPUOY-PUB-SLIDYW

SN JO SaNI I

SapnIE YO 1o

08 are

5u00r] suowrio) aAnEa) oqeaydde oy Aq pouoA



NEMATIC LIQUID CRYSTAL FLOW WITH PARTIALLY FREE BOUNDARY | 3 0f43

and T C S? is a simple, closed, and smooth curve. The case that T is a circle in S? is physically
relevant. The first two boundary conditions are the usual Navier perfect-slip boundary conditions
for the velocity field, indicating a zero friction along the boundary, and the last two are referred
to as partially free boundary conditions for the map. This boundary condition is physically natural
in that it agrees with the basic energy law (A.1). Let us assume that X is the equator for simplicity,
then the partially free boundary condition can be simplified to be

{(IDu-ﬁ)Tzu-ﬁ:O

on dQ x (0, 7). 1.2
Vﬁdl = Vﬁdz = d3 =0 ( ) ( )

The free boundary system (1.1)—(1.2) is a nonlinearly coupled system between the incompress-
ible Navier-Stokes equations and the harmonic map heat flow with a partially free boundary
condition. The latter is a geometric flow with the Plateau and Neumann boundary conditions.
The motivation for studying this model stems from a recent surge of interest in geometric vari-
ational problems and the Navier-Stokes equation with Navier boundary condition. The former
includes an interesting and classical topic of the harmonic map heat flow with free boundary. We
refer to Hamilton [19], Struwe [56], Chen-Lin [11], Ma [43], Sire-Wei-Zheng [52], Hyder-Segatti—
Sire-Wang [24], and the references therein for both seminal and more recent results. On the other
hand, the Navier-Stokes equation with Navier boundary condition is more physical in some con-
texts. See, for instance, [1, 4-6, 10, 12, 26, 32, 44, 57] and their references. As derived and discussed

n [35], the system (1.1) turns out to be physically natural and compatible with the free bound-
ary condition (1.2) imposed, and it enjoys the same dissipative properties as those for the case of
Dirichlet boundary. Moreover, (1.1)-(1.2) may trigger new boundary behaviors of solutions, such
as the finite-time blow-up via bubbling on the boundary (and in the interior) constructed in [35].
This new boundary behavior was already observed by Chen and Lin [11] in the context of harmonic
map heat flow with free boundary.

In this paper, we are interested in the global existence of weak solutions, partial regularity, and
uniqueness of (1.1)-(1.2). The well-posedness under consideration is motivated by the interesting
work of Lin, Lin, and Wang [34], which considers the no-slip boundary condition for velocity field
v and Dirichlet boundary condition for director field d.

Let us first define

L ={u€L*Q,R? : V-u=0inQand v satisfies (1.2)},
H = {u € H(Q,R?) : V-u = 0in Q and v satisfies (1.2),},

J={d e H(Q,R%) : d € S? a.e. in Q and d satisfies (1.2),}.
We assume that the initial data
(u(x,0),d(x,0)) = (uy(x),dy(x)), x€Q (1.3)
for (1.1)—(1.2) satisfy
u, € Land d, €J. 1.4)

Since Au = V - (Vu + (Vu)T) = 2V - Du and partially free boundary condition gives Al (Du)r =
A(Vd ® Vd)t = 0, the following weak formulation can help us get rid of boundary terms.
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40f43 | SIRE ET AL.

Definition 1.1 (Weak solution). For 0 < T < 4+o0,u € L®([0,T],L)NL?([0,T],H) and d €
L?([0,T],)) is a weak solution of (1.1)-(1.3), if

- / Yoy + / (- Vi, p) + (2D, $V)]
Qx[0,T] Qx[0,T]

. _Loge

= —(0) /Q (g @) + /Q oy (FAO VA= IV V)

- / (') + / [(u - V. ) + (Vd, pV )]
Qx[0,T] Qx[0,T]

=— d,, d|*(d,
¢<o>/9< . ¢>+/QX[O’TJ|V (d, v

for any ¢ € C*®([0,T]) with ¢(T) = 0, ¢ € H'(Q,R?) with ¢ - i = 0 on dQ, and ¢ € H'(Q,R?)
with ¢; = 0 on dQ. Moreover, (u, d) satisfies (1.4) in the sense of trace.

Our first regularity theorem for the weak solution is stated as follows.

Theorem 1.2. For0 < T < 400, assume u € L®([0,T],L) N L3([0,T], H) and d € L*([0,T],Y) is
a weak solution of (1.1)-(1.3) with initigl data satisfying (1.4). If d further belongs to L>([0, T], H*(Q)),
then (u,d) € C*(Q x (0, T]) N C2'(Q x (0, T]) for some a € (0,1).

Our second theorem concerns the existence of global weak solutions that enjoy the partial
smoothness property and a result of uniqueness.

Theorem 1.3. There exists a global weak solution u € L*([0, o), L) N L*([0, +o0),H) and d €
L®([0, 00), H(Q, S?)) of (1.1)~(1.3) with (1.4), such that the following properties hold.

(1) There exists L € N depending only on (uy,d,) and0 < T, < -+ < T, 1 <i <L, such that

(u,d) € C®(Q X ((0,00) \{TH)) N C21(Q X (0, +00) \ {T} ).

(2) Global weak solution (u, d) is unique in the class of functions that
K-1
d € L([0,00), H'(Q)) (] NesoL*([T;, Tiy — €], HA(Q)) N L2([T, +00), HA(Q))
i=0
forsome0 <T; <+ <Tg < +o0.
(3) Each singular time T; (1 < i < L) can be characterized by

lim inf max / (lu)® + |Vd|>)(y, t)dy > 4, Vr > 0. 1.5)
t7Ti xeq JaonB,(x)

Moreover, there exist X! — x(i) €Q, t /Ty, rt \ 0such that
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NEMATIC LIQUID CRYSTAL FLOW WITH PARTIALLY FREE BOUNDARY | 50f43

i i
|2, =X |

= o0, then there exists a nonconstant smooth

(a) if x) € Q or x} € 3Q with lim,,,_

m
harmonic map w; : R? — S? with finite energy, such that as m — oo,

(ul,d' ) = (0,,) in CZ (R* X [—o0,0]);

loc

i
m |

|xl, —x} : ,
— 0 < oo, then there exists a nonconstant smooth harmonic

(b) if x € 6Q and lim,,,_, -
map co: : Rg — S? with finite energy for some half plane Rfl, such that as m — oo,

(ul,dl ) — (0,0)) inC;_(RZ X [—0,0]),

loc

where
ul G, ) =rlu(xl +rlx 6l 4+ )t), d(x,0) =d(x +r x, 68+ (@l )%e).
(4) SetT,=0.Then, for0<i<L-1,
\d,| + |V2d] € LAQX [T Topy — €D, [y + [V2u| € L3(QX [Tp. Tpyy — €)
foranye > 0,and forany0 < T; < T < 400,
\d,| + V2d] € L2QX [T, T, |l + |V2ul € L3(Q x [Ty, T]).

Remark 1.4.

(1) Theorem 1.3 is established by using Theorem 1.2, the global and local energy inequalities, and
estimates of the pressure function P in Section 3 below.

(2) Compared to [34], the interior estimates in the proof are similar. However, extra care shall be
taken for the estimates near the boundary.

(3) The global existence of weak solutions for the nematic liquid crystal flow in three dimen-
sions is a notoriously hard problem. In the case of the Dirichlet boundary, it was solved by
Lin and Wang [39] with the restriction d,(Q) C Si. The significant difficulties stem from
the energy supercritical harmonic map heat flow and the three-dimensional Navier-Stokes
equation with a supercritical forcing term. The situation might be better for the free bound-
ary system (1.1)-(1.2) since the vorticity @ = V X u may have better estimates with the Navier
boundary condition.

When we consider the eternal behavior of solutions to (1.1) with (1.2) as t — +o0, it turns out
that there are two distinct situations depending on whether the domain is axisymmetric or not. To
clarify the definition of axisymmetry, here we adopt the convention from Desvillettes and Villani
[13]: A domain in R? is axisymmetric if it has a circular symmetry around some point; a domain in
R3 is axisymmetric if it admits an axis of symmetry (which means that it is preserved by a rotation
of arbitrary angle around this axis).

In particular, because we only consider open, bounded, and connected domains in R?, through-
out this paper, we mean an axisymmetric domain by either a disk or an annulus, and a
nonaxisymmetric domain by any other open, bounded, and connected domain. We use this
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axisymmetry and nonaxisymmetry in Korn’s inequality 2.12 to study whether a domain permits a
nontrivial fluid flow in the kernel of the symmetrized gradient D. For nonaxisymmetric domains,
one can utilize the stronger Korn’s inequality in Lemma 2.12 to show that the velocity field finally
decays to u,, = 0. For axisymmetric domains, (1.1)—(1.2), in fact, permit a stationary and circu-
lar velocity field. See [17] for related discussions in three dimensions. It remains a problem what
properties of initial data (u, d,) can explain the behavior of eternal weak limit (u,, d,).

Theorem 1.5 (Eternal behavior).

(1) There exist t; /' +00, Uy, € H'(Q) with Duy, = 0, and a harmonic map d., € C®(Q,S*) N
C>%(Q,S*) with d, satisfies (1.2), on 0Q such that u(-,t,) = u,, weakly in HY(Q),
d(-,t;) = d., weakly in HY(Q), and there exist 1,I' € N, points {xi}f=1 cQ, {yi}f’:1 C0Q and
{mi}l.zl,{mlf}ﬁ/:l C N such that

1
! v
IVd(-, t;)*dx — |Vd |*dx + Z 8m;S, + Z 4mm(8, in Radon measure.
i=1 i=1

Moreover, if Q is nonaxisymmetric, we can further conclude that u, = 0.
(2) Suppose that (u,, d,y) satisfies

/|uo|2+ Vd, 2 < 4,
Q

then (u,d) € C*(Q,(0,+0))N Cé’l(ﬁx (0, +00)). Moreover, there exist t;, /' +oo, Uy €
H(Q) with Du,, = 0, and a harmonic map d,, € C®(Q,S*) N C>%(Q, S?) with d, satisfies
(1.2), on Q) such that (u(-, t;.), d(-, t)) = (Uy,,dy,) in Cz(ﬁ).

Moreover, if Q is nonaxisymmetric, we can further conclude that u, = 0.

As a complement of the above theorem, we further describe the eternal weak solution (u,, d,)
in the situation of axisymmetric domains.

Theorem 1.6 (Potential profiles of eternal weak solution in axisymmetric domain). Suppose that
the domain Q is axisymmetric. There exist t;, /' +o0, a nontrivial u, and a harmonic map d,, €
C®(Q,S?) N C2%(Q, %) with d, satisfies (1.2), on 8Q such that (u(-,t),d(-, 1)) = (g, do,)
weakly in H'(Q). Moreover, (u,,d..) can be classified in the following two cases.

(1) IfQisadisk B,, then

Uy, =C(Xy5,—X1), Cc#0 u,=0
w = 0 —x), e # or * (1.6)
dy, = (K,Ky,K3), KI+K>+K;=1 d, is a harmonic map.

o)

(2) IfQisanannulus B, \ B, , then

Uy = (X5, —X1)

d, =K, cos(aln(i)) . {uoo =0

d, = K, cos (oc In <L )) d, is a harmonic map,
r

\d3 = K, sin (ocln(%))

Q.7
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NEMATIC LIQUID CRYSTAL FLOW WITH PARTIALLY FREE BOUNDARY 7 0f 43

where
2 2 r
|K;l=1, Ki+K;5=1, aln(—):kn’,kez, cEeR. (1.8)
ry

Remark 1.7.

(1) We emphasize that such nontrivial weak limit for u, is a new feature triggered by the partially
free boundary condition (1.2), which is not possible in the case of Dirichlet boundary.

(2) The stability of (u,, d,) in this free boundary model might be an interesting and challenging
problem.

The rest of this paper is devoted to the proof of Theorem 1.2, Theorem 1.3, Theorem 1.5, and
Theorem 1.6.

2 | NOTATIONS AND PRELIMINARIES

This section introduces some notations and estimates that will be used throughout this paper.
We use A < B to denote A < CB for some universal constant C > 0. For x, € R%,t, €R, z, =
(xg, to), denote

B.(xy) =1{x € R?: |x — Xl <1},
Pr(zo) = Br(xo) X [tO - ’,.2’ to]

to be spatial neighborhood and parabolic cylinder, respectively. We use Q, to denote Q X [0, t].
For x, € 8Q, we use Q,(z,)* to denote P,(z,) N Q, to denote the parabolic cylinder at boundary.
Denote the boundary of parabolic cylinder d,,P,(z,) to be

P,(20) = (B,(xo) X {t — 1) U (8B, (xo) X [ty — 1, £ ]).
For 1 < p,q < oo, denote LP4(P,(z,)) = Li([t, — r?, t,], LP(B,(x,)) with norm

to q
||f||Lp,q(P,(z0)) = </ IfC t)”LP(B (%)) > ’
fo—r2

Further, denote W;,’,Z(Pr(xo)) = LI([ty, — r?, t,], WV P(B,(x,))), with norm
IIfIIW;:Z(pr(xO)) = [Ifllzpace,zp)) + IV FllLracp,zy))-
Denote W (P,(xo)) = {f € W, (P, (x))) : V2f,8,f € LP4(P,(x,))}, with norm
1 w21 b, ey = I w20, iy * IIszIIWw(P Gon T 1S M0, (-

If p = g, then the above notation can be simplified as LP-P = LP, Wll,’,(;, = W;’O, Wf,’;, = Wf,’l.
Here are some techniques that we are going to utilize.

d °S “vT0T “0SLL69YT
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Lemma 2.1 (Gradient estimates for the heat equation). Ifd : Q — R solves heat equation d,d —
Ad = 0with Dirichlet boundary condition (d = 0 on 8Q) or Neumann boundary condition (i - Vd =
0 on 0Q), then we have the following integral estimates for the gradient Vd:

interior: / |Vd|* < 94/ |vVd|*,
Pgr(z1) Pg(z1)

boundary: |Ivd|* < e* / [Vd|*.
P3.(z1) PE(z)

Proof. See [33, Lemma 4.5, Lemma 4.13, Lemma 4.20, Theorem 7.35]. O

Lemma 2.2 (Parabolic Morrey’s decay lemma). Suppose for any z €Q and any 0<r<
min(diam(Q), \/T), we have

/ [Vd|P + rP|d,|P < r*t2H@=Dp,
P,.(z2)NQp

thend € C*(P1(z;) N Qr).
2

Proof. We use the definition of Campanato space and apply Poincaré inequality

p(n+2+ap) / |d —d,,|P < r=(n+2tep) / rPIVd|P +r?|d,|P S 1.
P.(2)NQr P.(2)NQr O

Lemma 2.3 (A variant of Ladyzhenskaya’s inequality). There exists C, and R, depending only on
Q such that forany T > 0, if u € L>®(Qp) N W%’O(QT), then for R € (0,R),

/ |u|4<C0 sup / |u|2(-,t)</ |Vu|2+%/ |u|2>.
Qr (x.)EQy ¥ ANBR(X) Qr R* Ja,

Proof. See [54, Lemma 3.1]. ]

Lemma 2.4 (Refined embedding theorem). For u € Wé’p (Qwithl<p<nandl<r<p*=
%, we have for any q € [r, p*],

lullzaay S N1VaE, o el

1y\-1
=)

where o = (% - %)(% -5

Lemma 2.5 (LP — L9 regularity for Neumann heat equation). Let 1 < p < ¢ < 00,(q # 1, p # ).

Let (em)t;o be the Neumann heat semigroup in Q, and let A, > 0 denote the first nonzero eigenvalue
of —A in Q under Neumann boundary conditions. Then, there exist constant C(Q, t,)) such that

fort <t,.

Proof. See [58, Lemma 1.3]. Ol

d °S “vT0T “0SLL69YT
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NEMATIC LIQUID CRYSTAL FLOW WITH PARTIALLY FREE BOUNDARY | 9 of 43

Lemma 2.6 (LP — L9 regularity for Stokes operator with Navier boundary condition). Let Q C R",
n > 2 be a bounded C3-smooth domain. Let1 < p < g < 0,8 > 0, let P, : LP(Q) — Lg(Q) denote
the Helmholtz projection, and let A, = P, A be the Stokes operator with Navier boundary condition.
Suppose either one of the following two conditions holds.

) pr<gandp<q<%whereOsy:%(%—é)<l.
) pr>%andp<qwhere1>y>l—§>0,

then

t+1

—tA v st
le™*#ullyaey < O, p. D= ) e ull ooy

foru e Lg(Q).

Proof. See [15, Corollary 1.4]. Based on this inequality, one can also utilize interpolation of Sobolev
space to derive

1

lle""» Vuullraq) < €6, p, Q t)t 277 [|ullpp(q)

for t < t,. U

Remark 2.7.

* In the setup of the Stokes operator with zero Dirichlet boundary condition, the LP — L4 regu-
larity is in the form of Lemma 2.5. This result is proved by showing that the resolvent operator
R(A,Ap) = AT+ A p)‘1 issectorial, and then study the fractional and purely imaginary power of
A, and finally conclude the LP — L9 regularity by using Komatsu semigroup decaying inequal-
ity (cf. [27, Theorem 12.1]). In dimension 3, such scheme also works in the setup of Stokes
operator with Navier-type boundary condition (i.e., u - i = curlu X fi = 0, see [2]), as well asin
the setup Navier slip boundary condition (i.e., 2[(Du)n], + au - T = 0, see [3]). In the latter situ-
ation, either a nontrivial friction « is required, or the nonaxisymmetric property of the domain
Q is required. This requirement suggests that in the current setup of two-dimensional Navier
perfect-slip boundary condition, generally, we have no H*-calculus (consider the counterex-
ample of stationary vortex flow in disk). Indeed, Lemma 2.6 has no long-time decaying property,
and its proof in [15] is based on equivalent norms on D(A,) and interpolation of Sobolev space,
without using fractional semigroup.

* See also [28, Theorem 3.10] for related semigroup estimates.

Lemma 2.8 (Parabolic Sobolev embedding theorem). We have continuous embedding W;l ’l(QT) c
Wy (Qp)if2l —2r —s — (% - %)(n +2)>0.

Proof. See [29, Lemma 3.3]. [l

Lemma 2.9 (Boundary Wf,:;-estimate for Stokes equation). For a homogeneous, nonstationary
Stokes equation 0,u — Au + VP = 0 in Q with Navier boundary condition on Q. For s < p and
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arbitrary p,(t), we have

”u”WIZJ'}z(QJI) + ”VP”Lp.q(Qi) S ”Vu”Ls.q(Qr) + 1P - Po”Ls,q(Q;)-
3 2

Proof. For a homogeneous, nonstationary Stokes equation with zero Dirichlet boundary condi-
tion, this boundary Wf,’é—estimate has been proved in [48, Lemma 3.2], using the property of max-
imal LP — L9 regularity for Stokes system with nonzero divergence. Such property is intensively
studied by Shibata-Shimizu in [50, 51] and [49]. For maximal LP — L9 regularity in the setting of
compressible fluid, see [25]. However, in the setting of the Stokes system with Navier boundary
condition and nonzero divergence, such a maximal regularity is false because there is no control
of the Neumann term as in [50]. Instead, we follow Seregin’s argument in [47] and use maximal
LP — L9 regularity for the Stokes system with Navier boundary and zero divergence in [16].

Let v (x, ) = ¢(x)u(x, t) and P; = $(x)(P(x, t) — py(t)) for some cutoff function ¢ = 1 on BT,

2
supp$ € Bf,and A - V¢ = 0 on 8Q. Then, (v, P;) solves
o,y —Av; + VP =g in Q
V-vy=u-V¢ inQ
v, satisfies Navier slip boundary condition (1.2); on dQ,
where g, = —2VuV¢ —uA¢p + (P — py)Vé.
Further, we let (v,(x), P,(x)) solves the following stationary Stokes system:
V.vy,=u-V¢ in Q
v, satisfies (1.2); on 0Q,

and (0,v,,0,P,) solves

—A(0,v,) + V(O,P,) =0 inQ
V-(0v,)=0u-V¢ in Q
0,0, satisfies (1.2); on 9Q.

Thus, v; = v; — v, and P; = P; — P, solve

0,v3 —Avy+ VPy=g3=¢g, - 0,0, InQ
V-v;=0 inQ
v; satisfies (1.2), on 0Q.

Let y(t) : R — [0, 1] be the smooth function such that y = 0 on (—co,—1)and y = 1on (—%, 00).
We see that v, = v;y and P, = P;y solve

0vy—Av, + VP, =g, = x93+ 030,y inQ
V.v,=0 inQ
v=0 att = -1
v satisfies (1.2); on dQ.
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NEMATIC LIQUID CRYSTAL FLOW WITH PARTIALLY FREE BOUNDARY | 11 of 43

By the maximal LP — L9 regularity to the Stokes system with Navier perfect slip boundary
condition (see [16, Theorem 2.9]), we have

||U4||W12),Z(QX(_1,0)) + ”VP4||LP:L1(Q><(—1,0)) S “g4||LP:LI(Q><(—1,0))-
First, we can directly estimate ¢, that
91 OllLocay S Nullwy st + 1P = Pollzecst)-

To estimate J,v, in g5, we notice that d,u - V¢ = Va + b where a = —(P — p,)V¢ + VuV¢ and
b= —Vu : V2¢ + (P — p,)A$, we can check that the duality argument of [53, Theorem 2.4] also
works with Navier boundary condition, and it gives

16;V2llp) S Nlallzpcq) + 1Dllpq) + lla - fllLpa),
while the last term can be estimated by

/

1 1\ 5
A 2 pq
la - 8llooy S 64 (IV2ullogsr) + IVPILep ) + (5) ™ (Il + 1P = ollzey) )-

We can also use test function 1 € C*°(Q) with i - Vi) = 0 on dQ to estimate that
Io2llw2 o) + IIVP2lle) S V@ - VP)llri) S lullwrogh:
Combining the above estimates, it follows that

”u”Wﬁz(QD + ||VP||Lp»q(QJi) p ||Vu||Lp.q(QIf) + 1P - po”LP,q(QIf)-
3 2

Moreover, for s < p, one can use Sobolev embedding to lift above RHS to terms with WSZ,’q1 norm
and WSI,’[? norm, then apply the above inequality again to deduce that

”u”Wz,}I(QD + ”VP”Lp,q(QJi) S ”Vu”Ls,q(QIf) + P - p0||Ls,q(QIf)- (2.1)
2 P 0

Lemma 2.10 (Riesz potential estimates between parabolic Morrey space). Let MP*(Qy) and
MPA(Qy),, respectively, denote the parabolic Morrey space, and the weak parabolic Morrey space,
wherel < p<o0,0<A<n+2 and

p . A—(n+2) 1 £P
LTt LA U TICWRE)
IFI1P i= sup D) fP

I . . .
M (Qr) r>0,z€Qr LP(QrnPy(2))

Let Tﬁ (f) denote the parabolic Riesz potential of order 8 € [0,n + 2],

T _ f(y’ S)
1) = /R 50, sy e
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where f € LP(R"!) and parabolic distance §((x,t),(y,s)) = max(|x — y|, /|t — s|). Then, for
any $>0,0<Ai<n+21<p< % if feLPR™)NMPAR™), then T5(f) € LP(R™)N
MPARM V) with p = Af—;}ﬁ. Further, forany0 < 8 < A < n+2,if f € LY(R"™1) n MIAR™Y), then

- A _ A2
To(f) € L7 R n M7 (R™H),

Proof. See [22, Theorem 3.1]. O

Lemma 2.11 (Density of smooth maps in L and J). For n = 2, and any givenmapv € Land f €],
there exists sequence {v;} C C®(Q,S?) N C>*(Q,S>) N L and {f,} C C*(Q,R?) N C>*(Q,R*)NJ
such that

kgfglf lok = vllr2q) = klgglo Ifx = fllgq) = 0.

Proof. For the classical result that smooth maps are dense in Sobolev maps, see [7]. Since we need
lots of other properties such as Holder continuity, Navier boundary condition for v, and free
boundary condition for f;, our method is to consider the solution of an evolution equation with
initial data v and f with free boundary condition (1.2);; then we take backward slices v, = v(:,t =
27%yand fre=fC, 27%) as smooth approximations. For director field f(x,t) : QX (0,T) = S?, we
consider the heat flow of harmonic map

fo=Af+IVIPSf in Q x (0,¢)
fG,0)=fo€d
Vafi=Vafa=f3=0 ondQx(0,t).

A classical result in short-time existence and regularity shows that if ¢, is smaller than the
first singular time, then f(x,t) € C*(Q x (0, tf)), see [55]. That argument is the same as we
shall use to prove Theorem 1.3. Smoothness of solution of equation gives f € C([0,T], H'(Q))
and thus limy_ o, || fx — fllgiq) = 0. Holder regularity follows easily from an estimation of
Morrey-Campanato norm, and the argument is the same as what we shall do in proving
Theorem 1.2.

Similarly, consider the solution of the Navier-Stokes equation with initial data v, with Navier-
slip boundary condition (1.2),.

v,+v-Vo—Av+VP=0 inQx(0,t,)

V-v=0 in Q x (0,¢,)
U(',O):UO
Du-f),=u-1=0 on 0Q X (0, t,).

We similarly use existence and regularity for two-dimensional Navier-Stokes to show that v €
C([0,T], L*(Q)) and thus lim,._, ., ||lv, — || r2(q) = 0, see [26]. Also, Holder regularity follows from
an estimation of Morrey-Campanato norm, which is the argument we shall use in Theorem 1.2.
Alternatively, since the proof of Theorem 1.2 does not require this lemma, we can also use the
result of Theorem 1.2 with u = 0 or d = C to obtain the Holder regularity. O
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NEMATIC LIQUID CRYSTAL FLOW WITH PARTIALLY FREE BOUNDARY | 13 of 43

Lemma 2.12 (Korn’s inequality). Let Q C R” with n > 2 be an open, bounded, and C'-smooth
domain. Let v be a vector field on Q with Vv € L*(Q). Then, there exists C(Q) > 0 such that

lvllz2eq) + DVl 12q) = CDNVUIl2q)-

Assume further that Q is nonaxisymmetric and v has tangential boundary condition (i.e,v -1 =0
on 8Q), then

1DVl 2qy = KNVl 20
for some constant K(Q) > 0 measuring the deviation of domain Q from being axisymmetric.

Proof. See [13, Theorem 3]. ]

3 | HOLDER REGULARITY OF SOLUTION

This section uses the standard hole-filling argument to obtain the regularity of solution v to a
parabolic system (P). This argument has mainly two parts: first, we cut a hole (e.g., P.(x,) or
Qp) and fill it with the solution v’ of a homogeneous system (P’) (e.g., heat equation, Stokes
system, harmonic map heat flow) with boundary condition inherited from the original solution v.
Then, v — v’ solves the parabolic system (P — P’), which is usually inhomogeneous but has a good
boundary condition on the hole. This good boundary condition gives us more freedom to perform
integration by parts and allows us to handle inhomogeneity only. We leave the boundary condition
to good system (P’) and deal with it independently. Ultimately, we achieve a gradient estimate and
obtain C%-regularity of v. The next step is to use C%-regularity to obtain C-#-regularity for some
B € (0,1). One approach given by [22] is to analyze the Riesz potential between parabolic Morrey
space. We apply the first part of the hole-filling argument in the following three lemmas and apply
the second part in the proof of Theorem 1.2.

4
We start with the L3 estimate of | VP| to the solution (u, d, P) of the free boundary system (1.1)-
(1.4).

Lemma 3.1 (Estimation of pressure). For 0 < T < oo, suppose thatu € L>® N W;’O(QT) andd €
4
L*([0,T], H'(Q)) n L2([0, T], H*(Q)) is a weak solution to (1.1)-(1.4). Then, VP € L3(Qy) and we

have the following estimate:

2
IP=Pall s o SIVEI s Sl IVl + 1Vl 1Vl .

L“'%(QT
Proof. We write u = v! + v> where v! : Q; — R? solves homogeneous heat equation d,v' —
Av' = 0 with initial condition v! = u, on Q X {t = 0} and partially free boundary condition (v*
satisfies (1.2); on 8Q). Then v? = v — v! solves nonhomogeneous, nonstationary Stokes equa-
tion 90> —Av?+ VP =—u-u—-V-(Vd ® Vd — %lle2 I,) with initial condition v> = 0 on Q X
{t = 0} and partially free boundary condition v? satisfies (1.2), on dQ). Then, Sobolev inequality
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and W>'-estimate give
3

P-p < ||VP < v + |||Vd||V3d
[ QIIL%(QT)NII IILg(QT)NIIIuII uIIIL%(QT) [Hvdi| ”'L%(QT)

S ullpsapVulliz,) + 1Vl 1Vl 2q,)- O

Lemma 3.2 (Local smallness). Forany a € (0, 1), there exists €, > 0 such that for z, = (x,, t,) € R>
4
andr > 0, if (u,d) € W;’O(PZr(zo)),P ewhs (P5,(2y)) is a weak solution to (1.1) and

/ lul* + |Vd|* < e, (€AY
P,(zy)
then (u,d) € C*(Pr(z,), R* X S?). Moreover,

2

[dlca, zp)) < CUIUN L4,z + IVAllL4P, (z))s (3.2)
2
[u]C“(P%(zo)) < Clullap,zpy + 1VAllLaep, 2y + HVP”§(P,(ZO)))' (3.3)

Proof. The proof is similar to that of [34, Lemma 2.2]. Here, we give a sketch of proof for self-
containedness.
Step I: First, we want to have a local growth control of |Vd| in the following sense:

4a
/ IVd[* < (1) / |Vd|* for0 < r < R. (3.4)
Py(z)) R/ Jpya)

To do so, we decompose d =d' +d? where d; : Pg(z,) - R* satisfies the homogeneous
heat equation 9,d' — Ad' = 0 with Dirichlet boundary condition d' = d on dPy(z,), and d? :
Pr(z,) — R3 satisfies the inhomogeneous heat equation 3,d*> — Ad? = —u - d + |Vd|*d with zero
boundary condition d?> = 0 on dPg(z, ). We test d? equation with Ad? and apply Hélder inequality
to obtain

212 212 < 2 2 2
sup / |Vd?| +/ 12717 S (etllap ) + IVAsp o IV )
Bgr(x1) Pr(z;)

1 —R2<t<ty

This, together with Ladyzhenskaya inequality in Lemma 2.3, yields

/ IVd?|* < </ |ul* +/ IVdI4>/ |Vd|*.
Pr(zy) Pr(zy) Pr(zy) Pr(zy)

We use Lemma 2.1 for d! and obtain ”leHL“(P@R) S 6lVd' llpap,), and thus

/ |Vd1|4<ce4/ |Vd|4+C</ |u|4+/ |Vd|4>/ |vd|?,
Por(zy) Pr(zy) Pr(zy) Pr(zy) Pr(zy)

which gives inequality (3.4) if we choose 6 = r/R < §, and ¢, < 6, such that 20661 < 6(‘)‘“ .
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Step 2: Next, we want to control the local growth of |d,|. We test (1.1); with d,¢$? with cut-off
function ¢ € C°(B,(x()),0< ¢ <1, ¢ =1on B (xo) and |V¢| < 2/r. It follows that

/ |d,|2¢2+i/ |V¢|2¢2sr—2/ |Vd|2+/ |V
B (xo) dt J,(xy) B,(xp) B, (x))

Weselect s, € (t, —r? —t, — —)such that /, (x0) IVCsl? S [,  (20) |Vd|?. As a consequence,

1
F\ 24 4 2
P S QA+l o VAR oS (%) / vart) . G
/PE(ZO) ' LA(Pr(z0)) LPy(z0) R Pr(zp)

Estimations (3.4) and (3.5) imply the H6lder continuity by Lemma 2.2.

Step 3: We will estimate the local growth of |Vu| by separating solution u = u' + u? of
(1.1), into two functions, where u! : Pp(z;) — R? satisfies homogeneous heat equation d,u' —
Au' = 0 with Dirichlet boundary condition u! = u on dPy(z;) and u?> = u — u' : Pr(z;) - R?
satisfies inhomogeneous heat equation ,u? — Au? + VP = -V - [u ® (u — u, )+ VdOVd—
%lle2 1,] with zero boundary condition u? = 0 on dPg(z,). We test it with u? and use Holder
inequality to estimate

2L were [P [ vdt e g+ 9P
2dt Bg(x1) Bg(x1) Bg(x1)

We integrate over [, — R?, t;] and use Holder inequality to obtain

sup [ 19 [ VI g =t gl 15 VP
Bg(xy) Py P,

t—R2<t<t

which, together with Ladyzhenskaya inequality, yields

2 4 3
/ lu?* 5 (/ |Vd|4> +/ |u—uzl,R|4-/ |ul* + (/ |VP|3> :
Pg(z1) Pg(z1) Pr(z1) Pg(z1) Pr(zy)

Collecting the above two estimates gives

2 2 4 3
</ |w2|2> < (/ |Vd|4) o) gt [t </ |VP|5> .
Pr(z1) Pr(z1) Pr(z1) Pr(z1) Pr(z1)

Applying Lemma 2.1 to u', we have [|u' —u! Lerllsarz) S 0% |lu — u; RllLseg,y S €%lu—

Zl R”L4(PR(21)) + ||u ”L4(PR(ZI)) and ||Vu ”LZ(PGR(ZI)) 9 ”Vu”LZ(PR(Zl)) + ||Vu ||L2(PR(ZI)) ThUS
we obtain the following estimates for local growth of |u — u 1’Rl and |Vu|:

[ el S @l ) / =y gl IV, IVPIE,
Por(z1) L

3(Pg)
2 2
[ var se8</ |Vu|2> gy [l
Por(z1) Pr(zy) Pp(z;)

+Ivdl®, -+ VP, . (3.6)

LiPR) L3(Pg)
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Step 4: We need to estimate || VP ||L 4. Again, we separate P = P! + P?> where P! : Bg(x;) - R
3

satisfies Poisson’s equation AP! = -V - (u-Vu + V- (Vd © Vd — %lle2 1,)) with zero boundary
condition P! = 0 on dBg(x;), and harmonic function P? satisfies Laplace equation with Dirichlet
boundary condition P? = P on 3Bg(x;). The Calderon-Zygmund theory, together with interior
W2 -estimate ||V2d||L2(P%) S Nullpap,y + IVl e, for (11)s, gives

VP S Mullpapez ) IVUll L2(py (2 + Ul Lagpy (2 + 1Vl L@ I VAl L4y 2, ))-

pl
% 7( R( 1)

We apply Harnack inequality for VP? and use the above estimate to get

2
/ |VP|3 <0 / |VP| + ||u||L4(P )||V ||L2(P ) (||u||L4(P )+ ||Vd||L4(P )>||Vd||L4(P y
Pgr(z1)
3.7

Step 5: Adding the above estimates (3.4)-(3.7) for Vd, d,, Vu, VP together, we have

Agr S (6° + |lull]

L4(PR) + “le|4

L4(PR))”Vd“ < 64+4tx1A + R4+4ot1

)AR + (”u”4 L4(P )y~

L*(Pg)

1+a

3
= 6 S 02

where A, = |lu — + || Vu|* + VP4 . and we take o, = <R<go.

Yz, ”L4(P ) L2(P,) 4Py
The characterization of Campanato spaces states that u e C(P;y). O
2

Lemma 3.3 (Boundary smallness). For any a € (0, 1) there exists €, such that if for z, = (x, t,) €

0Q, XxRandr > 0,(u,d) € W1 0(P (zp)),P € w! 3(P .(29)) is aweak solution of (1.1), with (u, d)
Satlsfles (1.2) on F L(xg) X [t — r? to] and

/ lul* +|Vd|* < ¢, (3.8)
P+(Z())

then (u,d) € C*(P?(z,)). Moreover,
2
[d]C“(P"' (z0)) ~ ||u||L4(P+(ZO)) + ||Vd||L4(P+(ZO))’ (39)

[u]C“(P+(zo)) S lullzapr iz + 1VAllLa@r ) + IIVP ||L3(P+( -~ (3.10)

Proof. Step 1: First, we estimate boundary growth for Vd. Consider z; = (xy,t;) € F% X

[—%,O] and 0 <R < i. We separate d = d' + d?, where d' : P}(z;) - R? solves homogeneous
heat equation d,d' — Ad' = 0in P}(z;) with mixed boundary condition d' = d on Sg(x;) x
[t; —R?,t,],d" = d on B} (x;) X {t = t; — R*},and d" satisfies (1.2) on I'r(x,) X [t; — R?,t;]. And
d? = d — d' solves inhomogeneous heat equation 8,d* — Ad* = —u - Vd + |Vd|d in P} (z,) with
mixed boundary condition d? = 0 on B+(x1) x {t = t; — R*},d?> = 0 on Sg(x,) x [t; — R%,t,], and
d? satisfies (1.2) on T'y(x;) X [t; — R?, t;]. Same as in Lemma 3.2, we test equation with Ad?, and
in the end, we obtain

/ IVd?|* < / lul* + |Vd|* / |vd|*.
P(z1) P} (zy) Pi(z))
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We apply Lemma 2.1 to components of d! and follow the same argument in Lemma 3.2 to obtain

|Vd|* < 63¢ / |Vd|*, (3.11)

/ |Vd|* < C(6* +¢))
P;R(ZO Py(z1)

Pi(z)

given that 6 < 6, with ZCQS < 63"‘ and ¢, < 6,.

Step 2: Then, we estimate boundary growth for |d,|. Because components of d, satisfy either
Neumann boundary condition or zero Dirichlet boundary condition, we test (1.1); by d,$> where
the cut-off function ¢ € C°(Bg(x;)) issuch that0 < ¢ <1, =1on Bg(xﬂ» and |V¢| S % The
same computation as in Lemma 3.2 yields

2 <2 F o\ 5
/P+(z ) |d[| S/ re+ <§> ”Vd“I}(P;(ZI)) (312)
r\“1
2

Estimations (3.11) and (3.12), together with parabolic Morrey’s lemma, imply thatd € C“(P*l').

Step 3: Now we estimate the boundary local growth for |Vu|. Let H C R? be a bent half-];z)lane
such that P}(z,) C H and T'x(z,) € 6H. Letu' : H x [-1,0] — R? solve nonhomogeneous, non-
stationary Stokes equation d,u' — Au! + VP! = —(u- Vu+ V- (Vd © Vd — %lle2 ”2)))(19; with
Navier perfect-slip boundary condition (u' satisfies (1.2), on dH) and zero initial condition. Then,
u* =u—u' : P}(z;) - R? solves homogeneous, nonstationary Stokes equation d,u* — Au* +
VP? = 0 with partially free boundary condition (u? satisfies (1.2); on I'y(z,)) and initial condition
u’>=uatt =t — R

We apply parabolic Sobolev inequality Lemma 2.8 to u! and use Wi’l—estimates for u' (cf. [8,

3
Theorem 2.3]), together with Holder inequality to obtain

IIVullle(pp + |Iu1IIL4(p;) + IIVPllng(P;) S lull oy IVull ety + IIVzdIILz(p;)IIlelyt(p;)-

We apply Lemma 2.9 to u? and have, for any g > 4,

3 2
375 2 2 2 2
R2 4 <“u IlWZlé(PE(Zl)) + ||VP ”Lg(P;(Zl))) S “Vu ”LZ(PE(zl)) + ”VP ”§(P}qu(zl))

3 2

2
S ||Vu||L2(P;g(zl)) + ”VP”L%(P;(zl)) + ||“||L4(p;(zl))||Vu”L2(P;(Zl)) +1V d”LZ)P;Q(ZO”Vd”L“(PE(Zl))'

Moreover, we use the Sobolev inequality and Holder inequality to see that for any 6 € (0, i),

R

3 2
2_ .2 2 < =7 w2 2
”u u21,9R||L4(PgR(Zl)) + ”VP ”L%(P;' @) ~ (GR) q <“u ”leg(PE(Zl)) + ”VP “Lg(p;(zl))>
’3 2

3_2
5627 (nwnLZ(Pp HIVPI s o+ Nl VUl + ||V2d||L2(P;)||Vd||L4<Pp>.
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18 of 43 | SIRE ET AL.

To estimate || Vu?[| 2, let ¢ € Cj(Bggr(x;)) besuchthat0 < ¢ <1, =1 Ol’lBeR (x;),and |V¢| <

Multlplymg the equation of u? by (u? — u GR)¢2 and integrating over B (xl) we obtain

d 22 242 21 22 2
- lu” —u’ 179" + [Vu?|¢? < |u — U ool
at Sz T g " @Ry Jp e

2019,2 _ 1,2
+/B+ [VP||u uzlyeRl.

6R

Integrating over [s,, t,], where s, € [t; — (BR)?, t; — %(GR)Z] is such that

|u’2 - u 6R|2 < (QR) |u2 - u2 9R|2’
/B;R<x1)x{so} - PL (@) v
we obtain
/ IVu?|* S (GR)_Z/ u? =2 opl” + / IVP?|[u? —u? ol
P-é;R (z1) P;’R(xl) P;R()ﬁ)
2
2 2 2 2
S =12 oellEagps )+ IVEN 4 O L PR R
2 2 2

L3 (Pay (Zl))

Collecting the above estimates and we set g = 8, we arrive

I =t ol + IV ez + 19PN

El
5(94 + IIuIIL4(P;(zl))> <”” o lliegey IVHleege) VP )>>
1
+ ||V2d||L2(P+I-z (Zl))”Vd”L“(P;;(zl))’
2

and we have Wj’l-estimate for d that

2
v d||L2(p; (z1) p ||u||L4(P;(z1)) + ||Vd||L4(P;g(z1))-
2

Step 4: By choosing 6 = 6, sufficiently small and ¢, < 6, we obtain for 0 < r < 1,
©"(z,,6R) < 607 (21, R) + C(6 + R*)RY,
where
+ .
07 (z1,1) 1= llu—uy ,llipapryy + 1IVUullzer e,y + 1V ”L§(P+( .

We repeat the same argument as in Lemma 3.2 combined with the characterization of Campanato
space and conclude that u € C*(P7). O

2
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NEMATIC LIQUID CRYSTAL FLOW WITH PARTIALLY FREE BOUNDARY 19 of 43

Proof of Theorem 1.2

Proof. Assumption u € L®([0, T], L>(Q)) n L?([0, T], H'(Q)) and Ladyzhenskaya inequality give
u € L*(Qy). Equation (1.1); and the fact that |d| = 1 give dAd + |Vd|? = 0, which, together
with assumptlon vd € L([0,T], H'(Q)), gives |Vd| € L*(Q;) and hence u - Vu, V - (Vd © Vd —

—|Vd|2 ,) € Ls(QT) It follows from absolute continuity of [ |u|* + |Vd|* that if z, = (x,, t,) €
Q x (0, T], there exists r, > 0 such that for r < r,

/ jul* +VdJ* < ¢!
P(xo)NQp

where € is given in Lemma 3.2 and Lemma 3.3. Hence, we deduce that (u,d) € C*(Pr, (z,) N Q X
2

(0,T]). Consequently, we have (u,d) € C“(ﬁ x (0,T).

For the higher order regularity, we use Lemma 2.10: for interior point (x,,t,) € Q X (0,T),
pick r, > 0 sufficiently small as above and also P,O(xo) C QO x(0,T). Previous estimates give
vd € MZ’Z‘Z“(P%O (x)) for any a € (0,1). Consider d = d¢ : P, (x0) = R3 where the cutoff ¢ €
COP (X)), 0<p<Lp=1 onP%o(xO), and |¢,|,|Ve|,|V?¢| S 1/r2. Then, d solves 3,d — Ad =
F where

F = (¢|Vd|’d —d(¢, — Ap) —2V¢ - Vd —u - VAo xp, (xp)-

Since Vd € L*(Qy), u € C*(Q x (0,T]), and (3.4), we can check that F € L'(R"*!) and F €
M'2-22(Rrn+1) Because we have d = G = F and thus Vd = VG * F where G is the fundamental
solution of the heat equation on R”, and |VG(x, t)| S m, direct computation together
with Lemma 2.10 yields

IVd(2)] S T,(1F(z) € L (R,

;Z > +o0asa / % Thus, we use interpolation of (weak) LP spaces to get Vd €

Notice that f:
LI(R™*1) for any q > 1. Hence, Wé’l-estimate for the heat equation gives d € Wé’l(Pro (x0)) and
thusd € Wé’l(Pr_o (xy))- Sobolev inequality then gives Vd € C%(Pr, (x;)) for any o € (0, 1).

2 2

Consequently, we apply Schauder estimate to system (1.1); to obtain d € Ci’l(Q % (0,T)). This
gives the Holder regularity of external forces in (1.1);, and thus, the standard Ci’l -regularity theory
implies thatu € Ci’l(Q X (0, T)). Starting from Ci’l—regularity for pair (u, d), we use the standard
boot-strap argument to conclude that (u,d) € C*(Q x (0, T)). Boundary Ci’l—regularity for (u, d)
can be obtained similarly, by taking instead d = (d — d’)¢ where d’ : P,(x,)" — R solves heat
equation and d’ = d on I',(x) X (ty — t2, 1) U S,(x,) X (ty — £2, t). O

4 | EXISTENCE OF SHORT-TIME SMOOTH SOLUTIONS

We would like to show that short-time smooth solutions to (1.1)—(1.3) exist for smooth initial and
boundary data. Later, in the proof of Theorem 1.3, we shall use an approximation of smooth data
and then show the existence. The argument to show the short-time existence in this section also
applies to the case of three dimensions.
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20 of 43 | SIRE ET AL.

Theorem 4.1. For any a > 0, if u, € C>%(Q,R?) N H and d, € C>%(Q, S?) N J, then there exists
T > 0 depending on ||ug |l c2«q)s ldo llc2«(q) such that there is a unique smooth solution (u,d) €

C21(Q x [0,T), R% x S2) to the initial-boundary value problem (1.1)~(1.3).
Proof. We will use the contraction mapping principle in a similar spirit as [34]. For T > 0 and
K > 0 to be chosen later, denote

X ={(v,f) € C2(Qp,R* X RV - 0 = 0,(v, Nl

= (uO’dO)’ ”U - uO”C;’l(QT) + ”f - dO“C’é’l(QT) < K}
Equip X with the norm
”(Urf)“X = ||U||C§’1(QT) + ”f”cévl(QT)'

Then, we can show that (X, || - ||x) is a Banach space. For any (v, f) € X, let (u, d) be the unique
solution to the following mixed system (inhomogeneous Stokes system with initial condition
and Navier-slip boundary condition; inhomogeneous heat equation with initial condition and
Neumann boundary condition 1.2):

6tu—Au+VP=—v-Vv—V-(Vd@Vd—%lVdPI]z) in Qr

V-u=0inQy
3,d—Ad=|Vf*f —v-Vf inQ (4.
(u,d) = (uy,dy) on Q x{t =0}

(u, d) satisfies 1.2 on 0Q x (0, T).

We define the operator L : X — C>!(Q, R? x R3) to be L(v, f) = (u, d). In the following two
lemmas, we will show that for T > 0 sufficiently small and K > 0 sufficiently large, L : X — X
and L is a contraction map. Then, there exists a unique solution (u, d) € Ci’l(ﬁ % [0,T), R? x R3)
to (1.1)—(1.4). It remains to show that |d| = 1. In fact, this can be done by applying the maximum
principle to the equation for |d|>. O

Lemma 4.2. ThereexistT > 0andK > OsuchthatL : X — X.

Proof. Forany (v, f) € X.Let(u,d) = L(v, f) be the unique solution to system (4.1). We use C, > 0
to denote constants depending only on ||ug|| o2« and ||dg|| c2«-

Step 1: Estimation of ||d — dg| .21 Assume K > C,. By the Schauder theory of parabolic
systems, we have ’

Q)

ld = dollarggy S 0V fllcsay) + NIV Ffllcxcay)- (4.2)
And we can estimate the first term in (4.2) as
lv-Vfllcxqy < vV —ug - Vdglleaq,y + lltg - Vdgllexqy
<N =up) - Vilcaa, + llug - VI = dplicxq,) + Co

< 2K(llv = upllcocq,y + v = ugllcaiq,y) + Co + IV = dollcoca,y + IV = do)llcaca,))-
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NEMATIC LIQUID CRYSTAL FLOW WITH PARTIALLY FREE BOUNDARY 21 0f43

Sincev —uy, = f —d, =0att =0, it is easy to see
lv = ugllcoq,y < KT, IV(f = dolicoq,) < KT-

Meanwhile, we use interpolation inequality (see [18, Lemma 6.32]) to control terms with
C%-norm:

1 1

o= tollcecar) S 5110 =Ullcacay) + 810 = tollgza g, S (8+ 5 K
1 1

19 = Dliceqar) S 51V = Dlleogay) +8lld = fllczia,, S (5+ 5

Collecting the above estimates together, we obtain

=5

T
10 - V fllcaca,(CoK + CK2)<T 5+ 5) +Cy <

with K =16C2,8 < ((Cy + C2K)VK) ™!, and T = &2,
Then, we will estimate the second term in (4.2). Notice that

NV fllcaayy < NVFPS = IVdoPdoliceca,) + 11V doPdollcecay)
<MV = dpllcaa,) + Ide(IV 1P = 1V Dlicaa,) + Co i= I + 1, + C,
where I; can be estimated by
L <If = do||ca(QT)||Vf||éo(QT) +IIf - d0||c0(QT)||Vf||éa(QT)
S KIS = dollcoga,y + I1f = dolicecay))
SE((1+5)1F = dolleria) + 81f = dolleaa, ) S K(5 +9),
and I, can be estimated by
L <IVF1? = 1VdoPllcaa,) + NIV = [VdoPlicop Idollcaa,)
<AV + VA DIV, = dO)l”C“(QT) + CollAV S+ IVdoDIV(f = do)|||c0(QT)
S+ CORAVG = dp)llcoca) + IVCf = do)liceqapy) S (1+ COR (T + 8+ 3 ).

Therefore, we collect the above estimates together and conclude

2 3(T 2 T
VAP fllcaa,) S K <g+5) +(1+CpK <T+5+g)

5
with K =16C;,8 < ((1+Co)K2)™!,and T = §°.
As a consequence, we can simplify (4.2) to be

B

lld = doll 21 g, < (4.3)

2
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22 0f 43 | SIRE ET AL.

Step 2: We estimate [[u — uo|| 21 is a similar way. By the Schauder theory for nonhomoge-

Qr)
neous, nonstationary Stokes equations, we have

e = ugll 2 g,y S N0~ Volleeay) + 1V - (Vd © Vd - %lVd|2 )llcscay) (4.4)
and estimate the first term in (4.4) as
lv - Voll car) < IV = 1) - VUlleaiq,y + Ity - V(vg = up)llcaq,y + g - Villex(a,)
<K(llv =t llcoga,) + 10 = ullca(a,) + Coll V@ = up)lcoga,) + 1V = )llex(a, ) + Co)
S(C0K+K2)<T+5 + %) +Cy < %

with K =8Cy,6 S ((1+Cy)K)~!,and T = §2.
For the second term in (4.4), we have

1
IV (VA © Vd = ZIVAPL, )llee(a,) < 11V = do)l[Valllcx(a,) + 11V2dy 1 V(d = dp)lllc=cay

+11V2do| IVdylll ey < Co + lld = doll 21 ldll 2

<Cy+ \/E<CO+£>+CO\/E<§

+Colld = doll 2

(Qr) Qr)

2 2

Combining the above estimates, we have |[u — u|| el @) < %K, which together with (4.4),
yields
”u - uO”Cé’l(QT) + ”d - dO”Ci’l(QT) <K.
Consequently, L : X — X. 1

Lemma 4.3. There exist sufficiently large K > 0 and sufficiently small T > O such thatL : X - X
is a contraction map.

Proof. For any (v;, f;) € X,i=1,2, let (u;,d;) = L(v;, f;) € X. Denote u =u; —u,,d =d; —
d,,P =P, —P,,v =0, —,, f = f; — f,. Then, (u, d) solves the following mixed system:

du—Au+VP=G inQp
V-u=0 inQy
0, d—Ad=H inQy (4.5)
(u,d) =(0,0) onQ x{t =0}
(u, d) satisfies (1.2) ondQ x (0,T),

where

G=—-Vv, +0,-Vv)=V-(Vd ® Vd, + Vd, ® Vd),

d °S “vT0T “0SLL69YT
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NEMATIC LIQUID CRYSTAL FLOW WITH PARTIALLY FREE BOUNDARY 23 0f 43

and
= VAP + V(1 + ) - VIfa=@-Vfi—v,- V)
By the previous lemma, we know that fori = 1, 2,
llu; = uollc21 g,y + ldi = doll 21y < K-
We apply the Schauder theory of parabolic systems for (4.5);, and we have
ldllc21 gy S 1Hllcaay) S o Vil + vy - VI + IVAPIFL+ 1AV E+ 1V DIV flleecay)
S KA (Ivllcaa,y + 1fllcaayy + 1V Fllcaga,)
SE (810l 21,y + I 2 a,) + 50llceqapy + 1 lceca))
S8+ 3 )Uollg2r gy + 1 llc2i ) (4.6)

where we have used [|vllc«(q,) + I fllcxq,) S (”U”qf;l
the factthatv =d =0att = 0.

We apply the Schauder theory of nonhomogeneous, nonstationary Stokes system for (4.5),-
(4.5),, and we have

@pt (Hall c2! (QT))T that originates from

lullc21 g,y S IGllcaay S NvHVUL] + [vp] VUl + IV2d[|Vd,| + |V?d,[|Vd|llca(a,)

S Klldll g, + Kvlles(ap) + 1Volles(a,)

3 i 4.7)
<K (5+ )l g, + 1Fllcargg,) + K (5+ ol g,
S8+ )Ulle2r ) + 1 21,

It follows from (4.6) and (4.7) that

IL(vy, f1) = Ly, f)llx S K° (5 + < >(||U||C2 Tapn T ||f||c21(Q )) Iy, f1) — (L2, FDx,

provided that § and T are sufficiently small. Then, L : X — X is a contraction map as desired. []

5 | ENERGY ESTIMATION

Lemma 5.1 (Global energy). For 0 <t < +oo, suppose u € L>®*(Q x [0,T]) N Wzl’o(QT), de

L®([0,T], H'(Q)) n L*([0,T],H*(Q)), and VP € Lg(QT) is a weak solution to (1.1)~(1.4). Then, for
any0 <t < T, wehave

/(|u|2+|Vd|2>(-,t>+/ (4|Du|2+z|Ad+|Vd|2d|2)=/(|uo|2+|Vdo|2>. 5.1)
Q Q Q
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24 of 43 | SIRE ET AL.

Proof. Partially free boundary condition (1.2) permits

/(u-Vu)-u=0, /VP-u=O, /dt-Ad=—i/1|Vd|2
Q Q Q dt /o2

/ A-V)d-(u-V)d=0, /(u-V)(lVd|2)=O
40 Q
Assumption u € L*([0,T],L*(Q)) n L?>([0,T], H'(Q)) and Ladyzhenskaya inequality yield u €

L*(Qy). Equation (1.1); and the fact that |d| = 1 gives dAd + |Vd|?> = 0, which, together with
assumption V € L2([0, T], H(Q)), gives |Vd| € L*(Qr). Now we test (1.1); with u and get

242 [ |Dul)? = :
2dt/lul+ /Iul /QVdQVd Vu,

where the operator: stands for the inner product of two matrices.
Testing (1.1); with Ad + |Vd|d, we obtain

/(d[+u-Vd)-Ad=/|Ad+|Vd|2d|2.
Q Q
Further, we can compute that
/Ad‘(u-Vd)z—/Vd : V((u-V)d):—/Vd@Vd D Vu—(u-V)|Vd|?
Q Q Q

—/Vd@Vd :Vu.
Q

Adding the above equations together implies the global energy equality (5.1). O

Lemma 5.2 (Interior and boundary energy inequalities). For 0 < t < +oo, suppose u € L>*(Q x
[0,T]) N W} °(Qp),d € L2([0, T], H'(Q)) n L*([0, T], H¥(Q)), and VP € L3(Qy) is a weak solu-
tion to (1.1)- (1 4). Then, for any nonnegative p € C*(Q)and 0 < s < t < T, it holds that

t
/¢(|u|2+|Vd|2>(t)+/ /¢(4|Du|2+2|Ad+|Vd|2d|2)<
Q N Q

t
/Qqs(|u|2+|Vd|2>(s)+C/ /Q|V¢|(|u|3+|P—PQ||u|+|Du||u|+|Vd|2|u|+|dt||Vd|),
(5.2)

where P, is the average of P over Q.

Proof. Testing (1.1); by u¢, we have

2dt/|u|¢+/2|Du|¢ /—u Vu-up—2Du-u-Ve¢+ ([P —Pg)-u-Ve

+(VdO Vd - %Wdlz L) : V(ug),
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NEMATIC LIQUID CRYSTAL FLOW WITH PARTIALLY FREE BOUNDARY 25 of 43

and notice that

/—u-Vu-uqS:l/lulzu-Vc#
Q 2 Ja

/(Vd@Vd— %llezﬂz) L V(ug) = /(VdG)Vd) : Vu¢+/u-Vd-VdV¢— %lVd|2u-V¢.
Q Q

Q

Hence, (1.1), gives energy estimates for u:

2dt/|u| ¢+/2|Du| ¢ < /(Vd@Vd) Vug

1 3
+<E|u|3+|u||2IDu|+|P—PQ||u|+5|Vd|2|u|>|v¢|. (5.3)
We test (1.1); with (Ad + |Vd|?d)¢ to get

/(d,+u-Vd)-Ad¢:/|Ad+|Vd|2d|2¢,
Q Q

and notice that

/d Ad¢————/|Vd|2¢ /d -Vd- V¢

/ u-vd-Ade = —/ %uiai(|Vd|2)¢ +VdoVd : Vugp + (u-V)d(Ve - Vd)
Q Q
- / %Wdlzu Vé—VdOVd : Vu — (u-Vd)(Ve - Vd).
Q
Therefore, (1.1); gives energy estimates for Vd:

2dt/wd| ¢+/|Ad+|Vd|2d| ¢= / —d,-Vd- V¢+-|Vd|2u Vo

—VdoOVd : Vup — (u-vd)(Ve - Vd). (5.4)
Adding energy estimates (5.3) and (5.4) yields (5.2). O

Remark 5.3. By virtue of Lemma 2.12 for nonaxisymmetric domain, [|Vull;2q) and ||Du||;2(q)
are equivalent norms; thus, Lemma 5.1 and Lemma 5.2 can have corresponding inequalities with
|Du|? replaced by |Vu|?. We shall use this variant in the proof of Theorem 1.3 because we need to
use the convergence of L?-norm of Vu to zero in some domain in order to conclude that u — 0 in
H'. The original version of energy estimates in terms of Du is insufficient.

6 | GLOBAL WEAK SOLUTION AND PROOF OF THEOREM 1.3

We now derive the life span estimate for smooth solutions in terms of Sobolev space norms of
initial data.
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Lemma 6.1. Let €, > 0 be given in Lemmas 3.2 and 3.3. There exist 0 < €, < €y, 0 <R, <1, and
68y = 6y(e1,Eyp) € (0, %) with Ey = [, lug|? + |Vd, |, such that if uy € C*F(Q,R*) nH and d, €

C2A(Q,S?) N J satisfy

sup/ [u|* + |Vd,|* < €2, (6.1)
x€Q ¥ QNByg, (x)

then there exist Ty > 60R§ and a unique solution (u,d) € C®*(Q % (0,T,),R?x S*) N C;’l(ﬁ X
[0,Ty), R? x S?) to (1.1)~(1.4) satisfying

sup / (lul® +1VdI))(, 0) < 2¢7. (62)
QNBg, (x

(x.0)EQr,
Proof. Theorem 4.1 states the existence of T, > 0 such that there exists a unique smooth solution

(u,d) € C®(Q % (0,T), R x $2) N C21(Q x [0, T,), R2 x S2) to (1.1)~(1.2). Let 0 < ¢, < T, be the
maximal times such that

sup sup/ (Jul® + [VdI»)(-, 1) < 26 (6.3)
QOBRO(x)

0<t<t0 xe@

Since ¢ is defined to be the maximal time, we have

xeQ

sup [ (ul + VP 10) = 26
QNBg (x)

Now, we estimate the lower bound of ¢, as follows. Assume ¢, < R(Z) < 1 (otherwise, we have
finished the proof). Set

E®=LWPHWWQQ

By = | gl + 1V
Q
Observe the energy inequality in Lemma 5.1: for 0 < ¢ < ¢,
E(t) + / (IDul? + |Ad + |Vd|*d|?) < E,,.
Ql

Lemma 2.12 allows us to deduce that

st/
Q Q

Also, we use the Ladyzhenskaya inequality in Lemma 2.3, and it follows that

lul? +/ |Dul? < (ty + 1)E, < 2E,.
Qt

t

tE
4 < g2 2 0
|Vd| SgRo(t)( |Ad|” + F)’

Q; Q, 0
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NEMATIC LIQUID CRYSTAL FLOW WITH PARTIALLY FREE BOUNDARY 27 of 43

where

g0= sw [ vapes)
(x,8)€Q; QnBRO(x)

8éo(t)= sup / lul?C,s)
(x,8)eQ, QnBRo(x)

Eg, (D) = 5§0(f) + Sﬁo(t).

By (6.3), we have é‘RO(t) < 4€f for all 0 < t < ;. As a consequence,

toE
/|Vd|45ef / |Ad? + 22 ).
Q Q R

to 0
The above inequality, together with the energy inequality and the fact that |Ad|? < 2(]Ad +

|Vd|*d| + |Vd|*), implies
toE,
/ |Ad|? < Ey + Cyé? / [Ad)? + 22 ).
Q Q R?

to 0
Therefore, by taking 0 < ef < min(1

To

to

L

h
, ZCo)’ we have

/ |Ad|? < CyE,
Q

To

and hence,

/ [Vd|* < CyelE,,. (6.4)
Q

to

Similarly, we apply Lemma 2.3 to th |u|* and get
0

/ |u|4se;0(ro)( [ower | |u|2>se;0<ro)< /

To 0 to

t.E
[Vul? + 22 °>
RZ

to to

(6.5)

<2 to 2
0

We would like to estimate SRO(t). Forany x € Q, let cut-off function peCy (BzR0 (x)) such that
0<¢<l¢p=lonBg (x), and |V¢| < 1/R,. Then, by interior and boundary energy inequalities
(5.2), we have

sup [ (uP VAP - £ @ sup [l + VAP - £ 0)
QNBg, (x) QNByg, (X)

0<I<ty 0<t<ty

S/ IVI(lul® + |P = Pglul + |Vullul + |d,||Vd])

Qfo
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o \*
S (F) (uun;@to) + 1Vl Il + 1V g Tl )
0

+ ”d[”LZ(Q[D)”Vd”L“(QtO)) +||P _PQ”L“’%(Qto)”u||L4(BZR0(X)X(0J0)”Q’0)' (6.6)

1 1
Notice that lullz2q, ) < (toEp)? < E(f . To estimate d,, we test (1.1); with d; and use (6.4)-(6.5) to
0
obtain

2 2 2 2 2 2
/Q LA /Q |Vdy|* + /Q uPIVAP S B+l 1V | < CoFo
to to

The above inequality, together with Lemma 3.1, (6.4), (6.5), into (6.6), yields

o \* 12 103
22 = sup/ (lul® +1VdP®) <] + Co| — | €' Ey + ORy)e} Ey,
0<t<ty J QNBg (x) R

where term ||u|| 4 By, (O)X(O0.t0)N 0, in (6.6) gives higher order term of R, that becomes negligible if

we take R, < ef. This implies

b
1 52 2
47370 0
CoEo
The proof is thus complete by taking T, = t,,. O

Proof of Theorem 1.3

Proof. We follow the argument in [34].

Step 1: Approximation of initial data. Because we only assume initial condition 4, € Land d, €
J, we need to approximate them by smooth functions so that we can utilize Lemma 6.1. By density
of smooth maps L?(Q, R?) and by Lemma 2.11, we assume that there exist {u’g 32, CC2(Q, RN

C2%(Q,R?) nLand {d¥} € C°(Q,$?) N C>%(Q,$?) N J such that
. k _
kll_{lolo lluy — uollz2) =0,
: k _
klgglo ldy — dollrr(y = O-
By the absolute continuity of [ |uy|® + |Vd,|?, there exists R, > 0 such that

2
&

SUP/ |“0|2 + |Vd0|2 < >
xeQ J QNBag, (X)
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where €; > 0is given in Lemma 6.1. By the strong convergence of (u de) — (uy, Vdy) in L*(Q),
it follows that

sup / u, K12+ |de 12 < e for k sufficiently large.

xeqQ J QNBag, (x)

By discarding finitely many k’s and taking the rest as a subsequence, we may assume without loss

of generality that the above holds for k > 1. As a consequence, Lemma 6.1 states that there exists

0y = (€1, Ey) € (0,1) and life spans Tk > 60R2 such that each initial condition (uO, 0) admits a

(W, d*) € C*(Qx (0,TF),R? x $%) n c§ '@ x (0,T)),R? x $?) as a solution to (1.1)-(1.4).
Moreover, we have

sup / (k2 + VA 0) < 262, ©7)
QOBRO(x)

(x,[)EQTg
and Lemma 5.1 gives energy estimate

sup /(|uk|2+|de|2)(-,t)+/ (4||Duk|2+2|Ad"+|de|2dk|2)§/ [uk|? + |vdE|* < E,.
Q Q

0<t<T’(§

(6.8)
The above two estimates, together with Lemma 2.3, imply that
/ [uk|* +|Vd¥|* < €2E,, (6.9)
QT,(;
/ |d¥|? + |V2d*|* S E,. (6.10)
QTg
We use Lemma 3.1 and estimates (6.7), (6.9), and (6.10) to conclude that
K K 13
Nz @ S IV i, 1 i, + 172 0 IV s S 6B (61D
We collect estimates (6.9)—(6.11) and apply Theorem 1.2 to obtain that for any § > 0,
G, d | o s gy < C 80 Eon ¥ lla0 0 198 s, s IVPEIL s
Cy (Qx[8,TE]) ( Tg) ( Tg) 13 (Q ) 612)

< C(8,Ey, €;).
Furthermore, for any compact subdomain K € Q and 6§ > 0,

Il (uk dk)||CI(KX[5Tk < C(dist(X, 0Q), 6,1, Ey).

Hence, after possibly passing to subsequences, there exist T, > 6,R?, u € W;’O(QTO, R?),andd €
Wg’l(QTO, $?) such that

uk ~y weakly in W;’O(QTO, R?), dk —~d weakly in Wj’l(QTO, s?),
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klgglo lu” =l ) =0,
: k k _
lim [1d* ~ iy, ) + V4" = Vdll 2, ) = 0.
and forany!l > 2,6 > 0,y < 3, and compact K € Q,
: k gk _
kh—glo l(w®, d*) — (u, d)||C’(K><[5,T0]) =0,

: k gk _ _
kh—>n<.>lo ”(u ) d ) - (u5 d)”C;’l(QX[&TO]) =0.

As a result, (u, d) € C®(Q X (0,T,],R? x $?) N c;’l(ﬁ X (0, T,], R? x S?) solves (1.1)-(1.3) in Q X
(0, T,] and satisfies the boundary condition.
By (1.1),, ui‘ e L*(]o, T’g],H_l(Q)) and IILLfIILz([0 T H-1(Q)) S CE,, this together with (6.10)
TH],

states that after possibly passing to a subsequence, (u, Vd)(:, ) = (u,, Vd,) weakly in L*(Q) as
t — 0. Consequently,

E(0) lir[n iglf E(t).
On the other hand, steps in energy estimates (6.8) give

E(0) > lim sup E(¢).
t—=0

This implies that (u, Vd)(-, t) converges to (1, Vd,) strongly in L?(Q). Hence, (1, d) satisfies initial
condition (1.3).

Step 2: weak extension beyond singular time. Let T, € (T, o) be the first singular time of (u, d),
that is,

(u,d) € C®(Q % (0,T,),R*x S*) N cé’l(ﬁ x (0,T;),R? x S?),
but
(u,d) ¢ C®(Qx(0,T,],R*x S*) N c;’l(ﬁ x (0,T,],R? x S?).

Now, we would like to extend this weak solution in time. To do so, we shall investigate and define
new “initial” data at t = T.
We claim that (u, d) € C°([0, T, ], L*(2)). Indeed, we test (1.1); with ¢ € H}(Q,R*) and obtain

e, P S NVAllL2o)IVRllz2 () + Ulull o) Vallrz o) + ”Vd”iz(g))“¢”C0(Q)
S (IVdllzq) + ullzo)IVdlizq) + ||Vd||iz(g))”¢“H2(Q),

where we have used [|$llcoiq) S I$ll2q) by the fact that H(z)(Q) C C°%Q). Therefore, d, €
L*([0,T,], H2(Q)), which together with the fact that d € L*([0, T,], H'(Q)), implies that d €
C°([0,T,], L*(Q)). Similarly, we test (1.1); with ¢ € H(Q,R*) and V - ¢ = 0 to obtain

Kt @)1 S NVull2o)IV@ll2) + Nwllzo)l Vullz ) l$llicoq) + IIVulliz(Q)IIV¢I|c0(Q)

< U1Vl g2y + Nl Vel 2y + VI, I 22
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NEMATIC LIQUID CRYSTAL FLOW WITH PARTIALLY FREE BOUNDARY | 310f43

where we have used [|¢]lc1q) S [1Plg3(q) by the fact that HS(Q) C C1(Q).Since V - u, = 0, it fol-
lows thatu, € L*([0, T,], H~3(Q)). This, together with the fact thatu € L*([0, T, ], H'(Q)), implies
that u € C°([0, T, ], L*(Q)), and thus the claim is valid.

Now (u,d) € C°([0,T,],L*(Q)) means that we can define

(), d(T)) = lim (u(0) (1)) in L.

Then, the energy estimate in Lemma 5.1 yields Vd € L*([0, T, ], L*(Q)). Thus, we have the weak
convergence Vd(t) = Vd(T;) in L?>(Q). In particular, u(T;) € L and d(T,) € H'(Q). Moreover,
u(T,) and d(T ) satisfy the partially free boundary condition (1.2) since u(t) and d(t) satisfy it.

Now we can use (u(T;), d(T,)) as initial data in the above procedure to obtain a weak extension
of (u, d) beyond T, that solves (1.1)-(1.4). We may be confronted with another singular time, and
we will continue to process a weak extension in this scheme. We want to show that there can
be, at most finitely many, such singular times, and we can construct an external weak solution
beyond afterward.

Notice that in the study of heat flow of harmonic maps, each singularity carries a loss of energy.
Here, we will prove a similar result: at each singular time, the energy is lost by at least ef. By
definition, T is the first singular time of (u, d), and then Lemma 6.1 states that we must have

lim sup mal(/ (Jul®> + VAP, 1) > €.
t/Tl xeQ QnBZRO(x)

This means that there exists ¢; /* T, and x, € Q such that for any R > 0,

lim sup/ (lu)® + |Vd|2)(-,ti) > e%.
t; /Tl QnBZRU(xo)

And we observe that

/ (Jul? + VA, T,) = lim (ul? + VA2, Ty)
Q R=0 Q\Bg(xp)

< lim liminf/ (lul* + VA1), £;)
R—0 ti/Tl Q\BR(XO !

< lim 11m1nf/(|u|2+ IVd|1»)(,t;) — lim hmsup/ (lul® + VA, t;)
TR0 t;/' Ty JQNBR(x))

11m1nf/(|u|2+|Vd| )G t) — €2 <Ep — ).

This shows that each singular time takes away energy at least ef, so the number of singular time
is bounded by E/ ef. Let 0 < T} < oo be the last singular time, then we must have

E(T,) = /Q (Jul? + VAP Tp) < &

Consequently, if we take (u(T; ), d(T})) as the initial condition and construct a weak solution to
(1.1)-(1.3), this weak extension will be an eternal weak solution.
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Step 3: Uniqueness of global weak solution. Uniqueness of regular solution to (1.1) with Dirichlet
boundary condition was shown in [37], and their techniques involve proving

Vilu®)ll () + 1Vd@Oll o) = O

as t — 0, the LP-L9 regularity of the heat and Stokes operators. We shall follow the same argu-
ment as in [37]. Suppose that there are two weak solutions (u;,d;),i = 1,2 to (1.1)=(1.3) with
(1.4) such thatu; € L*®([0, T], L*(Q,R?)) n L2([0, T], H}(Q,R?)) and d; € L®([0,T], H'(Q, S?)) N
L*([0,T], H*(Q, S?)).

First we claim that A;(t) = supy.,; \/E(Ilui(s)llLoo(Q) + IVdi($)ll Lo (q)) < +00. For (xo,ty) €
Qx(0,T),wetake 0 < 7 < \/g. Since (u, d) solves (1.1) on Q X [0, T], by a scaling argument, tak-
ing (v, 9)(¥, ) = (tu, d)(x + 7y, 7% + 25) for (y,s) € P/ = [-1,0] X %Q one has (v, g) solves (1.1)
on P’. Thus, one can apply Theorem 1.2 to conclude that (v, g) € C®(P") n Ci’l(ﬁ). This means
lollLeo(pry + IV Gl Lo (pry < C(u, d) < +00, where C(u, d) is independent of the scaling size 7. Back
to the original scales, we obtain

sup  7(|[u(t)lpeo(q) + 1VA(T)l o)) < +00.
0<r<\/£

Next, we claim that A;(t) = supy.,; \/§(||ui(s)||Loo(Q) + [IVdi()ll Lo (q)) — 0 as t — 0. From
the global energy equality in Lemma 5.1, we see that the energy E;(t) = [, [u;(t)* + |Vd;()|?
is monotone decreasing with respect to ¢ > 0. As a consequence,

lim E(0) < 50) = | ful? + Vo
- Q

On the other hand, since (u;(¢), Vd,(t)) converges weakly to (u,, Vd,) in L*(Q) as t — 0, lower
semicontinuity also gives lim,_,, E;(t) > E,, and hence,

So, we have E;(t) € C([0, T]). It then follows that

2
lim sup/ (lw;)? + |Vd;|*) = 0,
t—0 xea Bt(x)XlO,izj ; 3 i

and by the smoothness of u; and Vd,;, we have
lim sup /(1w () + IVl () = O.
1=00<s<t

Finally, we claim that lim, ,, A;(t) = 0 for i = 1,2 implies that (u;,d,) = (u,,d,) on some
Qx[0,t,]. Let @ = u; —u, and d = d, — d,, then we take the difference of the corresponding
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equations and obtain

8,ii — Al =—PV- (@ ®u, +u, ® i+ Vd ® Vd, + Vd, ® Vd)

V-i=0
0,d — Ad = [(Vd, + Vd,) - Vdd, + |Vd,|*d] — [#i - Vd, +u, - Vd| (6.13)
(@,d)|=9 =0

(i, d) satisfies (1.2).

Now for § € (0,1), we define

1-6
Ds(t) =t 72 (luy (Dl 2750y + Mo (Ol 2150y + 1VAL Ol 12750y + IV A(Dll 1275 (q))-
By the interpolation inequality, we obtain
Dj(1) < (B () + E(10)° (A (1) + Ay (1) °.

Recall that by Duhamel’s formula, we have

t
a(t) = — / e IAPY (@ uy +u, ® i+ VA @ Vd, + Vd, ® Vd)(s),
0

t
d(t) = / e~ =92[(Vd, + Vd,) - Vdd, + |Vd,|*d — @i - Vd; — u, - Vd](s).
0

Thus, we apply Lemma 2.5 with g = 2/8 and p = 1, together with Holder inequality, and obtain

2

- t 25 2
Ol 20y S / (t—s) > lz IVd; ()l r2eq) + 1t 2y | ds
0

i=1

t "
pS </ (t— s)_Téds> sup (E; + E;)(s) S £8/2 sup (E; + E,)(s).
0

0<s<t 0<s<t

Moreover, we can apply Lemma 2.5 with ¢ = 2/6 and p = 2/(6 + 1), together with the Holder
inequality, to obtain

||J(t)||L2/5(Q)

t 2
< / (t— S)_1/2 lz ||Vdi(s)||L2/5(Q) + ||ui(s)||L2/5(Q)] (”Vd(S)HLZ(Q) + ”a”LZ(Q))
0 i=1

t
¥ / (= )21V (0 1yl 2y IOl 275
0

t
S ( / (t— s)—1/2s<5—1>/2ds> ( sup D5<s)> < sup [IVA(S)ll2q) + ||a(s>||Lz(m>
0

0<s<t 0<s<t

+ </t(t - s)'l/zs(a'l)/zds> < sup Az(s)> < sup (E; + Ez)(s)> < sup s'a/zlld(s)IILz/a(Q)>
0

0<s<t 0<s<t 0<s<t
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< 19/2 [ sup Ds(s) + < sup Az(S)> < sup (E; + Ez)(s)>]

0<s<t 0<s<t 0<s<t

x sup [1Vd()llz2a) + 18Oz + 521N 2500y | (6:14)

o<s<t

which converges to 0 as t — 0. Also, we apply Lemma 2.5 with ¢ = 2 and p = 2/(6 + 1), together
with Hélder inequality, to obtain

IVd(t) Il 275

t
5/(t_S)_(1+6)/2(”le(s)”LZ/ﬁ(Q)+||Vd2(s)”L2/5(Q))”Vd(s)”LZ(Q)dS
0
t
+/ (t =)™ M2 (1Vdy () s NS 2 + Na () |25 VA 2y ) ds
0
t
+/ (t = )" T2V dy($) o () | VAL ()] 2y | 275y s
0

pS < / (t — 5)” 25670/ 2dS> (Sup Da(3)> (SUP(IIft(S)IILz<Q) + IIVJ(S)IILz(g))>
0

0<s<t 0<s<t

+ < / (t— s)‘(1+5)/2s(5_1)/2ds> <Sup Az(s)> <sup (E, + Ez)(s)> <sup s—5/2||ci(s)||L2/5(m>
0

0<s<t 0<s<t 0<s<t

< c( sup D5<s)> <sup(llu(S)IILz(g> " ||Vd<s)||Lz<g>>)

0<s<t o<s<t
c ( sup A2(5)> <Sup (E, + Ez)(5)> <Sup A O] L2/5(Q)>s (6.15)
0<s<t 0<s<t 0<s<t

where we have used the fact that /Ot(t — 5)~6+D)/25(6-1)/2gq¢ = /01(1 —5)"(146)/256-1)/2 « 4o,
and likewise we conclude that it converges to 0 as ¢t — 0.

Now, we apply Lemma 2.6 with 2 > g = 2 2 2 1— £ =2 and obtain

s P V=17 2’

[IZ]l 2 2
LTH 75 (Q)

t
5/0 (t—s)‘(5+1)/2(|Iu1(S)|IL2/a(Q) + |Iu2(S)IIL2/5(Q))IIﬁ(S)IILZ(Q)dS
t
+ '/(; (t _ S)_(5+1)/2<“le(s)”LZ/S(Q) + ||Vd2(s)”L2/5(Q)> ”Vd(S)HLZ(Q)dS (616)

t
S < / (t— s>—<5+1>/2s<5—”/2ds> < sup D5(5)> ( sup(||u(s>||Lz(m + ||Vd||Lz<Q)>)
0

0<s<t 0gs<t

< C< sup D5(5)> ( sup (||U(S)||Lq(g) + ||Vd(5)||L2(Q))>

0<s<t

<SSt
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Finally, for 0 < t < ¢, we define

LL
+52-3

- I ~
®(f) = sup <IIVd(S)|IL2(Q)+S 2IId(S)IIL§(Q)+ IIu(S)II

0<s<t

(0))'

From estimates (6.14)-(6.16), and the Holder inequality || - ||;2(q) < |l - || 2 2 We have
+6 2-6

(@

o(t)<C [ sup Ds(s) + < sup (4, + Az)(s)> < sup (E; + Ez)(s)>] (1) < %@(t)

0<s<t 0<s<t Oss<t

as long as ¢, > 0 is sufficiently small such that

[\8)

C[sup Ds(s) + < sup (4, + Az)(s)> < sup (E; + Ez)(s)>] <CEP+¢)< l
0<s<t 0<s<t 0<s<t

As a consequence, ®(t) = 0 on (0, t,] and hence (u;,d,) = (u,,d,) on Q X (0, t,]. Furthermore,
this implies that our choice for weak extension beyond singular time is also unique.

Step 4: Blow-up analysis. We have established (1), (2), (4), and the first half of (3) in Theorem 1.3.
It remains to carry out the blow-up analysis at each singular time. There exists 0 < t, < T, t,, /"
T,,7,, \ Osuch that

ef = sup / (lul?® + |Vd|?), (6.17)
QNB, (x)

XEQ ty<t<ty,

and we use Lemma 6.1 in the opposite way to obtain {x,,}*°_ C Q such that

[ P VARt =6 > dmax [ (ul (AP, - 02 > A
QNBy, () 2 xea Jons,, (x) 211
(6.18)
Energy estimate in Lemma 5.1, (6.17), and the Ladyzhenskaya’s inequality states that
/ (Jul* + [Vd[") < C(ey, Ey). (6.19)
Qx[to,t1]

Denote Q,, =1, (Q\ {x,,}). Define the blow-up sequence (u,,,,d,,) : Q,, X [ m 0] by

U, (x,t) = rulx,, +r,x,t, + rfnt), d, (x,t) =d(x,, +r,x,t, + ryznt).

It follows that (u,,,d,,) solves (1.1) on Q,, X [[0_[’" 0], and (6.17), (6.18), and (6.19) give us the

following:

1,
[ G+ 194,080 > 3
Q,,nB,(0)

/ (It + Vd,, D)) < 2, Vx € Q,,
Q,,NB; (x

/ |um|4 IVd,,|* < C(ey, Ey).
lo~tm [m
QX[—

m
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__ By possibly passing to subsequences, we may assume without loss of generality that x,,, — x, €
Q for some x;, € Q.
Case 1: x, € Q. Then, we can assume r, < dist(x,, Q) and Q,, — R

0
—oo. Consequently, regularity result in Theorem 1.2 states that there exists a smooth solution
W' ,d ) : R? X (—00,0] > R? X S? such that it solves (1.1) and

(U, dy,) = (ul,,d ) inC} (R* X [—o0,0]).

loc

Because of the regularity of the two-dimensional Navier-Stokes equation and the phenomenon
of separation of sphere in harmonic map heat flow, we would like to show that the singularity is
attributed to Vd. First, we want to show that u/ = 0. Indeed, take any parabolic cylinder Py C
R? X [—00, 0], since u € L*(Q x [0, T, ]), we have

/7 4 . 4 . 4
lug|® = lim lu,,|” = lim / / |ul* =
Pg m=o Jpg 70 S Bryy i) I [t =R?r st

Next, we claim that déo is a nontrivial and smooth harmonic map with finite energy. In fact, since
Ad + |Vd|*d € L>(Q x [0, T,]), we have, for any compact K C R?,

0 0
/ /|Adgo+|Vd;0|2d’m|2<nmmf/ / |Ad,, + |Vd,,|*d,,|?
-20, /K m -20, JQ,,

tm
= lim/ /|Ad+|Vd|2d|2=o
m=e0 Jt,,—200r2, J Q

This means 8,d/_ + u - Vd’ =0 on R* x [-26,,0]. Hence, d,d,, = u,, = 0 and d, € C*(R?,S?)
is a harmonic map. Also, notice that

2
IVl |2 = lim / (It + 1V ), ~60) > 7,
B,

. . . . . . 2
and hence, d/_ is a nontrivial map. By the lower semicontinuity, for any B C R?,

/ |Vd!_|* < lim inf/ IVd,,|*(-,—6,) = lim inf/ |Vd|*(t,, — 6r2) < E

Bg M=o J By M= JB, Reom)

This implies that d’ | has finite energy. Studies of harmonic maps (see, e.g., [54] and [46]) show
that d/_ can be lifted to be a nonconstant harmonic map from S? to S2. In particular, the degree
of d/_ is nonzero and

[ VL > sl degtd )1 > 8
R2

|xm_x0|

Case 2: x, € 0Q. If further lim,,_,

Case 1 shows that (u,,,d,,) - (0,d] ) in CIZOC(IRZ), and d/ | € C*(R?,S?) is a nontrivial harmonic

M < oo implies that Q,, converges to a
m

= oo, then Q,, — R?. Then, the same reasoning in

map with finite energy. The other situation lim,,_, .,
half-plane and it will give singularity at boundary: assume without loss of generality that Z2=%0 _,
(0,0) e R? and Q,,, = R3 = {(x, ;) : X, > 0}. Because d,;,(x) = d(x,, + r,,x) for x € 6Q

d °S “vT0T “0SLL69YT

woy

5U991] suowII0) 2ANERI) 2[quaydde oy q PAUIAOT IE SIIIE VO 1251 JO SO[NI 10§ AIRIGI AUIUQ) A9TEAL UO (SUONIPUOD-pUE-StLI2l w0 Ko1K eIqouuo//:sdiy) SUONIPUOD) PUE SWIST, A1 998 “[SZ0Z/90/0€] U0 ATIqr] QutquQ A1t * Ayisioatup) surydog] sugof - a11g yoruuex £q 8000L WL 11°01/10p/w0d Kot
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can show similarly that (u,,,d,,) = (0,d’ ) in CIZOC(IRi), where d/ : R2 — $?isa nontrivial har-
monic map with finite energy and d;o satisfies (1.2), at aRi = {(x1,%,) : x, = 0}. The reflection
given in Appendix A allows us to use reflection to extend d’  to be a nontrivial harmonic map on
the whole space R?. Moreover, the reflection symmetry directly states that we have half the energy

|vd' |?> = 1/ IVd'_|? > 4m| deg(d’ )| > 4.
ol T fpa e ® O

2
Ra

7 | ETERNAL BEHAVIOR: PROOF OF THEOREMS 1.5 AND 1.6

Proof of Theorem 1.5. To prove (1), Lemma 5.1 states that there exists t;, — oo such that for
(uk’ dk) = (u('a tk)? d(, tk))’

/|uk|2+|de|2<Eo,

Q
lim/|[D>uk|2+|Adk+|de|2dk|2=0.
k—o00 Q

As a consequence, we have fQ ||Duk|2 — 0ask — oo, and thus, by weak limit, there exists f;, — oo
such that u;, — u,, in H'(Q) such that Du,, = 0. In the situation of nonaxisymmetric domain Q,
we use the Korn’sinequality in Lemma 2.12 to deduce that Vu , = 0, which together with Poincaré
inequality for H Lyector field with tangential boundary condition, thatis, v - i = 0 on dQ, implies
that u,, = 0 in H'(Q). Meanwhile, {d}{> C H'(Q,S?) is a bounded sequence of approximated
harmonic maps from Q to S2. Also, {d) 352, satisfies partially boundary condition (1.2),, and the
tension field Ad, + |Vd,|?d converges to 0 in L?(Q). By the energy identity result by Qing [45]
and Lin-Wang [36], we can conclude that there exists a harmonic map d, € C>#(Q, S?) with
d., satisfying (1.2),, and there exist finitely many interior points {xi}g=1 C Q and boundary points
{yi}ﬁ;l C 9Q such that

! !
|Vd,|?dx — |Vd,|dx + Z 8mm;0,. + Z47tml.’5yi
i=1 i=1
for some subsequence {mi}le, {m f/:l C N. Note that thisd_, : Q — S? has a different meaning
from d,, : R*(or R2) — S? that is used in the blow-up analysis for Theorem 1.3.

In the end, it remains to prove (2). We first observe that the energy is insufficient to evolve
finite time singularities. Suppose for the purpose of contradiction that it blows up near the first
singular time T,. Then, (3) in Theorem 1.3 implies that there exists a nontrivial harmonic map
w € C*(R?,S?) and

87 < [Vw|? <2 lim /(|u|2 + (VA1) < 2/ luo|® + |Vd,|? < 87, (7.1)
R2 t/Tl Q Q

where the factor 2 includes the possibility that we have singularity on the boundary. Thus, there
is no loss of energy, but then Lemma 5.1 implies that

T
/ / |Du|? + |Ad + |Vd|*d|? = 0, (7.2)
0 Q
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and hence, Du = d, = 0 in Qr, . Therefore, d(-,t) = d, € C*#(Q,s?), 0 <t < T, is a harmonic
map, which contradicts the assumption that T is a singular time.

Moreover, we would like to show that there is no blow-up of ¢(t) = max g sr(lul +
|Vd|)(x,7) at infinity. Suppose for the purpose of contradiction that there exists t;, — oo and
X € 5, such that

A = () = (lul + 1VdD(xy, ty) — 0.

Define Q. = 2,(Q \ {x,}) and (wy, dy) : Q X [-£;4},0] - R* X S* by

1 X t X t
uk(x,t) = /Tku(xk + /,l—k,tk + /1—2>, dk(x,t) = d<xk + l_k’tk + F)
k k

It follows that (u, d).) solves (1.1) on Q; X [—t,4},0] and
1= (Juge| + VA )(0,0) > (lue] + [V )(x, 1), V(x,1) € Q X [~ 4, 0].

With the same procedure as in Theorem 1.3(3), we conclude that there are two cases: either (i)
Q;, — R? and (u,d;) — (0,w’) in Clzoc(le) where w’ € C®(R?, S?) is a nontrivial harmonic map
with finite energy, or (ii) Q;, — Ré for some half-plane R, := {a;x; + a,x, > ayp} and (y, d;) —
(0,w’) in CIZO C([Ré) where w’ : [Ri — §? is a nontrivial harmonic map with finite energy and sat-
isfies (1.2), at alRi. Again, reflection symmetry in Appendix A allows us to extend w’ to be a
nontrivial harmonic map on the whole space R?.

For cases (i) and (ii), we perform the same scheme as in (7.1) and (7.2) (with T, replaced by o),

to conclude that
/ / |Dul? + |Ad + |Vd|?d|?* = 0,
o Ja

and the same reasoning yields Du = d, = 0on Q X [0, ). So, d(t) = d, € C*#(Q,S?), 0< t < o0,
is a harmonic map. This implies that ¢(¢) is constant and contradicts the initial assumption that

We have shown that ¢(t) is bounded on ¢t € (0, ), and thus regularity results in Theorem 1.2
give that [|u(:, )|l c26(Q), Id(-, £l -24(Q) stays bounded on ¢ € (0, c0). It follows that there exists
asequence f;, — oo such that

'ﬂM%WWMAK%,

Q

/(||Du|2 + |Ad + |Vd|2d|)(x, tk) -0,
Q

G-, t)ll 2y + 1dC 6l c2s (@) < €,

(u(" tk)’ d(’ tk)) g (uoo’ doo) in Cz(a, Rz X Sz)

for some (u,,,d,,) € C*#(Q,R2) x C>F(Q, S?) satisfying partially free boundary condition (1.2)
on 0Q. O
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Proof of Theorem 1.6. From Du_, = 0 € L?(Q), one can see immediately that u, is a vortex flow
of the form u,, = c(x,, —x;), and it solves the Navier-Stokes equation (1.1);. Moreover, we have
Uy - Vd, = 0.Ifc = 0, then we have u, = 0 and d, is a harmonic map on Q. If ¢ # 0, then (1.2),
implies 0Q must be circles, and if not, then u, = 0. Then, from u, - Vd, = 0, we know that each
entry of d, is radially symmetric.

‘We now elaborate in more detail in two cases.

Case 1: If ¢ # 0 and Q is a disk, since vortex flow u_, L 7 almost everywhere, we can show that
d is a constant harmonic map by an Ordinary Differential Equation. Indeed, by writing harmonic
map equation in polar coordinates, we have

A .
B,d + 18,di +|VdId' =0,
and thus,
> 0,d'3,d + 210,d'1> + [VdlPd'o,d' =0,
i
where the last term Y, d'd,d’ = 0 because |d|* = 1. By taking f(r) = |Vd|?, we have
5.1 +2f =0,

and thus, f = ‘:—22 We have harmonic map d, being smooth so that f(0) < oo and thus conclude
that f = 0.
2
Case 2: If c # 0 and Q is an annulus. Then, as above f = |Vd |2 = ‘:—2 but here « can be nonzero,
so we have

6,rdl + ;6,dl + r_Zdl =0.

4 _p1d a0q @ _ 204 _ )4 which e
s =TT and =T (ds 1) S,Whlchglves

We change the variable r = e. Then
dd' +a*d =0,
and hence,

d' = A;sin(as + ¢;) = A; sin(a In(r) + ¢;)

for some constant ¢;. And the partially free boundary conditions (1.2), imply (1.8). O

APPENDIX A: BOUNDARY CONDITION AND THE BASIC ENERGY LAW
We would like to show that the free boundary condition (1.2) is compatible with the basic energy
law for the system (1.1).

We repeat the process in Lemma 5.1 and obtain the basic energy law:

li</ |ul? + |Vd|2> = —/ 1IVu+(Vu)T|2‘/ |Ad + |Vd|*d]”, (AD)
2dt Q 0?2 Q

which describes the property of energy dissipation for the flow of liquid crystals.
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Note that the system (1.1) has stress tensor
S = %(Vu +(Vi)') = P1,+Vd © Vd — %lVd|2 I,

so the physical compatibility condition requires (S - i), = 0. Considering i - 7 = 0 and the Navier
perfect-slip boundary condition (1.2),, we have

0= ((Vd ® Vd)A, 1) = (V,d, V.d),

which gives the free boundary condition (1.2), : Vad L T X.

In addition, it is worth mentioning that in the case of half-plane Q = [R2+, the free boundary
condition (1.2) gives a reflection across aIRi. First, free boundary condition (1.2) has a simple form
in such case:

{6x2u1 =4 =0 on dR?.
axzdl = axzdz = d3 =0

By performing even reflection for u;, d, d, and odd reflection for u,, d5, we can use this reflection
symmetry to extend our solution (u, d) to the whole domain R?. Explicitly,

dy (X1, =X, 1)
] N d(xl,xz, t) = dz(xl, _xz, t) N x2 < 0.
_d3(x1a _x2a t)

ul(xls _x21 t)

a(xy, X5, 1) = l

_u’Z(xl’ —X2, t)

It turns out that the partially free boundary condition (1.2) is automatically satisfied. We can
further compute that

[ U0y Uy + U0, Uy |
a-Vi= . 2 | G =0 1),
| —(u10, Uy + 1,0, uy) |

”1ax1d1 + u2c3de1
u - Vd~ = ulaxldz + uzaxzdz (xl, _xz, t),
| —(u,0,,d3 + u,0,,d3) |

and

20, di0y x, i + O, 10, dic + Oy, A1 0, dic

V- (VdOVd) =
—(20,, A0y, x, i + Oy diOy, dic + Oy ., di0y di)

(xl, _x2a t)

Also, observe that the partially free boundary condition (1.2) implies that V4P = 0 on 6Ri. This
follows from
d,+90

_ax2P = atuz + ulaxluz + uzaxzuz + Auz + axzdka dkaxzdk

X3Xp X1Xq

=040, Uy — 3, (8, Uy) + 0, d3Ad,

X1X1
=0+ 0, d;(9,d; +u; 9, ds + w3, ds — |Vd|*d;) = 0.

Hence, we perform even reflection for P and get P(xy, x,,t) = P(x;, —x,, t) for x, < 0. Then, we
can then show that the structure of the system is preserved via the reflection (u, d, P) ~ (i, d, P),
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that is,
i+ Vi — A+ VP = -V - (Vd© Vd - 1|Vd|*1,)
i
(d+1ii-Vd=Ad+|Vd|d.

Such a reflection is not possible if we instead consider Navier no-slip boundary condition u = 0 on
0Q; thus, free boundary condition (1.2) is both physically meaningful and mathematically useful:
it allows us to convert boundary estimates to interior estimates and saves half of our labor. In
particular, Lemma 3.3 follows directly from Lemma 3.2.

However, it is difficult to tackle the general situation with curved boundary dQ2. We assume
that 4Q is smooth, and we can flatten the boundary in a way such that in the new coordinate,
the velocity field is still divergence-free. One example in [20] is to take a map ¢ : Ri NB.(z') —
Q N B,(z) given by ¢(x;, x,) = (x1,x, + h(x;)), where h(x,) is locally the graph of the boundary
0Q. Then, we define the transformed vector field v on IR%r by v = Tu = uod — (uog) - (1, 0)e,.
This transformation has the property that V - u = 0 implies V - v = 0 and tangential vector along
< still maps to tangential vector along dR?, though the normal vector is not preserved. Thus,
if we want to keep both the divergence-free property and the free boundary condition, we may
think of reflection over a curved boundary or generalize the system (1.1) to non-Euclidean metric
setup; both will produce extra low order terms in the system.
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