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ABSTRACT. The purpose of this paper is to prove new fine regular-
ity results for nonlocal drift-diffusion equations via pointwise potential
estimates. Our analysis requires only minimal assumptions on the di-
vergence free drift term, enabling us to include drifts of critical order
belonging merely to BMO. In particular, our results allow to derive new
estimates for the dissipative surface quasi-geostrophic equation.
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1. INTRODUCTION

The goal of this paper is to derive new regularity results for drift-diffusion
equations with a critical dissipative term in R?. More precisely, we establish
fine estimates for solutions to such equations by means of parabolic Riesz
potentials that are independent of the vector field in the drift term, except
for its a priori regularity (see [Kisl0] for a survey and references therein).
The framework of this article is very general and, in particular, it yields new
estimates for the critical dissipative SQG equation. Such equation has been
introduced in [CMT94] as a toy model for the regularity of Navier-Stokes
and several seminal works in the last years have led to major breakthroughs
on this topic, see [CV10, KNV07, KN09]. Moreover, let us point out that
some of the fine regularity estimates obtained in this article are even new
for the standard fractional heat equation.

For d > 2, we consider the following general drift-diffusion equation

1.1 Ou+ (b,Vu)+ Lyu=pin I x Q C R x R? = RHH!
(1.1) (b, 1 ,

where ;1 belongs to the set of finite measures in R, which we denote by
MR while b : R x R? — R? is a vector field that belongs to either
L®(R4FY) or L®(R; BMO(R?)), and satisfies div(b(t)) = 0 almost every-
where in time ¢t € R.
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The integral operator £; (t € R) is defined by

(1.2) Liu(xz) =P.V. /d(u(m) —u(y))Ki(x,y)dy,

R
where the kernel K; : R x R4 x R? — [0,00), (t,2,9) — K;(x,y) is assumed
to satisfy the following conditions for a given s € [1/2,1):

(i) Ky is a measurable function;
(i) for every t € R, K, is symmetric which means that

Ki(z,y) = Ki(y,x), for ae. (t,z,y) € R x R? x RY;
(ili) there exists a constant A > 1 such that
AL < |z —y| T EBK (x,y) < A, for ae. (t,z,y) € R x R x RY,

An example of an operator L; is of course given by the Fourier multiplier
(—A)?. In this case equation (1.1) refers to a standard class of drift-diffusion
equations. In the case d = 2, s = %, when b is given by a rotation of
the vectorial Riesz transform b = VL(—A)_%u, one obtains the dissipative
surface quasi-geostrophic equation (SQG equation). We note at this point
that in the case s = %, the drift term has the same order as the diffusion term
given by the nonlocal operator in (1.1), so that the problem becomes critical
instead of subcritical, leading to substantial additional technical difficulties
compared to parabolic nonlocal equations without drift.

The main results of the present paper establish potential-theoretic esti-
mates of (weak) solutions u to (1.1) in terms of parabolic Riesz potentials
of the measure u (see Theorem 1.2 and Theorem 1.4). In this context, we
extend similar results previously obtained in the nonlocal elliptic setting (see
[KMS15, KMS18]) to the setting of time-dependent drift-diffusion equations,
including in particular the dissipative SQG equation. Moreover, thanks to
the known mapping properties of the potentials, this framework provides
new estimates in terms of finer scales of function spaces. This philosophy
of obtaining fine regularity estimates via potentials follows a by now long
tradition started in the context of local elliptic and parabolic equations, see
e.g. [KM94, TW02, Minl11l, DM11, Ciall, KM14, KM18, BCD"18, BY19,
DZ21, DF22].

Let us now explain and discuss our main results in detail. We consider the
cases b € L (R41) and b € L>=(R; BMO(RY)) separately.

Main results for bounded drifts. A crucial step in the construction of
potential estimates is to establish suitably localized Hdélder estimates for
weak solutions to the homogeneous problem corresponding to (1.1) in par-
abolic cylinders. In our case, the homogeneous problem is given by

(1.3) O+ (b,Vv) + Lw =0 in Q,(ty, o),
where Q,(to,z0) := IZ(tg) X B,(x9) denotes the parabolic cylinder and
I2(to) = (to — 7, t0).

Weak solutions to the homogeneous problem (1.3) and the inhomogeneous
problem (1.1) are defined as follows:
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Definition 1 (Weak solutions). Let p € M(R%1). A function

u € L®(I; L2(Q)) N L2(I; H3(Q)) N L2(I; L1, (RY)) is a weak subsolution to
(1.1), if for all (¢1,t2) C I and nonnegative test functions o € L2((ty,t2); H*(R%))N
C((t1,t2); L2(Q)) with ¢ = 0 in (t1,t2) x R\ Q we have

_/:/U[ﬁt@nt(b,vw)] dxdt+/gu(t2, 2)o(ts, x )dx_/ﬂu(t1,$)s0(t1,x)dx
+/:/ /Rd (t,z) —u(t, y))(p(t, z) — o(t,y)) Ki(z, y)dydadt

to
< / / edpu.
t1 Q

Here, L1 (R?) denotes the nonlocal tail space

1 mdy . d v(y)|
L2S(R).— {UGL]OCR ‘/Rdey<oo}

A function u is called a weak supersolution if the previous estimate holds
true for every nonpositive test function ¢, and it is called a weak solution if

it is a weak subsolution and a weak supersolution.

u is called a weak (sub/super)solution to (1.3) if it is a weak (sub/super)solution
to (1.1) with = 0.

Next, we state the localized Holder regularity estimate for solutions to
the homogeneous problem (1.3) under the assumption that the vector field
b is bounded.

Theorem 1.1 (Holder estimate). Let s € [1/2,1) and b € L>® (R4 with
10| oo (ra+1) < A. Suppose that v is a weak solution to (1.3) in a parabolic
cylinder Qy(to,zg) for some r > 0. Then, there exist a € (0,1) and ¢ > 0
depending only on d,s,A,q such that v € C}} (Qr(to,x0)) and the following
estimate holds true for any q > 1:

[vllca(@, o (to.0))

1/q
<er @ ][ lvldzdt | + ][ Tail(v(t); zo,r)"dt ’
Qu(to,x0) 17 (to)

where the nonlocal tail term is defined as
: . _ .25 —d—2s
Tail(v(t); xo,7) =7 / lu(t,y)|lzo — v dy.
RNB;(z0)

The previous result is already new in contrast to previous Holder estimates
for nonlocal drift-diffusion equations (see e.g. [CV10], [NST23], [DS18]) be-
cause of two reasons. First, our estimate is truly local in nature in the sense
that it does not require v to solve an equation in the full space. Second,
our estimate of the Holder norm only contains tail terms which are merely
required to belong to L? in time for some ¢ > 1. Since this quantity is
always finite for any weak solution, our result does not impose any artificial
restriction on the behavior of solutions at infinity. Note that Theorem 1.1
does not hold with ¢ = 1 due to [KW23a, Example 5.2].
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In comparison to previous results on Hoélder regularity for nonlocal dif-
fusion equations, our result can be regarded as an extension of [KW23a]
since it allows for subcritical and critical drift terms. For previous results
on nonlocal elliptic and parabolic equations without drift see for instance
[Kas09, CCV1l, FK13, DCKP16, Cozl17, KW22a]. Finally, let us men-
tion the articles [Silll, Sil12a, Sil12b], where Holder estimates have been
obtained for nonlocal drift-diffusion equations in case £; = (—A)® using
non-variational techniques.

We proceed by introducing parabolic Riesz potentials:

Definition 2. Let 1 € M(R%1) be a finite Radon measure with finite total
mass and consider a parabolic cylinder Q,(to, zo) = (to — p**,t0) x B,(zo).
Then we denote by PZ[u] the parabolic Riesz potential of p with order
a € (0,d + 2s) which is defined as follows

R
g _ [T |Bl(@p(to, z0)) dp
Pa [M](thxO) —/0 pd+2sfa p .

In particular, one has

)
1(Qp(to, x0)) dp
PR JY) to, g :/ _
25111 (o, o) ; P p
Remark 1.1. Note that while the order 2s of the parabolic potential does
not explicitly appear in its definition, it is intrinsically encoded via the size
of the parabolic cylinder @ ,(to, o).

We are now in position to state our first main result, a zero-order poten-
tial estimate for solutions to (1.1) under the assumption that the drift b is
bounded uniformly in space and time, which in particular includes solutions
to the SQG equation.

Theorem 1.2 (Potential estimate). Let s € [1/2,1), u € M(R¥Y), assume
that b € L®(R1) with 0]l oo (mat1y < A, and that u is a weak solution of

(1.1) in I x Q C R¥*L. Then for almost all ty € I, o € Q, any ¢ > 1, and
any R > 0 such that Qr(to,xo) C I x Q, we have the estimate

(1.4)
1/q 1/q
][ |u|?dzdt + ][ Tail(u(t); zo, R)dt
QRr(to,v0) I (to)

+ Pat[u] (to, wo)] ;

lu(to, zo)| < c

where ¢ depends only on d, s, A, q.

Remark 1.2 (Equations without drift). In case b = 0, that is, when (1.1) is
a parabolic nonlocal diffusion equation without drift, the potential estimate
Theorem 1.2 remains valid for the full range s € (0,1) without any changes
in the proof (see also Remark 4.1).

Our main result Theorem 1.2 extends corresponding potential estimates
in the local parabolic case (see e.g. [DM11]) and in the nonlocal elliptic case
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(see e.g. [KMS15, KMS18, KNS22, DN23J) to the setting of nonlocal drift-
diffusion equations. Moreover, it seems to be new already for the fractional
heat equation with £; = (—=A)®, s € (0,1), and b = 0 (see Remark 1.2).

Remark 1.3 (SOLA). While for the sake of simplicity we work with the
above notion of energy-type weak solutions, in view of standard approxima-
tion arguments we expect our main results to remain valid for distributional
solutions which can be approximated by weak solutions to regularized equa-
tions in a suitable fashion. Solutions of this type are often called SOLA (=
solutions obtained by limiting approximations) and can usually be shown
to exist under general measure data. See for instance [KMS15, KNS22]
for a precise solution concept of this type in the nonlocal elliptic setting
and [BDGO97, DM11, KM14] for corresponding ones in the local parabolic
setting.

Our main technical tool for proving Theorem 1.2 is the following excess-
decay lemma, which in particular encodes the zero-order regularity proper-
ties of solutions to (1.1) in a precise way.

Lemma 1.1 (Excess decay). Let s € [1/2,1), R > 0, ty € I, g € R",
q>1, p€ MR, and assume that b € L®(R) with [|b]| o as1y < A.
In addition, let a € (0,s(1—1/q)) be given by Theorem 1.1. Let u be a weak

solution to (1.1) in I x Q and assume that Q2 (to, o) C I x Q. Then for
any integer m > 1, we have

E(u, to, o, 27mR) S C(]QiamE(u, to, o, R)
+ C2(+29)/Dm R=d) 1| (Q g (to, 0)),
where Cy > 1 depends only on d, s, \,a,q and for any r > 0,

q 1/q
E(u,ty,zo,7) := <]€@(t ) ]{9 ( )|u — (u)Qr(t07mO)|dx] dt)
r \to r (L0

+ szs/qH Tail(u(-) = ()@, (t,20): %0, T)HL‘I(Ire(tO))'

The proof of the previous parabolic potential estimate is nonlinear in
nature, not because the equation (1.1) is a nonlinear PDE, but as for the
techniques we use, which are reminiscent of the works [DM11, KMS18]. In
particular, we believe that our approach has the potential to be extended to
obtaining similar results for nonlinear generalizations of the equation (1.1).

(1.5)

Let us end this section by providing an alternative perspective. In this
paper, we also derive upper estimates for the fundamental solution of the
operator 0; + (b, V-) + L; (heat kernel). Such estimates could in principle
also be used to derive zero-order potential estimates for solutions of (1.1).

Theorem 1.3 (Upper heat kernel estimate). Let s € [1/2,1) and assume
that b € L>®(R1) with [0l oo (mat1y < A. Let 0 < <t <T and let p be
the heat kernel associated to the operator 9y + (b,V-) + Ly defined on RY.
Then the following holds

t —
(1.6) p(n,z;t,y) <c 1

Yo,y € RY

1\ d+2s
(le =yl + 1t = nl=")
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for some constant ¢ > 0, depending only on d,s, A, T.

Our proof of Theorem 1.3 is based on linear techniques and follows a
strategy going back to the celebrated work by Aronson (see [Aro68]), which
has recently been extended to a nonlocal setting by the last-named author
(see [KW23b]). We note that similar upper bounds for the heat kernel of
drift-diffusion equations have been proved in [MM13b], [MM13a] by using an
adaptation of the celebrated Davies’ method (see [Dav87], [Dav89]), which
was first applied to nonlocal problems in [CKS87].

Fine space-time regularity. In the following, we mention some conse-
quences of our nonlocal potential estimate Theorem 1.2. Indeed, it is well-
known (see e.g. [DMI11, Nguld] and the references therein) that poten-
tial estimates lead to space-time estimates for solutions, using the mapping
properties of the parabolic Riesz potential in Lorentz/Marcinkiewicz spaces.
More precisely, we have the following fine regularity results.

Corollary 1.1 (Lorentz regularity). Lets € [1/2,1), u € M(R1), assume

that b € L (R4, and that u is a weak solution of (1.1) in I x Q C R,

o For anyp € (1, d;fs) and any o € (0, 00|, we have the implication

p(d+2s)

(1.7) pe P (IxQ) = ue LE>7"(Ix Q).
o We have
(1.8) pe LI xQ) = ue LS x Q).

Remark 1.4 (Equations without drift). In case b = 0, Corollary 1.1 re-
mains valid for the full range s € (0, 1) by using the corresponding potential
estimate that was discussed in Remark 1.2.

Main results for BMO drifts. Although we are mainly interested in the
dissipative SQG system, we emphasize that our method to prove Theorem 1.2
allows to consider more general drift-diffusion equations of the form (1.1),
as far as the regularity of the vector field b is concerned. We recall that the
SQG system relates via a Biot-Savart law the vector field b to the solution
u. Whenever such a law is not available, the problem becomes to ask under
which minimal regularity assumption on b the equation (1.1) admits a local
in time suitably regular solution. It is known since the seminal work by
Caffarelli and Vasseur that dissipative SQG transports BMO-vector fields;
which is more general than the standing assumption from our main results
stated above that the drift is in L°° in space and time.

The aim of this section is to state results under the aforementioned more
general BMO assumption. While the adaptation of our techniques to BMO-
drifts is rather straightforward when s > 1/2, the critical case s = 1/2
requires us to adjust the parabolic cylinders in space to the transport that
is caused by the critical drift (see Lemma 2.8). Similar arguments were
already applied in [CV10], [NST23]. In fact, let z,(¢) be the solution to the
ODE

21 (t) = ]i b(rt,rx + rz.(t))dz, z.(0) =0.
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Then given 1y € R, z¢ € R? and R > 0, we introduce the slanted cylinders
QR(tQ,xo) = I}?(to) X BR(.%'()) by

QR(to,xo) = {(t,.%' + RZR(t/R)) : (t,x) S QR(to,xo)}.

Moreover, we define TA‘aTl(v(t);xo,R) = Tail(v(t,- + Rzr(t/R)); zo, R), and
introduce the following slanted parabolic potential. Let u € M(R1) be a
Radon measure with finite total mass. Then we define

~ R 9 €T
Pit{ul(to, zo) 1:/0 7‘”‘@;5 ’t))d—pp-

Note that in view of (2.28), the slanted potential can be controlled as
follows

Pl (to, z0) <

/R |1l (I (to) X Bep(cy+0sl108(0)) (%0)) dp

0 p? p
H(B) |M|( I3(to) x By(wo)) dp

5/0 TG T ) )

where f(p) = ¢p(C1 + Callog(p)|). Here ¢ depends only on d, A, g, while
C1 and (5 are given as in the statement of Theorem 1.4. We believe these
estimate to be helpful when investigating mapping properties for the slanted
potential, which would be required in order to obtain an analog of Corollary
1.1 for BMO-drifts in case s = 1/2.

We can then prove the following theorem:

(1.9)

Theorem 1.4. Let s € [1/2,1) with b € L>®°(R;BMO(R?)). Assume fur-
thermore that there exist constants Cy,Cy > 0 such that

) s BRSO bl epior) < o
1(Zo

t,xo

Then the following holds:

e Suppose s € (1/2,1). Then the statements of Proposition 1.1 and
Theorem 1.2 remain true under the more general assumptions on b
indicated above. The constants depend in addition on Cq,Cs.

o Ifs=1/2 and v is a weak solution to (1.3) in Qg,(to,zo) for some
r >0, where = 1+ ¢o(C1 + Ca|log(r)|) for some ¢y > 0 depending
only on d, thenv € C{ .(Qr(to, xo)), and the following estimate holds
true for any q > 1:

V|| ~a v|dxdt
H HC (QT/Q(to,xo) [( QT(t(),x())‘ ‘ )

1/q
+ (7{ (e Tall( (t);xo,r)th> ]

(1.11)
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for some ¢ >0, a € (0,1), depending only on d, A, q,C1,Cs.
Moreover, for any weak solution u to (1.1) in Qg.(tg, o) we have

1/q
lu(to, o) < c ][~ |u|dadt
QT(t()ny)

- 1/q
+c ][ Tail(u(t); zo, R)dt
I (to)

+ Py 1) (to, 7o),
where ¢ depends only on d, A, q,C1,Cs.

(1.12)

Outline. This article is structured as follows. In Section 2, we prove the
localized Holder regularity estimate Theorem 1.1 for bounded drifts, and
for drifts in BMO (1.11). Section 3 establishes a comparison estimate be-
tween solutions to (1.1) and the homogeneous problem (1.3). The potential
estimate for bounded drifts Theorem 1.2, and for drifts in BMO (1.12) are
shown in Section 4. Finally, Section 5 establishes the heat kernel upper
bound Theorem 1.3.

2. LocAL HOLDER ESTIMATES FOR HOMOGENEOUS PROBLEMS

Holder regularity estimates for global solutions to (1.3) have already been
established in [NST23]. Our goal in this section is two-fold: First to prove
a localized version of such Hoélder bounds; second, to accomplish this goal
under low integrability assumptions on the tail term, leading to precise es-
timates that are suitable to subsequently derive potential estimates. We
accomplish this by proving the desired Hélder estimates directly, without
relying on the harmonic extension that was used in the previous works
[CV10, NST23].

Indeed, for linear parabolic equations without drift, i.e. b = 0, the Holder
regularity of weak solutions to (1.3) has been established in various previ-
ously mentioned articles by a direct approach using either a nonlocal adap-
tation of the De Giorgi- or the Moser iteration. The proof consists of two
main parts: a local boundedness estimate and a proof of oscillation decay. In
order to run the respective iteration arguments, one needs to test the weak
formulation of (1.3) with suitable test-functions and derive corresponding
Caccioppoli-type estimates. In our case, the main work consists in proving
the energy estimates. Starting from those estimates, the derivation of the
local boundedness and the oscillation decay goes by an adaptation of the
techniques recently developed in [KW23a], [Lia22] (see also [BK23]).

Remark 2.1. The nonlocal log(u)-lemma seems to fail for (1.3). Therefore,
we need to follow a De Giorgi-type approach which does not make use of such
estimate in order to deduce the oscillation decay. We follow the technique
developed in [Lia22] for the fractional p-Laplacian.

2.1. Energy estimates. We have the following energy estimate for solu-
tions to (1.3). Note that they do not differ from the respective estimates
for solutions to (1.3) in case b = 0. For now, we always assume that
b€ L2 (R4 with 01| oo (ma+1y < A until specified otherwise.
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Recall the notation
Q. (to,z0) = (to — 1%, 10) x By (o).
Moreover, we write
Ire(to) = (to — Tzs,to), IEB(to) = (to,to + 7’25).

In the following, we will drop ¢ from the notation and also write B, (zg) =
B, and Q,(tg,x9) = Q,, whenever no confusion can arise.
Moreover, we write

Kt (y,v) = u(r) —u v(x) —v t(x, T
e )= [ ] () = uw) e — @)K

for the energy associated to L, and denote
& (w0) = [ [ (wle) ~uw)lo(@) ~ vlw)le ~ ol Fdyde V>0

Lemma 2.1. Let v be a weak subsolution (supersolution) to (1.3) in Qag.
Then, there exists a constant ¢ > 0 depending only on d, s, A such that for
anylGRandanyO<p1§r§r+p1gRandO<p2§r§r+p2§R

such that I,,er1 X Byryp, C QaR:
(2.2)

sup/ wi(x,t)dx—i—/e Ep (wi(t), w(t))dt

teI®

< clpa VvV ((r+p1)* — / / 1(t,z)dzedt

'r+p1 TJFPQ
T+ p2 ¢
+c ( > pQ_QS /
P2 1°

</ wy (¢, x)dx) Tail(w4 (t); 0,7 + po)dt,
Br-HJz

r+p1
and
(2.3)
sup / w2 (z, t)dx+/ Ep, (w(t), wx(t))dt
te]’re+p1 T r+p1
+ 4 28/ / / w4 (t, r)w (¢, y)dydedt
Ire+p r r
§/ wi (tg — (r + p1)*, x)dx + cpy / / 2 (t, z)dzdt
Bripy T+p1 BT+p2
r+p ¢
Y < 2) p22s/ (/ wi(t,x)dm) Tail(w (t); 0,7 + p2)dt,
P2 I7‘e+p1 Bripg

where we denote w = u — [.

Remark 2.2. Note that in the following proof we will test the weak for-
mulation of (1.3) with functions depending on u. While strictly speaking,
a priori we only have u € L?(I; H%(f2)), testing with the solution itself can
be rigorously justified regardless. In fact, this can be achieved by perturb-
ing the equation with an artificial diffusion term of the type eAwu and then
passing to the limit as ¢ — 0, see [CV10, Appendix C] for more details.
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Proof. Let us explain how to prove the desired estimates for subsolutions.
The proof of (2.2) and (2.3) is classical in case b = 0 and goes by testing
the weak formulation with the test function ¢(t,z) = n?(t)72(x)w, (¢, z) for
some cut-off function 7 € CSO(BTJF%Q) with 7 =11in B,, 0 <7 <1, and

|V7| < 4pyt, and n € C®(R), which yields for any t € I

7’+p1'
(2.4)
/ n? () wi (t)d —i—/ n? (/ (b, V[72w+])udx> dt
Bripy 17‘6+p1 Brtpg
+ P EXs (u, r2w, )dt
Ire+P1

< lto— (r+ p1)®) / 2w (o — (1 + p1)*)dz

BH—PQ
+2 / nln'| /
1° B

r+p1

T w+dx> dt.

r+p2

Moreover, we recall the following estimate (see for instance [KW22b, Lemma
3.1])

(2.5)
/19 1725f3T+p2 (tTwy, Twy )dt — /19 772(‘,’fgr+p2 (w—, Twy)dt
r+p1 r+p1
< c/ P EXs (u, 72w, )dt + cp228/ 7 </ widx) dt
Ire+p1 Ire+p1 Bripy
r+m\? 2 - .
+c P n wydz | Tail(ws; 0,7 + pa)dt,
P2 IT@+P1 Byt pg

where we also used assumption (iii) on K;. These two ingredients are suf-
ficient to prove the energy estimates in case b = 0. In order to treat the
present case including a drift term, we observe

1
(b,Vo)u=n wi(b vr? )+ n2l(b, V(TQ)) + 57727'2(6, Vw_%c),

and that therefore, after integrating by parts and using that b is divergence

free and bounded:
/ / (b, V%) |wh dzdt
18,

/ / (b, Vop)udzdt
T+P2

r+p1 T+P2
< cpy / / w3 dxdt.
1° B

r+pq r+p2

The proof of (2.2) follows now by combining the estimates (2.4), (2.5), and
(2.6), taking the supremum in ¢t € I?erl upon choosing 7(tg— (r+p1)%) = 0,
n=1inI2, |7'| < 4((r+p1)* —7?)"!, and 0 <5 < 1. To prove (2.3) we

proceed in the exact same way, however we work with n = 1. U
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2.2. Local boundedness. The following is the main result of this subsec-
tion. It states that weak solutions to (1.3) are locally bounded in their
solution domain.

Lemma 2.2 (Local boundedness). Let u be a weak solution to (1.3) in Qarg.
Then, there exists a constant ¢ > 0, depending only on d, s, A, such that

sup |u| < c][ lu(t, z)|dzdt + c][ Tail(u(t); R)dt.
Qry2 R Iy

The main ingredient in the proof is the following lemma:

Lemma 2.3. Let u be a weak subsolution to (1.3) in Qar. Then, there
exists a constant ¢ > 0, depending only on d, s, A, such that

1/2
sup uy <c (f ui(t,x)dxdt) + c][ Tail(uy (t); R)dt.
R

QRry2 Ig

Remark 2.3. In particular, the above lemma implies that weak solutions
to (1.3) in @ are locally bounded, i.e. u € L (Q).

loc

Proof of Lemma 2.3. Having at hand the energy estimate (2.2), which is
exactly the same as in case b = 0, the proof follows by the same arguments
as in [KW23a, Theorem 1.8]. Let us give a brief sketch: First of all, we
observe that with the help of (2.2), we can derive the following estimates
for weak subsolutions v to (1.3):

1/2
(2.7) sup vy < ¢ <][ V3 (t, x)dxdt) + ¢ sup Tail(v4(t); R),
QRry2 Qr tely
(2.8)
1/2 12
sup (f vi(t,x)dx) < <][ vi(t,x)dxdt) —l—c][ Tail(vy (¢); R)dt.
telg/2 Br/a R Iy

The first estimate can be achieved by a De Giorgi iteration scheme, based on
(2.2) (see [KW22b, Theorem 3.6]), without relying anymore on the equation.
The second estimate is a direct consequence of (2.2) applied with I = 0
and an interpolation argument. It can be found in [KW23a, Lemma 3.1].
Moreover, note that if w is a subsolution to dyw + (b, Vw) + Lyw < f, for
some f € L;’moo, then v(t, z) = w(t, ) —ft'; £+ ()|l oo (B)ds s a subsolution

o (1.3). Therefore, we can deduce from (2.7) that:

(2.9)

1/2
sup wy < ¢ (7[ wi(t, x)dxdt) + ¢ sup Tail(wy (t); R) + C||f+HLngO(QR)-
Qry/2 Qr tely '

To prove the desired result, we will now take n € CZ°(Bsg/2) with n =1 in
Bpr and observe that

Oy (nu) + (b, V(nu)) + Li(nu) < =, V((1 = n)u)) = Li((1 —=n)u) = f in Qar.
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Moreover, for t € L5, and = € Bpys it holds (b, V((1 — n)u)) = 0 and
therefore

14112 = I = Dby < . Tailas () RO,

R/2

Thus, by application of (2.9) to nu, and estimating sup, . ;e Tail((nu)4 (t); R)
R
with the help of (2.8), we obtain the desired result. O

Proof of Lemma 2.2. An application of Lemma 2.3 yields

1/2
sup |ul <e¢ <][ ]u(t,m)lzdxdt> + C][e Tail(u(t); R)dt.
Qr

R/2 Ig

The exponent in the first term on the right hand side can be lowered by a
standard covering and iteration argument (see [KW22b, Theorem 6.2]). O

2.3. Holder regularity estimates. The main goal of this subsection is to
prove Theorem 1.1. We establish the oscillation decay by using a nonlocal
modification of the parabolic De Giorgi iteration, as it has been carried out
for instance in [Lia22] under the additional assumption that the tails are
bounded in time (see also [APT22], [BK23]). As it was the case for the
local boundedness, this proof also goes as in case b = 0, since the equation
will only be used through the energy estimates (2.2) and (2.3) from now on.
However, some of the arguments need to be modified in order to deal with
tails that are LY in time for some g € (1,00). Therefore, we sketch some
parts of the proof.

Lemma 2.4. Let u be a weak supersolution to (1.3) in Qar and assume that
u >0 in Qar. Then, for any § € (0,1) and H > 0 there exists v € (0,1),
depending only on d, s, A, q, such that the following holds true: If

{u < H} NI, x Br| < v|I5, x Bgl,

and
1/q ,
(2.10) ][ Tail(u_(t); 2R)dt <d<H,
Isp
then it holds:
H .
u > 5 " I?R/2 X Bp/a-

Proof. The proof goes by a standard De Giorgi iteration argument. We treat
the Li-tails by a standard interpolation argument (see [DiB93]). We define

_H H A_ki—i-ki_;_l _R R - _Ri—i-Ri_H
=yt =T =t = 2

1
{u<k}n IJGR X BRZ" [{u(t) < k;} N B, | 5 Pl
A; = ! B; = =) R
; . B 72% ( ) at

k; w; = (u— ]A‘:i)+’ R;
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where # := 291 and deduce from (2.2):

(2.11)
sup / w?(, t)dx—{—/e EBR (wi(t), w;(t))dt

(S]
te[&Ri BR'L+1 R i+1

< 2"5(6R)™ / / 2(t, x)dxdt
I@

+ 2129 p= 25/ / w;(t, z) Tail(w;(t); 0, R;)dt
0(2128 + 2Zd)R_28H2Ai‘QRi‘

+ ¢2id+2s) p=2s 1 Tail(w;(t); 0,2R) /
I3k, 7

Lgu<rn (t, x)dac) dt

R

S czi(d-{-?s) R_QSHQAi‘QRi’

1/q
+02i(d+25)R_2552?s <][e Tail(u_(t);QR)th> B3+“\QRJ
I

< czi(d+2s)R72sH2‘QRi‘ (Az + Bil-i-n) 7

where we applied Holder’s inequality and used (2.10). Moreover, recall the
following estimate, which follows from the fractional Sobolev inequality and
Hoélder interpolation:

(2.12)
Ai1| Iy, o X Briy| < 2* H?(Ai| I, < Br, y)ms sup w2 (z, t)dz
tely, o Br,
+ / Ehy,,, (wilt), wi(t))dt + 22 R™ / / 7(t,x)dadt |
Iy, o 15, /Br
i+1 i+1
A combination of (2.11) and (2.12) yields for some v; > 1 and ¢; > 0:
1428 _2s
(2.13) Ait1 < 6727”62& (Ai+d+2s + A B}*””) ,
where ¢ := d+2s ANl — m Similar to the proof of (2.12), one obtains
(2.14)
(d+2)i s~ 2D o g o 2
Bit1 <2 Yy a0+ RTYH sup wj (z,t)dz
tels. Br,
i+1

4 / €5 (wi(t), wi(t)dt + 22 R /
1= i+l 15
i+1 “i4-1
which yields the following estimate after combination with (2.11) for some
9 > 1 and co > 0:

(2.15) Bis < %QWZ‘a%L (A + B,

w?(t, ac)dxdt] ,

BR'L+1
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Finally, note that by assumption, we have Ag < v < 1, and therefore

g—1 q—1 1

Ao+ BEr < Ag+ 4,7 <24,7 <2w'7 .

Thus, the desired result follows by an application of a classical iteration
lemma (see [DiB93, Chapter 1, Lemma 4.2]), upon choosing v > 0 small
enough, depending only on d, s, q, c1, c2,71, V2. O

Lemma 2.5. Let u be a weak supersolution to (1.3) in Qar and assume
that uw > 0 in Qopr. Let a € (0,1]. Then, there exist €, € (0,1), depending
only on d,s, A, q,a, such that for any H > 0 the following holds true: If

(2.16) {ulto,") = H} N Br| > o|Bg|

for some tg € I2R7 then either

1/q
(2.17) (7[6 Tail(u(t);QR)th) > H,
I2R

or for all t € I5y(to) with IgL(to) C Isk:
{ult,) = cH} N Bg| > 5|Bxl.

Proof. Let us assume that (2.17) does not hold true. Let o € (0,1). We
apply (2.3) to obtain for any t € I, (to)

/ (u— H)2 (¢, 2)dz < / (u— H)2 (ty, 2)dz
Bi-o)r

c(cR)™ / / u— H)? dzdr
to) Br

o "B R 28/ / (u—H)_Tail((v — H)_; R)dzdr
Ik (to) / Br

< H?|Bg| <(1 —a) 4+ co 6% + caid*2s52s) ,

where we also used (2.16), and applied similar arguments to derive the sec-
ond estimate, as in the previous proofs. From here, the proof is standard
(see [Lia22, Lemma 3.3]), namely, for any ¢ € (0, 1), we have

{u(t,) <eH} N Bg| < [{u(t,-) <eH} N Ba_o)r| + [Br \ Ba—o)rl

< ((1—e)H)2 / (u— HY2 (t,2)dz + do| Byl
B(l—o)
<(1-g)? ((1 —a) + com256% 4 co25% 4 da) | BR|,
which yields the desired result upon choosing o, €, § suitably, depending only

on d,s,c, . O

Lemma 2.6. Let u be a weak supersolution to (1.3) in Qar and assume
that w > 0 in Qar. Let 6,0 € (0,1] and H > 0. Then, the following holds
true: If

(2.18) {u(t,) > H} N Bg| > a|Bg| ¥t € IS,
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for some a € (0,1), then either

1/q
(2.19) ][ Tail(u_(t);2R)4dt | > 69 H,
Iin
or there exists a constant ¢ > 0, depending only on d, s, A, q, such that
H
{u§ JT}HI?RXBR <

Proof. Let us assume that (2.19) does not hold true. We define w = u — %
and apply (2.3), which yields:

R~ 23/ / / _(t,z)wi (t,y)dydadt < / w? (ty — R**, 2)dx
Br /Br Bar

+ cR_QS/ / w?dzdt + cR™2* (/ w—(t, x)dl") Tail(w-; R)dt
ISy J Bag Iy \JBar

c(cH)?(6R) ™IS, x Bg| + c(cH)6 > R? ][ Tail(w_; 2R)dt

53
IR

g
S}
6523a|I(5R X BR|.

< c(cH)*(8R)™*|I5; x Bg|

Here, we used the same arguments as in the proof of the previous lemmas
to obtain the second estimate. Moreover, we used Hoélder’s inequality to
estimate the tail term. Finally, by (2.18), we conclude

H
{u < U_} mI?R X BR < c(o'H)_l/ / w_(t,x)dxdt
4 IS, /BR

c(aa)_lH_QR_d/e/ / w_(t, x)w (t,y)dydzdt
15, JBr JBg

g
< CWLI(S@R X BR|,

as desired. O

Let us state the following growth lemma, which is an immediate conse-
quence of Lemmas 2.4, 2.5, and 2.6:

Corollary 2.1 (Growth lemma). Let u be a weak supersolution to (1.3) in
Q2r and assume that uw > 0 in Qar. Let a € (0,1] and H > 0. Then, the
following holds true: If for some tg € I}?

(2.20) [{u> H} N Bg| > o|Bxgl,

then there exist 6,0 € (0,1), depending only on d,s,\,q,a such that if
I?R(to) C QQR, and

1/q
(2.21) ][ Tail(u_(t); 2R)4dt | < 67 0H,
Iyg
then

0H )
u>— in Iy, (to + (6R)*) x Bpys.
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Proof. Let £, € (0,1]. We choose §,¢ € (0,1) as in Lemma 2.5 and obtain
for all ¢ € I (to)

«
H{u(t,-) >eH} N Bgr| > §|BR|.

Next, we can apply Lemma 2.6 and obtain that for ¢ = C~'vda (where
v denotes the constant from Lemma 2.4) and C' > 0 such that czi— < v
(where ¢ > 0 denotes the constant from 2.6)

oeHd
{u < T} QI?R(to) X BR

o
< C5zsau§BR(t0) x Br| < v|Ij}(to) x Bgl,

Finally, we apply Lemma 2.4, which yields

oeH
u >

in Qg in I?R/g(to + (6R)**) x Brya,
as desired. O
We are now ready to prove the Holder regularity estimate:

Proof of Theorem 1.1. Having Corollary 2.1 and Lemma 2.2 at our disposal,
the proof is standard (see for instance [KW23a, Lia22]): The proof goes by
constructing sequences (M;) and (m;) that are non-decreasing and non-
increasing, respectively, and to find a small v € (0, 1) and a large v > 1 such
that for every j € N:

(2.22) mj <u<M; inQ,;p and M; —m; = Lv~,

where

q
L := Collull o (qp) + ][ Tail(u(t); 2R)4dt
Iyg
for some constant Cy to be determined later. Omnce this is achieved, we
obtain

[ult, @) = u(s,y)| < RL(Jx —y| + |t — s[V/*)7,

from which we conclude the desired result upon recalling Lemma, 2.2.
We choose v such that Q,-1p C IJGR/2 X Bsg/o, where § € (0, 1] denotes

the constant in Corollary 2.1 corresponding to o = 1/2. To prove (2.22),
we observe that upon setting M; = v~ L/2 and m; = —v " L/2, (2.22)
holds true for every j < jg if we choose Cy > 20770, where jy can be chosen
arbitrarily. To prove (2.22) for j > jy, we proceed by induction. Let us
assume that (2.22) holds true for some j > jo, and assume without loss of
generality that

1
(2.23) Hulto—-) = m; + (Mj —m;)/2} N By~sg| 2 5|B,-igl-

We apply the growth lemma Corollary 2.1 to v = u — m;, and deduce that

u > M; + GL’{(;W in @Q,-u+yr. This yields (2.22) for j + 1 after defining

M1 = M; and mjq = mj + GL’{(;W. Note that in case (2.23) fails, we
proceed in the same way but upon defining v = M; — u. Note that the
verification of the assumptions of Corollary 2.1 is standard and goes exactly
as in [KW23a], relying on appropriate choices of the parameters =, v, jo. O
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2.4. The case of BMO drifts. Let us explain the necessary modifications

in the aforementioned proofs which allow us to prove Holder regularity esti-

mates (see Proposition 1.1) for solutions to (1.1) with b € L>°(R; BMO(R?)).
We state an adapted version of the energy estimate (see Lemma 2.1).

Lemma 2.7. Let v be a weak subsolution (supersolution) to (1.3) in Qag.
Then, in the same setting as in Lemma 2.1, if s > 1/2, the estimate (2.2)
and (2.3) remain true. If s =1/2, then

(2.24)
sup/ wi(x,t)dx—i—/ EECQ(wi(t),wi(t))dt
tel® 4 6

<y v (0 ) = 1)V ogglr ol pes®) [ [ wa)dad

r+p1 T+P2
r+ _
+c < p2> Pa 1 / /
P2 I° B

r+p1

wy (¢, x)dx) Tail(w4 (t); 0,7 4 p2)dt,

r+pg
and
(2.25)

sup / w2 (z, t)dx—i—/ 51{ (w(t), ws(t))dt

©
te[r+p1 T T+P1

+rd1/e / /witijFty)dydxdt
I T T

r+p1

s/B w(to = (r + p1),x)da

r+pg

welotvilom ot ea?) [ [ wdita)ded

'r+p1 TJFPQ
r+ _
+c < p2> Pa 1 / /
P2 1° B

r+p1

wy (¢, x)dx) Tail(w4 (t); 0,7 + p2)dt,

r+p2

where ¢ > 0 also depends on Cq,Cs.

Proof. We only need to explain how to modify (2.6). Note that (1.10) implies

]
(2.26) sup <][ |b(t,x)|idx> < —logy(R)C,
Br(zo)

t,zo

since we have the following computation, based on John-Nirenberg lemma:

(7633(:::0) |b(t,:c)|sdx> < (7633(:::0) |b(t, z) — (b(t))BR(x0)|sdx> + (b(£)) By (o)
< c(1 —logy(R))C1 + Cs.

e . - : d+2s _ 1,
We compute using Holder— and Sobolev inequality, and 7% = 3 + 3:

/ / (b, V) |wh dadt
IS

rT+p1 T+P2
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d—2s
d

(Twi)% dx) dt

e [ ( [

r+p1

d+2s
d

(b, VT)wi]didasdm> dt
r+p2
< ce/ P& (Twa, Twy )dt

©
IT+P1

2s
a
+C(€)/ 7 / bsdz / \Vr|2wida | dt.
1° Bripg Brypgy

r+p1

Now, the first term can be absorbed and the second term can be estimated
from above.
Indeed, if s > 1/2, then using (2.26), we obtain:

2s

d
c(a)/ " / bsdz / \Vr|2wida | dt
1° Bripg Brypgy

r+p1
2s

2 4 ! 2,2
n sup bsdx |Vrfwide | dt
:BoEBT+p2\Br BpQ(lEO) BT+P2

<cle) [ (~logy(pa))ek ( / |vT|2widw> at
I BT+02

r+p1

< —c(e, C)pQ_QS/ / w3 dxdt,
IS, /B

r+p1 r+p2

where we used that — logg(pg)pgs_2 < cp2_25. If s = 1/2, then we estimate
the second term as follows:

2s

d
c(s)/ 7 / bs da / |Vr|2wide | dt
1° Brip, Brtpy

r+p1

<e(e0) [ (“loralr+ p)r -+ o) ( /

r+p1

|V7’|2w2idx) dt

r+pg

< el C)logy(r 4 )+ ps” [ [ whdedr
I B

r+pq r+p2

This observation concludes the proof. O

Clearly, since Lemma 2.1 remains true for BMO-drifts if s > 1/2, the
proof of the Holder estimate (1.11) in this setting follows in the exact same
way as described before. Thus, in the following, we restrict ourselves to
proving Proposition (1.11) in the critical case s = 1/2.

2.4.1. Local boundedness in case s = 1/2 with slanted cylinders. Note that
the pre-factors in (2.24) and (2.25) are different from the case of bounded
drifts. When following the proof of the local boundedness estimate using
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De Giorgi iteration, and tracking the pre-factor, one easily sees that the
following estimate holds true on scale one:

(2.27) sup |u| < c][ lu(t, z)|dzdt + c][ Tail(u(t); 1)dt,
Q12 Q1 7

where ¢ > 0 depends on d, A, Cy, Cs.
To get a local boundedness estimate on scale R € (0, 1), we will make use
of the following rescaling, which leaves the mean value of the drift invariant

(see [NST23, page 1677-1678], [CV10]):

Lemma 2.8. Let s = 1/2 and assume (1.10). Let r € (0,1), and z.(t) be
the solution to the ODE

21(t) = ]é b(rt,rx + rz.(t))dz, 2-(0) =0.

Then, there exists a constant ¢ > 0, depending only on d such that
(2.28) lzrllos (ny < €(C1 + Cal log(r)]) =: 6 — 1.

Moreover, let u be a solution to (1.1) in Qg, for some r € (0,1). Then,
up(t,z) == u(rt,rx + rz.(t)) satisfies

opuy + (b, Vuy) + Lru, =0 in Q1

where L, is an operator of the form (1.2) with kernel K, given by

Ko (2,y) = r" Ky (re — rz,(t),ry — rz:(1)),
satisfying the conditions (i), (ii), (iii). Moreover, the drift b, is defined as
by(t,z) == b(rt,rz + rz.(t)) — z.(t) and satisfies
div(b,) = 0, ]{3 br(t,z)dz =0,  [[br]|Loo(m BMO®RY)) = [[0(rt, ) || oo (R BMO(RA)) 5

1
107 || oo (1,;20(By)) < eCoa,

for any q > 0, where ¢ > 0 depends only on d,q.

Moreover, given ty € R, g € R? and R > 0, we recall the definition of the
slanted cylinders Qr(to, zo) = I}?(to) X By gr(zo), which are given as follows
Qr(to, mo) = {(t,x + Rzr(t/R)) : (t,z) € Qrl(to, z0)}-

By combination of the previous lemma with (2.27), we get the following

local boundedness estimate on small scales in slanted cylinders:

Lemma 2.9. Let s = 1/2 and assume (1.10). Let u be a weak solution to
(1.3) in Qgr, where § — 1 = ¢(Cy + Co|log(R)|), as in Lemma 2.8. Then,
there exists a constant ¢ > 0, depending only on d, s, A, such that

(2.29) supu < c][~ lu(t, z)|dedt + c][e rFa?l(u(t); 2)dt.
Qr

Q2r IS
Proof. Defining ug as in 2.8 and applying (2.27) to up yields
sup [u(t,x + Ren(t/R)| = sup un
(t7$)€QR (t,$)€Q1

< c][ lug(t,z)|dzdt + C][e Tail(ug(t); 2)dt

2 12
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< c][ lu(t,z + Rzr(t/R))|dzdt + C][ Tail(u(t, - + Rzr(t/R)); R)dt
2R g

R

for some constant ¢ > 0, depending only on d, A, Cy,Cs. This implies the
desired result. O

2.4.2. Hélder regularity in case s = 1/2 with slanted cylinders. Moreover,
note that the preliminary growth lemmas from the previous section (see
Lemma 2.4, Lemma 2.5, and Lemma 2.6) remain true for R = 1, and as a
consequence, also the following counterpart of Corollary 2.1 holds true on
scale one:

Corollary 2.2 (Growth lemma). Let s = 1/2 and assume (1.10). Let u
be a weak supersolution to (1.3) in Qo and assume that u > 0 in Qq. Let
a € (0,1] and H > 0. Then, the following holds true: If for some to € IY

{u=H}N B = a|Bl,

then there exist 6,0 € (0,1), depending only on d, A, a, q,C1,Cs, such that
if[?(to) C @3, and

1/q ,
(][e Tail(u_(t);2)th> <d096H,
I

2

then

0H
u > ? m I(?/Q(to + 628) X BI/Z'
The proof of Corollary 2.2 goes in the same way as before.
We are now in position to explain the proof of the Holder regularity
estimate (1.11) in slanted cylinders:

Proof of (1.11). The proof is split into two steps:

Step 1: First, we mimic the proof of [NST23, Theorem 4.1}, using Corollary
2.2 on scale one, instead of the growth lemma in [NST23] for the harmonic
extension. Note that we also need to make use of the suitable rescaling
of (1.1), which was introduced in Lemma 2.8 and preserves the quantities
in (1.10) in the same way as in the proof of [NST23, Theorem 4.1]. The
arguments from this article transferred to our setup (replacing also the L
global bound by the L?-tail, as it appears in Corollary 2.2) yield that there
exists § > 0 such that for any (¢,z) € Q15 it holds:

HU”Ca(Q

1/q
baa) S€ [ull Lo (@s4) + (fe Tail(u(t); 1)th> :
o I
where ¢ > 0 depends only on d, A, g, Cs. From here,
Step 2: The next step is to prove the Holder estimate on scale R. To
do so, we first observe that a simple covering argument, together with the
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local boundedness estimate (2.27), implies

[ 1/q
”uHCa(le) <ec ”uHLoo(Q3/4) + <]€6 Tail(u(t); 1)th>
(2.30) - 1

1/q
<c ][ |u|dzdt + (][e Tail(u(t); 1)th> ,
1 I

1

where ¢ > 0 depends only on d, A, q,C1,Cy. Next, we apply Lemma 2.8 and
obtain:

HUHCQ(QR/Q) = HuRHCa(le)

1/q
<c ][ |up|dzdt + (][e Tail(ur(t); 1)‘1dt)
1 I

1

1/q
=c ][ |uldzdt + ][ TA‘aTl(u(t);l)th ,
Qr I

R

as desired. O

3. COMPARISON ESTIMATES

The goal of this section is to prove the following comparison estimate,
which compares a solution to (1.1) with a solution to the homogeneous
equation (1.3). Note that in this section we do not use any other property
of b except for div(b) = 0. Thus, the same proof works for L>°— and BMO-
drifts. For a comment on how (3.2) might be additionally adapted in case
s =1/2 when b € BMO, we refer to the end of this section (see (3.4)).

Lemma 3.1 (Comparison estimate). Let u be a weak solution to
deu + (b, Vu) + Lyu = p € MR in Q.
and v be the unique weak solution to

O+ (b,Vv) +Liv =0 in Q,,
(3.1) v =u in I7 x (R*\ B,),
v =u mn {—7’28} X Rd.

We set w := u —v. Then, we have

o pfs(5).

teI®

where ¢ > 0 is a constant depending only on d, s, A.

Remark 3.1. The existence of the weak solution v to the problem (3.1)
can for instance be established by standard variational methods, see for
instance [BLS21, Theorem A.3] for a similar existence proof in the setting
of the parabolic fractional p-Laplacian.
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Proof. Let us test the weak formulations for u and v with ¢= = + (1 A w%)
and subtract the two resulting identities. This yields:

/ (Oyw) ¢ dx —i—/B (b(t, ), Vo= (t,z))w(t, z)dx
[ () = wlt ) @£(2) - 6 (6 0)Ki o) dyds
= [ et < o1,

where we used that |¢| < 1. Note that since we want to estimate the left
hand side from below, we can neglect the second term, since by definition

(w(t, ) —w(t,y))(¢ (t,x) — ¢Z (t,y)) = 0.

Moreover, the drift term can be treated as follows, using div(b) = 0:

| 0.0 Vo it aide = 5 [ (6t0), V(62 P (t2)do = 0
R4

T

Thus, we have

(3.3) / (Orw)¢Ede < |u(t)|(B,).

B

Moreover, let us compute

(Oyw) gt = 8, / - (1 A 3) do.
0

e

Now, given § > 0 and 7 € I, let us define

1, t<T,
ns(t) =< 1—eYr—t), T<t<T+e¢,
0, t>71+e¢.

We observe that after integration by parts:

/I NG / T((?tw)gfdxdt
_ /I?(_amg)/r (/Owi (1 g) da) dadt
— ns(—r%) / </Owi(r287m) <1 A g) da> dzx
_ /I?(_amg)/r (/Owi (1r2) da> dadt.

In the last step we used that w(—r2%) = 0. Let us now multiply (3.3) on
both sides with 15 and integrate over I©. Then, by plugging in the previous
observation, we obtain

/19(_at775)/r (/OM <1 A g) da> dzdt < /1,@ ns(t)|p®)|(Br)dt < |ul(Qy),
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where we also used that |ns| < 1. Now, taking the limit £ N\, 0, we observe
that by the monotone convergence theorem:

/’<—aﬂm>/°1mHMﬁtgruuQr»
° B,

T

Moreover, since —dyns — 9., as § \, 0, we obtain from the dominated
convergence theorem

[ welro)ds < (@)

T

and by adding the corresponding estimates for the positive and negative
part, we obtain (3.2), as desired. O

We close this section by commenting on the case s = 1/2 and b € BMO.
By carefully tracking the proof and replacing @, by Q,, it becomes appar-
ent that the following result holds true instead of (3.2) when wu solves the
equation in Qs, and v is a solution in Q,:

(3.4) sup][ lw| < ¢ l(©r) .
tel? Bt,r ‘BT‘
Here the balls By, are defined as in (4.5) below.

4. PROOF OF POTENTIAL ESTIMATES

We are now in position to prove the excess decay lemma given by Lemma
1.1, which turns out to be the crucial ingredient for the proof of the potential
estimates given by Theorem 1.2.

Proof of Lemma 1.1. Let v be the comparison solution as defined in Section
3 with respect to r = R. Splitting into annuli and using the parabolic Holder
estimate (see Theorem 1.1) yields

E(U, to, o, 27mR)

q 1/q
S v=w —m x dl‘ dt
<]€e (to) ]é2mR(x0)| ( )Q2 r(to, 0)| ] )

2—MR

- [v = (V)@ p(to
—m 2s m g (10,Z0
oS (f o — o2
I (to) | Y Bok—m g (£0)\Bgk—m—1 g(z0) 0—Y

k=1 2-mR

’ q 1/‘1
) dy] dt)

=, o torl . 17\
+ (27 R)?(0-1/9) / / Zp e dy | dt
19 (to) | JRA\BR(zo) |zo — yldt2s

2—MR

m—1 , »
<0 gk ][ ][ S
kzo ( I3 (t0) [ Boyj—m p(20) Qy—m g(to,%0)

2—MR

q 1/q
pez i (N o (g, | de
15(t0) |/ Br(ao) Bammaltoro
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Qok—m g (to,T0)

m—1
<C Z 9~ 2sk 0sc v+ 02_28(1_1/‘1)7”E(v,t0,x0, R)
k=0

o0

<g27om Z 2(0‘*23)RE(U, to, o, R) + CQiQS(l*l/q)mE(v, to, zo, R)
k=0
< CQ_GmE(U, to, Zo, R)

Together with the comparison estimate from Lemma 3.1, we obtain that
E(u,to, 9,2 ™R)
< E(v,tg,x0,2 ™ R) + E(u — v,ty, 20,27 " R)
< C27Y"E(v, to, xo, R) + CQ((d+2s)/q)mE(u — v, tg, To, R)
< C27°™ E(u, tg, xo, R) + C2U42)/0m R=d| | (Qg(to, x0)),
finishing the proof. (]

Proof of Theorem 1.2. Let m > 1 to be chosen large enough in a way such
that m only depends on d,s,A. In particular, we require m to be large
enough such that

1

(4.1) Cp27om/? < 5
Observe that this in particular implies that for any integer ¢ > 0,
(42) Cozfam(iJrl)/Q < 27(i+1).
Moreover, for any integer i > 0, set

Ei = E(u, t(], Zo, 2ilmR)
By Lemma 1.1 and (4.1), (4.2), for any integer ¢ > 0 we have

1 i _

(4.3) Eiyr = SEi+ Co2(2)/@m (27 R) 4| | (Q-im g (t0, %0))-

For [ € N, summing (4.3) over i € {0,...,1 — 1} leads to

! -1 -1
1 —im R\ —
'5—1 Ei=g E_O E; + Co2((d+2)/aym '5_0(2 R) ™) (Qa-im g (to, 0)),

so that by reabsorbing the first term on the right-hand side of the previous
inequality we deduce

l 00

Z E; < 2By + 2Co2@2/0m N " (27 R) =4 1| (Qy-im p(to, 70))-
i=1 =0

Thus, we have

|(u)Q2_(l+1)mR(t07$O) |
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q 1/q
<C ][ ][ luldx | dt
Ig (to) BR(tQ,{L'Q)

+ R72s/q|| Tail(u(-) — (U)QR(to,xo); 05 R)||Lq(jg(t0))

+ Z(TimR)deKQrimR(to, ﬂ?o))) ;

=0

where C' depends only on d, s, A, g, which is in particular because m only
depends on the aforementioned quantities. Since the last term on the right-
hand side can be controlled by the parabolic potential of order 2s, the proof
is finished by applying the Lebesgue differentiation theorem.

O

We end this section by commenting on how to obtain the parabolic po-
tential estimates in case b = 0 for the full range s € (0,1) (see Remark
1.2).

Remark 4.1. In case b =0, and s € (0,1), the Holder estimate Proposition
1.1 was obtained in [KW23a]. Moreover, it is easy to see that Lemma 3.1
can be proved in the exact same way in this case. Having at hand these
two results, one can follow the proofs of Lemma 1.1 and Theorem 1.2 line
by line and thereby deduce the potential estimate for parabolic equations
without drift and s € (0, 1).

4.1. The case of BMO drifts. Clearly, since Lemma 2.1 remains true for
BMO drifts if s > 1/2, the proof of the potential estimate Theorem 1.2 in
this setting follows in the exact same way as described before. Thus, in the
following, we restrict ourselves to proving (1.12) in the critical case s = 1/2.

Lemma 4.1 (Excess decay under BMO drifts). Let s = 1/2, assume that
(1.10) holds, let R > 0, tg € I, g € R, ¢ > 1 and p € MR, In
addition, let o € (0,s(1—1/q)) be given by (1.11). Let u be a weak solution
to (1.1) in I x Q and assume that Qogr(to,zo) C I x Q, where § — 1 =
c(Cy + Callog(R)|) for some ¢ > 0, depending only on d. Then for any
integer m > 1, we have

E’(u, to, o, 2_mR) S 002_0‘mE(u, to, o, R)

4.4 -
(44) 1 Co2@2)/0m R4 4| (D20, o)),

where Cy > 1 depends only on d,s,A,«,q and for any r > 0, the slanted

excess is defined by
q 1/q
w= g dz| dt
][Bt’r(mo)| ( )Qr(to,x0)| ] )

E(uatO,xO?T) = <]{e(t )
r \t0

+ 172 Tail (u() = (W), (4y,0)3 705 ") |1 (12 1))

where for any t € R,

(4.5) By (20) = { +72,.(t)r) : € By(20)}.
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Proof. Let v be the comparison solution as defined in Section 3 with respect
to r = R. Splitting into annuli and using the parabolic Holder estimate in
the case of BMO drifts (see (1.11)) yields

E(U, to, xo, 2me)

q 1/q
= ][ ][ lv—(v)5 syldz | di
< I, (o) [/ B, 5—m (o) Qa-m g(to,T0)

277'77,

m lo(t,y + Rzr(t/R)) — (v); ol T8\
X Z ][ / a2 Ya=m p{to:%o) dy| dt

= \Jio ) |/B ) lzo —yldt2s

+ (2me)2s
Qkme(mO)\ngfmflR(xO

2—mMPR
lu(t,y + Rzr(t/R)) — (v)5 T\ M
+ (27 R)2s(1-1/0) / / - Quomaltowo) g | gy
IimR(tO) RN\ Bg(wo) lzo —
<C 9—2sk (7[ [][ v — (v)5 . |dy] dt)
;] Ifme(tO) Bt’gk—mR(wo) Q27MR(tO, 0)

q 1/q
+ 027 2s(=1/am ][ ][ v— (V)5 dy| dt
Ig(to) Bt,R($O)‘ ( )ngmR(t07$0)’

+ 2723(171/q)m||ﬁ(v(') - (U)QQ—mR(to,:vo);xO’ R)HLq([g(tO))

<C 9~ 2sk 0sc v+ 02_25(1_1/q)mﬁ~3(v, to, o, R)

0 ng—mR(t07$0)

3

i

<Cg27em i 2(0‘*23)/&“‘@(@, to, o, R) + 02*23(1*1/‘1)7”@(@, to, zo, R)
k=0
< C2*°‘mE’(v,t0,xo,R).
Together with the slanted comparison estimate from (3.4), we obtain that
E(u,to, 20,2 ™R)
< E(v, to, o, 2" R) + E(u —v,tg,20,2” " R)
< C2_O‘mE(v, to, o, R) + CQ((d+25)/q)mE(u — v, g, zg, R)
< C27ME (u, to, To, R) + C2(@H29)/0m R=d| | (Qg(to, x0)),
finishing the proof. (]
We are now ready to prove (1.12).

Proof of (1.12). The proof easily follows after replacing the standard excess

E(u,tg, zo,r) in the proof of Theorem 1.2 by the slanted excess E(u, to, o, 7).
O

5. UPPER HEAT KERNEL ESTIMATES FOR DRIFT-DIFFUSION EQUATIONS

Let £, and b be as before with [|b][ o (ga+1y < A, and assume that K,
satisfies (i), (ii), (iii) for some s € [1/2,1) and A > 0. Given 7 € [0,00)
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and y € RY, we define (t,z) — p(n,x;t,y) as the solution to the following
problem:

(5.1) {&gu + (b,Vu) + Liu = 01in [, 00) x RY,

u(n) = dy.
We call p the heat kernel of the operator 0; + (b, V-) + L;.

The goal of this section is to prove Theorem 1.3, i.e. to show that for any
n <t < T it holds:

_4d t—mn
(52)  pasty) <c ((f —n) = A W) Vz,y € R?

for some constant ¢ > 0, depending only on d, s, A, T.

Note that given € [0,00) and y € R%, the function (t,z) — p(n, y;t,z)
solves the following dual problem:

_ — 0 d
(5.3) {&gu (b, Vu) + Lyu 0 in [n,00) x R%,

u(0) = Jy.
This is a simple consequence of the fact that b is divergence free. Let us also

introduce the notation p(n, z;t,y) = p(n,y;t,z) and define the correspond-
ing semigroups (P;) and (P;) as follows:

P f(x) = /de(n,w;t,y)f(y)dy, Pyif(x) = Adﬁ(n,m;t7y)f(y)dy, f € L*RY).

Let us first collect a few basic properties of the heat kernel and the asso-
ciated semigroup:

Lemma 5.1. The heat kernel p(n,x;t,y) exists under the assumptions of
Theorem 1.3, and it holds:

(5.4) / p(n,z;t,y)dy =/ p(n,z;t,y)de =1,
R4 R4
(5.5) 0 < p(n,a;t,y) < et —n) "3,
(5.6) p(n,z;t,y) = / p(n,z; 7, 2)p(T, z;t,y)dz Vn < 7 < t.
]Rd

Morcover, for any uy € LARY, Pyef(x) = fouuo()p(nz:t,y)dy and
ﬁn,tuo/gx) = [pauo(y)p(n, z;t,y)dx solve (5.1) with Pyjug = uo, and (5.3)

with Py, yug = ug, respectively.

Proof. The proof of all properties is standard. For more details, we refer
to [MM13a]. Let us just mention that the upper bound in (5.5) is a direct
consequence of Lemma 2.2 applied with Q%/z(t, z), where R = (t —n)'/(29),

and (5.4), i.e.

_d _d
p(nw3t,y) < et — 1)~ % sup / p(n, 77, y)dy < et — ) 5.
TE(N,t) Rd
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Before we start with the actual proof of Theorem 1.3, we need to introduce
corresponding truncated objects. First, given p > 0, we define

Chu() = pv. / (u(x) — uly)) Koz, y)dy.
BP(:B)

The heat kernel and semigroup corresponding to the problem

dyu + (b, Vu) + Lfu = 0 in [, 00) x RY,

are denoted as p”,p”, (P/), (]3tp ), and are defined in the same way as their
non-truncated counterparts, replacing £; by £7 in all definitions. Moreover,
Lemma 5.1 remains true with p replaced by p” and P, ; replaced by Pnp7 .
Moreover, we introduce the truncated ”carré du champ “ operator

T2(0,v)(x) = /B ) o) =yl

We need the following truncated version of the local boundedness-type
estimate Lemma 2.2:

Lemma 5.2. There exists a constant C' > 0, depending only on d, s, A, such
that for every to € (0,00), 2o € RY, and p, R > 0 with R < P/Q/\t(l)/(%), and
every solution u to Oyu + (b, Vu) + L{u = 0 in Qr(to, zo) it holds:

P 1/2
(5.7) sup u<C <%> R sup (/B ( )uz(t,x)dx) :
2p\T0

QRry2(to,70) teIg (to)

Proof. Recall that we have the same energy estimate (2.2) as in case b = 0.

The energy estimate remains true if £; is replaced by £ with Tail(w.;0,r+

p2) replaced by [ B\Brts wy (y)|y|~42%dy. From here, the proof follows
T+p2

along the exact same arguments as the proof of [KW23b, Lemma 2.4]. O

5.1. Aronson’s weighted estimate. The following lemma is an adapta-
tion of [KW23b, Lemma 3.1]. It is a nonlocal adaptation of Aronson’s
weighted L?-estimate, which is the main ingredient in the proof of the up-
per heat kernel estimates. Due to the presence of the divergence free drift
term, we get the additional summand |VH| in the first condition on H,
compared to [KW23b].

Lemma 5.3 (Aronson’s weighted estimate). Assume that p > 0,0 <n <T.
Let u € L™®((n,T) x RY) be a solution to the p-truncated problem Oyu +
(b,Vu) + Lfu = 0 in (n,T) x R with u(n) = ug. Then there exists a
constant C' > 0, depending only on d,s, A, such that for every bounded
function H : [n,t] x R = [0,00) satisfying

o C(|VH|+TE(HY? HY?)) < —0,H in (n,t) x RY,

o 1P € (0, 0): (R,

the following estimate holds true:

(5.8) sup H(r,z)u?(r, z)dz < H(n, x)ud(x)dz.
T€(n,t) JRE R4
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Proof. The proof is very similar to the one of [KW23b, Lemma 3.1]. As in
[KW23b], let us take v € C°(R?) is such that yg = 1 in Bg_1(0), yr =0
in R\ Br(0),0<yg <1, |Vygr| <2 for R > 0.

Note that

/nt /Rd(b, Vu(r,z))yguH (1, x)dzdr = %/nt /Rd(b7v(u2))’YRH(T,x)dxdr

1

t 1 t
= 5/ / (b, V’YR)U2H(T,$)d$dT+—/ / (b, VH)u?yrdzdr.
n JRI

We test the weak formulation with ¢ = 73 2 Hu, and obtain from the previous
computation, as well as the same arguments as in [KW23b]:

sup / u*(r e g (e )H(T,l‘)dfvé/ ug(a)vi(x) H (1, x)dz

TE(N,t) Rd

—|—02// V(u*)yrHdzdr

// 202FP(H1/2 H1/2)+2czyvﬂy+at )dmdr
Rd
2% / L omb ) - B2 2P - ol dadadr
n JREJ By(x)
t
+202// UZHFQ(WR,’YR)dxdT
n JRI
t
% / / / W (r, 2) H (7, 2)(va() — 1r(2)%le — y| 42 dzdedr
n JRE I By(x)
t
+202/ / qu’v’YR’dxdT
n JRd

< [ wbnh@) R, o)

t
+ / / u? (4@1“’)([{1/2 H1/2)+4c2]VH]+6tH> dadr
n

+ 2¢o|ull%, / / ro(HY?, HY?)dzdr
R4 \BRr— 1(

0)
4 deaull?, / / O(vravr) + [Vm]) Hdadr.

By the definition of yg, and since H € L'((n,t) x R?) by assumption, we have
that the last term in the previous estimate converges to zero, as R — oc.
The second term goes to zero by the same arguments as in [KW23b, Lemma
3.1]. This implies the desired result. O

5.2. Gluing lemma. The goal of this section is to prove the following re-
lation between the truncated heat kernel p” and p:

Lemma 5.4 (Gluing lemma). Let p > 0 and 0 < n <t. Then,
plna;t,y) < p(n,a;t,y) +e(t —n)p~ 7% Va,y e R
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Moreover, it holds
_ —2s
P, w;t,y) < P p(n, it y) Va,y € RY
The constants c,C > 0 depend only on d, s, A.
A central ingredient in its proof is the following parabolic maximum prin-

ciple, which remains true in the presence of a divergence free drift b. For
Q C R? open, we define H&(R?) = {u € H*(R?) :u =0 in R?\ Q}.

Lemma 5.5. Let Q C R? be open. Assume that u solves

O+ (b, Vu) + Liu <0, in (n,00) x Q,
(5.9) us(t) € HY(RY) ¥t € (1,00),
uy (t) — 0 in L2(Q), ast \, 7.

Then u < 0 a.e. in (n,00) x Q. The same result holds for subsolutions to
Opu + (b, Vu) + LYu < 0 in (n,00) x Q.

Proof. First, we observe that
1
/ (b, Vu)uydx = —/ (b, V(u?))dz =0
Rd 2 R4

since b is divergence free. Moreover, note that £Xt(u(t),uy (t)) > 0. Thus,
testing the weak formulation for u with ¢ = uy, we obtain for any n < t; <
t21

/ui(tg,x)dx - / uy (ty,z)dx <O0.
Q Q
The desired result follows by taking the limit ¢; \ 7. O

We are now in the position to give the

Proof of Lemma 5.4. Let ©, C R% n € N, be an increasing sequence of
domains, such that Q, ~ R% Let f € L'Y(R?) with £l (rey < 1. We
define (¢,z) — ngf () to be the solution to dyu + (b, Vu) + Lyu = 0 with
u(n) = f, and (t,z) — P,;?g“p (x) to solve the corresponding problem with
L; replaced by L.

The proof of the result goes as in [KW23b, Lemma 2.2] and is based on an
application of the parabolic maximum principle Lemma 5.5 to the function
(t,z) — P,?t" (x) — u(t, x), where

u(t,x) = Py’ f(a) + Ot —n)p~ > (),

and ¢, € CX(RY) with 0 < ¢, <1, ¢, = 1 in Q,,.

In order to apply Lemma 5.5, it remains to prove that u solves dyu+ (b, Vu)+
Liu < 0 in (n,00) X Q,. To prove it, we take an arbitrary test function
YeH, (R9). First, note

\%

ERL(PLI fp) — EXT(PEP™ ) > —cp™ 20l 11 ey | P £l o ey

> —cp™ |9l 11
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where £Xt was defined in (2.1), we wrote K/ (z,y) = Ki(2,y)1z—y<,(%,y),
and we used:

HPP’ "oy < NP flln@ay < 1P) 1 oo ay | fll L1 ray < 1.

Note that in the first estimate, we applied Lemma 5.5, and in the last
estimate, we used (5.4). Moreover, we have

[ onide = [l o, [ (0.90,)0ds =0, E¥(6n,0) > 0
R4 R4

by the definitions of ¢, 1. Therefore,
Btu(t z)p(x)dx + / (b, Vu)pda + EX (u, 1)
[/ ath’ x)(x )dx+/ (b, VPP’ "f)wdx+5Kt(Pp’ " f, ¢)}

+Cp i [ /R Gntpda + (t — 1) /]R (B Vo)pdz + (= 0)E™ (én, 7/))]

> —Cp_d_QSWJHLl(Rd) + CP_d_QSHTﬁHLl(Rd)
> p ¢l prway (C =€)

Thus, we can choose C' > ¢ large enough such that, indeed (¢, z) — Pé?t"f(x)—
u(t, x) is a subsolution.
Therefore, by the maximum principle Lemma 5.5, we obtain:

(5.10) Pl f(a) < PP f(a) + Ct—m)p~ 2 £l i ggay.

Taking n — oo in (5.10) implies by the same arguments as in [KW23b,
Lemma 5.3]

Pyof(x) < Ppof (@) + C(t =m)p~ || fl| 1 (ga-

This yields the desired result by recalling the relation between P,,tf and p
in Lemma 5.1, and choosing f = 14 for any measurable set A C R
The proof of the second claim follows by an application of the parabolic
2s

maximum principle to u(t,z) = Py’ Qf P f()et=me™ n

5.3. Upper estimates for the truncated heat kernel. The goal of this
section is to deduce upper estimates for the heat kernel p” corresponding to
the truncated operator £f:

Proposition 5.1 (Truncated heat kernel estimate). Let T > 0. There exist
¢ >0, v > 1, depending only on d,s,\,T, such that for every p > 0,
0<n<t<T,and z,y € R witht —n < ﬁp%:

BI) Pt < e (00 )
5.11 pP(n,x;t,y) <c(t—mn) 252 120 ( ) .
v(t—mn)
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Giveny € R? p>0,0<n<t<T,witht—n< ﬁpzs, where v > 1, we
set
(5.12)

p2$

- -1 2 ~ 3
H“”*‘(wmrwn—v—nn> A(wmwwn—v—mﬂ
_ e‘log(u[2<t—5)2i<f—n>J) (‘xz_py‘\”)_

The following lemma shows that H satisfies the assumption of Lemma 5.3
if v > 1 is chosen appropriately.

Lemma 5.6. For every C,T > 0, there exists v = v(d,s,C,T) > 0 such
that for every p >0, y € R and 0 < n <t < T witht —n < ﬁp%, the
function H defined above satisfies:

C|D2(HY?2, HY?) +|VH|| < —8:;H in (n,t) xR, HY? e L((n,t); H*(RY)).

Proof. Note that H is the same function as in [KW23b]. Therefore, we refer
to [KW23b, Lemma 3.3] for the computations involving 9 H and T';(H /2 H'/?).
In case |z — y| < 2p, we have

—OuH (1,2) = vp~ 2, TP(HY? HY?)(1,2) = |VH(7,2)| = 0.
In case 2p < |z — y| < 3p, we have
—OH(T,z) = vp~ 2, TO(HY? H?)(1,2) < cp™ %, |VH(7,z)| = 0.

In case |x —y| > 3p, it holds

2s
|z —y 710g(u[2(t7p)7(77 )]) (‘xa_y‘>
— H = n n P
D) = 5= = =] ’

2 ES
Pp(HUz H1/2) <e |z — y eflog(um(tfr?)f(rfnn)( 3py>
S = Bev[2(t —n) — (7 —n)] ’

2s lo—yl
|IVH(1,z)| < Cie_log(u[w—g)—(r-m])( o )
) iy 3p

2s l=—yl
< [z —yl eflog(um(t—r?)—w—nn)( 5 )
- L .
3pr2s [2(t — 1) — (1 — )]
In the last step, we used that since s € [1/2,1):

2t =) = (7 = )] < efs, T)(t =)= < C(j;%T)p = C(j;isT) |z =yl

where ¢(s,T) > 0 is a constant. This proves the desired result upon choosing
v > 1 accordingly. O

Next, we apply Lemma 5.3 to H. This yields the following lemma:

Lemma 5.7. Lety € R%, 0,p >0 and 0 <1 < T. Let ug € L>(R?) be such
that ug = 0 in B,(y). Assume that u € L>®((n,T) x RY) is a weak solution
to Opu =+ (b, Vu) + Lu =0 in (n,T) x R? with u(n) = ug. Then there exist
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v > 1,C > 0, depending only on d,s, N, T, such that for every t € (n,T)
with t —n < ﬁp%:

25\ “e Tt
fu(t,y) < Ot —m)dade (—L—) " 7"
- v(t—mn)

Proof. We apply Lemma 5.3 with H as in (5.12). This is possible due
to Lemma 5.6. It follows that for every y € R%, 0 < 5 < t < T with

t—n< ﬁp%, applying also Lemma 5.2 with R = (¢ — n)%, to=1t, xo = y:

d 2s 4% 1/2
fut, )] < er(t —m) ( 4 ) sup ( / u2<7,x>dx>
t=n/) re@mt) \IBay()

d 1/2
a [ p* o\ SUPgeRd\ B, (y) H(n,z) /
) HUOHL2(Rd)

<ept—m) 4 .
t—mn infre(n,0),2eBa,(y) H(T, T

Hu0||L2(Rd)-

@

for some constants cq,co > 0.
Note that there exist c3,cs > 0 such that for x € R?\ B,(y) it holds

H(n,z) < c3 (%)gp

and for (7,x) € [n,t] X Ba,(y) we have:
25

H(r,z) > cs (h)l.

This follows directly from the definition of H and t —n < ﬁ p*¢. Together,
we obtain

o 1 d
L)l < eslt — )oY TR
[ult, y)| < e5(t —n)~ 520 | — lluoll 2 (may

(t—mn)

for some constant c5 > 0, as desired. O

Now, we are in the position to deduce off-diagonal heat kernel estimates
for the truncated heat kernel p*:

Proof of Proposition 5.1. First, observe the following on-diagonal bound for
p?, which follows from (5.5) combined with the second estimate in Lemma
5.4:

d

(5.13) PPt a,y) < T ()
The on-diagonal bound (5.13) and (5.4) immediately imply for every 0 <
n<t<Twitht—n< ﬁp% and z,y € R%:

1/2
(5.14) ( / pﬂ(n,x;t,zfdz) <alt—n)
]Rd

1/2
(5.15) ( / pﬁ(n,z;t,@?dz) <erlt—n) i
]Rd
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for some ¢; > 0. On the other hand, from Lemma 5.7, it follows for every
0§n§t§TWitht—n§ﬁp25 andyGRd:

(5.16)

/ P( )2d 2 ( ) d o p25 76lp+%+%
p 777y7t72 z SCQ t—?’/iEsz < > ’
RO\ By (y) V=)

(5.17)

/ . )2 1/2 ( | Ve ,025 —g’—p+%+4£s
b 777Z;tay dZ §C2 t—n T 4s96p ( )
RN\ Bo (y) v(t —n)

for some co > 0. To prove (5.16), one observes that

u(T,x) = / PP, y:t, 2)p” (n, 237, 2)dz
RN\ By (y)

solves Qyu + (b, Vu) + L{u = 0 and satisfies the assumptions of Lemma 5.7
with

up(z) =P, y; 6, 0) Lip—y>0y (2),  ult,y) = / p’(n,y;t, z)*dz.
RNB, (y)
From here, (5.17) follows by the same arguments, choosing
u(r, @) = / p’(n, 2 t,y)p’ (0, 27, 2)dz,
R\ B, (y)

which solves the dual equation du — (b, Vu) + Lfu = 0 with Up(z) =
pp(777 xit, y)]l{\x—yba} ().

Note that boundedness of u and %, which is required in order to apply
Lemma 5.7, is a direct consequence of the on-diagonal bound (5.13) and
integrability of the truncated heat kernel, which follows from (5.4) and the
second property in Lemma 5.4.

To prove (5.11), let us fix 0 < <t < T witht —n < ﬁp%, and z,y € R%.
Then we define o = %|x — y| and compute, using the semigroup property:

Pait) = [ (=220 = n)/2. 500
= [ st 2200 (- /2.5 )
RO\ B (y)

N LR EREETIE
a\y
= J1 4+ Jo.
For J;, we compute, using (5.14), (5.17)

1/2 1/2
Ji < </ p’(n,x; (t —mn)/2, 2)2d2> </ PPt =mn)/2, 2 t,y)2d2>
RN\ Bs (y) RNB; (y)

lz—yl 1, d
12p +2+4s
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for some c3 > 0. For Jo, observe that B,(y) C R?\ By(x), and therefore by
(5.15), (5.16):

1/2 1/2
Jy < </ p’(n,z; (t —n)/2, 2)2d2> (/ pP((t—m)/2, 2t y)2d2>
R4\ By () R4\ Bg ()

lz—yl 1, d
lo—y] 2s 13, tatas
ooyt (2 )
v(t —n)
Together, we obtain the desired result. O

5.4. Proof of the upper heat kernel estimate. Now, we are in the
position to prove Theorem 1.3:

Proof of Theorem 1.3. Let z,y € R be fixed. By the on-diagonal estimate
(5.5) it suffices to show that for some constants cg,c1,co > 0 and t —n <
colz — y|** it holds
ity) < L=
p(n,z;t,y) < Clm-
By Lemma 5.4, we know that for every p > 0 and 0 < n < ¢t < T with
t—n < Lp*

(5.18) p(n,z;t,y) < pP(n,x5t,y) + Ot —n)p~ 42

for some C > 0. We choose p = % (d;—fs + % + 4%)71 and define co =
12 (d;—fs + 3+ 4%,). Then by combination of (5.11) and (5.18), we deduce
fort —n < ﬁp%:

pln,z;t.y) < et =)z -y~ %,
where ¢; > 0. This proves the desired result. O
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