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Abstract

In recent years, machine learning potentials (MLPs) have become indispensable

tools in physics, chemistry, and materials science, driving the development of software

packages for molecular dynamics (MD) simulations and related applications. These

packages, typically built on specific machine learning frameworks such as TensorFlow,

PyTorch, or JAX, face integration challenges when advanced applications demand

communication across different frameworks. The previous TensorFlow-based imple-

mentation of DeePMD-kit exemplified these limitations. In this work, we introduce

DeePMD-kit version 3, a significant update featuring a multi-backend framework that

supports TensorFlow, PyTorch, JAX, and PaddlePaddle backends, and demonstrate

the versatility of this architecture through the integration of other MLPs packages

and of Differentiable Molecular Force Field. This architecture allows seamless back-

end switching with minimal modifications, enabling users and developers to integrate

DeePMD-kit with other packages using different machine learning frameworks. This

innovation facilitates the development of more complex and interoperable workflows,

paving the way for broader applications of MLPs in scientific research.

1 Introduction

Over the past decade, machine learning potentials (MLPs) have become increasingly in-

fluential in the fields of physics, chemistry, molecular biology, and materials science.1–6

This has led to the development of software packages specifically designed for training and

employing MLPs in molecular dynamics (MD) and free energy simulations, and other ap-

plications requiring accurate potential energy and force calculations.7–21 These packages are

typically built upon specific machine learning frameworks such as TensorFlow,22 PyTorch,23

or JAX.24 While a single machine learning framework often meets most requirements, in-

creasingly complex applications necessitate interoperability between packages utilizing dif-

ferent machine learning frameworks. This poses a significant challenge for developers when
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these packages rely on disparate frameworks. Additionally, each framework may have unique

advantages, such as optimized performance for specific applications or better compatibility

with certain hardware. To address these limitations, developers of several MLP packages

have created secondary versions based on alternative frameworks. However, introducing new

frameworks typically create separate, standalone packages rather than refactoring existing

ones, which significantly increases the complexity and maintenance costs for both the pack-

ages and their integration with molecular dynamics software. For instance, MACE25 offers

both PyTorch-based and JAX-based implementations, but they exist as separate packages,

and the integration of LAMMPS with the MACE JAX implementation has not been realized.

The earlier version of the DeePMD-kit package7,26 was built on TensorFlow, which posed

challenges for integration with other packages utilizing different deep-learning frameworks.

To address this limitation, Gao et al. developed a JAX-based package27 to enable seamless

integration of deep potential models with JAX-MD28 for an end-to-end GPU-accelerated

workflow. Similarly, Zhang et al. introduced a PyTorch-based package alongside the devel-

opment of the DPA-2 model29 for better distributed training performance. However, main-

taining consistent user interfaces (UIs) and application programming interfaces (APIs) for

tasks such as training, inference, and molecular dynamics simulations across these different

frameworks proved to be both inconvenient and inefficient.

In this work, we introduce a major new release of the DeePMD-kit package (v3), fea-

turing a multi-backend framework that integrates the existing TensorFlow22 backend with

new backends, including PyTorch,23 JAX,24 and PaddlePaddle.30 These backends are de-

signed to be interchangeable, allowing users and developers to switch between them with

minimal modifications. The new framework reuses the well-established interfaces developed

in previous versions (see Fig. 1), maintaining seamless integration with other software, such

as LAMMPS,31 i-PI,32 AMBER,33–35 CP2K,36 OpenMM,37,38 GROMACS,39 ASE,40 and

ABACUS.41 The inclusion of these new backends enables DeePMD-kit to seamlessly inter-

act with other packages that utilize PyTorch, JAX, or PaddlePaddle, thereby expanding its
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Figure 1: The DeePMD-kit software ecosystem. The arrows indicate dependency flow. Soft-
ware packages shown in the figure include: (1) DeePMD-kit; (2) Machine learning and array
frameworks: NumPy,42 TensorFlow,22 PyTorch,23 JAX,24 and PaddlePaddle;30 (3) Molecu-
lar dynamics packages: LAMMPS,31 i-PI,32 Amber,33 OpenMM,37 CP2K,36 GROMACS,39

ASE,40 ABACUS,41 and GPU-MD;43 (4) Workflow packages: DP-GEN,44 MLatom,45 and
DP-TI;46 (5) Program language API: Python, C, C++, and Node.js.

compatibility and functionality. Additionally, this update enables DeePMD-kit to leverage

unique features and optimizations available in different machine learning frameworks, further

enhancing its flexibility and performance.

2 Software Description

2.1 A Multiple-backend Framework

The multiple-backend framework added in DeePMD-kit v3 is aimed to support multiple

deep-learning frameworks in a pluggable way while providing a unified interface for users

and developers. When introducing the multi-backend framework, no breaking changes were

made to the existing Python and C/C++ APIs in DeePMD-kit v2. As a result, the exist-

ing interfaces implemented in various molecular dynamics packages can be reused without

requiring any modifications.
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Figure 2: The infrastructure of the TensorFlow and PyTorch backends in the DeePMD-kit
software. The arrows indicate dependency flow. Modules in blue existed in DeePMD-kit
v2,26 modules in red are newly added in DeePMD-kit v3, and modules in green are machine
learning frameworks.

The infrastructure of the TensorFlow and PyTorch backends is illustrated in Fig. 2; other

backends are organized in a similar manner. For both training and inference tasks driven

by different models, users interact with a unified set of interfaces, regardless of the backend

being used. The backend-specific implementation is then invoked to perform the actual

computations, leveraging external machine learning frameworks that are highly optimized

for performance. In some cases, these backends also share common implementations through

customized operators. For example, the model compression functionality47 is implemented

in the DeePMD-kit core library, utilizing DeePMD-kit CUDA or ROCm libraries for efficient

computation.

Users are expected to interact with each backend in a uniform manner, without needing

to understand the backend-specific details. During model training and saving via the Python

interface, users can simply specify the desired backend. All other training parameters are

designed to be backend-agnostic, ensuring a consistent user experience. Once training is
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complete, the model is saved in a backend-specific format. When the saved model is loaded

for inference through the Python or C++ API during molecular dynamics simulations, the

backend is automatically detected based on the model filename, and the appropriate backend

module is used. Furthermore, models created with one backend can be easily converted to

another backend, providing flexibility and interoperability for various workflows. An example

user script is shown as follows:

# Use the PyTorch backend to train and freeze the model

dp --pt train input.json

dp --pt freeze -o model.pth

# Test the model

dp test -m model.pth -s dataset

# Convert the model to that in the JAX backend

dp convert-backend model.pth model.savedmodel

Developers can incorporate new backends in a modular and pluggable manner, focus-

ing on backend-specific implementations without needing to modify the existing Python or

C/C++ APIs or interfaces with external packages. DeePMD-kit provides an implementation

in the Array API48 (see Section 2.2), simplifying the process of adding new backends based

on machine learning frameworks that support the Array API. For developers looking to add

new models, the Array API can also be used to implement these models for backends that

support it. For backends that do not support the Array API, model implementation can be

facilitated with the assistance of large language models (LLMs), as shown in the Supporting

Information, streamlining the development process further.

A challenge in the multiple-backend framework is to ensure that the same model driven

by different backends produces the same results. To address this issue, we have developed a

set of tests that compare the results of the same model driven by different backends. The

models can be serialized and deserialized in the Python interface, which is the reason why

they can be converted to each other.
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2.2 Backends

Five backends are supported in the current version of DeePMD-kit: DP, TensorFlow,22

PyTorch,23 JAX,24 and PaddlePaddle.30

DP. The DP backend serves as a reference implementation, designed to provide a correct

and standardized foundation for model development. It is built using the Array API,48

allowing its functionality to be leveraged by other backends (such as JAX) without requir-

ing code duplication. By default, the DP backend uses NumPy,42 which does not support

gradient computations or GPU acceleration, for computations to minimize dependencies.

TensorFlow. The TensorFlow backend is the original backend of DeePMD-kit. It utilizes

the TensorFlow v1 API,22 which employs static computational graphs to optimize perfor-

mance. These static graphs can be saved into model files and later restored for inference in

both Python and C++ interfaces. The customized TensorFlow C++ operators are mainly

used to calculate coordinate matrix, force, virial, and embedding network and matrix in

compressed models.

PyTorch. The PyTorch backend leverages dynamic computational graphs to provide greater

flexibility.23 It employs TorchScript for model serialization, enabling models to be saved and

loaded in both Python and C++ interfaces. The customized PyTorch C++ operators are

used for model compression and communication between processors or GPU cards in the

graph neural networks of the DPA-2 model.29 PyTorch is friendly to be developed with and

thus has a larger user base. PyTorch is widely used in various atomistic packages, including

machine learning potential packages,12,25,49 force field packages,50 semiempirical quantum

chemistry packages,51 and molecular dynamics packages.52 The development of the PyTorch

backend has made it easier to integrate DeePMD-kit with these existing packages.
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JAX. The JAX backend is built on top of the DP backend and the Array API,48 using

JAX24 as its array library. JAX performs just-in-time (JIT) compilation for enhanced per-

formance. Models created with the JAX backend are saved in a TensorFlow-compatible

format using the “jax2tf” converter, allowing them to be loaded via the TensorFlow C++

library.22 JAX has gained popularity in the field of atomistic simulations, supporting ma-

chine learning potential packages,50 machine learning density functional packages,53 force

field packages,54,55 and molecular dynamics packages.28

A challenge in the JAX backend is that the JAX JIT compiler requires the input tensors

to have static shapes, a constraint not imposed by TensorFlow or PyTorch. However, dur-

ing molecular dynamics simulations, parameters such as the maximum number of neighbor

atoms, the simulation box size, and the number of ghost atoms that do not directly con-

tribute atomic energies are dynamic and not known in advance. To address this limitation,

the compiled JIT model is wrapped within a standard TensorFlow model. During each sim-

ulation step, the TensorFlow model calculates or post-processes the neighbor list and other

tensors with dynamic shapes. The neighbor list is then passed into the compiled JIT model,

combining the strengths of both TensorFlow (for handling dynamic inputs) and JAX (for

optimized performance through JIT compilation). To handle the dynamic number of ghost

atoms, a larger fixed value is initially set, which is adjusted if it becomes insufficient during

the simulation.

The choice of integrating JAX with TensorFlow rather than PyTorch is primarily mo-

tivated by their shared use of the Accelerated Linear Algebra (XLA) compiler. Initially,

JAX was developed based on XLA, which was originally a module within TensorFlow before

it became an independent library. Both TensorFlow and JAX inherently utilize XLA for

compilation, enabling a straightforward conversion between them via the jax2tf function,

which compiles JAX functions using XLA and wraps them within a TensorFlow model. In

contrast, PyTorch does not include XLA integration by default, making TensorFlow the

natural and more efficient choice for creating this hybrid model.
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PaddlePaddle. The PaddlePaddle backend, which is based on PaddlePaddle,30 features

a similar Python interface to the PyTorch backend, ensuring compatibility and flexibility

in model development. PaddlePaddle has introduced dynamic-to-static functionality and

PaddlePaddle JIT compiler (CINN) in DeePMD-kit, which allow for dynamic shapes and

higher-order differentiation. The dynamic-to-static functionality automatically captures the

user’s dynamic graph code and converts it into a static graph. After conversion, the CINN

compiler is used to optimize the computational graph, thereby enhancing the efficiency of

model training and inference. In our experiments with the DPA-2 model, we achieved ap-

proximately a 40% reduction in training time compared to the dynamic graph, effectively

improving the model training efficiency. While PaddlePaddle has been utilized in other

scientific fields,56 DeePMD-kit is the first software package to implement machine learning

potentials using PaddlePaddle.

2.3 New Design Principles in version 3

When new backends, including DP, PyTorch, JAX, and PaddlePaddle, were introduced, the

design of the DeePMD-kit was thoroughly reconsidered. The following design principles

were adopted, differing significantly from those used in the previous TensorFlow backend of

DeePMD-kit version 2:

Metaprogramming. To reduce code duplication and enhance maintainability, metapro-

gramming techniques are employed to generate backend-specific classes from those in the

reference DP backend. For instance, in different backends, a neural network is constructed

from multiple neural network layers. While the structure of these layers is consistent across

backends, the implementation must interact with different machine learning frameworks

depending on the backend. By transforming a base neural network class into a backend-

specific neural network class using a backend-specific layer class, the implementation of

neural networks becomes backend-agnostic. This approach ensures a consistent structure
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Figure 3: Schematic plot of the model components in DeePMD-kit version 3.

while allowing flexibility for backend-specific details, significantly streamlining development

and maintenance.

Atomic model. In version 3, we introduce an innovative component termed the “atomic

model” (see Fig. 3). This model is based on the assumption that the physical quantity to

be learned, represented by y, can be decomposed into atomic contributions, expressed as:

y =
∑
i

yi (1)

This approach simplifies the implementation process for model developers, who only need to

define and implement the atomic contributions yi. The DeePMD-kit subsequently performs

the summation of these atomic contributions and computes the generalized force Fi and

virial Ξα,β, which are defined as the partial derivatives of the physical quantity with respect

to atomic coordinates and cell vectors, respectively:

Fi = − ∂y

∂ri
, Ξαβ = −

∑
γ

∂y

∂hγα

hγβ. (2)
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In Equation (2), ri represents the Cartesian coordinates of atom i, while hαβ denotes the β

component of the α-th cell vector. It is important to note that the atomic model concept is in-

troduced to facilitate the implementation of physical quantities that can be decomposed into

atomic contributions. For cases where atomic decomposition is not suitable, DeePMD-kit

supports the implementation of a standard model without relying on atomic decomposition.

Computation of the neighbor list and the coordinate matrix. In the TensorFlow

backend, the neighbor list, the coordinate matrix, and the gradient of the coordinate ma-

trix with respect to the coordinates were computed using custom TensorFlow operators, as

these operations are not standard in TensorFlow.7 This design posed challenges for calcu-

lating and training the Hessian, the second gradient of the output with respect to atomic

coordinates, ∂y
∂xi∂xj

. In the new backends, these computations are performed using standard

operators provided by the respective machine learning frameworks. This enables straightfor-

ward inference and training of the Hessian using the automatic differentiation capabilities

inherent to these frameworks. The neighbor list can be configured to exclude specific pairs of

atomic types, thereby implementing range corrections for MD simulations using MLP/MM

or QM/MM+∆MLP.57

Implementation of communications for graph neural network models. The new

backends now support graph neural network (GNN) models, such as the DPA-2 model29 and

the in-development DPA-3 model. A key challenge in implementing GNN models is managing

communication between nodes or GPU cards during molecular dynamics simulations. In a

GNN model, atomic features are updated based on atom and edge features within a cutoff

radius, which requires access to the neighbor list of surrounding atoms. However, some

neighbor atoms may be ghost atoms that do not directly contribute atomic energies, and

their neighbor lists are typically unavailable in most molecular dynamics packages.31 Some

GNN-based MLP packages address this issue by generating ghost atoms within an extended

cutoff radius (rc×L, where rc is the cutoff radius for each layer and L is the number of layers)
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and rebuilding the neighbor lists for the ghost atoms. This approach, however, significantly

increases computational cost. Other packages have suggested running simulations on a

single GPU card to avoid this issue. To overcome these limitations, the new backends

implement a customized C++ operator that uses the message-passing interface (MPI)58 to

exchange atom and edge features between processors or GPU cards. This solution enables

efficient simulations across multiple nodes or GPU cards in high-performance computing

environments.

Descriptor block. The complexity of descriptors has increased significantly with the ad-

vancement of deep potential models. The DPA-2 model,29 for instance, primarily consists

of a representation-initializer block, representation-transformer layers, and a three-body em-

bedding block. The representation-initializer block is derived from the DPA-1 descriptor.59

To address the growing complexity and support future development, we introduce a novel

component called the “descriptor block” (see Fig. 3), which serves as a modular foundation

for constructing complex descriptors. The descriptor block is designed to be flexible and

extensible, allowing seamless integration of new descriptors into the framework.

Refactor of the implementation of the DeepSPIN model. In the TensorFlow back-

end, the DeepSPIN model60 was initially integrated into the descriptors and fitting networks

in an ad hoc manner, which hindered maintainability and limited the adoption of new fea-

tures such as the DPA-2 descriptor. To address these limitations, the DeepSPIN model has

been refactored in the new backends into a modular component that operates on top of any

standard potential energy model.

The DeepSPIN model aims to represent the potential energy of a system as a function

of atomic coordinates, spin, and the simulation cell. To achieve this, the model introduces

pseudo atoms, which are associated with physical atoms through the relation:

rip = ri + ληiSi, i ∈ A, (3)
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where A denotes the set of physical atoms, Si is the spin of atom i, ληi is a user-defined,

element-specific scaling factor (with ηi representing the element type of atom i), and ri is the

Cartesian coordinate of physical atom i. Notably, pseudo atoms do not represent physical

entities but serve as computational tools to encode the spin states of their associated physical

atoms. To ensure type consistency, pseudo atoms inherit mapped element types from their

host atoms (e.g., Fe_spin from Fe), denoted by ηspin
ip .

The model processes an augmented atomic input, which includes both the augmented

coordinates {ri, rip | i ∈ A} and the augmented types {ηi, ηspin
ip | i ∈ A}. These inputs are

fed into a standard potential energy model to generate augmented outputs, including the

augmented atomic energies {Ei, Eip | i ∈ A} and the augmented atomic forces {F̂i, F̂ip | i ∈ A}.

Post-processing steps are then applied to convert the augmented predictions into physical

quantities. The total energy is computed as the sum of energy contributions from all physical

atoms:

E =
∑
i∈A

Ei. (4)

The atomic forces Fi and magnetic torques ωi for atom i are derived, respectively, as:

Fi = −∂E

∂ri
= F̂i + F̂ip , ωi = − ∂E

∂Si

= ληiF̂ip . (5)

The system virial Ξ is calculated by summing the outer products of the forces and positions

of all physical atoms:61

Ξ =
∑
i∈A

Fi ⊗ ri. (6)

This refactored design, as illstrated by Fig. 3, enhances code clarity and maintainability

while maintaining compatibility with standard potential energy model architectures.
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Removal of the local frame descriptor. In the previous publication,26 we have indi-

cated that the local frame descriptor62 is not continous at the cutoff radius and the exchang-

ing of the order of two nearest neighbors. Thus, the local frame descriptor is removed in the

new backends.

3 Selected Extensions

DeePMD-kit v3 introduces an extensive plugin system designed to seamlessly integrate ex-

ternal models into its various backends. In this section, we demonstrate the versatility of

the multi-backend framework by showcasing the integration of other MLPs packages and of

Differentiable Molecular Force Field.

3.1 DeePMD-GNN

Most machine learning potential (MLP) packages, including the previous version of DeePMD-

kit, are typically restricted to a single type of neural network potential developed by the same

team of developers. This limitation imposes additional burdens on users, who must learn

new packages, and on developers, who must maintain multiple packages, while also makes

it impossible to benchmark models using the same loss function, learning rate, and data

sets. In the earlier version of DeePMD-kit, integrating other MLP packages was challenging

because most were not based on TensorFlow. This limitation was addressed with the devel-

opment of the multi-backend framework and the PyTorch backend. Consequently, Zeng et

al. introduced the DeePMD-GNN package,63 which integrates the MACE25 and NequIP49

models into the PyTorch backend. This advancement marked the first time DeePMD-kit

supported highly mature external potential models, significantly enhancing its versatility.

It is worth noting that the plugin solely extends the trainable model module (see Fig. 3)

and reuses the existing loss function and learning rate modules in the DeePMD-kit, allowing

different models to be compared easily under the same conditions.
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3.2 DMFF plugin

Long-range interactions are critical in many systems but are challenging to incorporate into

an MLP model.64 Zhu et al.65 developed a PyTorch version of the Differentiable Molecular

Force Field (DMFF) package54 that implements Ewald summation66 and charge equilibra-

tion (QEq)67 methods for handling long-range interactions. These interactions have been

integrated into the PyTorch backend of DeePMD-kit, enabling a hybrid approach where

long-range interactions are described by traditional force fields, while short- and mid-range

interactions are captured by MLPs.

4 Benchmark

A key application of the multi-backend framework is its ability to run molecular dynam-

ics simulations using the most efficient backend. To illustrate this, we present benchmark

calculations using the following models: DPA-1 without attention layers (L=0) and its com-

pressed version,47 DPA-1 with two attention layers (L=2),59 and DPA-2 (medium).29 These

benchmarks were performed in both single- and double-precision modes, employing the Ten-

sorFlow, PyTorch, and JAX backends on a single 80 GB NVIDIA H100 GPU card, 40 GB

NVIDIA A800 GPU card, and 24 GB NVIDIA 4090 GPU card. The simulations involved a

water system of varying atom counts, with each calculation repeated 500 times to obtain an

average computational speed. LAMMPS31 interfaced with DeePMD-kit v3 is used to per-

form simulations. Here we note the limitations in the current package when this article was

written: only the DPA-1 (L=0) model supports model compression, the TensorFlow backend

does not support the DPA-2 model, the JAX backend does not support model compression,

and the PaddlePaddle backend is still under development.

All of the models use a fitting network that consists of 3 hidden layers with 240, 240,

and 240 neurons. The coordinate matrix is encoded from the local environment within a

6 Å cutoff radius and 1 Å of smoothing; The details of DPA-1 models are as below: the
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embedding network consists of 3 hidden layers with 25, 50, and 100 neurons; the embedding

submatrix size is 12. Specifically, in the DPA-1 (L=2) model, the length of hidden vectors

in each attention layer is 128. The details of the DPA-2 (medium) model are as below: the

representation initializer layer is encoded based on the local environment within a 6 Å cutoff

radius and smoothed over 1 Å; the model uses 6 representation transformer (Reperformer)

layers, with each layer calculated using a 4 Å cutoff and 1 Å of smoothing; three-body

embedding is incorporated within a 4 Å cutoff; the embedding network consists of three

hidden layers with 25, 50, and 100 neurons, and the embedding submatrix has a size of 12; the

fitting network also has three hidden layers, each containing 240 neurons; the dimensions for

the invariant single-atom and pair-atom representations are set to 120 and 32, respectively.

Additionally, the localized single-atom representation update mechanism excludes the self-

attention layer, while the Reperformer pair-atom representation is updated using a gated

self-attention layer.

The performance on the H100, A800, and 4090 cards is summarized in Table S1, S2,

and S3, respectively, and illustrated in Fig. 4, S1, and S2, respectively. Across TensorFlow,

PyTorch, and JAX, the three GPU cards exhibit similar relative performance. The results

indicate that for the DPA-1 model without attention layers, the compressed TensorFlow

model is the fastest. Although model compression improves performance by a similar amount

on both the TensorFlow and PyTorch backends, other components of the model cause the

final performance to differ. For more computationally demanding models, such as the DPA-

1 model with attention layers and the DPA-2 model, the JAX backend generally achieves

the highest performance. However, two exceptions were observed: in the DPA-2 FP32 case

with 12,288 atoms on the H100 card, where PyTorch outperformed JAX; in the DPA-1

(L=2) FP64 case on the 4090 card, where TensorFlow outperformed JAX. Additionally,

different backends exhibit varying GPU memory usage, which can influence the choice of

backend depending on the computational resources available. These findings demonstrate

that no single backend consistently outperforms others across all models. Therefore, the
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Figure 4: The molecular dynamics performance (ms/step) of DPA-1 (L=0), DPA-1 (L=2),
and DPA-2 models in double (FP64) and single (FP32) precisions in TensorFlow (TF),
PyTorch (PT), and JAX backends on a single 80 GB NVIDIA H100 GPU card. The water
system with different numbers of atoms is used for simulations.

multi-backend framework is highly valuable, enabling users to identify and utilize the most

efficient backend for their specific needs.

5 Conclusions

In this work, we introduced DeePMD-kit v3, a significant enhancement to the widely used

machine learning potential package. This new version addresses critical limitations of its

predecessor by incorporating a multi-backend framework supporting TensorFlow, PyTorch,

JAX, and PaddlePaddle. By enabling seamless backend switching with minimal changes,

DeePMD-kit v3 provides a flexible and interoperable platform for researchers and developers.

This advancement not only facilitates the integration of DeePMD-kit with diverse software
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ecosystems but also empowers the development of more complex and efficient workflows for

molecular dynamics simulations and other applications requiring machine learning potentials.

The best performance for molecular dynamics can be archeived by selecting the most efficient

backend for a specific model and computational resource. We anticipate that DeePMD-kit

v3 will significantly expand the accessibility and applicability of MLPs in physics, chemistry,

and materials science, fostering innovation and collaboration in these fields.

Data Availability

Source code for the project can be found at https://github.com/deepmodeling/deepmd-kit.

Source code for the benchmark can be found at https://github.com/njzjz/benchmark-dpv3.
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