DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials

Jinzhe Zeng,*"r’:IMT Duo Zhang,§'”’L Anyang Peng,§ Xiangyu Zhang,#'@ Sensen He,® Yan Wang,#'@ Xinzijian Liu,|| Hangrui Bi,V Yifan Li,JfJr Chun Cai,8 Chenggian
Zhang,L Yiming Du,#'ii Jia-Xin Zhu,Ww Pinghui Mo,§§ Zhengtao Huang,H I Qiyu Zeng,Ll’## Shaochen Shi,@@ Xuejian Qin,AA'VVV Zhaoxi Yu,T Tt Chenxing
Luv:),i PRI ve Ding,H Yun-Pei Liu,§§§ Ruosong Shi,II] Zhenyu Wang,lLl’### Sigbjgrn Lgland Bore,@@@ Junhan Chang,”'AAA Zhe Deng,AAA Zhaohan
Ding,II Siyuan Han,vvvv Wanrun Jiang;,§ Guolin Ke,H Zhaoqing Liu,AAA Denghui Lu,T 11 Koki Muraoka,i ¥ % Hananeh Oliaei,1HHHT Anurag Kumar Singh,§§§§
Haohui Que,H I Weihong Xu,§§§ Zhangmancang Xu,LLLL Yong-Bin Zhuang,#### Jiayu Dai,LL'## Timothy J. Giese,@@@@ Weile Jia,# Ben Xu,AAAA Darrin

M. York,2@©@C [infeng Zhang,"'§'H and Han Wang® VVVVV.1 1111

tSchool of Artificial Intelligence and Data Science, Unversity of Science and Technology of China, Hefei 230026, P. R. China
fSuzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
9§ Suzhou Big Data & AI Research and Engineering Center, Suzhou 215128, P. R. China
§AI for Science Institute, Beijing 100080, P. R. China
||DP Technology, Beijing 100080, P. R. China
1 Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
#State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100871, P.R. China
@ University of Chinese Academy of Sciences, Beijing 100871, P. R. China
A Baidu Inc., Beijing 100085, P. R. China
V Department of Computer Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
t1Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
11 University of Chinese Academy of Sciences, Beijing 100871, P.R. China
99 State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen
861005, P.R. China
§8§ College of Integrated Circuits, Hunan University, Changsha, 410082, P.R. China
||| State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center for Smart Materials and Device Integration, School of
Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
1L 1 College of Science, National University of Defense Technology, Changsha 410073, P.R. China
#+# Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, P.R. China
@@ ByteDance Research, Beijing 100098, P. R. China
AN Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 815201, P.R. China
V' V'V College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
t 1 tKey Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University,
Beijing 100875, P. R. China
1 1 fDepartment of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
99 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
§88§ Laboratory of AI for Electrochemistry (AI4EC), IKKEM, Xiamen, 361005, Fujian, P. R. China
||| Graduate School of China Academy of Engineering Physics, Beijing 100088, P. R. China
1L 11 Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012,
P.R. China
International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
@@@ Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, 0315 Oslo, Norway
ANANCollege of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
VVVV New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of
Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
t 1 tTDepartment of Mechanics and Engineering Science, and HEDPS and CAPT, College of Engineering, Peking University, Beijing 100871, P.
R. China
I 1 fiDepartment of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
9999 Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
8§88 Department of Data Science, Indian Institute of Technology Palakkad, Kerala 678623, India
1[Il Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, P.R. China
L 111 International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
Chaire de Simulation a ’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
@Q@@Q Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology,
Rutgers University, Piscataway, NJ 08854, USA
AANAAGraduate School of Chinese Academy of Engineering Physics, Beijing 100088, P.R. China
VVV VYV National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2,
Beijing 100094, P.R. China
11t THEDPS, CAPT, College of Engineeringi Peking University, Beijing 100871, P.R. China

E-mail: jinzhe.zeng@ustc.edu.cn; linfeng.zhang.zIf@gmail.com; wang_han®@iapcm.ac.cn

Abstract

In recent years, machine learning potentials (MLPs) have become indispensable
tools in physics, chemistry, and materials science, driving the development of software
packages for molecular dynamics (MD) simulations and related applications. These
packages, typically built on specific machine learning frameworks such as TensorFlow,
PyTorch, or JAX, face integration challenges when advanced applications demand
communication across different frameworks. The previous TensorFlow-based imple-
mentation of DeePMD-kit exemplified these limitations. In this work, we introduce
DeePMD-kit version 3, a significant update featuring a multi-backend framework that
supports TensorFlow, PyTorch, JAX, and PaddlePaddle backends, and demonstrate
the versatility of this architecture through the integration of other MLPs packages
and of Differentiable Molecular Force Field. This architecture allows seamless back-
end switching with minimal modifications, enabling users and developers to integrate
DeePMD-kit with other packages using different machine learning frameworks. This
innovation facilitates the development of more complex and interoperable workflows,

paving the way for broader applications of MLPs in scientific research.

1 Introduction

Over the past decade, machine learning potentials (MLPs) have become increasingly in-
fluential in the fields of physics, chemistry, molecular biology, and materials science.!™®
This has led to the development of software packages specifically designed for training and
employing MLPs in molecular dynamics (MD) and free energy simulations, and other ap-
plications requiring accurate potential energy and force calculations.” 2! These packages are
typically built upon specific machine learning frameworks such as TensorFlow,?? PyTorch,??
or JAX.?* While a single machine learning framework often meets most requirements, in-

creasingly complex applications necessitate interoperability between packages utilizing dif-

ferent machine learning frameworks. This poses a significant challenge for developers when

these packages rely on disparate frameworks. Additionally, each framework may have unique
advantages, such as optimized performance for specific applications or better compatibility
with certain hardware. To address these limitations, developers of several MLP packages
have created secondary versions based on alternative frameworks. However, introducing new
frameworks typically create separate, standalone packages rather than refactoring existing
ones, which significantly increases the complexity and maintenance costs for both the pack-
ages and their integration with molecular dynamics software. For instance, MACE? offers
both PyTorch-based and JAX-based implementations, but they exist as separate packages,
and the integration of LAMMPS with the MACE JAX implementation has not been realized.

The earlier version of the DeePMD-kit package”?® was built on TensorFlow, which posed
challenges for integration with other packages utilizing different deep-learning frameworks.
To address this limitation, Gao et al. developed a JAX-based package?” to enable seamless
integration of deep potential models with JAX-MD?® for an end-to-end GPU-accelerated
workflow. Similarly, Zhang et al. introduced a PyTorch-based package alongside the devel-
opment of the DPA-2 model? for better distributed training performance. However, main-
taining consistent user interfaces (Uls) and application programming interfaces (APIs) for
tasks such as training, inference, and molecular dynamics simulations across these different
frameworks proved to be both inconvenient and inefficient.

In this work, we introduce a major new release of the DeePMD-kit package (v3), fea-
turing a multi-backend framework that integrates the existing TensorFlow?? backend with
new backends, including PyTorch,?® JAX,?* and PaddlePaddle.?® These backends are de-
signed to be interchangeable, allowing users and developers to switch between them with
minimal modifications. The new framework reuses the well-established interfaces developed
in previous versions (see Fig. 1), maintaining seamless integration with other software, such
as LAMMPS,3! i-P1,32 AMBER,*3° CP2K,3¢ OpenMM, 373 GROMACS,® ASE,*" and
ABACUS.#! The inclusion of these new backends enables DeePMD-kit to seamlessly inter-

act with other packages that utilize PyTorch, JAX, or PaddlePaddle, thereby expanding its

NumPy, TensorFlow, PyTorch,
JAX, PaddlePaddle

F

Machine learning or array framework

Python, C, Program language API DP-GEN. DP-TI
C++, Node.js DeePMD-kit i ’

Workflow MLatoms

Molecular dynamics

LAMMPS, i-Pl, Amber, OpenMM, GPUMD,
GROMACS, ASE, ABACUS, CP2K

Figure 1: The DeePMD-kit software ecosystem. The arrows indicate dependency flow. Soft-
ware packages shown in the figure include: (1) DeePMD-kit; (2) Machine learning and array
frameworks: NumPy,*? TensorFlow,?? PyTorch,? JAX,?* and PaddlePaddle;*® (3) Molecu-
lar dynamics packages: LAMMPS, 3! i-PI,32 Amber,3* OpenMM, 3" CP2K,3¢ GROMACS,?’
ASE, % ABACUS,*! and GPU-MD;* (4) Workflow packages: DP-GEN,* MLatom,*> and
DP-TT;% (5) Program language API: Python, C, C++, and Node.js.

compatibility and functionality. Additionally, this update enables DeePMD-kit to leverage
unique features and optimizations available in different machine learning frameworks, further

enhancing its flexibility and performance.

2 Software Description

2.1 A Multiple-backend Framework

The multiple-backend framework added in DeePMD-kit v3 is aimed to support multiple
deep-learning frameworks in a pluggable way while providing a unified interface for users
and developers. When introducing the multi-backend framework, no breaking changes were
made to the existing Python and C/C++ APIs in DeePMD-kit v2. As a result, the exist-
ing interfaces implemented in various molecular dynamics packages can be reused without

requiring any modifications.

TensorFlow backend

TensorFlow Python Python TensorFlow
library backend

TensorFlow C++

External

Python <
packages
Python
It

kend

C++ TensorFlow

D

library backend P
7S TensorFlow OP | lnter Gl
library
CUDA library — - -]
:}—[DeePMD-kit Core library J —
ROCM library ¢— by
t User
Header- only
v Py.:-i;::c;: oP A C++ llbranes
y C++ PyTorch CH+ External
PyTorch C++ library y multiple-backend C/C++
l&] interface packages
PyTorch Python Python PyTorch C l|brary
library backend

m— PyTorch backend

[:] Exist in DeePMD-kit v2
:] Added in DeePMD-kit v3
D External packages

Figure 2: The infrastructure of the TensorFlow and PyTorch backends in the DeePMD-kit
software. The arrows indicate dependency flow. Modules in blue existed in DeePMD-kit
v2,%6 modules in red are newly added in DeePMD-kit v3, and modules in green are machine
learning frameworks.

The infrastructure of the TensorFlow and PyTorch backends is illustrated in Fig. 2; other
backends are organized in a similar manner. For both training and inference tasks driven
by different models, users interact with a unified set of interfaces, regardless of the backend
being used. The backend-specific implementation is then invoked to perform the actual
computations, leveraging external machine learning frameworks that are highly optimized
for performance. In some cases, these backends also share common implementations through
customized operators. For example, the model compression functionality*” is implemented
in the DeePMD-kit core library, utilizing DeePMD-kit CUDA or ROCm libraries for efficient
computation.

Users are expected to interact with each backend in a uniform manner, without needing
to understand the backend-specific details. During model training and saving via the Python
interface, users can simply specify the desired backend. All other training parameters are

designed to be backend-agnostic, ensuring a consistent user experience. Once training is

complete, the model is saved in a backend-specific format. When the saved model is loaded
for inference through the Python or C+4 API during molecular dynamics simulations, the
backend is automatically detected based on the model filename, and the appropriate backend
module is used. Furthermore, models created with one backend can be easily converted to
another backend, providing flexibility and interoperability for various workflows. An example

user script is shown as follows:

Use the PyTorch backend to train and freeze the model
dp --pt train input.json

dp ——pt freeze -o model.pth

Test the model

dp test -m model.pth -s dataset

Convert the model to that in the JAX backend

dp convert-backend model.pth model.savedmodel

Developers can incorporate new backends in a modular and pluggable manner, focus-
ing on backend-specific implementations without needing to modify the existing Python or
C/C++ APIs or interfaces with external packages. DeePMD-kit provides an implementation
in the Array API*® (see Section 2.2), simplifying the process of adding new backends based
on machine learning frameworks that support the Array API. For developers looking to add
new models, the Array API can also be used to implement these models for backends that
support it. For backends that do not support the Array API, model implementation can be
facilitated with the assistance of large language models (LLMs), as shown in the Supporting
Information, streamlining the development process further.

A challenge in the multiple-backend framework is to ensure that the same model driven
by different backends produces the same results. To address this issue, we have developed a
set of tests that compare the results of the same model driven by different backends. The
models can be serialized and deserialized in the Python interface, which is the reason why

they can be converted to each other.

2.2 Backends

Five backends are supported in the current version of DeePMD-kit: DP, TensorFlow,??

PyTorch,? JAX,? and PaddlePaddle.?”

DP. The DP backend serves as a reference implementation, designed to provide a correct
and standardized foundation for model development. It is built using the Array API,*®
allowing its functionality to be leveraged by other backends (such as JAX) without requir-
ing code duplication. By default, the DP backend uses NumPy,*? which does not support

gradient computations or GPU acceleration, for computations to minimize dependencies.

TensorFlow. The TensorFlow backend is the original backend of DeePMD-kit. It utilizes
the TensorFlow vl API,?? which employs static computational graphs to optimize perfor-
mance. These static graphs can be saved into model files and later restored for inference in
both Python and C++ interfaces. The customized TensorFlow C++ operators are mainly
used to calculate coordinate matrix, force, virial, and embedding network and matrix in

compressed models.

PyTorch. The PyTorch backend leverages dynamic computational graphs to provide greater
flexibility.?? It employs TorchScript for model serialization, enabling models to be saved and
loaded in both Python and C++ interfaces. The customized PyTorch C++ operators are
used for model compression and communication between processors or GPU cards in the
graph neural networks of the DPA-2 model.? PyTorch is friendly to be developed with and
thus has a larger user base. PyTorch is widely used in various atomistic packages, including
machine learning potential packages,'>?>% force field packages,® semiempirical quantum
chemistry packages,?! and molecular dynamics packages.®? The development of the PyTorch

backend has made it easier to integrate DeePMD-kit with these existing packages.

JAX. The JAX backend is built on top of the DP backend and the Array API,*® using
JAX?! as its array library. JAX performs just-in-time (JIT) compilation for enhanced per-
formance. Models created with the JAX backend are saved in a TensorFlow-compatible
format using the “jax2tf” converter, allowing them to be loaded via the TensorFlow C++
library.?? JAX has gained popularity in the field of atomistic simulations, supporting ma-

0

chine learning potential packages,®® machine learning density functional packages,®® force

54,55 8

field packages, and molecular dynamics packages.?

A challenge in the JAX backend is that the JAX JIT compiler requires the input tensors
to have static shapes, a constraint not imposed by TensorFlow or PyTorch. However, dur-
ing molecular dynamics simulations, parameters such as the maximum number of neighbor
atoms, the simulation box size, and the number of ghost atoms that do not directly con-
tribute atomic energies are dynamic and not known in advance. To address this limitation,
the compiled JIT model is wrapped within a standard TensorFlow model. During each sim-
ulation step, the TensorFlow model calculates or post-processes the neighbor list and other
tensors with dynamic shapes. The neighbor list is then passed into the compiled JIT model,
combining the strengths of both TensorFlow (for handling dynamic inputs) and JAX (for
optimized performance through JIT compilation). To handle the dynamic number of ghost
atoms, a larger fixed value is initially set, which is adjusted if it becomes insufficient during
the simulation.

The choice of integrating JAX with TensorFlow rather than PyTorch is primarily mo-
tivated by their shared use of the Accelerated Linear Algebra (XLA) compiler. Initially,
JAX was developed based on XLA, which was originally a module within TensorFlow before
it became an independent library. Both TensorFlow and JAX inherently utilize XLA for
compilation, enabling a straightforward conversion between them via the jax2tf function,
which compiles JAX functions using XLA and wraps them within a TensorFlow model. In
contrast, PyTorch does not include XLA integration by default, making TensorFlow the

natural and more efficient choice for creating this hybrid model.

PaddlePaddle. The PaddlePaddle backend, which is based on PaddlePaddle," features
a similar Python interface to the PyTorch backend, ensuring compatibility and flexibility
in model development. PaddlePaddle has introduced dynamic-to-static functionality and
PaddlePaddle JIT compiler (CINN) in DeePMD-kit, which allow for dynamic shapes and
higher-order differentiation. The dynamic-to-static functionality automatically captures the
user’s dynamic graph code and converts it into a static graph. After conversion, the CINN
compiler is used to optimize the computational graph, thereby enhancing the efficiency of
model training and inference. In our experiments with the DPA-2 model, we achieved ap-
proximately a 40% reduction in training time compared to the dynamic graph, effectively
improving the model training efficiency. While PaddlePaddle has been utilized in other
scientific fields,?® DeePMD-kit is the first software package to implement machine learning

potentials using PaddlePaddle.

2.3 New Design Principles in version 3

When new backends, including DP, PyTorch, JAX, and PaddlePaddle, were introduced, the
design of the DeePMD-kit was thoroughly reconsidered. The following design principles

were adopted, differing significantly from those used in the previous TensorFlow backend of

DeePMD-kit version 2:

Metaprogramming. To reduce code duplication and enhance maintainability, metapro-
gramming techniques are employed to generate backend-specific classes from those in the
reference DP backend. For instance, in different backends, a neural network is constructed
from multiple neural network layers. While the structure of these layers is consistent across
backends, the implementation must interact with different machine learning frameworks
depending on the backend. By transforming a base neural network class into a backend-
specific neural network class using a backend-specific layer class, the implementation of

neural networks becomes backend-agnostic. This approach ensures a consistent structure

Coordinates, types, box, Descriptor

spin Coordinates, types, box block 1
}

V. N
\L | back prop. J
q Descriptor
Setup pseudo atoms Neighbor list, real & Descriptor [¢—— blocE 2
and exclusions ghost atoms J, -

J, Tback prop. |
Fitting network < ;

Standard model |[é—____ Atomic model D I ¥

Descriptor
block n

DPA-2 descriptor

R
J, Tback prop. Deep learning N—
) atomic model

Transform to physical Sum/average

force and virial pooling ——————— ;
Tabulated perty

Standard model pair potential
MACE
Energy, force,

Plugin
- g \ |
magnetic torque & virial Eftnepiop=ityRigiadients external model {

i

Figure 3: Schematic plot of the model components in DeePMD-kit version 3.

while allowing flexibility for backend-specific details, significantly streamlining development

and maintenance.

Atomic model. In version 3, we introduce an innovative component termed the “atomic
model” (see Fig. 3). This model is based on the assumption that the physical quantity to

be learned, represented by vy, can be decomposed into atomic contributions, expressed as:

y:Zyi (1)

This approach simplifies the implementation process for model developers, who only need to
define and implement the atomic contributions y;. The DeePMD-kit subsequently performs
the summation of these atomic contributions and computes the generalized force F; and
virial =, 3, which are defined as the partial derivatives of the physical quantity with respect

to atomic coordinates and cell vectors, respectively:

10

In Equation (2), r; represents the Cartesian coordinates of atom ¢, while h,s denotes the
component of the a-th cell vector. It is important to note that the atomic model concept is in-
troduced to facilitate the implementation of physical quantities that can be decomposed into
atomic contributions. For cases where atomic decomposition is not suitable, DeePMD-kit

supports the implementation of a standard model without relying on atomic decomposition.

Computation of the neighbor list and the coordinate matrix. In the TensorFlow
backend, the neighbor list, the coordinate matrix, and the gradient of the coordinate ma-
trix with respect to the coordinates were computed using custom TensorFlow operators, as
these operations are not standard in TensorFlow.” This design posed challenges for calcu-

lating and training the Hessian, the second gradient of the output with respect to atomic

Oy
amiamj

coordinates, . In the new backends, these computations are performed using standard
operators provided by the respective machine learning frameworks. This enables straightfor-
ward inference and training of the Hessian using the automatic differentiation capabilities
inherent to these frameworks. The neighbor list can be configured to exclude specific pairs of

atomic types, thereby implementing range corrections for MD simulations using MLP /MM

or QM/MM+AMLP.*"

Implementation of communications for graph neural network models. The new
backends now support graph neural network (GNN) models, such as the DPA-2 model® and
the in-development DPA-3 model. A key challenge in implementing GNN models is managing
communication between nodes or GPU cards during molecular dynamics simulations. In a
GNN model, atomic features are updated based on atom and edge features within a cutoff
radius, which requires access to the neighbor list of surrounding atoms. However, some
neighbor atoms may be ghost atoms that do not directly contribute atomic energies, and
their neighbor lists are typically unavailable in most molecular dynamics packages.?' Some
GNN-based MLP packages address this issue by generating ghost atoms within an extended

cutoff radius (1. x L, where r, is the cutoff radius for each layer and L is the number of layers)

11

and rebuilding the neighbor lists for the ghost atoms. This approach, however, significantly
increases computational cost. Other packages have suggested running simulations on a
single GPU card to avoid this issue. To overcome these limitations, the new backends
implement a customized C++ operator that uses the message-passing interface (MPI)®® to
exchange atom and edge features between processors or GPU cards. This solution enables
efficient simulations across multiple nodes or GPU cards in high-performance computing

environments.

Descriptor block. The complexity of descriptors has increased significantly with the ad-
vancement of deep potential models. The DPA-2 model,?® for instance, primarily consists
of a representation-initializer block, representation-transformer layers, and a three-body em-
bedding block. The representation-initializer block is derived from the DPA-1 descriptor.®®
To address the growing complexity and support future development, we introduce a novel
component called the “descriptor block” (see Fig. 3), which serves as a modular foundation
for constructing complex descriptors. The descriptor block is designed to be flexible and

extensible, allowing seamless integration of new descriptors into the framework.

Refactor of the implementation of the DeepSPIN model. In the TensorFlow back-
end, the DeepSPIN model® was initially integrated into the descriptors and fitting networks
in an ad hoc manner, which hindered maintainability and limited the adoption of new fea-
tures such as the DPA-2 descriptor. To address these limitations, the DeepSPIN model has
been refactored in the new backends into a modular component that operates on top of any
standard potential energy model.

The DeepSPIN model aims to represent the potential energy of a system as a function
of atomic coordinates, spin, and the simulation cell. To achieve this, the model introduces

pseudo atoms, which are associated with physical atoms through the relation:

Tip =7T; +)\mSi, 1€ A, (3)

12

where A denotes the set of physical atoms, S; is the spin of atom ¢,)\, is a user-defined,
element-specific scaling factor (with 7; representing the element type of atom), and r; is the
Cartesian coordinate of physical atom i. Notably, pseudo atoms do not represent physical
entities but serve as computational tools to encode the spin states of their associated physical
atoms. To ensure type consistency, pseudo atoms inherit mapped element types from their
host atoms (e.g., Fe_spin from Fe), denoted by 7>™

The model processes an augmented atomic input, which includes both the augmented
coordinates {r;,r» |i € A} and the augmented types {n;,n}>™|i € A}. These inputs are
fed into a standard potential energy model to generate augmented outputs, including the
augmented atomic energies {&;, E» | i € A} and the augmented atomic forces {F}, Fj» |i € A}.
Post-processing steps are then applied to convert the augmented predictions into physical

quantities. The total energy is computed as the sum of energy contributions from all physical

atoms:
E=>E,. (4)
icA

The atomic forces F; and magnetic torques w; for atom ¢ are derived, respectively, as:

oF . . OF .
Fo=——=F+Fy, w=—c=\Fn 5
87"2- + “ (9SZ i ()

The system virial 2 is calculated by summing the outer products of the forces and positions

of all physical atoms: %!

E=> For (6)
€A

This refactored design, as illstrated by Fig. 3, enhances code clarity and maintainability

while maintaining compatibility with standard potential energy model architectures.

13

6 we have indi-

Removal of the local frame descriptor. In the previous publication,?
cated that the local frame descriptor® is not continous at the cutoff radius and the exchang-
ing of the order of two nearest neighbors. Thus, the local frame descriptor is removed in the

new backends.

3 Selected Extensions

DeePMD-kit v3 introduces an extensive plugin system designed to seamlessly integrate ex-
ternal models into its various backends. In this section, we demonstrate the versatility of
the multi-backend framework by showcasing the integration of other MLPs packages and of

Differentiable Molecular Force Field.

3.1 DeePMD-GNN

Most machine learning potential (MLP) packages, including the previous version of DeePMD-
kit, are typically restricted to a single type of neural network potential developed by the same
team of developers. This limitation imposes additional burdens on users, who must learn
new packages, and on developers, who must maintain multiple packages, while also makes
it impossible to benchmark models using the same loss function, learning rate, and data
sets. In the earlier version of DeePMD-kit, integrating other MLP packages was challenging
because most were not based on TensorFlow. This limitation was addressed with the devel-
opment of the multi-backend framework and the PyTorch backend. Consequently, Zeng et
al. introduced the DeePMD-GNN package,% which integrates the MACE?® and NequIP%
models into the PyTorch backend. This advancement marked the first time DeePMD-kit
supported highly mature external potential models, significantly enhancing its versatility.
It is worth noting that the plugin solely extends the trainable model module (see Fig. 3)
and reuses the existing loss function and learning rate modules in the DeePMD-kit, allowing

different models to be compared easily under the same conditions.

14

3.2 DMFF plugin

Long-range interactions are critical in many systems but are challenging to incorporate into
an MLP model.% Zhu et al.%® developed a PyTorch version of the Differentiable Molecular
Force Field (DMFF) package® that implements Ewald summation® and charge equilibra-
tion (QEq)®" methods for handling long-range interactions. These interactions have been
integrated into the PyTorch backend of DeePMD-kit, enabling a hybrid approach where
long-range interactions are described by traditional force fields, while short- and mid-range

interactions are captured by MLPs.

4 Benchmark

A key application of the multi-backend framework is its ability to run molecular dynam-
ics simulations using the most efficient backend. To illustrate this, we present benchmark
calculations using the following models: DPA-1 without attention layers (L=0) and its com-
pressed version,*” DPA-1 with two attention layers (L=2),% and DPA-2 (medium).?® These
benchmarks were performed in both single- and double-precision modes, employing the Ten-
sorFlow, PyTorch, and JAX backends on a single 80 GB NVIDIA H100 GPU card, 40 GB
NVIDIA A800 GPU card, and 24 GB NVIDIA 4090 GPU card. The simulations involved a
water system of varying atom counts, with each calculation repeated 500 times to obtain an
average computational speed. LAMMPS3! interfaced with DeePMD-kit v3 is used to per-
form simulations. Here we note the limitations in the current package when this article was
written: only the DPA-1 (L=0) model supports model compression, the TensorFlow backend
does not support the DPA-2 model, the JAX backend does not support model compression,
and the PaddlePaddle backend is still under development.

All of the models use a fitting network that consists of 3 hidden layers with 240, 240,
and 240 neurons. The coordinate matrix is encoded from the local environment within a

6 A cutoff radius and 1 A of smoothing; The details of DPA-1 models are as below: the

15

embedding network consists of 3 hidden layers with 25, 50, and 100 neurons; the embedding
submatrix size is 12. Specifically, in the DPA-1 (L=2) model, the length of hidden vectors
in each attention layer is 128. The details of the DPA-2 (medium) model are as below: the
representation initializer layer is encoded based on the local environment within a 6 A cutoff
radius and smoothed over 1 A; the model uses 6 representation transformer (Reperformer)
layers, with each layer calculated using a 4 A cutoff and 1 A of smoothing; three-body
embedding is incorporated within a 4 A cutoff; the embedding network consists of three
hidden layers with 25, 50, and 100 neurons, and the embedding submatrix has a size of 12; the
fitting network also has three hidden layers, each containing 240 neurons; the dimensions for
the invariant single-atom and pair-atom representations are set to 120 and 32, respectively.
Additionally, the localized single-atom representation update mechanism excludes the self-
attention layer, while the Reperformer pair-atom representation is updated using a gated
self-attention layer.

The performance on the H100, A800, and 4090 cards is summarized in Table S1, S2,
and S3, respectively, and illustrated in Fig. 4, S1, and S2, respectively. Across TensorFlow,
PyTorch, and JAX, the three GPU cards exhibit similar relative performance. The results
indicate that for the DPA-1 model without attention layers, the compressed TensorFlow
model is the fastest. Although model compression improves performance by a similar amount
on both the TensorFlow and PyTorch backends, other components of the model cause the
final performance to differ. For more computationally demanding models, such as the DPA-
1 model with attention layers and the DPA-2 model, the JAX backend generally achieves
the highest performance. However, two exceptions were observed: in the DPA-2 FP32 case
with 12,288 atoms on the H100 card, where PyTorch outperformed JAX; in the DPA-1
(L=2) FP64 case on the 4090 card, where TensorFlow outperformed JAX. Additionally,
different backends exhibit varying GPU memory usage, which can influence the choice of
backend depending on the computational resources available. These findings demonstrate

that no single backend consistently outperforms others across all models. Therefore, the

16

—e— TF PT —— JAX —— TF compressed PT compressed

1034_ DPA-1 (L=0) FP64 g_ DPA-1 (L=2) FP64 = DPA-2 FP64
] ; A3
a i i J
% 1023 = =
£]]
p 2 i J
E 1014 = -
= 3 E 3
10% = DPA-1 (L=0) FP32 = DPA-1 (L=2) FP32 = DPA-2 FP3
-8-_] i]
3 1073 3 =
£ 7 - :
g - - -
1 -
=103 E
T IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIII
103 10 10° 103 10% 10° 103 10% 10°
Number of atoms Number of atoms Number of atoms

Figure 4: The molecular dynamics performance (ms/step) of DPA-1 (L=0), DPA-1 (L=2),
and DPA-2 models in double (FP64) and single (FP32) precisions in TensorFlow (TF),
PyTorch (PT), and JAX backends on a single 80 GB NVIDIA H100 GPU card. The water
system with different numbers of atoms is used for simulations.

multi-backend framework is highly valuable, enabling users to identify and utilize the most

efficient backend for their specific needs.

5 Conclusions

In this work, we introduced DeePMD-kit v3, a significant enhancement to the widely used
machine learning potential package. This new version addresses critical limitations of its
predecessor by incorporating a multi-backend framework supporting TensorFlow, PyTorch,
JAX, and PaddlePaddle. By enabling seamless backend switching with minimal changes,
DeePMD-kit v3 provides a flexible and interoperable platform for researchers and developers.

This advancement not only facilitates the integration of DeePMD-kit with diverse software

17

ecosystems but also empowers the development of more complex and efficient workflows for
molecular dynamics simulations and other applications requiring machine learning potentials.
The best performance for molecular dynamics can be archeived by selecting the most efficient
backend for a specific model and computational resource. We anticipate that DeePMD-kit
v3 will significantly expand the accessibility and applicability of MLPs in physics, chemistry,

and materials science, fostering innovation and collaboration in these fields.

Data Availability

Source code for the project can be found at https://github.com/deepmodeling/deepmd-kit.

Source code for the benchmark can be found at https://github.com/njzjz/benchmark-dpv3.

Acknowledgement

The authors thank Dr. Rocco Meli for his code contributions. ChatGPT 40 was used to edit
the English (prompt: polish the following paragraph in a research article). J. Z. acknowl-
edges 2023 Chinese Government Award for Outstanding Self-financed Students Aboard pre-
sented by the China Scholarship Council. S. H. acknowledges help from Yanjun Ma, Tiezhu
Gao, Xiaoguang Hu. J.-X. Z. gratefully acknowledges Xiamen University and iChEM for
a Ph.D. studentship. A. K. S. acknowledges help from Dr. Manish Modani (Principal So-
lution Architect at NVIDIA), Dr. Unnikrishnan C (Assistant Professor at IIT, Palakkad),
and C-DAC Centre, Patna, India. The work of Q. Z. and J. D. was supported by the the
fundation the Science and Technology Innovation Program of Hunan Province under Grant
No. 2021RC4026. The work of S. L. B. was supported by the Research Council of Norway
through the Centre of Excellence Hylleraas Centre for Quantum Molecular Sciences (Grant
262695) and the Young Researcher Talent (Grant 344993), as well as by the EuroHPC Joint
Undertaking (Grant EHPC-REG-2023R02-088). The work of W. J. was supported by the
Natural Science foundation of China (No. 92270206). The work of T. J. G. and D. M. Y. was

18

supported by the National Institutes of Health (No. GM107485 to D.M.Y".) and the National
Science Foundation (CSSI Frameworks Grant No. 2209718 to D.M.Y). The work of H. W.
was supported by the National Key R&D Program of China (Grant No. 2022YFA1004300)
and the National Natural Science Foundation of China (Grant No. 12122103). Computa-
tional resources are provided by: ByteDance Volcano Engine Cloud; Alibaba Cloud PAI;
IKKEM Intelligent Computing Center, for the work of Y.-P. L.

Supporting Information Available

The molecular dynamics performance (ms/step) of DPA-1 (L=0), DPA-1 (L=2), and DPA-2
models in double (FP64) and single (FP32) precisions in TensorFlow (TF), PyTorch (PT),
and JAX backends on a single 40 GB NVIDIA H100, A800, and 4090 GPU card. Example

of Using Large Language Models for Code Conversion between Backends.

References

(1) Behler, J. Perspective: Machine learning potentials for atomistic simulations. J. Chem.

Phys. 145, 170901.

(2) Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning

for molecular and materials science. Nature 559, 547-555.

(3) Noé, F.; Tkatchenko, A.; Miiller, K.-R.; Clementi, C. Machine Learning for Molecular
Simulation. Annu. Rev. Phys. Chem. 71, 361-390.

(4) Pinheiro Jr, M.; Ge, F.; Ferré, N.; Dral, P. O.; Barbatti, M. Choosing the right molecular

machine learning potential. Chem. Sci. 12, 14396-14413.

(5) Manzhos, S.; Carrington Jr, T. Neural Network Potential Energy Surfaces for Small
Molecules and Reactions. Chem. Rev. 121, 10187-10217.

19

(6)

(7)

(10)

(11)

(12)

(13)

Zeng, J.; Cao, L.; Zhu, T. Neural network potentials. In Quantum Chemistry in the
Age of Machine Learning; Dral, P. O., Ed.; Elsevier, Chapter 12, pp 279-294.

Wang, H.; Zhang, L.; Han, J.; E, W. DeePMD-kit: A deep learning package for many-
body potential energy representation and molecular dynamics. Comput. Phys. Com-

mun. 228, 178-184.

Schiitt, K. T.; Kessel, P.; Gastegger, M.; Nicoli, K. A.; Tkatchenko, A.; Miller, K.-
R. SchNetPack: A Deep Learning Toolbox For Atomistic Systems. J. Chem. Theory

Comput. 15, 448-455.

Chmiela, S.; Sauceda, H. E.; Poltavsky, I.; Miiller, K.-R.; Tkatchenko, A. sGDML:
Constructing accurate and data efficient molecular force fields using machine learning.

Computer Physics Communications 240, 38—-45.

Unke, O.; Meuwly, M. PhysNet: A Neural Network for Predicting Energies, Forces,
Dipole Moments, and Partial Charges. J. Chem. Theory Comput. 15, 3678-3693.

Lee, K.; Yoo, D.; Jeong, W.; Han, S. SIMPLE-NN: An efficient package for training and
executing neural- network interatomic potentials. Computer Physics Communications

242, 95-103.

Gao, X.; Ramezanghorbani, F.; Isayev, O.; Smith, J. S.; Roitberg, A. E. TorchANI: A
free and open source PyTorch-based deep learning implementation of the ANI neural

network potentials. Journal of chemical information and modeling 60, 3408-3415.

Dral, P. O.; Ge, F.; Xue, B.-X.; Hou, Y.-F.; Pinheiro Jr, M.; Huang, J.; Barbatti, M.
MLatom 2: An Integrative Platform for Atomistic Machine Learning. Top. Curr. Chem.
(Cham) 379, 27.

Singraber, A.; Behler, J.; Dellago, C. Library-Based LAMMPS Implementation of High-

Dimensional Neural Network Potentials. J. Chem. Theory Comput. 15, 1827-1840.

20

(15)

(16)

(18)

(19)

(20)

(21)

(22)

Zhang, Y.; Xia, J.; Jiang, B. REANN: A PyTorch-based end-to-end multi-functional
deep neural network package for molecular, reactive, and periodic systems. J. Chem.

Phys. 156, 114801.

Schiitt, K. T.; Hessmann, S. S. P.; Gebauer, N. W. A.; Lederer, J.; Gastegger, M.
SchNetPack 2.0: A neural network toolbox for atomistic machine learning. J. Chem.

Phys. 158, 144801.

Fan, Z.; Wang, Y.; Ying, P.; Song, K.; Wang, J.; Wang, Y.; Zeng, Z.; Xu, K.; Lind-
gren, E.; Rahm, J. M.; Gabourie, A. J.; Liu, J.; Dong, H.; Wu, J.; Chen, Y.; Zhong, Z.;
Sun, J.; Erhart, P.; Su, Y.; Ala-Nissila, T. GPUMD: A package for constructing accu-

rate machine-learned potentials and performing highly efficient atomistic simulations.

J. Chem. Phys. 157, 114801.

Novikov, I. S.; Gubaev, K.; Podryabinkin, E. V.; Shapeev, A. V. The MLIP package:
moment tensor potentials with MPI and active learning. Mach. Learn.: Sci. Technol.

2, 025002.

Yanxon, H.; Zagaceta, D.; Tang, B.; Matteson, D. S.; Zhu, Q. PyXtal FF: a python
library for automated force field generation. Mach, Learn.,: Sci, Technol, 2021, 2,
027001.

Zeng, J.; Tao, Y.; Giese, T. J.; York, D. M. QD7: A Quantum Deep Potential Interac-
tion Model for Drug Discovery. J. Chem. Theory Comput. 19, 1261-1275.

Zeng, J.; Tao, Y.; Giese, T. J.; York, D. M. Modern semiempirical electronic structure
methods and machine learning potentials for drug discovery: Conformers, tautomers,

and protonation states. J. Chem. Phys. 158, 124110.

Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.;
Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.;

21

(23)

(24)

(26)

Isard, M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Levenberg, J.; Mané, D.;
Monga, R.; Moore, S.; Murray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.;
Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F.;
Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng, X. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.

org/, Software available from tensorflow.org.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.;
Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.;
Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; Chintala, S.
PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv 2019,
1912.01703.

Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M. J.; Leary, C.; Maclaurin, D.;
Necula, G.; Paszke, A.; VanderPlas, J.; Wanderman-Milne, S.; Zhang, Q. JAX: com-
posable transformations of Python+NumPy programs. 2018; http://github.com/

jax-ml/jax.

Batatia, I.; Kovacs, D. P.; Simm, G. N. C.; Ortner, C.; Csanyi, G. MACE: higher
order equivariant message passing neural networks for fast and accurate force fields.

Proceedings of the 36th International Conference on Neural Information Processing

Systems. Red Hook, NY, USA, 2024.

Zeng, J.; Zhang, D.; Lu, D.; Mo, P.; Li, Z.; Chen, Y.; Rynik, M.; Huang, L.; Li, Z.;
Shi, S.; Wang, Y.; Ye, H.; Tuo, P.; Yang, J.; Ding, Y.; Li, Y.; Tisi, D.; Zeng, Q.;
Bao, H.; Xia, Y.; Huang, J.; Muraoka, K.; Wang, Y.; Chang, J.; Yuan, F.; Bore, S. L;
Cai, C.; Lin, Y.; Wang, B.; Xu, J.; Zhu, J.-X.; Luo, C.; Zhang, Y.; Goodall, R. E. A_;
Liang, W.; Singh, A. K.; Yao, S.; Zhang, J.; Wentzcovitch, R.; Han, J.; Liu, J.; Jia, W.;
York, D. M.; E; W.; Car, R.; Zhang, L.; Wang, H. DeePMD-kit v2: A software package
for deep potential models. J. Chem. Phys. 2023, 159, 054801.

22

(27)

(28)

(29)

(32)

(33)

Gao, R.; Li, Y.; Car, R. Enhanced deep potential model for fast and accurate molecular
dynamics: application to the hydrated electron. Phys. Chem. Chem. Phys. 2024, 26,

23080-23088.

Schoenholz, S. S.; Cubuk, E. D. JAX, M.D. A framework for differentiable physics*. J.
Stat. Mech. 2021, 2021, 124016.

Zhang, D.; Liu, X.; Zhang, X.; Zhang, C.; Cai, C.; Bi, H.; Du, Y.; Qin, X.; Peng, A.;
Huang, J.; Li, B.; Shan, Y.; Zeng, J.; Zhang, Y.; Liu, S.; Li, Y.; Chang, J.; Wang, X.;
Zhou, S.; Liu, J.; Luo, X.; Wang, Z.; Jiang, W.; Wu, J.; Yang, Y.; Yang, J.; Yang, M.;
Gong, F.-Q.; Zhang, L.; Shi, M.; Dai, F.-Z.; York, D. M.; Liu, S.; Zhu, T.; Zhong, Z.;
Lv, J.; Cheng, J.; Jia, W.; Chen, M.; Ke, G.; E, W.; Zhang, L.; Wang, H. DPA-2: a

large atomic model as a multi-task learner. npj Comput. Mater 2024, 10, 293.

Ma, Y.; Yu, D.; Wu, T.; Wang, H. PaddlePaddle: An Open-Source Deep Learning

Platform from Industrial Practice. Frontiers of Data and Computing 2019, 1, 105-115.

Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.;
Crozier, P. S.; in 't Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D.; Shan, R.;
Stevens, M. J.; Tranchida, J.; Trott, C.; Plimpton, S. J. LAMMPS - a flexible simulation
tool for particle-based materials modeling at the atomic, meso, and continuum scales.

Computer Physics Communications 271, 108171.

Litman, Y.; Kapil, V.; Feldman, Y. M. Y.; Tisi, D.; Begusi¢, T.; Fidanyan, K.;
Fraux, G.; Higer, J.; Kellner, M.; Li, T. E.; Pés, E. S.; Stocco, E.; Trenins, G.; Hir-
shberg, B.; Rossi, M.; Ceriotti, M. i-PI 3.0: A flexible and efficient framework for

advanced atomistic simulations. J. Chem. Phys. 2024, 161, 062504.

Case, D. A.; Aktulga, H. M.; Belfon, K.; Cerutti, D. S.; Cisneros, G. A.; Cruzeiro, V.
W. D.; Forouzesh, N.; Giese, T. J.; Gotz, A. W.; Gohlke, H.; Izadi, S.; Kasavajhala, K.;
Kaymak, M. C.; King, E.; Kurtzman, T.; Lee, T.-S.; Li, P.; Liu, J.; Luchko, T.; Luo, R.;

23

(34)

(35)

(37)

Manathunga, M.; Machado, M. R.; Nguyen, H. M.; O’Hearn, K. A.; Onufriev, A. V.;
Pan, F.; Pantano, S.; Qi, R.; Rahnamoun, A.; Risheh, A.; Schott-Verdugo, S.; Sha-
jan, A.; Swails, J.; Wang, J.; Wei, H.; Wu, X.; Wu, Y.; Zhang, S.; Zhao, S.; Zhu, Q.;
Cheatham 3rd, T. E.; Roe, D. R.; Roitberg, A.; Simmerling, C.; York, D. M.; Na-
gan, M. C.; Merz Jr, K. M. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183-6191.

Tao, Y.; Giese, T. J.; Ekesan, S.; Zeng, J.; Aradi, B.; Hourahine, B.; Aktulga, H. M.;
Gotz, A. W.; Merz Jr, K. M.; York, D. M. Amber free energy tools: Interoperable
software for free energy simulations using generalized quantum mechanical /molecular

mechanical and machine learning potentials. J. Chem. Phys. 2024, 160, 224104.

Giese, T. J.; Zeng, J.; Lerew, L.; McCarthy, E.; Tao, Y.; Ekesan, S.; York, D. M.
Software Infrastructure for Next-Generation QM/MM-AMLP Force Fields. J. Phys.
Chem., B 2024, 128, 6257-6271.

Kiithne, T. D.; lannuzzi, M.; Del Ben, M.; Rybkin, V. V.; Seewald, P.; Stein, F.;
Laino, T.; Khaliullin, R. Z.; Schiitt, O.; Schiffmann, F.; Golze, D.; Wilhelm, J.;
Chulkov, S.; Bani-Hashemian, M. H.; Weber, V.; Borstnik, U.; Taillefumier, M.;
Jakobovits, A. S.; Lazzaro, A.; Pabst, H.; Miiller, T.; Schade, R.; Guidon, M.; An-
dermatt, S.; Holmberg, N.; Schenter, G. K.; Hehn, A.; Bussy, A.; Bellelamme, F.;
Tabacchi, G.; Glo8, A.; Lass, M.; Bethune, I.; Mundy, C. J.; Plessl, C.; Watkins, M.;
VandeVondele, J.; Krack, M.; Hutter, J. CP2K: An electronic structure and molecu-
lar dynamics software package - Quickstep: Efficient and accurate electronic structure

calculations. J. Chem. Phys. 2020, 152, 194103.

Eastman, P.; Galvelis, R.; Pelaez, R. P.; Abreu, C. R. A.; Farr, S. E.; Gallicchio, E.;
Gorenko, A.; Henry, M. M.; Hu, F.; Huang, J.; Kramer, A.; Michel, J.; Mitchell, J. A.;
Pande, V. S.; Rodrigues, J. P.; Rodriguez-Guerra, J.; Simmonett, A. C.; Singh, S.;
Swails, J.; Turner, P.; Wang, Y.; Zhang, 1.; Chodera, J. D.; De Fabritiis, G.; Mark-

24

(41)

(42)

(43)

land, T. E. OpenMM 8: Molecular Dynamics Simulation with Machine Learning Po-
tentials. J. Phys. Chem., B 2024, 128, 109-116.

Ding, Y.; Huang, J. Implementation and Validation of an OpenMM Plugin for the Deep

Potential Representation of Potential Energy. Int. J. Mol. Sci. 2024, 25, 1448.

Abraham, M. J.; Murtola, T.; Schulz, R.; Pall, S.; Smith, J. C.; Hess, B.; Lindahl, E.
GROMACS: High performance molecular simulations through multi-level parallelism

from laptops to supercomputers. SoftwareX 19-25.

Hjorth Larsen, A.; Jorgen Mortensen, J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.;
Dutak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C.; Hermes, E. D
Jennings, P. C.; Bjerre Jensen, P.; Kermode, J.; Kitchin, J. R.; Leonhard Kols-
bjerg, E.; Kubal, J.; Kaasbjerg, K.; Lysgaard, S.; Bergmann Maronsson, J.; Max-
son, T.; Olsen, T.; Pastewka, L.; Peterson, A.; Rostgaard, C.; Schigtz, J.; Schitt, O.;
Strange, M.; Thygesen, K. S.; Vegge, T.; Vilhelmsen, L.; Walter, M.; Zeng, Z.; Ja-
cobsen, K. W. The atomic simulation environment—a Python library for working with

atoms. J. Phys. Condens. Matter 29, 273002.

Li, P.; Liu, X.; Chen, M.; Lin, P.; Ren, X_; Lin, L.; Yang, C.; He, L. Large-scale ab initio
simulations based on systematically improvable atomic basis. Computational Materials

Science 112, 503-517.

Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers, R.; Virtanen, P.; Courna-
peau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N. J.; Kern, R.; Picus, M.; Hoyer, S.;
van Kerkwijk, M. H.; Brett, M.; Haldane, A.; Del Rio, J. F.; Wiebe, M.; Peterson, P.;
Gérard-Marchant, P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.;

Oliphant, T. E. Array programming with NumPy. Nature 2020, 585, 357-362.

Fan, Z.; Chen, W.; Vierimaa, V.; Harju, A. Efficient molecular dynamics simulations

25

(44)

(45)

(48)

with many-body potentials on graphics processing units. Comput. Phys. Commun.

2017, 218, 10-16.

Zhang, Y.; Wang, H.; Chen, W.; Zeng, J.; Zhang, L.; Han, W.; E, W. DP-GEN: A
concurrent learning platform for the generation of reliable deep learning based potential

energy models. Comput. Phys. Commun. 253, 107206.

Dral, P. O.; Ge, F.; Hou, Y.-F.; Zheng, P.; Chen, Y.; Barbatti, M.; Isayev, O.; Wang, C.;
Xue, B.-X.; Pinheiro Jr, M.; Su, Y.; Dai, Y.; Chen, Y.; Zhang, L.; Zhang, S.; Ullah, A.;
Zhang, Q.; Ou, Y. MLatom 3: A Platform for Machine Learning-Enhanced Compu-
tational Chemistry Simulations and Workflows. J. Chem. Theory Comput. 2024, 20,

1193-1213.

Fengbo Yuan, J. Z. L. Z., Yifan Li; Wang, H. DPTI: A Python Package to Automate

Thermodynamic Integration for Free Energy Calculations. Manuscript in preparation.

Lu, D.; Jiang, W.; Chen, Y.; Zhang, L.; Jia, W.; Wang, H.; Chen, M. DP Compress: A
Model Compression Scheme for Generating Efficient Deep Potential Models. J. Chem.
Theory Comput. 18, 5559-5567.

Meurer, A.; Reines, A.; Gommers, R.; Fang, Y.-L.; Kirkham, J.; Barber, M.; Hoyer, S.;
Muiller, A.; Zha, S.; Shanabrook, S.; Gacha, S.; Lezcano-Casado, M.; Fan, T.; Reddy, T.;
Passos, A.; Kwon, H.; Oliphant, T.; Standards, C. Python Array API Standard: Toward

Array Interoperability in the Scientific Python Ecosystem. 2023; pp 8-17.

Batzner, S.; Musaelian, A.; Sun, L.; Geiger, M.; Mailoa, J. P.; Kornbluth, M.; Moli-
nari, N.; Smidt, T. E.; Kozinsky, B. E(3)-equivariant graph neural networks for data-

efficient and accurate interatomic potentials. Nat. Commun. 13, 2453.

Orlando, G.; Serrano, L.; Schymkowitz, J.; Rousseau, F. Integrating physics in deep
learning algorithms: a force field as a PyTorch module. Bioinform. (Ozford Engl.)
2024, /0, btael60.

26

(51)

(52)

(53)

(54)

(55)

(57)

(58)

Friede, M.; Holzer, C.; Ehlert, S.; Grimme, S. dxtb-An efficient and fully differentiable

framework for extended tight-binding. J. Chem. Phys. 2024, 161, 062501.

Doerr, S.; Majewski, M.; Pérez, A.; Kramer, A.; Clementi, C.; Noe, F.; Giorgino, T.;
De Fabritiis, G. TorchMD: A Deep Learning Framework for Molecular Simulations. J.
Chem. Theory Comput. 2021, 17, 2355-2363.

Chen, Y.; Zhang, L.; Wang, H.; E; W. DeePKS-kit: A package for developing machine
learning-based chemically accurate energy and density functional models. Computer

Physics Communications 282, 108520.

Wang, X.; Li, J.; Yang, L.; Chen, F.; Wang, Y.; Chang, J.; Chen, J.; Feng, W.;
Zhang, L.; Yu, K. DMFF: An Open-Source Automatic Differentiable Platform for
Molecular Force Field Development and Molecular Dynamics Simulation. J. Chem.

Theory Comput. 2023, 19, 5897-5909.

Kaymak, M. C.; Rahnamoun, A.; O’Hearn, K. A.; van Duin, A. C. T.; Merz Jr, K. M.;
Aktulga, H. M. JAX-ReaxFF: A Gradient-Based Framework for Fast Optimization of
Reactive Force Fields. J. Chem. Theory Comput. 2022, 18, 5181-5194.

Xue, Y.; Liu, Z.; Fang, X.; Wang, F. Multimodal Pre-Training Model for Sequence-
based Prediction of Protein-Protein Interaction. Proceedings of the 16th Machine

Learning in Computational Biology meeting. 2022; pp 34-46.

Zeng, J.; Giese, T. J.; Ekesan, c.; York, D. M. Development of Range-Corrected Deep
Learning Potentials for Fast, Accurate Quantum Mechanical/molecular Mechanical

Simulations of Chemical Reactions in Solution. Journal of Chemical Theory and Com-

putation 17, 6993-7009.

Message Passing Interface Forum, MPI: A Message-Passing Interface Standard Version
4.1. 2023.

27

(59)

(60)

(62)

(63)

(64)

(65)

(66)

(67)

Zhang, D.; Bi, H.; Dai, F.-Z.; Jiang, W.; Liu, X.; Zhang, L.; Wang, H. Pretraining of
attention-based deep learning potential model for molecular simulation. npj Comput.

Mater 2024, 10, 94.

Yang, T.; Cai, Z.; Huang, Z.; Tang, W.; Shi, R.; Godfrey, A.; Liu, H.; Lin, Y.; Nan, C.-
W.; Ye, M.; Zhang, L.; Wang, K.; Wang, H.; Xu, B. Deep learning illuminates spin and

lattice interaction in magnetic materials. Phys. Rev. B 2024, 110, 64427.

Tuckerman, M. Statistical Mechanics: Theory and Molecular Simulation; OUP Oxford,
2010.

Zhang, L.; Han, J.; Wang, H.; Car, R.; E; W. Deep potential molecular dynamics: a

scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001.

Zeng, J.; Giese, T. J.; Zhang, D.; Wang, H.; York, D. M. DeePMD-GNN: A DeePMD-
kit Plugin for External Graph Neural Network Potentials. J. Chem. Inf. Model. 2025,
65, 3154-3160.

Anstine, D. M.; Isayev, O. Machine Learning Interatomic Potentials and Long-Range

Physics. J. Phys. Chem., A 2023, 127, 2417-2431.

Zhu, J.-X.; Cheng, Z.; Yu, K. DMFF plugin for DeePMD-kit (torch backend). 2025;

https://github.com/chiahsinchu/dp\%5Fdmff.

Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N log(N) method for
Ewald sums in large systems. J. Chem. Phys. 98, 10089-10092.

Rappe, A. K.; Goddard, W. A. Charge equilibration for molecular dynamics simula-
tions. J. Phys. Chem. 1991, 95, 3358-3363.

28

TOC Graphic

Multiple backends One-button . Unified
backend conversion

inference interface

dp convert-backend dp = DeepPot(B)

DeePMD-kit v3 U

tf model

pt model
jax model
pd model

29

