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Abstract

The rapid advancements in artificial intelligence (AI) are catalyzing transformative
changes in atomic modeling, simulation, and design. AI-driven potential energy
models have demonstrated the capability to conduct large-scale, long-duration
simulations with the accuracy of ab initio electronic structure methods. However,
the model generation process remains a bottleneck for large-scale applications.
We propose a shift towards a model-centric ecosystem, wherein a large atomic
model (LAM), pre-trained across multiple disciplines, can be efficiently fine-tuned
and distilled for various downstream tasks, thereby establishing a new framework
for molecular modeling. In this study, we introduce the DPA-2 architecture as
a prototype for LAMs. Pre-trained on a diverse array of chemical and materials
systems using a multi-task approach, DPA-2 demonstrates superior generalization
capabilities across multiple downstream tasks compared to the traditional single-
task pre-training and fine-tuning methodologies. Our approach sets the stage for the
development and broad application of LAMs in molecular and materials simulation
research.

1 Introduction

An accurate interatomic potential energy surface (PES) is crucial for molecular modeling and
simulations. Quantum mechanical (QM) methods, such as density functional theory (DFT) [1, 2],
provide satisfactory accuracy in most applications. However, their computational complexity typically
scales as the cubic order of the system size, thus limiting large-scale simulations. In contrast, empirical
force fields (EFF) are way more efficient, but their accuracy is often deemed insufficient for various
applications. Machine learning potentials (MLPs) have emerged as a powerful approach to modeling
complex materials and molecules, bridging the gap between the high accuracy of QM methods and the
computational efficiency of EFFs. This has enabled the study of large-scale molecular systems with
QM-level accuracy across diverse applications, including drug discovery [3, 4], materials design [5–7],
and catalysis [8, 9], etc.

In most MLP applications, the training data is generated from scratch either through brute force ab
initio molecular dynamics simulations [10] or by using a concurrent learning (or active learning)
scheme capable of automatically generating the most critical data for building uniformly accurate
models [11–14]. In any case, DFT-calculated energies and forces are required for each configuration
in the training dataset, resulting in a substantial amount of efforts spent on constructing DFT-labeled
datasets. For instance, in the AlMgCu general-purpose ternary alloy MLP [15], more than 10 million
CPU hours were spent on labeling the 141K training data points. Furthermore, MLPs often struggle
to generalize to applications not covered by the training data [5], such as when additional elements
are included in materials design or when crystal structures in a broader range of thermodynamic
conditions need to be explored.

To further extend the application range of MLPs, efforts have been made to develop “universal”
or “fundamental” models [16–21], referred to as large atomic models (LAMs), based on extensive
density functional theory (DFT)-labeled datasets. However, the technical approach still requires
further exploration, and a LAM-centric ecosystem remains to be established. The primary factors
influencing this exploration process are the methods employed for model training and their subsequent
application in various tasks.

During the model training stage, a single-task-based training strategy, i.e., training using consistently
labeled data, remains dominant. Models generated in this way are typically expected to be directly
applicable to downstream tasks in which the explored configurations are effectively covered by the
training data. Some examples include models such as M3GNet [17], CHGNet [19] and MACE-
MP-0 [20], which are all trained on snapshots from DFT relaxations of the Material Project [22]
structures, with M3GNet utilizing 88K configurations across 89 chemical species and both CHGNet
and MACE-MP-0 being trained on 1.58M inorganic crystal frames from the concurrently introduced
MPtrj dataset [19]; GNoME [21], trained on a dataset of inorganic crystals also starting from MP, but
nearly two orders of magnitude larger than MPtrj; PreFerred Potential (PFP), trained on approximately
9M frames of 45 elements [16]; and ALIGNN, trained on 307K data frames of 89 elements [18].
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Several limitations exist in the single-task training strategy: (1) Simultaneously training multiple
datasets from different application fields is not feasible due to the variations in labeling with different
DFT settings. For instance, the MPtrj dataset, labeled by DFT calculations using PBE/PBE+U [23]
exchange-correlation functional and plane-wave basis, cannot be concurrently trained with the ANI-
1x dataset, labeled by DFT calculations using the ωB97x hybrid functional [24] and an atomic basis
set, thus little possibility is left to improve the model’s generalizability on molecular applications. (2)
The requirements of downstream tasks might be difficult to satisfy. For instance, a task may require
DFT accuracy at the meta-general gradient approximation (meta-GGA) level. A model trained with
GGA-level DFT data would not be easily adapted to fulfill this requirement.

Multi-task pre-training, combined with various strategies for downstream tasks such as fine-tuning
and distillation, has emerged as a promising alternative for the development of LAMs [25–28].
By employing the multi-task training strategy [29, 30], it becomes possible to jointly pre-train
models using multiple datasets labeled with different DFT settings [27, 31]. During fine-tuning for
downstream tasks, the model’s backbone, which encodes the representation of configurational and
chemical spaces, is preserved and connected to one or multiple task heads [32, 33]. As a result, the
labeling methods for pre-training and fine-tuning datasets do not need to be identical. Furthermore,
the downstream tasks can involve property predictions rather than PES modeling [31]. This scheme
offers significant flexibility in downstream tasks and may lead to a much better generalization ability
of a LAM.

Before proceeding further, let us list the requirements of a LAM that we consider to be fundamental:
(1) highly generalizable, (2) extensive and respect the translational, rotational, and permutational
symmetries, (3) conservative, and (4) continuous up to second-order derivatives. A model with high
generalizability implies that when trained with the same amount of data, the model can achieve
high accuracy [34]. The generalizability is critical in pre-training LAMs, considering that the DFT-
labeled data are expensive and sparse in the configurational and chemical spaces. By conservative,
we mean that the forces (and virial tensor, for periodic systems) are calculated by the derivatives
of the model-predicted total energy of the system concerning atom coordinates (and cell tensor,
respectively). The conservativeness and smoothness of the model are critical for energy conservation
in MD simulations and are thus a compulsory requirement for calculating dynamic properties such as
diffusion coefficient, viscosity, and thermal conductivity [35]. The requirements (1)–(4) are physical
restraints imposed on a PES, thus they are necessary (but in general not sufficient) conditions for the
generalizability of the LAMs.

In this context, the primary contribution of this work is the development of DPA-2, a multi-task pre-
trained model that meets all the mentioned requirements and furnishes a representation suitable for a
diverse array of multi-disciplinary applications, including alloys, semiconductors, battery materials,
drug molecules, and more, while exhibiting a high degree of generalization for downstream tasks. The
revelation of a remarkable correspondence between the learned representations by DPA-2 and existing
chemical knowledge underscores the potential of the proposed model architecture and the multi-task
training scheme. Furthermore, we emphasize the importance of an open and application-oriented
model evaluation system for the molecular simulation community in the era of large atomic models.

1.1 Related work

Machine learning potential models In recent years, there has been rapid development in MLP
models. While it is nearly impossible to provide a comprehensive list, some notable examples
include the Behler-Parrinello neural network (BPNN) [36], ANI [37], deep tensor neural networks
(DTNN) [38], weighted atom-centered symmetry functions (wACSF) [39], Deep Potential (DP) [40–
42], Deep Potential with attention (DPA-1) [43], and embedded atom neural network (EANN) [44].
These models employ either hand-crafted or machine-learned descriptors of atomic environments,
along with deep neural networks, to approximate potential energy. Other machine learning techniques,
such as kernel ridge regression, are also widely used. Examples include the Gaussian approximation
potential (GAP) [45], which uses a smooth overlap of atomic positions (SOAP) measure of distance
between local environments [46], the Coulomb matrix [47], and gradient-domain machine learning
(GDML) [48]. Some potential energy models, such as the spectral neighbor analysis method
(SNAP) [49] and the moment tensor potential (MTP) [50], utilize linear regression for fitting the
potential energy surface (PES).
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Figure 1: An overview of the proposed LAM workflow, (a) the multi-task pre-training process, in
which different DFT-labeled data can be pre-trained together by sharing a single descriptor and
having their unique fitting nets, with sampling according to their importance. This results in a
unified descriptor. (b) The fine-tuning process on the downstream dataset, using the pre-trained
unified descriptor and selecting a fitting net from upstream tasks or reinitializing the fitting net for
the downstream dataset. (c) The distillation process uses the fine-tuned model as a teacher model,
iteratively performing MD simulations and adding labeled data to the training set to train a high-
efficiency student model, which is convenient for downstream applications.

Recently, there has been a surge in the development of equivariant graph neural networks
(GNN) [51, 52], with examples including SchNet [53], Directional Message Passing Neural
Network (DimeNet) [54], Polarizable Atom Interaction Neural Network (PaiNN) [55], Geomet-
ric Message Passing Neural Network (GemNet) [56], SpinConv [57], Spherical Channel Net-
work (SCN) [58], Neural Equivariant Interatomic Potentials (NequIP) [59], MACE [60] and
Equiformer/EquiformerV2 [61, 62]. These networks are based on message passing among node and
edge equivariant representations and have demonstrated promising fitting accuracy. However, it has
been noted that GNNs are not easily parallelizable, making them less ideal for large-scale molecular
dynamics (MD) simulations [63].

Pre-trained models for molecular modeling Pre-training, or representation learning [64, 65], has
shown significant success across various applications, including natural language processing [30, 66]
and computer vision [67]. In the realm of molecular modeling, a primary objective of pre-trained
models is to learn atomic representations of chemical species and 3D configurations of atoms.

One category of downstream tasks involves property prediction. Pre-trained models can be trained in
an unsupervised manner by recovering masked atomic types and perturbed coordinates [68–72], by
undertaking generative tasks [69], or by engaging in supervised learning tasks such as regression and
classification [73–75, 31].

Another category of downstream tasks focuses on the modeling of PESs. The model can be pre-
trained through unsupervised tasks like denoising or chemical species restoration [28, 25], supervised
learning of energy, force, or partial charge [76, 27], or a combination of both types of tasks [26].
Interestingly, most of these methods were developed for pre-training on molecule-in-vacuum systems,
thus limiting the downstream tasks to such a class of tasks. Ref. [76] developed pre-trained models
for condensed-phase carbon systems, but these models are unlikely to be generalizable to systems
composed of chemical elements other than carbon. Zhang et al. [43] pre-trained the DPA-1 model on
the OC2M dataset [77] and examined its performance on downstream tasks involving high entropy
alloys and AlMgCu ternary alloys. However, the study did not investigate downstream tasks related
to non-metallic systems.
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2 Results

2.1 The workflow of LAM

The LAM workflow includes the phases of pre-training, fine-tuning for downstream tasks, and
knowledge distillation, as schematically presented in Fig. 1. The LAM is constructed with a unified
descriptor that encodes the symmetry-preserving representation of the chemical and configurational
spaces of atomic systems. This descriptor is connected to the energy-fitting networks, each predicting
the energy (E) and force (F ) outputs based on the data used during the pre-training phase (see
Fig. 1(a)).

The LAM employs a multi-task training strategy, as illustrated in Figure 1(a). Specifically, the network
parameters within the unified descriptor are concurrently optimized through back-propagation using
all pre-training datasets. In contrast, the parameters of the fitting network are updated exclusively with
the specific pre-training dataset to which they are associated. This approach is fundamentally different
from the single-task training paradigm, where all model parameters, encompassing those within both
the descriptor and the fitting network, are refined using a singular training dataset. The inability to
merge the pre-training datasets into a unified “super-dataset” stems from the fact that labels across
different datasets are typically derived from DFT calculations subject to variable conditions, such as
exchange-correlation functionals, basis sets, and energy cut-off radii, culminating in distinct PESs.
We have shown that the multi-task training is as efficient as the single-task training scheme, see
Sec. S3 of the Supplementary Materials. Therefore, the multi-task training delivers the possibility
of training the atomic representation from the heterogeneously labeled pre-training datasets. It is
noted that although a hybrid multi-task pre-training approach using both labeled and unlabeled data
is technically feasible, we focus on supervised learning for pre-training in this work, and leave the
investigation of hybrid multi-task pre-training in future studies.

The pre-trained descriptor and the fitting networks can be fine-tuned for specific downstream PES
modeling tasks, as illustrated in Figure 1(b). In the downstream model, the descriptor is initialized
with the pre-trained unified descriptor, while the fitting network may be initialized either randomly or
with a fitting head akin to the one used in one of the pre-training tasks. Given that the pre-training
dataset encodes the bulk of the information within the descriptor, the initialization method for the
downstream fitting network is likely to be of minor importance. The training dataset for a downstream
task might be pre-existing and ready for training, or it could be generated through concurrent learning
schemes such as DP-GEN [14]. In this study, we present several ready-to-use downstream datasets
to validate the effectiveness of our proposed methodology and defer the exploration of concurrent
learning-based data generation to future research.

The fine-tuned model, while possessing a large number of parameters, may exhibit reduced efficiency
when directly applied to applications like molecular dynamics (MD) simulations. To address this
concern, we propose model distillation to create a streamlined version that retains the desired accuracy
for downstream tasks while also enhancing processing speed and facilitating extensive simulations.
Figure 1(c) depicts the distillation procedure, which employs an iterative learning loop. Within this
framework, the original model, henceforth referred to as the “teacher”, labels the data. In parallel, a
“student” model, characterized by a simplified architecture (e.g. DPA-1 without any attention layer,
which can be further compressed [78] to significantly enhance performance), is trained on this labeled
data. The teacher model is then engaged in MD exploration, operating under conditions akin to those
of the intended downstream application. This ensures that the chemical and physical parameters
encountered during both the distillation process and the actual tasks are consistent, facilitating
effective learning by the student model. Configurations from the MD trajectories are sampled, and
the student model’s predictions are compared against those of the teacher. If the discrepancy between
their predictions surpasses a pre-established threshold, these configurations are appended to the
training set for subsequent iterations. The cycle is reiterated until the student model’s predictive
accuracy either meets the preset standards or stabilizes without further improvement.

2.2 Datasets and DPA-2 descriptor

The primary goal in developing LAMs is to embed comprehensive knowledge within the multi-task
pre-trained model by leveraging the pre-training dataset. Consequently, this embedded knowledge is
anticipated to alleviate the intensive fine-tuning process required for specific downstream tasks. This
objective necessitates two essential criteria during the pre-training phase: (1) the pre-training dataset
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Table 1: Overview of pre-training and downstream datasets employed in the multi-task learning
framework. The columns provide dataset name, coverage of the chemical space, number of training
data points, number of test data points, the total data count, and assigned weight.

Pre-training datasets
Name element #train #test #total weight
Alloy 53 71,482 1,240 72,722 2.0
Cathode-P Li,Na,O,Mn,Fe,Co,Cr,Ni 58,690 6,451 65,141 1.0
Cluster-P Pd,Ru,Al,Au,Ag,Pt,Si,Cu,Ni 139,200 14,936 154,136 1.0
Drug H, C, N, O, F, Cl, S, P 1,379,956 24,257 1,404,213 2.0
FerroEle-P 15 6,966 760 7,726 1.0
OC2M 56 2,000,000 999,866 2,999,866 2.0
SSE-PBE-P Li, P, S, Si, Ge 15,019 755 15,774 1.0
SemiCond-P 14 136,867 14,848 151,715 1.0
H2O-PD H, O 46,077 2,342 48,419 1.0
Ag∪Au-PBE Ag, Au 16,696 812 17,508 0.2
Al∪Mg∪Cu Al, Mg, Cu 24,252 1,145 25,397 0.3
Cu Cu 14,596 770 15,366 0.1
Sn Sn 6,449 276 6,725 0.1
Ti Ti 10,054 474 10,528 0.1
V V 14,935 738 15,673 0.1
W W 42,297 2,100 44,397 0.1
C12H26 H, C 33,898 1,598 35,496 0.1
HfO2 O, Hf 27,660 917 28,577 0.1
sum 73 4,045,094 1,074,285 5,119,379 13.2

Downstream datasets
Name element #train #test #total weight
Cathode-D Li, Na, O, Mn, Fe, Co, Cr 30,002 3,244 33,246 1.0
Cluster-D Pd, Au, Ag, Pt, Cu, Ni 4,218 395 4,613 1.0
FerroEle-D 15 7,521 597 8,118 1.0
SSE-PBE-D Li, P, S, Sn 2,563 131 2,694 0.5
SSE-PBESol Li, P, S, Si, Ge, Sn 7,502 384 7,886 0.5
SemiCond-D P, N, Al, Te, In, Se, Sb, B, As 78,614 8,495 87,109 1.0
ANI-1x H, C, N, O 4,872,049 83,956 4,956,005 1.0
Transition-1x H, C, N, O 7,632,328 967,454 8,599,782 1.0
H2O-DPLR H, O 557 46 603 0.5
H2O-SCAN0 H, O 7,002 347 7,349 0.5
H2O-PBE0TS H, O 133,000 7,000 140,000 0.5
H2O-PBE0TS-MD H, O 38,000 2,000 40,000 0.5
AgAu-PBED3 Ag, Au 64,239 2,256 66,495 0.3
AlMgCu-D Al, Mg, Cu 113,942 2,820 116,762 0.2
In2Se3 In, Se 11,621 568 12,189 0.2
sum 39 13,003,158 1,079,693 14,082,851 9.0

must encompass a broad spectrum of chemical and configurational spaces to prepare the model for
potential scenarios in downstream applications; and (2) the DPA-2 model, pre-trained in a multi-task
manner, is expected to exhibit a strong ability to generalize to downstream tasks, provided that the
chemical and configurational space relevant to these tasks overlaps to some extent with the scope of
the datasets used during pre-training.

For the first criterion, the datasets utilized in this study are summarized in Table 1. Detailed descrip-
tions are provided in Section S1 of the Supplementary Materials. Some datasets are newly generated
in this work, including metallic alloys (Alloy), cathode materials (Cathode), metal nano-clusters
(Cluster), and drug-like molecules (Drug). Some datasets are contributed by the DeepModeling
community 4, including the ferroelectric perovskite (FerroEle), solid-state-electrolyte (SSE), semicon-
ductors (SemiCond), H2O, metallic material datasets (e.g. Sn, AgAu and AlMgCu), and the pyrolysis
of n-dodecane (C12H26). Additionally, we have the open catalyst 20 [77] (OC2M) that is formed by
AIMD trajectories of molecular chemical reactions catalyzed by metallic substrates. These datasets
are labeled with various DFT software like the VASP [79, 80], Gaussian [81], and ABACUS [82, 83].
In addition, They are divided into two groups, the pre-training and the downstream datasets, as

4See https://github.com/deepmodeling/AIS-Square/tree/main/datasets
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Figure 2: (a) Detailed architecture of the DPA-2 descriptor, which includes two primary components:
repinit and repformer. (b) Structure of repinit. (c) Structure of repformer. (d-g) Substructures
referenced in subsequent sections.

detailed in Sec. S1 of the Supplementary Materials. It is noted that the division is only to demonstrate
the effectiveness of the workflow of LAM. For production purposes, all the datasets listed in Tab. 1
should be used to pre-train a LAM.

In the last column of Tab. 1, weights are assigned to each pre-training dataset. These weights are
based on relevance, diversity in both chemical and configurational spaces, and data volume. The
weight of a dataset is proportional to its selection probability during multi-task training, meaning
that datasets with higher weights are favored in each training iteration. These weights also play a
crucial role in calculating the weighted average of errors across all datasets, as shown in Tab. 2 and
Tabs. S2–S3 of the Supplementary Materials, which helps to provide an assessment of the model’s
overall accuracy.

For the second criterion, we propose the DPA-2 model with full details of the model architecture
explained in Section 4. The descriptor of the model, which is supposed to encode the representation
of the chemical and configurational spaces of the pre-training dataset, is schematically demonstrated
in Fig. 2. The chemical and configurational spaces are represented by a single-atom channel fi,
a rotationally invariant pair-atom channel gij and a rotationally equivariant pair-atom channel hij .
The pair-atom representations are initialized by the environment matrix (operator env in Fig. 2),
which encodes the relative positions of the near neighbors within a certain cut-off radius (r0c and r1c ),
and smoothly decays to zero at the cut-off radius. The single-atom representations fi is initialized
by a repinit (representation initializer) layer. Then the single- and pair-atom representations are
subsequently updated by the representation transformer (repformer) layers, which are stacked 12
times and communicate information in a message-passing manner between the layers. In each of the
repformer layer, fi is updated by convolution, symmetrization, MLP, and localized self-attention
operators, while gij is updated by MLP, dot-product, and gated self-attention operators (see Fig. 2(c)
and Sec. 4.2.3 for more details). The contribution of different building blocks to the model accuracy
is investigated by an ablation study in Sec. S7 of the Supplementary Materials.

The DPA-2 model is designed to be extensible and inherently respects translational, rotational, and
permutational symmetries. Moreover, it is conservative, as it predicts atomic forces by computing
the negative gradient of the system’s energy with respect to the atomic positions, Fi = −∇riE, and
calculates the virial tensor as Ξαβ =

∑
γ(−∇hγα

E)hγβ , where E represents the energy, ri denotes
the position of atom i, and hαβ is the βth component of the αth basis vector of the simulation cell.
Furthermore, all components of the DPA-2 model are continuous up to the second-order derivative,
ensuring energy conservation. Numerical examples demonstrating the energy conservation properties
of the DPA-2 model can be found in Supplementary Material Sec. S8.
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Table 2: Comparison on the zero-shot generalization errors on downstream tasks. The MACE-MP-0
(MACE) and DPA-2 pre-trained on MPtrj dataset, the DPA-2 pre-trained by single-task (ST) and
multi-task (MT) approaches are compared. The DPA-2 ST is trained by the pre-training datasets listed
in the second column of the Table, while the DPA-2 MT is trained by all the pre-training datasets
listed in Tab. 1. The energy and force RMSEs on the downstream test datasets are reported. The
weighted averaged RMSEs (WARMSE) with the weights presented in Tab. 1 is given in the first
row of the table. The standard deviations of energy and force labels in the test set are also provided.
If the RMSE is smaller than the corresponding standard deviation, the model shows the ability of
zero-shot generalization, on the other hand, the model cannot be generalized to downstream tasks
without downstream data.

Energy RMSE [meV/atom] ↓ Force RMSE [meV/Å] ↓
Downstream Pre-train data MACE DPA-2 DPA-2 DPA-2 data MACE DPA-2 DPA-2 DPA-2

(only for ST) std. (MPtrj) (MPtrj) ST MT std. (MPtrj) (MPtrj) ST MT
WARMSE 121.4 104.0 68.3 100.2 50.1 1405.4 575.6 516.6 628.0 238.8
AgAu-PBED3 AgAu-PBE 906.9 1812.8 268.9 222.9 192.3 878.0 683.2 293.3 236.9 63.6
AlMgCu-D AlMgCu 383.8 33.8 32.0 254.3 41.2 1229.5 240.1 245.3 663.7 111.8
AlMgCu-D Alloy 383.8 33.8 32.0 74.9 48.4 1229.5 240.1 245.3 122.3 112.8
ANI-1x Drug 198.9 52.3 61.7 67.2 56.6 2124.6 636.1 700.1 738.7 346.7
Cathode-D Cathode-P 42.2 15.8 29.7 39.8 43.8 641.9 288.4 613.9 339.7 273.9
Cluster-D Cluster-P 636.0 323.7 262.7 41.4 40.5 3605.4 2230.8 1193.6 238.4 190.5
FerroEle-D FerroEle-P 43.0 12.5 14.5 6.3 3.9 881.3 191.3 194.2 282.7 115.1
H2O-DPLR H2O-PD 15.6 2.1 2.0 9.1 9.3 825.2 94.4 99.7 263.5 263.4
H2O-H2O H2O-PD 47.0 4.9 7.2 4.9 4.7 1941.0 381.0 382.7 58.8 64.4
H2O-PBE0TS-MD H2O-PD 3.3 1.1 1.5 0.5 0.6 816.1 330.8 314.4 37.6 40.8
H2O-SCAN0 H2O-PD 12.6 3.2 3.8 1.1 0.7 2163.2 387.5 385.2 409.2 162.9
In2Se3 SemiCond-P 120.5 31.9 24.5 160.6 38.9 611.1 190.2 188.0 1544.1 341.6
SemiCond-D SemiCond-P 587.6 49.8 70.9 486.2 175.7 1755.4 470.7 534.9 1439.4 439.3
SSE-PBE-D SSE-PBE-P 79.0 33.7 39.4 40.7 6.2 789.5 222.1 249.9 635.6 162.4
SSE-PBESol SSE-PBE-P 84.3 32.5 37.4 26.1 8.3 810.9 231.8 260.4 425.0 115.3
Transition-1x Drug 139.8 56.4 55.1 48.2 45.8 368.1 518.6 618.3 1298.6 363.8

2.3 Generalizability of the multi-task pre-trained DPA-2 model

Before moving to a discussion on the generalizability of the multi-task training scheme, we test the
model of DPA-2 by using single-task benchmarks, which are directly comparable to the state-of-the-
art model architectures. In the first benchmark, the ANI-1x dataset, the DPA-2 shows superior test
accuracy compared with the ANI-1x model reported in Ref. [11], see Tab. S1 in the Supplementary
Materials. In the second benchmark, the accuracy of the DPA-2 model is comparable to GemNet-
OC [84] and higher than Equiformer V2 [62], NequIP [59], Allegro [63] and MACE [60] models on
the pre-training datasets, see Tab. S2 in the Supplementary Materials.

Next, we train the DPA-2 model on all the pre-training datasets by the multi-task scheme. The details
of the training protocol, the test accuracy of these datasets, and a discussion on the effectiveness of
the multi-task scheme are given in Sec. S3 of the Supplementary Materials.

We investigate the generalizability of the multi-task pre-trained DPA-2 model to downstream tasks by
testing the model directly on downstream datasets. This approach is known as zero-shot generalization
because no data from the downstream tasks are used to refine the pre-trained model before testing.
In an ideal scenario, a perfectly generalizable model—that is, one that encapsulates the chemical
knowledge of the periodic table and all relevant configurations for a given downstream task—would
exhibit a zero-shot generalization error comparable to, or potentially lower than, the test error of a
model specifically trained from scratch for that task.

The zero-shot generalizability of the multi-task pre-trained DPA-2 model is presented in Table 2
and compared with its single-task pre-trained counterpart, MPtrj-trained DPA-2, and MACE-MP-0.
For all cases, the single-task DPA-2 models are exclusively trained on the datasets specified in the
second column, whereas the multi-task DPA-2 model undergoes pre-training on the entire corpus
of pre-training datasets (see Table 1). The multi-task DPA-2 model then employs the fitting head
indicated in the second column to initialize the fitting procedure for downstream tasks. All model
variants are evaluated on their respective downstream datasets without any additional training. The
results demonstrate that multi-task training substantially enhances generalizability compared to the
single-task pre-trained DPA-2 and the MPtrj-trained models. The comparable performance between
the MPtrj-trained MACE-MP-0 and DPA-2 suggests that the improvement is primarily due to the
multi-task pre-training scheme rather than differences in model architecture.
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101x data 
reduction

Figure 3: Comparative analysis of sample efficiency on downstream tasks. The horizontal axis
represents the volume of downstream data required, while the vertical axis depicts the RMSE
convergence in energy or force predictions. For a uniform assessment across models, the number of
training epochs per model for each downstream task is normalized to a standard value, derived by
dividing 1 million by the number of downstream samples.

2.4 Fine-tuning on downstream tasks

Although zero-shot generalizability is often observed to a certain extent, a gap from perfect general-
ization typically remains. To bridge this gap, we fine-tune the models using data from the downstream
tasks. A stronger generalizability in a pre-trained model implies that less data is required during
fine-tuning, leading to higher sample efficiency. The reduction in sample size relative to training a
model from scratch quantifies the advantage of employing a multi-task pre-trained model.

The sample efficiency of the pre-trained DPA-2 on downstream tasks was evaluated by comparing
it against various other DP models that were trained from scratch. Fig. 3 showcases a selection of
downstream tasks, with a comprehensive comparison available in Section S4 of the Supplementary
Materials. The figure illustrates the convergence trends of the energy and force RMSEs in relation to
the expanding sample size used for downstream training.

To draw distinctions between the fine-tuned DPA-2 and the from-scratch DPA-2 models, it is important
to realize that both models share identical architectures. However, the fine-tuned model begins with
parameters derived from a multi-task pre-trained model, whereas the from-scratch model starts
with randomly initialized parameters. The fine-tuned DPA-2 model consistently achieves lower
error curves compared to the DPA-2 model trained from scratch, particularly when the available
downstream data is scarce. This translates to a considerable reduction in the amount of data needed
to reach equivalent levels of accuracy. Taking the H2O-PBE0TS-MD task for example, two orders of
magnitudes of training data are saved to reach the same energy accuracy, see the zoomed-in of Fig. 3.
As the sample size grows, the performance disparity between the fine-tuned and from-scratch DPA-2
models diminishes. This outcome is anticipated, given that both models possess the same capacity
and, theoretically, their accuracy should converge as the dataset approaches an infinite size. When
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Figure 4: Evaluation of the distilled model across various downstream applications. (a-b) Com-
parison of the radial distribution function (RDF) and angular distribution function (ADF) for the
H2O-PBE0TS-MD dataset between the reference AIMD results [85] and the distilled model. The
model is distilled from a DPA-2 model fine-tuned from merely 0.25% of DFT-labeled data. (c) A
comparison of diffusion constants for the solid-state electrolyte Li10SnP2S12. The constants were de-
termined using various methods: the distilled model, DPMD as reported in Huang et al. (2021) [86],
AIMD simulations from the studies by Mo et al. (2012) and Marcolongo et al. (2017) [87, 88],
and experimental findings from solid-state nuclear magnetic resonance (NMR) as documented by
Kuhn et al. (2013) [89]. The distilled model is trained from a DPA-2 model fine-tuned by 1.01%
of the SSE-PBE-D data. (d-e) The temperature-dependent lattice constants for the ternary solid
solution ferroelectric perovskite oxides Pb(In1/2 Nb1/2 )O3–Pb(Mg1/3 Nb2/3 )O3–PbTiO3 (PIN-PMN-
PT). The NPT MD simulations using the distilled model are conducted for two concentrations,
0.29PIN–0.45PMN–0.26PT and 0.36PIN-0.36PMN-0.28PT [90]. The model is distilled from a
DPA-2 model fine-tuned with the complete FerrEle-P dataset and 7.86% of the FerrEle-D data. (f)
Computational efficiency assessment for the aforementioned three systems, showcasing the time-to-
solution as a function of the system size in the number of atoms (Natoms).

comparing DeepPot-SE (DP-SE), DPA-1, and DPA-2 models trained from scratch, the DPA-2 model
exhibits superior performance over the other architectures. While the convergence patterns of the
DPA-1 and DP-SE models are somewhat parallel, the DP-SE model reaches a performance plateau
more rapidly than the DPA-1 in the FerroEle-D, SSE-PBESol, and SemiCond-D tasks.

2.5 Model distillation and evaluation

The fine-tuned DPA-2 model typically suffers from computational inefficiency due to its extensive
parameter set, as illustrated in Fig. 4(f). To address this, we employed a knowledge distillation
approach, transferring insights from the fine-tuned DPA-2 models to compressed DPA-1 models
without attention layers. We evaluated the performance of these distilled models in terms of efficiency
and accuracy on three benchmark downstream tasks: H2O-PBE0TS-MD, SSE-PBE-D, and FerroEle-
D. Notably, in all the cases, the fine-tuned models are exposed to only a small portion (0.25%–7.86%,
see Tab. S4) of the downstream dataset, and are used to generate the distillation training datasets
that sufficiently cover the relevant configuration spaces. In the FerroEle-D task, we append the full
FerroEle-P to a small (7.86%) portion of the FerroEle-D dataset for the training of the fine-tuned
model. The FerroEle-D that contains solid solution perovskite oxides was generated by the concurrent
learning scheme starting from the FerroEle-P dataset that contains unitary perovskite (see Ref. [90]
and Supplementary Materials Sec. S1). Consequently, the FerroEle-D dataset alone does not provide
a comprehensive basis for training a fully capable potential model.

After distillation, the time-to-solution and the maximal system size that can be simulated on a single
GPU card improved by nearly two orders of magnitude, as shown in Fig. 4(f). Moreover, the accuracy
of the distilled models is on par with that of the fine-tuned DPA-2 models, as detailed in Tab. S4. The
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Figure 5: t-SNE visualizations of the DPA-2 single-atom representation of the chemical and con-
figurational space. (a-b) Different colors correspond to the different groups in the periodic table.
From group IA to group VII, red gradually transitions to blue. (c) The representations of aluminum
in Alloy and OC2M datasets. Red points represent aluminum in Alloy dataset.The gradient colors
represent different shortest distances of aluminum in catalyst materials from the adsorbates in the
OC2M dataset. (d) The representations of carbon in Drug dataset and in adsorbates of the OC2M
dataset. Red points represent carbon in Drug dataset. The gradient colors represent different shortest
distances of carbon in adsorbates from the catalyst materials in OC2M dataset. (e)The representations
of sulfur in SSE-PBE and SSE-PBESol datasets.

distilled models appear to have reached the peak of their performance, given that their accuracies
closely match those of the DPA-1 models (without an attention layer) when trained on the complete
downstream datasets.

Finally, to validate the reliability of the distilled models beyond the energy and force RMSEs, we have
conducted various application tests on the aforementioned three systems, as reported in Fig. 4(a-e). In
the downstream task of H2O-PBE0TS-MD, we observe that the radial distribution functions (RDFs)
and the angular distribution function (ADF) of the distilled model are in almost perfect agreement with
those obtained from the AIMD simulation, see Fig. 4(a-b). In the downstream task of SSE-PBE-D, the
diffusion constants of Lithium ions in the Li10SnP2S12 system under different temperature conditions
are calculated. The distilled model presents satisfactory agreement with the previously reported MD
simulations using DP-PBE LiSnPS model and DFT (i.e. AIMD simulations) [87, 88], see Fig. 4(c).
The discrepancy between the simulation and the experimental results [89] may be attributed to the
approximation error of the density functional and finite size effects, as discussed in Ref. [86]. In
the downstream task of FerroEle-D, we investigated the temperature-driven phase transition in the
solid solution ferroelectric perovskite Pb(In1/2 Nb1/2 )O3–Pb(Mg1/3 Nb2/3 )O3–PbTiO3 (PIN-PMN-
PT), see Fig. 4(d-e). Tetragonal-cubic (T-C) transitions are observed at ∼ 250 and ∼ 300 K for two
concentrations 0.29PIN–0.45PMN–0.26PT and 0.36PIN-0.36PMN-0.28PT, repectively. The fact
that the transition temperature raises for ∼ 50 K due to the increment in the PIN (Pb(In1/2 Nb1/2 )O3)
portion from 29% to 36% is in line with the experimental observations [91, 92].

2.6 The representation learned by the DPA-2 model

We present a visualization of the update of single-atom representations by the final repformer layer
using a 2-dimensional t-SNE plot [93], as depicted in Fig.5. In Fig.5(a), colors denote distinct
groups in the periodic table, as annotated in Fig.5(b). Notably, Fig.5(a) reveals that representations of
identical chemical species tend to form cohesive clusters in the t-SNE latent space. The distribution
of these representations distinctly aligns with known chemistry: The elements in groups IA and IIA
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are clustered at the top right of the t-SNE plot; The non-metals cluster predominantly at the top
left and bottom; The transition metals, typically positioned at the middle of the periodic table, are
accordingly situated in the central region of the t-SNE figure. However, hydrogen (H) presents an
exception, exhibiting two clusters: one aligned with metals, primarily in water datasets, and another
near non-metals, particularly in molecule datasets such as Drug, ANI-1x, and Transition-1x.

Elements such as Copper (Cu), Silver (Ag), and Gold (Au) in group IB exhibit a tendency to cluster
closer to Lithium (Li) than other transition metals due to their shared possession of one s-electron in
the outermost electron shell. Similarly, representations of group IIA elements like Calcium (Ca) and
Strontium (Sr) closely associate with those of group IIB elements such as Zinc (Zn) and Cadmium
(Cd) owing to their shared possession of two s-electrons in the outermost electron shell. Additionally,
there’s a discernible trend for elements from the same group in the periodic table to cluster together,
as evident with Phosphorus (P), Arsenic (As), and Antimony (Sb) from group VII, and Selenium (Se)
and Tellurium (Te) from group VIII.

The DPA-2 representation effectively distinguishes between various chemical and configurational
environments, as showcased in Fig.5(c-e). In Fig.5(c), representations of Aluminum (Al) atoms from
the Alloy and OC2M datasets are depicted. The color gradient from purple to yellow indicates the
distance of the Al atom from the closest adsorbate in the OC2M dataset, while Al atoms from the Alloy
dataset (all-metal environment) are colored red. Notably, Al atoms distanced from adsorbates closely
resemble those in the Alloy dataset, indicative of similar chemical and configurational environments,
whereas those in proximity to adsorbates exhibit discernible differences (see the red-circled blue
cluster). Similarly, Fig.5(d) illustrates representations of Carbon (C) atoms in the Drug and OC2M
datasets. Carbon atoms in adsorbates closer to catalyst materials are positioned farther away in latent
space from representations in the Drug dataset due to more pronounced differences in their chemical
and configurational environments.

Moreover, the DPA-2 representation shows insensitivity to DFT labeling accuracy. As demonstrated
in Fig. 5(e), representations of sulfur (S) in SSE-PBE (labeled with PBE exchange correlation
functional) and SSE-PBESol (labeled with PBE-Sol exchange correlation functional) datasets exhibit
mutual overlap. The S atoms form two clusters, with one cluster indicating a phosphorus neighboring
atom and the other representing a neighboring Si/Ge/Sn atom.

In summary, our analysis reveals that atoms sharing similar chemical and configurational environments
are closer in the representation space learned by the DPA-2 model. Thus, the DPA-2 representation
emerges as a promising candidate for encoding chemical and configurational information in molecular
and condensed-phase applications.

3 Discussion

In this work, we introduce DPA-2, a Large Atomic Model (LAM), supported by a comprehensive
pipeline that includes multi-task pre-training, fine-tuning, knowledge distillation, and practical
deployment. The principal findings concerning DPA-2 are as follows: (1) DPA-2 demonstrates
exceptional ability for generalization, primarily due to the multi-task pre-training approach, which
utilizes 18 datasets covering 73 chemical elements. These datasets would not typically be merged
in a single-task pre-training scenario due to differing labeling methodologies, such as exchange-
correlation functionals, energy cutoffs, and k-space grid spacing. (2) In downstream tasks, the
multi-task pre-training approach enables a reduction in data requirements by approximately 1–2
orders of magnitude without sacrificing accuracy. These results suggest that the DPA-2 model, along
with the proposed workflow, stands as a promising framework for molecular and materials simulation.

It is evident that the existing pre-training datasets for the DPA-2 model are insufficient. For example,
the datasets currently in use are notably deficient in information on 2-D materials, which significantly
limits the model’s generalizability to such systems. As a result, the development of LAMs like
DPA-2 must be considered a long-term endeavor. This process necessitates the ongoing collection of
diverse training data, the incorporation of application-specific test cases, and the establishment of
automated workflows for data preprocessing, model training, model evaluation, and version updates.
In recognition of these needs, we underscore the importance of fostering LAMs within an open and
collaborative ecosystem. Such an approach would enable the molecular simulation community to
both benefit from and contribute to the evolution of LAMs. Reflecting our commitment to this vision,
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we have launched the OpenLAM Initiative 5. Updates on this initiative will be regularly posted on
the AIS Square platform 6. We cordially invite readers to participate in this project in any capacity
they deem fit.

4 Methods

4.1 Formulation

In this study, we examine a system consisting of N atoms, where the atomic numbers are represented
by the list Z = (Z1, . . . , Zi, . . . , ZN ), and the atomic coordinates are denoted by the list R =
(r1, . . . , ri, . . . , rN ). The potential energy surface (PES) of the system is symbolized by E, a
function dependent on elemental types and coordinates, expressed as E = E(X ), X := (R,Z). The
potential energy surface can be further decomposed into the following equation:

E =
∑

i

Ei, (1)

where Ei signifies the atomic energy contributions originating from atom i. The atomic force exerted
on atom i, represented as Fi, is defined as the negative gradient of the total energy with respect to the
coordinate:

Fi = −∇riE. (2)
For periodic systems, the virial tensor can be obtained as follows:

Ξαβ = −
∑

γ

∂E

∂hγα
hγβ , (3)

where Ξαβ corresponds to the αβ component of the virial tensor, and hαβ yields the β-th component
of the α-th cell vector.

4.2 The DPA-2 model

4.2.1 The overall architecture of the DPA-2 model

The DPA-2 is a model that predicts the atomic energy contribution based on the atomic numbers Z
and the coordinates R. It consists of two parts,

Ei = F
(
Di

(
R,Z

))
, (4)

where Di represents the descriptor of atom i. The descriptor must be a smooth mapping from the
atomic numbers and coordinates to a hidden representation that remains invariant under translational,
rotational, and permutational (only among atoms with the same atomic number) operations.

The fitting network F is usually modeled by a standard multiple-layer perceptron (MLP) composed
of an energy-biasing layer,

F(Di) = ebias

(
MLP(Di)

)
. (5)

The energy bias layer “ebias” adds a constant bias to the atomic energy contribution according to the
atomic number, i.e., ebias(Zi)(MLP(Di)) = MLP(Di) + ebias(Zi). Ideally, the energy bias ebias
should be taken as the energy of an atom in a vacuum. In practice, the energy bias may be determined
by a least-square fitting of the energies in the training data. More precisely, suppose we have M data
frames, and within the m-th frame, we have cmz atoms with atom number z, and the DFT labeled
energy of the frame is denoted by E∗

m. Then the linear system
∑

z

cmzebias(z) = E∗
m, m = 1, . . . ,M, (6)

is solved in the least-square sense. Here we assume that the number of independent equations in
system Eq. (6) is equal to or smaller than the number of frames M .

5https://deepmodeling.github.io/blog/openlam/
6https://www.aissquare.com/openlam
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The DPA-2 descriptor is graphically illustrated in Fig. 2, specifically,

Di = concat(f0
i , f

2
i ), (7)

where f0
i and f2

i denote the single-atom representations of atom i. The requirements for smoothness
and symmetry preservation in single-atom representations are identical to those for the descriptor.
The representation f0

i is defined as

f0
i = MLP (one_hot(Zi)) . (8)

The atomic number, Zi, is initially converted into a one-hot representation and subsequently embedded
by an MLP. The output f0

i is the single-atom hidden representation with dimension n0
1. The single-

atom representation is updated by the repinit (representation-initializer) layer that encodes the
information of local configuration, expressed by the pair-atom representations g0ij a and h0

ij , into the
single-atom representation.

f1
i = repinit(f0

i , g
0
ij , h

0
ij). (9)

The feature f2
i is mapped from single-atom representation and pair-atoms representations g0ij , hij by

a multiple-layer structure,

f2
i = repformer ◦ · · · ◦ repformer︸ ︷︷ ︸

×12

(
linear(f1

i ), linear(g
1
ij), h

1
ij

)
, (10)

where the single- and pair-atom representations are updated by repformer (representation-
transformer) layers. The repformer is designed in a way that the input and output representations
share the shape dimension, thus they are stacked 12 times. The “◦” in Eq. (10) thus denotes the
layer composition (or mathematically the function composition). The linear mappings are used to
change the dimension of f1

i and g1ij to match the shape requirement of repformer. The pair-atom
representations g0ij , h0

ij , g1ij and h1
ij will be introduced shortly later. It is assumed that the repinit

and repformer layers only require the information of i’s neighboring atoms, i.e., all atoms falling
within a sphere centered at atom i with a radius rc. This radius is commonly referred to as the cut-off
radius. We thus introduce the notation Nrc(i), which represents the set of all neighbors of i, i.e.,
Nrc(i) = {j : j ̸= i, |rj − ri| < rc}. The maximum possible number of neighbors for the atoms in
the system is denoted by Nm

rc , so we have |Nrc(i)| ≤ Nm
rc , ∀i.

To define the pair-atom representations, g0ij , h0
ij , we consider the local configuration of atom i

represented by the augmented environment matrix with shape Nm
r0c

× 4, where r0c is the cut-off radius
used to compute the pair-atom representations. The j-th row of the environment matrix, being a
4-dimensional vector, is defined by

r̃ij = s(rij)×
(
1,

xij

|rij |
,
yij
|rij |

,
zij
|rij |

)
, (11)

where (xij , yij , zij) are the Cartesian coordinates of the relative position rij = ri − rj . In most
cases, the number of neighbors is smaller than Nm

rc , so the environment matrix only has |Nrc(i)|
rows defined by Eq. (11), and the remaining positions are filled with zeros. The switched inverse
distance function s in Eq. (11) is defined by

s (rij) =
wij

|rij |
, wij = w(|rij |). (12)

The switch function w takes the value 0 outside the cut-off radius rc, and 1 inside a starting point of
switching, denoted by rcs. In between rcs and rc, the switch function smoothly changes from 1 to 0.
It is required that w has a continuous second-order derivative on R. One possible implementation of
w is provided as

w (|rij |) =





1 if rij < rcs,

u3
(
−6u2 + 15u− 10

)
+ 1 if rcs ≤ rij < rc,

0 if rc ≤ rij ,

(13)

where u = (|rij | − rcs)/(rc − rcs) and rcs < rc is the starting point of the smooth switch.
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The first column of the augmented environment matrix is defined as the rotationally invariant pair-
atom representation, while the remaining three columns are denoted by the rotationally equivariant
pair-atom representation, i.e.

g0ij = s(rij), (14)

h0
ij = s(rij)×

(
xij

|rij |
,
yij
|rij |

,
zij
|rij |

)
. (15)

The procedure for calculating pair-atom representations is graphically illustrated in Fig. 2(f). The
representations g1ij and h1

ij are established in precisely the same manner as g0ij and h0
ij , with the only

potential variation being the selection of a distinct cut-off radius, denoted as r1c .

4.2.2 The repinit layer

The repinit layer only updates the single-atom f0
i and pair-atom g0ij representations, and does not

update the equivariant pair-atom representation hij that is of dimension 3. The repinit layer first
embeds the concatenated single- and pair-atom representations to update the pair-atom representation

grtij = MLP(concat(f0
i , f

0
j , g

0
ij)), ∀j ∈ Nr0c

(i) (16)

Then, we concatenate the g0ij and hij pair-atom representations to recover the environment matrix
and update single-atom representation using a symmetrization operation

f1
i = linear(f0

i ) + symm(grtij , r̃ij). (17)

The symmetrization operator, first introduced by Ref. [41], has the general form of symm(xj , yj),
where xj and yj are neighbor indexed vectors. It is assumed that xj is rotationally invariant, while yj
is not, but the inner product is rotationally invariant. The symmetrization operator is defined by

symm(xj , yj) = flatten
αγ

(∑

β

pαβ p
<
γβ

)
, (18)

pαβ =
1

Nm
r0c

∑

j∈Nr0c
(i)

wij xj,α yj,β , (19)

p<αβ = split
α

(pαβ). (20)

In Eq. (18), the matrix dimensions α and γ are flattened to form a vector. In Eq. (19), the summation
is taken over the index of neighbors j, making the matrix p permutationally invariant. When an atom
comes into the neighborhood of atom i, the quantities xj and yj generally do not smoothly switch
from 0. To prevent the discontinuous jump, the switch wij is multiplied. In Eq. (20), the matrix pαβ
is split along the α dimension, and the first certain number of elements are taken and assigned with
notation p<. It can be proven that the symmetrization operator is invariant with respect to rotational
operations and permutational operations over atoms of the same atomic number [41].

4.2.3 The repformer layer

The repformer layer maintains the input and output dimensions of the single- and pair-atom repre-
sentations, allowing it to be stacked to enhance its representational capabilities. However, the output
of repinit may not necessarily satisfy the dimension requirements of the repformer layer. To address
this issue, the representations are first projected to the desired shape using a linear layer, as follows:

f2,0
i = linear(f1

i ), (21)

g2,0ij = linear(g1ij), (22)

h2,0
ij = h1

ij . (23)

Subsequently, these representations are updated by the repformer layers. The dimensions of the
single- and pair-atom representations are denoted by n2

1 and n2
2, respectively. In the subsequent

discussion, the input representations for the l-th repformer layer are denoted by f2,l
i and g2,lij .
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In each repformer layer, the single-atom representation is updated by

f2,l+1
i =

1√
3

(
f2,l
i +MLP

(
f̃2,l
i

)
+ loc_attn

(
f2,l
i

))
. (24)

The intermediate representation f̃2,l
i is defined by

f̃2,l
i = concat

(
f2,l
i ,

1

Nm
r1c

∑

j∈Nr1c
(i)

wijg
2,l
ij f̂

2,l
j , symm

(
f2,l
j , h2,l

ij

)
, symm

(
g2,lij , h

2,l
ij

))
, (25)

where f̂2,l
j is a linearly transformed f2,l

j that has the same dimension as the equivariant pair-atom
channel, i.e. f̂2,l

j = linear(f2,l
j ). The last term in Eq. (24) is the local multi-head self-attention,

defined by

loc_attn
(
f2,l
i

)
= linear

β,h→n2
1

( ∑

j∈Nr1c
(i),α

Bl,η
ij f l

j,αV̂
l,η
α,β

)
, (26)

with the attention map B given by

q̂l,ηi,γ =
∑

α

f l
i,α Q̂l,η

α,γ , k̂l,ηj,γ =
∑

β

f l
j,β K̂

l,η
β,γ , (27)

Bl,η
ij = softmax∗

j∈Nr1c
(i)

( 1√
d̂

∑

γ

q̂l,ηi,γ k̂
l,η
j,γ

)
. (28)

Here, d̂ denotes the hidden dimension of the local self-attention, and the Q̂, K̂, and V̂ are trainable
matrices. The “∗” over the softmax operator indicates that the softmax used in Eq. (28) is modified to
guarantee the smoothness of the attention map. The definition will be introduced in Sec. 4.2.4.

In each layer, the rotationally invariant pair-atom representation is updated by

g2,l+1
ij =

1√
4

(
g2,lij +MLP(g2,lij ) + wij linear

n2
1→n2

2

(f2,l
i ⊙ f2,l

j ) + gated_attn
(
g2,lij , hij

))
, (29)

where the last term in Eq. (29) is the gated multi-head self-attention, which is defined by

gated_attn
(
g2,lij , hij

)
= linear

β,h→n2
2

( ∑

k∈Nr1c
(i),α

Ah
ijkg

2,l
ik,αV

l,η
α,β

)
. (30)

In Eq. (30), the attention map A is given by

ql,ηij,γ =
∑

α

g2,lij,α Ql,η
α,γ , kl,ηik,γ =

∑

β

g2,lik,β K
l,η
β,γ , (31)

Al,η
ijk = softmax

k∈Nr1c
(i)

†
(( 1√

d

∑

γ

ql,ηij,γk
l,η
ik,γ

) (∑

δ

hij,δhik,δ

))
, (32)

where d denotes the hidden dimension of the self-attention, the Q, K, and V are trainable matrices,
and η is the index of the attention heads. The gate term hijh

T
ik is proved to be critical to the

generalization ability of the model [43]. As detailed in Sec. 4.2.4, the † over the softmax operator
indicates that the softmax used in Eq. (32) is modified to guarantee the smoothness.

We notice that it is fully valid to update the rotationally equivariant representation hij in a similar
way, e.g.,

h2,l+1
ij =

1√
2

(
h2,l
ij + linear

h

( ∑

k∈Nr1c
(i)

Ah
ijkh

2,l
ik

))
. (33)

However, we find such an update would not improve the accuracy and often make the training
procedure unstable. Therefore, we choose not to update hij in the current version of the DPA-2
model.
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4.2.4 Smoothness of the softmax operation

The standard softmax is defined by

softmax(xij) =
exij

∑
k e

xik
, (34)

which introduces discontinuity in the attention maps in Eqs. (28) and (32). Simply multiplying
a switch to the attention maps does not fix the problem. Suppose that one atom comes into the
cut-off; the denominator of Eq. (34) changes in a discontinuous way, thus all softmax(xij) change
discontinuously, no matter whether j is the new neighbor or not.

To fix this issue, we define the softmax∗ by

softmax∗(xij) = wij softmax
(
wij(xij + s∗)− s∗

)
. (35)

Similarly, the softmax† is given by

softmax†(yijk) = wijwik softmax
(
wijwik(yijk + s†)− s†

)
. (36)

It is assumed that the shifting constants s∗ and s† are chosen a magnitude larger than xij and yijk,
respectively. In practice, the magnitude of both xij and yijk in Eqs. (35) and (36) are of order 1, so
we set s∗ = s† = 20.

4.3 Single-task training

Suppose that we have a training dataset T of size M , and denote the DFT-labeled energy and force
for any configuration Xm, 1 ≤ m ≤ M , by E∗

m and {F ∗
i,m}, respectively. The dataset T yields

T = {(X1, E
∗
1 , {F ∗

i,1}), . . . , (XM , E∗
M , {F ∗

i,M})}. (37)

We denote the trainable parameters of the descriptor by θ, and those of the fitting network by ξ.
When necessary, the parameters are placed as superscripts of the corresponding notation, i.e., we
have Dθ

i and Fξ for the descriptor and fitting network, respectively. The PES model is thus rewritten
as E = Eθ,ξ(X ). The loss function at training step t is written as

L(θ, ξ, B, t) =
1

|B|
∑

m∈B

(pe(t)
N

∣∣∆Eθ,ξ
m

∣∣2 + pf (t)

3N

∑

i

∣∣∣∆F θ,ξ
i,m

∣∣∣
2 )

, (38)

∆Eθ,ξ
m = Eθ,ξ(Xm)− E∗

m, (39)

∆F θ,ξ
i,m = F θ,ξ

i (Xm)− F ∗
i,m, (40)

where B, a randomly sampled subset of {1, . . . ,M}, represents the minibatch of the training dataset.
pe(t) and pf (t) are the energy and force prefactors, respectively. If the learning rate at step t is
denoted by γ(t), then the prefactors are defined by

pξ(t) = pstartξ

γ(t)

γ(0)
+ plimit

ξ

(
1− γ(t)

γ(0)

)
, ξ ∈ {e, f}. (41)

At the beginning of the training, the prefactor pξ is set to a hyperparameter pstartξ , and it linearly
decays with respect to the learning rate. If the learning rate decays to zero, i.e., limt→∞ γ(t) = 0,
the prefactor converges to the hyperparameter plimit

ξ at the infinite training step. We have adopted
the Adam stochastic gradient descent method [94] to minimize the loss function with respect to the
model parameters θ and ξ. Virial errors, which are omitted here, can be added to the loss for training
if available.

4.4 Multi-task training protocol

For various datasets labeled with different DFT calculation parameters, it is infeasible to merge them
directly into a single training set for model training. However, these DFT datasets should inherently
share a significant amount of commonality, and we expect they can mutually promote each other’s
training, thus benefiting the overall model capacity.
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In this work, to fully utilize various sources of DFT calculated data, we propose a novel multi-task
training strategy using a unified model framework for simultaneous training on data calculated with
different DFT parameters, as illustrated in Fig. 1(a). We first group all the training data into K training
datasets, denoted as T = {T1, . . . , TK}, where each dataset contains configurations labeled with
identical DFT parameters. The configurations and labels in the k-th training dataset are represented
by:

Tk = {(Xk1, E
∗
k1, {F ∗

i,k1}), . . . , (XkM , E∗
kM , {F ∗

i,kM})}. (42)

We establish a DPA-2 model with the unified descriptor and K fitting networks, and the k-th model
is given by:

E = Eθ,ξk(X ), (43)

where ξk represents the network parameters of the k-th fitting network. The k-th fitting network is
trained by the k-th training dataset, while the unified descriptor (with parameters θ) is simultaneously
trained by all datasets, and the loss function is given by

L(θ, {ξk}, S, {B}, t) = 1

|S|
∑

k∈S

1

|Bk|
∑

m∈Bk

(pe(t)
Nm

∣∣∣∆Eθ,ξk
km

∣∣∣
2

+
pf (t)

3Nm

∑

i

∣∣∣∆F θ,ξk
i,km

∣∣∣
2 )

, (44)

∆Eθ,ξk
km = Eθ,ξk(Xkm)− E∗

km, (45)

∆F θ,ξk
i,km = F θ,ξk

i (Xkm)− F ∗
i,km. (46)

At each training step, a subset of the training datasets is sampled from T , and the indices of the
sampled datasets are denoted by S. Bk represents the minibatch of the training dataset Tk. It
should be noted that there is a significant degree of freedom in designing the sampling strategy for
S. Sampling can be conducted with a uniform probability or with a bias towards certain systems.
Furthermore, sampling may be performed with or without replacement. In our implementation, larger
and more complex datasets are assigned a higher probability, and sampling with replacement is
employed.

4.5 Pre-training and fine-tuning

By utilizing multi-task training on all available training datasets, the configurational and elemental
knowledge shared among the datasets is expected to be encoded in the descriptor Dθp , with θp
denoting the converged model parameters. The fitting networks are expected to encode system-
specific knowledge. The multi-task training scheme provides the possibility of training with a large
number of training datasets (most likely labeled with distinct DFT parameters). Therefore, when
trained with a sufficiently large dataset that covers a wide range of configurations and elements for
future applications, it is expected that much less training data would be needed to train a new system
with the help of the encoded knowledge. The multi-task pre-trained model can be used to improve
the accuracy and data efficiency in downstream tasks. It is worth noting that the downstream task can
be either constructing a PES, or a property prediction task, and in this work, we only discuss the PES
as a downstream task. The procedure of training a model for downstream tasks from a pre-trained
model is called fine-tuning.

Given a downstream task training dataset, we may initialize the descriptor of our downstream
task model with θp to boost the performance compared to a random initialization of the descriptor
parameters. Furthermore, if the downstream dataset shares similar configurational and elemental
information with any of the fitting networks, then the fitting network of the model could also be
initialized with the pre-trained fitting network. The energy bias of the downstream task is determined
by the downstream training dataset, rather than by those used in the pre-training stage.

4.6 Model distillation

The fine-tuned model possesses a large number of parameters, which might result in low efficiency
when directly applied to production scenarios, such as MD simulations. To mitigate this issue, we
can distill the model into a more compact version that maintains accuracy on downstream tasks while
concurrently achieving speed enhancements and enabling large-scale simulations. The distillation
process, illustrated in Fig. 1(c), consists of an iterative concurrent learning loop. The model prior
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to distillation, denoted as the teacher model, is used for data labeling, whereas a student model
featuring a simpler model structure (e.g., DPA-1 without any attention layer, which can be further
compressed [78] to significantly enhance performance) is trained on the labeled data. Subsequently,
the teacher model is utilized for MD exploration, adopting simulation settings similar to those of
downstream tasks, ensuring that the elemental and configurational spaces explored during distillation
and downstream tasks exhibit overlap. Configurations are sampled from the simulated MD trajectories,
and the inference deviations between the teacher and student models on those samples are assessed.
Samples with model deviation exceeding a predetermined threshold are added to the training dataset
for the next iteration. This procedure is repeated until the student model’s accuracy satisfies our
criteria or no longer changes.

5 Data and Code Availability

The datasets and models used in this study, as detailed in Sec. S1 of the Supplementary Materials,
are all available on AIS Square (https://www.aissquare.com). The codes, datasets and input
scripts are all available on zenodo (https://doi.org/10.5281/zenodo.13342300). Finally, to
test the models, users are welcome to consider going through this Bohrium Notebook (https:
//nb.bohrium.dp.tech/detail/18475433825), and explore the DP Combo web server (https:
//app.bohrium.dp.tech/dp-combo).
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