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Abstract—Monolithic designs face significant fabrication cost
and data movement challenges, especially when executing com-
plex and diverse AI models. Advanced 2.5D/3D packaging
promises high bandwidth and connection density to overcome
these challenges, yet it also introduces new electro-thermal
constraints. This paper develops a suite of analytical performance
models to enable efficient benchmarking of a 2.5D/3D heteroge-
neous system for energy-efficient AI computing. These models
encompass various performance metrics related to computing
units, network-on-chip, and network-on-package. The results
are summarized into a new tool, HISIM, which is 104–106×
faster than state-of-the-art AI benchmark tools. Furthermore,
HISIM integrates rapid thermal simulation for the 2.5D/3D
system, helping shed light on both the potential and limitations
of 2.5D/3D heterogeneous integration on representative AI algo-
rithms. The code of HISIM is available at https://github.com/mec-
UMN/HISIM.

Index Terms—heterogeneous integration, 2.5D/3D, chiplet, in-
memory computing, network-on-package, thermal simulation

I. INTRODUCTION

Artificial intelligence (AI) systems have effectively ad-
dressed practical problems across multiple domains. The com-
plexity of state-of-the-art AI models, such as deep neural
networks (DNNs), transformers, and graph neural networks
(GNNs), grows continuously to enable higher accuracy and
capabilities [1], [2]. Existing monolithic integrated circuits
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Fig. 1. Architecture overview of a 2.5D/3D heterogeneous system.

Fig. 2. The scaling trend of various interconnections in 2.5D/3D packaging.
Symbols are from references [11]–[26].

(ICs) offer many benefits for AI acceleration with large-
scale integration and high performance. However, their scaling
trend still lags behind contemporary AI models, particularly
on the demand of memory access, on-chip cache capacity,
and data movement. For instance, vision transformer (ViT)
utilizes over 300 million parameters and 24 layers for image
classification [3], [4]. If all the weights were mapped on a
28nm monolithic chip, it could require an area of more than
3, 000mm2 [5]. Designing accelerators for such big AI models
poses a tremendous challenge, especially for edge devices.

Due to the limited monolithic area available for processing
big AI models, their training and inference require frequent
data movement between external memory and processing
units, which becomes the dominant factor of energy consump-
tion and latency [6]–[10]. In this context, recent advances in
2.5D/3D packaging provide a promising solution to address
the challenges of high bandwidth, low-power data movement,
and large-scale integration that are essential for big AI models.

Figure 1 illustrates a heterogeneous architecture that con-
tains multiple chiplets connected via a 2.5D bridge embedded
in silicon interposer, glass, or organic substrate, and/or 3D
interconnections (such as through-silicon-vias or TSVs). The
network-on-package (NoP) enables inter-chiplet communica-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 2

tion with multiple channels, designed to deliver higher band-
width, lower energy consumption per bit, and lower fabrication
costs compared to traditional monolithic designs [27], [28].
Although 2.5D integration is currently available, it requires
more physical space compared to 3D integration due to the
additional peripheral circuits for inter-chiplet signaling. In
contrast, future 3D stacking with TSVs offers more compact
integration and denser connections, yet it will face significant
thermal and reliability challenges [29]–[31]. Both architectures
have a consistent scaling roadmap to reduce the feature size
of interconnections, as shown in Figure 2. This trend ensures
a continuous improvement in data movement among chiplets.

As the advancement of 2.5D/3D heterogeneous integration
(HI) opens enormous opportunities for future big AI comput-
ing, the mapping and optimizing target AI algorithms on a
HI system present intriguingly complex challenges, attributed
to the abundance of design variables involved in this process.
These variables include algorithmic structures (such as layers,
kernel size, precision, etc.), technology parameters (such as
2.5D, 3D, interconnection, etc.), design choices (such as
computing cores, array size, network topology, memory, etc.),
and placement and routing schemes. To perform algorithm-
hardware co-design in such a vast space, early-stage design
space exploration is critical to narrow down the design scope
and derive valuable insights at the architecture level. Such
exploration requires a 2.5D/3D HI simulator that is scalable
with essential design variables, fast in end-to-end performance
prediction, and accurate in key performance metrics. This
tool can be employed during the initial phase of architectural
definition, complementing commercial 2.5D/3D EDA tools
that generate physical details in subsequent stages.

This paper presents a benchmark tool, Heterogeneous In-
tegration Simulation with Interconnect Modeling (HISIM).
Distinguished from previous simulation tools that contain
many technological and circuit details, HISIM focuses on key
system-level metrics, such as latency, energy consumption, and
data movement. This emphasis achieves a balance between
model scalability, accuracy, and efficiency in order to support
fast algorithm-hardware co-design. Table I summarizes some
recent simulators for chiplet and related network communica-
tion. Several simulators target computing units, particularly the
latest in-memory computing (IMC) cores, such as NeuroSim
[32] and MNSIM [33]. Because these simulators typically use
a bottom-up approach, beginning with devices, followed by
circuits, and ultimately systems, their simulation speed is usu-
ally slow. In addition, there is a need for full consideration of
2.5D/3D network communication among multiple cores. Some
other simulators, such as BookSim 2.0 [34] and Ratatoskr [35],
provide cycle-accurate simulation and performance evaluation
of 2D network-on-chip (NoC) fabrics. With the growing data
volume of AI models, it requires a long simulation time to
evaluate NoC performance. Our recent tool SIAM [5] inte-
grates 2.5D silicon bridges with IMC units. Yet SIAM is still
too slow to explore diverse design configurations. Furthermore,
more advanced 3D design issues, such as network-on-package
(NoP), thermal analysis, and reliability prediction, must be
incorporated for a comprehensive performance evaluation.

To address these challenges of benchmarking 2.5D/3D HI

TABLE I
COMPARISON OF STATE-OF-THE-ART CHIPLET AND AI SIMULATORS.

Simulator Computing
Unit Dimension Thermal

Analysis
Simulation

Speed
NeuroSim [36] IMC 2D/3D Yes Slow
MNSIM [33] IMC 2D No Slow

BookSim 2.0 [34] No 2D No Slow
Ratatoskr [35] No 3D No Slow

SIAM [5] IMC 2.5D No Slow
HISIM IMC and others 2.5D/3D Yes Fast

systems, HISIM adopts a systematic approach. It considers
the hierarchy in both computing and data movement, abstracts
the relationship between key design variables and performance
metrics into analytical models, and validates the results with
simulation and silicon data. The major innovations include:

• System-level Performance Modeling: Instead of an exten-
sive stack of models ranging from devices to circuits and
to architectures, we aim to construct a set of analyti-
cal models that directly connect algorithmic and design
decisions with system metrics, such as power, perfor-
mance, and area (PPA) of various computing chiplets and
NoC/NoP. During the model development, each system
metric is decomposed into primary design macros, such
as a computing array and its peripherals, following the
design structure and data flow. Subsequently, the depen-
dence on each macro is calibrated with realistic design
databases and process design kits (PDKs).

• Model Calibration: To ensure the scalability and accuracy
of system-level models, we perform comprehensive val-
idation with various sources, including design synthesis,
numerical simulations, published silicon data, and other
simulators. By designing and synthesizing diverse chiplet
and network configurations, we extract model coefficients
and confirm their scalability of design parameters. These
results are further verified by published silicon data in the
literature, as well as simulations from rudimentary tools.
For electrical parasitic modeling of packaging technolo-
gies, TCAD simulations are used for model calibration.

• Thermal Analysis: Electro-thermal reliability emerges as
a critical issue in compact 2.5D/3D integration. The
current version of HISIM integrates a coarse-mesh based
finite-element method (FEM) to speed up static thermal
prediction. Moreover, an even faster method, leveraging
graph neural networks, will be adopted by HISIM for
further electrical and mechanical reliability analysis.

The outcome of these efforts is HISIM, an analytical model-
based tool for fast design exploration of 2.5D/3D HI systems.
By inputting the profile of an AI model and its hardware
mapping method, HISIM rapidly predicts end-to-end perfor-
mance, helping shed light on the capabilities and constraints
of algorithm-hardware co-design. Initial experiments on rep-
resentative DNNs, transformers and GNNs demonstrate a
speedup of 104–106× in PPA evaluation compared to previous
benchmark tools, while preserving model scalability and accu-
racy. The code of HISIM is released at https://github.com/mec-
UMN/HISIM, along with a quick tutorial. The following
sections present the technical details of model derivation,
validation, and experiments.
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II. BACKGROUND AND RELATED WORK

2.5D/3D heterogeneous integration leverages cutting-edge
packaging technologies to integrate various chiplet types into
a large-scale system. This section reviews relevant topics that
lead to the development of HISIM.

A. Chiplet-based Heterogeneous Integration

Chiplet-based heterogeneous integration has emerged as
a promising solution to tackle the manufacturing and cost
challenges of large-scale monolithic chips, where fabrication
costs rise exponentially with increased chip area [5], [37].
Moreover, chiplet architectures offer bandwidth and density
advantages over clusters of accelerators [2], improving the
performance of various applications [38], [39].

Within a chiplet-based system, multiple chiplets are inter-
connected via special IO protocols or Network-on-Package
(NoP), either within a 2.5D substrate or through 3D con-
nections. For example, Advanced Interface Bus (AIB) [40] is
a parallel IO interface boasting a bandwidth of 4Gbps/pin,
providing high interconnect density in a 2.5D system. A
more recent standard for die-to-die serial buses is Universal
chiplet interconnect express (UCIe) [41]. Despite their high
IO bandwidth, the number of interconnect links is constrained
by the length of the shoreline or die edge.

In contrast, 3D chiplet-based architecture provides signif-
icantly higher bandwidth and shorter signal distances be-
tween chiplets through various methods, such as face-to-back
topology with C4 bumps [42], face-to-face topology with
microbumps [26], hybrid bonding [43], or 3D stacking with
TSVs. Various 3D implementations have been studied, ranging
from logic-on-logic to logic-on-memory [44]. In general, both
2.5D and 3D technologies enable the integration of chiplets
manufactured at different silicon technology nodes or even
different types of materials [36].

As 2.5D/3D HI significantly enhances the scale, density,
and potential of system integration, there is an increasing
demand for a comprehensive tool for algorithm-hardware co-
design. Emerging topics of interest include the management
of diverse computing cores, hierarchical data movement from
on-chip to chiplet-to-chiplet and 3D connections, thermal
implications [45], power delivery, and workload mapping.
This tool should seamlessly incorporate the latest packaging
technologies for architecture exploration.

B. In-Memory Computing

To tackle the challenge of extensive memory access during
AI computing, in-memory computing has emerged as an
advanced accelerator beyond CPUs and GPUs. These accel-
erators feature a processing element that can be based on
either SRAM [46] or non-volatile memory, such as Resistive
RRAM (RRAM) [47]. IMC allows for parallel computing of
matrix-vector multiplication in analog and digital domains.
This operation includes bit-wise multiplication within the
memory cell and accumulation along the bit line, achieved
through analog resistive/capacitive integration or digital adder
trees. For RRAM-based analog IMC, additional peripherals

are required, such as ADC and DAC units, bit shifters for
weight bit slicing and sequential inputs [47], and MUXs for
sharing ADCs across columns. Previous studies, including our
research on SIAM [5], have demonstrated simulations and
silicon prototypes of IMCs. They are ready for integration
into a HI system alongside other types of AI accelerators and
more conventional processing cores.

C. Performance Benchmark Tools

There are several benchmark tools for monolithic IMC-
based DNN inference and network design, as shown in Table I.
These tools usually include IMC crossbars connected by point-
to-point interconnection for the on-chip network communi-
cation [32], [48]. Neurosim 3D [36] implements monolithic
3D integration (M3D), which partitions memory and logic
for RRAM-based IMC, and Neurosim 3D+ [48] extends to
heterogeneous 3D integration (H3D) of logic-to-memory with
TSVs. However, these works lack the incorporation of logic-
on-logic stacking and do not include NoC. Booksim [34] is
an NoC simulator, offering the flexibility of network topology,
routing, and router architectures. [35] conducts PPA analysis
for 3D networks at the RTL level. [5] proposes SIAM that
combines IMC circuits, NoC, and NoP for a 2.5D chiplet-
based system.

These previous works provide important knowledge of
devices, circuits and architecture, especially on IMC design.
However, they face long simulation times, which are insuffi-
cient to manage big AI models in the vast design landscape
of 2.5D/3D integration.

III. HISIM FOR 2.5D/3D SYSTEM ANALYSIS

In contrast to the aforementioned benchmark tools, HISIM
introduces a suite of analytical models at the system level
to speed up performance prediction, covering logic-on-logic
architectures across 2D, 2.5D, and 3D integration. Although
HISIM currently emphasizes IMC as the main AI accelerator,
we plan to evolve HISIM into an open platform capable
of simulating other computing, memory, and communication
technologies. The potential users of HISIM include, but are not
limited to, architecture research on design space exploration
before detailed architecture definition, compiler developers
to optimize the mapping strategy, and technology developers
to benchmark the impact of 2.5D/3D packaging technology
on system design. This section elaborates on the benchmark
engines in HISIM. Figure 3 illustrates the structure, input, and
output of HISIM. The design synthesis and model calibration
in this study are conducted at the 32nm/28nm node. Mean-
while, the models and methods in HISIM are scalable to other
process technology nodes and assembly design kits (ADKs).

A. Overview of HISIM

Figure 3 overviews the proposed HISIM benchmark tool for
evaluating the performance of chiplet-based monolithic (2D),
2.5D, and 3D architectures. Users can define the technology
and AI algorithms as inputs to HISIM. On the technology
aspect, users have the flexibility to select the type of computing



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024 4

Fig. 3. Overview of HISIM for 2.5D/3D systems. HISIM comprises four engines: computing, interconnection, network and reliability. It integrates inputs
from technology, design configuration, AI algorithms and mapping methods to predict system performance metrics, such as PPA and the thermal map.

Fig. 4. The hierarchy of the heterogeneous chiplet (a), tile (b), systolic array
PE (c), and IMC PE (d); Users can choose the type of chiplet, tile, and PE
in HISIM.

cores, interconnect options (such as 2.5D or 3D), and hardware
configurations (such as array size and the number of tiers in 3D
stacking). On the algorithm aspect, HISIM supports various
DNNs, GNNs, and transformers.

In addition, users need to customize the strategy for work-
load mapping and data flow, such as algorithm partition,
task scheduling, data reuse, routing, placement, etc. Based
on user inputs, HISIM generates the specific heterogeneous
chiplet-based architecture and analyzes area, power estimation,
latency, utilization and energy efficiency. The combination of
the HI structure and power density is further used to produce
the thermal map.

B. Computing Cores

Computing cores are vitally important to processing AI
tasks. HISIM currently features analytical models for IMC-
based computing chiplets using RRAM-based crossbars and
systolic arrays which is shown in Figure 4 (c). The method-
ology will be generalized to digital IMC and other types of
processing elements (GPU, CPU, etc.) in the future.

1) IMC Tiles and Mapping: Figure 4 (a)(b)(d) presents the
design levels within an IMC chiplet, with related input and
output parameters defined in Table II. Each chiplet contains
multiple tiles, Ntile, and peripherals connected by NoC. An
IMC tile comprises several processing elements (PEs) denoted
as Npe, along with the accumulation module responsible for
adding partial sums from PEs, input/output buffers for storing
activations, and a data bus facilitating data communication
within the tile. Additionally, the tile incorporates nonlinear
activation modules, such as ReLU, for the activation function
of each layer within the neural network. These PEs and
macros are interconnected via the databus. This architectural
configuration is consistent with other simulators discussed in
previous studies [32], [33] and is applicable to other array-
based computing cores (such as the systolic array).

The PE is the core computing unit in a chiplet. The
PE design depends on the specific processing technology to
model. As an example, an analog IMC-based PE has one IMC
crossbar along with peripheral circuitry, including drivers,
multiplexers, and ADCs. The IMC crossbar performs com-
putations by executing the multiply-and-accumulate (MAC)
operation.

In HISIM, rather than limiting users to a fixed compilation
method, HISIM aims to support multiple types of compilation
approaches, allowing users to optimize their designs as needed.
Users can define the partition and mapping strategy for the
weights of an AI model onto the IMC crossbar, PE, and tile. In
this study, we employ the conventional DNN weight partition

TABLE II
INPUT PARAMETERS OF IMC CHIPLET MODELS.

Inputs Level Description
Inx,Iny

AI model

Input size of each layer
Kx,Ky Kernel size of each layer
Fin,Fout Input channel, output channel
Qw ,Qa Quantization bit of weights, activation

S Weight sparsity
st Stride of each layer

Pooling Followed by pooling or not
Ntier Chip Number of chiplets or 3D tiers in the system
Ntile Tier Number of tiles per tier (chiplet)
Npe Tile Number of PE in Tile
Xbar PE Crossbar size
Ci Mapping Number of parallel IFM computes
Cw Mapping Weight duplication factor within a crossbar
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and mapping method to map the weights of AI models, as
outlined below:

totalxbar =

⌈
Bitcol
Xbar

⌉
×
⌈
Bitrow
Xbar

⌉
(1)

totaltile =
totalpe
Npe

; totalpe =
totalxbar
Nxbar

; (2)

Bitcol = Kx ×Ky × Fin;Bitrow = Fout ×Qw (3)

2) Performance Modeling: The performance of the chiplet
component is modeled using the design structure and param-
eters in Table II as follows:

Lchiplet = Lpooling + Laccum + Lnoc +
∑
i

Llayeri (4)

Echiplet = Epooling + Eaccum + Enoc +
∑
i

Elayeri (5)

Each layer of an AI model is mapped to a set of crossbars
using conventional weight partitioning and mapping method
described above. The cumulative performance of crossbars
mapped for a layer of the AI algorithm is modeled as follows:

Llayeri = Lmaxxbar
NactQact

CiCw(st2)
(6)

Elayeri = Emaxxbar
NactQact

st2
2NWQW

(xbarx)(xbary)st2
(7)

In these equations, Nact/st
2 represents the number of convolu-

tional windows, while NW denotes the total number of weight
parameters. The value of NW varies depending on the layer
type, whether it is convolution (CONV), fully connected (FC),
or depthwise convolution (DW). Assuming a synchronous
design, the maximum latency of a layer depends on the
crossbar with the highest latency, multiplied by the number
of cycles of crossbar computation. The number of cycles, in
turn, is influenced by several factors. These factors include
the number of convolution windows, serial computation of
input bits, parallel computation of input feature map (IFM),
and weight duplication, which is a technique employed for
Depthwise convolution [49].

The energy model is derived from its dependency on the
sum of the multiplication of factors, such as the maximum en-
ergy of the crossbars, the crossbar utilization, and the number
of times each crossbar is computed. We then derive the above
equation by summing the crossbar utilization, which depends
on the cumulative utilization of memory cells. This equation
is obtained assuming all the crossbars inside a layer are
computed the same number of times, similar to the mapping
specified in [49], and the input sparsity is 0%. Additionally,
a factor of 2 is considered for signed weights, assuming a
double row configuration as detailed in [49].

The maximum latency of a crossbar is influenced by the
crossbar mapped with maximum utilization, which further
relies on the mapping and the number of output feature maps
(OFMs), typically a multiple of the ADC sharing factor for
neural networks. Moreover, the maximum energy of a crossbar
is influenced by factors such as the current of each cell, read
voltage, the total number of cells in the crossbar, and activity

TABLE III
COMPARISON WITH REFERENCE RRAM BASED SYSTEM EVALUATED

USING DEVICE MEASUREMENT DATA AND SIMULATION [49].
Parameter HISIM (65nm) 65nm data [49]

VGG16
Total Crossbar Area 49.9 mm2 50.7mm2

Total Energy 6.74 mJ 5.94 mJ
Total ADC Area 261.5 mm2 261.5 mm2

Total ADC Power 17.43 W 17.43 W
Mobilenet

Total Crossbar Area 13.4 mm2 13.7mm2

Total Energy 1.97 mJ 1.29 mJ
Total ADC Area 56.544 mm2 56.54 mm2

Total ADC Power 3.77 W 3.78 W

factor due to ADC sharing. The area of the tile is estimated
based on the crossbar size and the number of processing
elements.

3) Model Calibration: The IMC chiplet models are cal-
ibrated with realistic designs to reliably predict the physical
metrics of individual design components, such as area, latency,
and power consumption. These values are then combined into
the system performance model. Initially, the features of RRAM
devices and ADCs are extracted from measurement data at
65nm [49], and then scaled down to 28nm, following a scaling
factor of 4.12 for area and 3.37 for power as obtained from
[50]. HISIM offers a discrete number of crossbar sizes for
users to select, such as 64 × 64, 128 × 128, 256 × 256,
and 512 × 512. Other peripherals of the crossbar, such as
multiplexers and decoders, are synthesized, similar to those
used in [51]. At the PE and tile levels, data bus, NoC, buffers,
etc., are included, following those in SIAM [5].

Figure 5 assesses the computing latency modeled by HISIM
using measurement data from [49] for an RRAM-based
IMC design. Two DNN algorithms, VGG16 [52] and Mo-
bileNet [53], are used for evaluation. The inputs to HISIM,
including mapping dependency, the number of ADCs per layer,
and ADC sharing, are configured the same as those in [49].
For example, the filter in a convolution layer is flattened into

Fig. 5. Computing latency comparison of first seven layers of two DNNs,
Mobilenet (a) and VGG16 (b), with 65nm measurement data in [49].
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Fig. 6. Comparison of normalized latency and energy with NeuroSim for
ResNet110 at 32nm.

Fig. 7. Comparison of area and power for array and read/write circuits with
different systolic array sizes under 28nm.

a 1D vector and mapped onto a column. If the vector does
not fit into a single crossbar, it is distributed across multiple
crossbars. Additionally, if the number of crossbars required for
the layer exceeds the capacity of a single processing element
(PE), the layer is mapped onto multiple PEs.

The maximum latency of crossbars mapped to the first layer
of VGG16 is first calibrated to that of the reference data.
The results are then used to predict the performance of the
first seven layers of VGG16 and Mobilenet, as presented in
Figure 5, with the maximum error at 5.3%. Table III verifies
the total area and energy consumption of both algorithms. The
energy values in Table III account for both network energy
and computing energy. However, the network configuration
in HISIM differs from that in [49], resulting in variations in
energy comparison. Furthermore, we evaluate the scalability
of HISIM models with design variables, such as crossbar
size. In this study, we utilize simulations with NeuroSim
to validate the nonlinear dependency of peripheral circuits,
such as ADC, accumulation, routing, and other peripherals.
Figure 6 summarizes the normalized results. At the crossbar
level, our system-level models exhibit comparable scalability
with NeuroSim in RRAM-based IMC design.

4) Systolic Array & Other Computing Units: Currently,
HISIM supports the systolic array which is calibrated with
Scale-Sim [54] and 28nm synthesis which is shown in Fig-
ure 7. In addition, we are expanding HISIM towards other
types of computing cores, such as digital IMCs and CPUs, to
enable more heterogeneous computing. For digital IMCs, we
will synthesize the design and extract performance models,
which include the array structure and local buffers for storing
and loading partial results. We will incorporate the average
time consumed in each stage of the pipeline in the CPU

model, including fetch, decode, execute, and writeback. We
will calibrate the model with silicon data, such as that from
RISC-V cores. Furthermore, we plan to open the HISIM
platform, allowing other researchers to add their own chiplet
models for system exploration.

C. Heterogeneous Interconnection

In AI computing, data movement plays a crucial role in
the overall performance of the system. Emerging 2.5D/3D
interconnection technologies, with their scaling trend in Fig-
ure 2, promise high bandwidth, high connection density, and
low energy consumption per bit. The interconnection engine
in HISIM integrates compact models that calculate electrical
parasitics for various types of interconnections.

1) 2.5D/3D Interconnection: Figure 8 presents our model-
ing process, from various interconnect technologies to their
geometry definition and the extraction of electrical parasitics.
The parasitics are transferred to the network engine for latency
and power analysis. Table IV lists the key dimensions of the
metal wire for monolithic, 2.5D, and 3D interconnections. The
parameters lwire, wwire, twire, and pwire define the geometry
of interconnections. They are key to parasitic modeling. For
3D interconnection, many technologies, like µbump, hybrid
bonding, and TSVs, enable data communication between tiers
vertically. The features of a TSV is defined by dTSV , hTSV ,
pTSV and tox TSV , as shown in Figure 8. As TSV technology
continues to scale down, its dimensions become increasingly
comparable to those of on-chip wires, implying a similar
bandwidth and network capacity through the vertical TSVs
as with the on-chip network. Potential users can adjust the
dimensions of the interconnects in HISIM according to their
specific technology.

2) Parasitic Modeling: For wires in 2D and 2.5D technolo-
gies (such as the silicon bridge), we follow the models in the
Predictive Technology Model [55] and the roadmap in [27] to

Fig. 8. The workflow of parasitic extraction, including 2D wires, 2.5D wires,
3D TSVs, µBumps, etc.

TABLE IV
MODEL PARAMETERS OF 2D/2.5D/3D INTERCONNECTIONS.

Structure Interconnect Parameter Description

2D/2.5D Wire

lwire Wire length
wwire Wire width
twire Wire thickness
pwire Wire pitch

3D TSV

dTSV TSV diameter
hTSV TSV height
pTSV TSV pitch

tox TSV Insulation thickness
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TABLE V
SCALING OF TSV PARASITICS IN SIX GENERATIONS.

rTSV dTSV hTSV RTSV CTSV RC
(µm) (µm) (µm) (mΩ) (fF) (fs)

20 40 400 5.45 888.76 4.843
15 30 300 7.26 502.04 3.645
10 20 200 10.89 225.00 2.450
5 10 100 21.78 57.64 1.255

2.5 5 50 43.56 15.09 0.657
1.25 2.5 25 87.12 4.10 0.357

calculate their RC parameters. For a TSV link, we assume the
TSV is driven by the driver and followed by the receiver. The
TSV is then modeled as the resistor (RTSV ) and capacitor
(CTSV ) between the driver and the receiver. We adopt the
models in [56] to construct the unit cell, as illustrated in
Figure 8. RTSV and CTSV are formulated as:

RTSV =
1

2

hTSV

σTSV π(dTSV /2)2
(8)

CTSV =
1

2

πεoxhTSV

ln(dTSV /2+tox TSV

dTSV/2
)

(9)

These parasitic models are usually derived from the distri-
bution of the electric field, and validated by finite-element
solvers.

3) Interconnect Scaling: HISIM covers multiple genera-
tions of interconnect dimensions to facilitate early design ex-
ploration. For example, Table V illustrates the TSV roadmap,
including the dimensions and RC parasitics [56]. As the size
of TSVs continues scaling down, their RC product decreases
by more than 10× over these six generations, significantly
improving data bandwidth. In addition, the reduction in CTSV

contributes to lower energy consumption in data movement. In
this paper, we choose the generation with 5µm TSV radius for
simulation analysis.

Currently, HISIM only addresses RC parasitic. Users can
also substitute the HISIM RC model with their own parasitic
models for simulation. We also plan to extend the modeling
effort to inductance and other components to support signal
integrity analysis at higher frequencies.

D. Network Communication

For AI acceleration, efficient data communication is critical
for the overall system performance. With large volumes of
input and output activations being transferred between adjacent
algorithm layers, a high-bandwidth, flexible network is re-
quired to connect multiple PEs, tiles, and chiplets. This can be
a network-on-chip for a 2D monolithic chip or a network-on-
package in 2.5D and 3D systems. As the chiplets communicate
through the NoP, the network size is directly influenced by the
number of chiplets. The size of the AI model’s weights and the
hardware configuration together determine the NoP size which
influences the performance of the network. A 2D NoC or a
3D NoP consists of multiple channels connected by network
routers. Figure 9 presents an example of a 3D network. HISIM
models 2D/3D network latency and power consumption in the

Fig. 9. A 3D network via TSVs and routers.
TABLE VI

INPUT PARAMETERS OF NETWORK MODELS.

Inputs Description
VC router

tRC Delay in routing computation
tV A Delay in virtual channel allocation delay
tSA Delay in switch allocation
tST Delay in switch traversal
tL Delay in channel traversal
tenq Queuing delay

Channel
Q2d, Q3d Data volume for 2D/3D routing
W2d, W3d 2D/3D channel width

Network
H2d, H3d 2D/3D hop count

network engine for various network topologies. In addition,
HISIM covers the IO protocol in 2.5D silicon bridges for
chiplet integration.

1) 2D/3D Network Modeling: Cycle-accurate simulators
are available for the 2D NoC latency and throughput eval-
uations, such as Booksim [34]. BookSim traces the data flow
through each module. Such a cycle-accurate process requires
running simulations with each input data point, leading to
a long simulation time. To speed up the simulation while
maintaining the accuracy in latency prediction, we generalize
BookSim to both 2D and 3D networks and formulate an
analytical model for network latency based on equations
in [57]:

LNoC = (H2d +H3d)× trouter + tenq ×
Q2d

W2d
+ tenq ×

Q3d

W3d
(10)

trouter = tRC + tV A + tSA + tST + tL (11)

where H2d, H3d are the hop count from the NoC network for
2D and 3D, respectively. trouter is the latency associated with
the routing computation, switch allocation, etc., as explained in
Table VI. This equation represents the contention-free message
latency for the 3D virtual channel router, as shown in Figure 9.

We validate the latency equations with BookSim, as shown
in Figure 10. The network trace files are derived from VGG-
16 on ImageNet, mapped to 2.5D/3D integration. The pre-
diction from our analytical equation accurately follows the
cycle-accurate results from BookSim. As shown in Figure 9,
mapping an entire AI algorithm to a 3D stack involves both
2D NoCs (within-tier or on-chip) and 3D NoPs (cross-tier).
To calculate the total hops, we sum the H2d and H3d using
Algorithm 1. Our analytical model significantly accelerates
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Fig. 10. Calibration of analytical network with cycle-based BookSim simu-
lations: (a) Latency with different sizes of packets; (b) Latency with different
data volumes; (c) Latency with various channel bandwidths, represented as
the number of links per channel; and (d) Trade-off between model errors and
speedup of calculation.

Algorithm 1 Counting 2D/3D hops and data bits for the entire
AI model
Input: Number of tiles for each layer (T ), Number of input
activations for each layer (A), Number of AI model layers (L)
Output: H2d, H3d, Q2d, and Q3d;
for l=1:L do

Based on the placement method, decide the location of
each tile in the 3D system (xl,yl,zl)

Divide activations A into A2d, A3d

Q2d+=A2d; Q3d+=A3d

for t=1:T do
Find the position for the source tile in this layer
Find the position of the destination tile in next layer
2dhop=|xl-xl+1|+|yl-yl+1|; 3dhop=|zl-zl+1|

end
H2d+=2dhop; H3d+=3dhop

end

latency calculations and achieves high accuracy across typical
data volumes.

We adopt the analytical models from Orion 2.0 [58] to
assess the power consumption and area of 2D/3D networks:

PNoC = P2d + P3d (12)

P2d = (E2dcl
+E2dr )/L2dNoC

;P3d = (E3dcl
+E3dr )/L3dNoC

(13)
where PNoC is the total power consumption of the network,
including 2D NoCs (within-tier or on-chip) and 3D NoPs
(cross-tier). The power consumption in 2D/3D networks relies
on energy consumption and associated latency of each compo-
nent. E2dcl

, E3dcl
represents the energy consumption of 2D/3D

channels, and E2dr
, E3dr

represents the energy consumption
of 2D/3D routers. The overall power consumption of the 3D
network is based on the power consumption of the channels
and routers, as well as the ratio of their active time in LNoC .
Moreover, the dynamic power of both channels and routers
depends on the generation of interconnection technologies, as
presented in the previous section.

2) 2.5D AIB Interface: To enable inter-chiplet communica-
tion within the 2.5D package, a dedicated signaling interface is
necessary to maintain signal integrity. These interfaces, such
as Advanced Interface Bus (AIB) [40] or Universal chiplet
interconnect express (UCIe) [41], are usually standardized by
the design industry. Figure 11 illustrates the AIB 2.0 interface
that is modeled in HISIM. Each chiplet can accommodate
up to four columns of AIB, each supporting multiples of 4
channels and up to a maximum of 24 channels. Each AIB
channel features a balanced transceiver (Tx)-receiver (Rx)
configuration and can handle data widths ranging from 20 to
80 for each Tx and Rx channel. Furthermore, each channel
is equipped with a Tx and Rx adapter and IO modules.
The number of IO ports in a channel is determined by
various factors, including the number of AIB Tx/Rx lines
and essential IO signals such as clock, control, and sideband
signals. Additionally, the adapter incorporates a Tx and Rx
FIFO, each of which can be configured to operate at full, half,
or quarter rates by adjusting the clock frequencies.

To assess the power and performance of the AIB 2.0
interface, we construct an analytical model based on input
parameters detailed in Table VII. This model is summarized
as follows:

Latency: LTx = LFFwr clk
+LFIFO+LFFfwd clk

+LIO (14)

Latency: LRx = LIO + LFIFO + 2LFFrd clk
(15)

Dynamic Power: PAIB = (Pclocks + Pdata)nch (16)

Here, the dynamic power due to clock switching and data
switching is further decomposed as:

Pclocks = Pfs fwd clk+Pns fwd clk+Prd clk+Pwr clk (17)

Pdata = PTxdata + PRxdata (18)

The dynamic power arising from each clock-switching event
of a single AIB channel is estimated based on several factors,
including the number of Tx/Rx data lines (ntx/rx), voltage,
specific clock frequency, and the fraction of duration for which
the AIB is switched on (αaib), representing the activity factor.

Pclocki
= (γ1intx/rx + γ2i)V

2αaibfclki
(19)

where γ1i and γ2i are calibrated using RTL synthesis at 28nm
of open-source AIB codes [59]. Similarly, the dynamic power
originating from data switching for a single AIB single channel
is assessed, depending on the input switching frequency (fini

)
and an input switching activity factor that is a function of input
sparsity (Sin).

The area of the AIB interface circuitry is estimated, as-
suming uniform dimensions for each component, with all IO

Fig. 11. The architecture of the 2.5D interface, such as AIB, includes Tx/Rx
adapters, silicon bridge, etc.
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cells aligned along the same edge as the µbump orientation,
as specified in [40].

Area: AAIB = (LenIOch(WIO +WAdpt))nch (20)

Here, LenIOch represents the length of the stack of IO cells
in a single column, while WIO and WAdpt denote the width
of an IO cell and an adapter, respectively.

LenIOch = nIO

√
AIO,WIO =

√
AIO (21)

WAdpt =
√
ATxAdpt +ARxAdpt +AOther (22)

where the area of the Tx and Rx adapter relies on the number
of Tx/Rx lines:

ATxAdpt = δ1nTx + δ2, ARxAdpt = δ3nRx + δ4 (23)

In this context, AIO denotes the area of a single IO cell. The
area of the µbump array is also estimated, depending on the
number of IO signals, channels, number of IOs per column,
and row and column pitches:

Aµbump = nchnIOclpcl
prw
2

ceil(
nIO

nIOcl
) (24)

Different values are provided for low, medium and high-
density µbump arrays [40].

All AIB equations within HISIM are calibrated with RTL
synthesis at 28nm [59] to extract latency, area, and power
parameters. Table VIII evaluates HISIM results with silicon
data [60]. The latency and power models within HISIM are
developed under a Double Data Rate (DDR) configuration
across three distinct modes of operation: full, half, and quarter
rate. The selection of these three modes directly dictates the
aggregated data width of the Tx/Rx module [40]. Note that the
FIFO within the AIB adapter operates asynchronously. HISIM
adopts the worst-case latency over the temporal span of the
data stream.

Besides the AIB interface, HISIM further incorporates an-
alytical performance models for the silicon bridge between
chiplets, as shown in Figure 11. The area of the silicon bridge

TABLE VII
INPUT PARAMETERS OF THE AIB MODEL.

Inputs Description
Clock

ns fwd clk Near side clock of Tx IO module
fs fwd clk Far side clock of Rx IO module

rd clk Read clock of Tx FIFO
wr clk Write clock of Tx FIFO

Interface
nch Number of AIB Channels
nIO Number of IO ports per channel
nRx Number of Rx lines per channel
nTx Number of Tx lines per channel

µbump
nIOcl Number of AIB IOs per µbump column
prw Aligned-row bump-to-bump pitch
pcol Aligned-column bump-to-bump pitch

Silicon bridge
Wwire Width of 2.5D wires
Lwire Length of 2.5D wires

TABLE VIII
COMPARISON WITH SILICON DATA AT 40 TX AND 40 RX PINS.

Parameter HISIM Data [60]
AIB Configuration

Technology Node 28nm 22nm
Aligned-row bump-to-bump pitch 36µm 36µm

AIB Data rate (Gbps/pin) 4 4
Number of AIB Channels (nch) 24 24
Number of AIB IO ports (nIO) 102 102
Total AIB Bandwidth (Tbps ) 7.68 7.68

Area Efficiency
Total AIB Area (mm2) 5.7 4.5

Bandwidth Density (Tbps/mm2) 1.35 1.705
IO Buffer Size(µm2/pin) 100 91.2

Energy Efficiency
IO Latency (ns) 1.45 1.5

Adapter Energy (pJ/b) 0.29 0.32

is a function ofthe parameters in Table VII, and is estimated
under the layout configuration in [61]:

Awire = (
prw

2nIOcl
nIO +Wwire)Lwirench (25)

With RC parasitics calculated by the interconnect engine, the
latency of the bridge is calculated using the Elmore delay
model. The dynamic power depends on the frequency of all
signals transmitted between AIB interfaces:

Pwire =
∑
i

αifi
∑
j

CjV
2nch ∀i ∈ [1, nIO] (26)

where αi represents the activity factor of signal i, and fi
denotes the frequency of switching for signal i.

3) Other Chiplet Interfaces: While AIB is currently avail-
able, we plan to integrate additional types of 2.5D/3D in-
terfaces into HISIM. Examples are UCIe, DDR, and HBM,
which will further address data communication between com-
puting chiplets and external memory. Furthermore, we will
continually update the HISIM models to accommodate various
generations of µbumps, TSVs, and wire lengths and pitches.
These improvements will enable a more comprehensive and
accurate representation of future packaging systems and their
performance characteristics.

E. Thermal Analysis

Thermal analysis is critical to heterogeneous integration,
especially in 3D stacking scenarios. The stacking of multiple
tiers inevitably reduces the capability of heat dissipation
and raises the temperature. As a consequence, degrading the
electromechanical reliability of an HI system. Using power
consumption data and chip area, we build up the thermal re-
sistance model to generate the temperature map for a 2.5D/3D
system. Our thermal models offer a user-friendly interface that
allows the integration with other simulators, enabling them to
incorporate power and area results for comprehensive thermal
analysis.

1) Inputs to Thermal Analysis: Figure 12 presents the
process in HISIM. The thermal analysis engine requires the
following inputs to accurately predict temperatures.
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Fig. 12. Thermal prediction for a 2.5D/3D system: HISIM first generates the
power and area maps for each component, based on the algorithm workload
and the system structure; the thermal engine then computes the temperature
map using a coarse mesh.

Fig. 13. (a) The structure of a chiplet, at 3×3mm2; (b-d) Temperature maps
at different mesh sizes; (e) Trade-off between simulation time and MAPEs.

Geometry and material information includes information
about the structure (e.g., dimensions and placement) and
materials (e.g., the thermal conductivity of the chiplet and
thermal interface materials) that constitute the chiplet system.

Power map includes the power profile of computing units
and networks that contribute to heat generation.

Granularity defines the resolution of the mesh used for par-
titioning the system. A smaller mesh size improves accuracy
but compromises simulation speed.

Boundary conditions include the ambient temperature,
usually set at 298K, and additional heat dissipation elements
like the heat sink, substrate, and the surrounding air layer.

2) Finite Element Method: Mathematically, the first two
inputs described above are represented by two 3D arrays:
K and P, corresponding to the conductivity map and power
map, respectively. Each entry within the array corresponds to
a voxel, which serves as the smallest unit for thermal analysis.
The physical size represented by the voxel is determined by the

TABLE IX
CALIBRATION OF HISIM WITH PUBLISHED 3D SYSTEMS.

Die Size
(mm2)

Tier
Count

Power Density
(mW/mm2)

Peak Temp.
(°C)

HISIM
(°C)

100 [62] 2 2.85 27 26.78
36 [63] 3 27.78 68.6 69.25
9 [64] 3 38.99 47 41.09
49 [65] 4 40.81 53.85 56.18
22 [66] 1 140 53 43.38

Fig. 14. A 2.5D system for DenseNet-121. Each chiplet consists of 7 × 7
computing tiles and NoC routers, at an area of 4×4cm2. They are connected
by AIB. The thermal simulation uses a mesh size of 60µm.

granularity cl, cw, ch which are for length, width, and height,
respectively. To conduct the thermal analysis, we use the nodal
analysis GT = P to predict the static thermal map T, given
the flattened power map P and the conductance matrix G [67].
The conductance gij between two physically connected voxels
vi, vj is evaluated by

gij = −Aij/(
li
ki

+
lj
kj

)) (27)

where Aij is the contact area, li, lj are the distances from
the center of each voxel to the contacted region, and ki, kj
are the corresponding conductivities. The diagonal of G is
evaluated by gii = −

∑
j gij . After building up the model,

we collect data points from publications and calibrate the
thermal properties of different materials in the model. Table IX
summarizes the calibration.

In simulations with the finite-element method (FEM), the
selection of granularity (i.e., mesh size) is essential to both
accuracy and simulation efficiency. To illustrate that, we
simulate a chiplet consisting of three computing tiles, one
SRAM, and one AIB. The total chiplet area is 3mm× 3mm.
The system also has a heat sink on the top, a packaging
substrate, and an air boundary layer. Figure 13 presents the
trade-off between simulation time and accuracy, with results
from a fine mesh size, such as 14µm, as the baseline. As
shown in the figure, a mesh size of 50− 60µm is found to be
optimal for this chiplet configuration before the mean absolute
percentage error (MAPE) starts increasing. This value aligns
with the results in [68]. A second example is presented in Fig-
ure 14. It demonstrates a 2.5D system with four IMC chiplets
for end-to-end computation of DenseNet-121. Although both
computation and data volume are higher in the middle layers,
the workload decreases towards the final output, leading to a
cooler temperature.

3) Machine Learning Method: Despite using a coarse
mesh, numerical simulations with FEM still consumes con-
siderable time. To speed up thermal analysis for design space
exploration, our ongoing research focuses on machine learning
techniques. Based on the same mesh size that is consistent with
FEM, we propose to develop a graph neural network (GNN)
to simulate the heat exchange within a chiplet system. The
training of GNN is assisted by FEM results. The inference
of GNN involves the operations of aggregation and trans-
formation, which are confined to each node. Therefore, the
computation scale of GNN is much smaller compared to FEM,
which operates on a full 3D matrix. This advantage promises
a significant acceleration in temperature prediction. Such a
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Fig. 15. Placement and routing for 2D/2.5D/3D systems. The 3D system
offers more options due to the vertical link.

thermal model has been developed, submitted for publication,
and will be integrated into HISIM in the future.

IV. DESIGN EVALUATION WITH HISIM

The primary objective of HISIM is to provide an end-to-
end simulator for chiplet-based heterogeneous integration (HI).
This simulator needs to be comprehensive to cover a wide
range of chiplet architectures and interconnection technolo-
gies, ranging from monolithic to 2.5D and 3D structures. By
varying the type of computing units and network topologies,
users are able to conveniently simulate and explore the design
space for further optimization.

A. Experimental Setup

In our experiments, we simulate a set of representative AI
models with HISIM, including ResNet-110 (1.7M parameters)
on CIFAR-100, DenseNet-121 (7.05M parameters) on Ima-
geNet, a 2-layer graph convolutional network (GCN) on Cora,
and a vision transformer (ViT, 86M parameters) on ImageNet.
We quantize the weights and activations of AI models to 8-
bit. All experiments were performed on the Intel Xeon CPU
platform. We use the RRAM-based in-memory computing
chiplet for the computing core, as specified in Section III-B1.
The default technology node is 32nm/28nm CMOS. We follow
the method in Section III-B1 for the partition of algorithms on
the IMC crossbar array, assuming stationary weight mapping
to the crossbars. Both computing units and networks operate
at a default frequency of 1GHz. For the 3D chiplet-based
architecture, we follow that in [21] to construct the stack.
We adopt the Face-to-Back configuration to build up the 3D
multi-chiplet systems with TSVs. The maximum number of
tiers is four in this study. The 3D network routers in each tier
support data communication both within the chiplet as well as
vertically to other chiplets via TSVs. The default configuration
includes three virtual channels with a buffer size of 10 per
virtual channel. The packet size is 1 and the flit size depends
on the channel width. The TSV array consists of 70% signal
TSVs and 30% power/ground TSVs [21]. The default diameter
for each TSV is 10µm, as highlighted in Table V.

B. Placement and Routing

After partitioning the weights of an AI model into the IMC
tiles, the placement and routing of these tiles into a 2.5D/3D
architecture further determine the overall system performance.
Figure 15 illustrates the scenarios. For a 2D chip or 2.5D

Fig. 16. Design space exploration of ViT on a 3D system.
Design configurations include Xbar(256,512,1024), Npe(9,16,25,36),
Ntile(49,64,...,361,400), and Ntier(1,2,3,4).

chiplet system (Figure 15(a) and Figure 15(b)), HISIM follows
the sequence of AI algorithm layers to place and route the tiles,
in order to minimize the hops of data movement. Figure 14
uses this method to demonstrate DenseNet-121.

In a 3D system, there are more options because the band-
width of the vertical link is comparable to that of the links
within the tier. As an example, Figure 15(c) and Figure 15(d)
present two different placement methods, assuming there are
four algorithm layers, with each layer taking two tiles. In
the first method (Figure 15(c)), tiles from adjacent layers
are placed on the same tier until the tier is full. Then, the
tiles from the next layer are placed on another tier. In the
second method (Figure 15(d)), tiles from adjacent layers are
placed vertically across different tiers and then expand to other
areas within the tier. This results in more data communication
occurring in the vertical direction compared to the first method.
Furthermore, the number of hops within the tier can be
adjusted, influencing the number of vertical TSVs that are
accessible. Depending on the data volume and sequence of
a specific AI algorithm, the preferred placement and routing
methods vary to minimize overall latency [69]. In HISIM,
users can customize the placement and routing methods to
explore the 3D network.

C. Design Exploration for AI Computing

Using the full set of HISIM, we demonstrate end-to-end
design exploration of multiple AI algorithms in this section.

1) Speedup in Simulation: We demonstrate HISIM with
ResNet-110 on CIFAR-100, DenseNet-121 on ImageNet, GCN
on Cora, and ViT on ImageNet. These algorithms are mapped
onto a 3D system with various number of tiers. The simulation
speed is compared to the combined results of the state-of-
the-art IMC simulator [32] and the network simulator [34].
Table X summarizes the end-to-end latency and energy con-
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TABLE X
END-TO-END SIMULATION OF REPRESENTATIVE AI ALGORITHMS ON 3D HISIM.

AI Model Xbar Ntier
Latency (ms) Energy (mJ) Area/Tier Simulation Time (ms) SpeedupTile Network Tile Network (cm2) HISIM [32] + [34]

ResNet-110 256 4 4.80 0.52 0.074 0.013 2.10 18.50 4.25× 105 2.3× 104

DenseNet-121 1024 4 20.66 7.19 39.15 0.59 15.50 81.00 8.10× 106 1.0× 105

GCN 1024 2 164.40 425.55 834.60 6.48 117.84 29.70 5.30× 107 1.78× 106

ViT 1024 3 12.15 0.55 35.25 0.27 12.81 73.56 3.16× 106 4.33× 104

sumption, as well as the breakdown to computing tiles and
networks. Depending on the algorithm structures, data move-
ment can dominate the overall latency, as observed in the case
of GCN. Computing tiles are usually the primary contributors
to energy consumption. Compared to conventional simulators,
HISIM is 104 − 106× faster in performance prediction, as
shown in Table X. Such acceleration confirms the advantage
of analytical performance models.

2) Design Space Exploration: For a particular AI algo-
rithm, optimizing the hardware configuration is challenging
due to the vast space of design parameters and multiple con-
straints involved. Therefore, the efficiency of the performance
simulator is critical for quickly searching the design space
and guiding the user toward an optimal solution. Using the
ViT algorithm as the benchmark, Figure 16 demonstrates the
process and highlights its importance. Design variables include
the crossbar size (Xbar), the number of PEs per tile (Npe), the
number of tiles per tier (Ntile), and the number of 3D tiers
(Ntier). In total, there are 672 design configurations. HISIM
predicts the end-to-end latency, energy, and area per tier for
all of them within 48.8 seconds. As observed in Figure 16,
there are dramatic differences in power, performance, and
area (PPA) across various configurations. Throughout the
range of 672 design configurations tested in this experiment,
we observe that energy consumption differs by more than
10×, while latency varies by more than 2×. The specific
configurations optimized for low power or high speed also
differ significantly. Some configurations may not be practical
for hosting the ViT model due to the area constraint of a
monolithic chiplet. Therefore, it is critical to conduct design
space exploration at an early stage for guiding further design
optimization within a viable range of configurations.

A second example is presented in Figure 17. In this study,
we map the DenseNet-121 model to 2D (one monolithic chip),
2.5D (multiple chiplets), and 3D (multiple tiers). With station-
ary weights applied to the IMC design, the total number of
computing tiles remains constant across all configurations. The
crossbar size is 1024. Transitioning from 2D to 2.5D slightly
reduces overall latency and energy consumption. However,
the peak temperature increases due to the introduction of the
AIB interface. When moving to 3D configurations, there is a
significant reduction in latency, highlighting the advantages of
3D TSVs in terms of bandwidth. Nevertheless, the peak tem-
perature rises due to increased power density in the 3D stack.
For both examples, early-stage design exploration is essential
to identifying the most feasible configurations, balancing the
trade-offs between PPAs, and improving the efficiency.

Fig. 17. Comparison of 2D, 2.5D and 3D mapping of DenseNet-121, at a
constant number of IMC tiles.

V. CONCLUSION

In this work, we propose a new benchmark tool, Het-
erogeneous Integration Simulator with Interconnect Modeling
(HISIM), for early-stage design exploration of 2.5D/3D sys-
tems. HISIM develops a set of analytical performance models
for various computing cores, interconnection technologies,
and network topologies. It provides fast and accurate electro-
thermal analysis, scalable with different design configurations.
Compared to conventional benchmark tools, HISIM achieves
104− 106× speedup in the evaluation of power, performance,
and area (PPA), supporting rapid search in the vast design
space. The HISIM code is available at https://github.com/mec-
UMN/HISIM. It will be continuously updated with new mod-
els and design configurations. This repository provides access
to the tool, allowing researchers and designers to perform
efficient and accurate design exploration of 2.5D/3D systems.
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