A 16nm Heterogeneous Accelerator for Energy-Efficient Sparse
and Dense Al Computing

Gopikrishnan Raveendran Nair
Yu Cao

Department of ECE, University of Minnesota, Minneapolis,

MN, USA
ABSTRACT

Artificial intelligence (AI) has evolved from dense Deep Neural
Networks (DNNs) toward a diverse set of models, such as sparse
graph convolutional neural networks (GCNs). These new models
differ in model size, processing flow, memory access patterns, and
data/model sparsity. Hardware platforms optimized for dense DNNs
with a regular data structure are inefficient to manage new unstruc-
tured, sparse workloads, such as GCNs. For instance, in-memory
computing (IMC) units that is suitable for dense matrix/vector com-
putation, but significantly underutilized for sparse data.

In this work, we propose a new reconfigurable heterogeneous
accelerator, with the target to balance the computation needs and
energy efficiency in diverse Al models. Based on representative
DNNs and GCNs, we propose two types of processing elements
(PEs): (1) A Latch-based digital IMCs (LIMC) for regular and dense
computation, and (2) A digital SIMD array (SIMD) with fine-grained
control for irregular and sparse workloads. To integrate both types
of PEs and dynamically manage the data flow, we design reconfig-
urable modules of scatter/gather and buffers, supporting different
types of memory access and compute patterns. The new heteroge-
neous accelerator has been designed and taped out at 16nm. Based
on 16nm design data, it achieves an 11X improvement in latency
compared to baseline homogeneous accelerators, and up to 2.1x
and 20X improvement in TOPS/mm? and TOPS/W, respectively, as
compared to state-of-the-art accelerators.

CCS CONCEPTS

« Hardware — Application specific integrated circuits.

KEYWORDS

GNNE, Sparsity, Al accelerator, Irregular data access.

ACM Reference Format:

Gopikrishnan Raveendran Nair, Yu Cao, Fengyang Jiang, and Jeff Zhang.
2024. A 16nm Heterogeneous Accelerator for Energy-Efficient Sparse and
Dense Al Computing. In Proceedings of the ACM/IEEE International Sym-
posium on Low Power Electronics and Design (ISLPED °24), August 5-7,

This work is supported by COCOSYS, one of six centers in JUMP2.0, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISLPED °24, August 5-7, 2024, Newport Beach, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0688-2/24/08....$15.00
https://doi.org/10.1145/3665314.3670824

Fengyang Jiang
Jeff Zhang
School of ECEE, Arizona State University, Tempe, AZ, USA

Table 1: GCN and SpMV workloads are dramatically sparse.

Dataset Domain Dimension Sparsity
Cora GCN 2708 x 2708 99.82%
Citeseer GCN 3327 x 3327 99.89%
Consph 2D/3D Problem 83334 X 83334 99.9%
Ohne2 | Semiconductor Device | 181343 X 181343 99.9%

|] LIMC Core [l Proposed SIMD Core

- -2ﬂ]x_{| 37_ﬂ 36.2x 149x

N
i

=
o

-

o
&
T

Data in Bytes (log10) Opj-ration Intensity (log10)
o

1010 I
[99.2% 99.6%
1081 |_%95.3% Wﬁ?)%
102
Cora Citeseer Consph Ohne2

Figure 1: Mapping of sparse workloads on IMCs is inefficient,
while our proposed SIMD cores effectively improve compu-
tational efficiency and data access.

2024, Newport Beach, CA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3665314.3670824

1 INTRODUCTION

Dedicated accelerators have been proposed to achieve efficient CNN
acceleration [1, 2]. With bigger models, having separate memory
and compute units poses great challenges to these traditional accel-
erator architectures [2]. To address this, In-Memory Compute (IMC)
was introduced. IMCs are efficient at dense, compute bound MAC
operations with high operation intensity (i.e., the number of com-
pute operations performed on each of the loaded data) [3]. Other
computations such as sparse matrix vector multiplication (SpMV)
and feature aggregation in GCNs are characteristically different
than dense MACs. This reduces the emphasis on data movement
cost and high compute efficiency that motivates IMC use [3].
GCNs and SpMVs involve computations on sparse matrices, and
storing sparse matrices on IMCs is inefficient [4]. Since these work-
loads are 99% sparse, as shown in Table 1, transferring these zeros
from memory and storing them in Latch-based IMCs (LIMCs) lead
to significant bandwidth, energy wastage and underutilization of
LIMCs. To address this, we propose the use of SIMD-based com-
pute cores to effectively handle the sparse computations. Figure 1
bottom, shows the volume of data needed to do sparse computation
using LIMC and SIMD cores for GCN and SpMV. For evaluation
with LIMCs, we follow the same method as in [5], where the ex-
tremely sparse matrix is mapped entirely to the IMC crossbar. SIMD

https://doi.org/10.1145/3665314.3670824
https://doi.org/10.1145/3665314.3670824
https://doi.org/10.1145/3665314.3670824
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3665314.3670824&domain=pdf&date_stamp=2024-09-09

ISLPED 24, August 5-7, 2024, Newport Beach, CA, USA

cores operate on sparse data represented in compressed formats
like COO, CSR, eliminating the need to move zeros from memory,
achieving up to a 99% reduction in the volume of data fetched com-
pared to IMCs. SIMD cores achieve up to 149x more operational
intensity (i.e. the number of compute operations performed on each
of the loaded data), than LIMCs as shown in Figure 1 top. Since the
adjacency matrix is 99% sparse, LIMCs effectively compute only
1%, whereas with SIMD cores, only the non-zero entries of sparse
matrices are fetched from memory. This results in higher opera-
tional intensity. Additionally, to exploit activation/input sparsity
at the input of LIMCs we propose the use of operation skipping
and booth multiplier to achieve coarse and fine grained operation
skipping. Though IMCs are efficient for dense MACs [6], they still
incur hardware virtualization overhead, such as data loading lead-
ing to significant performance loss [3, 7]. To this end, we propose
the use of a ping-pong LIMC core to efficiently hide the weight
update cost by overlapping it with the computation. Since CNN
and GCN involve both dense and sparse computations, we chose
them as representative heterogeneous Al workloads.
The major contributions of this work are:

o A heterogeneous accelerator, with a LIMC to manage the
dense operations, and a SIMD core for the sparse operations.

e Operation skipping and booth multiplier to handle activation
sparsity at the input of LIMC.

e Ping-Pong LIMC design to efficiently handle weight update
overheads of IMC accelerators.

e 16nm implementation and tapeout of the proposed accelera-
tor with comprehensive evaluation of the performance with
state-of-the-art accelerator designs.

2 BACKGROUND AND MOTIVATION
2.1 Workload Analysis

CNNss use dense MAC convolutions to extract features from in-
put data. GCNs perform feature transformation (FT) and feature
aggregation (FA) operations, capturing the relationships among
the nodes in the graph. FT is a dense MAC computation between
the feature matrix of the graph and the weight matrix, while FA
of each node involves the weighted sum of neighboring nodes,
determined using the extremely sparse adjacency matrix [8]. There-
fore, GCN accelerators must handle both sparse, non-MAC FA, and
dense MAC FT. SpMV workloads have extremely sparse matrices
as inputs. The sparsity of the adjacency matrix in GCNs and SpMV
inputs, as shown in Table 1, is significantly larger than the weight
or activation matrix in CNNs (10%-50%) [9]. Table 2 highlights the
main differences in CNN, GCN and SpMV workloads. In CNNs, 99%
of computations are MAC operations [10]. In GCNs, FT is a MAC
operation, whereas FA and SpMV are sparse computations.

2.2 Limitations of Prior Works

IMC based CNN accelerators [11, 12] are efficient at MAC opera-
tions with high operational intensity. But, they are inefficient for
sparse non-MAC aggregation in GCN and SpMV due to low op-
erational intensity. [8] proposes a novel algorithm to accelerate
feature aggregation in GCNs by exploiting the symmetry property
of graphs and to reduce redundant computations. [5] proposes an
IMC-based GCN accelerator. They store the extremely sparse ad-
jacency matrix in the IMCs, leading to poor operational intensity

Gopikrishnan Raveendran Nair, Yu Cao, Fengyang Jiang, and Jeff Zhang

Table 2: Workload characteristics of CNNs, GCNs and SpMV.

Workload Kernel Type
Convolution MAC Dense/Sparse
Fully connected, MLP MAC Dense/Sparse
Feature transformation MAC Dense/Sparse
Feature Aggregation | Sparse matrix | Very Sparse
SpMV Sparse matrix | Very Sparse
Intermediate
Activation | Data Booth | —m| gyffer
buffer Data select encoding
Rearrange
A ‘ S A ‘ LIMG SIMD Add,Mul
Instruction catter core)
gather Pina/ Sparse .
Buffer Pgnngg Buffer .
i SIMD Add,Mul

> Qutput
DMA
L‘d—b Glaobal Buffer Buffer

Figure 2: Architecture of the heterogeneous accelerator with

ping-pong LIMC and SIMD cores.
8 bit latches

RowO | oI Weight{7:0 m
Row 1 = ux
n

Row 3 Mode{1:0]4 — o adder
umMc | | [weight7 o) -
bank >

000/111
Act [7:0 >3]0 Ski

Row 14 [™ And
addr

Mor |
1 Nor ;

Mode: 01: weight[3:0]; 10: weight[7:4]; 00/11: weight[7:0]
Figure 3: Microarchitecture of the proposed LIMC bank with
the booth multiplier. Operations are skipped at the coarse
level if the weights/activations are zero and at the fine level
if the booth encoding bits are 000/111.

and wasted memory bandwidth. These accelerators are optimized
to exploit the characteristics and computational requirements of
GCNs, rendering them inefficient for CNN acceleration. Therefore,
we need an accelerator to balance the heterogeneity of AI models.

3 SYSTEM DESIGN AND ARCHITECTURE

3.1 Architecture Overview

To achieve a balanced operational intensity across dense and sparse
workloads, we integrate a heterogeneous Al accelerator with LIMC
and sparse SIMD core. Figure 2 shows the architecture of the SOC
system. To address the weight update overhead we use ping-pong
LIMC. Booth multiplier with operation skipping is used to address
sparsity at the input of LIMCs. SIMD units with multiply, add and
ReLU handles sparse computations and activation functions respec-
tively as needed. Programmable scatter-gather and control logic
handles the different memory access patterns and ensure efficient
integration of the LIMC and SIMD cores.

3.2 Latch-based IMC (LIMC) Core

3.2.1 LIMC architecture. The building block of LIMCs are latches
and is equivalent to the bitcell in SRAM IMCs. LIMC supports both
8-bit and 4-bit computations. To balance the area constraint and
parallel MAC operations, we divide the LIMC macro into banks
and computations happen parallelly across banks. Each bank is

A 16nm Heterogeneous Accelerator for Energy-Efficient Sparse and Dense Al Computing

0.010 | —— Latency — Area 14
m Optimum number of banks 138
£ 0.008 |- | N
= | 36 E
200.006 | I =
c 3.4 8
Qo.004f I <
3 13.2

0.002 |- |

3

0 10 20 30 40 50 60 70
Number of Banks
Figure 4: A smaller number of LIMC banks have smaller area

due to less number of multipliers, but will also have more
iterations (the size of the input/the number of banks) at the
input of LIMC increasing latency.

. 5
Weight LIMC _ Booth
™ Maco ™ multiplier [™] stage
42 adder
(a) IMC CORE
LIMC
Macro H :
Wei Ping H
: '{8 mEI[tJit:JtI?er ™| stage
LIMC adder
Macro -
Pong |
(b) d '1"16 LIMC CORE

Figure 5: (a) Conventional IMC core where computation and
weight updates are sequential. (b) Proposed Ping-Pong based
LIMC core to efficiently hide the IMC weight update latency
by overlapping the computation and IMC weight updates
across the ping-pong cores.

connected to a modified booth multiplier. With booth the number of
partial products is halved [13] as compared to bit-serial computing
in SRAM or RRAM-based IMCs, resulting in faster computations.

The number of banks is optimized to achieve a balance between
the area and the compute latency. As number of banks increase
the number of booth multipliers required for parallel computation
increases, resulting in an area increase. The compute latency de-
creases with number of banks as the number of iterations required
is lower leading to lower latency. Number of iteration is defined as
the size of the input at the LIMC divided by the number of banks.
As illustrated in Figure 4 we select the number of banks to be 30, to
achieve an optimum balance between area and latency. The micro-
architecture of a LIMC bank with booth multiplier is as illustrated in
Figure 3. Eight columns of 1-bit latches share one set of booth multi-
plier. To achieve maximum weight mapping efficiency in LIMC for
the common convolution use cases, the number of rows in a bank is
set to 15, a multiple of 3 and 5, the most common kernel sizes. Thus,
with 30 banks containing 15 rows each, the total number of rows
in the LIMC is 450. The system bus is 128 bits wide. Therefore, we
set the number of columns in the LIMC to 128, which is equivalent
to 16 columns of 8-bit latches. The output generated by the LIMC
is stored in a banked intermediate buffer with 16 banks, facilitating
parallel LIMC output writes.

ISLPED 24, August 5-7, 2024, Newport Beach, CA, USA

[(MCLD 1] MULT 1 [IMCLD 2] MULT 2 [IMCLD 3| MULT 3

[IMCLD 1| MULT1 | MULT2 | MULT 3 With ping pong
IMCLD 2 [IMC LD 3 «—alchiecture ;-
t ¢ time

Figure 6: Proposed ping-pong IMC hiding data movement
latency by overlapping weight load and computation.

Table 3: Improvement in compute latency achieved from the
proposed ping-pong IMC architecture.

Mat A Mat B Cloc'k Cycles Clocl.(Cycles) Reduction
w/ ping-pong | w/o ping-pong | in Clock Cycles
(10,1433) | (1433,16) 3794 6320 39.9%
(100,1433) | (1433,16) 33494 44570 24.8%
(400,1433) | (1433,16) 132494 172070 23%
(1000,1433) (1433 16) 339102 422820 19%

Sparse
Co-ordinate || Ctrl
X16
Feat
r—

SIMD CORE

|

Figure 7: Micro-architecture of SIMD core.

3.2.2 Activation Sparsity. LIMC core dynamically handles activa-
tion sparsity at the input by using operation skipping and booth
multiplier. This ensures sparsity handling at a coarse and fine gran-
ularity. At the coarse level, if all the activations at the LIMC bank
input are zero the computations will be skipped. At finer granular-
ity, if the booth encoding is either 000 or 111 the computations will
be skipped as shown in Figure 3.

3.2.3 Ping-Pong IMC. For efficient integration of IMC-based ac-
celerators the overhead of weight updates should be addressed.
Updating IMC weights between computations leads to significant
performance loss [7]. Existing works on IMC-based accelerators
such as [5, 11, 14] do not address this overhead. To this end, we
proposed the use of a ping-pong LIMC core to efficiently hide the
weight update cost by overlapping it with the computation. Figure 6
shows an illustrative toy example with three independent work-
loads. With only one LIMC core as in Figure 5(a), weight writes and
execution can only happen sequentially. To hide this overhead, we
use ping-pong LIMC architecture Figure 5(b), where one core will
be performing MAC computations while the other will be loading
the new set of weights for subsequent computation.

Table 3 shows the improvement from the proposed ping-pong
LIMC for matrix multiplication workloads. We achieved up to 39.9%
reduction in clock cycles with the proposed ping-pong architecture.
Matrix B is mapped to the LIMC, and its size is set to be larger than
the number of rows in the LIMC to ensure ping-pong operations.
When Matrix A is smaller, writes to the LIMCs dominate the latency,
maximizing the benefits of the ping-pong solution. However, as the
size of Matrix A increases, execution time becomes the dominant
factor, reducing the gains of the ping-pong architecture.

3.24 SIMD Core and Sparse Buffer. SIMD cores compute the sparse
workloads. Figure 7 illustrates the architecture of a SIMD core and
the microarchitecture of a Processing Element (PE) within the core.
The core comprises of PE rows with N columns, where each PE
has its own scratch pad (SPAD) for storing partial results for reuse.

ISLPED 24, August 5-7, 2024, Newport Beach, CA, USA

E%ﬁw OFMﬁIFMS

I

I = 0OFMS
| LIMC Core
Figure 8: Example of mapping convolution into the LIMC
core. The IFMs are mapped across the rows within a LIMC
macro and the OFMs are mapped across the macros.

SIMD Core

=)
o

c

=

Sparse Buff
00000006

000300086
00050006
00010007
00040008
00010009
00020008
00030008

6 7 8 9 10 11

BO B1 B2 B3
61789

1011
Intermediate Buff
Figure 9: Mapping of a tile adjacency input matrix to the
compute units for aggregation. Sparse buff stores the edges
in COO format. The control fetches and assigns each edge to
a PE row. Banked Intermediate buffer stores the features of
the node to be accessed parallelly by the SIMD cores.

[I T T o i]

Adjacency matrix

The SIMD core has both intra-PE row and inter-PE row parallelism.

The adjacency matrix is partitioned into smaller tiles to fit into
on-chip memory [8]. The sparse buffer holds the edges of the graph
or the entries of the sparse matrix in COO format. For aggregation,
based on the edge information, the control logic initiates read to the
intermediate buffer to fetch the features of the neighboring nodes
and then issues the aggregation to one of the PE rows. During SpMV
the control logic fetches the vector elements from the intermediate
buffer based on the sparse matrix entries in COO format. The size
of the edge buffer is set to 16KB. The graph features or the vector
elements are stored in the intermediate buffer. With 16 banks for
the intermediate buffer, 16 reads can be done in parallel. Therefore,
the control logic can issue 16 edges or 16 rows of sparse matrix in
a cycle. Thus, the number of PE rows is set to 16. For each SIMD
core, the number of columns in a PE is set to 128, supporting the
feature dimensions of typical graph datasets. In cases where the
dimension exceeds 128, it will be executed iteratively. The SIMD
core can also be used as a ReLU activation unit for convolution
operation, where the output from LIMC can be fed to SIMD core
through the intermediate buffer.

3.25 Data Delivery Modules. The DMA, scatter-gather (SG), data
rearrange, data select and activation buffer (AB), and a 512KB global
buffer make up the data delivery modules. We have designed a
dataflow with multiple hierarchies of memories to ensure pipelined
data delivery at the input of SIMD core. SG will generate the address
based on the workload data access patterns. For convolution, the
data is fetched from AB and then stored in the line buffers (LB)
inside the data rearrange module. Based on the stride and kernel
size, the data will be selected from the LB. The data select module
will choose the data directly from the activation buffer for matrix
multiplication or from the data rearrange logic for convolution, and
write it into the shift register (SR) inside the booth encoding block.

Gopikrishnan Raveendran Nair, Yu Cao, Fengyang Jiang, and Jeff Zhang

2mm
Technology Intel 16nm
Area 4mm®
o Voltage 1V
§ Clock 200Mhz
IMC capacity 115KE
TOPSMW 3637

estimation from post apr for 8bit MAC ops

Figure 10: Post layout of the proposed accelerator.

3.3 Mapping of Workloads to LIMC

3.3.1 Matmul Operations. To multiply two matrices A and B, ma-
trix B will be mapped to the LIMC core crossbar. With 450 (30 banks
and 15 rows per bank) entries in each macro, a maximum of 450
rows of matrix B can be mapped to the LIMC. If bigger, then it is
computed iteratively. Matrix A stored in the global buffer, is fed to
the input banks of LIMC and computation happens tile by tile.
3.3.2 Convolution. Mapping convolutions to the LIMC requires
high crossbar mapping efficiency to achieve optimal performance.
The weight’s IFMs are mapped across the rows within a macro, and
the weight’s OFMS are mapped across the columns of the LIMC
as shown in Figure 8. The activations are provided at the input
banks of the LIMC for computation. To achieve maximum weight
mapping efficiency in LIMC, the number of rows in a bank is set to
15, a multiple of 3 and 5. A single macro can support 50 and 30 IFMs
for 3x 3 and 5 X5 kernels, respectively at 8-bit precision. Our design
is specifically tuned to achieve maximum mapping efficiency for
the kernel sizes of 3 X 3 and 5 X 5. We can support kernel sizes up
to 15, with the mapping efficiency less than 100%.

3.4 Mapping of Aggregation to SIMD

Aggregation can happen in two ways: either FT followed by FA
where the output of LIMC will be directly consumed by the SIMD
core from the intermediate buffer (IB), or standalone FA where the
DMA will populate the IB with node features. The aggregation of
each node is statically assigned to a unique PE row, and the partial
results of that node are stored locally in the scratch pad to avoid
inter-core communication. The target node id modulo the number
of SIMD cores 16, gives a unique PE row for that node. The edges fed
into the sparse buffer are arranged in the ascending order of neigh-
boring nodes as shown in Figure 9. This introduces both temporal
and spatial locality within the aggregation flow, and thus helps in
generating predictable memory accesses. To support this memory
access pattern, the neighboring nodes are arranged such that it
fall into consecutive banks of intermediate buffer, enabling parallel
read access. Offline pre-processing of graph data to further improve
the regularity in memory access and data reuse in the aggregation
phase is well studied in [8] and is beyond the scope of this work.
These offline pre-processing methods can be used in conjunction
with our hardware to further improve GCN acceleration.

4 EXPERIMENTAL RESULTS

To benchmark the performance of our programmable heteroge-
neous architecture, we implemented the entire design in RTL, syn-
thesized and completed the tapeout process using Intel’s 16nm for
200 MHz. The post-layout is shown in Figure 10, and full SOC level
simulations of CNN and GCN workloads were performed. For base-
line comparison, the SIMD cores in the heterogeneous design were

A 16nm Heterogeneous Accelerator for Energy-Efficient Sparse and Dense Al Computing

s Energy consumptlon of IMC and SIMD with |dent|cal number of multlpllers

D o —-LMC —l- SIMD

0%

<

-,g_ | §. —)SIMD

5 98% AN Preferred

3

2ot i—m—l~g—m—u—n-—n—n—n—n
0,

S | UmMCe— .\.\.\. 96%

2 Preferred —Hl—a—

S10°

0 10 20 30 40 50 60 70 80 90 99
Sparsity of data mapped to the crossbar

Figure 11: At lower level of sparsity LIMC achieves better

energy efficiency whereas at higher sparsity SIMD achieves

better energy efficiency for identical workload.

—_
L] T T
S0 [Without skip
«— 4.0
TI; [with proposed skip
.5 3.0} 11.21%
5,0l 77.6%
s 2.
£ 72
o o1 69.2%
o
® Cora Citeseer Pubmed

Figure 12: Reduction in the number of computations by ex-
ploiting sparsity at the input banks of LIMC by using opera-
tion skipping and booth multiplier.

substituted with LIMC cores having identical compute resources to
create a homogeneous accelerator.

4.1 Workload Mapping: LIMC vs. SIMD

In this experiment, we make the LIMC and SIMD units identical,
with the same number of multipliers, and perform a matrix multi-
plication operation. Identical inputs are fed to both LIMC and SIMD.
The sparsity of the input matrix mapped to the LIMC crossbar is
varied from 0 to 99%, while the sparsity of the other input matrix
remains fixed at 0%. At sparsity levels below 20%, LIMC achieves
up to 98% better energy efficiency compared to SIMD. Between
20% and 40% sparsity, both LIMC and SIMD achieve similar energy
efficiency. For sparsity levels above 40%, SIMD achieves up to 96%
improvement in energy efficiency. Regardless of the sparsity of
the input mapped to the LIMC crossbar, LIMC always takes the
same number of clock cycles to perform computations. In contrast,
with SIMD, using compressed data representations allows us to
operate solely on non-zero elements, thereby achieving lower la-
tency. This results in lower energy consumption. Therefore, based
on the sparsity of the workload being mapped to the LIMC crossbar,
we can determine to which compute unit it should be mapped, as
illustrated in Figure 11.

4.2 Improvement of LIMC from Input Skipping
and Booth Multiplier

Figure 12 shows the reduction in the number of computations
achieved by exploiting the sparsity at the input banks of LIMC
using booth multiplier and operation skipping. We evaluated the
first layer of feature transformation of GCN on the graph datasets
Cora, Citeseer, and Pubmed. The dense weights with zero sparsity
are mapped to the LIMC core and graph feature matrix is the input
to the LIMC. We achieved up to a 77% reduction in the number

ISLPED 24, August 5-7, 2024, Newport Beach, CA, USA

'S Cumc
- I LIMC + SIMD
&80t
c
i)
=
1] 11x
-5 4.0
3
[] 1x
00.0 —
3* GCN (CORA) CNN (MNIST)

Figure 13: End-to-end GCN and CNN inference performance
comparison between the LIMC-only homogeneous accelera-
tor and heterogeneous architecture.

—I— SIMD —l— LIMC

<_GCN FA —>/f 98%
96%

- =
o =
© =)

nergy Consumption (log10)
3

96.5%
104 E SpMV >
102
Cora Citeseer Consph Ohne2
|_u Sparsity 99.82% 99.89% 99.9% 99.9%

Figure 14: LIMC vs SIMD energy consumption for GCN FA
and SpMV. Proposed SIMD achieves high energy efficiency
for sparse GCN FA and SpMV workload.
of computations because the initial feature matrix of the graph is
sparse. This holds true for CNN as well, where the activation of
later layers contain more zeros due to ReLU.

4.3 Comparison with LIMC-only Accelerators

To benchmark the design, we compared our proposed heteroge-
neous accelerator against the baseline homogeneous accelerator,
which consists solely of LIMC cores, using GCN (Cora) and CNN
(MNIST) as the workloads. In the case of GCN using the homoge-
neous accelerator, both FT and FA are mapped to LIMC. In contrast,
with the heterogeneous accelerator, dense FT is mapped to LIMC,
and sparse FA is mapped to SIMD. For CNN, since convolution
weights are dense, they are mapped only to LIMC for both the het-
erogeneous and homogeneous accelerators. The number of cycles
required for GCN with a homogeneous accelerator is 11x more
than with the proposed heterogeneous architecture, as illustrated
in Figure 13. The poor operational intensity of LIMC for the sparse
FA of GCN contributes to the overall latency of GCN inference
when using a homogeneous accelerator. For convolution, both the
heterogeneous and homogeneous architectures have the same per-
formance since convolutions are only mapped to LIMCs.

4.4 Energy Inefficiency of LIMC with Sparsity
In Figure 14, the energy consumption of LIMC and SIMD cores
for sparse GCN FA and SpMV workload is depicted. For sparse
workloads, SIMD achieved up to a 98% improvement in energy
efficiency as compared to LIMC cores.

4.5 Comparison with Prior Works

Table 4 shows the comparison of our accelerator with the state-of-
the-art IMC based accelerators. The neural networks (NN) used to
evaluate the performance are the same as in [16]. [15] is primarily

ISLPED 24, August 5-7, 2024, Newport Beach, CA, USA

Gopikrishnan Raveendran Nair, Yu Cao, Fengyang Jiang, and Jeff Zhang

Table 4: Comparison with state-of-the-art CNN and GCN accelerators.

[15] | 71 | [e] | [11] This work [5] [8]
Workload CNN CNN, GCN GCN GCN
IMC IMC SIMC DIMC LIMC IMC
Technology 16nm 65nm 65nm 65nm 16nm 32nm FPGA
Size 25mm? 12mm? 9.4mm? | 20.52mm? 4mm? 17.43mm? N/A
IMC capacity 4.5Mb 65Kb 520Kb 300Kb 115kb 7.8Mb N/A
Frequency 200MHz 100MHz 4MHz 10Mhz 200MHz 1GHz 220MHz
Precision 8b Fixed Pt | 8b Fixed Pt | 8b Fixed Pt | 4bFixed Pt || 8b Fixed pt || 8bt Fixed pt | 8b Fixed Pt
CNN performance (MNIST) N/A N/A 5.85ms/fr | 2.25ms/fr® || 0.023ms/fr* N/A N/A
CNN performance (CIFAR10) | 0.13ms/fr 6.51ms/fr 11.5ms/fr N/A 1.39ms/fr* N/A N/A
GCN (Cora) N/A N/A N/A N/A 3.3ms¢ 0.6ms 0.06ms
TOPS/W 1.8 2.3 7.96 14.07 36.3 N/A N/A
TOPS/mm? 2.67 0.037 N/A 0.014 5.615 N/A N/A

*Used the same network as [16],° Used the same network as [5]

an IMC based accelerator which can support CNNs. This works
achieves better performance on CIFAR10, which can be attributed
to larger scale design with 400x more IMC compute capacity. Since
they use IMC for compute, it will suffer from low operation inten-
sity and energy efficiency for sparse workloads. They have also
utilized a SIMD core primarily for element-wise activation function
operations. [7], also uses ping-pong for weight updates by using
alternate banks as ping and pong with 16 rows in each bank with
a total of 128 rows. But here the size of the ping and pong array
is extremely small with 64 rows each thus leading to negligible
update overhead when compared to execution time. Thus for small
array sizes the improvement from ping-pong is not significant. We
achieved 5x and 2.3x performance improvement over [16] with
frequency scaled down to 100MHz. [16] is a Stochastic computing
(SC) based IMC and SC suffers from high cost of binary to stochastic
number conversion and compute error.

Our architecture achieves 9x better performance than [11] with
the operation frequency of our design scaled down to 10 MHz. [11]
is an all-IMC design, making it inefficient for sparse workloads. De-
spite having 67x more resources and 1GHz frequency, our accelera-
tor achieves comparable performance with [5] for a two-layer end
to end GCN inference latency. Full IMC based GCN accelerators like
[5] are extremely inefficient in executing sparse FA aggregations,
due to low operational intensity and wasted memory bandwidth
from moving zeros. IMCs-based accelerators can also employ sparse
representations while transferring data from memory to conserve
bandwidth, albeit with the additional hardware overhead of de-
coding and accurately mapping it to the crossbars. However the
operational intensity still remains low. [8], a FPGA implementation
achieves better performance since it deploys symmetry based of-
fline pre-processing to improve locality in graph. It also uses HBM
with 512GB/s bandwidth which reduces the data movement latency.
We achieve a 2.1x improvement in TOPS/mm? over [15] at 16nm
and upto 20x improvement in TOPS/W over others.

5 CONCLUSION

IMCs are inefficient in accelerating extremely sparse workloads,
due to their low operation intensity and energy efficiency. In this
work, we propose a scalable heterogeneous accelerator with LIMC
and SIMD cores, to balance the computation needs and the effi-
ciency of CNN, GCNs and SpMVs. We design an architecture which

efficiently integrates a ping-pong based LIMCs for MAC operations
and the SIMD cores for sparse operations. We also define a work-
load mapping strategy to determine which core to utilize based on
the sparsity of the workloads. We implement our design with Intel
16nm PDK at 200 MHz and successfully taped out a complete SOC
accelerator based on the new design. For the CNN, GCN and SpMV
benchmark workloads we achieve up to 11X improvement in per-
formance over homogeneous accelerators and 2.1X improvement
in TOPS/mm? over [15] at 16nm and 20x improvement in TOPS/W,
as compared to state-of-the-art accelerators. Since Al models can
be expressed as a combination for dense and sparse computations,
the design strategy and analysis in this work can be extended to
accelerate more diverse Al workloads.

REFERENCES

[1] Anupreetham Anupreetham et al. End-to-end fpga-based object detection using
pipelined cnn and non-maximum suppression. In 2021 FPL, 2021.

[2] Yu-Hsin Chen et al. Eyeriss: An energy-efficient reconfigurable accelerator for
deep convolutional neural networks. I7SSCircuits, 52(1), 2017.

[3] Naveen Verma et al. In-memory computing: Advances and prospects. IEEE
Solid-State Circuits Magazine, 11(3):43-55, 2019.

[4] Biresh Kumar Joardar et al. Heterogeneous manycore architectures enabled by
processing-in-memory for deep learning: From cnns to gnns:. In ICCAD, 2021.

[5] Sumit K. Mandal et al. Coin: Communication-aware in-memory acceleration for
graph convolutional networks. IEEE JETCAS, 12(2):472-485, 2022.

[6] Zhenyu Wang et al. Ai computing in light of 2.5d interconnect roadmap: Big-little
chiplets for in-memory acceleration. In IEDM, 2022.

[7] Jinshan Yue et al. A 2.75-to-75.9tops/w computing-in-memory nn processor
supporting set-associate block-wise zero skipping and ping-pong cim with si-
multaneous computation and weight updating. ISSCC, 2021.

[8] Gopikrishnan Raveendran Nair et al. Fpga acceleration of gen in light of the
symmetry of graph adjacency matrix. In DATE, pages 1-6, 2023.

[9] Bingyi Zhang et al. Boostgen: A framework for optimizing GCN inference on
FPGA. In IEEE FCCM, 2021.

[10] En-Yu Yang et al. Flexacc: A programmable accelerator with application-specific
isa for flexible deep neural network inference. In ASAP, 2021.

[11] Gokul Krishnan et al. 3d-isc: A 65nm 3d compatible in-sensor computing accel-

erator with reconfigurable tile architecture for real-time dvs data compression.

In A-SSCC, 2023.

Gopikrishnan R. Nair et al. 3d in-sensor computing for real-time dvs data com-

pression: 65nm hardware-algorithm co-design. pages 1-1, 2024.

[13] Divya Govekar et al. Design and implementation of high speed modified booth

multiplier using hybrid adder. In (ICCMC 2017), pages 138-143, 2017.

Yu-Der Chih et al. 16.4 an 89tops/w and 16.3tops/mm?2 all-digital sram-based

full-precision compute-in memory macro. In ISSCC 2021.

[15] Hongyang Jia et al. 15.1 a programmable neural-network inference accelerator
based on scalable in-memory computing. In ISSCC, 2021.

[16] Jiyue Yang et al. 65nm 8-bit all-digital stochastic-compute-in-memory deep
learning processor. In A-SSCC, 2022.

[12

[14

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Workload Analysis
	2.2 Limitations of Prior Works

	3 System Design and Architecture
	3.1 Architecture Overview
	3.2 Latch-based IMC (LIMC) Core
	3.3 Mapping of Workloads to LIMC
	3.4 Mapping of Aggregation to SIMD

	4 Experimental Results
	4.1 Workload Mapping: LIMC vs. SIMD
	4.2 Improvement of LIMC from Input Skipping and Booth Multiplier
	4.3 Comparison with LIMC-only Accelerators
	4.4 Energy Inefficiency of LIMC with Sparsity
	4.5 Comparison with Prior Works

	5 Conclusion
	References

