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A B S T R A C T

We report a data-parsimonious machine learning model for short-term forecasting of solar irradiance. The
model follows the convolutional neural network – long-short term memory architecture. Its inputs include sky
camera images that are reduced to scalar features to meet data transmission constraints. The model focuses
on predicting the deviation of irradiance from the persistence of cloudiness (POC) model. Inspired by control
theory, a noise signal input is used to capture the presence of unknown and/or unmeasured input variables and
is shown to improve model predictions, often considerably. Five years of data from the NREL Solar Radiation
Research Laboratory were used to create three rolling train-validate sets and determine the best representations
for time, the optimal span of input measurements, and the most impactful model input data (features). For
the chosen validation data, the model achieves a mean absolute error of 74.29 W/m2over a time horizon of
up to two hours, compared to a baseline 134.35 W∕m2 using the POC model.
1. Introduction

The United States has set an aggressive target to achieve a power
grid with net-zero greenhouse gas emissions by 2035 [1–3]. This will
require a major shift in the power generation mix from fossil fuels,
to include significantly more renewable sources, such as wind and
solar [3–5]. Since wind and solar power generation are intermittent
and largely non-dispatchable, it will become increasingly important to
anticipate fluctuations in renewable power generation to ensure the
stability of the grid. Accurate near-term forecasts of solar photovoltaic
(PV) power generation will be especially important.

The economic impact of PV forecasts is considerable [6]. Accu-
rate near-term forecasts enhance grid stability by anticipating ramp-
ing events [7–10]. In addition, forecasts may be used to define tar-
ets for demand response, and stabilize grid dynamics [11,12], advise
real-time market price predictions [13], and inform ancillary service
dispatch [14,15].

Short-term forecasts of PV generation often rely on large volumes of
diverse, high-dimensional data including local meteorological measure-
ments, numerical weather prediction [16], and satellite images [17].
Sky cameras are becoming an increasingly widespread method for gath-
ering local information at generation sites [18–20]. Existing irradiance

∗ Corresponding author at: McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 East Dean Keeton St., Stop C0400, Austin,
78712, TX, United States.

E-mail addresses: mbaldea@che.utexas.edu (M. Baldea), korgel@che.utexas.edu (B.A. Korgel).

forecasting work integrates these heterogeneous data sources to im-
prove forecast accuracy amid the largely stochastic weather processes
that govern irradiance.

Local measurements are usually transmitted and processed at a
centralized facility or data center to produce forecasts because of the
computational power required. For example, in the Electric Reliability
Council of Texas (ERCOT), local meteorological data are collected at
all grid-connected PV generation sites and transmitted to inform oper-
ations and produce generation forecasts in a centralized fashion [16].
However, solar PV facilities are typically placed in remote locations,
and transmitting the required data (particularly, sky camera images)
from the generation sites to centralized computing facilities can be
difficult due to data infrastructure costs and data transmission capacity
limitations.

It is precisely this problem of forecasting under data transmis-
sion constraints that we address in this work. We introduce a data-
parsimonious machine learning model to forecast solar irradiance up
to two hours ahead. The model uses a set of meteorological station
data and scalar data extracted from sky camera images as inputs
to minimize the data transmission required. To our knowledge, this
vailable online 23 July 2024
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data mining, AI training, and similar technologies.
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Nomenclature

ASI All Sky Imager
BMS Baseline Measurement System
CNN Convolutional Neural Network
CS Dev. Clear Sky Deviation
ERCOT Electric Reliability Council of Texas
FSS Forecast Skill Score
LSTM Long Short-Term Memory
MAE Mean Absolute Error
nMAP Normalized Mean Absolute Percentage Er-

ror
NREL National Renewable Energy Laboratory
NWP Numerical Weather Prediction
POC Persistence of Cloudiness
PV Photovoltaic
RMSE Root Mean Square Error
SRRL Solar Radiation Research Laboratory

Time Representations

∠ Sine and Cosine Transformation
TM Time Milestones
ToD Time of Day
ToY Time of Year

Irradiance Representations

𝛥𝐶𝑆𝐼 Change in Clear Sky Index
𝛥𝐺𝐻𝐼 Change in Irradiance
𝑦𝑖 A predicted value
𝑦𝑖 A true value
CS Dev. Clear Sky Deviation
CSI𝑡 Clear Sky Index at time 𝑡
DHI Diffuse Horizontal Irradiance
DNI Direct Normal Irradiance
GHI Global Horizontal Irradiance
GHI0 Irradiance at time of forecast
GHI𝑡 Irradiance at time 𝑡
GHI𝐶𝑆,𝑡 Ideal Clear Sky Irradiance at time 𝑡

is the first work that considers the limitations of data transmission
during model development. In this work, feature importance studies
are used to identify the most impactful features from the available set.
Inspired by control theory, a noise signal (along with the corresponding
noise model) is introduced to capture unmeasured and/or unknown
variables and disturbances that impact irradiance. The model output
(predicted variable) is the residual (difference) between the persistence
of cloudiness (POC) prediction and true irradiance over the forecast
horizon. While the final model is less accurate than recently published
sky camera-based forecasting models, it requires orders of magnitude
less data transmission and significantly outperforms reference forecasts.

The specific contributions of this work are:

• A parsimonious machine learning model for near-term forecasting
of solar irradiance using scalar features. This model is designed
to minimize data transmission requirements from remote solar
PV generation sites and requires significantly less data bandwidth
than existing models.

• An empirical comparison of model performance using different
2

irradiance representations. Predicting deviation from the POC
model eliminates the need to capture known long-term dynam-
ics, and is shown to improve forecast accuracy (compared to
including persistence information as a model input).

• A noise model is used for the first time in this application area
to the best of our knowledge, to account for unmeasured and/or
unknown variables/disturbances, and is shown to further improve
forecasting accuracy.

• New empirical insights on feature importance and the effect of
input sequence length on model performance are drawn from a
large-scale data set.

2. Background

The term ‘‘solar forecasting’’ describes the prediction of PV power
generation, as well as the prediction of irradiance, given that PV
generation is a function of global horizontal irradiance (GHI, W∕m2)
and panel temperature [21]. While cloud cover and position have
the largest impact on irradiance [22–24] — sometimes accounting for
a change in irradiance of over 80% in a minute — other variables
such as dispersed particles and wind [25] are linked to irradiance as
well. As shown in Eq. (1), GHI is composed of both direct and diffuse
sunlight, where DNI is the direct normal irradiance, 𝛼 is the solar zenith
angle, and DHI is the diffuse horizontal irradiance. Clear sky models
calculate GHI in the absence of weather effects using time and global
position [21,26–28]. The ratio of measured irradiance (𝐺𝐻𝐼𝑡) to ideal
clear sky irradiance (𝐺𝐻𝐼𝐶𝑆,𝑡) at a given time instant 𝑡 is often referred
to as clear sky index (CSI) and is shown in Eq. (2).

𝐺𝐻𝐼 = cos(𝛼)𝐷𝑁𝐼 +𝐷𝐻𝐼 (1)

𝐶𝑆𝐼𝑡 =
𝐺𝐻𝐼𝑡

𝐺𝐻𝐼𝐶𝑆,𝑡
(2)

Persistence models are often used to evaluate the effectiveness
of forecasting algorithms. The persistence of cloudiness (POC) model
assumes that the clear sky index at the time of forecast will remain
constant throughout the forecast horizon. Eq. (3) shows an example
POC forecast at 10-min intervals up to a maximum forecast horizon of
120 min.

𝐺𝐻𝐼𝑡 = 𝐶𝑆𝐼0 ⋅ 𝐺𝐻𝐼𝐶𝑆,𝑡, 𝑡 ∈ {10, 20,… , 110, 120} (3)

The POC forecast does not take into account fluctuations in weather
conditions, but does provide a baseline for near-term solar irradi-
ance forecasting. More sophisticated forecast models should therefore
achieve higher accuracy compared to the POC model by anticipating
changes in weather conditions.

It is common for these latter models to predict the difference be-
tween the time-varying irradiance and the baseline. This has the effect
of de-trending the data [29,30]. For example, [31,32] use autoregres-
sive models to predict irradiance relative to a clear sky model (rather
than using the POC as a baseline). We note that other de-trending
methods, such as wavelet decomposition [33] and spectral decompo-
sition [34] have been recently proposed for irradiance forecasting.

The aforementioned works are restricted to using scalar data as
model inputs, and the number of inputs is typically small in practical
settings.

Nevertheless, there is a wealth of data relevant to irradiance fore-
casting. These include local meteorological measurements (cloud
height, wind speed and direction, temperature, humidity, and air
pressure), sky camera images, Numerical Weather Prediction (NWP)
results, and satellite imaging. Some of these data are in non-scalar
formats (e.g., camera images) and thus do not lend themselves naturally
to use in time-series models.

This fact has motivated the use of machine learning (ML) ap-
proaches for irradiance forecasting. Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks are common
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Fig. 1. Data collection, curation and model training workflow.
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deep learning architectures used to extract patterns from data and
predict sequences, respectively [35].

ML models broadly fall into two categories:

• End-to-end models utilize available data as inputs with little or
no pre-processing or interpretation. For example, Peng et al. [36]
reported the use of multiple sky cameras to track cloud positions
in the sky, and a stereoscopic arrangement was reported by Nouri
et al. [37] for estimating cloud height. Song et al. [38] determined
current irradiance directly from sky camera images, while Lin
et al. [39] used deep learning models to forecast irradiance from
similar data.
Some end-to-end models are used for multiple predictions, e.g.,
both cloud patterns [40–42] and irradiance [19,43,44]. Liu et al.
[45] use a deep learning model to determine cloud movement
vectors from image sequences as well as forecast irradiance.
These models typically use heterogeneous data formats as inputs.
It is worth noting the work of Ogliari et al. [46], who performed
feature fusion by leveraging unused image pixels to embed other
sensor data before feeding sky-camera images to a deep CNN
model.

• Physically-motivated models take a physics-based lens to the
data, generating additional insights prior to building the irra-
diance forecasting model itself. Ideally, physics-based models
should reduce the parameter search space during model training
and show better generalization performance. Physics-based ap-
proaches include detection of cloud position, cloud motion, and
identifying position of the Sun, which can be approached via
color analysis [47,48], pixel clustering [49,50], and convolution
methods [51]. Recent work by Paletta et al. [17] demonstrated
3

that polar transformations centered on the sun can extract cloud
movement toward the sun. Fabel et al. [52] use features extracted
from a sky camera such as cloud coverage, height, and type as
well as parametric relationships such as solar position to predict
future irradiance.

We emphasize here that these are broad categories and modeling
an take inspiration from both. For example, Le Guen and Thome
20] use physics-based fluid-flow equations to predict future irradiance
sing sky camera images as inputs in an end-to-end structure.
We also note that the works referenced here use sophisticated,

omputationally-intensive and data-intensive architectures to perform
he irradiance forecasting task. Local data collected from — typi-
ally remote — solar PV generation sites are transmitted over some
ommunication channel to a centralized location for processing and
orecasting. This implicitly assumes that there are no data transmission
onstraints. In practice, however, the communication channel may have
everely limited bandwidth, and may not be able to accomplish the
imely transmission of all the data—particularly sky camera images
hich are typically stored in large files. This emphasizes the need
or developing data-parsimonious models, capable of performing the
orecasting task based on a limited number of inputs that are readily
btainable over existing bandwidth-restricted communication channels.

. Methods

Motivated by bandwidth-constrained applications, we present a
NN-LSTM model which uses scalar features extracted from sky camera
mages to forecast irradiance. In Section 3.1 we describe the data used
nd pre-processing steps. Section 3.2 defines the model architecture
ncluding the noise model, and Section 3.3 contains the training and
valuation procedures used.
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Fig. 2. Irradiance measurements and a subset of sky-camera images from May 18, 2022 at the NREL SRRL BMS. Figure created by the authors based on data collected from Stoffel
and Andreas [53]. Letters denote the moments that the images were collected.
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3.1. Data

We begin with measurements spanning across five years (2017–
2022) from the National Renewable Energy Laboratory (NREL) Solar
Radiation Research Laboratory (SRRL) Baseline Measurement System
(BMS) [53] in Golden, Colorado, USA. Fig. 1 illustrates the flow of
he data from primary data sources to the final model training and
alidation process. The NREL SRRL BMS provides 131 parameters
easured each minute from an onsite meteorological station including
emperature, barometric pressure, wind speed, and irradiance. The BMS
lso includes images taken by an Eko All Sky Imager (ASI-16) at 10-min
ntervals. The scalar features extracted from those images include light
nd heavy cloud coverage percentages and whether the sun is covered
y clouds [47,54]. Fig. 2 shows an example of measured irradiance
alues compared to clear sky irradiance values, as well as a selection
f sky images at the time of measurement.
BMS data are augmented with ideal clear sky irradiance data [27,

8,55] using the Ineichen Clear Sky Model [26] provided by the pvlib
ackage [55]. During the data cleaning process, data were clipped
o physically valid values (such as imposing that irradiance values
e non-negative), and outliers were removed if they had a z-score of
ver five. The feature engineering step included calculating values we
ypothesized would be useful for the model to predict future irradiance.
hese calculated features include clear sky index and other irradiance
nd time representations, as well as lagged statistics for recent irra-
iance measurements. The dataset was also resampled to match the
0-min image frequency. Finally, the data were scaled to lie between
and 1 using the minimum and maximum values of each feature in
he cleaned training set and formatted into input–output pairs. The
nputs are two-dimensional matrices with rows representing discrete
ime instants 10 min apart and each column representing a feature. The
utputs are the predicted irradiance values over the two-hour forecast
orizon (recall that these are residuals (i.e., differences) between POC
odel predictions and the measured irradiance).
A full list of the scalar features extracted from sky camera images

s well as a comprehensive list of all features examined in this work
s provided in Appendix A. We note that the scalar features of the sky
4

a

amera images are provided by the camera itself and do not require
ny additional local processing or computing power. While we focus
n predicting irradiance at ten minute intervals up to two hours from
he time of forecast, we believe that the model can be easily adapted
o other forecast frequencies and prediction horizons.

.2. Model architecture and noise model

The model architecture is a CNN-LSTM structure as shown in Fig. 3.
dropout layer ensures that the model learns sparse and generaliz-
ble feature representations and helps prevent overfitting. Next, CNNs
fficiently extract intermediate features from input data using convolu-
ional filters learned during model training. The LSTM layer identifies
equential patterns within the training data and is used to identify
emporal patterns within the data. The final dense layers perform a bot-
leneck operation and transform the intermediate representations to the
inal irradiance sequence prediction over the time horizon considered.
e use two dense layers to ensure that the model has sufficient capacity
o encode the predicted irradiance.
Similar architectures have been successfully used for irradiance pre-

iction by e.g., Gao and Liu [56] and Paletta et al. [41]. Nevertheless,
ur proposed architecture include a novel feature, that, to our knowl-
dge, has not been employed in the field of solar irradiance forecasting.
nspired by forecasting mechanisms used in the literature on model
redictive control [57], a noise signal is included as an additional input.
oise models account for the unmeasured input variables/disturbances
hat affect a dynamical system, which are assumed to be random vari-
bles. Their statistical properties, as well as the gain (i.e. the magnitude
f the impact in the model) assigned to each noise input, are specified
ased on knowledge of the system or are identified from the data. The
doption of a noise model in this work is supported by the fact that
t is natural to expect that the available features do not fully explain
r predict the variable of interest (i.e., irradiance). Equivalently, we
ypothesize that changes in irradiance are subject to random, unmeasured
nputs. In practice, it is typical to use a Gaussian noise signal with zero
ean unit variance. In our model, the noise model is implemented by

ugmenting the measured data with an additional column of normally
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Fig. 3. CNN-LSTM model structure with an optional noise model within the dashed
box. The noise model features a random Gaussian variable and a trained response to
account for random, unknown disturbances. Dimensions are shown in parentheses.

distributed random numbers and allowing the CNN-LSTM to learn the
gain — the effect that random disturbances have on the output —
rather than specifying it.

3.3. Training procedure

The model was trained using an expanding train-validate data set
with three successive steps to refine the initial model. The five years of
data are split up so that one full year is always used as the validation
dataset in order to ensure that all phenomena within a year are equally
represented. The training datasets expand at each step, rather than a
random split so that the validation datasets always contain data that
reflect days that are temporally located after the training data and
realistically represent generalization error. All training data sets begin
on September 27, 2017, and validation datasets begin the day after
train datasets end.

Since repeated tests on the same data increase the likelihood of false
positive results [58], we sequentially investigate key model parameters
5

t

within each dataset and implement the results during the next step.1
The first step evaluated different representations of time and irradiance.
The second step studied the effect of changing the time span of input
measurements on validation error. The third step used the results
from the previous two steps and implemented permutation feature
importance [59] to identify the most impactful features for predictive
performance. The training and validation data splits for each step are
shown in Table 1. Each of these steps are described in more detail in
the following subsections.

All training took place on a single NVIDIA RTX 3090 Ti GPU with
24 GB of memory and batch size of 4000. The model was trained using
the Adam optimizer [60] with an initial learning rate of 0.01 with
cosine decay [61] over 500 epochs repeated 4 times. Early stopping
was permitted if the validation loss did not decrease for 1000 epochs.

3.3.1. Step 1 — Time and irradiance representations
Time representations include a floating point number between 0

and 1 representing the proportion of time that has passed since the
start of a day or year. These are shown as the Time of Day (ToD) and
Time of Year (ToY) representations in Eqs. (4) and (5). Time of day
may also be represented relative to key moments in the day such as
sunrise, solar noon, and sunset as shown in Eq. (6). We refer to a vector
containing these three values as Time Milestones (TM). Finally, we
include a trigonometric transform of ToD, ToY, and TM as is common
for cyclic variables [62]. We denote these representations as ∠ToY,
∠TM, and ∠ToD and their respective equations are shown in Eqs. (7),
(8), and (9).

ToD = (Hours + Minutes∕60 + Seconds∕3600)∕24 (4)

ToY = (Day of Year + ToD)∕365 (5)

TM =

⎧

⎪

⎨

⎪

⎩

ToD(Time − Sunrise Time),
ToD(Time − Solar Noon Time),
ToD(Time − Sunset Time)

⎫

⎪

⎬

⎪

⎭

(6)

ToD = {sin(ToD), cos(ToD)} (7)

ToY = {sin(ToY), cos(ToY)} (8)

TM = {sin(TM), cos(TM)} (9)

Multiple representations of future irradiance were tested as target
ariables to determine which produced the most accurate forecast.
hese representations include 𝐺𝐻𝐼𝑡, 𝐶𝑆𝐼 , CS Dev. (the difference
etween 𝐺𝐻𝐼𝑡 and 𝐺𝐻𝐼𝐶𝑆 as shown in Eq. (10)), as well as two forms
hat are relative to the conditions at the time of forecast: change in irra-
iance (𝛥 𝐺𝐻𝐼), and change in clear sky index (𝛥 𝐶𝑆𝐼). These relative
epresentations are shown in Eqs. (11) and (12) respectively. Differenc-
ing and autoregressive approaches similar to these relative representa-
tions of irradiance have been shown to improve the predictive ability
of statistical models [29,30].

CS Dev. = 𝐺𝐻𝐼𝐶𝑆,𝑡 − 𝐺𝐻𝐼𝑡 (10)

𝛥 𝐺𝐻𝐼 = 𝐺𝐻𝐼𝑡 − 𝐺𝐻𝐼0 (11)

𝛥 𝐶𝑆𝐼 = 𝐶𝑆𝐼𝑡 − 𝐶𝑆𝐼0 (12)

3.3.2. Step 2 — Input sequence length
LSTM models use sequential inputs and determine temporal patterns

in those inputs to predict future values. During Step 2, we investigate
how the number of input measurements affects model performance.

1 If 20 tests were performed on the same dataset, with a 𝑝-value of 0.05, we
ould expect one false positive to occur. This is a problem known as multiple
esting.
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Table 1
Model training and tuning used three successive steps to refine the initial model with an input block of 131 features and 13 temporal measurements. Count refers to the number
of complete input and output data blocks within each date range.
Step Last training date Count Last validation date Count Description Approximate split

1 Sep. 26, 2019 21,343 Sep. 26, 2020 12,509 Time and Irradiance 63:37
2 Sep. 26, 2020 33,852 Sep. 26, 2021 13,256 Input time horizon 72:28
3 Sep. 26, 2021 47,108 Sep. 26, 2022 9199 Feature importance 84:16
Fig. 4. Validation Mean Absolute Error (W/m2) across all predicted points (𝑡 + 10 to 𝑡 + 120) for each model trained during Step 1 using year 3 as the validation set. In this
graphic, each row represents a different combination for time representation and each column represents a method for irradiance representation.
𝑅

4

4

a
t
a
i
O
a
i
o

a

3.3.3. Step 3 — Feature importance and noise model evaluation
To determine the most important features for the model, we used

permutation feature importance [59] which measures the change in
odel performance when a feature is randomly permuted or corrupted.
he importance of the feature is then evaluated by the increase in
rror. There are many methods for interpreting the subsequent results
nd determining which parameters are to be included or not. Often,
his is done with a fixed value threshold for minimum importance.
n contrast, this work seeks to minimize the number of features as
ell as prediction error. Consequently, we hypothesize that most of
he features that only have marginal importance could be dropped and
eplaced with the noise model. We test this by dropping all but the
ost important parameters, then refitting the model and comparing
odel performance. To determine the effect of the noise model, we
ompare model performance across all three training-validation dataset
plits with and without the noise model.

.3.4. Evaluation metrics
During the training process, we use Mean Absolute Error (MAE)

s the objective function to be minimized, shown in Eq. (13). Here,
𝑦𝑖 represents the true value and 𝑦𝑖 represents the predicted value. For
an equitable comparison, we convert all predicted and true irradiance
values back to 𝐺𝐻𝐼 before comparing statistics. To compare to other
models in the literature we also calculate Root-Mean Square Error
(RMSE), normalized Mean Absolute Percentage error (nMAP), as well
as Forecast Skill Score (FSS) which measures performance relative to
the POC model. These are defined as follows in Eqs. (14), (15) and (16)
respectively. We choose to train on MAE rather than RMSE to minimize
6

m

the effect of outliers in the training data. Final model performance
across all of these statistics is reported in Table A.9.

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦𝑖|| (13)

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1

√

(

𝑦𝑖 − 𝑦𝑖
)2 (14)

𝑛𝑀𝐴𝑃 = 1
𝑁

𝑁
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦𝑖||
1
𝑁

∑𝑁
𝑖=1 𝑦𝑖

× 100 (15)

𝐹𝑆𝑆 = 1 − 𝑀𝐴𝐸
𝑀𝐴𝐸𝑃𝑂𝐶

(16)

. Results

.1. Step 1 — Time and irradiance representations

Fig. 4 shows the MAE of all predictions in validation set 1 over
2-hour horizon. Each row represents a different representation of
ime and each column a different irradiance representation. The ToD
nd ToY representation of time and the 𝛥𝐶𝑆𝐼 representation of future
rradiance achieve the lowest MAE across all predicted values in Step 1.
ther time representations performed similarly, however, ToD and ToY
llow the model to capture daily and yearly cyclical patterns without
ncreasing the number of variables and increasing the likelihood of
verfitting.
In conjunction with ToD and ToY as time representations, 𝛥𝐶𝑆𝐼

chieves the lowest error among the models tested in Step 1. All
odels trained with target variables that incorporate information from
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Fig. 5. Probability density functions of the future irradiance representations. Note that the relative irradiance representations (𝛥𝐶𝑆𝐼 and 𝛥𝐺𝐻𝐼) are much more tightly distributed
round the center, likely facilitating easier recognition of patterns which deviate from the present conditions.
he clear sky model outperform those that use GHI. Incorporating
he known patterns of the Sun using the clear sky model allows the
odel to explicitly isolate the unknown short-term dynamics, such as
ncreasing cloud cover, and better predict irradiance without the effect
f confounding variables. Both relative measures of irradiance appear
o be more tightly distributed around the center, as shown in Fig. 5.
his likely facilitates easier recognition of patterns which deviate from
he present conditions. If conditions typically persist, events with a
igh deviation from the present conditions are further from the typical
alues and may be better distinguished during the training process.
Fig. 6 shows the FSS of the best model for each future irradiance

epresentation and demonstrates that models trained with relative rep-
esentations of future irradiance are better able to anticipate changes
n irradiance than models trained with other forms of irradiance. Of
he two relative irradiance forms, Fig. 7 suggests that 𝛥𝐶𝑆𝐼 is likely
better target variable since the clear sky index is more strongly
utocorrelated (as defined in Eq. (17)) at later lags than GHI or CS Dev.

𝑠 =
𝑐𝑜𝑣(R(𝑋),R(𝑌 ))

𝜎R(𝑋)𝜎R(𝑌 )
(17)

.2. Step 2 — Input sequence length

Thirteen models were trained with input sequence lengths increas-
ng from a single measurement to two hours of measurements captured
n a 13-element sequence. The MAE as a function of time from the
orecast is shown in Fig. 8 for all 13 models, with a darker hue
ndicating a longer input data sequence. The overall MAE across the
wo-hour prediction horizon is shown in Table 2 for both the training
nd validation datasets. The model with an input sequence length of
hree measurements achieves the lowest training error, while the model
ith a single input measurement achieves the lowest validation error.
Surprisingly, models trained with fewer input data measurements

ave lower error than models that include more lagged information.
owever, Feng et al. [19] report a similar finding when forecasting
rradiance at the same NREL SRRL BMS site and sky camera with an
ptimal input sequence length of two, which was the shortest sequence
ested. The increase in error when moving from training to the valida-
ion set for the model trained with three input measurements suggests
hat the model is overfitting to the training data. The model training
rocess can be approached as a combinatorial optimization problem.
7

Table 2
The overall MAE across the two-hour prediction horizon for each model trained during
Step 2. The model trained with a single input measurement achieves the lowest
validation error which is a better measure of true performance than training error.
Input sequence length Train MAE (W/m2) Validation MAE (W/m2)

1 81.29 76.53
2 79.25 79.06
3 75.96 81.78
4 81.77 80.86
5 85.57 82.02
6 83.03 82.84
7 82.81 84.64
8 86.68 84.49
9 90.23 85.00
10 88.95 84.98
11 90.70 86.45
12 85.85 87.38
13 97.26 86.97

In a predicament known as the ‘‘curse of dimensionality’’ [63], data-
driven models require more and more data when increased input data
and model parameters are included due to the search-space of solution
combinations increasing. By providing less input data, the stochastic
training process is less likely to result in overfitting or become stuck in
local minima or saddle points.

Intuitively, these results indicate that future irradiance is more
strongly associated with current weather than past measurements.
Fig. 7 supports this conclusion, with autocorrelation consistently de-
creasing as the number of lags increase.

Because of the validation error and the minimal dimensionality,
Step 3 focused on modeling with input sequence of one measurement
— an input temporal horizon of 0 min.

4.3. Step 3 — Feature importance and noise model

Fig. 9 shows the results from Step 3, a feature importance test [59],
which was used to determine which of the 168 features were most
meaningful for the accuracy of GHI predictions. The test systematically
corrupts one feature of the input data at a time, and observes the
impact on model performance. Large increases in error indicate that a

particular feature is valuable to the forecast accuracy while negligible
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Fig. 6. FSS for a model trained on each future irradiance representation.
Fig. 7. Autocorrelation for three representations of future irradiance beginning 2 h or 12 lags before a prediction and extending over a two hour prediction horizon.
changes in error indicate that the model may not in fact rely on that
feature.

The ten most important features identified in Step 3 are shown in
Table 3 with the associated increase in MAE when they are corrupted.
Rather than establish an arbitrary threshold for feature importance,
we seek to minimize the number of features while maintaining a low
prediction error. Since all but the top 10 features have an importance of
less than 3, we retrained the model using only these 10 most important
features, hypothesizing that the marginal importance of each remaining
feature would be low and would be captured by the noise model.

Table 4 shows the validation error across all three train-validation
data set splits both with and without the noise model. The architecture
including the noise signal performs consistently better than the case
without the noise model. Table 5 shows the results from a paired t-
est comparing the model prediction error with and without the noise
odel to the null hypothesis that the noise model does not decrease
8

rror. Results are generally inconclusive for models with all features,
Table 3
Ten most important features of 131 total features as shown by the increase in predicted
irradiance MAE as each feature is corrupted. Total cloud cover and GHI clear sky index
contribute to prediction accuracy significantly more than other features.
Feature Feature importance (MAE)

CDOC total cloud cover 37.76
CSI GHI 14.22
DNI𝑡−4 8.08
940 nm Aerosols 6.00
Mean CSI DNI Deviation 5.62
675 nm Aerosols 5.20
CSI DNI 4.88
Solar Elevation 4.73
CSI DNI Deviation 4.08
DNI𝑡−9 3.06

however the noise model consistently reduces the error of the model
when provided with a reduced set of features. More importantly, using
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Fig. 9. Feature Importance distribution for the features studied.

able 4
alidation error across all 3 steps of model refinement. Bold numbers indicate the
est (or nearly-best) errors for each step. Results with and without the noise model as
ell as with all features and the top 10 features are shown. Results indicate that the
oise model eliminates the drop in performance when the model is trained with fewer
eatures.
Noise model Features Validation error (W/m2)

Step 1 Step 2 Step 3

Not included All 89.35 76.85 75.20
Top 10 94.61 83.93 77.36

Included All 91.07 76.01 74.95
Top 10 88.96 76.01 74.29

the noise signal input eliminates the drop in performance when the
model is trained with fewer features—with a final MAE of 74.29 W/m2.
his supports our initial hypothesis that the noise model accounts for
oth the dropped features and other unmeasured and/or unknown
isturbances and variables.
Most of the identified features (with exception to the photometers

hich measure dispersed aerosols) can be obtained with historical mea-
urements, the clear sky model, and a low-cost sky-camera. Notably,
wo photometer measurements of aerosols are within the top 10 results.
xpensive equipment such as a photometer is not likely to be widely
9

sed in practice. When the model is retrained with the 8 remaining d
able 5
-values associated with a paired t-test comparing the validation error of model
redictions with and without the noise model. The noise model consistently reduces
rror across all three steps of model refinement for models with reduced feature
ounts.
Features P-value (Noise model reduces error)

Step 1 Step 2 Step 3

All 9.41e−1 3.34e−1 8.24e−1
Top 10 1.08e−7 1.44e−15 1.22e−1

inputs, it achieves a MAE of 77.36W∕m2, a sacrifice of only 3.07W∕m2

compared to the 10-feature model. This observation could influence
equipment selection at sites interested in irradiance forecasting.

5. Discussion

The final model achieves a MAE of 74.29 W/m2, while the POC
odel has an overall MAE of 134.35 W/m2. The distribution of pre-
ictions and true values of the final model is shown in Fig. 10 with the
ersistence model shown below for comparison. These graphs display
he normalized density of predicted and true irradiances such that the
ntegrated density in each plot is equal to one. The dashed black line
hows a perfect forecast; higher concentrations of the plotted prediction
alues near this line represent better models. The proposed model
educes the gap between true and predicted irradiance compared to
he persistence model. However, the distributions become similar as
he prediction horizon increases.
Individual predictions are shown for four sample days in Fig. 11.

otably, POC and the proposed model perform similarly in environ-
ents with low irradiance (top left) or relatively constant environments
top right). On days with large ramping events in irradiance (bottom)
he proposed model better anticipates changes in weather regime (for
xample, from sunny to partially cloudy or overcast), though sometimes
hese predictions are too aggressive.
Fig. 12 shows missing data from the ASI-16 sky camera from outages

r known firmware issues. Sky camera images are missing after about
7:00 MST in much of the dataset due to a firmware bug. The missing
ata may contribute to poor model performance, and may cause sig-
ificant biases in model performance. Our approach was to only use
egments of data without missing data-points. Other works using the
REL SRRL BMS such as Gao and Liu [56], Feng et al. [19] and Al-
ahham et al. [64] also selected only complete sequences. Future work
ould focus on devising more robust models that account for missing

ata from the sky camera.
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Fig. 10. Mean Absolute Error (W/m2) distribution the model and POC. As expected, the error increases as time from the forecast (the time horizon) also increases. Density near
he correct prediction is notably higher compared to the persistence of cloudiness model. MAE across all predicted intervals is 74.29 W/m2.
Fig. 11. True irradiance and the predicted irradiance using the final model and POC for four sample days in the final validation set.
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Fig. 13 shows model prediction MAE boxplots for three distinct
ky cover conditions at the time of forecast. The values were com-
uted using the validation data. ‘‘Clear’’ indicates CDOC Total Cloud
over lower than 20%, ‘‘Partially Cloudy’’ indicates CDOC Total Cloud
over between 20% and 80% and ‘‘Overcast’’ indicates CDOC Total
loud Cover over 80%. Intuitively, clear conditions are more easily
redictable as they follow the persistence of cloudiness assumption.
he MAE values for over half of the clear sky condition forecasts
ere small. However, the model may not anticipate changes in sky
onditions and the accompanying changes in clear sky index. This is
hown by the large volume of high error outliers in the clear sky
ategory. Not unexpectedly, prediction accuracy drops for partially
overed and overcast skies. We explain this by considering the naturally
igher likelihood of a change in conditions over the forecast horizon
10

rom the time of prediction. R
5.1. Comparison to literature

Table 6 presents three selected works that use data collected at the
ame NREL SRRL BMS site to predict irradiance. We emphasize again
hat the models proposed in the literature require sequences of images
s inputs (and thus have high data transmission requirements) while the
odel proposed in this work only uses the features extracted from the
mages, and is thus data-parsimonious (in some cases by several orders
f magnitude). Feng et al. [19] use a Sequential CNN model to produce
rradiance forecasts from sky camera image sequences. Al-Lahham et al.
64] use clustering on individual image segments to produce irradiance
orecasts. Gao and Liu [56] use a transformer model to predict the
ifference between measured irradiance and the clear sky irradiance.
Table 7 reports RMSE of this work, POC, Feng et al. [19] and Al-

ahham et al. [64]. The model presented in this work has a higher

MSE than the models presented in the literature. However, Fig. 14
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Table 6
Selected works using the NREL SRRL BMS sky camera data to predict irradiance. Input sizes assume double types for most data formats and
unsigned integer formats for the images.
Reference Input Input size (bytes) Model info

Feng et al. [19] 2 Images 32,768 Sequential CNN
Al-Lahham et al. [64] 6 Images & Aux. Data 14,156,256 Clustering & Random forest
Gao and Liu [56] 8 Images 2,433,024 Visual Transformer, Clear Sky Residual
This Work 10 tabular features 80 CNN-LSTM
w
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Fig. 12. ASI-16 Images missing in the NREL SRRL BMS dataset. A and B were firmware
issues noted in the documentation online while C notes a known bug where the camera
does not take pictures near 17:00 MST (00:00 GMT).

Fig. 13. MAE of validation forecasts categorized by three distinct cloud cover condi-
ions: Clear indicates CDOC Total Cloud Cover < 20%, Partially Cloudy indicates 20%
< CDOC Total Cloud Cover < 80% and Overcast indicates CDOC Total Cloud Cover <
80%. In addition, the star marker for each cloud cover condition indicates the fraction
of predictions within each category.

shows a higher FSS for the model proposed in this work compared
to the model proposed by Feng et al. [19]. The FSS is a measure
of the model’s performance relative to the POC model. While the
dates of the validation data are not the same, the FSS indicates that
the data-parsimonious model proposed in this work may anticipate
11
changes in weather regime better than more sophisticated models.
Interestingly, the FSS of Feng et al. [19] increases over time suggesting
that there is some relevant information within the sky camera image
sequences used in their model that is not captured in the inputs of the
data-parsimonious model.

Integrating the clear sky model and the persistence assumption
explicitly into the forecast by changing the representation of future
irradiance improves forecasts more than simply providing the clear
sky irradiance. These representations simplify model training by iso-
lating the unknown weather effects and not relying on the model to
learn already-known long-term dynamics (i.e., de-trending). This work
achieves a lower nMAP on the validation period as shown in Table 8
hile using a dramatically simpler model.

. Conclusions

We developed a data-parsimonious machine learning model for
ear-term forecasting of solar irradiance. The model relies on a CNN-
STM architecture that includes a noise signal input to account for
andom and/or unmeasured variables and disturbances that influence
rradiance. The model was iteratively refined using three expanding
rain-validate data splits in order to determine the optimal irradiance
epresentation, time representation, input sequence length, and feature
et. The final model achieves a MAE of 74.29 W/m2 over a two-
hour prediction horizon. While these results have a higher MAE than
the models presented in the literature, this model requires orders of
magnitude lower data transmission, and has a better FSS indicating
that it anticipates changes in weather regime better than the models
presented in the literature.

Our findings indicate that predicting the deviation of irradiance
from a long-term baseline (e.g., the POC prediction) benefits from
a de-trending effect and is thus more accurate than predicting the
irradiance itself. Experiments suggested that the optimal forecast only
used the most recent measurement of input data rather than a more
extensive sequence of measurements. We also found that including a
noise model inspired by control theory leads to consistently higher
prediction accuracy–even after eliminating all but the most-impactful
features. By reducing the input dimensionality, the model is more
robust to overfitting on training data and more likely to discern patterns
in the data. We expect that these findings will allow for more accurate
irradiance forecasting–particularly for locations where data transmis-
sion capacity is limited. The findings on the importance of directly
integrating the clear sky model and the persistence assumption into the
forecast are directly applicable to existing models in the literature and
may prove a simple step to improve their performance. Similarly, the
noise model may be a useful addition to existing models to account for
unmeasured disturbances.

The results presented were limited to 2017–2023 at the NREL SRRL
BMS. Future work could expand the dataset to include more years
as well as more locations to determine the generalizability of these
observations. As models in the literature become open source, future
work may also compare the models directly with the same training
data rather than only comparing reported results. The irradiance rep-
resentations and noise model could also be studied across multiple
modeling approaches and model structures to understand their indi-

vidual contribution to irradiance forecasting. Future work could also
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Table 7
RMSE (W/m2) of this work, POC, and reported errors from recent literature.
Forecast horizon (Min.) POC This work Feng et al. [19] Al-Lahham et al. [64]

10 264.56 102.00 71.30 –
20 254.14 114.68 98.53 –
30 258.72 123.76 109.33 –
40 260.19 130.38 119.35 –
50 264.17 135.91 127.49 –
60 263.40 140.45 135.43 116.7
70 263.86 142.84 – –
80 269.37 145.95 – –
90 268.16 150.79 – –
100 266.79 153.54 – –
110 265.10 156.20 – –
120 265.33 158.13 – 127.6
Fig. 14. FSS for a data-parsimonious model and the model presented by Feng et al. [19].
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Table 8
nMAP (W/m2) of POC, this work, and the best results from Gao and Liu [56].
Forecast horizon (Min.) POC This work Gao and Liu [56]

10 21.5 10.2 –
20 22.8 12.1 –
30 24.6 13.6 –
40 26.2 14.6 –
50 27.8 15.6 –
60 29.1 16.4 17.4
70 30.1 16.9 –
80 31.6 17.4 –
90 32.6 18.1 –
100 33.4 18.7 –
110 34.1 19.1 –
120 34.9 19.5 20.9

extend to onsite preprocessing to reduce the need for data transmission
by transforming the images into trained embeddings with reduced di-
mensionality. Finally, the effect of missing data on model performance
could be studied further to determine if the model robustness can be
increased.
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Appendix A. Model performance summary

See Table A.9

Appendix B. All features studied

The features used in this study are organized by source, with units
shown in brackets when applicable2:

BMS meteorological station features:

• 315 nm Photometer [nA]
• 400 nm Photometer [μA]
• 500 nm Photometer [μA]
• 675 nm Photometer [μA]
• 870 nm Photometer [μA]
• 940 nm Photometer [μA]
• 1020 nm Photometer [μA]
• Snow Depth [cm]
• Precipitation [mm]
• Precipitation (Accumulated) [mm]
• Station Pressure [mBar]
• Tower Dry Bulb Temperature [deg C]
• Tower Relative Humidity [%]
• Snow Depth Quality [%]
• Station Dry Bulb Temp [deg C]
• Station Relative Humidity [%]
• Vertical Wind Shear [1/s]
• Average Wind Speed at 22 ft [m/s]
• Average Wind Direction at 22 ft [deg from N]
• Peak Wind Speed at 22 ft [m/s]
• Albedo (CM3)
• Albedo (LI-200)
• Albedo Quantum (LI-190)
• Broadband Turbidity
• Sea-Level Pressure (Est) [mBar]
• Tower Dew Point Temp [deg C]
• Tower Wet Bulb Temp [deg C]
• Tower Wind Chill Temp [deg C]
• Airmass
• GHI [W/m2]
• DNI [W/m2]
• DHI [W/m2]

Sky camera features:

• Blue-Red/Blue-Green Total Cloud Cover [%]
• Cloud Detection and Opacity Correction Total Cloud Cover [%]
• Cloud Detection and Opacity Correction Thick Cloud Cover [%]
• Cloud Detection and Opacity Correction Thin Cloud Cover [%]
• Haze Correction Value
• Blue/Red minimum
• Blue/Red median
• Blue/Red maximum
• Apparent Solar Zenith Angle [deg]

2 More information on the NREL SRRL BMS measurements is available at
ttps://midcdmz.nrel.gov/apps/html.pl?site=BMS;page=instruments.
13
• Apparent Solar Azimuth Angle [deg]
• Flag: Sun not visible
• Flag: Sun on clear sky
• Flag: Parts of sun covered
• Flag: Sun behind clouds, bright dot visible
• Flag: Sun outside view
• Flag: No evaluation

Clear sky model features:

• Clear Sky GHI [W/m2]
• Clear Sky DNI [W/m2]
• Clear Sky DHI [W/m2]
• Solar Eclipse Shading
• Zenith Angle [deg]
• Solar Elevation Angle [deg]
• Solar Azimuth Angle [deg]

ngineered features:

• Time from sunrise [Days]
• Time to solar noon [Days]
• Time to sunset [Days]
• Cosine time from sunrise [Days]
• Sine time from sunrise [Days]
• Cosine time to solar noon [Days]
• Sine time to solar noon [Days]
• Cosine time to sunset [Days]
• Sine time to sunset [Days]
• Flag: Day
• Flag: Before solar noon
• Cosine zenith angle
• Cosine normal irradiance
• Wind North-South Speed [m/s]
• Wind East-West Speed [m/s]
• Sun North-South Position
• Sun East-West Position
• Time of Day [Days]
• Time of Year [Years]
• Sine Time of Year [Years]
• Cosine Time of Year [Years]
• Sine Time of Day [Days]
• Cosine Time of Year [Days]
• Clear Sky Index GHI
• Clear Sky Index DNI
• Clear Sky Index DHI
• GHI𝑡−1 [W/m2]
• DNI𝑡−1 [W/m2]
• DHI𝑡−1 [W/m2]
• GHI𝑡−2 [W/m2]
• DNI𝑡−2 [W/m2]
• DHI𝑡−2 [W/m2]
• GHI𝑡−3 [W/m2]
• DNI𝑡−3 [W/m2]
• DHI𝑡−3 [W/m2]
• GHI𝑡−4 [W/m2]
• DNI𝑡−4 [W/m2]
• DHI𝑡−4 [W/m2]
• GHI𝑡−5 [W/m2]
• DNI𝑡−5 [W/m2]
• DHI𝑡−5 [W/m2]
• GHI𝑡−6 [W/m2]
• DNI𝑡−6 [W/m2]
• DHI [W/m2]
𝑡−6

https://midcdmz.nrel.gov/apps/html.pl?site=BMS;page=instruments


Renewable Energy 233 (2024) 121058J.E. Hammond et al.
Table A.9
Overall model performance summary.
Forecast horizon (Min.) MAE (W/m2) nMAP (%) RMSE (W/m2) FSS (MAE) (%) FSS (RMSE) (%)

10 45.23 10.16 102.00 54.57 57.01
20 54.69 12.12 114.68 48.07 49.83
30 62.13 13.61 123.76 45.41 47.09
40 67.43 14.63 130.38 44.26 44.99
50 72.45 15.61 135.91 43.72 44.05
60 76.59 16.41 140.45 43.05 42.86
70 79.28 16.92 142.84 42.99 42.46
80 81.84 17.44 145.95 44.00 43.00
90 84.82 18.08 150.79 43.68 41.76
100 87.45 18.68 153.54 43.40 41.54
110 89.13 19.11 156.20 43.45 41.30
120 90.42 19.51 158.13 43.96 41.48

Overall 74.29 16.03 138.89 45.05 44.78
• GHI𝑡−7 [W/m2]
• DNI𝑡−7 [W/m2]
• DHI𝑡−7 [W/m2]
• GHI𝑡−8 [W/m2]
• DNI𝑡−8 [W/m2]
• DHI𝑡−8 [W/m2]
• GHI𝑡−9 [W/m2]
• DNI𝑡−9 [W/m2]
• DHI𝑡−9 [W/m2]
• Clear Sky Deviation GHI𝑡 [W/m2]
• Clear Sky Deviation DNI𝑡 [W/m2]
• Clear Sky Deviation DHI𝑡 [W/m2]
• Mean Clear Sky Deviation GHI𝑡−10∶𝑡 [W/m2]
• Mean Clear Sky Deviation DNI𝑡−10∶𝑡 [W/m2]
• Mean Clear Sky Deviation DHI𝑡−10∶𝑡 [W/m2]
• Median Clear Sky Deviation GHI𝑡−10∶𝑡 [W/m2]
• Median Clear Sky Deviation DNI𝑡−10∶𝑡 [W/m2]
• Median Clear Sky Deviation DHI𝑡−10∶𝑡 [W/m2]
• Clear Sky Index Standard Deviation GHI𝑡−10∶𝑡 [W/m2]
• Clear Sky Index Standard Deviation DNI𝑡−10∶𝑡 [W/m2]
• Clear Sky Index Standard Deviation DHI𝑡−10∶𝑡 [W/m2]
• Mean Clear Sky Deviation GHI𝑡−60∶𝑡 [W/m2]
• Mean Clear Sky Deviation DNI𝑡−60∶𝑡 [W/m2]
• Mean Clear Sky Deviation DHI𝑡−60∶𝑡 [W/m2]
• Median Clear Sky Deviation GHI𝑡−60∶𝑡 [W/m2]
• Median Clear Sky Deviation DNI𝑡−60∶𝑡 [W/m2]
• Median Clear Sky Deviation DHI𝑡−60∶𝑡 [W/m2]
• Clear Sky Index Standard Deviation GHI𝑡−60∶𝑡 [W/m2]
• Clear Sky Index Standard Deviation DNI𝑡−60∶𝑡 [W/m2]
• Clear Sky Index Standard Deviation DHI𝑡−60∶𝑡 [W/m2]
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