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We report a data-parsimonious machine learning model for short-term forecasting of solar irradiance. The
model follows the convolutional neural network — long-short term memory architecture. Its inputs include sky
camera images that are reduced to scalar features to meet data transmission constraints. The model focuses
on predicting the deviation of irradiance from the persistence of cloudiness (POC) model. Inspired by control
theory, a noise signal input is used to capture the presence of unknown and/or unmeasured input variables and
is shown to improve model predictions, often considerably. Five years of data from the NREL Solar Radiation
Research Laboratory were used to create three rolling train-validate sets and determine the best representations
for time, the optimal span of input measurements, and the most impactful model input data (features). For

the chosen validation data, the model achieves a mean absolute error of 74.29 W/mZover a time horizon of
up to two hours, compared to a baseline 134.35 W/m? using the POC model.

1. Introduction

The United States has set an aggressive target to achieve a power
grid with net-zero greenhouse gas emissions by 2035 [1-3]. This will
require a major shift in the power generation mix from fossil fuels,
to include significantly more renewable sources, such as wind and
solar [3-5]. Since wind and solar power generation are intermittent
and largely non-dispatchable, it will become increasingly important to
anticipate fluctuations in renewable power generation to ensure the
stability of the grid. Accurate near-term forecasts of solar photovoltaic
(PV) power generation will be especially important.

The economic impact of PV forecasts is considerable [6]. Accu-
rate near-term forecasts enhance grid stability by anticipating ramp-
ing events [7-10]. In addition, forecasts may be used to define tar-
gets for demand response, and stabilize grid dynamics [11,12], advise
real-time market price predictions [13], and inform ancillary service
dispatch [14,15].

Short-term forecasts of PV generation often rely on large volumes of
diverse, high-dimensional data including local meteorological measure-
ments, numerical weather prediction [16], and satellite images [17].
Sky cameras are becoming an increasingly widespread method for gath-
ering local information at generation sites [18-20]. Existing irradiance

forecasting work integrates these heterogeneous data sources to im-
prove forecast accuracy amid the largely stochastic weather processes
that govern irradiance.

Local measurements are usually transmitted and processed at a
centralized facility or data center to produce forecasts because of the
computational power required. For example, in the Electric Reliability
Council of Texas (ERCOT), local meteorological data are collected at
all grid-connected PV generation sites and transmitted to inform oper-
ations and produce generation forecasts in a centralized fashion [16].
However, solar PV facilities are typically placed in remote locations,
and transmitting the required data (particularly, sky camera images)
from the generation sites to centralized computing facilities can be
difficult due to data infrastructure costs and data transmission capacity
limitations.

It is precisely this problem of forecasting under data transmis-
sion constraints that we address in this work. We introduce a data-
parsimonious machine learning model to forecast solar irradiance up
to two hours ahead. The model uses a set of meteorological station
data and scalar data extracted from sky camera images as inputs
to minimize the data transmission required. To our knowledge, this
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Nomenclature

ASI All Sky Imager

BMS Baseline Measurement System

CNN Convolutional Neural Network

CS Dev. Clear Sky Deviation

ERCOT Electric Reliability Council of Texas

FSS Forecast Skill Score

LSTM Long Short-Term Memory

MAE Mean Absolute Error

nMAP Normalized Mean Absolute Percentage Er-
ror

NREL National Renewable Energy Laboratory

NWP Numerical Weather Prediction

POC Persistence of Cloudiness

PV Photovoltaic

RMSE Root Mean Square Error

SRRL Solar Radiation Research Laboratory

Time Representations

Z Sine and Cosine Transformation
™ Time Milestones

ToD Time of Day

ToY Time of Year

Irradiance Representations

ACST Change in Clear Sky Index
AGHI Change in Irradiance

»; A predicted value

Vi A true value

CS Dev. Clear Sky Deviation

CSI, Clear Sky Index at time ¢
DHI Diffuse Horizontal Irradiance
DNI Direct Normal Irradiance
GHI Global Horizontal Irradiance
GHI,, Irradiance at time of forecast
GHI, Irradiance at time ¢

GHI¢g, Ideal Clear Sky Irradiance at time ¢

is the first work that considers the limitations of data transmission
during model development. In this work, feature importance studies
are used to identify the most impactful features from the available set.
Inspired by control theory, a noise signal (along with the corresponding
noise model) is introduced to capture unmeasured and/or unknown
variables and disturbances that impact irradiance. The model output
(predicted variable) is the residual (difference) between the persistence
of cloudiness (POC) prediction and true irradiance over the forecast
horizon. While the final model is less accurate than recently published
sky camera-based forecasting models, it requires orders of magnitude
less data transmission and significantly outperforms reference forecasts.

The specific contributions of this work are:

» A parsimonious machine learning model for near-term forecasting
of solar irradiance using scalar features. This model is designed
to minimize data transmission requirements from remote solar
PV generation sites and requires significantly less data bandwidth
than existing models.

» An empirical comparison of model performance using different
irradiance representations. Predicting deviation from the POC
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model eliminates the need to capture known long-term dynam-
ics, and is shown to improve forecast accuracy (compared to
including persistence information as a model input).

A noise model is used for the first time in this application area
to the best of our knowledge, to account for unmeasured and/or
unknown variables/disturbances, and is shown to further improve
forecasting accuracy.

New empirical insights on feature importance and the effect of
input sequence length on model performance are drawn from a
large-scale data set.

2. Background

The term “solar forecasting” describes the prediction of PV power
generation, as well as the prediction of irradiance, given that PV
generation is a function of global horizontal irradiance (GHI, W/m?)
and panel temperature [21]. While cloud cover and position have
the largest impact on irradiance [22-24] — sometimes accounting for
a change in irradiance of over 80% in a minute — other variables
such as dispersed particles and wind [25] are linked to irradiance as
well. As shown in Eq. (1), GHI is composed of both direct and diffuse
sunlight, where DNI is the direct normal irradiance, « is the solar zenith
angle, and DHI is the diffuse horizontal irradiance. Clear sky models
calculate GHI in the absence of weather effects using time and global
position [21,26-28]. The ratio of measured irradiance (GH I,) to ideal
clear sky irradiance (GHI¢,) at a given time instant ¢ is often referred
to as clear sky index (CSI) and is shown in Eq. (2).

GHI =cos(a)DNI + DHI (€]
GHI
cSI, = —" )
GHIcg,

Persistence models are often used to evaluate the effectiveness
of forecasting algorithms. The persistence of cloudiness (POC) model
assumes that the clear sky index at the time of forecast will remain
constant throughout the forecast horizon. Eq. (3) shows an example
POC forecast at 10-min intervals up to a maximum forecast horizon of
120 min.

GHI, =CSIly-GHIcg,,t € {10,20,...,110, 120} 3

The POC forecast does not take into account fluctuations in weather
conditions, but does provide a baseline for near-term solar irradi-
ance forecasting. More sophisticated forecast models should therefore
achieve higher accuracy compared to the POC model by anticipating
changes in weather conditions.

It is common for these latter models to predict the difference be-
tween the time-varying irradiance and the baseline. This has the effect
of de-trending the data [29,30]. For example, [31,32] use autoregres-
sive models to predict irradiance relative to a clear sky model (rather
than using the POC as a baseline). We note that other de-trending
methods, such as wavelet decomposition [33] and spectral decompo-
sition [34] have been recently proposed for irradiance forecasting.

The aforementioned works are restricted to using scalar data as
model inputs, and the number of inputs is typically small in practical
settings.

Nevertheless, there is a wealth of data relevant to irradiance fore-
casting. These include local meteorological measurements (cloud
height, wind speed and direction, temperature, humidity, and air
pressure), sky camera images, Numerical Weather Prediction (NWP)
results, and satellite imaging. Some of these data are in non-scalar
formats (e.g., camera images) and thus do not lend themselves naturally
to use in time-series models.

This fact has motivated the use of machine learning (ML) ap-
proaches for irradiance forecasting. Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks are common
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Fig. 1. Data collection, curation and model training workflow.

deep learning architectures used to extract patterns from data and
predict sequences, respectively [35].
ML models broadly fall into two categories:

» End-to-end models utilize available data as inputs with little or
no pre-processing or interpretation. For example, Peng et al. [36]
reported the use of multiple sky cameras to track cloud positions
in the sky, and a stereoscopic arrangement was reported by Nouri
et al. [37] for estimating cloud height. Song et al. [38] determined
current irradiance directly from sky camera images, while Lin
et al. [39] used deep learning models to forecast irradiance from
similar data.

Some end-to-end models are used for multiple predictions, e.g.,
both cloud patterns [40-42] and irradiance [19,43,44]. Liu et al.
[45] use a deep learning model to determine cloud movement
vectors from image sequences as well as forecast irradiance.
These models typically use heterogeneous data formats as inputs.
It is worth noting the work of Ogliari et al. [46], who performed
feature fusion by leveraging unused image pixels to embed other
sensor data before feeding sky-camera images to a deep CNN
model.

Physically-motivated models take a physics-based lens to the
data, generating additional insights prior to building the irra-
diance forecasting model itself. Ideally, physics-based models
should reduce the parameter search space during model training
and show better generalization performance. Physics-based ap-
proaches include detection of cloud position, cloud motion, and
identifying position of the Sun, which can be approached via
color analysis [47,48], pixel clustering [49,50], and convolution
methods [51]. Recent work by Paletta et al. [17] demonstrated
that polar transformations centered on the sun can extract cloud

movement toward the sun. Fabel et al. [52] use features extracted
from a sky camera such as cloud coverage, height, and type as
well as parametric relationships such as solar position to predict
future irradiance.

We emphasize here that these are broad categories and modeling
can take inspiration from both. For example, Le Guen and Thome
[20] use physics-based fluid-flow equations to predict future irradiance
using sky camera images as inputs in an end-to-end structure.

We also note that the works referenced here use sophisticated,
computationally-intensive and data-intensive architectures to perform
the irradiance forecasting task. Local data collected from — typi-
cally remote — solar PV generation sites are transmitted over some
communication channel to a centralized location for processing and
forecasting. This implicitly assumes that there are no data transmission
constraints. In practice, however, the communication channel may have
severely limited bandwidth, and may not be able to accomplish the
timely transmission of all the data—particularly sky camera images
which are typically stored in large files. This emphasizes the need
for developing data-parsimonious models, capable of performing the
forecasting task based on a limited number of inputs that are readily
obtainable over existing bandwidth-restricted communication channels.

3. Methods

Motivated by bandwidth-constrained applications, we present a
CNN-LSTM model which uses scalar features extracted from sky camera
images to forecast irradiance. In Section 3.1 we describe the data used
and pre-processing steps. Section 3.2 defines the model architecture
including the noise model, and Section 3.3 contains the training and
evaluation procedures used.
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Fig. 2. Irradiance measurements and a subset of sky-camera images from May 18, 2022 at the NREL SRRL BMS. Figure created by the authors based on data collected from Stoffel

and Andreas [53]. Letters denote the moments that the images were collected.
3.1. Data

We begin with measurements spanning across five years (2017-
2022) from the National Renewable Energy Laboratory (NREL) Solar
Radiation Research Laboratory (SRRL) Baseline Measurement System
(BMS) [53] in Golden, Colorado, USA. Fig. 1 illustrates the flow of
the data from primary data sources to the final model training and
validation process. The NREL SRRL BMS provides 131 parameters
measured each minute from an onsite meteorological station including
temperature, barometric pressure, wind speed, and irradiance. The BMS
also includes images taken by an Eko All Sky Imager (ASI-16) at 10-min
intervals. The scalar features extracted from those images include light
and heavy cloud coverage percentages and whether the sun is covered
by clouds [47,54]. Fig. 2 shows an example of measured irradiance
values compared to clear sky irradiance values, as well as a selection
of sky images at the time of measurement.

BMS data are augmented with ideal clear sky irradiance data [27,
28,55] using the Ineichen Clear Sky Model [26] provided by the pvlib
package [55]. During the data cleaning process, data were clipped
to physically valid values (such as imposing that irradiance values
be non-negative), and outliers were removed if they had a z-score of
over five. The feature engineering step included calculating values we
hypothesized would be useful for the model to predict future irradiance.
These calculated features include clear sky index and other irradiance
and time representations, as well as lagged statistics for recent irra-
diance measurements. The dataset was also resampled to match the
10-min image frequency. Finally, the data were scaled to lie between
0 and 1 using the minimum and maximum values of each feature in
the cleaned training set and formatted into input—output pairs. The
inputs are two-dimensional matrices with rows representing discrete
time instants 10 min apart and each column representing a feature. The
outputs are the predicted irradiance values over the two-hour forecast
horizon (recall that these are residuals (i.e., differences) between POC
model predictions and the measured irradiance).

A full list of the scalar features extracted from sky camera images
as well as a comprehensive list of all features examined in this work
is provided in Appendix A. We note that the scalar features of the sky

camera images are provided by the camera itself and do not require
any additional local processing or computing power. While we focus
on predicting irradiance at ten minute intervals up to two hours from
the time of forecast, we believe that the model can be easily adapted
to other forecast frequencies and prediction horizons.

3.2. Model architecture and noise model

The model architecture is a CNN-LSTM structure as shown in Fig. 3.
A dropout layer ensures that the model learns sparse and generaliz-
able feature representations and helps prevent overfitting. Next, CNNs
efficiently extract intermediate features from input data using convolu-
tional filters learned during model training. The LSTM layer identifies
sequential patterns within the training data and is used to identify
temporal patterns within the data. The final dense layers perform a bot-
tleneck operation and transform the intermediate representations to the
final irradiance sequence prediction over the time horizon considered.
We use two dense layers to ensure that the model has sufficient capacity
to encode the predicted irradiance.

Similar architectures have been successfully used for irradiance pre-
diction by e.g., Gao and Liu [56] and Paletta et al. [41]. Nevertheless,
our proposed architecture include a novel feature, that, to our knowl-
edge, has not been employed in the field of solar irradiance forecasting.
Inspired by forecasting mechanisms used in the literature on model
predictive control [57], a noise signal is included as an additional input.
Noise models account for the unmeasured input variables/disturbances
that affect a dynamical system, which are assumed to be random vari-
ables. Their statistical properties, as well as the gain (i.e. the magnitude
of the impact in the model) assigned to each noise input, are specified
based on knowledge of the system or are identified from the data. The
adoption of a noise model in this work is supported by the fact that
it is natural to expect that the available features do not fully explain
or predict the variable of interest (i.e., irradiance). Equivalently, we
hypothesize that changes in irradiance are subject to random, unmeasured
inputs. In practice, it is typical to use a Gaussian noise signal with zero
mean unit variance. In our model, the noise model is implemented by
augmenting the measured data with an additional column of normally
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Fig. 3. CNN-LSTM model structure with an optional noise model within the dashed
box. The noise model features a random Gaussian variable and a trained response to
account for random, unknown disturbances. Dimensions are shown in parentheses.

distributed random numbers and allowing the CNN-LSTM to learn the
gain — the effect that random disturbances have on the output —
rather than specifying it.

3.3. Training procedure

The model was trained using an expanding train-validate data set
with three successive steps to refine the initial model. The five years of
data are split up so that one full year is always used as the validation
dataset in order to ensure that all phenomena within a year are equally
represented. The training datasets expand at each step, rather than a
random split so that the validation datasets always contain data that
reflect days that are temporally located after the training data and
realistically represent generalization error. All training data sets begin
on September 27, 2017, and validation datasets begin the day after
train datasets end.

Since repeated tests on the same data increase the likelihood of false
positive results [58], we sequentially investigate key model parameters
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within each dataset and implement the results during the next step.!
The first step evaluated different representations of time and irradiance.
The second step studied the effect of changing the time span of input
measurements on validation error. The third step used the results
from the previous two steps and implemented permutation feature
importance [59] to identify the most impactful features for predictive
performance. The training and validation data splits for each step are
shown in Table 1. Each of these steps are described in more detail in
the following subsections.

All training took place on a single NVIDIA RTX 3090 Ti GPU with
24 GB of memory and batch size of 4000. The model was trained using
the Adam optimizer [60] with an initial learning rate of 0.01 with
cosine decay [61] over 500 epochs repeated 4 times. Early stopping
was permitted if the validation loss did not decrease for 1000 epochs.

3.3.1. Step 1 — Time and irradiance representations

Time representations include a floating point number between 0
and 1 representing the proportion of time that has passed since the
start of a day or year. These are shown as the Time of Day (ToD) and
Time of Year (ToY) representations in Egs. (4) and (5). Time of day
may also be represented relative to key moments in the day such as
sunrise, solar noon, and sunset as shown in Eq. (6). We refer to a vector
containing these three values as Time Milestones (TM). Finally, we
include a trigonometric transform of ToD, ToY, and TM as is common
for cyclic variables [62]. We denote these representations as «ToY,
£TM, and «ToD and their respective equations are shown in Egs. (7),
(8), and (9).

ToD = (Hours + Minutes/60 + Seconds/3600) /24 (©)]
ToY = (Day of Year + ToD)/365 5)

ToD(Time — Sunrise Time),
TM = { ToD(Time — Solar Noon Time), (6)
ToD(Time — Sunset Time)

£ToD = {sin(ToD), cos(ToD)} 7
£ToY = {sin(ToY), cos(ToY)} (€)]
ZTM = {sin(TM), cos(TM)} (C)]

Multiple representations of future irradiance were tested as target
variables to determine which produced the most accurate forecast.
These representations include GHI,, CSI, CS Dev. (the difference
between GH I, and GH I~¢ as shown in Eq. (10)), as well as two forms
that are relative to the conditions at the time of forecast: change in irra-
diance (4 GHI), and change in clear sky index (4 CST). These relative
representations are shown in Egs. (11) and (12) respectively. Differenc-
ing and autoregressive approaches similar to these relative representa-
tions of irradiance have been shown to improve the predictive ability
of statistical models [29,30].

CSDev.=GHIcg, —GH]I, (10)
AGHI =GHI,-GHI, an
ACSI=CSI,-CSI, 12)

3.3.2. Step 2 — Input sequence length

LSTM models use sequential inputs and determine temporal patterns
in those inputs to predict future values. During Step 2, we investigate
how the number of input measurements affects model performance.

1 If 20 tests were performed on the same dataset, with a p-value of 0.05, we
would expect one false positive to occur. This is a problem known as multiple
testing.



J.E. Hammond et al.

Table 1
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Model training and tuning used three successive steps to refine the initial model with an input block of 131 features and 13 temporal measurements. Count refers to the number
of complete input and output data blocks within each date range.

Step Last training date Count Last validation date Count Description Approximate split
1 Sep. 26, 2019 21,343 Sep. 26, 2020 12,509 Time and Irradiance 63:37
2 Sep. 26, 2020 33,852 Sep. 26, 2021 13,256 Input time horizon 72:28
3 Sep. 26, 2021 47,108 Sep. 26, 2022 9199 Feature importance 84:16
120
LTM 106.61 117.58
£ ToD 114.53
118
L ToD, L T™M 106.71 110.61 116.21
£ ToD, £ ToY 109.38 | 114.77 116
c £ ToD, £ ToY, L TM 110.83 114.66 fn
o
5 L ToY 112.55 112.78 114 §
c =
% L ToY, L TM 197.71 109.86 113.18 '&J
— E
o) ™ 110.19 109.80 114.31 112 ¢
4 S
g ToD 113.16 111.56 115.10 ic_?
. ToD, T™M 109.54 111.13 112.15 112.99 10 2
ToD, ToY 288.77 | 112.25 WKL N 110.64
ToD, ToY, TM 107.92 117.24 108
ToY 435.81 [ 11016 112.81 111.95
106
ToY, TM 110.17 110.10 112.97

A CSI
Future Irradiance Representation

A GHI

CS Dev. CsSI GHI

Fig. 4. Validation Mean Absolute Error (W/m?) across all predicted points (z + 10 to ¢ + 120) for each model trained during Step 1 using year 3 as the validation set. In this
graphic, each row represents a different combination for time representation and each column represents a method for irradiance representation.

3.3.3. Step 3 — Feature importance and noise model evaluation

To determine the most important features for the model, we used
permutation feature importance [59] which measures the change in
model performance when a feature is randomly permuted or corrupted.
The importance of the feature is then evaluated by the increase in
error. There are many methods for interpreting the subsequent results
and determining which parameters are to be included or not. Often,
this is done with a fixed value threshold for minimum importance.
In contrast, this work seeks to minimize the number of features as
well as prediction error. Consequently, we hypothesize that most of
the features that only have marginal importance could be dropped and
replaced with the noise model. We test this by dropping all but the
most important parameters, then refitting the model and comparing
model performance. To determine the effect of the noise model, we
compare model performance across all three training-validation dataset
splits with and without the noise model.

3.3.4. Evaluation metrics

During the training process, we use Mean Absolute Error (MAE)
as the objective function to be minimized, shown in Eq. (13). Here,
y; represents the true value and y; represents the predicted value. For
an equitable comparison, we convert all predicted and true irradiance
values back to GHI before comparing statistics. To compare to other
models in the literature we also calculate Root-Mean Square Error
(RMSE), normalized Mean Absolute Percentage error (nMAP), as well
as Forecast Skill Score (FSS) which measures performance relative to
the POC model. These are defined as follows in Egs. (14), (15) and (16)
respectively. We choose to train on MAE rather than RMSE to minimize

the effect of outliers in the training data. Final model performance
across all of these statistics is reported in Table A.9.

N
1 ~
MAE:N;M—M (13)
1 < 2
RMSE = 5 3\ (5 =9) 14)
i=1
1 il |J’i _j?1|
nMAP = — Y - x100 15)
i=1 ﬁzi=l Vi
MAE
FSS=1- ——— 16
MAEpoc a6
4. Results

4.1. Step 1 — Time and irradiance representations

Fig. 4 shows the MAE of all predictions in validation set 1 over
a 2-hour horizon. Each row represents a different representation of
time and each column a different irradiance representation. The ToD
and ToY representation of time and the ACST representation of future
irradiance achieve the lowest MAE across all predicted values in Step 1.
Other time representations performed similarly, however, ToD and ToY
allow the model to capture daily and yearly cyclical patterns without
increasing the number of variables and increasing the likelihood of
overfitting.

In conjunction with ToD and ToY as time representations, AC.ST
achieves the lowest error among the models tested in Step 1. All
models trained with target variables that incorporate information from
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Fig. 5. Probability density functions of the future irradiance representations. Note that the relative irradiance representations (ACSI and AGHI) are much more tightly distributed
around the center, likely facilitating easier recognition of patterns which deviate from the present conditions.

the clear sky model outperform those that use GHI. Incorporating
the known patterns of the Sun using the clear sky model allows the
model to explicitly isolate the unknown short-term dynamics, such as
increasing cloud cover, and better predict irradiance without the effect
of confounding variables. Both relative measures of irradiance appear
to be more tightly distributed around the center, as shown in Fig. 5.
This likely facilitates easier recognition of patterns which deviate from
the present conditions. If conditions typically persist, events with a
high deviation from the present conditions are further from the typical
values and may be better distinguished during the training process.
Fig. 6 shows the FSS of the best model for each future irradiance
representation and demonstrates that models trained with relative rep-
resentations of future irradiance are better able to anticipate changes
in irradiance than models trained with other forms of irradiance. Of
the two relative irradiance forms, Fig. 7 suggests that ACST is likely
a better target variable since the clear sky index is more strongly
autocorrelated (as defined in Eq. (17)) at later lags than GHI or CS Dev.

_ cov(R(X),R(Y))

OR(X)OR(Y)

a7

4.2. Step 2 — Input sequence length

Thirteen models were trained with input sequence lengths increas-
ing from a single measurement to two hours of measurements captured
in a 13-element sequence. The MAE as a function of time from the
forecast is shown in Fig. 8 for all 13 models, with a darker hue
indicating a longer input data sequence. The overall MAE across the
two-hour prediction horizon is shown in Table 2 for both the training
and validation datasets. The model with an input sequence length of
three measurements achieves the lowest training error, while the model
with a single input measurement achieves the lowest validation error.

Surprisingly, models trained with fewer input data measurements
have lower error than models that include more lagged information.
However, Feng et al. [19] report a similar finding when forecasting
irradiance at the same NREL SRRL BMS site and sky camera with an
optimal input sequence length of two, which was the shortest sequence
tested. The increase in error when moving from training to the valida-
tion set for the model trained with three input measurements suggests
that the model is overfitting to the training data. The model training
process can be approached as a combinatorial optimization problem.

Table 2

The overall MAE across the two-hour prediction horizon for each model trained during
Step 2. The model trained with a single input measurement achieves the lowest
validation error which is a better measure of true performance than training error.

Train MAE (W/m?) Validation MAE (W/m?)

Input sequence length

1 81.29 76.53
2 79.25 79.06
3 75.96 81.78
4 81.77 80.86
5 85.57 82.02
6 83.03 82.84
7 82.81 84.64
8 86.68 84.49
9 90.23 85.00
10 88.95 84.98
11 90.70 86.45
12 85.85 87.38
13 97.26 86.97

In a predicament known as the “curse of dimensionality” [63], data-
driven models require more and more data when increased input data
and model parameters are included due to the search-space of solution
combinations increasing. By providing less input data, the stochastic
training process is less likely to result in overfitting or become stuck in
local minima or saddle points.

Intuitively, these results indicate that future irradiance is more
strongly associated with current weather than past measurements.
Fig. 7 supports this conclusion, with autocorrelation consistently de-
creasing as the number of lags increase.

Because of the validation error and the minimal dimensionality,
Step 3 focused on modeling with input sequence of one measurement
— an input temporal horizon of 0 min.

4.3. Step 3 — Feature importance and noise model

Fig. 9 shows the results from Step 3, a feature importance test [59],
which was used to determine which of the 168 features were most
meaningful for the accuracy of GHI predictions. The test systematically
corrupts one feature of the input data at a time, and observes the
impact on model performance. Large increases in error indicate that a
particular feature is valuable to the forecast accuracy while negligible
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changes in error indicate that the model may not in fact rely on that
feature.

The ten most important features identified in Step 3 are shown in
Table 3 with the associated increase in MAE when they are corrupted.
Rather than establish an arbitrary threshold for feature importance,

Table 3

Ten most important features of 131 total features as shown by the increase in predicted
irradiance MAE as each feature is corrupted. Total cloud cover and GHI clear sky index
contribute to prediction accuracy significantly more than other features.

Feature

Feature importance (MAE)

. X X o CDOC total cloud cover 37.76

we seek to minimize the number of features while maintaining a low CsI GHI 14.22

prediction error. Since all but the top 10 features have an importance of DNI,_, 8.08

less than 3, we retrained the model using only these 10 most important 940 nm Aerosols 6.00

.. . . e Mean CSI DNI Deviation 5.62

features, hypothesizing that the marginal importance of ?ach remaining 675 nm Aerosols =20

feature would be low and would be captured by the noise model. CSI DNI 4.88

Table 4 shows the validation error across all three train-validation Solar Elevation 4.73

data set splits both with and without the noise model. The architecture ESNII DNI Deviation ;‘-22
-9 B

including the noise signal performs consistently better than the case
without the noise model. Table 5 shows the results from a paired t-
test comparing the model prediction error with and without the noise
model to the null hypothesis that the noise model does not decrease
error. Results are generally inconclusive for models with all features,

however the noise model consistently reduces the error of the model
when provided with a reduced set of features. More importantly, using
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Table 4
Validation error across all 3 steps of model refinement. Bold numbers indicate the
best (or nearly-best) errors for each step. Results with and without the noise model as
well as with all features and the top 10 features are shown. Results indicate that the
noise model eliminates the drop in performance when the model is trained with fewer
features.

Noise model Features Validation error (W/m?)
Step 1 Step 2 Step 3
. All 89.35 76.85 75.20
Not included Top 10 94.61 83.93 77.36
Included All 91.07 76.01 74.95
Top 10 88.96 76.01 74.29

the noise signal input eliminates the drop in performance when the
model is trained with fewer features—with a final MAE of 74.29 W/m?.
This supports our initial hypothesis that the noise model accounts for
both the dropped features and other unmeasured and/or unknown
disturbances and variables.

Most of the identified features (with exception to the photometers
which measure dispersed aerosols) can be obtained with historical mea-
surements, the clear sky model, and a low-cost sky-camera. Notably,
two photometer measurements of aerosols are within the top 10 results.
Expensive equipment such as a photometer is not likely to be widely
used in practice. When the model is retrained with the 8 remaining

Table 5
P-values associated with a paired t-test comparing the validation error of model
predictions with and without the noise model. The noise model consistently reduces
error across all three steps of model refinement for models with reduced feature
counts.

Features P-value (Noise model reduces error)

Step 1 Step 2 Step 3
All 9.4le-1 3.34e-1 8.24e-1
Top 10 1.08e-7 1.44e-15 1.22e-1

inputs, it achieves a MAE of 77.36 W/m?, a sacrifice of only 3.07 W/m?
compared to the 10-feature model. This observation could influence
equipment selection at sites interested in irradiance forecasting.

5. Discussion

The final model achieves a MAE of 74.29 W/m?2, while the POC
model has an overall MAE of 134.35 W/m?. The distribution of pre-
dictions and true values of the final model is shown in Fig. 10 with the
persistence model shown below for comparison. These graphs display
the normalized density of predicted and true irradiances such that the
integrated density in each plot is equal to one. The dashed black line
shows a perfect forecast; higher concentrations of the plotted prediction
values near this line represent better models. The proposed model
reduces the gap between true and predicted irradiance compared to
the persistence model. However, the distributions become similar as
the prediction horizon increases.

Individual predictions are shown for four sample days in Fig. 11.
Notably, POC and the proposed model perform similarly in environ-
ments with low irradiance (top left) or relatively constant environments
(top right). On days with large ramping events in irradiance (bottom)
the proposed model better anticipates changes in weather regime (for
example, from sunny to partially cloudy or overcast), though sometimes
these predictions are too aggressive.

Fig. 12 shows missing data from the ASI-16 sky camera from outages
or known firmware issues. Sky camera images are missing after about
17:00 MST in much of the dataset due to a firmware bug. The missing
data may contribute to poor model performance, and may cause sig-
nificant biases in model performance. Our approach was to only use
segments of data without missing data-points. Other works using the
NREL SRRL BMS such as Gao and Liu [56], Feng et al. [19] and Al-
Lahham et al. [64] also selected only complete sequences. Future work
could focus on devising more robust models that account for missing
data from the sky camera.
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Fig. 13 shows model prediction MAE boxplots for three distinct
sky cover conditions at the time of forecast. The values were com-
puted using the validation data. “Clear” indicates CDOC Total Cloud
Cover lower than 20%, “Partially Cloudy” indicates CDOC Total Cloud
Cover between 20% and 80% and “Overcast” indicates CDOC Total
Cloud Cover over 80%. Intuitively, clear conditions are more easily
predictable as they follow the persistence of cloudiness assumption.
The MAE values for over half of the clear sky condition forecasts
were small. However, the model may not anticipate changes in sky
conditions and the accompanying changes in clear sky index. This is
shown by the large volume of high error outliers in the clear sky
category. Not unexpectedly, prediction accuracy drops for partially
covered and overcast skies. We explain this by considering the naturally
higher likelihood of a change in conditions over the forecast horizon
from the time of prediction.

10

5.1. Comparison to literature

Table 6 presents three selected works that use data collected at the
same NREL SRRL BMS site to predict irradiance. We emphasize again
that the models proposed in the literature require sequences of images
as inputs (and thus have high data transmission requirements) while the
model proposed in this work only uses the features extracted from the
images, and is thus data-parsimonious (in some cases by several orders
of magnitude). Feng et al. [19] use a Sequential CNN model to produce
irradiance forecasts from sky camera image sequences. Al-Lahham et al.
[64] use clustering on individual image segments to produce irradiance
forecasts. Gao and Liu [56] use a transformer model to predict the
difference between measured irradiance and the clear sky irradiance.

Table 7 reports RMSE of this work, POC, Feng et al. [19] and Al-
Lahham et al. [64]. The model presented in this work has a higher
RMSE than the models presented in the literature. However, Fig. 14
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Selected works using the NREL SRRL BMS sky camera data to predict irradiance. Input sizes assume double types for most data formats and

unsigned integer formats for the images.

Reference Input Input size (bytes) Model info

Feng et al. [19] 2 Images 32,768 Sequential CNN

Al-Lahham et al. [64] 6 Images & Aux. Data 14,156,256 Clustering & Random forest

Gao and Liu [56] 8 Images 2,433,024 Visual Transformer, Clear Sky Residual
This Work 10 tabular features 80 CNN-LSTM
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Fig. 12. ASI-16 Images missing in the NREL SRRL BMS dataset. A and B were firmware
issues noted in the documentation online while C notes a known bug where the camera
does not take pictures near 17:00 MST (00:00 GMT).
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Fig. 13. MAE of validation forecasts categorized by three distinct cloud cover condi-
tions: Clear indicates CDOC Total Cloud Cover < 20%, Partially Cloudy indicates 20%
< CDOC Total Cloud Cover < 80% and Overcast indicates CDOC Total Cloud Cover <
80%. In addition, the star marker for each cloud cover condition indicates the fraction
of predictions within each category.

shows a higher FSS for the model proposed in this work compared
to the model proposed by Feng et al. [19]. The FSS is a measure
of the model’s performance relative to the POC model. While the
dates of the validation data are not the same, the FSS indicates that
the data-parsimonious model proposed in this work may anticipate
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changes in weather regime better than more sophisticated models.
Interestingly, the FSS of Feng et al. [19] increases over time suggesting
that there is some relevant information within the sky camera image
sequences used in their model that is not captured in the inputs of the
data-parsimonious model.

Integrating the clear sky model and the persistence assumption
explicitly into the forecast by changing the representation of future
irradiance improves forecasts more than simply providing the clear
sky irradiance. These representations simplify model training by iso-
lating the unknown weather effects and not relying on the model to
learn already-known long-term dynamics (i.e., de-trending). This work
achieves a lower nMAP on the validation period as shown in Table 8
while using a dramatically simpler model.

6. Conclusions

We developed a data-parsimonious machine learning model for
near-term forecasting of solar irradiance. The model relies on a CNN-
LSTM architecture that includes a noise signal input to account for
random and/or unmeasured variables and disturbances that influence
irradiance. The model was iteratively refined using three expanding
train-validate data splits in order to determine the optimal irradiance
representation, time representation, input sequence length, and feature
set. The final model achieves a MAE of 74.29 W/m? over a two-
hour prediction horizon. While these results have a higher MAE than
the models presented in the literature, this model requires orders of
magnitude lower data transmission, and has a better FSS indicating
that it anticipates changes in weather regime better than the models
presented in the literature.

Our findings indicate that predicting the deviation of irradiance
from a long-term baseline (e.g., the POC prediction) benefits from
a de-trending effect and is thus more accurate than predicting the
irradiance itself. Experiments suggested that the optimal forecast only
used the most recent measurement of input data rather than a more
extensive sequence of measurements. We also found that including a
noise model inspired by control theory leads to consistently higher
prediction accuracy-even after eliminating all but the most-impactful
features. By reducing the input dimensionality, the model is more
robust to overfitting on training data and more likely to discern patterns
in the data. We expect that these findings will allow for more accurate
irradiance forecasting—particularly for locations where data transmis-
sion capacity is limited. The findings on the importance of directly
integrating the clear sky model and the persistence assumption into the
forecast are directly applicable to existing models in the literature and
may prove a simple step to improve their performance. Similarly, the
noise model may be a useful addition to existing models to account for
unmeasured disturbances.

The results presented were limited to 2017-2023 at the NREL SRRL
BMS. Future work could expand the dataset to include more years
as well as more locations to determine the generalizability of these
observations. As models in the literature become open source, future
work may also compare the models directly with the same training
data rather than only comparing reported results. The irradiance rep-
resentations and noise model could also be studied across multiple
modeling approaches and model structures to understand their indi-
vidual contribution to irradiance forecasting. Future work could also
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RMSE (W/m?) of this work, POC, and reported errors from recent literature.

Forecast horizon (Min.) POC This work Feng et al. [19] Al-Lahham et al. [64]
10 264.56 102.00 71.30 -
20 254.14 114.68 98.53 -
30 258.72 123.76 109.33 -
40 260.19 130.38 119.35 -
50 264.17 135.91 127.49 -
60 263.40 140.45 135.43 116.7
70 263.86 142.84 - -
80 269.37 145.95 - -
90 268.16 150.79 - -
100 266.79 153.54 - -
110 265.10 156.20 - -
120 265.33 158.13 - 127.6
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Fig. 14. FSS for a data-parsimonious model and the model presented by Feng et al. [19].

Table 8
nMAP (W/m?) of POC, this work, and the best results from Gao and Liu [56].

Forecast horizon (Min.) POC This work Gao and Liu [56]
10 21.5 10.2 -
20 22.8 12.1 -
30 24.6 13.6 -
40 26.2 14.6 -
50 27.8 15.6 -
60 29.1 16.4 17.4
70 30.1 16.9 -
80 31.6 17.4 -
90 32.6 18.1 -
100 33.4 18.7 -
110 34.1 19.1 -
120 34.9 19.5 20.9

extend to onsite preprocessing to reduce the need for data transmission
by transforming the images into trained embeddings with reduced di-
mensionality. Finally, the effect of missing data on model performance
could be studied further to determine if the model robustness can be
increased.
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Appendix A. Model performance summary

See Table A.9

Appendix B. All features studied

The features used in this study are organized by source, with units

shown in brackets when applicable?:

BMS meteorological station features:

315 nm Photometer [nA]
400 nm Photometer [pA]
500 nm Photometer [pA]
675 nm Photometer [pA]
870 nm Photometer [pA]
940 nm Photometer [pA]
1020 nm Photometer [pA]
Snow Depth [cm]
Precipitation [mm]
Precipitation (Accumulated) [mm]
Station Pressure [mBar]

Tower Dry Bulb Temperature [deg C]

Tower Relative Humidity [%]
Snow Depth Quality [%]
Station Dry Bulb Temp [deg C]
Station Relative Humidity [%]
Vertical Wind Shear [1/s]

Average Wind Speed at 22 ft [m/s]
Average Wind Direction at 22 ft [deg from N]

Peak Wind Speed at 22 ft [m/s]
Albedo (CM3)

Albedo (LI-200)

Albedo Quantum (LI-190)
Broadband Turbidity

Sea-Level Pressure (Est) [mBar]
Tower Dew Point Temp [deg C]
Tower Wet Bulb Temp [deg C]
Tower Wind Chill Temp [deg C]
Airmass

GHI [W/m?]

DNI [W/m?]

DHI [W/m?]

Sky camera features:

2 More information on the NREL SRRL BMS measurements is available at
https://midcdmz.nrel.gov/apps/html.pl?site=BMS;page=instruments.

Blue-Red/Blue-Green Total Cloud Cover [%]

Cloud Detection and Opacity Correction Total Cloud Cover [%]
Cloud Detection and Opacity Correction Thick Cloud Cover [%]
Cloud Detection and Opacity Correction Thin Cloud Cover [%]

Haze Correction Value

Blue/Red minimum

Blue/Red median

Blue/Red maximum

Apparent Solar Zenith Angle [deg]
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Apparent Solar Azimuth Angle [deg]

Flag: Sun not visible
Flag: Sun on clear sky
Flag: Parts of sun covered

Flag: Sun behind clouds, bright dot visible

Flag: Sun outside view
Flag: No evaluation

Clear sky model features:

Clear Sky GHI [W/m?]
Clear Sky DNI [W/m?]
Clear Sky DHI [W/m?]
Solar Eclipse Shading
Zenith Angle [deg]

Solar Elevation Angle [deg]
Solar Azimuth Angle [deg]

Engineered features:

Time from sunrise [Days]
Time to solar noon [Days]
Time to sunset [Days]

Cosine time from sunrise [Days]
Sine time from sunrise [Days]
Cosine time to solar noon [Days]
Sine time to solar noon [Days]
Cosine time to sunset [Days]
Sine time to sunset [Days]
Flag: Day

Flag: Before solar noon

Cosine zenith angle

Cosine normal irradiance
Wind North-South Speed [m/s]
Wind East-West Speed [m/s]
Sun North-South Position

Sun East-West Position

Time of Day [Days]

Time of Year [Years]

Sine Time of Year [Years]
Cosine Time of Year [Years]
Sine Time of Day [Days]
Cosine Time of Year [Days]
Clear Sky Index GHI

Clear Sky Index DNI

Clear Sky Index DHI

GHI,_; [W/m?]
DNI,_; [W/m?]
DHI,_; [W/m?]

GHI,_, [W/m?]
DNI,_, [W/m?]
DHI,_, [W/m?]
GHI,_; [W/m?]
DNI,_; [W/m?]
DHI,_; [W/m?]
GHI,_, [W/m?]
DNI,_, [W/m?]
DHI,_, [W/m?]
GHI,_s [W/m?]
DNI,_s [W/m?]
DHI,_s [W/m?]
GHI,_, [W/m?]
DNI,_4 [W/m?]
DHI,_, [W/m?]
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Table A.9
Overall model performance summary.
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Forecast horizon (Min.) MAE (W/m?) nMAP (%) RMSE (W/m?) FSS (MAE) (%) FSS (RMSE) (%)

10 45.23 10.16 102.00 54.57 57.01

20 54.69 12.12 114.68 48.07 49.83

30 62.13 13.61 123.76 45.41 47.09

40 67.43 14.63 130.38 44.26 44.99

50 72.45 15.61 135.91 43.72 44.05

60 76.59 16.41 140.45 43.05 42.86

70 79.28 16.92 142.84 42.99 42.46

80 81.84 17.44 145.95 44.00 43.00

90 84.82 18.08 150.79 43.68 41.76

100 87.45 18.68 153.54 43.40 41.54

110 89.13 19.11 156.20 43.45 41.30

120 90.42 19.51 158.13 43.96 41.48

Overall 74.29 16.03 138.89 45.05 44.78
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