
BilevelPruning: Unified Dynamic and Static Channel Pruning for Convolutional

Neural Networks

Shangqian Gao1, Yanfu Zhang2, Feihu Huang1, Heng Huang3*

1 Electrical and Computer Engineering, University of Pittsburgh
2 Computer Science, College of William and Mary

3 Computer Science, University of Maryland College Park

Abstract

Most existing dynamic or runtime channel pruning meth-

ods have to store all weights to achieve efficient inference,

which brings extra storage costs. Static pruning methods

can reduce storage costs directly, but their performance is

limited by using a fixed sub-network to approximate the orig-

inal model. Most existing pruning works suffer from these

drawbacks because they were designed to only conduct ei-

ther static or dynamic pruning. In this paper, we propose a

novel method to solve both efficiency and storage challenges

via simultaneously conducting dynamic and static channel

pruning for convolutional neural networks. We propose a

new bi-level optimization based model to naturally integrate

the static and dynamic channel pruning. By doing so, our

method enjoys benefits from both sides, and the disadvan-

tages of dynamic and static pruning are reduced. After prun-

ing, we permanently remove redundant parameters and then

finetune the model with dynamic flexibility. Experimental

results on CIFAR-10 and ImageNet datasets suggest that our

method can achieve state-of-the-art performance compared

to existing dynamic and static channel pruning methods.

1. Introduction

Convolutional neural networks (CNNs) have recently

achieved great successes in many machine learning and com-

puter vision tasks [3, 37, 56, 57, 61]. Despite the remarkable

performance, the computational and storage costs of most

CNNs are quite expensive due to their complex architectures.

Such costs have become the major bottleneck to deploying

CNNs on portable devices with limited resources (e.g., mem-

ory, CPU, energy). To solve this problem, many researchers

focus on how to truncate the costs of deep models effectively.

These researches can be summarized into several directions,

such as weight pruning [24], weight quantization [6], struc-

*This work was partially supported by NSF IIS 2347592, 2347604,

2348159, 2348169, DBI 2405416, CCF 2348306, CNS 2347617.

tural pruning [39], matrix decomposition [10] and so on.

Among these approaches, channel pruning, which belongs to

structural pruning, is a promising way to effectively reduce

computational and storage costs since other methods often

require additional post-processing steps to acquire actual

compression. Thus, this work focuses on investigating the

channel pruning technique.

A series of channel pruning approaches [27, 50, 77] use

different criteria to evaluate the importance of each chan-

nel, and the redundant (less important) channels are pruned.

These approaches are also called static channel pruning. The

benefit of static channel pruning is that unessential chan-

nels are permanently removed, which results in savings of

both storage and computational costs. However, the model

capacity of static pruning is restricted by using a fixed sub-

network. Some more recent works [23, 45] try to select

important channels based on inputs and intermediate feature

maps at inference time, and they belong to dynamic chan-

nel pruning. Given different inputs, different sub-networks

are dynamically selected, which largely improves the model

capacity. Most existing dynamic pruning methods preserve

all channels to ensure the model has the largest capacity.

Compared to static pruning, dynamic pruning methods often

achieve better performance but at the cost of requiring extra

storage space.

As mentioned in recent storage efficient dynamic pruning

work [5], the large storage costs of most dynamic pruning

methods prohibit them from being deployed in resource-

limited portable devices. To save storage costs for dynamic

pruning, storage efficient pruning [5] heuristically combines

static and dynamic channel pruning by using reinforcement

learning. The final pruned model is obtained by combin-

ing the outputs of both static and dynamic pruning through

a hand-designed function. Channels with low importance

are permanently removed. Although this approach achieves

good results, there are several drawbacks. First, the sub-

networks from dynamic and static pruning in their method

are treated separately. In their work, static sub-networks are

not considered when conducting dynamic pruning and vice

16090

2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

2575-7075/24/$31.00 ©2024 IEEE
DOI 10.1109/CVPR52733.2024.01523

20
24

 IE
EE

/C
VF

 C
on

fe
re

nc
e

on
 C

om
pu

te
r V

isi
on

 a
nd

 P
at

te
rn

 R
ec

og
ni

tio
n

(C
VP

R)
 |

 9
79

-8
-3

50
3-

53
00

-6
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/C
VP

R5
27

33
.2

02
4.

01
52

3

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 30,2025 at 13:49:47 UTC from IEEE Xplore. Restrictions apply.

versa, which generally hurts the performance. Moreover,

the learning of position and importance of remaining chan-

nels are also separated. Second, they use a hand-designed

function to fuse dynamic and static pruning results, leading

to sub-optimal performance due to the lack of the learning

process.

To tackle the aforementioned problems, we propose a

new model to integrate static and dynamic pruning. To

naturally form relationships between static and dynamic

sub-networks, we look for the best static sub-network by

evaluating dynamic sub-networks. We then integrate the

learning of static and dynamic sub-networks by using bi-

level optimization. Moreover, the static sub-network is never

evaluated directly, and it’s only implicitly trained through

dynamic sub-networks. Such a setup ensures that dynamic

sub-networks fully utilize their static counterpart. Our new

formulation integrates dynamic and static channel pruning,

leading to a better trade-off between storage costs and dy-

namic flexibility. Specifically, the limited model capacity

in static pruning is compensated by dynamic pruning, and

the extra storage costs in dynamic pruning are also reduced

by static pruning. As a result, our model enjoys the benefits

of both static and dynamic pruning, and their shortcomings

are compensated by each other. The final pruning results are

also learned in an end-to-end fashion without handcrafted

functions.

In our method, the selection of channels for both dy-

namic and static pruning is based on differentiable gates, and

they can be optimized through backpropagation. Under this

setting, we can apply parameter constraints on the static sub-

network and FLOPs constraints on dynamic sub-networks.

Previous dynamic pruning works [5, 45] often require hyper-

parameters to implicitly specify the computational budget

and/or the trade-off between dynamic and static pruning.

But our method can set them directly, which is an additional

benefit of our method.

In summary, the major contributions of our method can

be summarized as follows:

• We propose a novel channel pruning method, which unifies

both dynamic and static pruning. Dynamic and static

sub-networks are connected by evaluating the static sub-

network through dynamic sub-networks instead of training

them in parallel.

• We integrate static and dynamic pruning by formulating

them as a bi-level optimization problem. By doing so,

our method enjoys benefits from both static and dynamic

pruning. In addition, we present an efficient method for

optimizing the matrix-vector product in bi-level optimiza-

tion.

• The experimental results on CIFAR-10 and ImageNet

datasets suggest that our method achieves state-of-the-

art performance compared to existing dynamic and static

pruning methods.

2. Related Works

2.1. Regular Pruning

Weight pruning. Weight pruning aims to eliminate redun-

dant parameters. An early work [67] prunes model weights

based on minimum description length. Optimal brain dam-

age [38] and surgeon [25] utilize second-order information

to remove connections. The drawback is that the computa-

tion of second-order derivatives is expensive. More recently,

Han et al. [24] propose to prune weights based on their mag-

nitude. Magnitude pruning is very efficient, and the cost

of computing L1 or L2 magnitude is negligible. Regular

network pruning approaches follow a three-stage pipeline:

training, pruning, and fine-tuning. Zhang et al. [49] raise

questions about such standard procedure and argue that the

sub-network architecture obtained by pruning is more valu-

able than the remaining weights. They also show that re-

training sub-networks from scratch is enough to recover the

performance. On the other hand, the lottery ticket hypothesis

(LTH) [15] shows that good sub-networks exist at the ini-

tialization stage. A series of works [52, 58] related to LTH

extend this work to larger datasets and more complicated

architectures. Another line of research [55, 76] shows that

training masks on top of untrained models can also lead

to ideal performance. The model after weight pruning has

much fewer parameters but it requires sparse matrix libraries

or specific hardware to achieve actual savings in storage and

computational costs.

Structural Pruning. Structural pruning tries to remove cer-

tain structures in a deep model, such as kernels, channels,

layers, and so on. In contrast to weight pruning, structural

pruning can accelerate inference speed and save storage

costs without additional effort. Filter pruning [39] tries to

prune filters from CNNs that are having small effects on the

outputs. Similar to magnitude pruning, the importance of

each filter is measured by L1 or L2 norm of the filter, and

L1 norm performs better in their settings. Unlike filter prun-

ing, soft filter pruning [28] does not remove filters during

training, and they instead reset these filters and put them

into training again. Network slimming [47] uses L1 sparsity

regularization on scaling factors of channels from batch nor-

malization layers, and channels with small scaling factors

are removed. Other related works [16–22, 33] also added

learnable parameters for different structures. Discrimination-

aware pruning [77] not only considers the norms of chan-

nels but also uses classification loss to identify unimportant

channels. Automatic model compression [29] applies rein-

forcement learning (RL) for structural pruning. RL is used

since it can better cooperate with the discrete nature of struc-

tural pruning. Greedy pruning [70] starts from an empty

model and adds connections that reduce the loss value most.

Static pruning methods directly reduce storage costs, but

the pruned model is fixed leading to limited model capacity.

16091

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 30,2025 at 13:49:47 UTC from IEEE Xplore. Restrictions apply.

Alongside progress in vision tasks, Natural Language Pro-

cessing (NLP) has significantly advanced, demonstrated by

key studies [62, 68, 71–75]. Concurrently, structure pruning

is enhancing large model efficiency [66].

2.2. Dynamic Pruning

Regular pruning methods are designed to find a fixed sub-

network for all inputs. On the other hand, dynamic pruning

aims to provide different sub-networks for different inputs,

which increases the model capacity given the same inference

budget. Runtime neural pruning [42] treats dynamic pruning

for different layers as a Markov decision process and uses

reinforcement learning for training. SkipNet [65] uses a

gating module to skip convolution blocks based on previous

feature maps dynamically. The dynamic skipping problem is

formulated as a sequential decision-making problem, which

is jointly solved by reinforcement and supervised learning.

Adaptive neural networks [4] adaptively select the compo-

nents of a deep model based on the input examples. They

also introduce an early exit mechanism to further reduce com-

putational costs. In feature boosting and suppression [23],

they propose to skip unimportant input and output channels

dynamically. They use Lasso regularization to introduce

sparsity on the runtime channel importance. Besides prun-

ing, some works utilize the power of dynamic computation

to improve the design of CNNs. CondConv [69] replace tra-

ditional convolutions with learned specialized convolutional

kernels for each input. Dynamic convolution [7] applies

input-dependent attention on multiple convolution kernels,

which drastically improves the model capacity. Most afore-

mentioned works need to keep the full model to achieve the

best performance. To reduce storage costs, storage efficient

dynamic pruning [5] introduces static pruning along with

dynamic pruning to reduce storage costs.

3. Proposed Method

3.1. Notations

To better illustrate our method, we first introduce some nec-

essary notations. In a CNN, the feature map of i-th layer

can be represented by Fi ∈ RB×Ci×Wi×Hi , i = 1, . . . , L,

where B is the mini-batch size, Ci is the number of channels,

Wi and Hi are the width and height of the current feature

map, L is the number of layers. � is the element-wise prod-

uct. We use σ(x) = 1

1+e−x to represent the sigmoid function.

�·� is used to represent rounding to the nearest integer.

3.2. Static and Dynamic Settings

For static pruning, we can use a 0-1 vector to indicate

whether to prune a channel or not. To produce such vec-

tors, we use the following function:

Figure 1. The flowchart of the proposed method. In the figure, we first conduct static pruning followed by dynamic pruning. Instead of

naively combining static pruning and dynamic pruning, we formulate the pruning problem as a bi-level optimization problem to unify static

and dynamic pruning. The whole process is differentiable, which allows efficient gradient based optimization.

Tp(Θs) is the remained number of parameters decided by

the static sub-network, Rp is the regularization term to re-

duce the number of parameters to a predefined threshold

pp, x, y are input samples and their labels, f(·; Θs,Θd) is

a sub-network from the whole network and it is parame-

terized by Θs and Θd, and L is the cross-entropy loss for

classification. We omit the model weights W , since we fix

W in f(·; Θs,Θd) during the pruning stage. Similarly, the

dynamic pruning problem can be defined as:

We then approximate Θ∗

s
with Θ

′

s
, and the gradient with

respect to Θd is:

Method Architectures Dynamic Base Acc Acc ∆-Acc ↓FLOPs ↓ #Params

FBS [23]

CifarNet

✓ 91.37% 89.88% -1.49% 74.6% -11.0%

SEP-A [5] ✓ 92.07% 91.23% -0.84% 74.5% 22.0%

SEP-B [5] ✓ 92.07% 91.42% -0.65% 74.5% -31.0%

UDSP (ours) ✓ 92.36% 91.89% -0.47% 75.1% 20.1%

AMC [29]

ResNet-56

✗ 92.80% 91.90% -0.90% 50.0% -

FPGM [30] ✗ 93.59% 92.93% -0.66% 52.6% -

HRank [43] ✗ 93.26% 93.17% -0.21% 50.6% 42.4%

DSA [53] ✗ 93.13% 92.91% -0.22% 52.2% -

SEP [5] ✓ 93.12% 93.44% +0.32% 50.0% 19.8%

UDSP (ours) ✓ 93.12% 93.78% +0.66% 50.1% 20.0%

Table 1. Comparison of the accuracy changes (∆-Acc), reduction in FLOPs, and the number of parameters of various channel pruning

algorithms on CIFAR-10. ‘+/-’ of ∆-Acc indicates increase/decrease compared to baselines. ‘-’ in ‘↓ #Params’ indicates increase of

parameters.

On CIFAR-10, we use CifarNet following several dy-

namic pruning works [5, 23]. Besides CifarNet, we also test

our method on ResNet-56. For ImageNet, we evaluate our

method on ResNets [26] and MobileNet-V2 [59]. pp and pr
are used to decide how much FLOPs and parameters to be

pruned. Detailed settings of pp and pr are provided in the

supplementary materials. λ and γ in Eq. 5 and Eq. 6 are set

to 2.0 and 0.1 separately for all models and datasets. τ in

Eq. 1 and Eq. 2 is set to 0.4. Other implementation details

are given in the supplementary materials.

4.2. CIFAR­10 Results

We present CIFAR-10 results in Tab. 1. For CifarNet, all

comparison methods are dynamic. From Tab. 1, we can see

that our method can outperform other comparison methods

with similar pruned FLOPs. Compared to FBS, our method

saves 27.9% of parameters (79.9% vs. 111% #Params com-

pared to the original model) while achieving 1.02% improve-

ments with ∆-Acc. SEP-A has similar parameter savings as

our method, but the ∆-Acc is 0.37% lower than our method.

SEP-B keeps all channels, and our method still outperforms

it by 0.18% with ∆-Acc. Moreover, our method only uses

60.9% parameters of SEP-B.

We compare our method with both static and dynamic

pruning methods on ResNet-56. All comparison methods re-

duce around 50% FLOPs. Our approach has similar pruning

rates of FLOPs and parameters as SEP, but our method per-

forms better than SEP by 0.34%. HRank achieves the best

performance among static pruning methods. Static pruning

methods prune more parameters compared to dynamic prun-

ing methods, but the performance of our method is 0.87%

higher than HRank in terms of ∆-Acc. In summary, our

method achieves a better trade-off between storage costs and

performance than SEP [5].

4.3. ImageNet Results

On the ImageNet dataset, we use ResNet-18, ResNet-34,

ResNet-50, and MobileNet-V2 to evaluate the performance

of different methods. All results are shown in Tab. 2. The

results of other comparison baselines are directly adapted

from their original paper following the common practice.

ResNet-18. For static pruning methods, DSA [53]

achieves the best performance. The ∆ Top-1 accuracy of

our method is 0.83% higher than DSA, and our method

prunes 10.2% more FLOPs. This result suggests that dy-

namic pruning still has advantages when the model capacity

is reduced to some extent. FBS and CGNN use additional

parameters for dynamic pruning. Our method outperforms

FBS and CGNN by 2.26% and 0.79% in terms of ∆ Top-1

accuracy separately. In addition, our method prunes 11.5%

more FLOPs than CGNN and saves 20% of parameters. Fi-

nally, our method is better than SEP by 0.75% in terms of

∆ Top-1 accuracy, while both methods prune similar FLOPs

and parameters.

ResNet-34. IE [51] performs better than other static

pruning methods, but it prunes less FLOPs and parameters.

Our method has similar parameters and performance as IE,

but we can prune 27.7% more FLOPs than IE. Our method

saves 20% parameters and performs better than CGNN by

0.71% in terms of ∆ Top-1 accuracy, and both methods

prune similar FLOPs.

ResNet-50. For ResNet-50, We compare several recent

state-of-the-art pruning methods. Our method outperforms

ResRe by 0.54% and 0.50% in terms of Top-1 and ∆ Top-1

accuracy. The gap between other methods and our method is

more obvious. 3DP explores pruning in 3 dimensions, which

allows a more flexible trade-off. Our method is better than

3DP by 0.61% regarding Top-1 accuracy, indicating that

our method can achieve similar flexibility. In addition, our

method prunes most FLOPs, and we can also reduce storage

costs to some extent (25.0% reduction). DepGrah and DTP

are recently proposed static pruning methods, our UDSP still

has a clear advantage when it comes to these baselines.

MobileNet-V2. AMC, MetaPruning and MobileNet-V2

0.75 all remove around 30% FLOPs. MetaPruning achieves

the lowest accuracy lost. Our method prunes around 6%

more FLOPs than MetaPruning, and performs better (0.52%

and 0.44% higher with Top-1 and ∆ Top-1 accuracy). Our

16095

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 30,2025 at 13:49:47 UTC from IEEE Xplore. Restrictions apply.

Method Architectures Dynamic Pruned Top-1 ∆ Top-1 ↓ FLOPs ↓ #Params

AMC [29]

ResNet-18

✗ 66.63% -3.13% 50.0% 24.0%

FPGM [30] ✗ 68.41% -1.87% 41.5% 28.0%

DSA [53] ✗ 68.61% -1.11% 40.0% -

FBS [23] ✓ 68.17% -2.54% 49.5% -12.0%

CGNN [32] ✓ 67.95% -1.07% 38.7% -

SEP [5] ✓ 68.73% -1.03% 48.5% 19.0%

FTWT [12] ✓ 67.49% -2.27% 51.6% -

UDSP (ours) ✓ 69.48% -0.28% 50.2% 20.0%

SFP [28]

ResNet-34

✗ 71.84% -2.09% 41.1% -

FPGM [30] ✗ 72.63% -1.29% 41.5% 28.9%

IE [51] ✗ 72.83% -0.48% 22.3% 21.1%

CGNN [32] ✓ 72.40% -1.10% 50.4% -

FTWT [12] ✓ 72.17% -1.13% 47.4% -

UDSP (ours) ✓ 72.91% -0.39% 50.0% 20.0%

SCOP [63]

ResNet-50

✗ 75.26% -0.89% 54.6% 51.8%

GFP [46] ✗ 76.42% -0.37% 51.0% 55.8%

3DP [64] ✗ 75.90% -0.25% 53.0% 50.0%

ResRe [11] ✗ 75.97% -0.12% 56.1% -

DepGraph [13] ✗ 75.97% -0.12% 51.18% -

DTP [41] ✗ 75.55% -0.58% 56.7% -

UDSP (ours) ✓ 76.51% +0.38% 58.4% 25.0%

MobileNet-V2 0.75 [59]

MobileNet-V2

✗ 69.80% -2.00% 30.0% 24.8%

AMC [29] ✗ 70.80% -1.10% 30.0% 17.2%

MetaPruning [48] ✗ 71.20% -0.60% 30.9% -

GSS [70] ✗ 71.20% -0.80% 36.0% 22.9%

UDSP (ours) ✓ 71.72% -0.16% 36.6% 15.3%

Table 2. Comparison of the accuracy changes (∆ Top-1), reduction in FLOPs, and the number of parameters of various channel pruning

algorithms on ImageNet.

(a) Loss (b) Accuracy (c) Impact of γ (d) Impact of pp

Figure 2. (a,b): Comparison of loss and accuracy given different training settings. Mean and variance are provided by running the experiment

3 times. (c) Impact of γ during the pruning process. (d) Impact of ps during the pruning process. All results are obtained with ResNet-56 on

CIFAR-10.

Bi-level Acc ∆-Acc ↓ FLOPs ↓ #Params

✗ 93.55% +0.43% 50.0% 20.3%

✓ 93.78% +0.66% 50.1% 20.0%

Table 3. Comparisons between different pruning settings of our

algorithm on ResNet-56 for the CIFAR-10 dataset.

Settings Base Acc Acc ∆-Acc ↓FLOPs ↓ #Params

UDSP1 93.12% 93.32% +0.20% 50.0% 40.0%

UDSP2 93.12% 93.64% +0.52% 50.1% 30.0%

UDSP3 93.12% 93.78% +0.66% 50.1% 20.0%

Table 4. Comparisons given different pruning rates for #Params

with ResNet-56 on CIFAR-10.

method and GSS prune a similar amount of FLOPs, and

the ∆ Top-1 accuracy of our method is higher than GSS by

0.64%. In addition to FLOPs reduction, our method can also

remove around 15.3% of parameters.

In summary, our method provides a larger model capacity

compared to static pruning methods, and the storage costs

are reduced compared to dynamic pruning methods. More-

over, our method achieves a better trade-off between storage

costs and performance than SEP, indicating that integrating

dynamic and static pruning is important for pruning.

4.4. Analysis of Different Settings

To understand different design choices and hyper-parameter

settings, we provide additional analysis in this section. In

Fig. 2(a,b), we plot the loss value and model accuracy given

16096

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 30,2025 at 13:49:47 UTC from IEEE Xplore. Restrictions apply.

(a) Rp Loss (b) Rr Loss (c) Accuracy

Figure 3. The regularization losses and model accuracy given different choices of λ. Mean and variance are provided by running the

experiment 3 times.

(a) CifarNet (b) ResNet-56

Figure 4. The resulting architectures of ResNet-56 and CifarNet on

CIFAR-10 with our method. We plot the probability of using each

channel, and the probability is calculated on the whole test dataset.

Channels with dashed lines are permanently removed.

Figure 5. ResNet-50 on ImageNet dataset.

different pruning settings. We can see that bi-level optimiza-

tion outperforms iterative training with both accuracy and

loss values, which suggests that integrating dynamic and

static pruning is beneficial. We also show the difference

between the finetuned model in Tab. 3, and we can draw

similar conclusions.

In Fig. 2(c), we provide the accuracy after pruning (before

fine-tuning) given different γ. A too-large γ usually hurts

the performance, and γ around 0.1 provides relatively good

results.

In Fig. 2(d), we fix pr = 0.5 and plot the accuracy after

pruning given different percentages of remaining parameters

(pp). We can see that the performance does not decrease

a lot when we keep more than 75% of parameters. We

further present results when pruning more parameters af-

ter finetuning in Tab 4. When pruning 30% of parameters

(UDSP2), the performance of our method does not decrease

too much. However, there is a large performance drop when

pruning 40% of parameters. Under this setting (UDSP1), the

parameter reduction of our method is similar to the static

pruned model from HRank, and the dynamic flexibility is

largely restricted. These observations suggest that, under the

same FLOPs pruning rate, our method can maintain a good

trade-off between dynamic flexibility and storage costs until

the pruning rate for parameters is similar to static pruning

methods.

In Fig. 3, we plot the value of regularization losses and

model accuracy given different choices of λ. From the figure,

it can be seen that our method is robust to different choices

of λ. A lower λ can lead to a little better final performance,

but the difference is small.

In Fig. 4, we plot the final architectures of ResNet-56

and CifarNet for our method. Our method tends to preserve

more channels when the width of the original model changes.

Later layers often have more dynamic flexibility, probably

because they are less penalized by the FLOPs constraint Rr.

This figure also suggests that our method does not collapse

into a single static solution.

We plot the Top-1 accuracy vs. FLOPs in Fig. 5. Besides

baselines introduced in Tab. 2, we also include Random

Pruning [40] in the figure. In the figure, it is clear that our

method has the best FLOPs vs. Accuracy trade-off.

5. Conclusion

In this paper, we study the problem of how to integrate dy-

namic and static pruning. We explicitly formulate the static

and dynamic pruning problems as a new bi-level optimiza-

tion task such that two types of models can complement each

other. We further improve the efficiency of the cost matrix-

vector product in the bi-level pruning problem. The superior

performance of our method on CIFAR-10 and ImageNet

datasets suggests that our method is a promising solution for

integrating dynamic and static channel pruning.

16097

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 30,2025 at 13:49:47 UTC from IEEE Xplore. Restrictions apply.

References

[1] Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio,

Mark Schmidt, and Frank Wood. Online learning rate adapta-

tion with hypergradient descent. In International Conference

on Learning Representations, 2018. 4

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Es-

timating or propagating gradients through stochastic neurons

for conditional computation. arXiv preprint arXiv:1308.3432,

2013. 3

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,

Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D

Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.

End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016. 1

[4] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh

Saligrama. Adaptive neural networks for efficient inference.

In International Conference on Machine Learning, pages

527–536. PMLR, 2017. 3

[5] Jianda Chen, Shangyu Chen, and Sinno Jialin Pan. Storage ef-

ficient and dynamic flexible runtime channel pruning via deep

reinforcement learning. In Advances in Neural Information

Processing Systems, pages 14747–14758. Curran Associates,

Inc., 2020. 1, 2, 3, 5, 6, 7

[6] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-

berger, and Yixin Chen. Compressing neural networks with

the hashing trick. In International conference on machine

learning, pages 2285–2294, 2015. 1

[7] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen,

Lu Yuan, and Zicheng Liu. Dynamic convolution: Attention

over convolution kernels. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 11030–11039, 2020. 3

[8] Benoı̂t Colson, Patrice Marcotte, and Gilles Savard. An

overview of bilevel optimization. Annals of operations re-

search, 153(1):235–256, 2007. 4

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li

Fei-Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. Ieee, 2009. 5

[10] Misha Denil, Babak Shakibi, Laurent Dinh, Marc' Aurelio

Ranzato, and Nando de Freitas. Predicting parameters in

deep learning. In Advances in Neural Information Processing

Systems, 2013. 1

[11] Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong

Han, Yuchen Guo, and Guiguang Ding. Resrep: Lossless

cnn pruning via decoupling remembering and forgetting. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 4510–4520, 2021. 7

[12] Sara Elkerdawy, Mostafa Elhoushi, Hong Zhang, and Nilan-

jan Ray. Fire together wire together: A dynamic pruning

approach with self-supervised mask prediction. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2022. 7

[13] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and

Xinchao Wang. Depgraph: Towards any structural pruning.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 16091–16101, 2023. 7

[14] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo

Grazzi, and Massimiliano Pontil. Bilevel programming for

hyperparameter optimization and meta-learning. In Interna-

tional Conference on Machine Learning, pages 1568–1577.

PMLR, 2018. 4

[15] Jonathan Frankle and Michael Carbin. The lottery ticket

hypothesis: Finding sparse, trainable neural networks. In

International Conference on Learning Representations, 2019.

2

[16] Alireza Ganjdanesh*, Shangqian Gao*, and Heng Huang.

Interpretations steered network pruning via amortized inferred

saliency maps. In European Conference on Computer Vision,

pages 278–296. Springer, 2022. 2

[17] Alireza Ganjdanesh, Shangqian Gao, and Heng Huang. Eff-

conv: efficient learning of kernel sizes for convolution layers

of cnns. In Proceedings of the AAAI Conference on Artificial

Intelligence, pages 7604–7612, 2023.

[18] Alireza Ganjdanesh*, Shangqian Gao*, Hirad Alipanah, and

Heng Huang. Compressing image-to-image translation gans

using local density structures on their learned manifold. Pro-

ceedings of the AAAI Conference on Artificial Intelligence,

2024.

[19] Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang.

Discrete model compression with resource constraint for deep

neural networks. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 1899–

1908, 2020.

[20] Shangqian Gao, Feihu Huang, Yanfu Zhang, and Heng Huang.

Disentangled differentiable network pruning. In European

Conference on Computer Vision, pages 328–345. Springer,

2022.

[21] Shangqian Gao, Burak Uzkent, Yilin Shen, Heng Huang, and

Hongxia Jin. Learning to jointly share and prune weights for

grounding based vision and language models. In The Eleventh

International Conference on Learning Representations, 2023.

[22] Shangqian Gao, Zeyu Zhang, Yanfu Zhang, Feihu Huang,

and Heng Huang. Structural alignment for network prun-

ing through partial regularization. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 17402–17412, 2023. 2

[23] Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins,

and Cheng zhong Xu. Dynamic channel pruning: Feature

boosting and suppression. In International Conference on

Learning Representations, 2019. 1, 3, 6, 7

[24] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

Advances in neural information processing systems, pages

1135–1143, 2015. 1, 2

[25] Babak Hassibi and David G Stork. Second order deriva-

tives for network pruning: Optimal brain surgeon. Morgan

Kaufmann, 1993. 2

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 6

[27] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proceedings

16098

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 30,2025 at 13:49:47 UTC from IEEE Xplore. Restrictions apply.

of the IEEE International Conference on Computer Vision,

pages 1389–1397, 2017. 1

[28] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and

Yi Yang. Soft filter pruning for accelerating deep convolu-

tional neural networks. In International Joint Conference on

Artificial Intelligence (IJCAI), pages 2234–2240, 2018. 2, 7

[29] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and accel-

eration on mobile devices. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 784–800,

2018. 2, 6, 7

[30] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.

Filter pruning via geometric median for deep convolutional

neural networks acceleration. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4340–4349, 2019. 6, 7

[31] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation

networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7132–7141, 2018. 3

[32] Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang,

and G. Edward Suh. Channel gating neural networks. In

Advances in Neural Information Processing Systems. Curran

Associates, Inc., 2019. 7

[33] Zehao Huang and Naiyan Wang. Data-driven sparse structure

selection for deep neural networks. In Proceedings of the

European conference on computer vision (ECCV), pages 304–

320, 2018. 2

[34] Eric Jang, Shixiang Gu, and Ben Poole. Categorical

reparameterization with gumbel-softmax. arXiv preprint

arXiv:1611.01144, 2016. 3

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5, 1

[36] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Citeseer,

2009. 5

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-

agenet classification with deep convolutional neural networks.

In Advances in neural information processing systems, pages

1097–1105, 2012. 1

[38] Yann LeCun, John S Denker, and Sara A Solla. Optimal

brain damage. In Advances in neural information processing

systems, pages 598–605, 1990. 2

[39] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. ICLR,

2017. 1, 2

[40] Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu

Timofte, and Luc Van Gool. Revisiting random channel

pruning for neural network compression. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 191–201, 2022. 8

[41] Yunqiang Li, Jan C van Gemert, Torsten Hoefler, Bert

Moons, Evangelos Eleftheriou, and Bram-Ernst Verhoef. Dif-

ferentiable transportation pruning. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 16957–16967, 2023. 7

[42] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neu-

ral pruning. In Advances in Neural Information Processing

Systems. Curran Associates, Inc., 2017. 3

[43] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,

Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:

Filter pruning using high-rank feature map. The IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR),

2020. 6

[44] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. In International Confer-

ence on Learning Representations, 2019. 4, 5

[45] Liu Liu, Lei Deng, Xing Hu, Maohua Zhu, Guoqi Li, Yufei

Ding, and Yuan Xie. Dynamic sparse graph for efficient deep

learning. In International Conference on Learning Represen-

tations, 2019. 1, 2

[46] Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou,

Jing-Hao Xue, Xinjiang Wang, Yimin Chen, Wenming Yang,

Qingmin Liao, and Wayne Zhang. Group fisher pruning for

practical network compression. In International Conference

on Machine Learning, pages 7021–7032. PMLR, 2021. 7

[47] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In ICCV,

2017. 2

[48] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Kwang-Ting Cheng, and Jian Sun. Metapruning: Meta

learning for automatic neural network channel pruning. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 3296–3305, 2019. 7

[49] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning. In

International Conference on Learning Representations, 2019.

2

[50] Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie,

Jianxin Wu, and Weiyao Lin. Thinet: pruning cnn filters

for a thinner net. IEEE transactions on pattern analysis and

machine intelligence, 2018. 1

[51] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,

and Jan Kautz. Importance estimation for neural network

pruning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 11264–11272, 2019.

6, 7

[52] Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong

Tian. One ticket to win them all: generalizing lottery ticket

initializations across datasets and optimizers. In Advances in

Neural Information Processing Systems 32, pages 4932–4942.

Curran Associates, Inc., 2019. 2

[53] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu

Wang, and Huazhong Yang. Dsa: More efficient budgeted

pruning via differentiable sparsity allocation. Proceedings of

the European Conference on Computer Vision (ECCV), 2020.

6, 7

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An

imperative style, high-performance deep learning library. In

Advances in Neural Information Processing Systems, pages

8024–8035, 2019. 1

16099

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 30,2025 at 13:49:47 UTC from IEEE Xplore. Restrictions apply.

[55] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi,

Ali Farhadi, and Mohammad Rastegari. What’s hidden in

a randomly weighted neural network? In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 11893–11902, 2020. 2

[56] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016. 1

[57] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 1

[58] Alex Renda, Jonathan Frankle, and Michael Carbin. Compar-

ing rewinding and fine-tuning in neural network pruning. In

International Conference on Learning Representations, 2020.

2

[59] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018. 6, 7, 1

[60] Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian,

and Chao Mi. Hessian aided policy gradient. In International

Conference on Machine Learning, pages 5729–5738. PMLR,

2019. 5

[61] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In Ad-

vances in neural information processing systems, pages 568–

576, 2014. 1

[62] Hannah Smith, Zeyu Zhang, John Culnan, and Peter Jansen.

ScienceExamCER: A high-density fine-grained science-

domain corpus for common entity recognition. In Proceedings

of the Twelfth Language Resources and Evaluation Confer-

ence, pages 4529–4546, Marseille, France, 2020. European

Language Resources Association. 3

[63] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing

Xu, Chao Xu, and Chang Xu. Scop: Scientific control for reli-

able neural network pruning. Advances in Neural Information

Processing Systems, 33, 2020. 7

[64] Wenxiao Wang, Minghao Chen, Shuai Zhao, Long Chen,

Jinming Hu, Haifeng Liu, Deng Cai, Xiaofei He, and Wei Liu.

Accelerate cnns from three dimensions: A comprehensive

pruning framework. In International Conference on Machine

Learning, pages 10717–10726. PMLR, 2021. 7

[65] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E

Gonzalez. Skipnet: Learning dynamic routing in convolu-

tional networks. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 409–424, 2018. 3

[66] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured

pruning of large language models. In Proceedings of the

2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 6151–6162, Online, 2020. Asso-

ciation for Computational Linguistics. 3

[67] Andreas S Weigend, David E Rumelhart, and Bernardo A

Huberman. Generalization by weight-elimination with ap-

plication to forecasting. In Advances in neural information

processing systems, pages 875–882, 1991. 2

[68] Dongfang Xu, Zeyu Zhang, and Steven Bethard. A generate-

and-rank framework with semantic type regularization for

biomedical concept normalization. In Proceedings of the

58th Annual Meeting of the Association for Computational

Linguistics, pages 8452–8464, Online, 2020. Association for

Computational Linguistics. 3

[69] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan

Ngiam. Condconv: Conditionally parameterized convolu-

tions for efficient inference. NeurIPS, 2019. 3, 4

[70] Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam

Klivans, and Qiang Liu. Good subnetworks provably exist:

Pruning via greedy forward selection. International Confer-

ence on Machine Learning, 2020. 2, 7

[71] Zeyu Zhang and Steven Bethard. Improving toponym res-

olution with better candidate generation, transformer-based

reranking, and two-stage resolution. In Proceedings of the

12th Joint Conference on Lexical and Computational Seman-

tics (*SEM 2023), pages 48–60, Toronto, Canada, 2023. As-

sociation for Computational Linguistics. 3

[72] Zeyu Zhang, Thuy Vu, and Alessandro Moschitti. Joint mod-

els for answer verification in question answering systems.

In Proceedings of the 59th Annual Meeting of the Associa-

tion for Computational Linguistics and the 11th International

Joint Conference on Natural Language Processing (Volume 1:

Long Papers), pages 3252–3262, Online, 2021. Association

for Computational Linguistics.

[73] Zeyu Zhang, Thuy Vu, Sunil Gandhi, Ankit Chadha, and

Alessandro Moschitti. Wdrass: A web-scale dataset for docu-

ment retrieval and answer sentence selection. In Proceedings

of the 31st ACM International Conference on Information &

Knowledge Management, page 4707–4711, New York, NY,

USA, 2022. Association for Computing Machinery.

[74] Zeyu Zhang, Thuy Vu, and Alessandro Moschitti. In situ

answer sentence selection at web-scale. arXiv preprint

arXiv:2201.05984, 2022.

[75] Zeyu Zhang, Thuy Vu, and Alessandro Moschitti. Double

retrieval and ranking for accurate question answering. In

Findings of the Association for Computational Linguistics:

EACL 2023, pages 1751–1762, Dubrovnik, Croatia, 2023.

Association for Computational Linguistics. 3

[76] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski.

Deconstructing lottery tickets: Zeros, signs, and the super-

mask. In Advances in Neural Information Processing Systems,

2019. 2

[77] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 875–886, 2018. 1, 2

16100

Authorized licensed use limited to: University of Maryland College Park. Downloaded on June 30,2025 at 13:49:47 UTC from IEEE Xplore. Restrictions apply.

