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Positivity conditions on the annulus via the double-layer
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Abstract. We introduce and study a scale of operator classes on the annulus that is
motivated by the C, classes of p-contractions of Nagy and Foias. In particular, our classes
are defined in terms of the contractivity of the double-layer potential integral operator
over the annulus. We prove that if, in addition, complete contractivity is assumed, then
one obtains a complete characterization involving certain variants of the C, classes. Recent
work of Crouzeix—Greenbaum and Schwenninger—de Vries allows us to also obtain relevant
K-spectral estimates, generalizing and improving existing results from the literature on
the annulus. Finally, we exhibit a special case where these estimates can be significantly
strengthened.

1. Introduction. Let p > 0. Denote by C, the class of all bounded
Hilbert space operators T' € B(H) that have a unitary p-dilation, i.e. there
exists a Hilbert space K D H and a unitary U € B(K) such that

" = pPygU" g, n=12...,

where Pp is the orthogonal projection of K onto H. The elements of C, are
referred to as p-contractions. The class C, was introduced by Sz.-Nagy and
Foiag [32] (see also [33, Chapter 1]|) and has subsequently been investigated
by many authors (see e.g. [8] and the references therein). It is known that C;
is precisely the set of contractions on H [31], while Cy is the set of operators
whose numerical range W(T) = {(Tx,z) | ||z|| = 1} is contained in D =
{lz[ <1} [4, 3].

Now, for any open, bounded domain {2 C C, let A(2) denote the uniform
algebra of continuous functions f on {2 that are holomorphic on 2. Also, let
T € B(H) be such that o(7") C D. An alternative characterization of C, (see
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|9, p. 315]) then states that T is a p-contraction if and only if the operator
Sp,p  A(D) = B(H),

ro s+ ey + o {76 q

(1.1)

is contractive, where

=2 L% (ep

2 —z
oD

[y

denotes the Cauchy transform of f. The mapping Sp,, has proved itself a
valuable tool for better understanding C,. As a recent example, Clouéatre,
Ostermann and Ransford [10], building on ideas from [7], used the contrac-
tivity of Sp , as a stepping stone for an alternative, simple proof of the fact
that, for any p > 1 and 7' € C,,
Ip(D)]| < psup [p(2)], Vp € C[z].
z€D

In other words, D is a p-spectral set for T whenever T is a p-contraction
(with p > 1), a result originally proved by Okubo and Ando via dilation
theory [24].

More generally, the unit disk D can be replaced with any (smoothly
bounded) open convex set 2 C C. In this setting, the contractivity of the
double-layer potential integral operator

Soz: f = 3lf(T) + (CH(T)]

(which is equivalent to the inclusion W(T) C 2) has served as a basis
for establishing K-spectral estimates for W (T'); an approach originally due
to Delyon and Delyon [18], it was further refined by Crouzeix in [13] and
culminated in the Crouzeix—Palencia paper [17] (see also [28, 6] and the
recent preprint [29] for further developments), where it was shown that W (T")
is always a (1 + /2)-spectral set for any T € B(H).

More recently, the study of K-spectral estimates through the contractiv-
ity of Sp 2 has expanded beyond convex domains (see [7, 15]). One important
example in that direction, and what actually served as the main motivation
for this paper, revolves around the annulus Ar = {1/R < |z| < R} and the
associated operator class QAg, termed the quantum annulus, that consists
of all invertible Hilbert space operators T satisfying ||T||, |T~!|| < R (for
recent results regarding QApg, see also 2, 22, 34, 35]). In particular, in [15,
Section 5| it was shown that the mapping

Sro t A(AR) = B(H),  f > 5[f(T) + (CHIT),
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where (Cf)(2) = 5= SAR Ed{, is always contractive iET € QAg. This
observation, combined with the contractivity of f — Cf over Ar and an
abstract functional analysis lemma (see [15, Theorem 2] or [28, Lemma 1.1]),

suffices to establish that, given any T' € QAp, we have
IF(T)| < (1 +V2) sup |f(2)], VfeAlAr),

2z€EAR

i.e. Agis a (1++/2)-spectral set for T whenever T' € QAp, (it is known that
the optimal value of this spectral constant cannot be less than 2; see [34]).

Now, observe that in the previous discussion, the class QApg enters the
picture only through the contractivity of Sg . Thus, if one wants to gain a
better understanding of K-spectral estimates over Ag, the following question
emerges naturally: for which operators 1" is Sgo contractive? This line of
inquiry, together with the form of the mapping (1.1), is what motivated
our definition of the operator class DLAR(c) (where ¢ > —2); an operator
T € B(H) with o(T) C Ag belongs to DLAg(c¢) if and only if the mapping

Sk A(Ar) — B(H),

o
— n 1 £ *
f _nzzooanz = 5 (@) + (CHT) + cao),

is contractive (see Section 3 for the general definition and Theorem 3.12 for
the equivalence between the two when o(T) C Ag). The goal of the present
work is to study the operator class DLAR(c) and its completely contrac-
tive analogue CDLLAR(c) (see Section 4). Note that the study of completely
bounded maps and dilations in the setting of the double-layer potential ker-
nel and Crouzeix’s conjecture has already been successfully initiated in the
papers [27] and [10, Section 6]. Also, we point out that while the inclusion
CDLAR(c) € DLAR(c) follows immediately from the definitions, it is not
known to us whether it is strict or not (see Question 4.7).

To state our first main result, a characterization of CDLAr(c), we require
the following generalization of the C, classes, introduced by Langer [33, p. 53]
(see also [30]).

DEFINITION 1.1. Assume A € B(H) is a bounded, positive operator that
is also bounded below. The class C4 contains all operators T' € B(H ) with the
property that there exists a Hilbert space K D H and a unitary U € B(K)
such that

ATV AT = prU . n=1,2,....

Our characterization then proceeds as follows. Note that the inequality
T > 0 indicates that the Hilbert space operator T is positive, while T" > 0
means that it is strictly positive.
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THEOREM 1.2. Let T € B(H) and ¢ > —2, with o(T) C Ag. Then
T € CDLAR(c) if and only if T/R € Core—n and T~1/R € Ca for some
A e B(H) such that A>0 and 24+c— A > 0.

Dropping the assumption o(T) C Ar leads us to Theorem 4.4.

As remarked previously, the only way the class QA enters the proof of
the K = 1+ /2 spectral estimate in [15] is through the inclusion QAp C
CDLAR(0). This suggests that the spectral constant for QA g may coincide
with the one for CDLAR(0). Utilizing the solution of an extremal problem
over Ap due to McCullough and Shen [23], we are able to prove a partial
result in the setting of 2 x 2 matrices that supports this idea.

THEOREM 1.3. Let ¢ > 0 and assume T € DLAg(c) is a 2 x 2 matriz
with a single eigenvalue. Then AR is a K(R)-spectral set for T, where
2

R —1
K(R) —2+CR2+1 <2+ec

Note that one can also take advantage of the machinery established in [7]
and [15] to prove general K-spectral estimates for DLAR(c) and CDLARg(c);
see Theorem 5.3 (and also Remark 5.5). In fact, our approach yields sharper
estimates for certain operator classes; see Remark 5.4.

Our paper is organized as follows: Section 2 contains a few preliminary
lemmata on the C4 classes. In Section 3, we explore the basic properties of
DLAR(c), mostly related to certain inclusion and monotonicity results. In
Section 4, we characterize CDLARg(c) through Theorems 1.2 and 4.4. Finally,
Section 5 contains the proofs of Theorems 1.3 and 5.3.

2. Preliminaries

2.1. The C4 classes. This section contains alternate characterizations
of C4 that are usually easier to work with. We have included proofs for the
convenience of the reader.

LEMMA 2.1. Assume A € B(H) is a bounded, strictly positive operator
and let T € B(H). Then T € C4 if and only if o(T) C D and

(2.1) 2R —2T) ' +A4-2>0, VzeD.

Proof. Assume first that T' € C4. Since Co C Cja), we have o(T) C D
(see e.g. [33, p. 43]). Also, in view of [33, p. 53], T' € C4 is equivalent to

(Ah,h) — 2R(2(A — I)Th, h) + |2|*((A — 2I)Th,Th) > 0
for all h € H, |z| < 1. This inequality can be rewritten as
(A(I — 2T)h, (I — 2T)h) —2((I — zT)h, (I — 2T)h) +2R((I — 2T)h,h) >0
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for all h € H, |z| < 1. Setting h = (I — 2T)~'h, we obtain
(A=2+ (T —2T) '+ (1 —-2T*) " Yh,h) >0

for all h € H,|z| < 1, which is the desired conclusion.
For the converse, simply roll back the previous steps. =

Note that one could define C4 more generally, for A bounded and self-
adjoint, through (2.1). Using this definition, it is easy to see that C4 is
non-empty if and only if A > 0 (in which case it contains the zero operator).

LEMMA 2.2. Assume A € B(H) is a bounded, strictly positive operator
and let T € B(H) be such that o(T) C D. Then T' € C4 if and only if

(2.2) (1—eT)y 141 —e®T) L4 A4-2>0, VOe[0,2n).
Proof. Fix an arbitrary h € H and define
Dy :D—C, 2z (2R —2T)"  + A—2)h, h).

Since o(T') C D, @}, is a harmonic function on D that extends continuously
to D. By the minimum principle for harmonic functions, we then deduce that
Dp(z) > 0, for all z € D, if and only if

Py (e?) = ((2R(1 — ®T) " + A—2)h,h) >0, V0 € [0,27).
Since h was arbitrary, we are done. m

2.2. Completely bounded maps. Let A C B(H) denote an operator
algebra, i.e. a unital subalgebra of the C*-algebra of bounded linear operators
on some Hilbert space H. Given a natural number n > 1, we denote by
M, (A) the algebra of n x n matrices with entries from A, which we view
as a subalgebra of bounded linear operators acting on H® = H@® --- @ H
(n summands). In particular, M, (A) is endowed with a norm under this
identification. Given a map @ : A — B(H), for each n > 1, we may define
the coordinatewise map &™) : M, (A) — B(K™) as

" ([ai;]) = [B(ai)],  ai;] € Mi(A).

If @ is linear (or anti-linear), we say that @ is completely bounded if the
quantity

1]l = sup |2
n

is finite. We say that @ is completely contractive if ||®||cp < 1. Furthermore,
@ will be called positive if it maps positive elements of A to positive operators
in B(K). The map @ will be said to be completely positive if @) is positive
for every n > 1. For more details on these concepts, see |26].
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3. The DLAR(c) class

3.1. The C,+(R) classes. Before we dive into the study of DLAR(c), we
will establish a few basic facts regarding Cs ;(R). These are operator classes

which form (as will be seen in the next subsection) strict subsets of certain
DLAR(c) classes.

DEFINITION 3.1. Let R > 1 and s,t > 0. Define
Cst(R)={T € B(H) | T/R € Cs and T"'/R € C;}.
First, we record C, ¢(R)-membership criteria concerning normal matrices.
These are easy consequences of known results about C,,.
LEMMA 3.2. Let s > 0 and assume T € B(H) is in Cs.
(i) If s> 1, then o(T) C {]z] < 1}.
(i) If s <1, then o(T) C {|z| < s/(2 —s)}.
Proof. This is [5, Lemma 5|. m
PROPOSITION 3.3. Fiz R > 1 and assume s,t > 0. Also, let N € B(H)
be normal.
(i) If s,t > 1, then Cs4(R) is always non-empty. Moreover, N € Cs(R) if
and only if 1/R?> < N*N < R2
(i) If s > 1 and t <1, then Cs4(R) is non-empty if and only if

<t.
R24+1—

Moreover, N € Cs+(R) if and only if (2 —t)?/(R*t?) < N*N < R%.
(i) If s <1 and t > 1, then Cs4(R) is non-empty if and only if
R?2+1 s s
Moreover, N € Cs+(R) if and only if 1/R?> < N*N < R%s%?/(2 — 5)°.
(iv) If s <1 and t <1, then Cs(R) is non-empty if and only if
l 2—-t < s

R t ~ R2 -5
Moreover, N € Cs4(R) if and only if
(2 — t)2 * 2 82
<N*N<R .
R%2t2 — - (2—19)?

Proof. We only consider the case s > 1, t < 1 (the remaining three
cases can be proved in essentially identical ways). The assertion about N is

an immediate consequence of |5, Theorem 6]. Note also that, if RZLH < t,
there exists a scalar a € C satisfying % < |a] < R. This scalar lies in

Cs+(R), hence this class is non-empty. Conversely, assume that R%rl >t
and there exists T € Cs4(R). Since T/R € Cs, Lemma 3.2 tells us that



Positivity conditions on the annulus 239

o(T/R) C {|z| < 1}, hence o(T) C {|z| < R}. Also, the fact that T~! /R isin
C; implies (in view of the same lemma) that o((2—t)t~'T~!/R) C {|z| < 1}.
Thus, we can conclude
o(T) c {R'2-t)t7 ' <|z| <R} =0,

as R%H > t, a contradiction. Therefore, Cs;(R) must be empty. =

We now show that the C, +(R) classes are, in a certain sense, “rigid” with
respect to the parameters s,t. To do this, we require Cg;(R)-membership
conditions for 2 x 2 matrices with a single eigenvalue.

LEMMA 3.4. Fiz R > 1. Also, let s,t >0 and T = (8 2), where a,b € C.
(i) Assume s,t > 1. Then T' € Cs(R) if and only if
RIb| < (R —[a])((2 = s)la| + sR)

and

R|b| < (Rla| — 1)(2 — t + tR|al).
(ii) Assume s > 1 andt <1. Then T € Cs+(R) if and only if
RIp| < (R —al)((2 = s)al + sR)
and
RIb| < (R|a| + 1)(tR|a|] — 2+ t).
(i) Assume s <1 andt>1. Then T € Cs4(R) if and only if
RIb| < (R + Jal)(sR — (2 — 5)[al)

and
R|b| < (Rla| — 1)(2 — t + tR]al).
(iv) Assume s <1 andt < 1. Then T € Cs4(R) if and only if
R[p| < (R + |a])(sR — (2 = s)lal)
and
R|b| < (Rla| + 1)(tR|a| — 2+ t).
Proof. The lemma is a consequence of the following observation: if s > 1,
then (a/R b/R) € Cs if and only if |a| < R and

0 a/R
(3.1) RJb| — sR? + (2 — s)|al? < 2(1 — s)R|al,
while if 0 < s < 1 we have () V) € C, if and only if |a| < Ry*; and
(3.2) R|b| — sR* + (2 — s)|a* < 2(s — 1)R]al.

So, assume first that s > 1. In view of [25, Theorem 3.1], we know that

(“[ V%) € ¢, if and only if |a| < R and

(3.3) b1/ R < |s + (s = 2)|al*/R* — 2(s — 1) al /R|*.
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Observe that
s+ (s — 2)al*/R* = 2(s — 1)|a|/R = (s — 1)(|a| — R)*/R* + 1 — |a]*/R?,

which is non-negative because |a| < R. We thus conclude, after taking square
roots, that (3.3) is equivalent to (3.1), as desired.
Assume now that 0 < s < 1. Using |25, Theorem 3.1| again, we deduce

that (“)" /%) € C, if and only if [a| < Ry*; and

(3.4) b]*/R?* < |s + (s — 2)|a]?/R* — 2(1 — s)|a|/R|>.
Observe that

s+ (s —2)|a]*/R? —2(1 — s)|a|/R
= (s —1)(Ja| + R)*/R* + 1 — |a|*/R?
= (la[/R+1)((s = 1)(la[/R+ 1) + 1 — |a|/R)
= (la[/R+1)((s — 2)|al/R + s),

which is non-negative because |a| < R5*~. Hence, (3.4) is equivalent to (3.2)
and the proof is complete. m

THEOREM 3.5. Assume s,t > 0 and R > 1 are such that Cs+(R) is
non-empty. Then there exists T € Cs4(R) such that for every e > 0 and
every s',t' > 0 we have

T §é Cs’,tfe(R) and T §é Csffvt/(R)'

Proof. We only deal with the case s > 1,t < 1, as the computations
required for the remaining three cases are very similar in nature.

So, let s > 1,¢t < 1 and assume also that (2 — t)/(Rt) < R, hence
Cs+(R) is non-empty. Note that if (2 —¢)/(Rt) = R, then any class either
of the form Cy ;_(R) or of the form C,_y(R) is empty. Obviously, the
conclusion of the theorem holds in this case. Thus, we may actually assume
that (2 —t)/(Rt) < R. We are looking for an operator that satisfies the
conditions in the statement of the theorem and has the form T = (8 2),
where a,b € C. In view of Lemma 3.4, we know that such a T" belongs to

Cs+(R) if and only if (2 —¢)/(Rt) < |a| < R and

(3.5) R|b| — sR* 4+ (2 — s)|a> < 2(1 — s)R]d|
and
(3.6) RJb| — tla|?R* + (2 — ) < 2(t — 1)R|al.

Our goal is to find a pair (ag, bg) such that (2—1t)/(Rt) < |ap| < R and both
(3.5) and (3.6) are equalities. Indeed, assuming such ag and by exist, let Ty
denote the corresponding operator and consider any € > 0. We then have
Ty € Cs¢(R) and also
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Rlbo| — (s — €)R* + (2 — (s — €))]ao|* + 2((s — €) — 1) Raq|
= R|bo| — sR? + (2 — s)|ao|® + 2(s — 1)R|ag| + e(R* + |ag|> — 2R|ao|)
= ¢(R — |ag|)* > 0,
which shows that Ty ¢ Cs_er(R), for any ¢’ > 0. An analogous argument
involving the second inequality also shows that Ty ¢ Cy ;—(R) for any s > 0,
as desired.

Now, assume that we have equality in both (3.5) and (3.6) (without any
extra restrictions). We can then extract a quadratic equation involving |a|
only:

(3.7) (s —tR? —2)|a|* +2(2 — s — t)R|a| + 2 — t + sR> = 0.

Notice that if we are able to find a solution |ag| of the above equation that
also satisfies (2 — t)/(Rt) < |ap| < R, our proof will be complete. Indeed,
|bp| is then uniquely determined as

(s — 2)|ao|?
R
and the associated Ty has the desired properties.

Assume first that s = tR? + 2. Equation (3.7) then turns into the linear
equation

t—2
|b0’:SR+ +2(1—s)]a0|:t]a0|2R—|—T+2(t—1)]a0|

2(2—s—t)Rla|+2—t+sR*=0,

where s = tR? 4+ 2. Let ag be any number satisfying the previous equation,
ie.
2(R?2+ 1)+ (R - 1)

2R(R? + 1)t
One can then verify that |ag| < R is equivalent to the inequality RQLH < t,
which is equivalent to (2—1¢)/(Rt) < R, hence it must be true. An analogous

argument applies to the inequality |ag| > (2 —t)/(Rt).
Assume now that s # tR? 4+ 2. After some calculations, we obtain
(for (3.7)) the (non-negative) discriminant
A=4[(R*+1)%st —2(R* +1)(s + t) + 4(R* + 1)].
Choose ag to be any number satisfying
2R(s +t—2)— VA

ol = =GR =)
Suppose first that s > tR? + 2. The inequality |ag| < R is equivalent to
RY2(R? +1)%2 +2(R?2 + 1)t —4(R* +1)

(RZ+1)((R?+1)t—2) '

hence it must be true. The proof when s < tR? + 2 is entirely analogous.

lag| =

tR* +2 =
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We now prove that |ag| > (2—1t)/(¢tR). The computations here are some-
what more unpleasant. First, we assume that s > tR? + 2, in which case
lag] > (2 —t)/(tR) is equivalent to

[(R?+ 1)t —2)% ,
R? s

16 8
+ (—R2 + @(Rz +2)t +2(R* 4+ 1)[1 — 2/R*|t* — (R* + 1)2t3)s

16 16
R R?
But this can be rewritten as

+ t+4(1/R* — R* — 1)t* + 2(R* + 1)t > 0.

%((32 T 1)t 2)(s — tR? — 2)([(B® + 1)t — 2Js +2(2 — 1)) > 0,

which holds for s > tR? + 2 and (R? + 1) > (R? + 1)t > 2, as desired. The
proof when s < tR? + 2 is entirely analogous. m

3.2. Basic properties of DLAR(c). We now define a new operator class
attached to the annulus Ag.

DEFINITION 3.6. Let ¢ € R and R > 1. Then DLAR(c) denotes the class
of all operators T' € B(H) such that

(i) o(T) C Ag,
(ii) 2R[(1 — 2T/R)'+ (1 —wT Y/R)™] =2+ ¢ >0 for all z,w € D.

First, we prove a few elementary properties of DLAg(c), including mem-
bership criteria for normal operators.

LEMMA 3.7. Let ¢ > —2, R > 1 and assume A € B(H) is a self-adjoint
operator such that A > 0 and 2+ c— A > 0. If T € B(H) is such that
T/RECoren and T™1/R € Ca, then T € DLAR(c).

Proof. Assume T' € B(H) satisfies our hypotheses. Lemma 2.1 allows
us to deduce that o(T/R), o(T~'/R) C D, hence o(T) C Ag. Also, (2.1)
implies that
2R(1—2T/R) ™' +24+c—-A-2>0

and
2R(1 —wT /Ry P+ A—2>0,

for all z,w € D. Adding these two inequalities concludes the proof. m
PROPOSITION 3.8. Let ¢ € R, R > 1 and assume N € B(H) is normal.

(i) If ¢ > 0, then DLAR(c) is non-empty for every R > 1.
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(ii) If =2 < ¢ < 0, then DLAR(c) is non-empty if and only if there exists

€ (0,2 + ¢) such that
2 _
max{ , 8}§R2min{1,+cs}.
s—c
In fact, DLAR(c) is non-empty if and only if it contains a scalar a € C.
(iii) If ¢ < =2, then DLAR(c) is empty for every R > 1.
(iv) DLAR(c) C Ca—c2—c(R) for every ¢ > —2.
(v) Assume ¢ > —2. Then N € DLAR(c) if and only if

o(N)C |J Copess(R
0<s<24c

(vi) If, in addition, we assume ¢ > 0, then N € DLAR(c) is equivalent to
R™? < N*N < R?.

Proof. First, we prove that if ¢ > —2, then DLARg(c) is non-empty if
and only if there exists s € (0,2 + ¢) such that Coyc—ss(R) is non-empty.
Once this has been shown, the last assertion in (ii) will follow immediately
from Lemma 3.7 and the fact that Coy.—s s(R) is non-empty if and only if it
contains a scalar (see Proposition 3.3).

First, observe that Lemma 3.7 implies Coy.—s s(R) C DLAR(c) for every
s € (0,2 4 ¢), hence one direction is obvious. For the converse, assume
DLAR(c) is non-empty. Thus, there exists 7' € B(H) such that

(3.8) ((2R[(1 — 2T/R) ™ + (1 —wT ' /R)™"] =2+ c)h,h) >0

for all z,w € D and x € H. Now, let A € C* be in the approximate point
spectrum of 7' (it is always non-empty, as it contains the topological bound-
ary of o(T); see [20, Problem 63]). Thus, there exists a sequence {h,} C H
such that ||hy]| =1 (n=1,2,...) and (A = T)h, — 0 as n — co. Hence we
easily obtain

lim(A\* — T*)h,, = 0,

n

for all k € Z. Thus, (T*h,,, h,) — ¥ for all k € Z, and so

m

(3.9) < (2T/R)*hy, hn, >%i (2\/R)*

k=0 k=0

and

(3.10) ( (w/ (RA))*

NE
NE

(@I /R) ) =

e
Il

0

£
Il
o

as n — oo, for all m > 0 and z,w € D.
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Now, fix z,w € D. We have

i (2T/R)* - (1 —2T/R)™' and i (wT1/R)* - (1 —wT™'/R)™!
k=0

in the operator norm as m — oo, since o(2T/R),o(wT~'/R) C D. Hence,
in view of (3.9) and (3.10), we conclude that

. 1 o
(3.11) Tim (1= 2T/R) ™", hy) _mlﬁllloo<z (:T/R) hn,hn>
=(1-2)\/R)!
and
. 1,1 _ % 1,k
(3812)  lim (1 —wT™/R) By, ) _m}gm<2(wT /R) hn,hn>

— (1 —w/(RN)!

We now set h = hy, in (3.8) and let n — oco. In view of the real-part versions
of (3.11) and (3.12), we deduce that

2R[(1 — 2A/R) "'+ (1 —w/(AR)) ] —2+¢>0
for all z, w € D. This can also be written as

inf[2R(1 — AR 4] > su%[—m(l —w/(AR))" +2]

and thus we can deduce the existence of s € R such that
2R(1 —2A/R)' + (1 —w/(AR)) ¢ > 5> —2R(1 —w/(AR)) ™" +2

for all z,w € D. In view of Lemma 2.1, we find that A\/R € Caj.—s and
1/(AR) € Cs, which concludes the proof of our assertion. If ¢ > 0, then we
can always choose s = 1, as Ca4—1,1(R) will be non-empty by Lemma 3.3(i).
This gives (i) and if —2 < ¢ < 0, we obtain (ii) by the same lemma.

For (iii), assume ¢ < —2 and let T' € DLAR(c). Set w = 0 in the definition
of DLAR(c) to deduce that T/R € C.42, which implies that ¢ = —2 (since
C, is empty for p < 0). But then T'/R € Cy and so T = 0, which contradicts
the inclusion o(7") C Ag. Thus, DLAR(c) must be empty.

For (iv), assume ¢ > —2 and let T' € DLAR(c). Setting w = 0 in the
definition of DLAR(c) gives T/R € Ca—., while setting z = 0 (and letting
w € D) gives T~1/R € Cy—.. Thus, DLARg(c) C Ca—ca—c(R).

For (v), let ¢ > —2. Since N is normal, it has a spectral decomposition
(see [11, Chapter IX])

N= | XdE().
a(N)
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Using this, we find that N € DLAR(c) if and only if its spectrum is contained
in Ap and
2R[(1 — 2N/R) '+ (1—wN~Y/R) '] —2+¢
= | @RIA-20/R)+ (1 —w/(AR) =2+ c)dE(N) >0
o(N)
for all z,w € D, which can be equivalently restated as
2R[(1— 2A\/R) "'+ (1 —w/(AR)) Y —24+¢>0

for all z,w € D and all A € o(N). Mimicking our argument from the proof
of (i), we deduce, for every A € o(N), the existence of s € (0,2+¢) (depend-
ing on A) such that X\ € Coyc—ss(R). Hence

U(N) C U 62+c—s,s (R>7
0<s<24c
which concludes the proof.
For (vi), assume ¢ > 0. Since N is normal, =2 < N*N < R? is equivalent
to o(N) C Ag, which is necessary for membership in DLAg(c). Conversely,
if R72 < N*N < R?, then

O'(N) - C171(R) - U C2+cfs,s(R)a
0<s<2+c

where the last inclusion holds because ¢ > 0. Thus, N € DLAR(c). =

Under the extra assumption o(T") C Ag, we can restrict the parameters
z,w in the definition of DLAR(c) to the boundary of the disk (this is the
DLAR(c)-version of Lemma 2.2).

LEMMA 3.9. Assume ¢ > —2 and T € B(H) is such that o(T) C Ag.
Then T € DLAR(c) if and only if

2R[(1 —eT/R)™ + (1 — T /R)™' —24+¢>0, V0,9 <€[0,27).

Proof. First, assume 7" € DLAR(c). Fix an arbitrary h € H and w € D
and define

Bp D — C,
2 ((2R[(1 = 2T/R)™ + (1 —wT™'/R)™'] — 2+ ¢)h, h).

Since o(T) C AR, Pp 4 is a harmonic function on D that extends contin-
uously to . By the minimum principle for harmonic functions, we then
obtain

Dpaw(2) = (2R[(1 — 2T/R) ™ + (1 —wT '/R)™'] =2+ ¢c)h,h) >0
for all z € D, if and only if
Bp0(e?) = (2R[A — T/R)™ + (1 —wT ' /R) ' =2+ c)h,h) >0
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for all # € [0,27). Since h and w were arbitrary, we conclude that
WML —e’T/R)y" P+ (1 —wl /R -2+4+¢>0

for all § € [0,27) and all w € D. We can now apply the minimum principle
to the function

w s (2R[(1 — PT/R)™ 4+ (1 —wT™1/R)"Y =2+ ¢)h, h)

to conclude the proof.
For the converse, simply roll back the steps in the previous proof. m

Now, recall that the C, classes are strictly monotone with respect to p,
i.e. p < p' implies C, C C,. We are going to prove an analogous monotonicity
result for DLAR(c).

THEOREM 3.10. If =2 < ¢ < ¢ and DLAR(c) is non-empty, then
DLAR(c) € DLAR(c).

Proof. If ¢ < ¢, it is obvious by the definition of DLARg(c) that DLAR(c)
C DLAR(¢). To show that the inclusion is actually strict, we are going to
divide the proof into two cases.

First, assume there exist s,t > 0 such that s > 1, s+t = 2 + ¢ and
Cs+(R) is non-empty. Note that (in view of Lemma 3.3 and monotonicity
of the C, classes), if such s,t exist and ¢ > 1, we can replace them by new
parameters s, ¢ such that s > 1, ¢ < 1, s +t =2+ ¢, RQLH < t and
Cy v (R) is non-empty. So, we may also assume that ¢ < 1 and RQLH <t

Now, we will take advantage of the matrices we calculated in the proof
of Theorem 3.5. Recall first that, in view of Lemma 3.4, a matrix

6 )

T =

0 a

with a,b > 0 lies in Cy4(R) if and only if (2 —t)/(Rt) < a < R and

1 b

(3.13) 2%{1—%%/3} +(s—2)> AT —ad® R

for 8 =0 and

(3.14) 23%[ ! b !

= ew/(aRJ =2 2 G R @R

for ¢» = 7. Since RQLH < t, the proof of Theorem 3.5 tells us that we can find
a,b such that (2 —1t)/(Rt) < a < R and we have equality in (3.13) for 6 =0
and in (3.14) for ¢ = 7. Since, for these values of a,b, we have T' € C,+(R)
and s+t =2+ ¢, Lemma 3.7 tells us that 7' € DLAR(c).

Now, we claim that 7' cannot lie in DLAR(c). Indeed, assume T €
DLAR(c). Taking determinants in the inequality

2R[(1 —2T/R)™ P+ (1 —wT'/R) ™' —2+¢>0
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implies that

1 1
1—ae/R + 1—e"/(aR)

2| |2+

bet? B i et
R(1 —ae??/R)2  a? R(1 — e /(aR))?

for all # and 4. In particular, we can choose 6y = 0 and 1y = m, which
implies (since we have equality in both (3.13) and (3.14))

>

2% ! + ! 24
, . —-2+c¢
1—ae® /R 1—e/(aR)
betbo b eio
> - - — -
- ‘R(l —ae®/R)2 a2 R(1 — e /(aR))?

beto
‘ R(1 — ae'?o / R)?
R

—9 L—ai"/R] +(s—2)+23‘ﬁ[

T2 RO =% /(aR))?

1-— e“/’o/(aRJ +(-2)
1 /

1-— aeiOO/R] + 2%{1 - eiwﬂ/(aR)] o2

a contradiction, since ¢ < ¢’. Thus, T' ¢ DLAR(¢).

Now, assume that there do not exist s,¢ > 0 such that s > 1,5+t = 2+¢
and Cs¢(R) is non-empty. Since 7' € Cs¢(R) if and only if 771 € C;4(R),
we also deduce that there do not exist s, > 0 such that t > 1,s +t =
2+ ¢ and Cs(R) is non-empty. Thus, —2 < ¢ < 0. Now, DLAR(¢) is non-
empty, so Proposition 3.8(i) tells us that there exists s € (0,24 ¢’) such that
Cs.24¢—s(R) is non-empty. In view of our previous remarks, s,2+¢ —s < 1.
Lemma 3.3 then tells us that

1 s—¢ s

R2+c—s SRQfs'
Note that the right-hand side tends to 0 as s — 0, while the left-hand side
remains bounded below by a strictly positive number. Thus, shrinking s, we
may replace it by a positive number § such that %% = R%. In view
of Lemma 3.3 again, we obtain that Cs24~_5(R) is non-empty. Setting a =
R%, we obtain, from the same lemma, that a € C5940—5(R) C DLAR().

Now, we shall show that a ¢ DLAR(c). Assume instead a € DLAR(c).
Proposition 3.8 then implies that we can find sp € (0,2 4 ¢) such that
a € Csy 24c—s0(R). But ¢ < ¢, hence either sp < dor2+c—s9 <2+ —9.
Assume that sg < §, then

:m[

S0 ) i
2—80 2—6

R
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which contradicts a € Cgy 24c—s,(R). Similarly, if 2+ ¢ —s9 <2+ ¢ —J we
can write

12—(2+c—50)>12—(2+c'—5) 1 6-¢

_— _— = — = Qa

R 2+c—sp R 2+ -6 R2+c -6 ’
which again contradicts a € Cgy 24c—so(R). Thus, a ¢ DLAR(c) and we are
done. =

It is well-known (see e.g. [36]) that given any T" € C, (p > 0) and any
f € A(D) such that ||f|lc < 1 and f(0) = 0, we have f(T) € C,. We end

this subsection with a proposition that is motivated by this result.

PROPOSITION 3.11. Assume ¢ > —2 and T € DLARg(c). Then for any
f,g € A(D) that are bounded by 1 and satisfy f(0) = g(0) =0, we have

2R[(1 - 2f(T/R)™' + (1 —wg(T'/R))™ ' —=2+c>0
for all z,w € D.
Proof. By assumption, we know that
= (Tz\" (T w\" —c
1 — 1 —_— >
o 2(R) () ]2

for all z,w € D. Fix w € D, let € H and choose a decreasing null se-
quence {ex}. Set

o0 T_l n
Sp = Sp(w) = 1+ ¢/2 + e, + mz( Rw> € B(H).
n=1

Inequality (3.15) now tells us that the holomorphic function
oo Zn
F,:D—C, zHZE<T”x,x>+<Skx,x>,
n=1
has positive real part and satisfies Fj(0) = (Sgz, ) > 0 (put z = 0in (3.15)).

Thus, Herglotz’s theorem implies the existence of a positive measure fiz , k
on the unit circle such that

2" n 14 ze ¥
Fp(0)+) T (T, ) = | T Gz k(0)
n=1

for all z € D. Expanding the integrand and equating coeflicients, we obtain
1
Rn
for every n > 1. Thus, if p is any polynomial such that p(0) = 0, we can
write

(T"x,z) =2 S e~ 0 dptgwk(0)

(p(T/R)x, ) = 2\ p(e ™) dptg 1 (0).
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Replacing p by p", we obtain
(p"(T/R)w,x) = 2\ p"(e™) iz oo 1(6)

for every n > 1. Thus, if we also assume that [p| < 1, we deduce that p(T/R)
has its spectrum inside D (since the same must be true for 7'/ R) and we can

write
o0

<<Sk+z T/R) ) =F +2Zz"§ eV dyty 1 (0)

(e w

Now, if f € A(D) is bounded by 1 and satisfies f(0) = 0, a standard approx-
imation argument shows that

(s + fj SNT/R) )aw) = | ijé:ji At (0).
n=1

The integrand has positive real part for all z and 6, hence

o0

n = -1 n ;C
%[E(zf(T/R)) Fl4e+ ;(wT /R) } > =
for all k and for all z,w € D. Letting k — oo, we obtain
o) o) B . —c
R|Y (A (T/R)" + 1+ Y (wI /R > 5
n=1 n=1

for all z,w € . Using this last inequality, we may repeat the previous
argument with the roles of z and w swapped, thus obtaining the desired
result. m

3.3. The double-layer potential kernel. In this subsection, we ex-
hibit the connection between DLARr(c) and the double-layer potential kernel
over the annulus, as described in the introduction.

Recall that, given any bounded open {2 C C and any T € B(H) such
that o(T) C {2, we may consider the Cauchy transforms of f and f,

F(T) = (CN(T) = 5 | Fo)o ~T) " do,

2
T o

(CTT) = 5 | F@)o —~T) " do.
o0

We also define the transform of f by the double-layer potential kernel
S(,7) = | wlo(s),T)f(o(s)) ds,

o8
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where s denotes the arc length of o = o(s) on the (counter-clockwise) ori-
ented boundary 02 and u(o(s),T) is the self-adjoint operator defined (for

o(s) ¢ o(T)) as
plo(5),T) = 5=(0(3)(o(s) ~ )™~ (3o (s) — T) 7).
Note that S(f,T) = f(T) + (Cf)(T)* and thus §,, (0, T) ds = 2I.
The definition of DLAR(c) can now be recast (for o(T) C AR) as follows.

THEOREM 3.12. Assume R>1, ¢>—2 and T € B(H) satisfies 0(T) C AR.
Then T € DLAR(c) if and only if the mapping

SR A(Ar) = B(H),

n 1
f:ZanZ ’_>27—|—c|: S M(O’,T)f(o’)dS"_CaO s
neZ 0AR

1s contractive.

Proof. Write 0Ar = Iy U I'_1, where I (the outer circle) is counter-
clockwise oriented, while I'_; (the inner circle) is clockwise oriented. Also,
in view of |26, Corollary 2.9, Proposition 2.12|, the fact that Sg . is unital
allows us to deduce that Sg . is contractive if and only if the operator

(316)  Sp.: A(Ag) + A(Ag)* = B(H),
f+g= Z anz" + ZEE“ — Sre(f) + Sre(9)”

nez neZ
_ 21+C[ | (o, T)(f +9)(0)ds + c(ag +®}’
0AR

is positive. Let C(0AR) denote the algebra of continuous functions on 0Agr
and recall that the closure of A(Agr) + A(Ag)* in C(0AR) is the codimen-
sion 1 subspace (see [26, p. 80])

Mp = {f e C(DAR) : | floyds=—=\ f(o) ds}.

27 R B e

Thus, our goal is to show that T € DLARg(c) if and only if S R,c is positive
over Mp, where

Spe: Mpr — B(H),

fe 2+C[ | u(a,T)f(a)ds+% S ({U/ds]
9AR I

(note that Sy, = Sp. over A(Ag) + A(AR)*). We require the following
lemma.
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LEMMA 3.13. In the setting of Theorem 3.12, T € DLAR(c) if and only if
Ru(o1,T) + R (02, T) + % >0
for all o1 € I'1 and o9 € I'_4.

Proof. For o1 € I, the arc-length parametrization gives o1 = Re'?
ol = ie", while for o9 € I'_; we obtain o9 = R~ e ™, ob = —ie~ ™ where
0, € [0,2m). Thus, we may write
2n[Ru(o1, T) + R (o2, T)] + ¢
= 2R[Re(Re® — T)7 ']+ 2R[-R e ™ (R Te™™ —T) 7! + ¢
=2R[(1 — e “T/R) '+ (1 — e ™T YR+ ¢—2,
which is positive for all 0,1 € [0,27) if and only if 7' € DLAR(c). =

Now, assume that S, is positive and that T ¢ DLAg(c). In view of
Lemma 3.13, there exist m € I, 72 € -1 and a unit vector v € H such
that

(3.17) <<Ru(771,T) + R (e, T) + 2C7r>v,v> — 2k < 0.

Since o(T') C Ag, we know that both of the maps o1 — (u(o1,T)v,v) and
o9 — (u(o2,T)v,v) are continuous. Thus, in view of (3.17), we can find
small arcs Iy C I and I_; C I'_; of equal length and centered at 7; and 79
respectively such that

<<Ru(01,T) + R (o0, T) + 20>v,v> <k<O0
T

for all o1 € I and all o9 € I_;. From this, we easily deduce the existence of
t € R such that

(3.18) <<Ru(al, T) + 2c7r>v,v> <k/2+t
and
(3.19) (R pu(og, TYv,v) < k/2 —t

for all o1 € I; and all o5 € I_1. Now, take g : 0Ar — C to be a continuous
function such that 0 < g < 1, g(z) = 0 for z outside I; UI_; and d =
525\, 9(0) ds = £ §r,9(0)ds > 0. Then g € Mg and so Sg.c(g) must be
a positive operator. However, observe that by (3.18) and (3.19),
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2+ ){(Sre(g)v,v) = | (u(o,T)v,v)g(o )ds+—§ g(o1) ds

Py 2T R
— S (Ru(ol,T)v,wg(;l) ds

I

+ S <R_1,u,(o'2, T)v,v)Rg(o2) d8+ﬁs g(oy)ds

'
< (k:/2+t)% [ glon)ds+ (k/2— )R | g(os)ds
In I

— ondk < 0,

a contradiction. Thus, T' € DLAg(c).
Conversely, assume 7' € DLAR(c). Fix v € H. Lemma 3.13 tells us that
we can find ¢t € R such that

(3.20) <<Ru(o—1,T) + ;r)v,v> > ¢
?;21) (R u(og, Tv,v) > —t,

for all o9 € I and all oo € I'_1. Now, let f € Mpg be positive. Since
e SFl flo)ds = 5= SF | f(0) ds, we may write (in view of (3.20) and (3.21))

2+ )(Sre(fv,v) = | <(Ru(al, T) + 267T>v v> f(;?) ds

Iy

+ | (R (o2, T)v,v)Rf (02) ds
I 4

Zi S f(o1)ds —tR S f(o2)ds = 0.

Fl F—l

=y

Since v € H was arbitrary, S Rr.c(f) has to be a positive operator and we are
done. =m

4. The CDLAR(c) class. In this section, we introduce and characterize
CDLAR(c), the “complete version” of DLAR(c). Our main result is Theo-
rem 1.2. One can also work with operators satisfying o(T) C Ag to obtain
the more general Theorem 4.4.

DEFINITION 4.1. Assume R > 1, ¢ > —2 and T € B(H) satisfies
o(T) C Agr. Then T is in CDILAR(c) if the mapping

Ske: A(AR) = B(H), = an2" HQH[S (o, T)f(0) ds + cap |,
nez 0AR

is completely contractive.
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We first establish one direction of Theorem 1.2.

LEMMA 4.2. Assume R > 1, ¢ > —2 and T € B(H) satisfies o(T) C Ag.
If there exists A € B(H) such that A >0, 24c¢—A >0 and T/R € Cayc—2a
and T™1/R € Cy4, then T € CDLARg(c).

Proof. We again write 0Ar = Iy U I'_1, where I (the outer circle) is
counter-clockwise oriented, while I'_; (the inner circle) is clockwise oriented.

Now, define the self-adjoint operator

/
—A
va(o,T) ::,u(U,T)-i—g(C >, Vo € 011,
o 2m
and
o A
VA(O',T) = /L(O',T)— ;%, VUGaF_l
Note that if o € I, we have ¢ = Re" and s = Rf, thus
, —A
T) = u(Re® T)+ == >0
v, T) = p(Re,T) + 5= >

for all , as T/R € Cay._ 4. Also, if 0 € I'_1, we can write 0 = R™'e™*® and
s = R™'¢, hence

va(o,T) = w(R™ e ™ T) + EA

2T
1 . ‘ ‘ ‘ R
:——_Z(b -1 _Z(b_T—l i} -1 Z(b_T*—l A
277(6 (R "e )+ e?(R e ) )+27r
e
R

= o (2R(I - T le ™R )T+ A4-2)>0
™

for all ¢, as T"1/R € C4.

Next, consider the coordinatewise map Sglc) . My, (A(AR)) — B(H™),
for m > 1. Here, M,,(A(AR)) denotes the algebra of all matrix-valued
functions F' : A — C™*™ that are (coordinatewise) analytic and admit
a continuous extension to Agr. For any such F = Y nez An ® 2", we can
write

(24 C)Sglc)(F) = S F(o)® u(o,T)ds +cAg @I
0AR
c o
= S F(o)® p(o,T)ds + — S —F(o)® Ids
2m ) o
0AR I
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/

= S F(O’)@M(O’,T)ds—i-% S ZF(J)@Ids

BAR Iy
A o’
- — —F Id
271 S o (o) ® I ds
0AR

= S F(o)®@va(o,T)ds.
O0AR
But now, since v4(o,T) > 0 for every o in 0Ag and also SAR va(o,T)ds

m)

= (24 ¢)I, one can show (see e.g. [16, proof of Lemma 2.2|) that Sl(% is
contractive for every m > 1. This concludes the proof. =

We now prove a lemma which states that the C4 classes do not contain
any invertible operators if A is not invertible.

LEMMA 4.3. Let A € B(H) be a positive operator that is not invertible.
Assume also that T € B(H) satisfies o(T) C D and

2R —2T) ' +A4-2>0, VzeD.
Then T is not invertible.

Proof. Arguing as in the proof of Theorem 3.12, one can show that T
satisfies
WRA—2T) ' +4-2>0, VzeD

if and only if the mapping

SA-A(]D)—)B(H)’ f’_> S /'L(U7T)f(a-)d$+f(0)(‘4_2)a
oD

is contractive. But then we know (see e.g. [26, Chapters 2, 3|) that S4 is con-
tractive if and only if it has a completely positive extension to all of C'(9D).
Let S4 denote such an extension. The non-unital version of Stinespring’s
Theorem [26, Theorem 4.1| then implies the existence of a Hilbert space
K D H, a unital *-homomorphism = : C(0D) — B(K) and a bounded
operator V : H — K such that

(4.1) Sa(f) =V*=(f)V, VfeC(dD).
Set U = m(z). It is easy to see that U is then a unitary operator. Setting
f=1in (4.1) gives us A = V*V, thus the polar decomposition of V' is given
by Y A/2, where Y is some partial isometry. But observe also that putting
f=zin (4.1) gives

T = AY2y*Uy A2,
Since A/2 is not invertible, we conclude that T cannot be invertible. m

Before we finish the proof of Theorem 1.2, a few dilation-theoretic ob-
servations are in order. Assume 7' € B(H) with o(7) C Ag. It is then
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well-known that 7' € CDLAR(c) if and only if the mapping (3.16) is com-
pletely positive. Further, by Stinespring’s Theorem, this is equivalent to
the existence of a Hilbert space K D H and a unital *-homomorphism
7 : C(0AR) — B(K) such that, for f =" a,z" € A(Ag),
(24 )Sre(f) = F(T) + (CH(T)" + cao = (2 + ¢) Pur(f) -
Set m(z) = N. Then N is a normal operator satisfying o(N) C 0Ar and our
previous equality becomes, for f(z) = 2",
"+ (CM)(T) =2+ c¢)PuN"|g, VYn#0.

After some computations, one verifies that

() - _ p2nln
(CZ)(C)*% S o dz=R ¢,
O0AR
hence
(4.2) T" 4+ R2MT=* — (2 4 )Py N" |5, Vn #0.

On the other hand, Theorem 1.2 tells us that 7" € CDLARg(c) if and only if
there exists A € B(H) such that A >0, 24+ c¢c—A >0and T/R € Cotc—2a
and 77! /R € C4. In view of Definition 1.1, this is equivalent to the existence
of a Hilbert space K/ D H and unitaries Uy, U_; € B(K') such that

(4.3) R"™ = (2+c—A)'\V2PyUr2+c— A2y, Vn>1,
and
(4.4) R = AV2pyum AY2 |y, Yno> 1.
Thus, the content of Theorem 1.2 is that (4.2) holds if and only if there
exists A € B(H) with 0 < A < 2+ ¢ such that (4.3) and (4.4) hold. It would
be of interest to find a direct proof of this assertion, using only the dilations
Ul, U_1 and N.
Proof of Theorem 1.2. Tt remains to establish the converse of Lemma 4.2.
Accordingly, assume 7" € CDLAR(c), with o(T)) C Agr. By Arveson’s

Theorem, Sg . extends to a completely positive map ¥ : C(0Ag) — B(H).
Next, consider the mapping

Ype: C(0AR) = B(H),
= [ uo ) ds+ oo | o]

2mi J o

2+CLAR A

which is an alternate (not necessarily positive) extension of Sp.. Since
||pe(o, T)|| is uniformly bounded with respect to o (because of the assumption
o(T) C AR) we can estimate

H (@)dsl| < Il § o, Tl ds < M floe,  VF € C(OAR).

R
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Thus, ¥r, is bounded. Observe also that both 9r. and ¥g . are actually
extensions of the (completely positive) map S R, : Mg — C defined in the
proof of Theorem 3.12. For 9g . this is obvious, while for ¥ . it holds be-
cause the completely contractive map Sg . has a unique completely positive
extension to the closure of A(ARr) + A(Ag)*.

Now, define S : C(0Ar) = B(H) as S = ¥)g..—¥r,. Fix an orthonormal
basis {e;} of H and put

Sz'j : C(&AR) — (C, f — <S(f)€j,6i>.

The map S;; is then a bounded linear functional that vanishes on Mg,
which is a codimension 1 subspace of C(0AR). Hence, each S;; lies in the
1-dimensional annihilator Ann[Mpg] C {L : C(0Ar) — C linear, bounded}
of Mp. But we also know that the (non-zero) map

11
S /(9

Grammi,) ¢ ©

is in Ann[Mpg]. Thus, for all ¢, j, there exists k;; € C such that S;; = k;;¢.
Define the (a priori unbounded) operator A acting on H by (Aej, ;) = kij,
for all 7,7, and let A; denote its compression to Hy := span{e; : j € J},
where J is any finite subset of N. Hence,

(15) sz 3 P ac|as = P, sola,

AR
for every f € C(0AR) and every J. Set f = fo in this last equality, where
fo=1on I7 and fo =0 on I'_;. This gives

Ay = (2+¢)Pu,S(fo)lu,
for all J. Since S(fo) = ¥(fo) —¥(fo) is bounded and self-adjoint, it follows

that A is a bounded, self-adjoint operator. Also, in view of (4.5), we deduce
that

¢:C(0AR) —C, [+

!pR,c(f) = wR,c(f) - S(f) = S VA,C(Uﬂ T)f(o) ds

AR
for every continuous f, where
1 o
wlo,T)+ — —(c—A) foro eI,
vac(o,T) = 2mi 0
,LL(O',T)—%;(A) fOI'O'GF_l.

Since ¥R . is (completely) positive on C(0AR), we know that v4 (o, T) >0
for every 0 € 0AR, hence (as in the proof of Lemma 4.2) T/R € Coyc—a
and 71 /R € C4. The fact that Co4.—4 and C4 are non-empty immediately
implies 0 < A < 2 4 ¢ (see the remark after Lemma 2.1). But we also know



Positivity conditions on the annulus 257

that 7" is invertible, so Lemma 4.3 tells us that both A and 2 4+ ¢ — A have
to be invertible as well. This concludes the proof. =

We now drop the assumption o(T") C Ap.

THEOREM 4.4. Assume R>1, ¢ > —2 and T € B(H) satisfies o(T) C Ag.
Then there exists A € B(H) such that A >0, 24+ c¢— A > 0 and T/R €
Cote—a and T~1/R € C4 if and only if T € CDLAR/ (c) for every R' > R.

Proof. First, assume T is in CDLAg/ (c) for every R' > R and fix a
decreasing sequence ¢, — 0. Put Ry = R + €. Since o(T') C Apg,, The-
orem 1.2 tells us that there exists a sequence {Ax} C B(H) such that
0 < Ar <2+cand T/Ry € Cote_a, and TRy, € Ca,, for all k > 1.
Now, from T'/Ry € Coyc—a, We get

(4.6) (2R(1 — 2T/Rg) " 4 ¢ — Ap)v,v) > 0

for all z € D,v € H and k > 1. Since {Ag} is uniformly bounded, we may
replace it, without loss of generality, by a WOT-convergent subsequence.
Note also that o(2T/Ry) C D for all z,k. Letting k& — oo in (4.6) (while
keeping z and v fixed) implies

(2R(1 — 2T/R)™" + ¢ — Ay, v) >0,

where A is the WOT limit of { Ax} (notice that A has to be self-adjoint, being
the WOT limit of self-adjoint operators). Since this last inequality holds for
any z € D and v € H, we conclude that T/R € Cai.—4, while an entirely
analogous argument shows that T~!/R € Ca. Finally, the fact that both
Coyc—4 and Cx contain an invertible operator implies, as seen previously,
that 0 < A <2+c.

For the converse, observe that (in view of Lemma 2.1) having T'/R €
Coye—a and T7Y/R € C, implies that T/R' € Coyea and T7'/R' € Cy
for every R’ > R. Since o(T') C Ags, Theorem 1.2 allows us to deduce that
T € CDLAR (c) for every R' > R. u

Now, we record the following analogue of Proposition 3.8 for CDLAR(c).
The proof is essentially an application of Proposition 3.8 combined with
Lemma 4.2, so we omit the details.

PROPOSITION 4.5. Let ¢ € R and R > 1. Then CDLAR(c) is non-empty
if and only if DLAR(c) is non-empty. Further, given normal N € B(H), we
have N € CDLAR(c) if and only if N € DLAR(c).

It is also worth noting that, like DLAR(c), CDLAR(c) is (eventually)
strictly monotone with respect to c. This has essentially already been given
to us by the proof of Theorem 3.10 together with Lemma 4.2.

THEOREM 4.6. If =2 < ¢ < ¢’ and CDLAR(¢) is non-empty, then
CDLAR(c) € CDLAR(c).
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Proof. Ifc¢ < ¢,itisobvious by the definition of CDLA g (c) that CDLAR(c)
C CDLAR(). To show that the inclusion is actually strict, we divide the
proof into two cases, similar to Theorem 3.10.

First, assume that there exist s, > 0 such that s > 1, s+t =2+ and
Cs+(R) is non-empty. As in the proof of Theorem 3.10, we may assume that
t <1and R%H < t. In this setting, we were able to construct T' € Cs(R) C
CDLAR(c") such that T' ¢ DLAR(c), hence also T' ¢ CDLAR(c). We thus
obtain strict inclusion.

On the other hand, assume that there do not exist s,¢t > 0 such that
s>1,s+t=2+c and C,;(R) is non-empty. In this setting, we found § > 0
and a € C such that a € Cso4+¢—5(R) C CDLAR('), but a ¢ CDLAR(c), as
desired. =

We end with a question. While the inclusion CDLAR(c) € DLAR(c) is
obvious, we have not been able to determine whether it is actually strict or
not.

QUESTION 4.7. Let R > 1,¢ > —2 and assume CDLAg(c) is non-empty.
Is it true that
CDLAR(c) € DLAR(c)?

A negative answer to the above question would imply that, given o(7T") C
AR, having
2R[(1 —2T/R) '+ (1 —wT™ ' /R =24+¢>0, Vz,weD
is equivalent to the existence of 0 < A < 2 + ¢ such that
2R(1—2T/R) ' 4+¢c—A>0, VzeD
and
2R —wT Y/R)™'+A-2>0, VYweD.

While this seems unlikely to hold, the computational difficulty in verifying
membership conditions of the form T/R € Cay.A(R) and T!/R € Ca(R),
for arbitrary 0 < A < 2 + ¢ and T non-normal, does not make it easy to
come up with a counterexample.

5. K-spectral estimates

5.1. General estimates. Recall that, given a compact set X C C and
T € B(H) such that o(T) C X, X is said to be a K-spectral set for T if

IF(T)]| < K sup | f(2)]
zeX
for every rational function f with poles outside of X. The set X will be

called a complete K -spectral set if the above inequality holds for all matrices
with rational coefficients.
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In this short subsection, we show how the methods established in [7]
and [15] can be used to derive K-spectral estimates for DLARg(c) and
CDLAR(c). We shall need a few preliminary lemmata, the scalar-valued ver-
sions of which are all contained in [15].

LEMMA 5.1. The map
a: A(Ag) = A(Ag), f=CfF,
is completely contractive for every R > 1.

Proof. By |15, Lemma 8|, we know that ||a(f)|| < ||f|| whenever f is
a scalar-valued rational function in Ag that is bounded by 1. A standard
approximation argument shows that o must be contractive. The proof of [16,
Lemma 2.1] then implies that « is completely contractive. m

LEMMA 5.2. Let R > 1 and T € B(H) be such that o(T') C Ag. Assume
that there exists a bounded linear functional v : A(Ar) — C and a constant
p > 0 such that the mapping

1

5, () + a(T)" +(f))

is completely contractive on A(AR). Then Ag is a complete K -spectral set

for T with constant K = p+ /1 + p? + [|7]|eb-

Proof. In the setting of [15, Theorem 2|, replace {2 by Agr, ¢1 by 1 (this is
possible because of Lemma 5.1), ¢2 by p and 4 by ||v||cp,. While the proof of
Theorem 2 in [15] was given in the scalar-valued setting, it can be repeated,
mutatis mutandis, in the matrix-valued setting to give the exact same K-
spectral estimate (see also [10, Remark (i) after the proof of Theorem 1.1]),

where
K=c+/A+a+3=p+V1+p*+ |[Vlcb =

We are now in a position to show:

f=

THEOREM 5.3. Let ¢ > —2 and assume T € DLARg(c) (resp. T €
CDLAR(c)). Then AR is a K-spectral (resp. complete K -spectral) set for T,
where

c c\ 2
K:1+2+\/<1+2> Y14

Proof. Let T € CDLAR(c) (the case T € DLARg(c) is essentially con-
tained in [15, Theorem 2|). By assumption, the mapping

[ (F(T) + a(F)(T)" + cap)

2+c
is completely contractive on A(Ag). If v : A(AR) — Cis given by v(>_ an2™)
= cap, it can be easily verified that ||v||cb = |c|. Thus, one can apply

Lemma 5.2 with p =1+ ¢/2 and (f) = cag to deduce the desired result. m
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REMARK 5.4. Let NAg denote the numerical annulus, i.e. the class of all
T € B(H) such that w(T) < R and w(T~!) < R. K-spectral estimates for
NAFR have been studied in [14] and, more recently, in [15]. Since

NAgR = ng(R) - DLAR(Q),

Theorem 5.3 tells us that Ag is a (2 + +/7)-spectral set for T' whenever
T € NApg. This improves on the estimates from [15, Section 6].

REMARK 5.5. The main result of [29] can be used to obtain sharper
spectral estimates in certain cases. Indeed, let T € DLAR(c) be a matrix
with o(T) C Ag. In the setting of [29, Theorem 5|, choose A = A(Agr) and
set y(f) = f(T) and &(f) = Cf. Since ¢ > 0, we have QAr C DLAR(c),
which implies that ||v| > 2 (see [34]). Now, assume, in addition, the ex-
istence of an extremal pair (fy,z0) € A(Agr) x H for v (see [29, p. 2|).
We have || fol] = ||zol| = 1 and ||v|| = ||[7(fo)xol|. Also, there exists an
extremal measure associated with (fo,zo) (see [29, Proposition 3 and the
discussion afterwards|). This observation, combined with the contractivity
of @ (Lemma 5.1), allows us to deduce that |[(v(2?(fo)fo)zo, zo)| < 1; see e.g.
[29, proof of Theorem 11]). Thus, if we define w in the dual of A(AR) as
w(d,, anz"™) = —cag, 29, Theorem 5| implies that

2
I < e - wl + \/ (3 = 1) + @ (ool ol

2+c 2+4c 2
. \\SR,CII+\/< 3 ClSwal) +1

2

C C
14 = 1+-) +1
_+2+<+2>+,

IN

A

which gives us the sharper constant K/ =14 ¢/2+ /(1 + ¢/2)? + 1. Note
that if T' has distinct eigenvalues, then the existence of an extremal func-
tion fy (that extends continuously to the boundary) can be obtained as in
[12, proof of Theorem 2.1| (see [21, Section 3| and [19, Exercise 5, p. 162]
for the structure of solutions to extremal Pick problems over the annulus).
While the authors deem it very likely that the extremal function continues to
enjoy boundary continuity even in mixed Carathéodory—Pick interpolation
problems (corresponding to the general case where one might have repeated
eigenvalues), they are not aware of any reference that describes the properties
of extremal functions for such problems.

5.2. 2 x 2 matrices. We now show Theorem 1.3 from the Introduction,
which offers improved K-spectral estimates for 2 x 2 matrices with a single
eigenvalue. The key ingredient of the proof will be a function-theoretic result
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from [23]. To more easily connect with the setting of that paper, we will work
with the annulus,

Aq:={q <|z| <1},
which is conformally equivalent to A;, 7. The definition of DLAg(c) can
then be updated as follows:

DEFINITION 5.6. Let ¢ € R and 0 < ¢ < 1. Then 2%/ ;(c) denotes the
class of all operators T' € B(H) such that

(i) o(T) C
(i) 2R[(1 —2T) 1+ (1 —wgT™ Y™ =2+ ¢ >0 for all z,w € D.

Now, for w € D and a € .27, define

Yu(z) =

Z—w

1 —wz
and -
Faow ={f:; — D| f analytic and f(a) = w}.

LEMMA 5.7. Let w € D and a € ;. Then

SUP{|f/(a)’ | f € -’ra,w} <(1- ’w|2)<1 _1|a‘2 + ! >

laf* — ¢?

Proof. Put
|a | 2n

Ki(a,a) =) THot
neL

The solution to the above extremal problem for w = 0 can be found in [23,
p. 1119]. In particular, it is known that

sup {|f'(a)| | f € Fa0} = k¥(a, a).
Now, if h € F, ., it can be easily verified that 1, o h € F, o, hence

yﬁﬁﬁzuwwﬂmeSk%m@-

Since h € F, ., was arbitrary, we can deduce that

sup {1F' (@) | £ € Fa} < (1~ lwlP)h(a,a)
= 0-P)(3 e + 3 )
— 1+q2n+1 — 1+q2n+1
1—mr(§]w% EZMWJ

1 q
— (1 — |wl|? .
( “”Kl—mw+mw—f)'

We also require the following computational lemmata.
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LEMMA 5.8. Let a,u € C and assume that T = (§4) € 2L ¢(c) with
q <la| < 1. Then
o0 qe?
(1 — ae)? o a2(1 — geia—1)2
for all 8 and 1.
Proof. The proof of Lemma 3.9 carries over to the %4 ,(c) setting.

Thus, the fact that T € 2%/ ((c) and o(T) = {a} C <7, allows us to
deduce

2R((1—"T) ™ + (1 —eVqT )] =24¢>0, V0,9 € 0,27).
Taking determinants then leads to the desired inequality. =

LEMMA 5.9. Let C > 0 and w € D. Then
2
G ) mmc

1 1
lu| < 2R =+ . +c—2
1—ae? 1—qe¥a?!

w

Proof. Given any matrix of the form P = (8 ]; ), it is well-known that

| P|| < 1if and only if | f| < 1 — |e|?. Thus, if C < 1, we immediately obtain

)

Now, assume C' > 1. Note that

cr— (1 CU- WP (1w 0wy’

0 w 0 w
—|w|* + C*(2 = Jw]*)|w]* —Cw(1 - |w]?)
= > 07
—Cw(1 — [wl?) C? — |w|? B

since the (1, 1)-entry of this last matrix is clearly positive, while its determi-
nant is equal to

w*(C? = [w]*)(2C? = C*|wf* = 1) = C*|w[*(1 - w]*)?
= |w|?(C? —1)(2C? — |w|*(1 + C?)) > 0.
This concludes the proof. m
We are now prepared for the main result of this subsection.

Proof of Theorem 1.3. First, we will prove the theorem in the setting
of 7.

Let T € 2%/ 4(c) be a 2 x 2 matrix with a single eigenvalue. Since
unitary equivalence respects K-spectral estimates (see e.g. [1, Example 4,
p. 107-5]), we may assume that 7 is of the form (8 g) We may also take



Positivity conditions on the annulus 263

a > 0 (as 7 is invariant under rotations). Finally, it suffices to work with
g < a < 1 (the general case follows by a standard approximation argument).
Now, let f : 2%, — D be analytic. We may write

=05 S -10 N
)

- |7 L)
I L (@ul

e < 1, Lemma 5.9 gives us | £(T)|| <1, which is stronger than the

desired estimate. On the other hand, if 1|f‘](fz))||2 > 1, Lemmata 5.7 and 5.9

imply that

B ey R

+ Uuj.
1—0,2 CL2—q2

Assume that @ > /q. In Lemma 5.8, take 6 = 0,1 = 7. The resulting bound
on |u| then allows us to write

o= () (e stare)

2 2

X + +c—2

l—a 14gq/a
l—gq
1+4q’
where the last inequality can be seen (after some computations) to be equiv-
alent to a > ,/q. This concludes the proof in this case. If a < /g, one can
choose § = 7 and ¢ = 0 in the above calculation and argue in an analogous
manner. Thus, we have shown that o7, is a K -spectral set for T' € 2L ,(c)
1—q
1+g

We now convert this estimate to the Ag-setting. Assume T' € DLAg(c) is
a 2 x 2 matrix with a single eigenvalue and set ¢ = R~2. Then T := T/R is in
9L 4(c) and is also, evidently, still a 2 x 2 matrix with a single eigenvalue.
In view of our previous result, Qq will be a K-spectral set for T', where

q R?> -1

1—
K=2 =24 c——.
+cl+q +CR2+1

<2+c

whenever T is a 2 x 2 matrix with a single eigenvalue, where K; = 2+c¢

This is easily seen to imply (see e.g. [1, Fact 2, p. 107-3]) that Ag is a
K-spectral set for T, which concludes our proof. m
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