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Abstract

The increasing size and severity of wildfires across the western United States have generated dangerous levels of
PM, 5 concentrations in recent years. In a changing climate, expanding the use of prescribed fires is widely considered
to be the most robust fire mitigation strategy. However, reliably forecasting the potential air quality impact from
prescribed fires, which is critical in planning the prescribed fires’ location and time, at hourly to daily time scales
remains a challenging problem. In this paper, we introduce a spatio-temporal graph neural network (GNN)-based
forecasting model for hourly PM, s predictions across California. Utilizing a two-step approach, we use our
forecasting model to predict the net and ambient PM, 5 concentrations, which are used to estimate wildfire
contributions. Integrating the GNN-based PM, s forecasting model with simulations of historically prescribed fires,
we propose a novel framework to forecast their air quality impact. This framework determines that March is the
optimal month for implementing prescribed fires in California and quantifies the potential air quality trade-offs
involved in conducting more prescribed fires outside the peak of the fire season.

Impact Statement

PM, 5 pollution poses significant health risks and is responsible for millions of deaths per year. Our work
forecasts the PM, 5 concentration at sparse locations and estimates the fire-specific PM, 5 contribution to assess
their impact on air quality. Furthermore, prescribed fires, while preventing wildfires, also generate PM, s, raising
concerns about the air quality trade-offs. To the best of our knowledge, our work is the first to apply machine
learning to predict the PM, 5 concentration from simulated prescribed fires. We use our forecasting model to
conduct novel experiments that can help the fire service better understand and minimize the pollution exposure
from prescribed fires.

1. Introduction

Across many parts of the western United States (WUS), wildfire size, severity, and fire season length have
increased due to climate change (Williams et al., 2019). Wildfires across the WUS have led to the largest
daily mean PM, 5 (particulate matter <2.5 microns) concentrations observed by ground-based sensors in
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recent years (Burke et al., 2021) and exposure to PM, 5 is responsible for 4.2 million premature deaths
worldwide per year (World Health Organization, 2022). Within California, additional PM, 5 emissions
from extreme wildfires over the past 8 years have reversed nearly two decades of decline in ambient PM; 5
concentrations (Burke et al., 2023).

Due to the numerous severe health consequences from PM; s pollution exposure, performing accurate
and temporally fine-grained PM, 5 predictions has become increasingly significant. A recent study by
Aguileraetal. (2021) found the PM, s emitted from wildfires to be more toxic than the PM, s emitted from
ambient sources. Accurate PM, s predictions are also important in the context of prescribed fires, or
controlled burns, which have been widely accepted as an effective land management tool and could have
the potential to reduce the resulting smoke from future wildfires (Kelp et al., 2023). Since air quality is a
major public concern surrounding prescribed fires (McCaffrey, 2006), land managers conducting these
burns require access to robust, near real-time predictions of downwind air pollution, to determine suitable
locations and burn windows.

However, most data-driven PM, 5 forecasting algorithms do not distinguish between ambient PM, 5
concentration and the additional concentration due to fire emissions. Previous work studying the effect of
prescribed fires on pollution used chemical transport models (CTMs) like the Community Multiscale Air
Quality (CMAQ) and Goddard Earth Observing System Atmospheric Chemistry (GEOS-Chem) models
to calculate the PM, 5 impact of prescribed fires at different locations (Kelp et al., 2023). Jin et al. (2023)
and Schollaert et al. (2024) used CTMs to study prescribed fires in the Western United States. Although
CTMs can model the complex chemical processes in PM, 5 transport, their computational expense is a
drawback in generating accurate predictions as well as exploring a large parameter space for simulating
prescribed burns (Askariyeh et al., 2020; Byun and Schere, 2006; Zaini et al., 2022; Rybarczyk and
Zalakeviciute, 2018).

Recent analyses have combined satellite-based observations with meteorological data to derive daily
wildfire-specific PM, 5 for all ZIP codes in California (Aguilera et al., 2023) and in 10 km grid cells across
the contiguous United States (Childs et al., 2022). Both these studies relied on smoke plume boundaries
identified by expert input to identify smoke exposure per day and grid cell, and used the PM, 5 measure-
ments on non-smoke days to estimate the PM, 5 contribution from background sources. Specifically, Childs
et al. (2022) (Childs et al., 2022) defined wildfire-specific PM, s as anomalies relative to monthly mean
PM, 5 concentration in each grid cell and adopted gradient-boosted trees to predict the anomalous PM, s asa
function of fire-related predictors. On the other hand, Aguilera et al. (2023) trained an ensemble of machine
learning models to first estimate the total PM, 5 concentration for each ZIP code, then obtained the wildfire-
specific PM, 5 by subtracting the background PM, 5 imputed from model predictions of PM, 5 for non-
smoke days. Meanwhile, Qiu et al. (2024) found that CTMs overestimated the PM, 5 concentrations for
extreme smoke events in 2020 while the wildfire-specific PM, 5 predictions from the Childs et al. (2022)
machine learning model were in much better agreement with surface PM, s measurements.

Our research builds upon the GNN-GRU machine learning model named PM, s-GNN from Wang
et al. (2020), which was used to forecast non-wildfire-influenced PM; s pollution in China. In contrast,
our work focuses on predicting fire-influenced PM, s at different sensor locations across California.
The spatio-temporal modeling capabilities of the PM, s-GNN coupled with domain knowledge make
the model especially valuable for PM, 5 prediction with spatially sparse monitor observations, enabling
the PM, 5-GNN to outperform baseline machine learning architectures such as random forest (RF), long
short-term memory (LSTM), and multilayer perceptron (MLP) models. Our PM, s-GNN model
predicts the PM, 5 pollution at an hourly resolution in California and considers two applications:
(1) quantifying fire-specific PM, s concentration and (2) forecasting the pollution levels emitted from
simulated prescribed fire events. Specifically, we incorporate satellite-derived data on fire intensity
within the PM, 5-GNN model to forecast PM, 5 concentration from ambient sources, observed fires,
and simulated controlled burns.

Our GNN-based forecasting framework can help policymakers better isolate the PM, 5 concentration
emitted from wildfires. While studies like Childs et al. (2022) and Qiu et al. (2024) rely on analyst-derived
information, such as plume boundaries, to identify non-smoke days for calculating median PM, 5 values
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per grid cell and month, our method operates without the need for expert input. This makes it suitable for
rapid deployment as a fast and efficient emergency management tool. Additionally, our forecasts can
aid forest managers in minimizing the PM, s exposure of vulnerable populations during controlled
burns and facilitate community discussions of potential locations and burn windows for prescribed
fires. Thus, while several studies have used machine learning to forecast air quality (Wang et al., 2020;
Lietal., 2023) as well as to estimate wildfire-specific PM, s (Aguilera et al., 2023; Childs et al., 2022),
this is the first paper, to the best of our knowledge, that utilizes machine learning to predict the PM, 5
concentration at sensor locations from simulated prescribed fires. Although we focus on PM, 5
predictions at sparse sensor locations, our method could be extended to predictions over both ZIP
codes and a regular grid.

The remainder of the paper is organized as follows: the fire and meteorological data used in our
analyses are detailed in Section 2. In Section 3.1, we describe the PM, s-GNN model and validate its
PM, 5 predictions with baseline machine learning models. The model setup for estimating wildfire-
specific PM, s is outlined in Section 3.2. Sections 4.1 and 4.2 present, respectively, idealized experiments
using a framework based on the PM, 5-GNN model to determine the optimal time to implement prescribed
fires and to quantify the reduction in air quality impact due to mitigation of larger wildfires. We discuss the
paper’s conclusions and potential directions for future work in Section 5.

2. Dataset

Our dataset consists of PM, s, meteorological, and fire data at an hourly resolution over 5 years (2017—
21). The PM, 5 concentration data, at a total of 112 sparse air quality sensor locations in California shown
in Figure 9, is collected from both the California Air Resources Board (CARB) as well as the Environ-
mental Protection Agency (EPA) (California Air Resources Board, n.d.; US Environmental Protection
Agency, n.d.). The MissForrest algorithm (Stekhoven and Biithlmann, 2011) was used to impute the
missing PM, 5 observations from offline sensors. The data for the seven meteorological predictors, which
include u and v horizontal components of wind, total precipitation, and air temperature, are retrieved from
the ERAS Reanalysis database (Hersbach et al., 2020). We provide the full list of predictors in Table 1.
Though the meteorological predictors may capture the diurnal PM, 5 cycles and seasonal patterns, the
Julian date and hour of the day are also included as predictors to provide the model with additional
context.

The fire radiative power (FRP) provides information about the fire intensity. The FRP at each fire
location is taken from the Visible Infrared Imaging Radiometer Suite (VIIRS) (Schroeder and Giglio,
2017) instrument on board the Suomi satellites. To assess the impact of nearby fires at the location of a

Table 1. Dataset predictors and PM, s-GNN node features

Predictor name Unit Source
Planetary boundary layer height (PBLH) m ERAS reanalysis
u-component of wind m/s ERAS5 reanalysis
v-component of wind m/s ERAS reanalysis
m Temperature K ERAS reanalysis
Dewpoint temperature K ERAS reanalysis
Surface pressure Pa ERAS reanalysis
Total precipitation m ERAS reanalysis
WIDW FRP within 25 km, 50 km, 100 km, 500 km MW VIIRS

Number of fires within 500 km 1 VIIRS

Julian date 1 N/A

Time of day 1 N/A
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Figure 1. FRP aggregated around a given radius for each PM, s monitor location using wind and
distance information.

PM, s monitor, we aggregate the FRP values of all active fires within radii of 25, 50, 100, and 500 km. To
emphasize the fires that would likely have a more substantial downwind effect on PM, 5 concentration, we
use inverse distance weighting (IDW) and wind-based weighting in the FRP aggregation. For each PM, 5
monitor location, aggregations are performed on radii of 25, 50, 100, and 500 km to derive the wind and
inverse-distance weighted (WIDW) FRP using the process described in Figure 1 and

1 F,‘|V,‘|COS(|(X,’|)
F = g _ 1
WIDW - 47TR,’2 ( )

where n is the number of fire locations within a certain radius of the PM, 5 monitor site, F' is the FRP value
at the fire location, |V| is the magnitude of the wind speed at the fire location, « is the relative angle
between the wind direction and the direction from the fire to the PM, 5 monitor, and R is the distance
between the fire site and PM, 5 monitor. The number of fires within 500 km of a PM, s site is also included
in the dataset. The prescribed fire latitude, longitude, and duration data retrieved from the California
Department of Forestry and Fire Protection (Cal Fire) (Cal Fire, n.d.) is not represented as a variable in the
training dataset but instead used in Experiments 1 and 2 when simulating prescribed fires.

3. PM, 5 forecasts
3.1. PM, s-GNN model

3.1.1. Methods

We trained the spatio-temporal PM, s-GNN model from Wang et al. (2020), to predict PM, s concentra-
tion at an hourly temporal resolution utilizing spatially sparse observations, as illustrated in Figure 2. In
Figure 2, v;, v;, F¥',and F* respectively, refer to nodes i and j, the feature vector for node i, and the feature
vector for edge e;;. The PM, 5-GNN model consists of two components: a graph neural network (GNN) to
learn the PM, 5 spatial propagation between monitor sites and a Gated Recurrent Unit (GRU) to capture

. \
f 2 &

TP & i

© K .

Represent PM, 5 monitors as nodes GNN model learns relationship between nodes Predicts PM, 5 concentration for each node

Figure 2. Graph neural network (GNN) used in our PM, s forecasting model considers PM, s monitors as
nodes in the graph and produces node-level predictions.
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Table 2. Training/validation/testing split

Training Validation Testing

1/1/2017-12/31/2018 1/1/2020-12/31/2020 1/1/2021-12/31/2021

the temporal diffusion process. The GNN model has a directed graph, where nodes represent the locations
of PM, 5 monitors and edges model the PM, 5 movement and interactions between monitors, making it
well-suited to leverage non-homogeneous data. Thus, the node features include all the meteorological and
fire-related predictors, as shown in Table 1. The edge attributes consist of the wind speed of the source
node, the distance between the source and sink, the wind direction of the source node, the direction from
source to sink, and an advection coefficient that quantifies the degree of wind impact on the sink node by
the source node. In the graph model of PM, 5 transport, the source node represents the site where the PM, 5
was initially detected at a specific time point and the sink node represents a location downwind of the
initial site. Domain knowledge is incorporated in the graph representation through the choice of node and
edge attributes, as well as through the choice of the graph connectivity. For instance, the graph explicitly
includes wind direction information and considers geographical elevation differences. The GNN only
models the transport of PM, 5 between two sites if they are within 300 km of one another and if the
elevation difference between the sites is < 1200 m. The altitude threshold was established on the
assumption that differences in elevation >1200 m between sites would hinder PM, 5 transport.

As shown in Table 2, for the PM, s-GNN model, 2 years are used for training and 1 year each for
validation and testing. In total, we use ~1.96 million samples for training and 0.98 million samples each
for validation and testing. The year 2019 is excluded during training, validation, and testing because the
2019 fire season was an outlier and was less damaging than the other years. Validating and testing the
model on data from the years 2020 and 2021, respectively, would help us gain a better understanding of
the model’s performance during intense fires, as both 2020 and 2021 had severe wildfire seasons. Our
model produces PM, 5 forecasts for a prediction window of 48 hours into the future based on a model
initialized with PM, 5 observations in a historical window of 240 hours.

3.1.2. Results

For the evaluation of the PM, s-GNN’s performance, we analyzed heat maps of the observed versus
predicted PM, 5 concentrations for various future time points (1-hour, 12-hour, and 48-hour forecasts), as
shown in Figure 3. The color scale represents the density of points within a bin, with bin boundaries selected
on a logarithmic scale. Perfect predictions would align along the 1:1 line, while deviations from this line in
specific directions indicate prediction errors. Similar heat map graphs of observed versus predicted PM, 5

1-hour Forecast 12-hour Forecast 48-hour Forecast

0 1000 — 1000 10
:g RZ=10.61 RZ=10.23 R2=0.22 - 2
= ¢ 109 B
3 200/ 200 g
E:} &
102 9
P 8
o) o =
o 25 (& 25 ]
2 w0 B
= o
& 2

5 - 100

55 25 200 1000 O 25 200 1000 5 25 260 1000

Observed PM, 5 (ug/m?) Observed PM, s (pg/m?) Observed PM, 5 (pg/m?)

Figure 3. Heat maps illustrating the observed PM, 5 concentrations versus the PM, s-GNN model
predictions for 1-, 12-, and 48-hour forecasts, with log-transformed axes and color scale. Also indicated
is the identity line (dotted black) and R? values of the best-fit linear model.
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were presented in Considine et al. (2023) (Considine et al., 2023). For our 1-hour forecasts, there is a high
density of points along the identity (y = x) line, indicating the model’s ability to predict PM, s levels close to
the observed values. However, the heat maps also reveal that the model begins to underpredict more severely
for observed PM, 5 concentrations exceeding ~ 200 ,ug/mB. The PM, s-GNN model’s R? value is lower than
those reported in Considine et al. (2023) and Qiu et al. (2024), which both studied PM, 5 predictions using
machine learning, because our predictions are at an hourly resolution, whereas theirs are at a daily resolution.
As the PM, s-GNN model predicts further into the future, the R value and the density of the points along the
identity line for elevated concentrations decrease. The decreasing accuracy of predictions for time steps
further into the future is a challenge inherent to prediction tasks.

To further evaluate the PM, s-GNN model, its performance was compared to three baseline models, the
random forest (RF), long short-term memory (LSTM), and multilayer perceptron (MLP) models. The
PM, s-GNN model had the lowest mean absolute error (MAE) and root mean squared error (RMSE)
values, as shown in Table 3. As a reference for the error, the US Air Qualitylndex (AQI) very unhealthy
and hazardous PM, s levels are >150.5 ug/m’. Heat maps of the observed versus predicted PM, s
concentrations for all baseline models are given in Appendix A.

Additionally, the time series results of the PM, 5-GNN, RF, LSTM, and MLP were graphed to analyze
the results. Figure 4 displays predictions 1 hour into the future from the testing results of two example
sites. These sites were selected due to observed PM; s levels reaching the US AQI’s very unhealthy
(>150.5 ug/m®) levels and demonstrate typical performance of the models for elevated PM, 5. The graphs
showed that the PM, 5-GNN was better able to predict elevated concentrations in comparison to the RF,
MLP, and LSTM. Although Table 3 shows that the PM, s-GNN model’s MAE and RMSE metrics surpass

Table 3. Results of the PM, s-GNN, RF, LSTM, and MLP models

PM, -GNN RF LSTM MLP
GNN GNN with IDW FRP Random Forest LSTM MLP
Site in Roseville, CA
250 250 250 250 250
200 200 200 200 200
150 150 150 150 150
:?E‘ 100 100 100 100 100
|
w50 %.'N 50 tt 50 | 50 50 |
& b : " ! :
> 0 " ol 0 = 0
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Figure 4. PM, 5 predictions 1 hour into the future from a temporal subset of testing results for example
sites. The PM5 s-GNN (Column 1), Random Forest, LSTM, and MLP all use the WIDW FRP predictor,
while the PM; s-GNN with IDW FRP (Column 2) uses the IDW FRP predictor.
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those of the other three models by <1 ug/m’, comparing Figure 3 with Figure 10 from the Appendix
demonstrates that the PM, s-GNN significantly outperforms the other methods in predicting elevated
PM, 5 levels. At longer time horizons, although the performance of all models declines for the 12- and
48-hour forecasts, the PM, 5-GNN model, with its recurrent neural network component, achieves the
highest R? values due to both its spatial and temporal inductive biases. The LSTM ranks second, whereas
the RF and MLP, lacking temporal inductive bias, exhibit a more significant decrease in prediction skills
for forecasts further into the future. The small differences in MAE and RMSE can be attributed to the
distribution of the observed PM, s data from the testing set with a 99th percentile of only 50.70 ug/m”.
However, from the graphs of all three models, it was evident that there was a tendency for the model to
output a value close to the observed value at the previous time point as its prediction. This issue is also
prevalent in other studies in this area and the broader machine-learning field.

The PM, 5-GNN’s performance was also compared to the performance of a PM, s-GNN trained on a
dataset with only inverse-distance weighted (IDW) FRP, not wind and inverse-distance weighted (WIDW).
The PM, 5-GNN with WIDW FRP has slightly higher MAE and RMSE, as seen in Table 4. However, the
graphs of the results showed that the PM, s-GNN with WIDW FRP was better able to predict elevated PM, 5
values. This is significant, as current prediction models under-predict fire-influenced PM, 5 concentration
(Reid etal., 2021). The reason for the slightly higher MAE and RMSE for the PM, s-GNN with WIDW FRP
seems to be that the model tends to overpredict low concentration values.

3.2. Fire-specific PM, 5 forecasts

3.2.1. Methods

For the task of distinguishing the pollution emitted from wildfires, a two-step process is used. A PM; s-GNN
model is first trained to predict the total PM, 5 concentration and a second PM, s-GNN is trained to predict the
PM, 5 emitted from ambient sources. The predictions from the ambient-focused PM, s-GNN are subtracted
from the forecasts from the first PM, s-GNN to produce an estimate of the fire-specific PM, s. This is similar to
the methodology of Aguilera et al. (2023), which also subtracts the predicted non-smoke PM, 5 concentrations
from the net PM, 5 predictions to estimate the fire-specific PM, 5. Our process is outlined in Figure 5.

The detailed methodology for the first PM, s-GNN model, which is trained to predict the total PM; 5
concentration, is outlined in Section 3.1.1. This PM, 5-GNN model is trained on all meteorological and
fire-related predictors. The second PM, 5-GNN model, on the other hand, focuses only on predicting the
ambient PM, 5 and is thus trained only on the meteorological data. For this model, fire predictors are
excluded during training to prevent the model from learning the effect of fires on PM, 5 concentration. All

Table 4. Results of the PM, s-GNN with WIDW FRP and IDW FRP

PM, 5-GNN with WIDW FRP PM, 5-GNN with IDW FRP
MAE 5.23 5.11
RMSE 6.72 6.62

1) Predict net PM, ; concentrations

(BN Fow wbica snd e sovess 2) Predu:t.l’MLs concentrations 3) Estimate PM, 5 concentrations
S from ambient sources from fire sources

not distinguished)

Train GNN on the entire training set Train GNN only on non-fire Subtract ambient predictions from
with both meteorological and fire influenced time points and without net predictions, and set negative
inputs any fire inputs results to 0

Figure 5. Conceptual diagram of the methodology for distinguishing fire-specific and ambient PM 5
concentrations.
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the data during fire events are also excluded because including time points during fires would allow the
model to learn the influence of fires from meteorological predictors like temperature. Therefore, for the
second PM, s-GNN model to only predict ambient pollution, the model should only be trained on
meteorological data and non-fire-influenced time points. However, selecting time points without fire events
is challenging, as PM, 5 particles emitted by a fire can persist in the air for weeks and secondary aerosol
formation resulting from fires can also impact PM, s concentrations for several days following a fire (World
Health Organization, 2006). Our analysis revealed that relatively high FRP values continued to affect the
PM, 5 concentration for over a week. Thus, during training, all time points with WIDW FRP 500 km values
>0.15 within a 12-day window (240 hours before and 48 hours after the time point) are excluded, resulting in
the model being trained on 21% of the data from the original training set. However, the training set remains
balanced. When analyzing the percentage distribution of the training set by month, the mean percentage is
8.33% and the standard deviation is 0.91%. The second PM, 5-GNN is then validated and tested at all time
points to obtain ambient PM, 5 predictions, which is necessary to quantify the fire-specific PM, s.

3.2.2. Results

The PM, 5s-GNN model trained to predict only ambient PM, 5 had an MAE of 5.66 ,ug/m3 and RMSE of
6.85 ug/m® for its predictions at time points without fire influence (i.e., times where no WIDW FRP
within 500 km values exceeds 0.15 within a 12-day window—240 hours before and 48 hours after the time
point). Analysis of the ambient-focused model indicates a tendency to underpredict at time points
classified as non-fire-influenced. This underprediction is likely due to limitations in the criteria used to
define fire influence, as many elevated, unhealthy PM, 5 observations are still present during periods
categorized as not fire-influenced. Figure 6 visually distinguishes the ambient and fire-specific PM, 5
forecasts. Since there is no ground truth value to validate the attribution of PM, 5 concentration produced
by ambient and wildfire sources (Aguilera et al., 2023), there is no metric to describe the accuracy of our
fire-specific predictions. However, as shown in Figure 6, the result aligns with expectations, as there are
significant levels of PM, s attributed to fires during elevated PM, 5 concentrations.

4. Prescribed fire simulations

A major contribution of this work is the novel framework integrating simulations of prescribed fires with
GNN-based predictions of the resulting PM, 5 concentrations. The prescribed fires are simulated by
transposing historical prescribed fires to target times. The Cal Fire (Cal Fire, n.d.) latitude, longitude, and
duration data for the prescribed burns are matched with the VIIRS FRP data. The transposed prescribed
fire FRP information is combined with the observed meteorological data at the target times and input into
the PM, s-GNN model, which produces the PM, 5 predictions.

Using this framework, we perform two model experiments. Experiment 1 demonstrates how the
PM, 5-GNN forecasting model can determine the optimal time to implement prescribed fires and focuses

Site in Auburn, CA Site in Roseville, CA
I~ 200
E o —— Observed Values
=D 175 . P
= == Ambient PM, ; Predictions
150
8 125 mm= Fire-Specific PM,  Predictions
£
100
E 100
cé 75
v 50 50
E"‘ 25
A 0
o0 00 of A
Ho p¥ o @ N 5 p®
IR Y O G s
,,,m ,,pm Phie ’Lﬂ' ‘L“" .]_Q'L 'LM a9

Date and Time

Figure 6. Ambient and fire-specific PM, s predictions 1 hour into the future from a temporal subset of
testing results for example sites.
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on the short-term pollution effect of prescribed fires. Experiment 2, on the other hand, focuses on
quantifying the pollution impact of prescribed fires across months. In the rest of the section, we discuss
each experiment in more detail:

4.1. Experiment 1: minimizing prescribed fire PM, s impact
4.1.1. Methods
To determine the optimal time to implement prescribed fires, we consider the immediate effect of
prescribed fires. In effect, this experiment simulates historically prescribed fires and predicts the resulting
PM, 5 pollution under different meteorological and fire conditions. That is, we transpose the FRP values
from actual prescribed fire events to target time points and add them to the observed FRP values at those
points. As these FRP values are combined, they are weighted using inverse distance and wind (both
direction and magnitude), as outlined in Section 2.

In this experiment, we transpose a window of time containing prescribed fires (1/3/21-1/15/21) to
target times throughout the year 2021 at 24-hour time steps to simulate the air quality impacts of controlled
burns, as shown in Figure 7. This window contains 10 prescribed fires with burned areas above 100 acres.

4.1.2. Results

As shown in Table 5, the month of August was the least optimal time to implement prescribed fires since it
resulted in the most significant PM, s concentration. As August is during the peak wildfire season,
implementing prescribed fires would only exacerbate the already hazardous air quality. August’s mean
PM, 5 was 29.61% greater than the average mean of other months and August’s maximum was 44.27%
greater than the average maximum of other months. On the other hand, March, which had the lowest mean
value, was found to be the most optimal month to implement prescribed fires. The mean and maximum
values were calculated by averaging the mean and maximum PM, 5 predictions of the locations whose
PM, 5 observations were > 50 ug/m® during the window 1/3/21-1/15/21. As the PM, 5 observations at
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Figure 7. Schematic illustration of the methodology used in Experiment 1 to generate PM, 5 predictions
based on simulated prescribed burns and observed fire events throughout 2021.

Table 5. Comparing the results of PM, s predictions based on simulated prescribed fires in Experiment
1 (see text for more details) for each month of 2021

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean (ug/m®)  15.62 15.64 14.69 15.18 14.76 1592 18.44 21.73 18.55 16.95 19.94 18.73
Max (ug/m*) 36.49 39.06 39.10 38.76 40.85 42.04 47.25 60.13 43.44 45.61 40.54 45.32
Std Dev (ug/m’) 7.53 7.13 693 6.08 562 558 7.90 1930 7.42 7.64 857 8.98
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those locations were elevated during 1/3/21-1/15/21, they were likely influenced by the fire events
transposed across the year 2021.

4.2. Experiment 2: quantifying prescribed fire PM, s trade-off

4.2.1. Methods

This idealized experiment aims to quantify the pollution trade-off of implementing larger prescribed fires to
mitigate emissions from the Caldor Fire, one of the largest Californian wildfires in 2021. Specifically, we use the
PM, 5-GNN model to simulate the counterfactual scenario of performing scaled-up controlled burns in 2021 at
the location of the Caldor Fire as shown in Figure 8. We employ two simulation techniques: one corresponding
to the immediate air quality impact of more intense prescribed fires and the other to the longer-term effect of
prescribed burning, related to mitigating the emissions from a larger wildfire such as the Caldor Fire.

For the first case, we simulated the effect of three historical prescribed fires, which were all
within 20 km of the 2021 Caldor Fire, were active from 3/21 to 5/31 in 2018, 2019, and 2020, respectively,
and burned around 6300 acres each. Since the Caldor Fire burned around 221,835 acres (Cal Fire, n.d.),
we assume that preventing a fire of that scale would require a larger controlled burn. Thus, when creating
the fire-related input predictors, the FRP values from the prescribed fires are artificially increased by a
factor of 100 and transposed together to 2021, thereby simulating large prescribed fires from 3/21/21 to
5/31/21. As described in Section 4.1, the prescribed fires are transposed by combining the FRP values of
the prescribed fires with the observed FRP values from other fires at the target time point, followed by
aggregating those values using inverse distance weighting and wind information.

In the latter case, we simulate the effect of controlled burns later in the year by excluding all FRP values
within 25 km of the Caldor Fire between 8/14/21 and 10/21/21, assuming that a prescribed fire
implemented earlier in the year (or even during the previous one to two fire seasons) could effectively
mitigate a large fire in the same location a few months later. Since we use PM, 5 observations from the
previous 10 days to initialize each 48-hour window of PM, 5 predictions, using the PM, 5 data from 2021
would implicitly include the Caldor Fire’s influence. To avoid this bias in our counterfactual scenario, we
used as input the average of PM, 5 observations on the same date and hour from 8/14 to 10/2 in 2017,
2018,2019, and 2020. Thus, the inputs will be fire-influenced but do not include the impact of the Caldor
Fire. Limitations of our methodology are discussed in Section 4.2.3.

The PM, 5 predictions from this experiment’s counterfactual scenario are compared to baseline
predictions derived using observed meteorological and fire inputs from 2021 without any prescribed
fires around the Caldor Fire locations.

4.2.2. Results
The results support that although prescribed fires slightly increase PM, s in the short term, they reduce
future PM, 5 resulting from wildfires. As shown in Table 6, the simulated prescribed burns led the mean of
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Figure 8. Schematic illustration of the methodology used in Experiment 2 for simulating prescribed burns
during spring and the absence of the Caldor Fire during the wildfire season.
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Table 6. Comparing the predicted PM; s effect of simulated prescribed burns in Experiment 2 (see text
for more details) with baseline PM, 5 predictions

3/21/21-5/31/21 8/14/21-10/21/21
Simulated Without prescribed burn Removed With Caldor fire
prescribed burn (Baseline) Caldor fire (baseline)
Mean (ug/m?) 6.83 6.52 12.49 16.24
Max (ug/m®) 55.78 54.12 81.00 177.32

the PM,, s predictions to be increased by an average of 0.31 zg/m> and the maximum PM, s prediction to
be increased by 3.07%. The mean and maximum values were calculated by averaging the mean and
maximum PM, s predictions of the 13 PM, 5 monitor locations within 100 km of the Caldor Fire. Table 6
also quantifies that the maximum of the predictions with the Caldor Fire’s influence removed was 54.32%
lower than the maximum of the baseline predictions. Thus, the magnitude of the immediate PM, 5 increase
from the prescribed fire was significantly lower than the magnitude of the PM, 5 decrease experienced
during the fire season. Furthermore, excluding the influence of the Caldor Fire reduced the number of days
with an unhealthy daily average PM, s concentration from a mean of 3.54 days to 0.80 days. The reduction
in PM, 5 pollution after excluding the Caldor Fire influence is illustrated in Figure 9, where the PM, 5
monitoring sites are color-coded depending on the PM, 5 pollution’s US AQI level.

4.2.3. Discussion

A limitation of our prescribed fire simulation methodology is the absence of ground truth PM, 5 data for
counterfactual or simulated prescribed fire scenarios. This creates challenges in both defining PM, 5
inputs for the model and evaluating the accuracy of the simulation. Although no direct solution currently
exists, our results can be compared to and validated against CTMs.

ok ’ . *  Good
. <@ qQ Moderate
ee |t e Unbhealthy for
39,21°N [ - 39.21°N .._ Ol : S Sensitive Groups
RN «  Unhealthy
s, A
O *  Very Unhealthy
q‘:- . ‘: * Hazardous
37.37°N 37.37°N \i’. . A Caldor Fire

Latitude

Latitude
.
.
s

w
o
v
[¥]

o
Z

35.52°N

33.67°N 33.67°N
\_13.96”: \21_31}\‘? \.\B.Eﬁaw \IB-QGUW ﬂ_LBVW 115_665“1
Longitude Longitude
(a) Removed Caldor Fire (b) With Caldor Fire (Baseline)

Figure 9. Maximum PM, s predictions per site from 8/14/21—-12/31/2 1 under conditions (a) with prescribed
burns at the Caldor Fire location during the spring and without Caldor Fire during the wildfire season and
(b) without prescribed burns at the Caldor Fire location and with the Caldor Fire during the wildfire season.
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5. Conclusion and future work

This work generated hourly PM, s predictions for California using a PM, 5-GNN model and demonstrated
that due to its spatio-temporal modeling capabilities, the PM, s-GNN outperformed other machine
learning models like the Random Forest, LSTM, and MLP. The temporally fine-grained, hourly PM, 5
predictions can help people better plan their outdoor activities to stay healthy. Additionally, our work
focused on exploring two novel applications of the PM, s-GNN model: (1) estimating the fire-specific
contribution in PM, s forecasts and (2) predicting the PM, 5 for simulated fire events. Our work
demonstrates the versatility of the PM, 5-GNN: the model can be applied to real-time prediction tasks,
the GNN-based simulations from Experiment 1 can assess optimal windows for future prescribed fires,
and the GNN-based simulations from Experiment 2 can be used for retrospective analysis.

Following previous machine learning-based studies (Aguilera et al., 2023; Childs et al., 2022), we apply
GNNs to the task of distinguishing the PM, 5 pollutant concentration emitted from fires versus ambient sources.
This is significant as machine learning has higher computational efficiency than chemical transport models
(CTMs) and the PM, 5s-GNN model has been shown to outperform other machine learning models for pollution
forecasting. Our hourly PM, s-GNN predictions may also be a promising method to improve the skill of 2-day air
quality forecasts. For the 48-hour prediction window that we considered here, the PM, s-GNN model was shown
to outperform other machine learning-based air quality forecasts due to its spatio-temporal inductive bias.
Although we focused here on predictions at 112 sparse air quality sensor locations where there are historical
PM, s measurements available, the PM, s-GNN model has the ability to make predictions at sites that were not
included in the original training dataset because of the spatiotemporal inductive bias of the PM; 5-GNN model.

To the best of our knowledge, this is the first research paper to apply machine learning for simulating the
PM, 5 impact of prescribed fires, which is significant given the limitations of CTMs. A major contribution of
this work is the prescribed fire simulation framework, which integrates prescribed fire simulations with
GNN-based PM, s predictions. Future work will focus on improving the air quality simulations by
incorporating fire risk models (Buch et al., 2023; Langlois et al., 2024) and physics-based smoke plume
dynamics (Mallia and Kochanski, 2023) in the PM,s-GNN model. Another promising direction is
developing an auxiliary GNN model that incorporates the impact of individual fires and obviates the need
to aggregate FRP values in the vicinity of each PM, 5 monitor, thereby making it easier to remove or add
specific fire influences. Our framework provides land managers and the fire service with a useful tool to
minimize the PM, 5 exposure of vulnerable populations, while also informing local communities of
potential air quality impacts and beneficial trade-offs when implementing controlled burns.
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A. Appendix. Comparing the heat maps of the baseline models in Figure 10 with those of the PM, s-GNN in Figure 3 illustrates that
the PM, s-GNN performs best as indicated by the high R? values and density of points along the identity (y = x) line.
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Figure 10. Heat maps illustrating the observed versus predicted PM, s concentrations for 1-hour,
12-hour, and 48-hour forecasts, with log-transformed axes and color scale, for the Random Forest,
LSTM, and MLP models. Also indicated are the identity line (dotted black) and R* values of the best-fit
linear model.
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