

1 Optimizing and Exploring Untapped Micro-Hydro Hybrid Systems: a 2 Multi-Objective Approach for Crystal Lake as a Large-Scale Energy Storage Solution

3 Sharaf K. Magableh^a*, Oraib Dawaghreh^a, Caisheng Wang^a

4 ^aDepartment of Electrical and Computer Engineering, Wayne State University, Detroit, United States

6 Abstract

7 This paper proposes a method of exploring existing geographic locations with untapped pump hydro storage potentials
8 for accommodating intermittent renewable energy generation profiles. Measured data in 2022 were gathered for sizing
9 system's components and thorough, realistic analysis. Employing a multi-objective grey wolf optimization algorithm,
10 we formulate optimal sizing and energy management strategies for different scenarios. The 1st scenario aims to
11 maximize the reliability objective function (ROF) index of reliability (IR) whilst minimizing the cost objective function
12 (COF) leveled cost of energy (LCOE). The 2nd scenario focuses on maximizing ecological objective function (EOF)
13 CO₂ reduction amount (CO₂RA) whilst minimizing COF, and the 3rd scenario is for maximizing both ROF and EOF
14 while minimizing COF. Considering economic, environmental, and reliability factors as the three objective functions
15 (OFs), has proven to yield promising results in the third scenario when including triple OFs with multiple solutions. A
16 case study is done for the region of Crystal Lake, Michigan. Findings reveal that, although Crystal's Lake would only
17 function as a micro-hydro power facility, it is a promising and huge storage unit with a substantial storage capacity of
18 around 14.9734GWh. These outcomes include a notably low LCOE at 0.046147\$/kWh, a robust IR of 99.705%, and a
19 significant reduction in CO₂ emissions amounting to 7.9142×10³ ton/year, when considering the triple OFs. Validation
20 of the findings was conducted using multi-objective particle swarm optimization algorithms, affirming the robustness
21 of the proposed solutions. The paper's methodology provides valuable insights for regions aiming to utilize renewable
22 energy from untapped storage sources.

23 © 2024 The Authors. Published by Elsevier Ltd.

24 **Keywords:** Fuzzy logic, Levelized cost of energy, Optimal configuration, Pumped hydro storage, Solar photovoltaic array, Triple
25 objective functions.

26 **Nomenclature**

27 **Abbreviations Meaning**

28 DDM	Double Diode Model
29 DHI	Direct Horizontal Irradiance
30 DNI	Direct Normal Irradiance
31 EOF	Ecological Objective Function
32 ESS	Energy Storage System
33 GHG	Greenhouse Gas Emissions
34 MHPP	Micro-Hydropower Plant
35 MGA	Messy Genetic Algorithm
36 NSRDB	National Solar Radiation Database

* Sharaf K. Magableh. Tel.: +1-313(265)-8254

E-mail address: Sharaf.magableh@wayne.edu

37	PHESS	Pumped Hydro Energy Storage System
38	PV	Solar Photovoltaic
39	RES	Renewable Energy Systems
40	RERs	Renewable Energy Resources
41	ROF	Reliability Objective Function
42	UCL	Upper Crystal Lake
43	Symbol Name Unit	
44	ACS	Annualized Cost of the System
45	CC	Capital Cost
46	CEA	Carbon-Dioxide Emission Amount
47	COE	Cost of Energy
48	COF	Cost Objective Function
49	CRF	Capital Recovery Factor
50	IR	Index of Reliability
51	LCOE	Levelized Cost of Energy
52	LOLP	Loss of Load Probability
53	LPSP	Loss of Power Supply Probability
54	GTI	Global Tilted Irradiance
55	NPC	Net Present Cost
56	P&L	Transmission and Distribution Line Losses Percentage
57	OMC	Operation and Maintenance Cost
58	QOW	Quantity of Water in m ³
59	RC	Replacement Cost
60	RSF	Renewable Storage Factor
61	SC	Salvage Cost
62	TCC	Total Current Cost
63	T_{mpv}	Solar PV Module Temperature in °C
64	T_{amb}	Ambient Temperature in °C
65	NOCT	Nominal Operating Cell Temperature in °C
66	$T_{MDS,STC}$	Manufacturer Data Sheet Temperature at Standard Test Conditions in °C
67	v	Hourly Measured Wind Speed in m/s
68	V_{adj}	Adjusted Wind Speed at Hub Height in m/s
69	H_{hub}	Hub Height in m
70	$H_{measured}$	Height at Wind Speed Measured in m
71	I_{ph}	Photon Current in Ampere
72	P_{WT}	Power Extracted from Wind Turbine in MW
73	N_{WT}	Number of Wind Turbines
74	P_r	Rated Power in MW
75	V_{ci}	Cut-in Speed in m/s
76	V_{co}	Cut-out Speed in m/s
77	q_p	Pump Flow Rate in m ³ /s
78	q_t	Water Volumetric Flow Rate in m ³ /s

79	E_C	Gravitational Potential Energy
80	n_{day}	The Duration of Autonomy days
81	P_{gen}	Power Generated from Hybrid System in MW
82	$P_{PV\,inv}$	Power Generated Inverted from PV System
83	P_L	Load Demand in MW
84	$P_{MHPP\,dis}$	Generated Power from MHPP Turbines in MW
85	P_{gp}	Power Grid Purchased in MW
86	P_{extra}	Extra Generated Power from Hybrid System in MW
87	$P_{MHPP\,ch}$	Power Stored in MHPP in MW
88	P_{gsold}	Power Sold to the Grid in MW
89	Greek Symbols	
90	a_w	Wind Power Law Exponent
91	α_s	Solar Altitude Angle in degree
92	β_s	Solar Tilted Angle in degree
93	φ	Latitude Angle in degree
94	δ	Declination Angle in degree
95	θ_z	Zenith Angle in degree
96	ρ	water density ($1000\,kg/m^3$)
97	ρ_o	Air density at sea level, and it is equal to $1.225\,kg/m^3$
98	η_T	Efficiency of the hydro turbine (in %)

1. Introduction

Climate change, fossil fuel usage, and energy prices have constantly been top global topics. Based on the current global climate change, energy utilization, and climate policies, it is estimated that the fossil fuel share in global energy will drop from 80% to around 73% by the end of the year 2029 [1]. Hence, the adoption of new sustainable energy technologies will ease the challenges related to energy shortages and balance the energy transition domestically and internationally. As energy is crucial for our lives, in recent decades, hybrid renewable energy systems (RESSs) have appeared as a practical solution for supplying electricity to several areas, including remote rural areas where expanding the grid is impractical and extremely expensive [2]. A RES may include several sustainable resources, such as solar photovoltaic, wind energy, micro-hydro, and biomass energy, which can work along with conventional backup generators. In addition to generating clean electricity, large-scale solar, and wind power plants contribute to issues such as environmental waste accumulation and electricity generation intermittence. Therefore, there is a constant and urgent need for clean and dispatchable sources of energy production and storage. Among several RES technologies, hydro power stands out as a promising economic and reliable choice. Indeed, building large-scale hydropower facilities encounters challenges such as ecological impacts and high capital costs, which make them less attractive. Moreover, large-scale, centralized hydropower resources have already been extensively (if not fully) exploited in many countries and regions. Nevertheless, there still exist many untapped pico- and micro-hydro power resources from relatively small rivers and lakes and hydro storages, which show notable potential for long-term electricity generation and storage. For instance, Michigan, a state with thousands of lakes [3], presents a substantial opportunity for micro-hydro projects, in addition to its abundant rivers and high rainfall that serve those storage lakes.

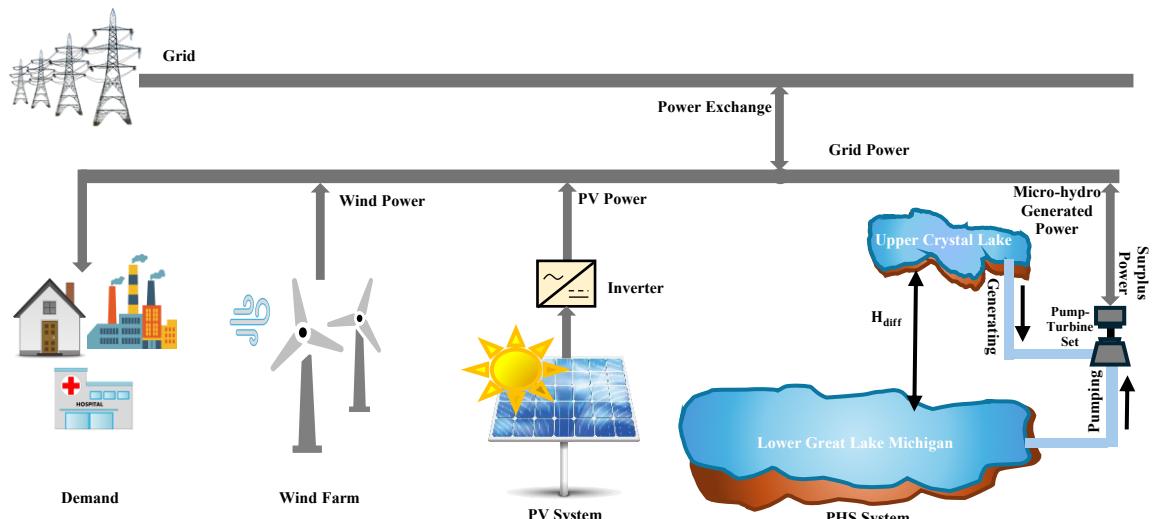
The authors in [4] propose an effective methodology for optimal production benefits for hydropower

systems, particularly for installing micro hydropower within water distribution networks. Their methodologies were to investigate technical and economic studies to evaluate practicability and economic feasibility, in terms of optimal sizing using an optimization algorithm. They applied the proposed algorithm to a case study in Morocco's water supply network, including the design and installation of a micro-hydro power plant (MHPP) and considering environmental aspects. Results indicate a substantial cost drop by utilizing existing infrastructures, and an annual average emission reduction of 282 tons, which proves the potential of integrating micro hydropower into water supply systems. They also found the proposed installation is ecologically sustainable and will generate clean energy with an obtained power output of 69 kW. In [5], the researchers discussed an on-grid solar PV combined with MHPP in Unand, Indonesia. This study aimed to find the optimal sizing of micro-hydro hybrid systems to enhance renewable power generation. They implement their system using HOMER software to optimize the head height and flow rate of the MHPP by minimizing the cost of energy (COE). The results showed that the head height was 30m with a flow rate of 800L/s at the lowest value of COE of 0.065 \$/kWh. Moreover, the optimal capacity enhances renewable energy generation by a renewable fraction improvement from 26.4% to 36.5%. Reference [6], discussed the availability of renewable energy resources (RERs) in Pakistan as a developing country and how to effectively harness these resources for electricity generation. This is done by introducing an MHPP situated at a specific canal in KPK, Pakistan. The modeling and optimization of the project were implemented using RETScreen software and were thoroughly discussed. The authors compute the net present value (NPV) and the COE using the RETScreen optimization assessment and validate the feasibility of the MHPP. RETScreen simulated a micro-hydro system as a case study with a capacity of 107 kW over a 20-year lifespan. The suggested micro hydropower project is technically applicable and economically viable, with a NPV of \$139,280 and a COE of 0.049 \$/kWh. The findings revealed that the proposed project will recover all the spending by the 4th year of its planned duration. Notably, when compared to the country's baseline energy mix, the proposed project is identified as clean energy with greenhouse gas (GHG) emission free. To solve the issue of intermittency in RERs due to the natural variations in power generation, which also follow daily and seasonal patterns, it becomes mandatory to combine a complementary energy storage system in those hybrid RERs. A viable alternative for energy storage in hybrid systems is a pumped hydro energy storage system (PHESS). The authors in [7], introduced a technique to represent a PHESS by creating an equivalent battery in HOMER since HOMER didn't have a PHESS component at that time, which was demonstrated through a detailed example. They designed another example consisting of a wind-hydro hybrid power system to validate their methods. The results confirm that the method outlined in their paper effectively represents PHESS for electric energy storage. In order to address energy scarcity challenges such as limited resources which can lead to lower efficiency, especially in sub-generation systems, the researchers in [8] present a design methodology utilizing a customized messy evolutionary approach called the Messy Genetic Algorithm to determine the optimal layout for MHPP. Their methodology considers multiple constraints associated with supply requirements, maximum flow use, and the substantial feasibility of the plant based on the actual geographical profile. This profile allows a continuous, variable-length Messy Genetic Algorithm (MGA) to optimize the layout, by applying two scenarios: cost minimization as a single-objective in one case and minimization of both cost and power supply as a multi-objective in the other case. The algorithm is implemented for a real remote community system in Honduras. Results show that a significant cost reduction of around 56.96% occurred compared to previous designs. On the other hand, considering other boundaries, the MGA was employed to optimize the problem without handling the penstock diameter as a variable. They found that shorter penstocks were created when considering fixed penstock diameter, reaching a 24.22% reduction in length compared to the solution with the optimized diameter, but with significantly higher costs of 285% increase. The PHESS boasts a global installed power capacity of 153GW [9]. This inspires the authors in [10], to introduce a novel Mixed Integer Linear Programming model intended to optimize the operation of such

storage plants by maximizing the system's profits. Their model can accommodate a larger number of breakpoints, allowing for more practical solutions with the lowest computational effort. To validate the effectiveness of their model, it was applied to two real plants in the Argentine Republic: the Rio Grande and Los Reyunos power plants, with a combined installed power capacity of 975 MW. The results demonstrate that the suggested model provided feasible solutions with an adequate level of accuracy, within CPU times of less than one second. In [11], the researchers integrated two types of energy storage specifically, MHPP and battery storage, into a small-scale RES. Their study implemented optimal design for off-grid renewable-micro PHESS and battery storage systems in a remote area of Sweden. Their objective was to estimate efficiency, cost, and storage duration. In addition to find the most suitable solution by considering techno-economic performance indicators such as investment cost, life cycle cost, leveled COE (LCOE), and loss of power supply probability (LPSP). The system was optimized using the modified non-dominated sorting Genetic Algorithm. Results reveal that the hybrid PV-wind-battery storage system is the best option in terms of economic benefits and reliability, as the demand is fully satisfied. They found that 18.61% lower life cycle cost and a 6.12% lower oversupply compared to the hybrid PV-wind-micro PHS system. Although this study compared two types of storage, they did not consider the impact of their design on a large-scale hybrid RES. In [12], the authors provided a practical analysis and sizing of a solar PV system linked with an existing dam as an upper reservoir of the PHESS in Jordan. They explored two scenarios. In the first scenario, they included both RER losses: the losses due to solar PV diffusion and recombination phenomena in the two-diode power model, and the effective head loss in the PHS plant. In the second scenario, they did not consider these types of losses. The system was optimized using particle swarm optimization to determine the optimal value of the index of reliability. They found that to fully cover the load demand, the necessary number of PV panels and the volume of the lower reservoir were to be 44,063 panels and 69.348 Million m^3 , in case no losses are considered, respectively. These values decrease by 14.33% and 5.39% for the second case. Therefore, considering renewable component losses will result in a higher but accurate sizing and prevent undersized design in the case of real system implementation. The authors in [13], proposed a new approach for water and energy management within a wide water supply system, aiming to reduce the costs of energy through the installation of PV plants. They integrate a PHESS to address the intermittency of PV systems. This integrated strategy is applied as a case study to two distinct pumping stations: the "Basso Flumendosa" and the "Monteleone-Roccadoria" pumping stations by maximizing energy self-consumption. Various sizes of PV arrays and hydro turbines are examined to evaluate the obtained self-sufficiency rate and cost performance. The impact of the pumping station's availability for storage purposes was also assessed. The findings indicate that more than 65% of the self-sufficiency rates are attainable only with the integration of the PHESS. A reduction in profitability is observed if full self-sufficiency is achievable for both pumping stations. The researchers in [14], discussed the design of different scenarios for microgrid hybrid RES. They optimized the system by considering multiple objectives, including economic and environmental aspects, namely net percentage cost (NPC) and the reduction of CO₂ emissions. To achieve this, a non-dominated sorting genetic algorithm was implemented to design and optimize the proposed system. The results, when directed toward economic objectives, show the achievement of the lowest energy cost across all scenarios with and without storage units. In contrast, when the optimization technique was centred on environmental objectives, the outcomes indicated a higher overall system cost compared to economic optimization across all scenarios. In [15], the authors discussed a novel tool for creating a penstock layout of MHPP. This proposed procedure depended on a detailed topographic survey of the terrain and used a Genetic Algorithm to optimize the layout of installations. Their mechanism allows for clear integration of several constraints, such as power supply, installation costs, available water flow, and layout feasibility by the actual terrain profile. The algorithm operates in both single-objective mode, aiming to minimize costs, and multi-objective mode, which considers both minimizing cost and maximizing power supply. The application of this algorithm to a real-

215 life case in a distant community in Honduras, Central America, has yielded promising results in terms of
 216 generation capacity and cost minimization.

217 After reviewing existing research and identifying gaps, this paper introduces a new approach: a hybrid
 218 renewable energy system (RES) coupled with a utility-scale micro PHESS, as depicted in Fig. 1, to
 219 demonstrate and model the proposed methodology. This system integrates solar PV arrays and wind plant
 220 installations integrated with the Upper Crystal Lake (UCL) as PHESS. The motivation for this research
 221 stems from the limited exploration of MHPP design on a large scale in previous studies, particularly in
 222 hydro facilities categorized as MHPPs. Moreover, it aims to address the engineering challenge of
 223 integrating hydro facilities with low head heights. Thus, the renewable energy strategy outlined in this paper
 224 offers a long-term solution to effectively meet energy demands in Michigan and similar regions globally.
 225 Additionally, a double-diode (DD) PV model was employed to ensure precise sizing of the proposed solar
 226 system. The proposed mathematical modeling, methodology, optimization algorithm application, and
 227 energy management flowchart presented in this paper apply globally to similar cases. In this paper, Crystal
 228 Lake's geographical location is utilized as a case study to validate these aspects, employing the realistic
 229 measured data for the chosen location in the year 2022, as detailed in Section 2. Multiple multi-objective
 230 scenarios were investigated for two and three objectives simultaneously. These scenarios include
 231 maximizing power system reliability and reducing CO_2 emissions while minimizing overall system costs.
 232 Additionally, the triple Pareto front was simulated to provide a comprehensive view of the combined
 233 objective functions for the system's methodology. It is important to note that each scenario yields several
 234 solutions, including the best-compromised solution using a fuzzy logic approach. The performance of
 235 various renewable energy scenarios is evaluated using a multi-objective approach that considers economic
 236 feasibility, reliability, and environmental impacts. This assessment employs a recent multi-objective
 237 metaheuristic optimization algorithm, namely the Multi-objective Grew-Wolf optimization algorithm
 238 (MOGWOA), to determine optimal system sizing and performance indicators for each scenario, aiming for
 239 cleaner energy production. Finally, a comparative analysis is utilized using a multi-objective feasibility-
 240 enhanced particle swarm optimization algorithm (MOFEPSOA) to test the effectiveness of MOGWOA. In
 241 other words, by comparing the findings obtained using MOFEPSOA, the performance of MOGWOA can
 242 be estimated.



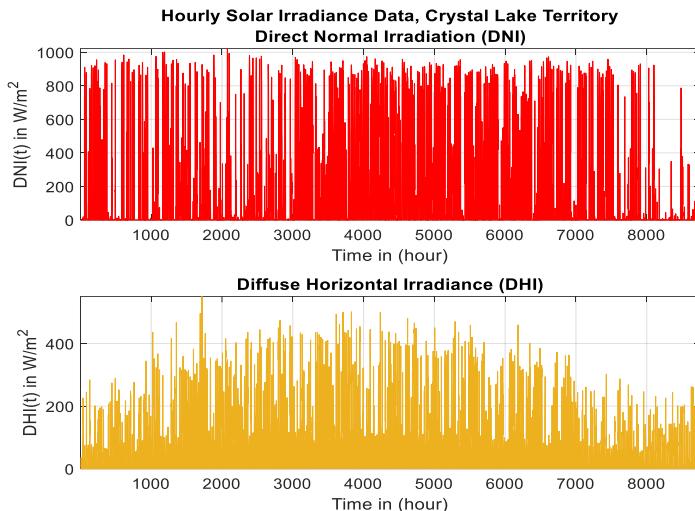
243
 244 Fig. 1. Schematic diagram of the proposed solar PV and wind power plants combined with the MHPP.

245 **2. System's Realistic Raw and the Corresponding Input Data**

246 The realistic measured data is substantial to accurately design and simulate a real power system and
 247 eventually obtain realistic results. This section shows the hourly realistic data for systems' components,
 248 including the solar PV system, wind farm, MHPP, and utility-scale load demand for Crystal's Lake territory.
 249 It also illustrates the acquired raw and adjusted data that are ready for implementation in the mathematical
 250 formulation of the proposed system. Note that, those measured data, i.e., 8760 hours for the year 2022, are
 251 obtained from formal US institutions and websites for the proposed geographical location, as explained
 252 later in this section.

253 *2.1 Solar PV System Data*

254 The solar PV system data was collected from the National Solar Radiation Database (NSRDB) for the
 255 Crystal Lake location [16]. Those data include the hourly measured direct normal irradiance (DNI), diffused
 256 horizontal irradiance (DHI), and ambient temperature (T_a). Fig. 2 depicts the hourly DNI and DHI in the
 257 Crystal Lake terrain throughout 2022, covering a total of 8,760 hours. It can be noticed that the maximum
 258 values of DNI and DHI are 1022W/m^2 and 550W/m^2 , respectively, whereas the average values are
 259 171.76W/m^2 and 61.99W/m^2 .



260
 261 Fig. 2. Hourly measured DNI and DHI values in Crystal Lake terrain in a year.

262 The data must be converted in the appropriate form in order to be implemented in the double-diode
 263 solar PV module presented in section 3.1. Note that, $GHI(t)$ is the total amount of horizontal solar radiation
 264 falling on a surface. It is also used to calculate the solar radiation on a tilted surface. GHI resulted in Fig.
 265 3, is mathematically computed based on the hourly raw data of DNI, DHI, and the acquired zenith angle
 266 ($\theta_z(t)$) using (1) [17].

$$267 \quad GHI(t) = DHI(t) + DNI(t) \times \cos(\theta_z(t)) \quad (1)$$

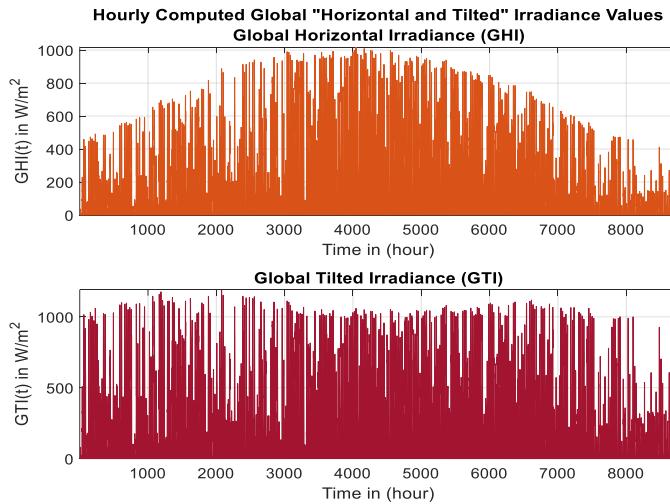
268 Now, the global tilted solar irradiance ($GTI(t)$) is ready to be computed and entered in the modeling of a
 269 solar PV module, as will be explained later in section 3.1. Note that, GTI, shown in Fig. 3, is calculated at
 270 each time step using (2) [18].

$$271 \quad GTI(t) = GHI(t) \times \frac{\sin(\alpha_s(t) + \beta_s)}{\sin(\alpha_s(t))} \quad (2)$$

272 Where α_s is computed as in (4), and it depends on the latitude angle (φ) and the declination angle (δ) as
 273 in (3). β_s is 37° for Crystal Lake territory [19]. φ is 44.668677° based on the selected site coordinates, and
 274 n is the number of days within a year, ranging from 1 to 365. This iteration allows (δ) to vary as a function
 275 of the specific day of the year[20].

$$\delta(t) = 23.45^\circ \sin \left[\frac{360}{365} (n + 284) \right] \quad (3)$$

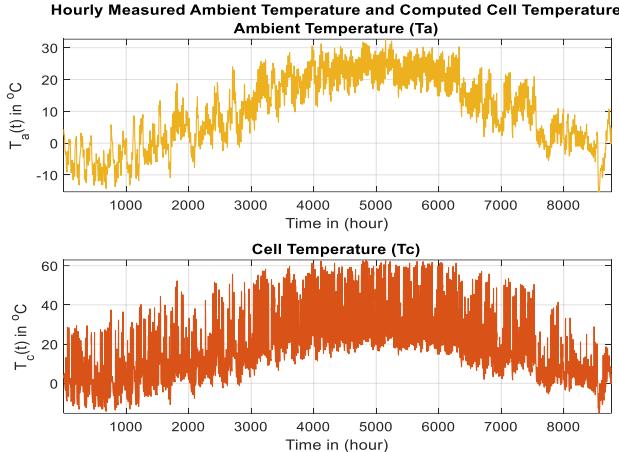
$$\alpha_s(t) = 90 - \varphi + \delta(t) \quad (4)$$



278
 279 Fig. 3. Hourly measured GHI and computed GTI solar values for Crystal Lake terrain in a year.

280 The module temperature ($T_{m_{PV}}(t)$) are calculated as in (5) and (6). $T_{amb}(t)$ in (5) is the hourly air
 281 ambient temperature obtained from NSRDB [16], and it is converted to $T_{m_{PV}}(t)$ as illustrated in Fig. 4.
 282 The selected solar PV is “CanadianSolar All-Black CS6K-290MS” with rated power of 290 Watt. The
 283 complete required data and the value of NOCT, $T_{MDS,STC}$ and GTI_{NOCT} are given in Appendix A.

$$T_{m_{PV}}(t) = T_{amb}(t) + \frac{(NOCT - T_{MDS,STC}) \times GTI(t)}{GTI_{NOCT}} \quad (5)$$



285
 286 Fig. 4. Hourly measured ambient and computed module temperature values for Crystal Lake terrain.

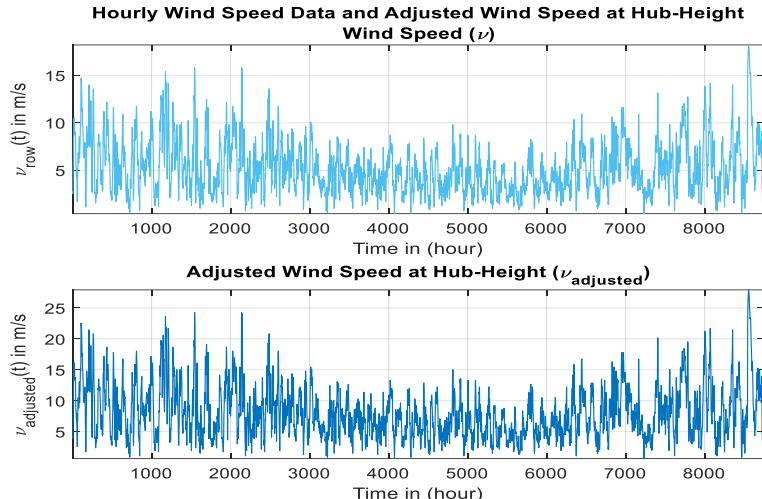
287

2.2 Wind Turbine Data

288 The hourly measured wind speeds $v(t)$, shown in Fig. 5, are obtained from the Weather API [21]. $v(t)$ are
 289 fluctuating between 0.42m/s and 18.2 m/s. Before these data can be utilized in the mathematical formulation
 290 of wind turbine output power discussed in section 3.2, it is required to calibrated this data according to the
 291 hub height (H_{hub}) as in (6) [22].

292
$$V_{adj}(t) = v(t) \times \left(\frac{H_{hub}}{H_{measured}} \right)^{a_w} \quad (6)$$

293 The wind power law exponent, denoted by (a_w), relates the wind speed measured at the H_{hub} of a wind
 294 turbine (V_{adj}) to the wind speed measured by an anemometer at $H_{measured}$, as expressed in Equation (6).
 295 In addition, empirical studies suggest that a_w is equivalent to 1/7, typically provides the best fit for most
 296 sites, see Appendix A. The average wind speed has increased from around 5.28 m/s to 8.11 m/s, as in Fig.
 297 5, after considering the hub height for the proposed wind turbine.



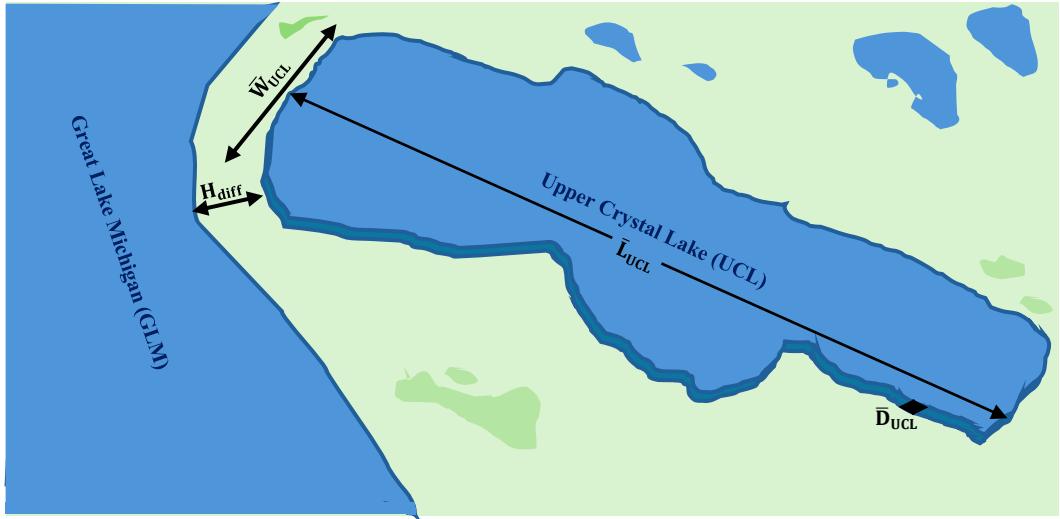
298
 299 Fig. 5. Hourly measured and computed wind speed values for Crystal Lake terrain.

300

2.3 Hydropower Plant and Crystal Lake Data

301 Crystal's Lake history is greatly constrained to several geological shifts in the past as it was initially
 302 formed as part of glacial Lake Algonquin around 11,000 years ago [23]. It was found perched 11.5824 m
 303 overhead of present-day Lake Michigan at an elevation of around 187.452 m after the glacier's retreat,
 304 presenting exposed terraces and flooded shoals along its shoreline [24]. In 1873, the lake witnessed a
 305 considerable drop in its levels due to a critical storm that faded and swept away a temporary dam during an
 306 attempt to build a canal to Lake Michigan. This event created new beach areas and set the stage for the
 307 development of the surrounding region, including a network of roads and trails and the establishment of a
 308 resort community. Over the years, the water levels fluctuated due to several issues, which resulted in a
 309 subsequent drop of water and a net volume loss of approximately 1.93 million m³ with an about 6 m drop
 310 in head height. However, in the late 18th century, it rebounded again and reached a height of around 183 m,
 311 the same as its current level. Hence, the lake's area changed, creating beach zones and impacting its overall
 312 features. Crystal Lake became one of the first in Michigan to set a "natural level" at 600.48 feet (183 m).
 313 An automatic gauge installed in 2014 helps record lake levels, contributing to the moderation of seasonal
 314 changes [25]. It is important to mention that the lake's level plays a pivotal role in defining the water body.
 315 The lake is primarily replenished by precipitation and groundwater; therefore, its water level remains
 316 relatively independent of Lake Michigan.

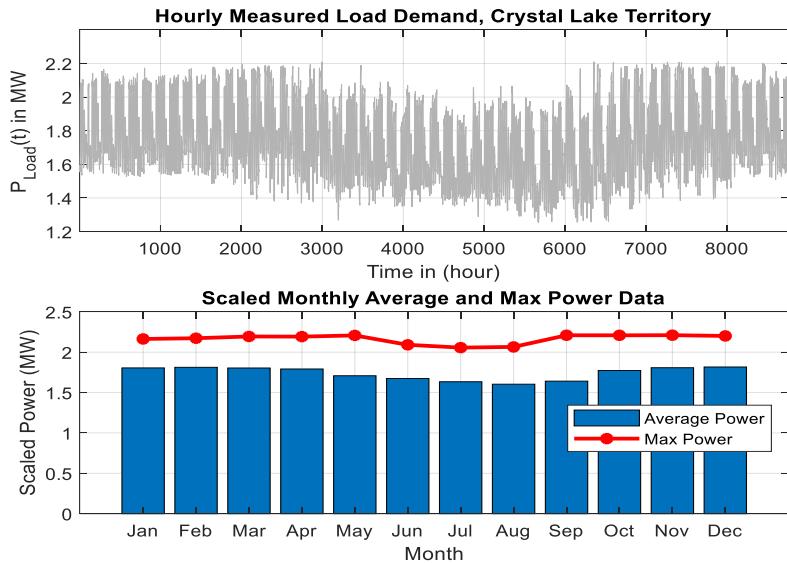
317 In this paper, UCL, depicted in Fig. 6, is designated as the upper reservoir for the MHPP, as illustrated
 318 previously in the proposed system in Fig. 1. With a substantial water capacity of around 1.93 million cubic
 319 meters, UCL inspires this study to investigate the potential of how lakes of this size function as efficient
 320 energy storage systems (ESS). In addition to focusing on the capability of generating electricity within such
 321 MHPPs, this research delves into the capacity of lakes like UCL to store energy effectively. Further details
 322 regarding UCL can be found in Appendix A [26].



323
 324 Fig. 6. Geographical representation of the UCL reservoir and the surrounding territory [26].

325 2.4 Load Demand Data

326 The load demand data, sourced from UtilityAPI, represents measurements in megawatts (MW) supplying
 327 a residential consumers in Benzie County, Michigan [27]. The observed load demand fluctuates within a
 328 range spanning from 1.2552 MW to 2.2104 MW, as depicted in Fig. 7.



329
 330 Fig. 7. The hourly measured demand for a 22 kV sub-feeder.

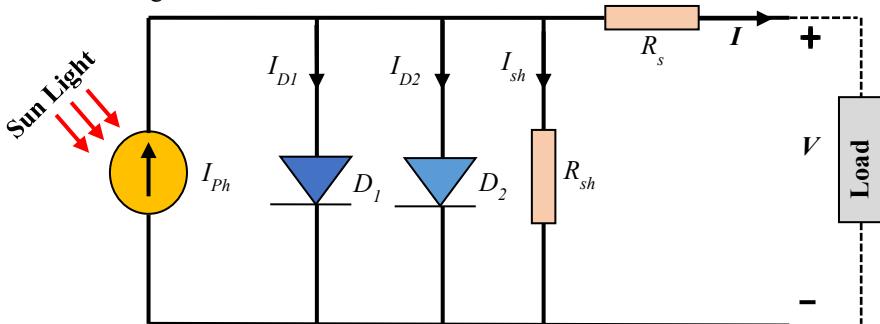
331 Notably, in Michigan, residential energy usage tends to spike during the winter months compared to the
 332 summer. This trend is driven by the cold temperatures experienced during winters, prompting residents to
 333 heavily utilize heating systems such as furnaces and boilers to maintain indoor warmth. The increased
 334 demand for heating results in peak electricity usage in households during this season. On the other hand,
 335 during the summer, although air conditioning usage may rise to beat the heat and humidity, overall
 336 electricity demand from homes usually does not hit the same heights as in the winter. It can be noticed that
 337 the monthly average demand is within a narrow range of around 1.7389MW during the year, as depicted in
 338 Fig. 7.

339 3. Mathematical and Design Formulation

340 Mathematical modeling serves as the cornerstone and initial phase for precisely simulating and
 341 optimizing the proposed system. Accurate modeling is crucial for determining the appropriate
 342 configurations of the systems involved. For the renewable components, a quality factor-based model is
 343 utilized for the solar PV array, while a cubic function is chosen to model the wind farm, accounting for
 344 parameters such as the wind power coefficient and tip speed ratio. These models rely on input data presented
 345 in Section 2. The energy management strategy, depicted in Fig. 8, guides the precise sizing and optimization
 346 of the system using MOGWOA.

347 3.1 Modeling of Solar PV Output Power

348 In this paper, the double-diode model (DDM) will be utilized to simulate the solar PV module. DDM
 349 is commonly used for representing the behaviour of solar PV modules. However, DDM has rarely been
 350 implemented in utility applications because of its large computation time and its complexity. This is because
 351 it considers all types of losses in the modeling of solar PV module. Nonetheless, DDM gives a more
 352 accurate and realistic description of the electrical characteristics of a solar cell compared to other types of
 353 solar models, i.e., the single-diode model or the ideal single diode model. Hence, implementing this DDM
 354 leads to a true sizing of the PV array and hence, the size and cost of the entire system [28]. The first diode
 355 (D_1) represents the diffusion process whilst the second diode (D_2) simulates the recombination phenomena
 356 [29]. In other words, D_1 reflects how minority carriers diffuse into the depletion layer, while D_2 mimics the
 357 recombination within the junction's space charge region [30]. Therefore, the DDM takes into account solar
 358 losses comprehensively, including diffusion, recombination, leakage to ground losses (R_{sh}), and series
 359 losses (R_s) as shown in Fig. 8.



360
 361 Fig. 8. Equivalent circuit of a two-diode PV module

362 The DDM gives a more precise and realistic output current from the cell compared with the simpler single-
 363 diode model. This is due to considering the recombination process, i.e., D_2 current (I_{D2}) as depicted in
 364 equation (7) [31]. I_{D1} , I_{D2} and I_{sh} are computed as in (8), (9) and (10), respectively [32, 33].

365
$$I = I_{ph} - I_{D1} - I_{D2} - I_{sh} \quad (7)$$

$$366 \quad I_{D1} = I_{o_1} \left(e^{\left(\frac{V+IR_s}{\alpha_1 V_T} \right)} - 1 \right) \quad (8)$$

$$367 \quad I_{D2} = I_{o_2} \left(e^{\left(\frac{V+IR_s}{\alpha_2 V_T} \right)} - 1 \right) \quad (9)$$

$$368 \quad I_{Sh} = \frac{V+IR_s}{R_{sh}} \quad (10)$$

369 After substituting (8), (9), and (10) in (7), equation (11) is resulted. The photon current (I_{Ph}) as shown
 370 in Fig. 8 and Equ. (11) affects by varying solar irradiance and temperature according to equation (12) [34].
 371 The diode saturation currents I_{o_1} and I_{o_2} depend on temperature and can be expressed as given in (13).
 372 Where E_g in (13) represents the band gap energy of the semiconductor and $I_{o,STC}$ is the nominal saturation
 373 current at (STC) and can be expressed by (14).

$$374 \quad I = I_{Ph} - I_{o_1} \left(e^{\left(\frac{V+IR_s}{\alpha_1 V_T} \right)} - 1 \right) - I_{o_2} \left(e^{\left(\frac{V+IR_s}{\alpha_2 V_T} \right)} - 1 \right) - \frac{V+IR_s}{R_{sh}} \quad (11)$$

$$375 \quad I_{Ph} = [I_{pv,STC} + K_I (T - T_{STC})] \frac{GTI}{G_{STC}} = I_{pv,STC} (1 + \alpha_{lsc} \Delta T) \frac{GTI}{G_{STC}} \quad (12)$$

$$376 \quad I_o = I_{o,STC} \left(\frac{T_{STC}}{T} \right)^3 \exp \left(\frac{qE_g}{\alpha K} \left(\frac{1}{T_n} - \frac{1}{T} \right) \right) \quad (13)$$

$$377 \quad I_{o,STC} = \frac{I_{sc,STC}}{\exp \left(\frac{V_{oc,STC}}{\alpha V_{T,STC}} \right) - 1} \quad (14)$$

378 From the previous two equations (13) and (14), I_o can be expressed as given in (15). As the diode
 379 saturation current is very small, to simplify the model, the reverse saturation currents, I_{o_1} and I_{o_2} are set to
 380 be equal as in (16) [31]. As α_1 and α_2 in equation (16) are the diode ideality factors that represent the
 381 diffusion and recombination effects. Referring to Shockley's diffusion theory, α_1 must be unity while the
 382 value of α_2 is varying. If the value of α_2 is in the range of $1.2 \leq \alpha_2 \leq 2$, the best match between the proposed
 383 model and the practical I-V curve is obtained according to the simulation results. Hence, $\frac{\alpha_1 + \alpha_2}{P} = 1$ and
 384 $\alpha_1 = 1$. It follows that the variable P can be chosen to be within $2.2 \leq P \leq 3$. Hence, considering these
 385 constraints, (16) becomes as in (17) [35].

$$386 \quad I_o = \frac{I_{sc,STC} + K_I \Delta T}{[\exp \left(\frac{V_{oc,STC} + K_V \Delta T}{V_T * \alpha} \right) - 1]} \quad (15)$$

$$387 \quad I_{o_1} = I_{o_2} = \frac{I_{sc,STC} + K_I \Delta T}{[\exp \left(\frac{V_{oc,STC} + K_V \Delta T}{V_T (\alpha_1 + \alpha_2)/P} \right) - 1]} \quad (16)$$

$$388 \quad I_{o_1} = I_{o_2} = \frac{I_{sc,STC} + K_I \Delta T}{[\exp \left(\frac{V_{oc,STC} + K_V \Delta T}{V_T} \right) - 1]} = I_o \quad (17)$$

3.2 Mathematical modeling of Wind Farm

390 The power extracted from wind turbines (P_{WT}) can be expressed as in (18). Note that, it depends on local
 391 wind speed ($V(t)$), the number of wind turbines (N_{WT}), and the parameters of the manufactured wind
 392 turbine, such as the rated power in kW (P_r), cut-in speed (V_{ci}) in m/s, and cut-out speed (V_{co}) in m/s [36].

$$393 \quad P_{WT} = \begin{cases} 0 & , V(t) < V_{ci} \\ \frac{N_{WT} P_r (V(t)^3 - V_{ci}^3)}{(V_r^3 - V_{ci}^3)} & , V_{ci} < V(t) < V_r \\ N_{WT} P_r & , V_r < V(t) < V_{co} \\ 0 & , V(t) > V_{co} \end{cases} \quad (18)$$

3.3 Mathematical Modeling of Micro-Hydro and PHESS

395 MHPP can be in different types such as dam, run-off-river, and PHESS, or a combination of them. In this
 396 study, the MHPP will be in the form of PHESS. The PHESS system operates as a giant battery to store
 397 energy. They can store energy as a form of potential energy by pumping the water from the lower reservoir
 398 (i.e., Lake Michigan) to the upper Crystals Lake (UCL) reservoir, shown in Fig. 6. This process is called
 399 pumping mode. When the hybrid system comprised of solar PV and wind turbines cannot sufficiently meet
 400 the load demand, the water is released from the UCL to the lower reservoir, in the process of generating
 401 mode.

402 3.3.1. Pumping (or Charging) Mode

403 The pump flow rate ($q_p(t)$) from the lower reservoir to UCL is expressed as in Equation (19). It is the
 404 relation of surplus or extra power from the hybrid system ($P_{MHPP_ch}(t)$) in kW, pump efficiency (η_p), head
 405 height (h) in m, water density (ρ) (1000 kg/m³), and gravity acceleration (g) (9.8 m/s²) [37].

$$406 q_p(t) = \frac{\eta_p P_{MHPP_ch}(t)}{\rho g h} \quad (19)$$

407 3.3.2. Generating (or Discharging) Mode

408 The released power from the UCL is used to spin the turbine/generator set when the solar PV and wind
 409 turbine renewable facilities cannot meet the load demand, and this power can be computed as in (20) [37].
 410 Note that, η_t is the efficiency the turbine/generator set and $q_t(t)$ is the water volumetric flow rate in m³/s.

$$411 P_{MHPP_dis}(t) = \eta_t \times \rho \times g \times h \times q_t(t) \quad (20)$$

412 3.3.3. Upper Crystal Lake (UCL) Reservoir

413 The quantity of water (QOW) stored in the UCL at any time (t) is expressed as in (21) [37]. The QOW in
 414 the UCL is governed by the constraints as explained in (22), as the upper and lower safety limit. α is the
 415 loss factor from evaporation and leakage to ground. In this paper, α will be considered zero due to the
 416 massive volume of UCL.

$$417 QOW_{UCL}(t) = QOW_{UCL}(t-1)(1-\alpha) + q_p(t) - q_t(t) \quad (21)$$

$$418 QOW_{UR\min} \leq QOW_{UR} \leq QOW_{UR\max} \quad (22)$$

419 3.3.4. Storage Capacity

420 The UCL must have sufficient water stored to meet the power requirements of the demand during extended
 421 power outages [38]. The water level (QOW) in the UCL essentially acts as the state of charge explained
 422 before for the storage tank. The gravitational potential energy (E_C) in kWh stored in the UCL can be
 423 measured as in (23) [39], where V stands for the volume or storage capacity of the water reservoir in cubic
 424 meters (m³).

$$425 E_C = \frac{\mu_t \times \rho \times V \times g \times h}{3.6 \times 10^6} \quad (23)$$

426 Based on the planned capacity of the UCL, and the daily energy consumption by the load (E_{Load}) in (kWh),
 427 the duration of autonomy days (n_{day}) can be determined by assessing the potential energy stored in the
 428 UCL. This calculation can be performed using the following formula (24) [34].

$$429 n_{day} = \frac{E_C}{E_{Load}} \quad (24)$$

430 4. System's Operational Flow Chart

431 Fig. 9 illustrates the operational flow chart and energy management system. This flow chart explains the
 432 priority and the flow of energy within the system to meet the load demand. It begins with the power
 433 generated by the solar PV and wind plants, followed by the MHPP, and is then sourced from the grid. It
 434 also provides a general overview of the algorithm's functionality to optimally design the system.

If the power generated from the hybrid system ($P_{gen}(t)$), as defined in (25), originating from both the PV system ($P_{PV\,inv}(t)$) as in (26) and wind farm ($P_{WT}(t)$) as specified in (18), is insufficient to satisfy the load demand ($P_L(t)$) presented in section 2.4, the needed load will be covered by generating power during discharging mode from the MHPP facility ($P_{MHPP\,dis}(t)$). Hence, if $P_{gen}(t)$ and $P_{MHPP\,dis}(t)$ are still inadequate to meet the load demand, the grid feeds the load demand ($P_{gp}(t)$) as outlined in (27). On the other hand, in the event of extra power generated from the hybrid system ($P_{extra}(t)$) as in (28), then this power is stored in MHPP by pumping the water from the lower reservoir to the UCL ($P_{MHPP\,ch}(t)$) if and only if the QOW in the UCL is less than the QOW_{max} , if not, the QOW is at the maximum limit, and the extra power is sold to the grid ($P_{g sold}(t)$) [11, 12].

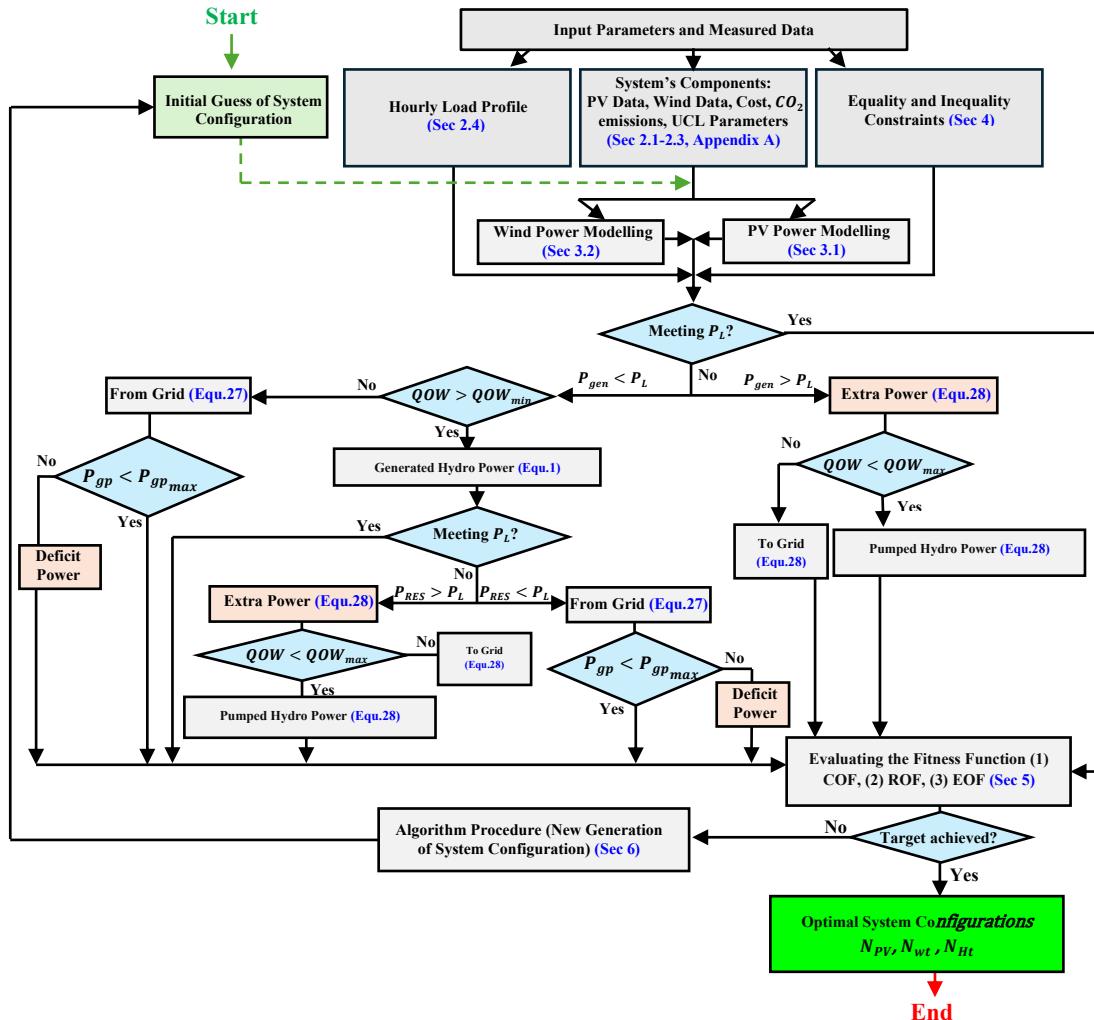


Fig. 9. Energy management strategy and Operational flowchart.

446 The multi-objective function is assessed at each time step, as shown in Fig. 9. In the case that the
 447 maximum power obtained from all renewables covers the load demand and increases, but the grid capacity
 448 limit is reached, then the extra power will be directed to a dummy load. In scenarios where the power

449 produced from all renewables and the grid purchased are insufficient to satisfy the load demand, then there
 450 is a deficit power ($P_{deficit}(t)$) as depicted in the balance power equation in (28) [11, 12].

$$451 \quad P_{gen}(t) = P_{PV\,inv}(t) + P_{WT}(t) \quad (25)$$

$$452 \quad P_{PV\,inv}(t) = \eta_{inv} \times P_{PV}(t) \times f_{PV} \quad (26)$$

$$453 \quad P_{gp}(t) = P_L(t) - (P_{gen}(t) + P_{MHPP\,dis}(t)) , if \quad P_{gp}(t) \leq P_{gp}(t)_{max} \quad (27)$$

$$454 \quad P_{extra}(t) = P_{gen}(t) - P_L(t) = \begin{cases} P_{MHPP\,ch}(t) & , QOW < QOW_{max} \\ P_{gsold}(t) & , QOW \geq QOW_{max} \end{cases} \quad (28)$$

$$455 \quad P_{gen}(t) + P_{MHPP\,dis}(t) + P_{gp}(t) = P_L(t) + P_{MHPP\,ch}(t) + P_{gsold}(t) + P_{deficit}(t) \quad (29)$$

456 5. System's Multi-Objective Functions and Performance Evaluators

457 This section discusses the multi-objective functions that govern the performance of the system and other
 458 performance indicators to be computed for each case scenario. In this paper, there are three multi-objective
 459 scenarios, including economic aspects versus reliability in one case, ecological and cost impacts in the
 460 second case scenario, and all objective functions in the 3rd scenario. The 1st multi-objective function
 461 scenario will consider minimizing the levelized cost of energy (LCOE) and maximizing the index of
 462 reliability (IR) using the Multi-Objective Grey Wolf Optimizer (MOGWO) algorithm to find the best
 463 optimal solution. However, minimizing the LCOE and maximizing the carbon-dioxide reduction amounts
 464 (CO_2RA) will be taken into account for the 2nd case scenario. In the 3rd scenario, IR and CO_2RA will be
 465 maximized, and LCOE will be minimized as a triple objective function.

466 The set of solutions in the optimized multi-objective function, namely Pareto front solutions, will
 467 provide all types of solutions, including affordable, reliable, and ecological solution sets. For instance, if
 468 the designer focuses on the system to be more economic, the set of solutions closer to the minimal cost
 469 would be better regardless of the reliability and so on. Note that the optimal configuration of the system
 470 depends on the multi-objective function or the best decision variables, including the number of PV panels
 471 (N_{PV}), the number of wind turbines (N_{wt}), and the number of hydro-turbine units (N_{Ht}).

472 5.1. Cost Objective Function (COF)

473 The LCOE is a mathematical estimation process used in the energy business to calculate the average
 474 cost of generating one unit of electricity during the system's lifetime. It considers several parameters,
 475 including initial capital costs, operations and maintenance expenses, fuel costs, and the system's projected
 476 lifespan energy production.

477 The COF of LCOE will be minimized, and it is considered as the 1st objective function. It is noted that
 478 the computation of the LCOE involves dividing the Annualized Cost of the System (ACS) by the energy
 479 supplied to meet the load demand (EL), as illustrated in equation (30). The ACS is derived by multiplying
 480 the Total Current Cost (TCC) with the Capital Recovery Factor (CRF). TCC is computed by summing the
 481 discounted values of various costs in the system, including Capital Cost (CC), Operation and Maintenance
 482 Cost (OMC), Replacement Cost (RC), and Salvage Cost (SC). The CRF is determined by (31), while the
 483 real interest rate (i) is found using (32) depending on i' representing the nominal interest rate and the
 484 inflation rate (f_{inf}). Appendix B provides the cost values for each component, including their respective
 485 lifetimes, along with the financial parameters required for constructing both nominal and discounted
 486 cashflows [40].

$$487 \quad LCOE = \frac{ACS}{E_s} \quad (30)$$

$$488 \quad CRF = \frac{i(1+i)^N}{(1+i)^N - 1} \quad (31)$$

$$489 \quad i = \frac{i' - f_{inf}}{1 + f_{inf}} \quad (32)$$

490 5.2. Reliability Objective Function (ROF)

491 The Index of reliability (IR) refers to the system's ability to satisfy the load demand, mentioned in
 492 section 2.4, without any interruptions or deficit in energy. The 2nd ROF is to be maximized and can be
 493 computed as in (33) [41].

$$494 \quad IR = 1 - \frac{\sum_{t=1}^{8760} [P_L(t) - (P_{PV\,inv}(t) + P_{WT}(t) + P_{MHPP\,dis} + P_{gp}(t))]}{\sum_{t=1}^{8760} P_L(t)} \quad (33)$$

495 5.3. Ecological Objective Function (EOF)

496 Carbon-Dioxide Reduction Amount (CO_2RA) stands for the reduction in harmful emissions achieved by
 497 the utilization of renewable energy resources ($E_{R\,gen}$) rather than the conventional fossil fuels, as indicated
 498 in equation (34) [42]. F_{CO_2} represents the carbon dioxide emission factor, and it is estimated to be 0.553
 499 tCO₂/MWh in the context of Michigan [43]. The 3rd EOF of CO_2RA is maximized using MOGWO
 500 algorithm as explained in sections 6 and 7.

$$501 \quad CO_2RA = E_{R\,gen} \times F_{CO_2} \quad (34)$$

502 5.4. Complete constrained objective function formulation

503 The system optimization and sizing are determined by decision variables and a set of equality and
 504 inequality constraints, as outlined in Equ. (35) [44]. These decision variables include the number of PV
 505 panels (N_{PV}), the number of wind turbines (N_{WT}) and the number of hydro-turbine units (N_{Ht}).

$$506 \quad \left\{ \begin{array}{l} COF: \text{Min} \left(LCOE = \frac{ACS}{E_s} \right) \\ ROF: \text{Max} \left(IR = 1 - \frac{\sum_{t=1}^{8760} [P_L(t) - (P_{PV\,inv}(t) + P_{WT}(t) + P_{MHPP\,dis} + P_{gp}(t))]}{\sum_{t=1}^{8760} P_L(t)} \right) \\ EOF: \text{Max} \left(CO_2RA = E_{R\,gen} \times F_{CO_2} \right) \\ (COF \& ROF) \parallel (COF \text{ and } EOF) \parallel (COF \& ROF \& EOF) \\ N_{PV}, N_{WT}, N_{Ht} \\ \text{Subject to} \\ \left\{ \begin{array}{l} P_{gp}(t) \leq P_{gp\,max} \\ QOW_{min} \leq QOW(t) \leq QOW_{max} \\ P_{extra}(t) = P_{gen}(t) - P_L(t) = \begin{cases} P_{MHPP\,ch}(t), & QOW < QOW_{max} \\ P_{gsold}(t), & QOW \geq QOW_{max} \end{cases} \\ P_{gp}(t) = P_L(t) - (P_{gen}(t) + P_{MHPP\,dis}(t)) \\ P_{gen}(t) + P_{MHPP\,dis}(t) + P_{gp}(t) = P_L(t) + P_{MHPP\,ch}(t) + P_{gsold}(t) + P_{deficit}(t) \end{array} \right. \end{array} \right. \quad (35)$$

507 5.5. Other Performance Evaluators

508 This section shows other appropriate performance indicators to assess the behavior of the system at an

optimal solution of each scenario. This includes estimating the Loss of Load Probability (LOLP), Carbon-Dioxide Emissions Amount (CEA), and Renewable Storage Factor (RSF).

LOLP serves as a metric to assess the number of hours in a given year during which the system falls short of meeting the load requirements, as indicated in equation (36). A lower LOLP value indicates a higher level of reliability in the system. Essentially, LOLP delves into the hours when the system experiences inadequacy in meeting the load demand or encounters a power deficit [45].

$$LOLP = \frac{\sum_{t=1}^{8760} h_{[P_L(t) > (PPV_{inv}(t) + PWT(t) + PMHPP_{dis} + Pgp(t))]}}{8760} \quad (36)$$

CEA is a measure of the greenhouse gas emissions (GHGEs), primarily CO_2 , released when relying on the utility grid, as specified in equation (37) [42]. This quantity is related to the CO_2 emission factor (F_{CO_2}), mentioned before. Additionally, it factors in the losses percentage in transmission and distribution lines (PL), with Michigan registering approximately 5% in this regard [46]. Notably, a lower CEA value signifies a more efficient utilization of renewable energies, highlighting the environmental benefits associated with reduced carbon emissions.

$$CEA = \frac{E_{gp} \times F_{CO_2}}{1-PL} \quad (37)$$

RSF gauges the extent to which the energy supplied by the UCL of the MHPP facility fulfills the overall demand, as expressed in equation (38) [47]. Here, $E_{Storage}$ represents the energy conveyed to the load by PHS, while E_{System} encompasses the energy output of the entire system, inclusive of MHPP.

$$RSF = \sum_0^t \frac{E_{Storage}}{E_{System}} \quad (38)$$

6. System's Multi-Objective Optimization Algorithms

This research employs two multi-objective algorithms to simulate the proposed system. Initially, the MOGWOA is adapted to model the system, incorporating various multi-objective scenarios. This involves modifying the algorithm to minimize system costs while maximizing reliability and ecological considerations. Subsequently, the MOFEPSOA is utilized to validate the results obtained from the MOGWOA. It is important to note that each scenario yields multiple solutions, including reliable, ecological, economic, and optimal compromise solutions, based on the preferences of the designers. The optimal solution, balancing all objectives, is determined using a fuzzy logic approach, as detailed in section 7.

6.1. Multi-objective Grew-Wolf optimization algorithm (MOGWOA)

Mirjalili and Lewis introduced the Grey Wolf Optimizer (GWO) algorithm, which was originally inspired by the social leadership and hunting strategies of grey wolves. The MOGWOA incorporates a fixed-size external archive into the GWO, which enables the storage and retrieval of Pareto optimal solutions. This archive plays a crucial role in establishing a social hierarchy and emulating the hunting behavior of grey wolves in multi-objective search environments. It is worth mentioning that the MOGWOA algorithm was used to solve multi-objective optimization problems, as it is preferred in research for its simplicity and ability to adaptively tune parameters. Many studies, as in [48-52], recommend MOGWOA for tackling complex optimization challenges. Consequently, we employed MOGWOA in this article. For instance, in [53], the primary aim of the proposed MOGWO was to optimize the switching matrix structure to minimize row current differences and maximize output power. This method effectively addressed the challenge of adjusting objective function weights to ensure system reliability and efficiency. The comparison demonstrated MOGWO's superiority in handling multi-peak issues in P-V characteristics, achieving the highest power levels.

551 When formulating the social hierarchy within the GWO, the most appropriate solution is designated as
 552 the alpha (α) wolf. Subsequently, the second and third best solutions are identified as the beta (β) and delta
 553 (δ) wolves respectively as shown in Fig. 10. All other candidate solutions are classified as omega (ω)
 554 wolves. Within the GWO algorithm, the optimization process is directed by α , β , and δ wolves, while ω
 555 wolves follow their lead in the pursuit of the global optimum. Appendix C imitates the encircling behavior
 556 equations observed in grey wolves during hunts [54]. It is observed that t denotes the present iteration, while
 557 \vec{A} and \vec{C} represent coefficient vectors. \vec{X}_p refers to the position vector of the prey and \vec{X} signifies the
 558 position vector of a grey wolf. The elements of the coefficient vector \vec{a} linearly decrease from 2 to 0
 559 throughout the iterations. Additionally, \vec{r}_1 and \vec{r}_2 denote random vectors within the range of [0,1] [55].

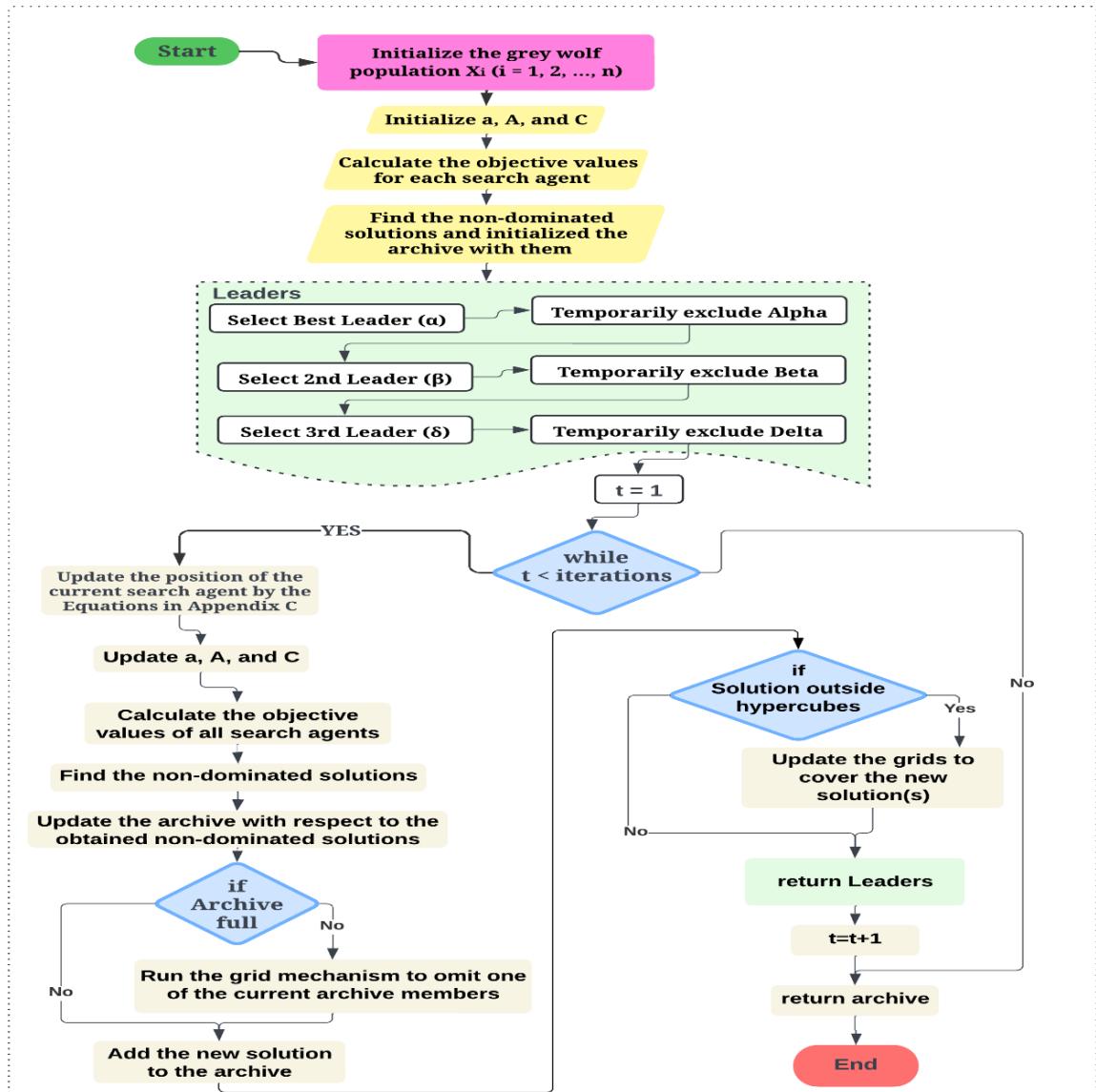


Fig. 10. General operational flowchart of the proposed MOGWOA.

562 The MOGWO algorithm uses simulated social leadership and encircling mechanisms to obtain the
 563 optimal solution for optimization problems. This algorithm retains the initial three best solutions acquired
 564 and directs other search agents, including omegas, to refresh their positions accordingly. The parameters a,
 565 A, and C are important in guiding the exploration process of the algorithm, as shown in Appendix C and
 566 Fig. 10. Both variables A and C are coefficient vectors, with a starting from 2 and linearly decreasing to 0
 567 over the iterations. This decrease causes the algorithm to gradually shift its focus from exploration, which
 568 involves a broad search of the solution space, to exploitation, which involves a more focused search in the
 569 local area around the best solutions found so far. Finally, to simulate the hunting process and identify
 570 promising areas within the search space, formulas in Appendix C are executed continually for each search
 571 agent during optimization, as illustrated in Fig. 10 [54].

572 6.2. Multi-objective Feasibility Enhanced Particle Swarm Optimization Algorithm (MOFEPSOA)

573 MOFEPSOA, developed by Hasanoglu and Dolen, is a method designed for addressing multi-objective
 574 problems with constraints. It deals exclusively with inequality constraints, requiring any equality
 575 constraints to be converted into inequality constraints. The algorithm begins by initializing parameters and
 576 assessing particle positions for feasibility. If a position is feasible, it updates velocities and flight behaviours
 577 accordingly; otherwise, it adjusts them for infeasible positions. Subsequently, the algorithm rechecks the
 578 particle's new position for feasibility [56]. In this paper, MOFEPSOA will compute the objective vectors
 579 (LOCE, IR, and CO₂RA) and include the current solution in the best set. It will update the best solution in
 580 the objective vector if others do not dominate it. If the new particle position is not the best, it checks if it is
 581 not the final particle. If there are remaining iterations, MOFEPSOA repeats the previous steps from
 582 initialization. Finally, upon reaching the stopping criteria for the number of particles and iterations,
 583 MOFEPSOA presents all feasible non-dominant trade-off solutions as the Pareto front. More detailed
 584 explanations of the algorithm are presented in [57].

585 6.3. Employing Fuzzy Logic method for compromised Solution Identification

586 Many common approaches can find the best non-dominant solution, such as the fuzzy logic method. The
 587 fuzzy logic method uses the fuzzy membership function $\mu_i(F_i)$ to find the best non-dominant solution out
 588 of all non-dominant solutions stored in the archive of the MOGWOA [58]. The fuzzy membership function
 589 in (39) is used to convert each objective function (F_i) to a membership value in range between (0, 1) [59].
 590 Where F_i^{\min} and F_i^{\max} represent the minimum and maximum objective function values, respectively.

$$591 \mu_i(F_i) = \begin{cases} 1, & F_i(x) \leq F_i^{\min} \\ 0, & F_i(x) \geq F_i^{\max} \\ \frac{F_i^{\max} - F_i(x)}{F_i^{\max} - F_i^{\min}}, & F_i^{\min} \leq F_i(x) \leq F_i^{\max} \end{cases} \quad (39)$$

592 As introduced before, this study will investigate three main scenarios. Therefore, a multi-objective
 593 optimization is performed to find three corresponding best solutions which are the reliable and affordable.
 594 Equation (40) is used to minimize $LCOE(x)$ and maximize $IR(x)$, whereas (41) is used to maximize
 595 $CO_2RA(x)$ while minimizing $LCOE(x)$. Finally, (42) is used to minimize $LCOE(x)$ and maximize
 596 $CO_2RA(x)$ and $IR(x)$ simultaneously.

$$597 \text{Minimize } F_1(x) = \left[LCOE(x), \frac{1}{IR(x)} \right] \quad (40)$$

$$598 \text{Minimize } F_2(x) = \left[\frac{1}{CO_2RA(x)}, LCOE(x) \right] \quad (41)$$

$$599 \text{Minimize } F_3(x) = \left[LCOE(x), \frac{1}{IR(x)}, \frac{1}{CO_2RA(x)} \right] \quad (42)$$

600

7. Results and Discussion

601

MATLAB R2022a is utilized to simulate the energy management system for the Crystal Lake territory case study. The MOGWO algorithm is employed to execute the system based on the data collected for the year 2022. The analysis includes three scenarios: the 1st scenario aims to maximize ROF (IR) whilst minimizing COF (LCOE), the 2nd scenario focuses on maximizing EOF (CO_2RA) whilst minimizing COF, and the 3rd scenario is for maximizing both ROF and EOF while minimizing COF. Accordingly, the MOFEPSOA is utilized to validate the findings obtained from MOGWOA.

607

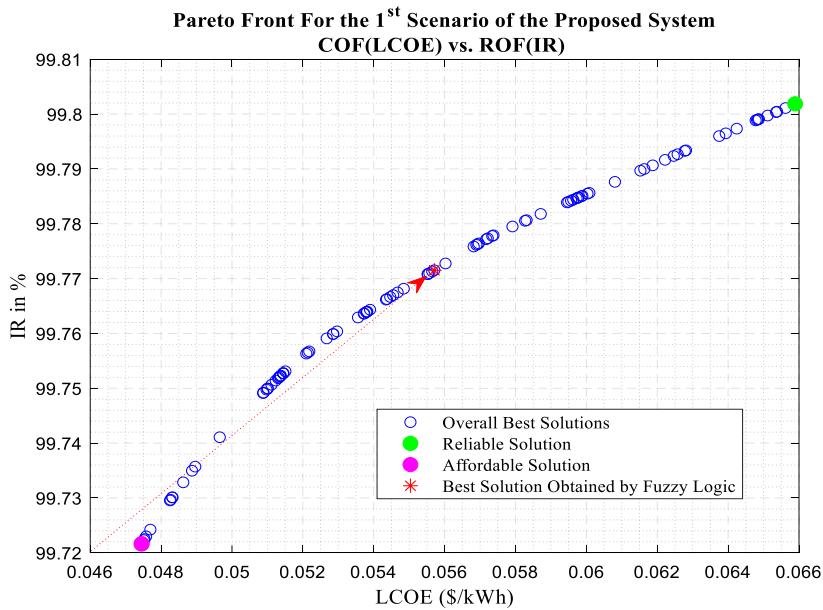
7.1. Optimization using MOGWO algorithm

608

This study employs the MOGWOA technique to tackle the optimization problem, utilizing the mentioned decision variables of renewable components. For each scenario, a set of solutions is generated, typically amounting to around 100 solutions for each Pareto front. From this set, four essential solutions are selected and discussed, depending on the specific scenario. For instance, in the 1st scenario, the first solution, termed the reliable solution, represents the highest IR value and the highest LCOE value. The second solution known as the economic solution, exhibits the lowest IR value and the lowest LCOE value, named. The third solution, referred to as the compromised solution, lies somewhere between reliable and affordable solutions. The compromised solution is chosen based on its proximity to the origin, indicating reliability and cost-effectiveness in one aspect, and affordability and ecological sustainability in another. The Pareto frontier optimization for the 1st scenario is shown in Fig. 11.

617

Table 1 presents the optimization outcomes for the 1st scenario with three selected solutions, as observed in Fig. 11, detailing the objective functions of LCOE, and IR, and the decision variables N_{PV} , N_{WT} , and N_{Ht} . Notably, the optimal solution highlights the system's reliability, achieving an IR of 99.772%. However, this reliability comes at a cost, with an LCOE of 0.055708\$/kWh. Economic insights reveal that the LCOE stands at 0.04745\$/kWh, with an associated IR of 99.722% for the economic solution. Subsequently, the best solution is to install 4710 solar panels, 19 wind turbines, and 8 hydro-turbines. The chosen point aims to minimize the system's LCOE, whilst maximizing systems reliability.



625

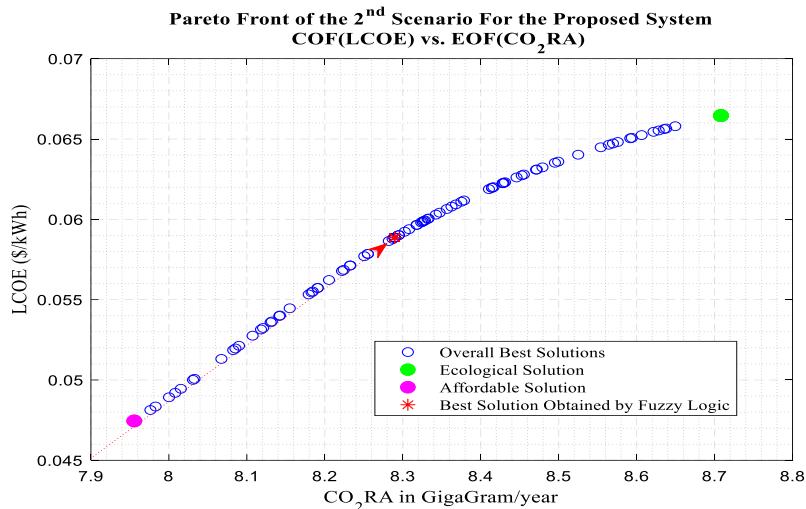
626

Fig. 11. Pareto Front For the 1st Scenario of the proposed system by MOGWOA.

627 Table 1. Optimization using MOGWOA for the 1st Scenario; COF (LCOE) vs. ROF (IR)

Quantity	COF (LCOE) vs. ROF (IR)		
	Economic	Reliable	Best Solution
Objective Functions	LCOE in \$/kWh	0.04745	0.06589
	IR in %	99.722	99.802
Decision Variables	N_{PV}	2500	7878
	N_{WT}	17	20
	N_{Ht}	7	9
Energies in GWh/year	$E_{PV\,inv}$	1.224321	3.85808
	E_{WT}	4.711992	5.54352
	$E_{hydro\,turbine}$	7.2039247	6.126815
	E_{gsold}	0.00318518	0.52458969
	E_L		15.2327969
	$E_{purchased}$	2.43467	1.0199436
	$E_{MHPP\,ch}$	0.096581824	0.8211559
Other Indicators	$LOLP$ in %	3.6	1.701
	ACS in Million \$/year	1.04597354	1.0903
	CEA in 10^3 ton/year	1.27260922	0.61141779
	RSF in %	47.292	40.221
			0.3989326
			44.012

628 Fig. 12 illustrates the Pareto frontier optimization for the 2nd scenario implemented using MOGWOA.
629 It aims to minimize COF (LCOE) and maximize EOF (CO₂RA). This way, it could help decision makers
630 and design engineers who care more about environmental impacts to effectively recognize how integrating
631 renewables could mitigate GHG emissions while minimizing the system's cost, as shown in Fig. 12.

632 Fig. 12. Pareto Front For the 2nd Scenario of the proposed system by MOGWOA.
633

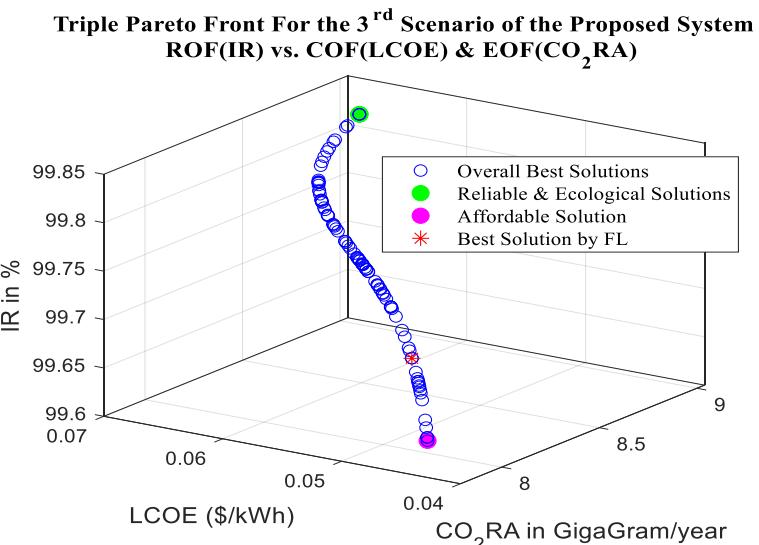
634 Table 2 shows the objective functions, decision variables, energies, and other performance indicators
635 for the 2nd scenario. Compared with the economic and ecological cases, it can be noticed that the optimal
636 solution achieved a compromised set of solutions, with 5639 solar panels, 19 wind turbines, and 8 hydro-
637 turbines. Additionally, the findings are close to those obtained using the 1st scenario, which proves the

638 effectiveness of the optimization algorithm and the proposed methodology.

639 Table 2. Optimization using MOGWOA for the 2nd Scenario; COF (LCOE) vs. EOF (CO₂RA)

Quantity		COF (LCOE) vs. EOF (CO ₂ RA)		
		Economical	Ecological	Best Solution
Objective Functions	LCOE in \$/kWh CO ₂ RA in 10 ³ ton/year	0.04911 8.0056	0.066457 8.7082	0.059181 8.3008
Decision Variables	N_{PV} N_{WT} N_{Ht}	2964 18 7	8150 20 9	5639 19 8
Energies in GWh	$E_{PV\,inv}$ E_{WT} $E_{hydro\,turbine}$ E_{gsold} E_L $E_{purchased}$ $E_{MHPP\,ch}$	1.4515561 4.9891683 6.9300397 0.01125435	3.991289 5.5435203 6.085227 0.5805854	2.7615806 5.2663443 1.35779573 0.17126333
Other Indicators	$LOLP$ in % ACS in Million \$/year CEA in 10 ³ ton/year RSF in %	3.3904 1.0482 1.202346 45.494	1.7009 1.1054 0.6072172 39.948	2.2945 1.051 0.81394744 42.352

640 In this paper, modified triple objective functions are employed to enhance the simulation and accuracy
641 of the proposed system. This approach is uncommon in similar studies as it incorporates three objective
642 functions (reliability, ecological, and economic) into a triple Pareto frontier analysis, as illustrated in Table
643 3 and Fig. 13. Existing research typically focuses on two objective functions, making this method distinct
644 in its comprehensive consideration of all three aspects simultaneously.



645 Fig. 13. Triple Pareto Front For the 3rd Scenario of the proposed system using MOGWOA.
646

647 Table 3. Optimization using MOGWOA for the 3rd Scenario: Triple Objective Functions
 648 “ROF (IR) vs. COF (LCOE) & EOF (CO₂RA)”

		ROF (IR) vs. COF (LCOE) & EOF (CO ₂ RA)			
Quantity		Economic	Reliable	Ecological	Best Solution
Objective Functions	IR in %	99.638	99.812	99.812	99.705
	LCOE in \$/kWh	0.042771	0.069025	0.069025	0.046147
	CO ₂ RA in 10 ³ ton/year	7.7887	9.0393	9.0393	7.9142
Decision Variables	N_{PV}	2052	9823	9823	5124
	N_{WT}	17	20	20	19
	N_{Ht}	7	9	9	8
Storage Capacity in GWh			14.9734		
n_{day} in days			8807		
Energies in GWh	$E_{PV\,inv}$	1.00492347	4.81060586	4.81060586	2.50937
	E_{WT}	4.71199224	5.54352	5.54352	5.2663443
	$E_{hydro\,turbine}$	7.31769778	5.86857699	5.86857699	6.5881848
	$E_{purchased}$	2.20215013	0.9769594	0.9769594	1.3859264
	E_{gsold}	0.00141861	0.99834236	0.99834236	0.12942049
	E_L		15.232796912		
Other Indicators	$E_{MHPP\,ch}$	0.076158288	0.99708479	0.99708479	0.42996824
	LOLP in %	3.6872	1.6324	1.6324	2.3516
	ACS in Million \$/year	1.0303	1.1877	1.1877	1.0167
	CEA in 10 ³ ton/year	1.32010613	0.58565	0.58565	0.830810725
RSF in %		48.039	38.526	38.526	43.25

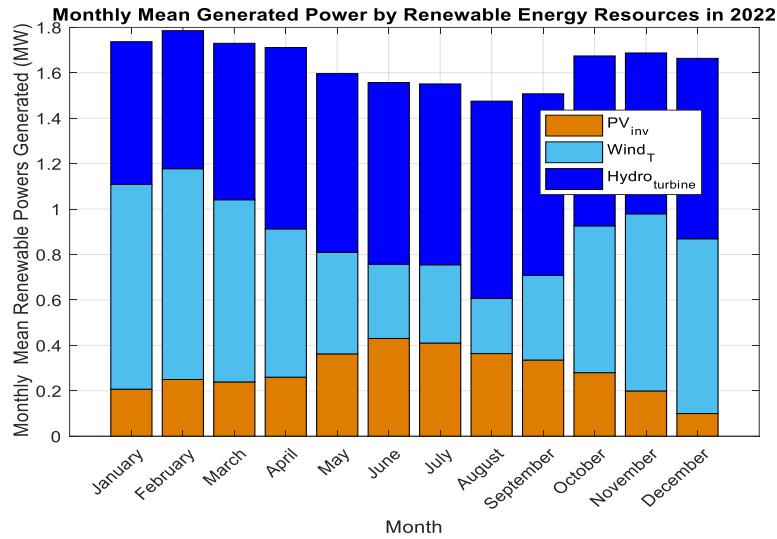
649 The blue circles represent the candidate solutions, while the green circle highlights a solution that is both
 650 reliable and ecological, with the values of 99.812% and 0.069025×10^3 ton/year, respectively, as outlined
 651 in Table 3. This is because the algorithms aim to maximize both IR and CO₂RA. However, the cost is taken
 652 into account with a minimum economic LCOE of 0.042771\$/kWh. Upon closer examination of Table 3, it
 653 becomes evident that the fuzzy logic approach yields the optimal solution among the economic, reliable,
 654 and ecological objective functions. This optimal solution achieves an IR of 99.705%, a LCOE of 0.046147
 655 \$/kWh, and a CO₂RA of 7.9142×10^3 ton/year. The associated decision variables are $N_{PV} = 5124$, $N_{WT} = 19$,
 656 and $N_{Ht} = 8$.

657 7.2. Power computation analysis

658 Once the objective functions, decision variables, energy values, and other system indicators are
 659 determined for each scenario outlined in section 7.1, an evaluation of the system's performance in the 3rd
 660 scenario will be provided in this section. Fig. 14 illustrates how much renewable power could be generated
 661 monthly throughout 2022. It reveals the contributions from solar PV, wind, and hydro energy resources,
 662 showing their combined generated power. Each month is visible along the horizontal axis, with the amount
 663 of power generated in MW, shown on the vertical axis. This visualization helps us understand patterns in
 664 renewable energy production over the year, revealing any seasonal fluctuations and emphasizing the
 665 importance of each renewable energy source in sufficiently meeting the load demand.

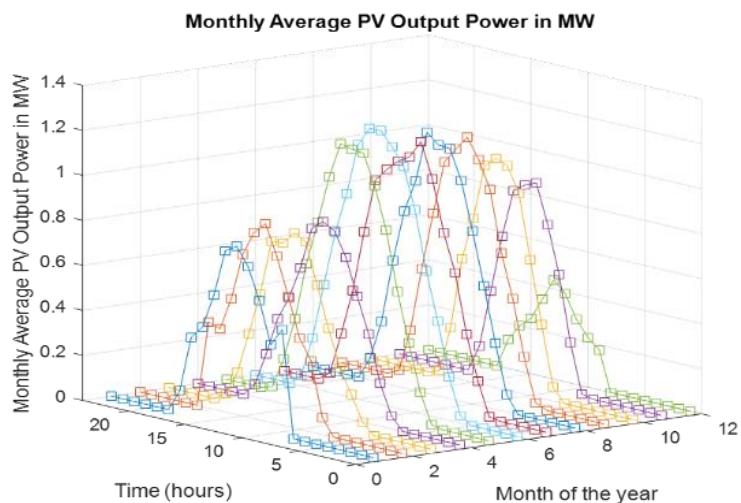
666 Solar PV is chosen from renewable resources to show the average monthly output power for the year
 667 2022, shown in Fig. 15. From the graph, it is evident that the highest PV output occurs between April and
 668 August, coinciding with periods of increased solar irradiance during these months. Conversely, the lowest
 669 average PV output power is observed in winter, corresponding to times when solar irradiance is

670 comparatively lower in Michigan. This highlights the influence of seasonal variations in solar irradiance
 671 on PV power generation throughout the year.

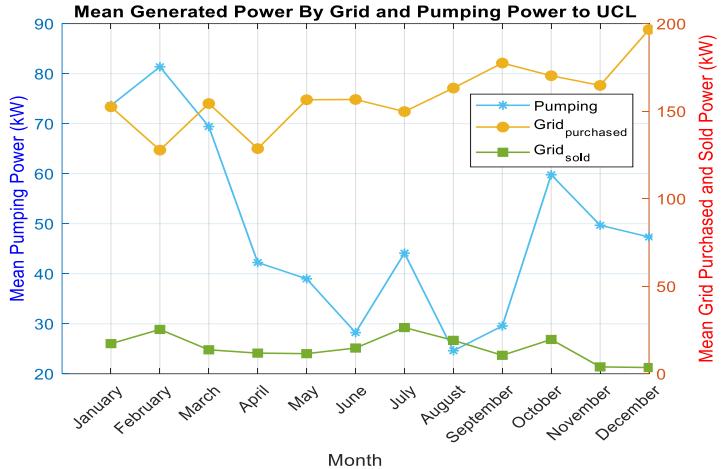


672 Fig. 14. The monthly mean generated power by renewable energy resources of the 3rd scenario in MW.
 673

674 The average purchased and sold power from and to the grid and the pumping power to UCL for each
 675 month are depicted in Fig. 16. It presents the performance in the best case of the third scenario. The plot
 676 effectively visualizes the monthly trends in power generation, with distinct lines representing grid-
 677 purchased power, grid-sold power, and pumping power. It is noticeable that grid-purchased power exhibits
 678 fluctuations throughout the year, with higher values observed after September till the end of the year,
 679 possibly indicative of increased energy demand during winter. On the other hand, the grid-sold power
 680 shows relatively consistent levels across the months because of the priority of the extra power being pumped
 681 to the UCL. Overall, the visualization offers valuable insights into the dynamics of power generation and
 682 consumption for the year, providing useful information for energy management and decision-making.
 683

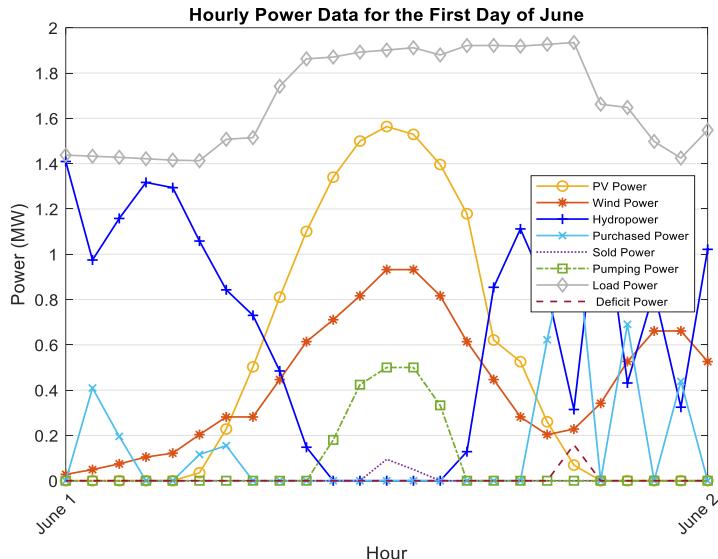


684 Fig. 15. The monthly average solar PV output power for the best solution of the 3rd scenario in MW.
 685



686
687 Fig. 16. Average generated power by grid and pumping power to UCL in each month
688 for the best case of the 3rd scenario.

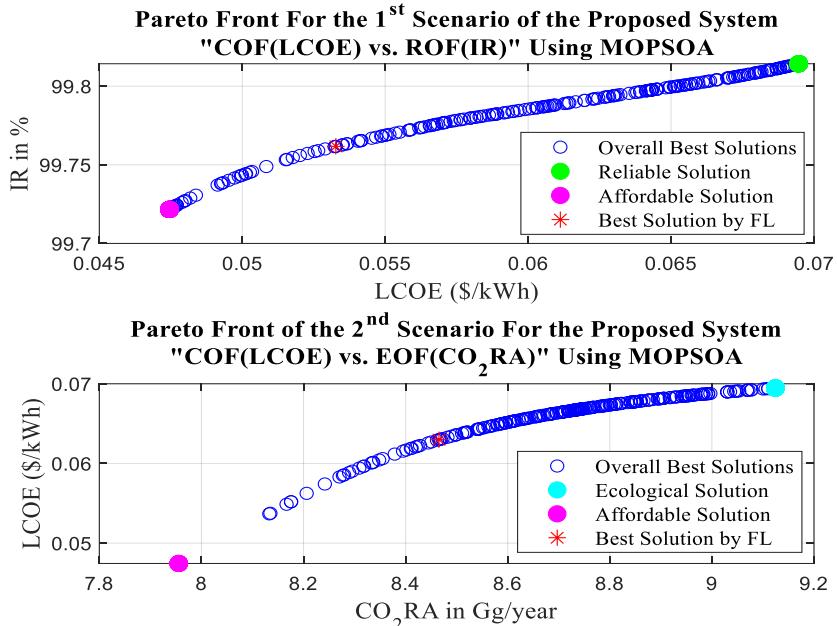
689 Fig. 17 states the findings of the operational strategy simulation for the optimized 3rd scenario, focusing
690 on a summer day, specifically July 1st, 2022. One notable observation is the absence of hydro pumping
691 during nighttime hours, attributed to the lack of solar PV power availability. During the daytime, typically
692 between 10:00 A.M. and 4:00 P.M., the solar and wind-generated power meets the load demand, with
693 excess energy utilized for pumping water from the lower reservoir to the UCL. Additionally, it is
694 highlighted that the energy balance equation is maintained in each scenario, as described previously in
695 equation (29). Subsequently, around 2:00 P.M., the total load demand, sold, and pumping power comprises
696 the energy supplied by both the PV system and the wind plant, with zero purchased power since the grid
697 serves as a backup source in instances of renewable energy deficit.



698
699 Fig. 17. Hourly power data for June, 1st 2022 for the optimal case of the 3rd scenario.

700 *7.3. Comparative analysis of findings using MOFEPSOA*

701 In this section, a comparative analysis of the findings in Section 7.1 is carried out using MOFEPSOA to
 702 test the effectiveness of MOGWOA. By comparing the results obtained previously, the performance of
 703 MOGWOA can be assessed. The Pareto fronts of the 1st and 2nd scenarios are shown in Fig. 18.



704 Fig. 18. Pareto fronts for the 1st and 2nd scenarios of the proposed system by MOFEPSOA.

705
 706 Table 4 displays the objective function values and decision variables for the 3rd scenario obtained using
 707 MOFEPSOA. The percentage difference between MOGWOA and MOFEPSOA is consistently below 7%
 708 for all values, particularly compared with the findings in the optimal solution of Table 3. Moreover, the
 709 triple Pareto front optimization curve produced by MOFEPSOA closely aligns with MOGWOA's results in
 710 Fig. 19, affirming the accuracy and effectiveness of the proposed methodology in simulating the system.

711 Table 4. Comparative analysis for the 3rd Scenario using MOFEPSOA based on MOGWOA findings.

Quantity	ROF (IR) vs. COF (LCOE) & EOF (CO ₂ RA)				Percentage difference for Best Solution from MOGWOA in %	
	Using MOFEPSOA			Best Solution		
	Economic	Reliable & Ecological				
Objective Functions	IR in %	99.722	99.814	99.739	0.09	
	LCOE in \$/kWh	0.04745	0.069464	0.049348	6.704	
	CO ₂ RA in 10 ³ ton/year	7.9556	9.1243	8.0124	1.23	
Decision Variables	N_{PV}	2117	10251	5029	1.8714	
	N_{WT}	17	19	20	5.128	
	N_{Ht}	8	9	8	0	

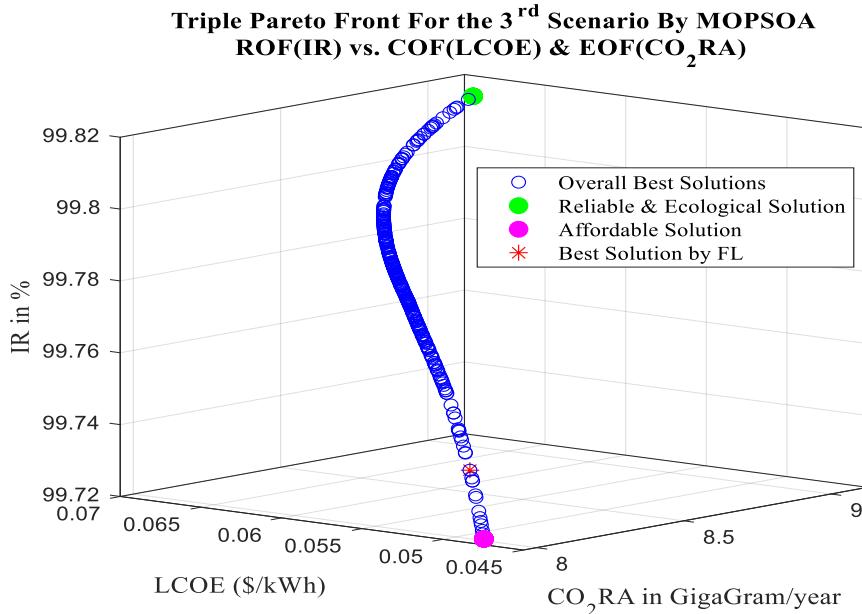


Fig. 19. Triple Pareto Front For the 3rd Scenario of the proposed system using MOFEPSOA.

712

8. Conclusions

713 Recently, with growing electricity demand and increasing ecological concerns, the significance of
 714 RERs, including hydro storage systems, has become increasingly apparent. This has made a global shift
 715 towards cleaner and more sustainable energy alternatives to replace conventional fossil fuel infrastructure
 716 with clean, affordable, and reliable options. This has inspired this paper to investigate renewable energy
 717 resource concerns, painting the maximum reliability, maximum emission reduction, and minimum systems'
 718 lifetime cost. This paper examines the utilization of on-grid solar PV, wind farms, and PHESS to meet the
 719 energy needs of Crystal's Lake territory in Michigan as a case study. A realistic analysis was conducted
 720 using measured data for the system's design from the year 2022, including solar data, ambient temperature,
 721 wind velocity, hydrological information, and community-scale energy demand specific to the chosen
 722 location. The primary objective is to assess the potential of untapped sites for renewable energy generation,
 723 with Crystal's Lake identified as particularly promising due to its substantial storage capacity of about
 724 14.9734 GWh, despite being classified as a MHPP. Through the application of a MOGWOA, optimal
 725 sizing, and energy management strategies were formulated for various scenarios. Economic, environmental,
 726 and reliability criteria were utilized as the three objective functions, yielding promising outcomes,
 727 particularly in the third scenario where triple objective functions were considered. For each scenario,
 728 multiple solutions were identified, including economic, ecological, reliable, and a best-compromised
 729 solution achieved through a fuzzy logic approach. Notably, the third scenario yielded the lowest LCOE at
 730 0.046147 \$/kWh, a strong index of reliability of 99.705%, and a significant reduction in CO₂ emissions by
 731 7.9142 10³ tons per year. This scenario also revealed the optimum number of solar panels was 5124, 19
 732 wind turbines, and 8 hydro-turbine generator sets. Furthermore, the renewable storage factor was
 733 determined to be 43.25%, indicating optimal utilization of available PHESS. Energy management analysis
 734 further validated the efficacy of the system. Subsequently, the findings were validated using a MOFEPSOA,
 735 ensuring accuracy with a percentage difference lower than 7% across all results. The approach described in
 736 this research offers valuable perspectives for comparable locations aiming to utilize renewable energy,
 737

738 specifically from unused storage reservoirs. By optimizing the integration of RES, this research offers a
 739 roadmap for maximizing the utilization of clean energy sources and promoting a more sustainable future.

740 **Appendix A**

741 TABLE 5. Specifications of Renewable Components

Component	Parameters	Value
Solar PV Module (CanadianSolar CS6K-290MS)	<i>Maximum power (P_{max}) in Watt</i>	290
	<i>Module Efficiency STC in %</i>	17.72 %
	<i>Short circuit current (I_{sc}) in A</i>	9.67
	<i>Open circuit voltage (V_{oc}) in V</i>	39.3
	<i>Maximum power current (I_{MPP}) in A</i>	9.05
	<i>Maximum power voltage (V_{MPP}) in V</i>	32.1
	<i>Temperature coefficient of V_{oc} in %/°C</i>	-0.3
	<i>Temperature coefficient of I_{sc} in %/°C</i>	0.053
	<i>NOCT (°C)</i>	45
	<i>$T_{MDS,STC}$ in °C</i>	20
	<i>GTI_{NOCT} in Watt/m²</i>	800
	<i>Dimensions for Area ($L_m \times W_m$) in m²</i>	1.65×0.992
Wind Turbine (Vestas V200-100 kW)	<i>Nominal Power</i>	100 kW
	<i>Frequency</i>	50 Hz
	<i>Diameter</i>	20 m
	<i>Swept Area</i>	314.0 m ²
	<i>Hub height</i>	40 m
	<i>Cut-in Wind Speed (v_{ci})</i>	3.3 m/s
	<i>Rated Wind Speed (v_r)</i>	13 m/s
	<i>Cut-out Wind Speed (v_{co})</i>	25 m/s
Upper Crystal Lake Dimensions [26]	<i>Average Lake width (\bar{W}_{UCL})</i>	3.12 km
	<i>Elevation</i>	183 m
	<i>Difference from Lake Michigan (H_{diff})</i>	0.8 km
	<i>Average Lake length (\bar{L}_{UCL})</i>	12.87 km
	<i>Average depth (\bar{D}_{UCL})</i>	21.55 m

742 **Appendix B**

743 TABLE 6. Financial data for LCOE computation

Cost type	PV array [60]	Wind farm [60]	PHS facility [61]	Converter [61]
CC (\$/kW)	896	998	930	687
OMC (\$/kW.year)	15	20	15.52	687
RC (\$/kW)	896	998	930	0
Lifetime (years)	25	20	25	15
Grid costs				
E_{gp} Cost (\$/kWh)			0.37	

E_{gsold} Cost (\$/kWh) [62]	0.176
Financial Parameters	
i' (%)	8
$f_{inflation}$ (%)	2
Project lifetime (N)	
	25

744 Appendix C

$$745 \quad \vec{D} = |\vec{C} \cdot \vec{X}_p(t) - \vec{X}(t)| \quad (43)$$

$$746 \quad \vec{X}(t+1) = \vec{X}_p(t) - \vec{A} \cdot \vec{D} \quad (44)$$

$$747 \quad \vec{A} = 2\vec{a} \cdot \vec{r}_1 - \vec{a} \quad (45)$$

$$748 \quad \vec{C} = 2 \cdot \vec{r}_2 \quad (46)$$

$$749 \quad \vec{D}_\alpha = |\vec{C}_1 \cdot \vec{X}_\alpha - \vec{X}| \quad (47)$$

$$750 \quad \vec{D}_\beta = |\vec{C}_2 \cdot \vec{X}_\beta - \vec{X}| \quad (48)$$

$$751 \quad \vec{D}_\delta = |\vec{C}_3 \cdot \vec{X}_\delta - \vec{X}| \quad (49)$$

$$752 \quad \vec{X}_1 = \vec{X}_\alpha - \vec{A}_1 \cdot (\vec{D}_\alpha) \quad (50)$$

$$753 \quad \vec{X}_2 = \vec{X}_\beta - \vec{A}_2 \cdot (\vec{D}_\beta) \quad (51)$$

$$754 \quad \vec{X}_3 = \vec{X}_\delta - \vec{A}_3 \cdot (\vec{D}_\delta) \quad (52)$$

$$755 \quad \vec{X}(t+1) = \frac{\vec{X}_1 + \vec{X}_2 + \vec{X}_3}{3} \quad (53)$$

756 Acknowledgment

757 This work was supported in part by the National Science Foundation of USA under Grant ECCS-
 758 2146615 and partially supported by the Department of Energy, Solar Energy Technologies Office (SETO)
 759 Renewables Advancing Community Energy Resilience (RACER) program under Award Number DE-
 760 EE0010413. Any opinions, findings, conclusions, or recommendations expressed in this material are those
 761 of the authors and do not necessarily reflect the views of the Department of Energy.

762 References

- 763 [1] A. Valavanidis, "Global Electricity Generation from Renewable Sources."
- 764 [2] O. M. Babatunde, J. L. Munda, and Y. Hamam, "A comprehensive state-of-the-art survey on hybrid renewable energy system
 765 operations and planning," *IEEE Access*, vol. 8, pp. 75313-75346, 2020.
- 766 [3] J. E. Breck, "Compilation of databases on Michigan lakes," 2013.
- 767 [4] A. Berrada, Z. Bouhssine, and A. Arechikik, "Optimisation and economic modeling of micro hydropower plant integrated in
 768 water distribution system," *Journal of cleaner production*, vol. 232, pp. 877-887, 2019.
- 769 [5] H. D. Laksono and R. Fahreza, "Optimal Sizing of Micro Hydropower to Improve Hybrid Renewable Power System," in
 770 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI), 2020: IEEE, pp.
 771 95-99.
- 772 [6] M. I. Abid, M. S. Khalid, M. Kamran, M. A. Rasheed, M. F. Masood, and T. Murtaza, "Design and optimization of the micro-
 773 hydro power system for remote areas of Pakistan," *International Journal of Smart Grid-ijSmartGrid*, vol. 4, no. 3, pp. 125-
 774 138, 2020.
- 775 [7] F. A. Canales and A. Beluco, "Modeling pumped hydro storage with the micropower optimization model (HOMER)," *Journal*
 776 *of renewable and sustainable energy*, vol. 6, no. 4, 2014.
- 777 [8] A. Tapia, D. Reina, and P. Millán, "Optimized micro-hydro power plants layout design using messy genetic algorithms,"
 778 *Expert Systems with Applications*, vol. 159, p. 113539, 2020.

779 [9] B. Dye, "Stiegler's Gorge Dam, Tanzania," 2019.

780 [10] G. E. Alvarez, "Operation of pumped storage hydropower plants through optimization for power systems," *Energy*, vol. 202, p. 117797, 2020.

781 [11] M. Shabani, E. Dahlquist, F. Wallin, and J. Yan, "Techno-economic comparison of optimal design of renewable-battery storage and renewable micro pumped hydro storage power supply systems: A case study in Sweden," *Applied Energy*, vol. 279, p. 115830, 2020.

782 [12] H. M. Al-Masri, S. K. Magableh, A. Abuelrub, and K. Alzaareer, "Realistic coordination and sizing of a solar array combined with pumped hydro storage system," *Journal of Energy Storage*, vol. 41, p. 102915, 2021.

783 [13] M. Petrollesse, P. Seche, and D. Cocco, "Analysis and optimization of solar-pumped hydro storage systems integrated in water supply networks," *Energy*, vol. 189, p. 116176, 2019.

784 [14] M. Jaszcuzur, Q. Hassan, P. Palej, and J. Abdulateef, "Multi-Objective optimisation of a micro-grid hybrid power system for household application," *Energy*, vol. 202, p. 117738, 2020.

785 [15] A. Tapia, A. del Nozal, D. Reina, and P. Millán, "Three-dimensional optimization of penstock layouts for micro-hydropower plants using genetic algorithms," *Applied Energy*, vol. 301, p. 117499, 2021.

786 [16] M. Sengupta, Y. Xie, A. Lopez, A. Habte, G. MacLaurin, and J. Shelby, "The national solar radiation data base (NSRDB)," *Renewable and sustainable energy reviews*, vol. 89, pp. 51-60, 2018.

787 [17] A. El-Sebaii, F. Al-Hazmi, A. Al-Ghamdi, and S. J. Yaghmour, "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," *Applied energy*, vol. 87, no. 2, pp. 568-576, 2010.

788 [18] H. M. Al-Masri, S. K. Magableh, and A. Abuelrub, "Output power computation and sizing of a photovoltaic array by advanced modeling," *Sustainable Energy Technologies and Assessments*, vol. 47, p. 101519, 2021.

789 [19] Solarific. "Solar Panel Angles for Benzonia, Michigan, US." <https://solarific.co/us/mi/detroit> (accessed Jan, 9 2024).

790 [20] H. M. K. Al-Masri, O. M. Dawaghreh, and S. K. Magableh, "Realistic performance evaluation and optimal energy management of a large-scale bifacial photovoltaic system," *Energy Conversion and Management*, vol. 286, p. 117057, 2023/06/15/ 2023, doi: <https://doi.org/10.1016/j.enconman.2023.117057>.

791 [21] M. Fengler. "Energy Forecasts for Wind, Weather API." <https://www.meteomatics.com/> (accessed Jan, 29 2024).

792 [22] A. Vasel-Be-Hagh and C. L. Archer, "Wind farm hub height optimization," *Applied energy*, vol. 195, pp. 905-921, 2017.

793 [23] P. L. Storck, *Journey to the Ice Age: discovering an ancient world*. UBC Press, 2004.

794 [24] S. L. Daniels, "Inland Lakes Levels Matter."

795 [25] S. L. Daniels, "The History of Crystal Lake Water Levels ", 2016. Accessed: (accessed Jan, 9 2024). [Online]. Available: <https://shorturl.at/zDQZ3>

796 [26] R. Cosaro. "Watershed Facts. The Crystal Lake Watershed Association (CLWA)." <https://crystallakewatershed.org/watershed-facts/> (accessed Jan, 9 2024).

797 [27] L. W. Devin Hampton, Daniel Roesler. "Utility Data API, UtilityAPI." <https://utilityapi.com/products#api> (accessed Feb, 5 2024).

798 [28] K. Ishaque, Z. Salam, and H. Taheri, "Simple, fast and accurate two-diode model for photovoltaic modules," *Solar energy materials and solar cells*, vol. 95, no. 2, pp. 586-594, 2011.

799 [29] G. Cerofolini and M. Polignano, "Generation-recombination phenomena in almost ideal silicon p-n junctions," *Journal of applied physics*, vol. 64, no. 11, pp. 6349-6356, 1988.

800 [30] S. S. Hegedus and A. Luque, "Status, trends, challenges and the bright future of solar electricity from photovoltaics," *Handbook of photovoltaic science and engineering*, pp. 1-43, 2003.

801 [31] K. Ishaque, Z. Salam, and H. Taheri, "Accurate MATLAB simulink PV system simulator based on a two-diode model," *Journal of Power Electronics*, vol. 11, no. 2, pp. 179-187, 2011.

802 [32] V. J. Chin, Z. Salam, and K. Ishaque, "An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution," *Energy conversion and management*, vol. 124, pp. 42-50, 2016.

803 [33] F. Attivissimo, F. Adamo, A. Carullo, A. M. L. Lanzolla, F. Spertino, and A. Vallan, "On the performance of the double-diode model in estimating the maximum power point for different photovoltaic technologies," *Measurement*, vol. 46, no. 9, pp. 3549-3559, 2013.

826 [34] T. Ma, H. Yang, L. Lu, and J. Peng, "Pumped storage-based standalone photovoltaic power generation system: Modeling
827 and techno-economic optimization," *Applied energy*, vol. 137, pp. 649-659, 2015.

828 [35] N. Mohammad, M. Islam, T. Karim, and Q. D. Hossain, "Improved Solar Photovoltaic Array Model with FLC Based
829 Maximum Power Point Tracking," *International Journal of Electrical & Computer Engineering* (2088-8708), vol. 2, no. 6,
830 2012.

831 [36] Z. Jing, J. Zhu, R. J. J. o. M. P. S. Hu, and C. Energy, "Sizing optimization for island microgrid with pumped storage system
832 considering demand response," vol. 6, no. 4, pp. 791-801, 2018.

833 [37] T. Ma, H. Yang, L. Lu, and J. J. R. e. Peng, "Technical feasibility study on a standalone hybrid solar-wind system with
834 pumped hydro storage for a remote island in Hong Kong," vol. 69, pp. 7-15, 2014.

835 [38] H. Ibrahim, A. Ilinca, and J. Perron, "Energy storage systems—Characteristics and comparisons," *Renewable and sustainable
836 energy reviews*, vol. 12, no. 5, pp. 1221-1250, 2008.

837 [39] A. Franco and F. Donatini, "Methods for the estimation of the energy stored in geothermal reservoirs," in *Journal of Physics: Conference Series*, 2017, vol. 796, no. 1: IOP Publishing, p. 012025.

838 [40] H. M. Al-Masri, A. A. Al-Sharqi, S. K. Magableh, A. Q. Al-Shetwi, M. G. Abdolrasol, and T. S. Ustun, "Optimal allocation
839 of a hybrid photovoltaic biogas energy system using multi-objective feasibility enhanced particle swarm algorithm,"
840 *Sustainability*, vol. 14, no. 2, p. 685, 2022.

841 [41] H. M. Al-Masri, S. K. Magableh, A. Abuelrub, O. Saadeh, and M. Ehsani, "Impact of different photovoltaic models on the
842 design of a combined solar array and pumped hydro storage system," *Applied Sciences*, vol. 10, no. 10, p. 3650, 2020.

843 [42] A. D. BANK, "Guidelines for estimating greenhouse gas emissions of Asian Development Bank projects: Additional
844 guidance for clean energy projects," Philippines, 2017. [Online]. Available: <http://dx.doi.org/10.22617/TIM178659-2>

845 [43] "EPA greenhouse gas reporting and emission rates." <https://www.uppermichiganenergy.com/regulation/energymix-emissionrates.htm> (accessed on 4 Nov 2023) (accessed.

846 [44] H. M. Al-Masri, O. M. Dawaghreh, and S. K. Magableh, "Optimal configuration of a large scale on-grid renewable energy
847 systems with different design strategies," *Journal of Cleaner Production*, p. 137572, 2023.

848 [45] H. F. Boroujeni, M. Eghtedari, M. Abdollahi, and E. Behzadipour, "Calculation of generation system reliability index: Loss
849 of Load Probability," *Life Science Journal*, vol. 9, no. 4, pp. 4903-4908, 2012.

850 [46] U. J. U. D. o. E. W. EIA, DC, USA, "US Energy Information Administration Annual Energy Outlook 2020," 2020.

851 [47] M. S. Javed, D. Zhong, T. Ma, A. Song, and S. Ahmed, "Hybrid pumped hydro and battery storage for renewable energy
852 based power supply system," *Applied Energy*, vol. 257, p. 114026, 2020.

853 [48] X. Lu, X. Pu, and X. Han, "Sustainable smart waste classification and collection system: a bi-objective modeling and
854 optimization approach," *Journal of Cleaner Production*, vol. 276, p. 124183, 2020.

855 [49] M. Neshat et al., "Enhancing the performance of hybrid wave-wind energy systems through a fast and adaptive chaotic multi-
856 objective swarm optimisation method," *Applied Energy*, vol. 362, p. 122955, 2024.

857 [50] M. Seifpour, S. A. Asghari, and M. Ghobaei-Arani, "A stochastic multi-objective optimization method for railways
858 scheduling: a NSGA-II-based hybrid approach," *The Journal of Supercomputing*, vol. 80, no. 2, pp. 2128-2163, 2024.

859 [51] S. Gürgen and İ. Altın, "Novel decision-making strategy for working fluid selection in Organic Rankine Cycle: A case study
860 for waste heat recovery of a marine diesel engine," *Energy*, vol. 252, p. 124023, 2022.

861 [52] A. Shukla, K. Verma, and R. Kumar, "Multi-objective synergistic planning of EV fast-charging stations in the distribution
862 system coupled with the transportation network," *IET Generation, Transmission & Distribution*, vol. 13, no. 15, pp. 3421-
863 3432, 2019.

864 [53] D. Yousri, S. B. Thanikanti, K. Balasubramanian, A. Osama, and A. Fathy, "Multi-objective grey wolf optimizer for optimal
865 design of switching matrix for shaded PV array dynamic reconfiguration," *IEEE Access*, vol. 8, pp. 159931-159946, 2020.

866 [54] S. Mirjalili, S. Saremi, S. M. Mirjalili, and L. d. S. Coelho, "Multi-objective grey wolf optimizer: a novel algorithm for multi-
867 criterion optimization," *Expert systems with applications*, vol. 47, pp. 106-119, 2016.

868 [55] S. N. Makhadmeh, O. A. Alomari, S. Mirjalili, M. A. Al-Betar, and A. Elnagar, "Recent advances in multi-objective grey
869 wolf optimizer, its versions and applications," *Neural Computing and Applications*, vol. 34, no. 22, pp. 19723-19749, 2022.

870 [56] M. S. Hasanoğlu, "An Advanced evolutionary programming method for mechanical system design: feasibility enhanced

873 particle swarm optimization," 2019.

874 [57] M. Sinan Hasanoglu and M. Dolen, "Multi-objective feasibility enhanced particle swarm optimization," *Engineering*
875 *Optimization*, vol. 50, no. 12, pp. 2013-2037, 2018.

876 [58] B. M. Kalesar, B. Rouhollahi, J. B. Noshahr, M. Tadayon, and M. Kermani, "Multi-Objective Fuzzy Model for Optimal
877 Siting and Sizing of DG Units to Reduce Losses Using Genetic Algorithm," in *2018 IEEE International Conference on*
878 *Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS*
879 *Europe)*, 2018: IEEE, pp. 1-6.

880 [59] M. I. Alomoush, "Microgrid combined power-heat economic-emission dispatch considering stochastic renewable energy
881 resources, power purchase and emission tax," *Energy Conversion and Management*, vol. 200, p. 112090, 2019.

882 [60] M. S. Javed et al., "Economic analysis and optimization of a renewable energy based power supply system with different
883 energy storages for a remote island," vol. 164, pp. 1376-1394, 2021.

884 [61] N. Yimen, O. Hamandjoda, L. Meva'a, B. Ndzana, and J. J. E. Nganhon, "Analyzing of a photovoltaic/wind/biogas/pumped-
885 hydro off-grid hybrid system for rural electrification in Sub-Saharan Africa—Case study of Djoundé in Northern Cameroon,"
886 vol. 11, no. 10, p. 2644, 2018.

887 [62] E. C. Okonkwo, C. F. Okwose, and S. J. I. J. o. R. E. R. Abbasoglu, "Techno-economic analysis of the potential utilization
888 of a hybrid PV-wind turbine system for commercial buildings in Jordan," vol. 7, no. 2, pp. 908-914, 2017.

889