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Abstract 6 

This paper proposes a method of exploring existing geographic locations with untapped pump hydro storage potentials 7 
for accommodating intermittent renewable energy generation profiles. Measured data in 2022 were gathered for sizing 8 
system's components and thorough, realistic analysis. Employing a multi-objective grey wolf optimization algorithm, 9 
we formulate optimal sizing and energy management strategies for different scenarios. The 1st scenario aims to 10 
maximize the reliability objective function (ROF) index of reliability (IR) whilst minimizing the cost objective function 11 
(COF) levelized cost of energy (LCOE). The 2nd scenario focuses on maximizing ecological objective function (EOF) 12 
CO2 reduction amount (𝐶𝑂2𝑅𝐴) whilst minimizing COF, and the 3rd scenario is for maximizing both ROF and EOF13 
while minimizing COF. Considering economic, environmental, and reliability factors as the three objective functions 14 
(OFs), has proven to yield promising results in the third scenario when including triple OFs with multiple solutions. A 15 
case study is done for the region of Crystal Lake, Michigan. Findings reveal that, although Crystal's Lake would only 16 
function as a micro-hydro power facility, it is a promising and huge storage unit with a substantial storage capacity of 17 
around 14.9734GWh. These outcomes include a notably low LCOE at 0.046147$/kWh, a robust IR of 99.705%, and a 18 
significant reduction in CO2 emissions amounting to 7.9142×103 ton/year, when considering the triple OFs. Validation 19 
of the findings was conducted using multi-objective particle swarm optimization algorithms, affirming the robustness 20 
of the proposed solutions. The paper's methodology provides valuable insights for regions aiming to utilize renewable 21 
energy from untapped storage sources.  22 
© 2024 The Authors. Published by Elsevier Ltd. 23 
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DDM Double Diode Model 28 
DHI Direct Horizontal Irradiance 29 
DNI Direct Normal Irradiance 30 
EOF Ecological Objective Function 31 
ESS Energy Storage System 32 
GHG Greenhouse Gas Emissions 33 
MHPP Micro-Hydropower Plant 34 
MGA Messy Genetic Algorithm 35 
NSRDB National Solar Radiation Database 36 
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PHESS Pumped Hydro Energy Storage System 37 
PV Solar Photovoltaic 38 
RES Renewable Energy Systems 39 
RERs Renewable Energy Resources 40 
ROF Reliability Objective Function 41 
UCL Upper Crystal Lake 42 
Symbol Name Unit 43 
ACS Annualized Cost of the System 44 
CC Capital Cost 45 
CEA Carbon-Dioxide Emission Amount 46 
COE Cost of Energy 47 
COF Cost Objective Function 48 
CRF Capital Recovery Factor 49 
IR Index of Reliability 50 
LCOE Levelized Cost of Energy 51 
LOLP Loss of Load Probability 52 
LPSP Loss of Power Supply Probability 53 
GTI Global Tilted Irradiance 54 
NPC Net Present Cost 55 
P&L Transmission and Distribution Line Losses Percentage 56 
OMC Operation and Maintenance Cost 57 
QOW Quantity of Water in m3 58 
RC Replacement Cost 59 
RSF Renewable Storage Factor 60 
SC Salvage Cost 61 
TCC Total Current Cost 62 
𝑇𝑚𝑃𝑉 Solar PV Module Temperature in ℃ 63 
𝑇𝑎𝑚𝑏  Ambient Temperature in ℃ 64 
𝑁𝑂𝐶𝑇  Nominal Operating Cell Temperature in  ℃ 65 
𝑇𝑀𝐷𝑆,𝑆𝑇𝐶  Manufacturer Data Sheet Temperature at Standard Test Conditions in ℃ 66 
𝑣  Hourly Measured Wind Speed  in m/s 67 
𝑉𝑎𝑑𝑗   Adjusted Wind Speed at Hub Height in m/s 68 
𝐻ℎ𝑢𝑏   Hub Height in m 69 
𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 Height at Wind Spead Measured in m 70 
𝐼𝑃ℎ  Photon Current in Ampere 71 
𝑃𝑊𝑇  Power Extracted from Wind Turbine in MW 72 
𝑁𝑊𝑇 Number of Wind Turbines 73 
𝑃𝑟  Rated Power in MW 74 
𝑉𝑐𝑖 Cut-in Speed  in m/s 75 
𝑉𝑐𝑜 Cut-out Speed in m/s 76 
𝑞𝑝 Pump Flow Rate in m3/s 77 
q𝑡  Water Volumetric Flow Rate in m3/s 78 
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𝐸𝐶  Gravitational Potential Energy 79 
𝑛𝑑𝑎𝑦 The Duration of Autonomy days 80 
𝑃𝑔𝑒𝑛 Power Generated from Hybrid System in MW 81 
𝑃𝑃𝑉𝑖𝑛𝑣 Power Generated Inverted from PV System 82 
𝑃𝐿  Load Demand in MW 83 
𝑃𝑀𝐻𝑃𝑃𝑑𝑖𝑠  Generated Power from MHPP Turbines in MW 84 
𝑃𝑔𝑝 Power Grid Purchased in MW 85 
𝑃𝑒𝑥𝑡𝑟𝑎 Extra Generated Power from Hybrid System in MW 86 
PMHPP𝑐ℎ Power Stored in MHPP in MW 87 
Pgsold  Power Sold to the Grid in MW 88 
Greek Symbols 89 
𝑎𝑤 Wind Power Law Exponent 90 
𝛼𝑠   Solar Altitude Angle in degree 91 
𝛽𝑠  Solar Tilted Angle in degree 92 
φ  Latitude Angle in degree 93 
δ  Declination Angle in degree 94 
𝜃𝑧  Zenith Angle in degree 95 
𝜌  water density (1000𝑘𝑔/𝑚3) 96 
𝜌𝑜  Air density at sea level, and it is equal to 1.225 𝑘𝑔/𝑚3 97 
ƞ𝑇 Efficiency of the hydro turbine (in %) 98 

1. Introduction 99 

Climate change, fossil fuel usage, and energy prices have constantly been top global topics. Based on the 100 
current global climate change, energy utilization, and climate policies, it is estimated that the fossil fuel 101 
share in global energy will drop from 80% to around 73% by the end of the year 2029 [1]. Hence, the 102 
adoption of new sustainable energy technologies will ease the challenges related to energy shortages and 103 
balance the energy transition domestically and internationally. As energy is crucial for our lives, in recent 104 
decades, hybrid renewable energy systems (RESs) have appeared as a practical solution for supplying 105 
electricity to several areas, including remote rural areas where expanding the grid is impractical and 106 
extremely expensive [2]. A RES may include several sustainable resources, such as solar photovoltaic, wind 107 
energy, micro-hydro, and biomass energy, which can work along with conventional backup generators. In 108 
addition to generating clean electricity, large-scale solar, and wind power plants contribute to issues such 109 
as environmental waste accumulation and electricity generation intermittence. Therefore, there is a constant 110 
and urgent need for clean and dispatchable sources of energy production and storage. Among several RES 111 
technologies, hydro power stands out as a promising economic and reliable choice. Indeed, building large-112 
scale hydropower facilities encounters challenges such as ecological impacts and high capital costs, which 113 
make them less attractive. Moreover, large-scale, centralized hydropower resources have already been 114 
extensively (if not fully) exploited in many countries and regions. Nevertheless, there still exist many 115 
untapped pico- and micro-hydro power resources from relatively small rivers and lakes and hydro storages, 116 
which show notable potential for long-term electricity generation and storage. For instance, Michigan, a 117 
state with thousands of lakes [3], presents a substantial opportunity for micro-hydro projects, in addition to 118 
its abundant rivers and high rainfall that serve those storage lakes. 119 

The authors in [4] propose an effective methodology for optimal production benefits for hydropower 120 
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systems, particularly for installing micro hydropower within water distribution networks. Their 121 
methodologies were to investigate technical and economic studies to evaluate practicability and economic 122 
feasibility, in terms of optimal sizing using an optimization algorithm. They applied the proposed algorithm 123 
to a case study in Morocco's water supply network, including the design and installation of a micro-hydro 124 
power plant (MHPP) and considering environmental aspects. Results indicate a substantial cost drop by 125 
utilizing existing infrastructures, and an annual average emission reduction of 282 tons, which proves the 126 
potential of integrating micro hydropower into water supply systems. They also found the proposed 127 
installation is ecologically sustainable and will generate clean energy with an obtained power output of 69 128 
kW. In [5], the researchers discussed an on-grid solar PV combined with MHPP in Unand, Indonesia. This 129 
study aimed to find the optimal sizing of micro-hydro hybrid systems to enhance renewable power 130 
generation. They implement their system using HOMER software to optimize the head height and flow rate 131 
of the MHPP by minimizing the cost of energy (COE). The results showed that the head height was 30m 132 
with a flow rate of 800L/s at the lowest value of COE of 0.065 $/kWh. Moreover, the optimal capacity 133 
enhances renewable energy generation by a renewable fraction improvement from 26.4% to 36.5%. 134 
Reference [6], discussed the availability of renewable energy resources (RERs) in Pakistan as a developing 135 
country and how to effectively harness these resources for electricity generation. This is done by 136 
introducing an MHPP situated at a specific canal in KPK, Pakistan. The modeling and optimization of the 137 
project were implemented using RETScreen software and were thoroughly discussed. The authors compute 138 
the net present value (NPV) and the COE using the RETScreen optimization assessment and validate the 139 
feasibility of the MHPP. RETScreen simulated a micro-hydro system as a case study with a capacity of 107 140 
kW over a 20-year lifespan. The suggested micro hydropower project is technically applicable and 141 
economically viable, with a NPV of $139,280 and a COE of 0.049 $/kWh. The findings revealed that the 142 
proposed project will recover all the spending by the 4th year of its planned duration. Notably, when 143 
compared to the country's baseline energy mix, the proposed project is identified as clean energy with 144 
greenhouse gas (GHG) emission free. To solve the issue of intermittency in RERs due to the natural 145 
variations in power generation, which also follow daily and seasonal patterns, it becomes mandatory to 146 
combine a complementary energy storage system in those hybrid RERs. A viable alternative for energy 147 
storage in hybrid systems is a pumped hydro energy storage system (PHESS). The authors in [7], introduced 148 
a technique to represent a PHESS by creating an equivalent battery in HOMER since HOMER didn't have 149 
a PHESS component at that time, which was demonstrated through a detailed example. They designed 150 
another example consisting of a wind-hydro hybrid power system to validate their methods. The results 151 
confirm that the method outlined in their paper effectively represents PHESS for electric energy storage. In 152 
order to address energy scarcity challenges such as limited resources which can lead to lower efficiency, 153 
especially in sub-generation systems, the researchers in [8] present a design methodology utilizing a 154 
customized messy evolutionary approach called the Messy Genetic Algorithm to determine the optimal 155 
layout for MHPP. Their methodology considers multiple constraints associated with supply requirements, 156 
maximum flow use, and the substantial feasibility of the plant based on the actual geographical profile. This 157 
profile allows a continuous, variable-length Messy Genetic Algorithm (MGA) to optimize the layout, by 158 
applying two scenarios: cost minimization as a single-objective in one case and minimization of both cost 159 
and power supply as a multi-objective in the other case. The algorithm is implemented for a real remote 160 
community system in Honduras. Results show that a significant cost reduction of around 56.96% occurred 161 
compared to previous designs. On the other hand, considering other boundaries, the MGA was employed 162 
to optimize the problem without handling the penstock diameter as a variable. They found that shorter 163 
penstocks were created when considering fixed penstock diameter, reaching a 24.22% reduction in length 164 
compared to the solution with the optimized diameter, but with significantly higher costs of 285% increase. 165 
The PHESS boasts a global installed power capacity of 153GW [9]. This inspires the authors in [10], to 166 
introduce a novel Mixed Integer Linear Programming model intended to optimize the operation of such 167 
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storage plants by maximizing the system's profits. Their model can accommodate a larger number of 168 
breakpoints, allowing for more practical solutions with the lowest computational effort. To validate the 169 
effectiveness of their model, it was applied to two real plants in the Argentine Republic: the Rio Grande 170 
and Los Reyunos power plants, with a combined installed power capacity of 975 MW. The results 171 
demonstrate that the suggested model provided feasible solutions with an adequate level of accuracy, within 172 
CPU times of less than one second. In [11], the researchers integrated two types of energy storage 173 
specifically, MHPP and battery storage, into a small-scale RES. Their study implemented optimal design 174 
for off-grid renewable-micro PHESS and battery storage systems in a remote area of Sweden. Their 175 
objective was to estimate efficiency, cost, and storage duration. In addition to find the most suitable solution 176 
by considering techno-economic performance indicators such as investment cost, life cycle cost, levelized 177 
COE (LCOE), and loss of power supply probability (LPSP). The system was optimized using the modified 178 
non-dominated sorting Genetic Algorithm. Results reveal that the hybrid PV-wind-battery storage system 179 
is the best option in terms of economic benefits and reliability, as the demand is fully satisfied. They found 180 
that 18.61% lower life cycle cost and a 6.12% lower oversupply compared to the hybrid PV-wind-micro 181 
PHS system. Although this study compared two types of storage, they did not consider the impact of their 182 
design on a large-scale hybrid RES. In [12] , the authors provided a practical analysis and sizing of a solar 183 
PV system linked with an existing dam as an upper reservoir of the PHESS in Jordan. They explored two 184 
scenarios. In the first scenario, they included both RER losses: the losses due to solar PV diffusion and 185 
recombination phenomena in the two-diode power model, and the effective head loss in the PHS plant. In 186 
the second scenario, they did not consider these types of losses. The system was optimized using particle 187 
swarm optimization to determine the optimal value of the index of reliability. They found that to fully cover 188 
the load demand, the necessary number of PV panels and the volume of the lower reservoir were to be 189 
44,063 panels and 69.348 Millon 𝑚3, in case no losses are considered, respectively. These values decrease 190 
by 14.33% and 5.39% for the second case. Therefore, considering renewable component losses will result 191 
in a higher but accurate sizing and prevent undersized design in the case of real system implementation. 192 
The authors in [13], proposed a new approach for water and energy management within a wide water supply 193 
system, aiming to reduce the costs of energy through the installation of PV plants. They integrate a PHESS 194 
to address the intermittency of PV systems. This integrated strategy is applied as a case study to two distinct 195 
pumping stations: the "Basso Flumendosa" and the "Monteleone-Roccadoria" pumping stations by 196 
maximizing energy self-consumption. Various sizes of PV arrays and hydro turbines are examined to 197 
evaluate the obtained self-sufficiency rate and cost performance. The impact of the pumping station's 198 
availability for storage purposes was also assessed. The findings indicate that more than 65% of the self-199 
sufficiency rates are attainable only with the integration of the PHESS. A reduction in profitability is 200 
observed if full self-sufficiency is achievable for both pumping stations. The researchers in [14], discussed 201 
the design of different scenarios for microgrid hybrid RES. They optimized the system by considering 202 
multiple objectives, including economic and environmental aspects, namely net percentage cost (NPC) and 203 
the reduction of CO2 emissions. To achieve this, a non-dominated sorting genetic algorithm was 204 
implemented to design and optimize the proposed system. The results, when directed toward economic 205 
objectives, show the achievement of the lowest energy cost across all scenarios with and without storage 206 
units. In contrast, when the optimization technique was centred on environmental objectives, the outcomes 207 
indicated a higher overall system cost compared to economic optimization across all scenarios. In [15], the 208 
authors discussed a novel tool for creating a penstock layout of MHPP. This proposed procedure depended 209 
on a detailed topographic survey of the terrain and used a Genetic Algorithm to optimize the layout of 210 
installations. Their mechanism allows for clear integration of several constraints, such as power supply, 211 
installation costs, available water flow, and layout feasibility by the actual terrain profile. The algorithm 212 
operates in both single-objective mode, aiming to minimize costs, and multi-objective mode, which 213 
considers both minimizing cost and maximizing power supply. The application of this algorithm to a real-214 
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life case in a distant community in Honduras, Central America, has yielded promising results in terms of 215 
generation capacity and cost minimization. 216 

After reviewing existing research and identifying gaps, this paper introduces a new approach: a hybrid 217 
renewable energy system (RES) coupled with a utility-scale micro PHESS, as depicted in Fig. 1, to 218 
demonstrate and model the proposed methodology. This system integrates solar PV arrays and wind plant 219 
installations integrated with the Upper Crystal Lake (UCL) as PHESS. The motivation for this research 220 
stems from the limited exploration of MHPP design on a large scale in previous studies, particularly in 221 
hydro facilities categorized as MHPPs. Moreover, it aims to address the engineering challenge of 222 
integrating hydro facilities with low head heights. Thus, the renewable energy strategy outlined in this paper 223 
offers a long-term solution to effectively meet energy demands in Michigan and similar regions globally. 224 
Additionally, a double-diode (DD) PV model was employed to ensure precise sizing of the proposed solar 225 
system. The proposed mathematical modeling, methodology, optimization algorithm application, and 226 
energy management flowchart presented in this paper apply globally to similar cases. In this paper, Crystal 227 
Lake's geographical location is utilized as a case study to validate these aspects, employing the realistic 228 
measured data for the chosen location in the year 2022, as detailed in Section 2. Multiple multi-objective 229 
scenarios were investigated for two and three objectives simultaneously. These scenarios include 230 
maximizing power system reliability and reducing CO2 emissions while minimizing overall system costs. 231 
Additionally, the triple Pareto front was simulated to provide a comprehensive view of the combined 232 
objective functions for the system's methodology. It is important to note that each scenario yields several 233 
solutions, including the best-compromised solution using a fuzzy logic approach. The performance of 234 
various renewable energy scenarios is evaluated using a multi-objective approach that considers economic 235 
feasibility, reliability, and environmental impacts. This assessment employs a recent multi-objective 236 
metaheuristic optimization algorithm, namely the Multi-objective Grew-Wolf optimization algorithm 237 
(MOGWOA), to determine optimal system sizing and performance indicators for each scenario, aiming for 238 
cleaner energy production. Finally, a comparative analysis is utilized using a multi-objective feasibility-239 
enhanced particle swarm optimization algorithm (MOFEPSOA) to test the effectiveness of MOGWOA. In 240 
other words, by comparing the findings obtained using MOFEPSOA, the performance of MOGWOA can 241 
be estimated. 242 

 243 
Fig. 1. Schematic diagram of the proposed solar PV and wind power plants combined with the MHPP. 244 
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2. System’s Realistic Raw and the Corresponding Input Data  245 

The realistic measured data is substantial to accurately design and simulate a real power system and 246 
eventually obtain realistic results. This section shows the hourly realistic data for systems' components, 247 
including the solar PV system, wind farm, MHPP, and utility-scale load demand for Crystal's Lake territory. 248 
It also illustrates the acquired raw and adjusted data that are ready for implementation in the mathematical 249 
formulation of the proposed system. Note that, those measured data, i.e., 8760 hours for the year 2022, are 250 
obtained from formal US institutions and websites for the proposed geographical location, as explained 251 
later in this section. 252 

2.1 Solar PV System Data 253 

The solar PV system data was collected from the National Solar Radiation Database (NSRDB) for the 254 
Crystal Lake location [16]. Those data include the hourly measured direct normal irradiance (DNI), diffused 255 
horizontal irradiance (DHI), and ambient temperature (𝑇𝑎).  Fig. 2 depicts the hourly DNI and DHI in the 256 
Crystal Lake terrain throughout 2022, covering a total of 8,760 hours. It can be noticed that the maximum 257 
values of DNI and DHI are 1022W/m2 and 550W/m2, respectively, whereas the average values are 258 
171.76W/m2 and 61.99W/m2. 259 

 260 
Fig. 2. Hourly measured DNI and DHI values in Crystal Lake terrain in a year. 261 

The data must be converted in the appropriate form in order to be implemented in the double-diode 262 
solar PV module presented in section 3.1. Note that, 𝐺𝐻𝐼(t) is the total amount of horizontal solar radiation 263 
falling on a surface. It is also used to calculate the solar radiation on a tilted surface. GHI resulted in Fig. 264 
3, is mathematically computed based on the hourly raw data of DNI, DHI, and the acquired zenith angle 265 
(𝜃𝑧(𝑡)) using (1) [17]. 266 

𝐺𝐻𝐼(𝑡) = 𝐷𝐻𝐼(𝑡) + 𝐷𝑁𝐼(𝑡) ×  cos (𝜃𝑧(𝑡))                                   (1)  267 
Now, the global tilted solar irradiance (𝐺𝑇𝐼(𝑡)) is ready to be computed and entered in the modeling of a 268 
solar PV module, as will be explained later in section 3.1. Note that, GTI, shown in Fig. 3, is calculated at 269 
each time step using (2) [18]. 270 

𝐺𝑇𝐼(𝑡) = 𝐺𝐻𝐼(𝑡) ×
𝑠𝑖𝑛 (𝛼𝑠(𝑡)+𝛽𝑠)

𝑠𝑖𝑛 (𝛼𝑠(𝑡))
.                                                  (2) 271 
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Where 𝛼𝑠 is computed as in (4), and it depends on the latitude angle (φ) and the declination angle (δ) as 272 
in (3). 𝛽𝑠 is 37° for Crystal Lake territory [19]. φ is 44.668677° based on the selected site coordinates, and 273 
n is the number of days within a year, ranging from 1 to 365. This iteration allows (δ) to vary as a function 274 
of the specific day of the year[20]. 275 

𝛿(𝑡) = 23.45˚ 𝑠𝑖𝑛 [
360

365
(𝑛 + 284)]                                            (3) 276 

𝛼𝑠(𝑡) = 90 − 𝜑 + 𝛿(𝑡)                                                         (4) 277 

 278 
Fig. 3. Hourly measured GHI and computed GTI solar values for Crystal Lake terrain in a year. 279 

The module temperature (𝑇𝑚𝑃𝑉(𝑡)) are calculated as in (5) and (6). 𝑇𝑎𝑚𝑏(𝑡) in (5) is the hourly air 280 
ambient temperature obtained from NSRDB [16], and it is converted to 𝑇𝑚𝑃𝑉(𝑡) as illustrated in Fig. 4. 281 
The selected solar PV is “CanadianSolar All-Black CS6K-290MS” with rated power of 290 Watt. The 282 
complete required data and the value of NOCT, 𝑇𝑀𝐷𝑆,𝑆𝑇𝐶  and 𝐺𝑇𝐼𝑁𝑂𝐶𝑇  are given in Appendix A.  283 

                                             𝑇𝑚𝑃𝑉(𝑡) = 𝑇𝑎𝑚𝑏(𝑡) +
(𝑁𝑂𝐶𝑇− 𝑇𝑀𝐷𝑆,𝑆𝑇𝐶 )×GTI(𝑡)

𝐺𝑇𝐼𝑁𝑂𝐶𝑇
                                        (5)   284 

 285 
Fig. 4. Hourly measured ambient and computed module temperature values for Crystal Lake terrain. 286 
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2.2 Wind Turbine Data 287 

The hourly measured wind speeds 𝑣(𝑡), shown in Fig. 5, are obtained from the Weather API [21]. 𝑣(𝑡) are 288 
fluctuating between 0.42m/s and 18.2 m/s. Before these data can be utilized in the mathematical formulation 289 
of wind turbine output power discussed in section 3.2, it is required to calibrated this data according to the 290 
hub height (𝐻ℎ𝑢𝑏) as in (6) [22]. 291 

𝑉𝑎𝑑𝑗(t)= 𝑣(𝑡) × ( 𝐻ℎ𝑢𝑏

𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
)
𝑎𝑤

                                             (6)   292 
The wind power law exponent, denoted by (𝑎𝑤), relates the wind speed measured at the 𝐻ℎ𝑢𝑏of a wind 293 

turbine (𝑉𝑎𝑑𝑗) to the wind speed measured by an anemometer at 𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 , as expressed in Equation (6). 294 
In addition, empirical studies suggest that 𝑎𝑤 is equivalent to 1/7, typically provides the best fit for most 295 
sites, see Appendix A. The average wind speed has increased from around 5.28 m/s to 8.11 m/s, as in Fig. 296 
5, after considering the hub height for the proposed wind turbine. 297 

 298 
Fig. 5. Hourly measured and computed wind speed values for Crystal Lake terrain. 299 

2.3 Hydropower Plant and Crystal Lake Data 300 

Crystal’s Lake history is greatly constrained to several geological shifts in the past as it was initially 301 
formed as part of glacial Lake Algonquin around 11,000 years ago [23]. It was found perched 11.5824 m 302 
overhead of present-day Lake Michigan at an elevation of around 187.452 m after the glacier’s retreat, 303 
presenting exposed terraces and flooded shoals along its shoreline [24]. In 1873, the lake witnessed a 304 
considerable drop in its levels due to a critical storm that faded and swept away a temporary dam during an 305 
attempt to build a canal to Lake Michigan. This event created new beach areas and set the stage for the 306 
development of the surrounding region, including a network of roads and trails and the establishment of a 307 
resort community. Over the years, the water levels fluctuated due to several issues, which resulted in a 308 
subsequent drop of water and a net volume loss of approximately 1.93 million m3 with an about 6 m drop 309 
in head height. However, in the late 18th century, it rebounded again and reached a height of around 183 m, 310 
the same as its current level. Hence, the lake’s area changed, creating beach zones and impacting its overall 311 
features. Crystal Lake became one of the first in Michigan to set a "natural level" at 600.48 feet (183 m). 312 
An automatic gauge installed in 2014 helps record lake levels, contributing to the moderation of seasonal 313 
changes [25]. It is important to mention that the lake’s level plays a pivotal role in defining the water body. 314 
The lake is primarily replenished by precipitation and groundwater; therefore, its water level remains 315 
relatively independent of Lake Michigan.  316 
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In this paper, UCL, depicted in Fig. 6, is designated as the upper reservoir for the MHPP, as illustrated 317 
previously in the proposed system in Fig. 1. With a substantial water capacity of around 1.93 million cubic 318 
meters, UCL inspires this study to investigate the potential of how lakes of this size function as efficient 319 
energy storage systems (ESS). In addition to focusing on the capability of generating electricity within such 320 
MHPPs, this research delves into the capacity of lakes like UCL to store energy effectively. Further details 321 
regarding UCL can be found in Appendix A [26].  322 

 323 
Fig. 6. Geographical representation of the UCL reservoir and the surrounding territory [26].  324 

2.4 Load Demand Data 325 

The load demand data, sourced from UtilityAPI, represents measurements in megawatts (MW) supplying 326 
a residential consumers in Benzie County, Michigan [27]. The observed load demand fluctuates within a 327 
range spanning from 1.2552 MW to 2.2104 MW, as depicted in Fig. 7.  328 

  329 
Fig. 7. The hourly measured demand for a 22 kV sub-feeder. 330 

𝐃ഥ𝐔𝐂𝐋 
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Notably, in Michigan, residential energy usage tends to spike during the winter months compared to the 331 
summer. This trend is driven by the cold temperatures experienced during winters, prompting residents to 332 
heavily utilize heating systems such as furnaces and boilers to maintain indoor warmth. The increased 333 
demand for heating results in peak electricity usage in households during this season. On the other hand, 334 
during the summer, although air conditioning usage may rise to beat the heat and humidity, overall 335 
electricity demand from homes usually does not hit the same heights as in the winter. It can be noticed that 336 
the monthly average demand is within a narrow range of around 1.7389MW during the year, as depicted in 337 
Fig. 7. 338 

3. Mathematical and Design Formulation 339 

Mathematical modeling serves as the cornerstone and initial phase for precisely simulating and 340 
optimizing the proposed system. Accurate modeling is crucial for determining the appropriate 341 
configurations of the systems involved. For the renewable components, a quality factor-based model is 342 
utilized for the solar PV array, while a cubic function is chosen to model the wind farm, accounting for 343 
parameters such as the wind power coefficient and tip speed ratio. These models rely on input data presented 344 
in Section 2. The energy management strategy, depicted in Fig. 8, guides the precise sizing and optimization 345 
of the system using MOGWOA. 346 

3.1 Modeling of Solar PV Output Power  347 
In this paper, the double-diode model (DDM) will be utilized to simulate the solar PV module. DDM 348 

is commonly used for representing the behaviour of solar PV modules. However, DDM has rarely been 349 
implemented in utility applications because of its large computation time and its complexity. This is because 350 
it considers all types of losses in the modeling of solar PV module. Nonetheless, DDM gives a more 351 
accurate and realistic description of the electrical characteristics of a solar cell compared to other types of 352 
solar models, i.e., the single-diode model or the ideal single diode model. Hence, implementing this DDM  353 
leads to a true sizing of the PV array and hence, the size and cost of the entire system [28]. The first diode 354 
(D1) represents the diffusion process whilst the second diode (D2) simulates the recombination phenomena 355 
[29]. In other words, D1 reflects how minority carriers diffuse into the depletion layer, while D2 mimics the 356 
recombination within the junction's space charge region [30]. Therefore, the DDM takes into account solar 357 
losses comprehensively, including diffusion, recombination, leakage to ground losses (Rsh), and series 358 
losses (Rs) as shown in Fig. 8. 359 

 360 
Fig. 8. Equivalent circuit of a two-diode PV module 361 

The DDM gives a more precise and realistic output current from the cell compared with the simpler single-362 
diode model. This is due to considering the recombination process, i.e., D2 current (𝐼𝐷2) as depicted in 363 
equation (7) [31]. 𝐼𝐷1 , 𝐼𝐷2 and 𝐼𝑆ℎare computed as in (8), (9) and (10), respectively [32, 33]. 364 

𝐼 = 𝐼𝑃ℎ − 𝐼𝐷1 − 𝐼𝐷2 − 𝐼𝑆ℎ                                                       (7) 365 
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𝐼𝐷1 = 𝐼𝑜1  (𝑒
(
𝑉+𝐼𝑅𝑠
𝛼1 𝑉𝑇 

)
− 1)                                                       (8) 366 

𝐼𝐷2 = 𝐼𝑜2  (𝑒
(
𝑉+𝐼𝑅𝑠
𝛼2 𝑉𝑇 

)
− 1)                                                      (9) 367 

𝐼𝑆ℎ =
𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
                                                                  (10) 368 

After substituting (8), (9), and (10) in (7), equation (11) is resulted. The photon current (𝐼𝑃ℎ) as shown 369 
in Fig. 8 and Equ. (11) affects by varying solar irradiance and temperature according to equation (12) [34]. 370 
The diode saturation currents 𝐼𝑜1  and 𝐼𝑜2  depend on temperature and can be expressed as given in (13). 371 
Where 𝐸𝑔 in (13) represents the band gap energy of the semiconductor and 𝐼𝑜,𝑆𝑇𝐶  is the nominal saturation 372 
current at (STC) and can be expressed by (14). 373 

𝐼 = 𝐼𝑃ℎ − 𝐼𝑜1  (𝑒
(
𝑉+𝐼𝑅𝑠
𝛼1 𝑉𝑇 

)
− 1) − 𝐼𝑜2  (𝑒

(
𝑉+𝐼𝑅𝑠
𝛼2 𝑉𝑇 

)
− 1) −

𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
                    (11) 374 

𝐼𝑃ℎ = [𝐼𝑝𝑣𝑆𝑇𝐶 + 𝐾𝐼 (𝑇 − 𝑇𝑆𝑇𝐶)]
𝐺𝑇𝐼

𝐺𝑆𝑇𝐶
= 𝐼𝑝𝑣𝑆𝑇𝐶(1 + 𝛼𝐼𝑠𝑐 ∆𝑇)

𝐺𝑇𝐼

𝐺𝑆𝑇𝐶
                  (12) 375 

𝐼𝑜 = 𝐼𝑜,𝑆𝑇𝐶  (
𝑇𝑆𝑇𝐶

𝑇
)
3

𝑒𝑥𝑝 (
𝑞𝐸𝑔

𝛼𝐾
 (
1

𝑇𝑛
−

1

𝑇
))                                           (13) 376 

     𝐼𝑜𝑆𝑇𝐶 =
𝐼𝑠𝑐𝑆𝑇𝐶

exp(
𝑉𝑜𝑐𝑆𝑇𝐶
𝛼 𝑉𝑇𝑆𝑇𝐶 

)−1

                                                      (14) 377 

From the previous two equations (13) and (14), 𝐼𝑜 can be expressed as given in (15). As the diode 378 
saturation current is very small, to simplify the model, the reverse saturation currents, 𝐼𝑜1and 𝐼𝑜2 are set to 379 
be equal as in (16) [31]. As 𝛼1 and 𝛼2 in equation (16) are the diode ideality factors that represent the 380 
diffusion and recombination effects. Referring to Shockley’s diffusion theory, 𝛼1 must be unity while the 381 
value of 𝛼2 is varying. If the value of 𝛼2 is in the range of 1.2 ≤ 𝛼2 ≤ 2, the best match between the proposed 382 
model and the practical I-V curve is obtained according to the simulation results. Hence, 𝛼1+𝛼2

𝑃
= 1  and 383 

𝛼1=1. It follows that the variable P can be chosen to be within 2.2 ≤ 𝑃 ≤ 3. Hence, considering these 384 
constraints, (16) becomes as in (17) [35]. 385 

𝐼𝑜 =
𝐼𝑠𝑐𝑆𝑇𝐶+𝐾𝐼 ∆𝑇

[𝑒𝑥𝑝(
𝑉𝑜𝑐𝑆𝑇𝐶+𝐾𝑉 ∆𝑇

 𝑉𝑇 ∗ 𝛼
)]−1

                                                   (15) 386 

𝐼𝑜1 = 𝐼𝑜2 =
𝐼𝑠𝑐𝑆𝑇𝐶+𝐾𝐼 ∆𝑇

[exp(
𝑉𝑜𝑐𝑆𝑇𝐶+𝐾𝑉 ∆𝑇

 𝑉𝑇 (𝛼1+𝛼2)/𝑃 
)]−1

                                             (16) 387 

𝐼𝑜1 = 𝐼𝑜2 =
𝐼𝑠𝑐𝑆𝑇𝐶+𝐾𝐼 ∆𝑇

[exp(
𝑉𝑜𝑐𝑆𝑇𝐶+𝐾𝑉 ∆𝑇

 𝑉𝑇  
)]−1

= 𝐼𝑜                                    (17) 388 

3.2 Mathematical modeling of Wind Farm 389 

The power extracted from wind turbines (𝑃𝑊𝑇) can be expressed as in (18). Note that, it depends on local 390 
wind speed (𝑉(𝑡)), the number of wind turbines (𝑁𝑊𝑇), and the parameters of the manufactured wind 391 
turbine, such as the rated power in kW (𝑃𝑟), cut-in speed (𝑉𝑐𝑖) in m/s, and cut-out speed (𝑉𝑐𝑜) in m/s [36]. 392 

𝑃𝑊𝑇  =  

{
 
 

 
 

0                                   , 𝑉((𝑡) < 𝑉𝑐𝑖
𝑁𝑊𝑇 𝑃𝑟(𝑉(𝑡)

3− 𝑉𝑐𝑖
3)

(𝑉𝑟
3 − 𝑉𝑐𝑖

3)
                , 𝑉𝑐𝑖 < 𝑉(𝑡) < 𝑉𝑟

𝑁𝑊𝑇  𝑃𝑟                                  , 𝑉𝑟 < 𝑉(𝑡) < 𝑉𝑐𝑜
0                                   ,   𝑉(𝑡) > 𝑉𝑐𝑜

                             (18) 393 

3.3 Mathematical Modeling of Micro-Hydro and PHESS 394 
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MHPP can be in different types such as dam, run-off-river, and PHESS, or a combination of them. In this 395 
study, the MHPP will be in the form of PHESS. The PHESS system operates as a giant battery to store 396 
energy.  They can store energy as a form of potential energy by pumping the water from the lower reservoir 397 
(i.e., Lake Michigan) to the upper Crystals Lake (UCL) reservoir, shown in Fig. 6. This process is called 398 
pumping mode. When the hybrid system comprised of solar PV and wind turbines cannot sufficiently meet 399 
the load demand, the water is released from the UCL to the lower reservoir, in the process of generating 400 
mode. 401 

3.3.1. Pumping (or Charging) Mode 402 

The pump flow rate (𝑞𝑝(𝑡)) from the lower reservoir to UCL is expressed as in Equation (19). It is the 403 
relation of surplus or extra power from the hybrid system (𝑃𝑀𝐻𝑃𝑃𝑐ℎ(𝑡)) in kW, pump efficiency (𝜂𝑝), head 404 
height (h) in m, water density (𝜌) (1000𝑘𝑔/𝑚3), and gravity acceleration (𝑔) (9.8𝑚/𝑠2) [37]. 405 

𝑞𝑝(𝑡) =
𝜂𝑝 PMHPPch(𝑡)

𝜌𝑔ℎ
                                                   (19) 406 

3.3.2. Generating (or Discharging) Mode 407 

The released power from the UCL is used to spin the turbine/generator set when the solar PV and wind 408 
turbine renewable facilities cannot meet the load demand, and this power can be computed as in (20) [37]. 409 
Note that, 𝜂𝑡 is the efficiency the turbine/generator set and 𝑞𝑡(𝑡) is the water volumetric flow rate in 𝑚3/𝑠. 410 

𝑃MHPP𝑑𝑖𝑠(𝑡) =  𝜂𝑡 × 𝜌 × 𝑔 × ℎ × 𝑞𝑡(𝑡)                                                  (20) 411 
3.3.3. Upper Crystal Lake (UCL) Reservoir 412 

The quantity of water (QOW) stored in the UCL at any time (t) is expressed as in (21) [37]. The QOW in 413 
the UCL is governed by the constraints as explained in (22), as the upper and lower safety limit. 𝛼 is the 414 
loss factor from evaporation and leakage to ground. In this paper, 𝛼 will be considered zero due to the 415 
massive volume of UCL. 416 

𝑄𝑂𝑊UCL(𝑡) = 𝑄𝑂𝑊UCL(𝑡 − 1)(1 − 𝛼) + 𝑞𝑝(𝑡) − 𝑞𝑡(𝑡)                           (21) 417 

𝑄𝑂𝑊𝑈𝑅𝑚𝑖𝑛
≤ 𝑄𝑂𝑊𝑈𝑅 ≤ 𝑄𝑂𝑊𝑈𝑅𝑚𝑎𝑥

                                           (22) 418 
3.3.4. Storage Capacity 419 

The UCL must have sufficient water stored to meet the power requirements of the demand during extended 420 
power outages [38]. The water level (QOW) in the UCL essentially acts as the state of charge explained 421 
before for the storage tank. The gravitational potential energy (𝐸𝐶 ) in kWh stored in the UCL can be 422 
measured as in (23) [39], where V stands for the volume or storage capacity of the water reservoir in cubic 423 
meters (m³). 424 

𝐸𝐶 =
µ𝑡×𝜌×𝑉×𝑔×ℎ

3.6 ×106
                                                  (23) 425 

Based on the planned capacity of the UCL, and the daily energy consumption by the load (𝐸𝐿𝑜𝑎𝑑) in (kWh), 426 
the duration of autonomy days (𝑛𝑑𝑎𝑦) can be determined by assessing the potential energy stored in the 427 
UCL. This calculation can be performed using the following formula (24) [34]. 428 

𝑛𝑑𝑎𝑦 =
𝐸𝑐

𝐸𝐿𝑜𝑎𝑑  
                                                     (24) 429 

4. System’s Operational Flow Chart 430 

Fig. 9 illustrates the operational flow chart and energy management system. This flow chart explains the 431 
priority and the flow of energy within the system to meet the load demand. It begins with the power 432 
generated by the solar PV and wind plants, followed by the MHPP, and is then sourced from the grid. It 433 
also provides a general overview of the algorithm's functionality to optimally design the system. 434 
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If the power generated from the hybrid system (𝑃𝑔𝑒𝑛(𝑡)), as defined in (25),  originating from both the 435 
PV system (𝑃𝑃𝑉𝑖𝑛𝑣(𝑡)) as in (26) and wind farm (𝑃𝑊𝑇(𝑡)) as specified in (18), is insufficient to satisfy the 436 
load demand (𝑃𝐿(𝑡)) presented in section 2.4, the needed load will be covered by generating power during 437 
discharging mode from the MHPP facility (𝑃𝑀𝐻𝑃𝑃𝑑𝑖𝑠(𝑡) ). Hence, if 𝑃𝑔𝑒𝑛(𝑡)  and 𝑃𝑀𝐻𝑃𝑃𝑑𝑖𝑠(𝑡)  are still 438 
inadequate to meet the load demand, the grid feeds the load demand (𝑃𝑔𝑝(𝑡)) as outlined in (27). On the 439 
other hand, in the event of extra power generated from the hybrid system (𝑃𝑒𝑥𝑡𝑟𝑎(𝑡)) as in (28), then this 440 
power is stored in MHPP by pumping the water from the lower reservoir to the UCL (PMHPP𝑐ℎ(𝑡)) if and 441 
only if the QOW in the UCL is less than the 𝑄𝑂𝑊𝑚𝑎𝑥, if not, the QOW is at the maximum limit, and the 442 
extra power is sold to the grid (Pgsold(𝑡)) [11, 12]. 443 

 444 
Fig. 9. Energy management strategy and Operational flowchart. 445 

The multi-objective function is assessed at each time step, as shown in Fig. 9. In the case that the 446 
maximum power obtained from all renewables covers the load demand and increases, but the grid capacity 447 
limit is reached, then the extra power will be directed to a dummy load. In scenarios where the power 448 
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produced from all renewables and the grid purchased are insufficient to satisfy the load demand, then there 449 
is a deficit power (𝑃𝑑𝑒𝑓𝑖𝑐𝑖𝑡(𝑡)) as depicted in the balance power equation in (28) [11, 12].  450 

𝑃𝑔𝑒𝑛(𝑡) =  𝑃𝑃𝑉𝑖𝑛𝑣(t) +  𝑃𝑊𝑇(𝑡)                                           (25) 451 

𝑃𝑃𝑉𝑖𝑛𝑣(t) = ɳ𝑖𝑛𝑣 × 𝑃𝑃𝑉 (𝑡) ×  𝑓𝑃𝑉                                         (26) 452 

𝑃𝑔𝑝(𝑡) =  𝑃𝐿(𝑡) − (𝑃𝑔𝑒𝑛(𝑡) + 𝑃MHPP𝑑𝑖𝑠(𝑡))  , 𝑖𝑓  𝑃𝑔𝑝(𝑡) ≤ 𝑃𝑔𝑝(𝑡)max              (27)       453 

𝑃𝑒𝑥𝑡𝑟𝑎(𝑡) = 𝑃𝑔𝑒𝑛(𝑡) − 𝑃𝐿(𝑡)  = {
 𝑃𝑀𝐻𝑃𝑃𝑐ℎ(𝑡)    , 𝑄𝑂𝑊 < 𝑄𝑂𝑊𝑚𝑎𝑥    

𝑃𝑔𝑠𝑜𝑙𝑑(𝑡)        , 𝑄𝑂𝑊 ≥ 𝑄𝑂𝑊𝑚𝑎𝑥
                (28) 454 

𝑃𝑔𝑒𝑛(𝑡) + 𝑃MHPP𝑑𝑖𝑠(𝑡) + 𝑃𝑔𝑝(𝑡) =  𝑃𝐿(𝑡) + PMHPPch(𝑡) + 𝑃𝑔𝑠𝑜𝑙𝑑(𝑡) + 𝑃𝑑𝑒𝑓𝑖𝑐𝑖𝑡(𝑡)    (29) 455 

5. System’s Multi-Objective Functions and Performance Evaluators 456 

This section discusses the multi-objective functions that govern the performance of the system and other 457 
performance indictors to be computed for each case scenario. In this paper, there are three multi-objective 458 
scenarios, including economic aspects versus reliability in one case, ecological and cost impacts in the 459 
second case scenario, and all objective functions in the 3rd scenario. The 1st multi-objective function 460 
scenario will consider minimizing the levelized cost of energy (LCOE) and maximizing the index of 461 
reliability (IR) using the Multi-Objective Grey Wolf Optimizer (MOGWO) algorithm to find the best 462 
optimal solution. However, minimizing the LCOE and maximizing the carbon-dioxide reduction amounts 463 
(𝐶𝑂2𝑅𝐴) will be taken into account for the 2nd case scenario. In the 3rd scenario, IR and CO2RA will be 464 
maximized, and LCOE will be minimized as a triple objective function. 465 

The set of solutions in the optimized multi-objective function, namely Pareto front solutions, will 466 
provide all types of solutions, including affordable, reliable, and ecological solution sets. For instance, if 467 
the designer focuses on the system to be more economic, the set of solutions closer to the minimal cost 468 
would be better regardless of the reliability and so on. Note that the optimal configuration of the system 469 
depends on the multi-objective function or the best decision variables, including the number of PV panels 470 
(𝑁𝑃𝑉), the number of wind turbines (𝑁𝑤𝑡), and the number of hydro-turbine units (𝑁𝐻𝑡). 471 

5.1. Cost Objective Function (COF) 472 

The LCOE is a mathematical estimation process used in the energy business to calculate the average 473 
cost of generating one unit of electricity during the system's lifetime. It considers several parameters, 474 
including initial capital costs, operations and maintenance expenses, fuel costs, and the system's projected 475 
lifespan energy production.  476 

The COF of LCOE will be minimized, and it is considered as the 1st objective function. It is noted that 477 
the computation of the LCOE involves dividing the Annualized Cost of the System (ACS) by the energy 478 
supplied to meet the load demand (EL), as illustrated in equation (30). The ACS is derived by multiplying 479 
the Total Current Cost (TCC) with the Capital Recovery Factor (CRF). TCC is computed by summing the 480 
discounted values of various costs in the system, including Capital Cost (CC), Operation and Maintenance 481 
Cost (OMC), Replacement Cost (RC), and Salvage Cost (SC). The CRF is determined by (31), while the 482 
real interest rate (i) is found using (32) depending on 𝑖′representing the nominal interest rate and the 483 
inflation rate (𝑓𝑖𝑛𝑓). Appendix B provides the cost values for each component, including their respective 484 
lifetimes, along with the financial parameters required for constructing both nominal and discounted 485 
cashflows [40]. 486 
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                                                                            𝐿𝐶𝑂𝐸 = 𝐴𝐶𝑆

𝐸𝑠
                                                       (30) 487 

𝐶𝑅𝐹 =
𝑖(1+𝑖)𝑁

(1+𝑖)𝑁−1
                                                   (31) 488 

                                                                    𝑖 =
𝑖′−𝑓𝑖𝑛𝑓

1+𝑓𝑖𝑛𝑓
                                                        (32) 489 

5.2. Reliability Objective Function (ROF) 490 

The Index of reliability (IR) refers to the system’s ability to satisfy the load demand, mentioned in 491 
section 2.4, without any interruptions or deficit in energy. The 2nd ROF is to be maximized and can be 492 
computed as in (33) [41]. 493 

𝐼𝑅 = 1 −
∑ [𝑃𝐿(𝑡)−(𝑃𝑃𝑉𝑖𝑛𝑣(𝑡)+𝑃𝑊𝑇(𝑡)+𝑃𝑀𝐻𝑃𝑃𝑑𝑖𝑠+𝑃𝑔𝑝(𝑡))]
8760
𝑡=1

∑ 𝑃𝐿(𝑡)
8760
𝑡=1

                               (33) 494 

5.3. Ecological Objective Function (EOF) 495 

Carbon-Dioxide Reduction Amount (𝐶𝑂2𝑅𝐴) stands for the reduction in harmful emissions achieved by 496 
the utilization of renewable energy resources (𝐸𝑅𝑔𝑒𝑛) rather than the conventional fossil fuels, as indicated 497 
in equation (34) [42]. 𝐹𝐶𝑂2represents the carbon dioxide emission factor, and it is estimated to be 0.553 498 
tCO2/MWh in the context of Michigan [43]. The 3rd EOF of 𝐶𝑂2𝑅𝐴  is maximized using MOGWO 499 
algorithm as explained in sections 6 and 7. 500 

𝐶𝑂2𝑅𝐴 = 𝐸𝑅𝑔𝑒𝑛 × 𝐹𝐶𝑂2                                          (34) 501 

5.4. Complete constrained objective function formulation 502 

The system optimization and sizing are determined by decision variables and a set of equality and 503 
inequality constraints, as outlined in Equ. (35) [44]. These decision variables include the number of PV 504 
panels (𝑁𝑃𝑉), the number of wind turbines (𝑁𝑊𝑇) and the number of hydro-turbine units (𝑁𝐻𝑡). 505 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝐶𝑂𝐹: 𝑀𝑖𝑛 (𝐿𝐶𝑂𝐸 =

𝐴𝐶𝑆

𝐸𝑠
 )

𝑅𝑂𝐹: 𝑀𝑎𝑥 (𝐼𝑅 = 1 −
∑ [𝑃𝐿(𝑡)−(𝑃𝑃𝑉𝑖𝑛𝑣(𝑡)+𝑃𝑊𝑇(𝑡)+𝑃𝑀𝐻𝑃𝑃𝑑𝑖𝑠+𝑃𝑔𝑝(𝑡))]
8760
𝑡=1

∑ 𝑃𝐿(𝑡)
8760
𝑡=1

)

𝐸𝑂𝐹: 𝑀𝑎𝑥 (𝐶𝑂2𝑅𝐴 = 𝐸𝑅𝑔𝑒𝑛 × 𝐹𝐶𝑂2)

(𝐶𝑂𝐹& 𝑎𝑛𝑑 𝑅𝑂𝐹) ∥  (𝐶𝑂𝐹 𝑎𝑛𝑑 𝐸𝑂𝐹)  ∥  (𝐶𝑂𝐹 &𝑅𝑂𝐹 & 𝐸𝑂𝐹)                                                           
𝑁𝑃𝑉 , 𝑁𝑊𝑇 , 𝑁𝐻𝑡                                                                                                                                                       

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                                                                                                  

{
 
 
 

 
 
 

𝑃𝑔𝑝(𝑡) ≤ 𝑃𝑔𝑝𝑚𝑎𝑥
𝑄𝑂𝑊𝑚𝑖𝑛 ≤ 𝑄𝑂𝑊(𝑡) ≤ 𝑄𝑂𝑊𝑚𝑎𝑥

𝑃𝑒𝑥𝑡𝑟𝑎(𝑡) = 𝑃𝑔𝑒𝑛(𝑡) − 𝑃𝐿(𝑡)  = {
 𝑃𝑀𝐻𝑃𝑃𝑐ℎ(𝑡), 𝑄𝑂𝑊 < 𝑄𝑂𝑊𝑚𝑎𝑥    

𝑃𝑔𝑠𝑜𝑙𝑑(𝑡)       , 𝑄𝑂𝑊 ≥ 𝑄𝑂𝑊𝑚𝑎𝑥

𝑃𝑔𝑝(𝑡) =  𝑃𝐿(𝑡) − (𝑃𝑔𝑒𝑛(𝑡) + 𝑃𝑀𝐻𝑃𝑃𝑑𝑖𝑠(𝑡)) 

𝑃𝑔𝑒𝑛(𝑡) + 𝑃𝑀𝐻𝑃𝑃𝑑𝑖𝑠(𝑡) + 𝑃𝑔𝑝(𝑡) =  𝑃𝐿(𝑡) + 𝑃𝑀𝐻𝑃𝑃𝑐ℎ(𝑡) +  𝑃𝑔𝑠𝑜𝑙𝑑(𝑡) + 𝑃𝑑𝑒𝑓𝑖𝑐𝑖𝑡(𝑡)

   (35) 506 

 507 

5.5. Other Performance Evaluators 508 

This section shows other appropriate performance indicators to assess the behavior of the system at an 509 
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optimal solution of each scenario. This includes estimating the Loss of Load Probability (LOLP), Carbon-510 
Dioxide Emissions Amount (CEA), and Renewable Storage Factor (RSF). 511 

LOLP serves as a metric to assess the number of hours in a given year during which the system falls 512 
short of meeting the load requirements, as indicated in equation (36). A lower LOLP value indicates a 513 
higher level of reliability in the system. Essentially, LOLP delves into the hours when the system 514 
experiences inadequacy in meeting the load demand or encounters a power deficit [45]. 515 

𝐿𝑂𝐿𝑃 =
∑ ℎ[ 𝑃𝐿(𝑡)>(𝑃𝑃𝑉𝑖𝑛𝑣(𝑡)+𝑃𝑊𝑇(𝑡)+𝑃𝑀𝐻𝑃𝑃𝑑𝑖𝑠+𝑃𝑔𝑝(𝑡))]
8760
t=1

8760
                           (36)                                                                                                    516 

CEA is a measure of the greenhouse gas emissions (GHGEs), primarily CO2, released when relying on 517 
the utility grid, as specified in equation (37) [42]. This quantity is related to the CO2 emission factor (𝐹𝐶𝑂2), 518 
mentioned before. Additionally, it factors in the losses percentage in transmission and distribution lines 519 
(PL), with Michigan registering approximately 5% in this regard [46]. Notably, a lower CEA value signifies 520 
a more efficient utilization of renewable energies, highlighting the environmental benefits associated with 521 
reduced carbon emissions. 522 

𝐶𝐸𝐴 =
𝐸𝑔𝑝 ×𝐹𝐶𝑂2

1−𝑃𝐿
                                                   (37) 523 

RSF gauges the extent to which the energy supplied by the UCL of the MHPP facility fulfills the overall 524 
demand, as expressed in equation (38) [47]. Here, 𝐸𝑆𝑡𝑜𝑟𝑎𝑔𝑒 represents the energy conveyed to the load by 525 
PHS, while 𝐸𝑆𝑦𝑠𝑡𝑒𝑚 encompasses the energy output of the entire system, inclusive of MHPP. 526 

𝑅𝑆𝐹 = ∑
𝐸𝑆𝑡𝑜𝑟𝑎𝑔𝑒

𝐸𝑆𝑦𝑠𝑡𝑒𝑚

𝑡
0                                                   (38) 527 

6. System’s Multi-Objective Optimization Algorithms 528 

This research employs two multi-objective algorithms to simulate the proposed system. Initially, the 529 
MOGWOA is adapted to model the system, incorporating various multi-objective scenarios. This involves 530 
modifying the algorithm to minimize system costs while maximizing reliability and ecological 531 
considerations. Subsequently, the MOFEPSOA is utilized to validate the results obtained from the 532 
MOGWOA. It is important to note that each scenario yields multiple solutions, including reliable, 533 
ecological, economic, and optimal compromise solutions, based on the preferences of the designers. The 534 
optimal solution, balancing all objectives, is determined using a fuzzy logic approach, as detailed in section 535 
7. 536 

6.1. Multi-objective Grew-Wolf optimization algorithm (MOGWOA) 537 

Mirjalili and Lewis introduced the Grey Wolf Optimizer (GWO) algorithm, which was originally 538 
inspired by the social leadership and hunting strategies of grey wolves. The MOGWOA incorporates a 539 
fixed-size external archive into the GWO, which enables the storage and retrieval of Pareto optimal 540 
solutions. This archive plays a crucial role in establishing a social hierarchy and emulating the hunting 541 
behavior of grey wolves in multi-objective search environments. It is worth mentioning that the MOGWOA 542 
algorithm was used to solve multi-objective optimization problems, as it is preferred in research for its 543 
simplicity and ability to adaptively tune parameters. Many studies, as in [48-52], recommend MOGWOA 544 
for tackling complex optimization challenges. Consequently, we employed MOGWOA in this article. For 545 
instance, in [53], the primary aim of the proposed MOGWO was to optimize the switching matrix structure 546 
to minimize row current differences and maximize output power. This method effectively addressed the 547 
challenge of adjusting objective function weights to ensure system reliability and efficiency. The 548 
comparison demonstrated MOGWO's superiority in handling multi-peak issues in P-V characteristics, 549 
achieving the highest power levels. 550 
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When formulating the social hierarchy within the GWO, the most appropriate solution is designated as 551 
the alpha (α) wolf. Subsequently, the second and third best solutions are identified as the beta (β) and delta 552 
(δ) wolves respectively as shown in Fig. 10. All other candidate solutions are classified as omega (ω) 553 
wolves. Within the GWO algorithm, the optimization process is directed by α, β, and δ wolves, while ω 554 
wolves follow their lead in the pursuit of the global optimum. Appendix C imitates the encircling behavior 555 
equations observed in grey wolves during hunts [54]. It observed that t denotes the present iteration, while 556 
𝐴  and 𝐶 represent coefficient vectors. 𝑋⃗𝑝  refers to the position vector of the prey and  𝑋⃗  signifies the 557 
position vector of a grey wolf. The elements of the coefficient vector 𝑎⃗ linearly decrease from 2 to 0 558 
throughout the iterations. Additionally, 𝑟1 and 𝑟2 denote random vectors within the range of [0,1] [55]. 559 

 560 
Fig. 10. General operational flowchart of the proposed MOGWOA. 561 
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The MOGWO algorithm uses simulated social leadership and encircling mechanisms to obtain the 562 
optimal solution for optimization problems. This algorithm retains the initial three best solutions acquired 563 
and directs other search agents, including omegas, to refresh their positions accordingly. The parameters a, 564 
A, and C are important in guiding the exploration process of the algorithm, as shown in Appendix C and 565 
Fig. 10. Both variables A and C are coefficient vectors, with a starting from 2 and linearly decreasing to 0 566 
over the iterations. This decrease causes the algorithm to gradually shift its focus from exploration, which 567 
involves a broad search of the solution space, to exploitation, which involves a more focused search in the 568 
local area around the best solutions found so far. Finally, to simulate the hunting process and identify 569 
promising areas within the search space, formulas in Appendix C are executed continually for each search 570 
agent during optimization, as illustrated in Fig. 10 [54].  571 

6.2. Multi-objective Feasibility Enhanced Particle Swarm Optimization Algorithm (MOFEPSOA) 572 

MOFEPSOA, developed by Hasanoglu and Dolen, is a method designed for addressing multi-objective 573 
problems with constraints. It deals exclusively with inequality constraints, requiring any equality 574 
constraints to be converted into inequality constraints. The algorithm begins by initializing parameters and 575 
assessing particle positions for feasibility. If a position is feasible, it updates velocities and flight behaviours 576 
accordingly; otherwise, it adjusts them for infeasible positions. Subsequently, the algorithm rechecks the 577 
particle's new position for feasibility [56]. In this paper, MOFEPSOA will compute the objective vectors 578 
(LOCE, IR, and CO2RA) and include the current solution in the best set. It will update the best solution in 579 
the objective vector if others do not dominate it. If the new particle position is not the best, it checks if it is 580 
not the final particle. If there are remaining iterations, MOFEPSOA repeats the previous steps from 581 
initialization. Finally, upon reaching the stopping criteria for the number of particles and iterations, 582 
MOFEPSOA presents all feasible non-dominant trade-off solutions as the Pareto front. More detailed 583 
explanations of the algorithm are presented in [57]. 584 

6.3. Employing Fuzzy Logic method for compromised Solution Identification 585 

Many common approaches can find the best non-dominant solution, such as the fuzzy logic method. The 586 
fuzzy logic method uses the fuzzy membership function 𝜇𝑖(𝐹𝑖) to find the best non-dominant solution out 587 
of all non-dominant solutions stored in the archive of the MOGWOA [58]. The fuzzy membership function 588 
in (39) is used to convert each objective function (𝐹𝑖) to a membership value in range between (0, 1) [59]. 589 
Where 𝐹𝑖𝑚𝑖𝑛 and 𝐹𝑖𝑚𝑎𝑥  represent the minimum and maximum objective function values, respectively. 590 

𝜇𝑖(𝐹𝑖)  =

{
 

 
 

1, 𝐹𝑖(𝑥) ≤ 𝐹𝑖
𝑚𝑖𝑛

0, 𝐹𝑖(𝑥) ≥ 𝐹𝑖
𝑚𝑎𝑥

𝐹𝑖
𝑚𝑎𝑥− 𝐹𝑖(𝑥)

𝐹𝑖
𝑚𝑎𝑥− 𝐹𝑖

𝑚𝑖𝑛 , 𝐹𝑖
𝑚𝑖𝑛 ≤ 𝐹𝑖(𝑥) ≤ 𝐹𝑖

𝑚𝑎𝑥

                                  (39) 591 

As introduced before, this study will investigate three main scenarios. Therefore, a multi-objective 592 
optimization is performed to find three corresponding best solutions which are the reliable and affordable. 593 
Equation (40) is used to minimize 𝐿𝐶𝑂𝐸(𝑥)  and maximize 𝐼𝑅(𝑥), whereas (41) is used to maximize 594 
CO2RA(x) while minimizing 𝐿𝐶𝑂𝐸(𝑥) . Finally, (42) is used to minimize 𝐿𝐶𝑂𝐸(𝑥)  and maximize 595 
CO2RA(x) and 𝐼𝑅(𝑥) simultaneously. 596 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹1(𝑥) =  [𝐿𝐶𝑂𝐸(𝑥),
1

𝐼𝑅(𝑥)
]                                   (40) 597 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹2(𝑥) =  [
1

𝐶𝑂2𝑅𝐴(𝑥)
 , 𝐿𝐶𝑂𝐸(𝑥)]                                   (41) 598 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹3(𝑥) =  [𝐿𝐶𝑂𝐸(𝑥),
1

𝐼𝑅(𝑥)
,

1

𝐶𝑂2𝑅𝐴(𝑥)
 ]                            (42) 599 
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7. Results and Discussion 600 

MATLAB R2022a is utilized to simulate the energy management system for the Crystal Lake territory 601 
case study. The MOGWO algorithm is employed to execute the system based on the data collected for the 602 
year 2022. The analysis includes three scenarios: the 1st scenario aims to maximize ROF (IR) whilst 603 
minimizing COF (LCOE), the 2nd scenario focuses on maximizing EOF (𝐶𝑂2𝑅𝐴) whilst minimizing COF, 604 
and the 3rd scenario is for maximizing both ROF and EOF while minimizing COF. Accordingly, the 605 
MOFEPSOA is utilized to validate the findings obtained from MOGWOA. 606 

7.1. Optimization using MOGWO algorithm 607 

This study employs the MOGWOA technique to tackle the optimization problem, utilizing the 608 
mentioned decision variables of renewable components. For each scenario, a set of solutions is generated, 609 
typically amounting to around 100 solutions for each Pareto front. From this set, four essential solutions 610 
are selected and discussed, depending on the specific scenario. For instance, in the 1st scenario, the first 611 
solution, termed the reliable solution, represents the highest IR value and the highest LCOE value. The 612 
second solution known as the economic solution, exhibits the lowest IR value and the lowest LCOE value, 613 
named. The third solution, referred to as the compromised solution, lies somewhere between reliable and 614 
affordable solutions. The compromised solution is chosen based on its proximity to the origin, indicating 615 
reliability and cost-effectiveness in one aspect, and affordability and ecological sustainability in another. 616 
The Pareto frontier optimization for the 1st scenario is shown in Fig. 11. 617 

Table 1 presents the optimization outcomes for the 1st scenario with three selected solutions, as observed 618 
in Fig. 11, detailing the objective functions of LCOE, and IR, and the decision variables 𝑁𝑃𝑉, 𝑁𝑊𝑇, and 619 
𝑁𝐻𝑡. Notably, the optimal solution highlights the system's reliability, achieving an IR of 99.772%. However, 620 
this reliability comes at a cost, with an LCOE of 0.055708$/kWh. Economic insights reveal that the LCOE 621 
stands at 0.04745$/kWh, with an associated IR of 99.722% for the economic solution. Subsequently, the 622 
best solution is to install 4710 solar panels, 19 wind turbines, and 8 hydro-turbines. The chosen point aims 623 
to minimize the system's LCOE, whilst maximizing systems reliability. 624 

 625 
Fig. 11. Pareto Front For the 1st Scenario of the proposed system by MOGWOA. 626 
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Table 1. Optimization using MOGWOA for the 1st Scenario; COF (LCOE) vs. ROF (IR) 627 
 

        Quantity 
COF (LCOE) vs. ROF (IR) 

Economic Reliable Best Solution 

Objective Functions LCOE in $/kWh 0.04745 0.06589 0.055708 
IR in % 99.722 99.802 99.772 

 
Decision Variables 

𝑁𝑃𝑉 2500 7878 4710 
𝑁𝑊𝑇 17 20 19 
𝑁𝐻𝑡 7 9 8 

 
 

Energies in 
GWh/year 

𝐸𝑃𝑉𝑖𝑛𝑣  1.224321 3.85808 2.306623 
𝐸𝑊𝑇  4.711992 5.54352 5.2663443 

𝐸ℎ𝑦𝑑𝑟𝑜𝑡𝑢𝑟𝑏𝑖𝑛𝑒 7.2039247 6.126815 6.70430538 
𝐸𝑔𝑠𝑜𝑙𝑑 0.00318518 0.52458969 0.10043583 
𝐸𝐿 15.2327969 

𝐸𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑  2.43467 1.0199436 1.4114235 
𝐸𝑀𝐻𝑃𝑃𝑐ℎ 0.096581824 0.8211559 0.3989326 

 
Other Indicators 

𝐿𝑂𝐿𝑃 in % 3.6 1.701 2.3973 
ACS in Million $/year 1.04597354 1.0903 0.98936 
CEA in 103 ton/year 1.27260922 0.61141779 0.84609526 

𝑅𝑆𝐹 in % 47.292 40.221 44.012 

Fig. 12 illustrates the Pareto frontier optimization for the 2nd scenario implemented using MOGWOA. 628 
It aims to minimize COF (LCOE) and maximize EOF (CO2RA). This way, it could help decision makers 629 
and design engineers who care more about environmental impacts to effectively recognize how integrating 630 
renewables could mitigate GHG emissions while minimizing the system’s cost, as shown in Fig. 12.  631 

 632 
Fig. 12. Pareto Front For the 2nd Scenario of the proposed system by MOGWOA. 633 

Table 2 shows the objective functions, decision variables, energies, and other performance indicators 634 
for the 2nd scenario. Compared with the economic and ecological cases, it can be noticed that the optimal 635 
solution achieved a compromised set of solutions, with 5639 solar panels, 19 wind turbines, and 8 hydro-636 
turbines. Additionally, the findings are close to those obtained using the 1st scenario, which proves the 637 
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effectiveness of the optimization algorithm and the proposed methodology. 638 

Table 2. Optimization using MOGWOA for the 2nd Scenario; COF (LCOE) vs. EOF (CO2RA) 639 
 

        Quantity 
COF (LCOE) vs. EOF (CO2RA) 

Economical Ecological Best Solution 

Objective 
Functions 

LCOE in $/kWh 0.04911 0.066457 0.059181 
CO2RA in 103 ton/year 8.0056 8.7082 8.3008 

Decision 
Variables 

𝑁𝑃𝑉  2964 8150 5639 
𝑁𝑊𝑇 18 20 19 
𝑁𝐻𝑡 7 9 8 

 
 

Energies 
in GWh 

𝐸𝑃𝑉𝑖𝑛𝑣  1.4515561 3.991289 2.7615806 
𝐸𝑊𝑇  4.9891683 5.5435203 5.2663443 

𝐸ℎ𝑦𝑑𝑟𝑜𝑡𝑢𝑟𝑏𝑖𝑛𝑒 6.9300397 6.085227 1.35779573 
𝐸𝑔𝑠𝑜𝑙𝑑  0.01125435 0.5805854 0.17126333 
𝐸𝐿       15.2327969 

𝐸𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑  2.00571 1.01293624 1.35779573 
𝐸𝑀𝐻𝑃𝑃𝑐ℎ 0.1965026 0.84950283 0.47434083 

 
Other 

Indicators 

𝐿𝑂𝐿𝑃 in % 3.3904 1.7009 2.2945 
ACS in Million $/year 1.0482 1.1054 1.051 
CEA in 103 ton/year 1.202346 0.6072172 0.81394744 

𝑅𝑆𝐹 in % 45.494 39.948 42.352 

In this paper, modified triple objective functions are employed to enhance the simulation and accuracy 640 
of the proposed system. This approach is uncommon in similar studies as it incorporates three objective 641 
functions (reliability, ecological, and economic) into a triple Pareto frontier analysis, as illustrated in Table 642 
3 and Fig. 13. Existing research typically focuses on two objective functions, making this method distinct 643 
in its comprehensive consideration of all three aspects simultaneously. 644 

 645 
Fig. 13. Triple Pareto Front For the 3rd Scenario of the proposed system using MOGWOA. 646 
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Table 3. Optimization using MOGWOA for the 3rd Scenario: Triple Objective Functions 647 
“ROF (IR) vs. COF (LCOE) & EOF (CO2RA)” 648 

 
        Quantity 

ROF (IR) vs. COF (LCOE) & EOF (CO2RA) 
Economic Reliable Ecological Best Solution 

Objective 
Functions 

IR in % 99.638 99.812 99.812 99.705 
LCOE in $/kWh 0.042771 0.069025 0.069025 0.046147 

 CO2RA in 103 ton/year 7.7887 9.0393 9.0393 7.9142 
 

Decision 
Variables 

𝑁𝑃𝑉  2052 9823 9823 5124 
𝑁𝑊𝑇 17 20 20 19 
𝑁𝐻𝑡 7 9 9 8 

Storage Capacity in GWh 14.9734 
𝑛𝑑𝑎𝑦 in days 8807 

 
 
 

Energies 
in GWh 

𝐸𝑃𝑉𝑖𝑛𝑣 1.00492347 4.81060586 4.81060586 2.50937 
𝐸𝑊𝑇  4.71199224 5.54352 5.54352 5.2663443 

𝐸ℎ𝑦𝑑𝑟𝑜𝑡𝑢𝑟𝑏𝑖𝑛𝑒 7.31769778 5.86857699 5.86857699 6.5881848 
𝐸𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑  2.20215013 0.9769594 0.9769594 1.3859264 
𝐸𝑔𝑠𝑜𝑙𝑑  0.00141861 0.99834236 0.99834236 0.12942049 
𝐸𝐿 15.232796912 

𝐸𝑀𝐻𝑃𝑃𝑐ℎ 0.076158288 0.99708479 0.99708479 0.42996824 
 

Other 
Indicators 

𝐿𝑂𝐿𝑃 in % 3.6872 1.6324 1.6324 2.3516 
ACS in Million $/year 1.0303 1.1877 1.1877 1.0167 
CEA in 103 ton/year 1.32010613 0.58565 0.58565 0.830810725 

𝑅𝑆𝐹 in % 48.039 38.526 38.526 43.25 

The blue circles represent the candidate solutions, while the green circle highlights a solution that is both 649 
reliable and ecological, with the values of 99.812% and 0.069025 × 103 ton/year, respectively, as outlined 650 
in Table 3. This is because the algorithms aim to maximize both IR and CO2RA. However, the cost is taken 651 
into account with a minimum economic LCOE of 0.042771$/kWh. Upon closer examination of Table 3, it 652 
becomes evident that the fuzzy logic approach yields the optimal solution among the economic, reliable, 653 
and ecological objective functions. This optimal solution achieves an IR of 99.705%, a LCOE of 0.046147 654 
$/kWh, and a CO2RA of 7.9142 ×103 ton/year. The associated decision variables are 𝑁𝑃𝑉= 5124, 𝑁𝑊𝑇=19, 655 
and  𝑁𝐻𝑡 = 8. 656 

7.2. Power computation analysis 657 

Once the objective functions, decision variables, energy values, and other system indicators are 658 
determined for each scenario outlined in section 7.1, an evaluation of the system's performance in the 3 rd 659 
scenario will be provided in this section. Fig. 14 illustrates how much renewable power could be generated 660 
monthly throughout 2022. It reveals the contributions from solar PV, wind, and hydro energy resources, 661 
showing their combined generated power. Each month is visible along the horizontal axis, with the amount 662 
of power generated in MW, shown on the vertical axis. This visualization helps us understand patterns in 663 
renewable energy production over the year, revealing any seasonal fluctuations and emphasizing the 664 
importance of each renewable energy source in sufficiently meeting the load demand. 665 

Solar PV is chosen from renewable resources to show the average monthly output power for the year 666 
2022, shown in Fig. 15. From the graph, it is evident that the highest PV output occurs between April and 667 
August, coinciding with periods of increased solar irradiance during these months. Conversely, the lowest 668 
average PV output power is observed in winter, corresponding to times when solar irradiance is 669 
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comparatively lower in Michigan. This highlights the influence of seasonal variations in solar irradiance 670 
on PV power generation throughout the year. 671 

 672 
Fig. 14. The monthly mean generated power by renewable energy resources of the 3rd scenario in MW. 673 

The average purchased and sold power from and to the grid and the pumping power to UCL for each 674 
month are depicted in Fig. 16. It presents the performance in the best case of the third scenario. The plot 675 
effectively visualizes the monthly trends in power generation, with distinct lines representing grid-676 
purchased power, grid-sold power, and pumping power. It is noticeable that grid-purchased power exhibits 677 
fluctuations throughout the year, with higher values observed after September till the end of the year, 678 
possibly indicative of increased energy demand during winter. On the other hand, the grid-sold power 679 
shows relatively consistent levels across the months because of the priority of the extra power being pumped 680 
to the UCL. Overall, the visualization offers valuable insights into the dynamics of power generation and 681 
consumption for the year, providing useful information for energy management and decision-making.  682 

 683 

 684 
Fig. 15. The monthly average solar PV output power for the best solution of the 3rd scenario in MW. 685 
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 686 
Fig. 16. Average generated power by grid and pumping power to UCL in each month  687 

for the best case of the 3rd scenario. 688 

Fig. 17 states the findings of the operational strategy simulation for the optimized 3rd scenario, focusing 689 
on a summer day, specifically July 1st, 2022. One notable observation is the absence of hydro pumping 690 
during nighttime hours, attributed to the lack of solar PV power availability. During the daytime, typically 691 
between 10:00 A.M. and 4:00 P.M., the solar and wind-generated power meets the load demand, with 692 
excess energy utilized for pumping water from the lower reservoir to the UCL. Additionally, it is 693 
highlighted that the energy balance equation is maintained in each scenario, as described previously in 694 
equation (29). Subsequently, around 2:00 P.M., the total load demand, sold, and pumping power comprises 695 
the energy supplied by both the PV system and the wind plant, with zero purchased power since the grid 696 
serves as a backup source in instances of renewable energy deficit. 697 

 698 
Fig. 17. Hourly power data for June, 1st 2022 for the optimal case of the 3rd scenario. 699 
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7.3. Comparative analysis of findings using MOFEPSOA 700 

In this section, a comparative analysis of the findings in Section 7.1 is carried out using MOFEPSOA to 701 
test the effectiveness of MOGWOA. By comparing the results obtained previously, the performance of 702 
MOGWOA can be assessed. The Pareto fronts of the 1st and 2nd scenarios are shown in Fig. 18. 703 

 704 
Fig. 18. Pareto fronts for the 1st and 2nd scenarios of the proposed system by MOFEPSOA. 705 

Table 4 displays the objective function values and decision variables for the 3rd scenario obtained using 706 
MOFEPSOA. The percentage difference between MOGWOA and MOFEPSOA is consistently below 7% 707 
for all values, particularly compared with the findings in the optimal solution of Table 3. Moreover, the 708 
triple Pareto front optimization curve produced by MOFEPSOA closely aligns with MOGWOA's results in 709 
Fig. 19, affirming the accuracy and effectiveness of the proposed methodology in simulating the system. 710 

Table 4. Comparative analysis for the 3rd Scenario using MOFEPSOA based on MOGWOA findings. 711 
 

        Quantity 
ROF (IR) vs. COF (LCOE) & EOF (CO2RA) 

Using MOFEPSOA Percentage 
difference for Best 

Solution from 
MOGWOA in % 

Economic Reliable 
& Ecological 

Best 
Solution 

Objective 
Functions 

IR in % 99.722 99.814 99.739 0.09 
LCOE in $/kWh 0.04745 0.069464 0.049348 6.704 

 CO2RA in 103 ton/year 7.9556 9.1243 8.0124 1.23 
Decision 
Variables 

𝑁𝑃𝑉  2117 10251 5029 1.8714 
𝑁𝑊𝑇 17 19 20 5.128 
𝑁𝐻𝑡 8 9 8 0 
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 Fig. 19. Triple Pareto Front For the 3rd Scenario of the proposed system using MOFEPSOA. 712 

8. Conclusions 713 

Recently, with growing electricity demand and increasing ecological concerns, the significance of 714 
RERs, including hydro storage systems, has become increasingly apparent. This has made a global shift 715 
towards cleaner and more sustainable energy alternatives to replace conventional fossil fuel infrastructure 716 
with clean, affordable, and reliable options. This has inspired this paper to investigate renewable energy 717 
resource concerns, painting the maximum reliability, maximum emission reduction, and minimum systems' 718 
lifetime cost. This paper examines the utilization of on-grid solar PV, wind farms, and PHESS to meet the 719 
energy needs of Crystal's Lake territory in Michigan as a case study. A realistic analysis was conducted 720 
using measured data for the system's design from the year 2022, including solar data, ambient temperature, 721 
wind velocity, hydrological information, and community-scale energy demand specific to the chosen 722 
location. The primary objective is to assess the potential of untapped sites for renewable energy generation, 723 
with Crystal's Lake identified as particularly promising due to its substantial storage capacity of about 724 
14.9734 GWh, despite being classified as a MHPP. Through the application of a MOGWOA, optimal 725 
sizing, and energy management strategies were formulated for various scenarios. Economic, environmental, 726 
and reliability criteria were utilized as the three objective functions, yielding promising outcomes, 727 
particularly in the third scenario where triple objective functions were considered. For each scenario, 728 
multiple solutions were identified, including economic, ecological, reliable, and a best-compromised 729 
solution achieved through a fuzzy logic approach. Notably, the third scenario yielded the lowest LCOE at 730 
0.046147 $/kWh, a strong index of reliability of 99.705%, and a significant reduction in CO2 emissions by 731 
7.9142 103 tons per year. This scenario also revealed the optimum number of solar panels was 5124, 19 732 
wind turbines, and 8 hydro-turbine generator sets. Furthermore, the renewable storage factor was 733 
determined to be 43.25%, indicating optimal utilization of available PHESS. Energy management analysis 734 
further validated the efficacy of the system. Subsequently, the findings were validated using a MOFEPSOA, 735 
ensuring accuracy with a percentage difference lower than 7% across all results. The approach described in 736 
this research offers valuable perspectives for comparable locations aiming to utilize renewable energy, 737 
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specifically from unused storage reservoirs. By optimizing the integration of RES, this research offers a 738 
roadmap for maximizing the utilization of clean energy sources and promoting a more sustainable future. 739 

Appendix A 740 

TABLE 5. Specifications of Renewable Components 741 
Component Parameters Value 

 
 
 
 

Solar PV Module 
(CanadianSolar CS6K-

290MS) 

Maximum power (𝑃𝑚𝑎𝑥) in Watt 290 
Module Efficiency STC in % 17.72 % 

Short circuit current (𝐼𝑠𝑐) in A 9.67 
Open circuit voltage (𝑉𝑜𝑐) in V 39.3 

Maximum power current (𝐼𝑀𝑃𝑃) in A 9.05 
Maximum power voltage (𝑉𝑀𝑃𝑃) in V 32.1 

Temperature coefficient of 𝑉𝑜𝑐  in %/℃ -0.3 
Temperature coefficient of 𝐼𝑠𝑐  in %/℃ 0.053 

NOCT (°𝐶) 45 
𝑇𝑀𝐷𝑆,𝑆𝑇𝐶  in ℃ 20 

𝐺𝑇𝐼𝑁𝑂𝐶𝑇  in Watt/m2 800 
Dimensions for Area (𝐿𝑚 ×𝑊𝑚) in m2 1.65×0.992 

 
 
 

Wind Turbine 
(Vestas V200-100 kW) 

 

Nominal Power 100 kW 
Frequency 50 Hz 
Diameter 20 m 

Swept Area 314.0 m2 
Hub height 40 m 

Cut-in Wind Speed (𝑣𝑐𝑖) 3.3 m/s 
Rated Wind Speed (𝑣𝑟) 13 m/s 

Cut-out Wind Speed (𝑣𝑐𝑜) 25 m/s 
 
 

Upper Crystal Lake 
Dimensions [26] 

 

Average Lake width (𝑊ഥ𝑈𝐶𝐿) 3.12 km 
Elevation 183 m 

Difference from Lake Michigan (𝐻𝑑𝑖𝑓𝑓) 0.8 km 
Average Lake length (𝐿̅𝑈𝐶𝐿) 12.87 km 

Average depth (𝐷ഥ𝑈𝐶𝐿) 21.55 m 

Appendix B 742 

TABLE 6. Financial data for LCOE computation 743 
Cost type PV array [60] Wind farm [60] PHS facility [61] Converter [61] 

CC ($/kW) 896 998 930 687 
OMC ($/kW.year) 15 20 15.52 687 

RC ($/kW) 896 998 930 0 
Lifetime (years) 25 20 25 15 

Grid costs 
𝐸𝑔𝑝 Cost ($/kWh) 0.37 
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𝐸𝑔𝑠𝑜𝑙𝑑 Cost ($/kWh) [62] 0.176 
Financial Parameters 

𝑖′ (%) 8 
𝑓𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 (%) 2 

Project lifetime (N) 
25 

Appendix C 744 

𝐷⃗⃗⃗ = |𝐶 .  𝑋⃗𝑝(𝑡)  − 𝑋⃗(𝑡)|                                          (43) 745 
𝑋⃗(𝑡 + 1) = 𝑋⃗𝑝(𝑡) − 𝐴 . 𝐷⃗⃗⃗                                         (44) 746 

𝐴 =  2𝑎⃗ . 𝑟1 − 𝑎⃗                                                (45) 747 
𝐶 =  2 . 𝑟2                                                      (46) 748 

𝐷⃗⃗⃗𝛼 = |𝐶1 .  𝑋⃗𝛼  −  𝑋⃗|                                              (47) 749 
𝐷⃗⃗⃗𝛽 = |𝐶2 .  𝑋⃗𝛽  −  𝑋⃗|                                              (48) 750 
𝐷⃗⃗⃗𝛿 = |𝐶3 .  𝑋⃗𝛿  −  𝑋⃗|                                              (49) 751 
𝑋⃗1 = 𝑋⃗𝛼  −  𝐴1 . (𝐷⃗⃗⃗𝛼)                                             (50) 752 
𝑋⃗2 = 𝑋⃗𝛽  −  𝐴2 . (𝐷⃗⃗⃗𝛽)                                             (51) 753 
𝑋⃗3 = 𝑋⃗𝛿  −  𝐴3 . (𝐷⃗⃗⃗𝛿)                                             (52) 754 

𝑋⃗(𝑡 + 1) =
𝑋⃗⃗1 + 𝑋⃗⃗2 + 𝑋⃗⃗3

3
                                             (53) 755 
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