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Abstract

6

7 This paper proposes a method of exploring existing geographic locations with untapped pump hydro storage potentials

8 for accommodating intermittent renewable energy generation profiles. Measured data in 2022 were gathered for sizing

9 system's components and thorough, realistic analysis. Employing a multi-objective grey wolf optimization algorithm,
10 we formulate optimal sizing and energy management strategies for different scenarios. The 1% scenario aims to
11 maximize the reliability objective function (ROF) index of reliability (IR) whilst minimizing the cost objective function
12 (COF) levelized cost of energy (LCOE). The 2"! scenario focuses on maximizing ecological objective function (EOF)
13 CO3 reduction amount (CO,RA) whilst minimizing COF, and the 3™ scenario is for maximizing both ROF and EOF
14 while minimizing COF. Considering economic, environmental, and reliability factors as the three objective functions
15 (OFs), has proven to yield promising results in the third scenario when including triple OFs with multiple solutions. A
16 case study is done for the region of Crystal Lake, Michigan. Findings reveal that, although Crystal's Lake would only
17 function as a micro-hydro power facility, it is a promising and huge storage unit with a substantial storage capacity of
18 around 14.9734GWh. These outcomes include a notably low LCOE at 0.046147$/kWh, a robust IR of 99.705%, and a
19 significant reduction in CO2 emissions amounting to 7.9142x10° ton/year, when considering the triple OFs. Validation
20 of the findings was conducted using multi-objective particle swarm optimization algorithms, affirming the robustness
21 of the proposed solutions. The paper's methodology provides valuable insights for regions aiming to utilize renewable
22 energy from untapped storage sources.
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26 Nomenclature

27 Abbreviations Meaning

28 DDM  Double Diode Model

29 DHI Direct Horizontal Irradiance
30 DNI Direct Normal Irradiance

31 EOF  Ecological Objective Function
32 ESS Energy Storage System

33 GHG  Greenhouse Gas Emissions

34 MHPP Micro-Hydropower Plant

35 MGA  Messy Genetic Algorithm

36 NSRDB National Solar Radiation Database
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PHESS Pumped Hydro Energy Storage System
PV Solar Photovoltaic

RES Renewable Energy Systems

RERs Renewable Energy Resources

ROF  Reliability Objective Function

UCL  Upper Crystal Lake

Symbol Name Unit

ACS  Annualized Cost of the System

CcC Capital Cost

CEA  Carbon-Dioxide Emission Amount
COE  Cost of Energy

COF  Cost Objective Function

CRF  Capital Recovery Factor

IR Index of Reliability

LCOE Levelized Cost of Energy

LOLP Loss of Load Probability

LPSP  Loss of Power Supply Probability

GTI Global Tilted Irradiance

NPC  Net Present Cost

P&L  Transmission and Distribution Line Losses Percentage
OMC  Operation and Maintenance Cost
QOW  Quantity of Water in m*

RC Replacement Cost

RSF Renewable Storage Factor

SC Salvage Cost

TCC  Total Current Cost

T,

mpy
Tymp  Ambient Temperature in °C

Solar PV Module Temperature in °C

NOCT Nominal Operating Cell Temperature in °C

Tvps stc Manufacturer Data Sheet Temperature at Standard Test Conditions in °C
v Hourly Measured Wind Speed in m/s

Vaaj Adjusted Wind Speed at Hub Height in m/s

Hp,, ~ Hub Heightin m

Hopeasurea HeElght at Wind Spead Measured in m

Ipp, Photon Current in Ampere

Pyt Power Extracted from Wind Turbine in MW

Nyt Number of Wind Turbines

P, Rated Power in MW
Vi Cut-in Speed in m/s
Voo Cut-out Speed in m/s
ap Pump Flow Rate in m%/s

q: Water Volumetric Flow Rate in m%/s
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E. Gravitational Potential Energy

Ngqy  The Duration of Autonomy days

Pyen Power Generated from Hybrid System in MW
Ppy,, Power Generated Inverted from PV System

P, Load Demand in MW

Pyppp,,;, Generated Power from MHPP Turbines in MW

Py Power Grid Purchased in MW

P.yvira Extra Generated Power from Hybrid System in MW
Pvupp,,, Power Stored in MHPP in MW

Posola  Power Sold to the Grid in MW

Greek Symbols

ay Wind Power Law Exponent

as Solar Altitude Angle in degree

Bs Solar Tilted Angle in degree

® Latitude Angle in degree

) Declination Angle in degree

0, Zenith Angle in degree

p water density (1000kg/m?)

Po Air density at sea level, and it is equal to 1.225 kg/m3
nr Efficiency of the hydro turbine (in %)

1. Introduction

Climate change, fossil fuel usage, and energy prices have constantly been top global topics. Based on the
current global climate change, energy utilization, and climate policies, it is estimated that the fossil fuel
share in global energy will drop from 80% to around 73% by the end of the year 2029 [1]. Hence, the
adoption of new sustainable energy technologies will ease the challenges related to energy shortages and
balance the energy transition domestically and internationally. As energy is crucial for our lives, in recent
decades, hybrid renewable energy systems (RESs) have appeared as a practical solution for supplying
electricity to several areas, including remote rural areas where expanding the grid is impractical and
extremely expensive [2]. A RES may include several sustainable resources, such as solar photovoltaic, wind
energy, micro-hydro, and biomass energy, which can work along with conventional backup generators. In
addition to generating clean electricity, large-scale solar, and wind power plants contribute to issues such
as environmental waste accumulation and electricity generation intermittence. Therefore, there is a constant
and urgent need for clean and dispatchable sources of energy production and storage. Among several RES
technologies, hydro power stands out as a promising economic and reliable choice. Indeed, building large-
scale hydropower facilities encounters challenges such as ecological impacts and high capital costs, which
make them less attractive. Moreover, large-scale, centralized hydropower resources have already been
extensively (if not fully) exploited in many countries and regions. Nevertheless, there still exist many
untapped pico- and micro-hydro power resources from relatively small rivers and lakes and hydro storages,
which show notable potential for long-term electricity generation and storage. For instance, Michigan, a
state with thousands of lakes [3], presents a substantial opportunity for micro-hydro projects, in addition to
its abundant rivers and high rainfall that serve those storage lakes.

The authors in [4] propose an effective methodology for optimal production benefits for hydropower
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systems, particularly for installing micro hydropower within water distribution networks. Their
methodologies were to investigate technical and economic studies to evaluate practicability and economic
feasibility, in terms of optimal sizing using an optimization algorithm. They applied the proposed algorithm
to a case study in Morocco's water supply network, including the design and installation of a micro-hydro
power plant (MHPP) and considering environmental aspects. Results indicate a substantial cost drop by
utilizing existing infrastructures, and an annual average emission reduction of 282 tons, which proves the
potential of integrating micro hydropower into water supply systems. They also found the proposed
installation is ecologically sustainable and will generate clean energy with an obtained power output of 69
kW. In [5], the researchers discussed an on-grid solar PV combined with MHPP in Unand, Indonesia. This
study aimed to find the optimal sizing of micro-hydro hybrid systems to enhance renewable power
generation. They implement their system using HOMER software to optimize the head height and flow rate
of the MHPP by minimizing the cost of energy (COE). The results showed that the head height was 30m
with a flow rate of 800L/s at the lowest value of COE of 0.065 $/kWh. Moreover, the optimal capacity
enhances renewable energy generation by a renewable fraction improvement from 26.4% to 36.5%.
Reference [6], discussed the availability of renewable energy resources (RERs) in Pakistan as a developing
country and how to effectively harness these resources for electricity generation. This is done by
introducing an MHPP situated at a specific canal in KPK, Pakistan. The modeling and optimization of the
project were implemented using RETScreen software and were thoroughly discussed. The authors compute
the net present value (NPV) and the COE using the RETScreen optimization assessment and validate the
feasibility of the MHPP. RET Screen simulated a micro-hydro system as a case study with a capacity of 107
kW over a 20-year lifespan. The suggested micro hydropower project is technically applicable and
economically viable, with a NPV of $139,280 and a COE of 0.049 $/kWh. The findings revealed that the
proposed project will recover all the spending by the 4th year of its planned duration. Notably, when
compared to the country's baseline energy mix, the proposed project is identified as clean energy with
greenhouse gas (GHG) emission free. To solve the issue of intermittency in RERs due to the natural
variations in power generation, which also follow daily and seasonal patterns, it becomes mandatory to
combine a complementary energy storage system in those hybrid RERs. A viable alternative for energy
storage in hybrid systems is a pumped hydro energy storage system (PHESS). The authors in [7], introduced
a technique to represent a PHESS by creating an equivalent battery in HOMER since HOMER didn't have
a PHESS component at that time, which was demonstrated through a detailed example. They designed
another example consisting of a wind-hydro hybrid power system to validate their methods. The results
confirm that the method outlined in their paper effectively represents PHESS for electric energy storage. In
order to address energy scarcity challenges such as limited resources which can lead to lower efficiency,
especially in sub-generation systems, the researchers in [8] present a design methodology utilizing a
customized messy evolutionary approach called the Messy Genetic Algorithm to determine the optimal
layout for MHPP. Their methodology considers multiple constraints associated with supply requirements,
maximum flow use, and the substantial feasibility of the plant based on the actual geographical profile. This
profile allows a continuous, variable-length Messy Genetic Algorithm (MGA) to optimize the layout, by
applying two scenarios: cost minimization as a single-objective in one case and minimization of both cost
and power supply as a multi-objective in the other case. The algorithm is implemented for a real remote
community system in Honduras. Results show that a significant cost reduction of around 56.96% occurred
compared to previous designs. On the other hand, considering other boundaries, the MGA was employed
to optimize the problem without handling the penstock diameter as a variable. They found that shorter
penstocks were created when considering fixed penstock diameter, reaching a 24.22% reduction in length
compared to the solution with the optimized diameter, but with significantly higher costs of 285% increase.
The PHESS boasts a global installed power capacity of 153GW [9]. This inspires the authors in [10], to
introduce a novel Mixed Integer Linear Programming model intended to optimize the operation of such



168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

5

storage plants by maximizing the system's profits. Their model can accommodate a larger number of
breakpoints, allowing for more practical solutions with the lowest computational effort. To validate the
effectiveness of their model, it was applied to two real plants in the Argentine Republic: the Rio Grande
and Los Reyunos power plants, with a combined installed power capacity of 975 MW. The results
demonstrate that the suggested model provided feasible solutions with an adequate level of accuracy, within
CPU times of less than one second. In [11], the researchers integrated two types of energy storage
specifically, MHPP and battery storage, into a small-scale RES. Their study implemented optimal design
for off-grid renewable-micro PHESS and battery storage systems in a remote area of Sweden. Their
objective was to estimate efficiency, cost, and storage duration. In addition to find the most suitable solution
by considering techno-economic performance indicators such as investment cost, life cycle cost, levelized
COE (LCOE), and loss of power supply probability (LPSP). The system was optimized using the modified
non-dominated sorting Genetic Algorithm. Results reveal that the hybrid PV-wind-battery storage system
is the best option in terms of economic benefits and reliability, as the demand is fully satisfied. They found
that 18.61% lower life cycle cost and a 6.12% lower oversupply compared to the hybrid PV-wind-micro
PHS system. Although this study compared two types of storage, they did not consider the impact of their
design on a large-scale hybrid RES. In [12], the authors provided a practical analysis and sizing of a solar
PV system linked with an existing dam as an upper reservoir of the PHESS in Jordan. They explored two
scenarios. In the first scenario, they included both RER losses: the losses due to solar PV diffusion and
recombination phenomena in the two-diode power model, and the effective head loss in the PHS plant. In
the second scenario, they did not consider these types of losses. The system was optimized using particle
swarm optimization to determine the optimal value of the index of reliability. They found that to fully cover
the load demand, the necessary number of PV panels and the volume of the lower reservoir were to be
44,063 panels and 69.348 Millon m3, in case no losses are considered, respectively. These values decrease
by 14.33% and 5.39% for the second case. Therefore, considering renewable component losses will result
in a higher but accurate sizing and prevent undersized design in the case of real system implementation.
The authors in [13], proposed a new approach for water and energy management within a wide water supply
system, aiming to reduce the costs of energy through the installation of PV plants. They integrate a PHESS
to address the intermittency of PV systems. This integrated strategy is applied as a case study to two distinct
pumping stations: the "Basso Flumendosa" and the "Monteleone-Roccadoria” pumping stations by
maximizing energy self-consumption. Various sizes of PV arrays and hydro turbines are examined to
evaluate the obtained self-sufficiency rate and cost performance. The impact of the pumping station's
availability for storage purposes was also assessed. The findings indicate that more than 65% of the self-
sufficiency rates are attainable only with the integration of the PHESS. A reduction in profitability is
observed if full self-sufficiency is achievable for both pumping stations. The researchers in [14], discussed
the design of different scenarios for microgrid hybrid RES. They optimized the system by considering
multiple objectives, including economic and environmental aspects, namely net percentage cost (NPC) and
the reduction of CO, emissions. To achieve this, a non-dominated sorting genetic algorithm was
implemented to design and optimize the proposed system. The results, when directed toward economic
objectives, show the achievement of the lowest energy cost across all scenarios with and without storage
units. In contrast, when the optimization technique was centred on environmental objectives, the outcomes
indicated a higher overall system cost compared to economic optimization across all scenarios. In [15], the
authors discussed a novel tool for creating a penstock layout of MHPP. This proposed procedure depended
on a detailed topographic survey of the terrain and used a Genetic Algorithm to optimize the layout of
installations. Their mechanism allows for clear integration of several constraints, such as power supply,
installation costs, available water flow, and layout feasibility by the actual terrain profile. The algorithm
operates in both single-objective mode, aiming to minimize costs, and multi-objective mode, which
considers both minimizing cost and maximizing power supply. The application of this algorithm to a real-
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life case in a distant community in Honduras, Central America, has yielded promising results in terms of
generation capacity and cost minimization.

After reviewing existing research and identifying gaps, this paper introduces a new approach: a hybrid
renewable energy system (RES) coupled with a utility-scale micro PHESS, as depicted in Fig. 1, to
demonstrate and model the proposed methodology. This system integrates solar PV arrays and wind plant
installations integrated with the Upper Crystal Lake (UCL) as PHESS. The motivation for this research
stems from the limited exploration of MHPP design on a large scale in previous studies, particularly in
hydro facilities categorized as MHPPs. Moreover, it aims to address the engineering challenge of
integrating hydro facilities with low head heights. Thus, the renewable energy strategy outlined in this paper
offers a long-term solution to effectively meet energy demands in Michigan and similar regions globally.
Additionally, a double-diode (DD) PV model was employed to ensure precise sizing of the proposed solar
system. The proposed mathematical modeling, methodology, optimization algorithm application, and
energy management flowchart presented in this paper apply globally to similar cases. In this paper, Crystal
Lake's geographical location is utilized as a case study to validate these aspects, employing the realistic
measured data for the chosen location in the year 2022, as detailed in Section 2. Multiple multi-objective
scenarios were investigated for two and three objectives simultaneously. These scenarios include
maximizing power system reliability and reducing CO; emissions while minimizing overall system costs.
Additionally, the triple Pareto front was simulated to provide a comprehensive view of the combined
objective functions for the system's methodology. It is important to note that each scenario yields several
solutions, including the best-compromised solution using a fuzzy logic approach. The performance of
various renewable energy scenarios is evaluated using a multi-objective approach that considers economic
feasibility, reliability, and environmental impacts. This assessment employs a recent multi-objective
metaheuristic optimization algorithm, namely the Multi-objective Grew-Wolf optimization algorithm
(MOGWOA), to determine optimal system sizing and performance indicators for each scenario, aiming for
cleaner energy production. Finally, a comparative analysis is utilized using a multi-objective feasibility-
enhanced particle swarm optimization algorithm (MOFEPSOA) to test the effectiveness of MOGWOA. In
other words, by comparing the findings obtained using MOFEPSOA, the performance of MOGWOA can
be estimated.

Power Exchange
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Wind Power PV Power

+ o o [ | l & d“\"-‘;:“{ LL:
EE l L I;.ﬁ' =

e ———

snjdang

Inverter

Demand Wind Farm —
PV System

PHS System

Fig. 1. Schematic diagram of the proposed solar PV and wind power plants combined with the MHPP.
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2. System’s Realistic Raw and the Corresponding Input Data

The realistic measured data is substantial to accurately design and simulate a real power system and
eventually obtain realistic results. This section shows the hourly realistic data for systems' components,
including the solar PV system, wind farm, MHPP, and utility-scale load demand for Crystal's Lake territory.
It also illustrates the acquired raw and adjusted data that are ready for implementation in the mathematical
formulation of the proposed system. Note that, those measured data, i.e., 8760 hours for the year 2022, are
obtained from formal US institutions and websites for the proposed geographical location, as explained
later in this section.

2.1 Solar PV System Data

The solar PV system data was collected from the National Solar Radiation Database (NSRDB) for the
Crystal Lake location [16]. Those data include the hourly measured direct normal irradiance (DNI), diffused
horizontal irradiance (DHI), and ambient temperature (T,). Fig. 2 depicts the hourly DNI and DHI in the
Crystal Lake terrain throughout 2022, covering a total of 8,760 hours. It can be noticed that the maximum
values of DNI and DHI are 1022W/m? and 550W/m?, respectively, whereas the average values are
171.76W/m? and 61.99W/m?.

Hourly Solar Irradiance Data, Crystal Lake Territory
Direct Normal Irradiation (DNI)
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Fig. 2. Hourly measured DNI and DHI values in Crystal Lake terrain in a year.

The data must be converted in the appropriate form in order to be implemented in the double-diode
solar PV module presented in section 3.1. Note that, GHI(t) is the total amount of horizontal solar radiation
falling on a surface. It is also used to calculate the solar radiation on a tilted surface. GHI resulted in Fig.
3, is mathematically computed based on the hourly raw data of DNI, DHI, and the acquired zenith angle
(6,(t)) using (1) [17].

GHI(t) = DHI(t) + DNI(t) X cos (6,(t)) €))
Now, the global tilted solar irradiance (GTI(t)) is ready to be computed and entered in the modeling of a
solar PV module, as will be explained later in section 3.1. Note that, GTI, shown in Fig. 3, is calculated at
each time step using (2) [18].

_ sin (as(t)+Bs)
GTI(t) = GHI(t) x = "2, Q)
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272 Where «a; is computed as in (4), and it depends on the latitude angle (¢) and the declination angle (8) as
273 in (3). B, is 37° for Crystal Lake territory [19]. ¢ is 44.668677° based on the selected site coordinates, and
274 n is the number of days within a year, ranging from 1 to 365. This iteration allows (8) to vary as a function
275 of the specific day of the year[20].

276 5(t) = 23.45° sin |22 (n + 284)] 3)
277 ag(t) = 90 — @ + 8(¢) o

Hourly Computed Global "Horizontal and Tilted" Irradiance Values
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278
279 Fig. 3. Hourly measured GHI and computed GTI solar values for Crystal Lake terrain in a year.
280 The module temperature (T, ,, (t)) are calculated as in (5) and (6). Ty (t) in (5) is the hourly air

281 ambient temperature obtained from NSRDB [16], and it is converted to Ty, ,,, (t) as illustrated in Fig. 4.

282 The selected solar PV is “CanadianSolar All-Black CS6K-290MS” with rated power of 290 Watt. The

283 complete required data and the value of NOCT, Typs stc and GT Iyocr are given in Appendix A.
_ (NOCT— TMDS,STC)XGTl(t)

284 Tonpy () = Tamp (£) + Tinoct

Hourly Measured Ambient Temperature and Computed Cell Temperature
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286 Fig. 4. Hourly measured ambient and computed module temperature values for Crystal Lake terrain.
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2.2 Wind Turbine Data

The hourly measured wind speeds v(t), shown in Fig. 5, are obtained from the Weather API [21]. v(t) are
fluctuating between 0.42m/s and 18.2 m/s. Before these data can be utilized in the mathematical formulation
of wind turbine output power discussed in section 3.2, it is required to calibrated this data according to the
hub height (Hp,;) as in (6) [22].
Hpy aw
Vaaj (0= v(£) x (—22—) ©6)

Hmeasured
The wind power law exponent, denoted by (a,,), relates the wind speed measured at the Hy,,;, of a wind

turbine (Vgq;) to the wind speed measured by an anemometer at Hp,eqsyreq, s €xpressed in Equation (6).
In addition, empirical studies suggest that a,, is equivalent to 1/7, typically provides the best fit for most
sites, see Appendix A. The average wind speed has increased from around 5.28 m/s to 8.11 m/s, as in Fig.
5, after considering the hub height for the proposed wind turbine.

Hourly Wind Speed Data and Adjusted Wind Speed at Hub-Height
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Fig. 5. Hourly measured and computed wind speed values for Crystal Lake terrain.

2.3 Hydropower Plant and Crystal Lake Data

Crystal’s Lake history is greatly constrained to several geological shifts in the past as it was initially
formed as part of glacial Lake Algonquin around 11,000 years ago [23]. It was found perched 11.5824 m
overhead of present-day Lake Michigan at an elevation of around 187.452 m after the glacier’s retreat,
presenting exposed terraces and flooded shoals along its shoreline [24]. In 1873, the lake witnessed a
considerable drop in its levels due to a critical storm that faded and swept away a temporary dam during an
attempt to build a canal to Lake Michigan. This event created new beach areas and set the stage for the
development of the surrounding region, including a network of roads and trails and the establishment of a
resort community. Over the years, the water levels fluctuated due to several issues, which resulted in a
subsequent drop of water and a net volume loss of approximately 1.93 million m?® with an about 6 m drop
in head height. However, in the late 18™ century, it rebounded again and reached a height of around 183 m,
the same as its current level. Hence, the lake’s area changed, creating beach zones and impacting its overall
features. Crystal Lake became one of the first in Michigan to set a "natural level" at 600.48 feet (183 m).
An automatic gauge installed in 2014 helps record lake levels, contributing to the moderation of seasonal
changes [25]. It is important to mention that the lake’s level plays a pivotal role in defining the water body.
The lake is primarily replenished by precipitation and groundwater; therefore, its water level remains
relatively independent of Lake Michigan.
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317 In this paper, UCL, depicted in Fig. 6, is designated as the upper reservoir for the MHPP, as illustrated
318 previously in the proposed system in Fig. 1. With a substantial water capacity of around 1.93 million cubic
319 meters, UCL inspires this study to investigate the potential of how lakes of this size function as efficient
320 energy storage systems (ESS). In addition to focusing on the capability of generating electricity within such
321 MHPPs, this research delves into the capacity of lakes like UCL to store energy effectively. Further details
322 regarding UCL can be found in Appendix A [26].

323
324 Fig. 6. Geographical representation of the UCL reservoir and the surrounding territory [26].
325 2.4 Load Demand Data

326 The load demand data, sourced from Utility API, represents measurements in megawatts (MW) supplying
327 a residential consumers in Benzie County, Michigan [27]. The observed load demand fluctuates within a
328 range spanning from 1.2552 MW to 2.2104 MW, as depicted in Fig. 7.

Hourly Measured Load Demand, Crystal Lake Territory
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330 Fig. 7. The hourly measured demand for a 22 kV sub-feeder.
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Notably, in Michigan, residential energy usage tends to spike during the winter months compared to the
summer. This trend is driven by the cold temperatures experienced during winters, prompting residents to
heavily utilize heating systems such as furnaces and boilers to maintain indoor warmth. The increased
demand for heating results in peak electricity usage in households during this season. On the other hand,
during the summer, although air conditioning usage may rise to beat the heat and humidity, overall
electricity demand from homes usually does not hit the same heights as in the winter. It can be noticed that
the monthly average demand is within a narrow range of around 1.7389MW during the year, as depicted in
Fig. 7.

3. Mathematical and Design Formulation

Mathematical modeling serves as the cornerstone and initial phase for precisely simulating and
optimizing the proposed system. Accurate modeling is crucial for determining the appropriate
configurations of the systems involved. For the renewable components, a quality factor-based model is
utilized for the solar PV array, while a cubic function is chosen to model the wind farm, accounting for
parameters such as the wind power coefficient and tip speed ratio. These models rely on input data presented
in Section 2. The energy management strategy, depicted in Fig. 8, guides the precise sizing and optimization
of the system using MOGWOA.

3.1 Modeling of Solar PV Output Power

In this paper, the double-diode model (DDM) will be utilized to simulate the solar PV module. DDM
is commonly used for representing the behaviour of solar PV modules. However, DDM has rarely been
implemented in utility applications because of its large computation time and its complexity. This is because
it considers all types of losses in the modeling of solar PV module. Nonetheless, DDM gives a more
accurate and realistic description of the electrical characteristics of a solar cell compared to other types of
solar models, i.e., the single-diode model or the ideal single diode model. Hence, implementing this DDM
leads to a true sizing of the PV array and hence, the size and cost of the entire system [28]. The first diode
(D1) represents the diffusion process whilst the second diode (D») simulates the recombination phenomena
[29]. In other words, D; reflects how minority carriers diffuse into the depletion layer, while D, mimics the
recombination within the junction's space charge region [30]. Therefore, the DDM takes into account solar
losses comprehensively, including diffusion, recombination, leakage to ground losses (Ry;), and series
losses (R;) as shown in Fig. 8.

 ——
1 +
o i I I R, :
\-)&\ I 4 D2y sh !
Q

=M\
I N7 R V1%
Ph D] D2 sh S

Fig. 8. Equivalent circuit of a two-diode PV module

The DDM gives a more precise and realistic output current from the cell compared with the simpler single-
diode model. This is due to considering the recombination process, i.e., D> current (Ip,) as depicted in
equation (7) [31]. Ip, , Ip, and Igpare computed as in (8), (9) and (10), respectively [32, 33].

I =1Ipp —Ipy —Ipy; — Isp 7
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(V+IR5>
Ipy =1, (e “Vr/ — 1) (®)
<V+IR5)
Ipy =1,, (e\@2V1/) -1 )
V+IRg
Isn = — (10)
sh

After substituting (8), (9), and (10) in (7), equation (11) is resulted. The photon current (Ip;,) as shown
in Fig. 8 and Equ. (11) affects by varying solar irradiance and temperature according to equation (12) [34].
The diode saturation currents I, and I,, depend on temperature and can be expressed as given in (13).
Where Ej in (13) represents the band gap energy of the semiconductor and I, sr¢ is the nominal saturation
current at (STC) and can be expressed by (14).

(V+1Rs) (V+IR5) VIR
I=1Ipp— I, <e a1 Vr _1)_102 <e az Vr _1)_ s )
Rsn
GTI CTI
Ion = [Ipvgre + Ki (T = Torc)] pr—— Lyygre (1 + ayge AT)E (12)
Tsrc)® aEg 1 1
Iy = I src (%) exp (a_lf (E - ;)) (13)
—_ fsesre
logre = exp(M>—1 (14)
“VTsrc

From the previous two equations (13) and (14), I, can be expressed as given in (15). As the diode
saturation current is very small, to simplify the model, the reverse saturation currents, I, and I,,, are set to
be equal as in (16) [31]. As a; and a, in equation (16) are the diode ideality factors that represent the
diffusion and recombination effects. Referring to Shockley’s diffusion theory, a; must be unity while the
value of @, is varying. If the value of a, is in the range of 1.2 < a, <2, the best match between the proposed
model and the practical I-V curve is obtained according to the simulation results. Hence, % =1 and

a,=1. It follows that the variable P can be chosen to be within 2.2 < P < 3. Hence, considering these
constraints, (16) becomes as in (17) [35].

I = ISCSTC+KI AT

e "

_ _ ISCSTC+KIAT
Io, = 1o, = —oeqr iRy aT (16)
lex (V'r(0l1+0l2)/1’)]_1
I +Kj AT
I, =1, = Sesre” ] =1, (17)

0 14 FKy AT
1 2 [exp( ocsTctiyv )]_1

vVr
3.2 Mathematical modeling of Wind Farm

The power extracted from wind turbines (Py,) can be expressed as in (18). Note that, it depends on local
wind speed (V(t)), the number of wind turbines (Nyr), and the parameters of the manufactured wind
turbine, such as the rated power in kW (B.), cut-in speed (V;) in m/s, and cut-out speed (V,) in m/s [36].

Nwr Pr(V(£)*~ V) ,
Py = ) Ve <V(O <V (18)
Nyr P Ve <V(E) <V
0 » V(6) > Ve

3.3 Mathematical Modeling of Micro-Hydro and PHESS
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MHPP can be in different types such as dam, run-off-river, and PHESS, or a combination of them. In this
study, the MHPP will be in the form of PHESS. The PHESS system operates as a giant battery to store
energy. They can store energy as a form of potential energy by pumping the water from the lower reservoir
(i.e., Lake Michigan) to the upper Crystals Lake (UCL) reservoir, shown in Fig. 6. This process is called
pumping mode. When the hybrid system comprised of solar PV and wind turbines cannot sufficiently meet
the load demand, the water is released from the UCL to the lower reservoir, in the process of generating
mode.

3.3.1.  Pumping (or Charging) Mode

The pump flow rate (g, (t)) from the lower reservoir to UCL is expressed as in Equation (19). It is the
relation of surplus or extra power from the hybrid system (Pyypp ., (£)) in kW, pump efficiency (7,), head
height (%) in m, water density (p) (1000kg/m?), and gravity acceleration (g) (9.8m/s?) [37].

np P ch(®)
Gp(t) = = e (19)

3.3.2.  Generating (or Discharging) Mode

The released power from the UCL is used to spin the turbine/generator set when the solar PV and wind
turbine renewable facilities cannot meet the load demand, and this power can be computed as in (20) [37].
Note that, 7, is the efficiency the turbine/generator set and q,(t) is the water volumetric flow rate in m3/s.
Puupp,, (8) = M X p X g X h X q.(8) (20)

3.3.3.  Upper Crystal Lake (UCL) Reservoir

The quantity of water (QOW) stored in the UCL at any time (¢) is expressed as in (21) [37]. The QOW in
the UCL is governed by the constraints as explained in (22), as the upper and lower safety limit. « is the
loss factor from evaporation and leakage to ground. In this paper, a will be considered zero due to the
massive volume of UCL.

QOWycL(t) = Q0WycL(t — 1)(1 — a) + q,(t) — q.(t) (21)

QOWyg g < QOWyp < QOWy,, (22)
3.3.4.  Storage Capacity

The UCL must have sufficient water stored to meet the power requirements of the demand during extended
power outages [38]. The water level (QOW) in the UCL essentially acts as the state of charge explained
before for the storage tank. The gravitational potential energy (E;) in kWh stored in the UCL can be
measured as in (23) [39], where V stands for the volume or storage capacity of the water reservoir in cubic

meters (m°).
g, =2 @)
Based on the planned capacity of the UCL, and the daily energy consumption by the load (E},44) in (kWh),
the duration of autonomy days (n44,) can be determined by assessing the potential energy stored in the
UCL. This calculation can be performed using the following formula (24) [34].
Mgy = —— (24)

ELoad
4. System’s Operational Flow Chart

Fig. 9 illustrates the operational flow chart and energy management system. This flow chart explains the
priority and the flow of energy within the system to meet the load demand. It begins with the power
generated by the solar PV and wind plants, followed by the MHPP, and is then sourced from the grid. It
also provides a general overview of the algorithm's functionality to optimally design the system.
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If the power generated from the hybrid system (P, (t)), as defined in (25), originating from both the
PV system (Ppy ., (t)) as in (26) and wind farm (Pyr(t)) as specified in (18), is insufficient to satisfy the
load demand (P, (t)) presented in section 2.4, the needed load will be covered by generating power during
discharging mode from the MHPP facility (Pypypp,; (t)). Hence, if Py, (t) and Pypypp,, (t) are still
inadequate to meet the load demand, the grid feeds the load demand (P,,(t)) as outlined in (27). On the
other hand, in the event of extra power generated from the hybrid system (P, (t)) as in (28), then this
power is stored in MHPP by pumping the water from the lower reservoir to the UCL (Pygpp,, (t)) if and
only if the QOW in the UCL is less than the QOW,, ., if not, the QOW is at the maximum limit, and the

extra power is sold to the grid (Pyso1q(t)) [11, 12].

Start
v

> Initial Guess of System
Configuration

From Grid (Equ.27){«¢

| Input Parameters and Measured Data |

(Sec 2.4)

emissions, UCL Parameters
(Sec 2.1-2.3, Appendix A)

K 2 X
System’s Components:
Hourly Load Profile PV Data, Wind Data, Cost, CO, Equality and Inequality

Constraints (Sec 4)

No

QOW > QOW,,;, >+
v

(Sec 3.2)

‘Wind Power Modelling | > < |

PV Power Modelling
(Sec 3.1)

<

Generated Hydro Power (Equ.1)
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To Grid
(Equ.28)

| Pumped Hydro Power (Equ.28) |

v LA 4 v

To Grid
(Equ.28)

Pumped Hydro Power (Equ.28)

A Y
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COF, (2) ROF, (3) EOF (Sec 5)
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v

End

Fig. 9. Energy management strategy and Operational flowchart.

The multi-objective function is assessed at each time step, as shown in Fig. 9. In the case that the
maximum power obtained from all renewables covers the load demand and increases, but the grid capacity
limit is reached, then the extra power will be directed to a dummy load. In scenarios where the power
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produced from all renewables and the grid purchased are insufficient to satisfy the load demand, then there
is a deficit power (Pgesici¢ (t)) as depicted in the balance power equation in (28) [11, 12].

Pyen(t) = Ppy,, (0 + Pyr(t) (25)
Ppy i, (©) = Niny X Ppy () X fpy (26)
ng(t) =P ®) - (Pgen(t) + PMHPPdis(t)) ’ lf Rgp @) < Rgp (t)max (27)

PMHPPCh(t) ) QOW < QOWmax
Poytra(t) = Pyen(t) — P, () = { Pysora®)  ,QOW = QOWpqy

Pyen(t) + Punpp,, (8) + Pyp(8) = PL(6) + Punpp, () + Pysora(£) + Paesicic (6)  (29)

5. System’s Multi-Objective Functions and Performance Evaluators

(28)

This section discusses the multi-objective functions that govern the performance of the system and other
performance indictors to be computed for each case scenario. In this paper, there are three multi-objective
scenarios, including economic aspects versus reliability in one case, ecological and cost impacts in the
second case scenario, and all objective functions in the 3™ scenario. The 1% multi-objective function
scenario will consider minimizing the levelized cost of energy (LCOE) and maximizing the index of
reliability (IR) using the Multi-Objective Grey Wolf Optimizer (MOGWO) algorithm to find the best
optimal solution. However, minimizing the LCOE and maximizing the carbon-dioxide reduction amounts
(CO,RA) will be taken into account for the 2™ case scenario. In the 3 scenario, IR and CO,RA will be
maximized, and LCOE will be minimized as a triple objective function.

The set of solutions in the optimized multi-objective function, namely Pareto front solutions, will
provide all types of solutions, including affordable, reliable, and ecological solution sets. For instance, if
the designer focuses on the system to be more economic, the set of solutions closer to the minimal cost
would be better regardless of the reliability and so on. Note that the optimal configuration of the system
depends on the multi-objective function or the best decision variables, including the number of PV panels
(Npy), the number of wind turbines (N,,;), and the number of hydro-turbine units (Ny;).

5.1. Cost Objective Function (COF)

The LCOE is a mathematical estimation process used in the energy business to calculate the average
cost of generating one unit of electricity during the system's lifetime. It considers several parameters,
including initial capital costs, operations and maintenance expenses, fuel costs, and the system's projected
lifespan energy production.

The COF of LCOE will be minimized, and it is considered as the 1% objective function. It is noted that
the computation of the LCOE involves dividing the Annualized Cost of the System (ACS) by the energy
supplied to meet the load demand (EL), as illustrated in equation (30). The ACS is derived by multiplying
the Total Current Cost (TCC) with the Capital Recovery Factor (CRF). TCC is computed by summing the
discounted values of various costs in the system, including Capital Cost (CC), Operation and Maintenance
Cost (OMC), Replacement Cost (RC), and Salvage Cost (SC). The CRF is determined by (31), while the
real interest rate (i) is found using (32) depending on i'representing the nominal interest rate and the
inflation rate (f;,f). Appendix B provides the cost values for each component, including their respective
lifetimes, along with the financial parameters required for constructing both nominal and discounted
cashflows [40].



487
488

489

490

491
492
493

494

495

496
497

498
499
500

501

502

503
504
505

506

507
508
509

16 Author name / Energy Conversion and Management 00 (2024) 000-000

LCOE = % (30)
_i@+dN
CRF = o ons 31)
P i’_finf
i= —1+finf 32)

5.2. Reliability Objective Function (ROF)

The Index of reliability (IR) refers to the system’s ability to satisfy the load demand, mentioned in
section 2.4, without any interruptions or deficit in energy. The 2" ROF is to be maximized and can be
computed as in (33) [41].

2EZ80PL(O~(PPV 13y (D +PWT (D) +PMHPP gis+Pgp(D)]
YE780PL(D)

IR=1-

(33)

5.3. Ecological Objective Function (EOF)

Carbon-Dioxide Reduction Amount (C 0, RA) stands for the reduction in harmful emissions achieved by
the utilization of renewable energy resources (E Rgen) rather than the conventional fossil fuels, as indicated
in equation (34) [42]. Fo,represents the carbon dioxide emission factor, and it is estimated to be 0.553

tCO2/MWh in the context of Michigan [43]. The 3™ EOF of CO,RA is maximized using MOGWO
algorithm as explained in sections 6 and 7.

CO;RA = Eg,,, X Fco, (34)
5.4. Complete constrained objective function formulation

The system optimization and sizing are determined by decision variables and a set of equality and
inequality constraints, as outlined in Equ. (35) [44]. These decision variables include the number of PV
panels (Npy ), the number of wind turbines (Ny,r) and the number of hydro-turbine units (Ny;).

COF: Min (LCOE = ?)

N

ROF: Max < R=1— z?l?"[PL(t)—(vam,,(t)+PWT(t)+PMprdis+ng(t))])

T3780PL(0)
EOF: Max (CO,RA = Eg,,, X Fco, )

(COF& and ROF) || (COF and EOF) || (COF &ROF & EOF)
NPV' NWT' NHt

Subject to (35)
Fop () < Py,

QOWmin < QOW(t) < QOWmax
Puyupp ., (1), QOW < QOW,p 0y
P, t) =P ,(t) = P.(t) = ch
extra( ) gen( ) L( ) {Pgsold(t) ,Q0W > QOW,,0y
Pyo(®) = P(t) = (Pren(t) + Pussipp s (8))

Pgen(t) + PMHPPdl-S (t) + Rgp (t) = PL (t) + PMHPpch(t) + Pgsold (t) + Pdeficit (t)

5.5. Other Performance Evaluators

This section shows other appropriate performance indicators to assess the behavior of the system at an
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optimal solution of each scenario. This includes estimating the Loss of Load Probability (LOLP), Carbon-
Dioxide Emissions Amount (CEA), and Renewable Storage Factor (RSF).

LOLP serves as a metric to assess the number of hours in a given year during which the system falls
short of meeting the load requirements, as indicated in equation (36). A lower LOLP value indicates a
higher level of reliability in the system. Essentially, LOLP delves into the hours when the system
experiences inadequacy in meeting the load demand or encounters a power deficit [45].

28760 h
t=1 Y PLO>Ppyipn, O+PWTO+PMHPPgistPgp(t)]

LOLP = v (36)

CEA is a measure of the greenhouse gas emissions (GHGEs), primarily CO,, released when relying on
the utility grid, as specified in equation (37) [42]. This quantity is related to the CO; emission factor (F¢o,),
mentioned before. Additionally, it factors in the losses percentage in transmission and distribution lines
(PL), with Michigan registering approximately 5% in this regard [46]. Notably, a lower CEA value signifies
a more efficient utilization of renewable energies, highlighting the environmental benefits associated with
reduced carbon emissions.

CEA = Egp xFco, (37)

1-PL

RSF gauges the extent to which the energy supplied by the UCL of the MHPP facility fulfills the overall
demand, as expressed in equation (38) [47]. Here, Egzyqqe represents the energy conveyed to the load by
PHS, while Egys¢em encompasses the energy output of the entire system, inclusive of MHPP.

E orage
RSF = YL -Storage (38)

ESystem
6. System’s Multi-Objective Optimization Algorithms

This research employs two multi-objective algorithms to simulate the proposed system. Initially, the
MOGWOA is adapted to model the system, incorporating various multi-objective scenarios. This involves
modifying the algorithm to minimize system costs while maximizing reliability and ecological
considerations. Subsequently, the MOFEPSOA is utilized to validate the results obtained from the
MOGWOA. It is important to note that each scenario yields multiple solutions, including reliable,
ecological, economic, and optimal compromise solutions, based on the preferences of the designers. The
optimal solution, balancing all objectives, is determined using a fuzzy logic approach, as detailed in section
7.

6.1. Multi-objective Grew-Wolf optimization algorithm (MOGWQOA)

Mirjalili and Lewis introduced the Grey Wolf Optimizer (GWO) algorithm, which was originally
inspired by the social leadership and hunting strategies of grey wolves. The MOGWOA incorporates a
fixed-size external archive into the GWO, which enables the storage and retrieval of Pareto optimal
solutions. This archive plays a crucial role in establishing a social hierarchy and emulating the hunting
behavior of grey wolves in multi-objective search environments. It is worth mentioning that the MOGWOA
algorithm was used to solve multi-objective optimization problems, as it is preferred in research for its
simplicity and ability to adaptively tune parameters. Many studies, as in [48-52], recommend MOGWOA
for tackling complex optimization challenges. Consequently, we employed MOGWOA in this article. For
instance, in [53], the primary aim of the proposed MOGWO was to optimize the switching matrix structure
to minimize row current differences and maximize output power. This method effectively addressed the
challenge of adjusting objective function weights to ensure system reliability and efficiency. The
comparison demonstrated MOGWO's superiority in handling multi-peak issues in P-V characteristics,
achieving the highest power levels.



18 Author name / Energy Conversion and Management 00 (2024) 000-000

551 When formulating the social hierarchy within the GWO, the most appropriate solution is designated as
552 the alpha (o) wolf. Subsequently, the second and third best solutions are identified as the beta (§) and delta
553 (0) wolves respectively as shown in Fig. 10. All other candidate solutions are classified as omega (®)
554 wolves. Within the GWO algorithm, the optimization process is directed by a, 8, and & wolves, while @
555 wolves follow their lead in the pursuit of the global optimum. Appendix C imitates the encircling behavior
556 equations observed in grey wolves during hunts [54]. It observed that ¢ denotes the present iteration, while

557 Aand C represent coefficient vectors. f(}, refers to the position vector of the prey and X signifies the

558 position vector of a grey wolf. The elements of the coefficient vector d linearly decrease from 2 to 0
559  throughout the iterations. Additionally, 7; and 7, denote random vectors within the range of [0,1] [55].
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Fig. 10. General operational flowchart of the proposed MOGWOA.
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The MOGWO algorithm uses simulated social leadership and encircling mechanisms to obtain the
optimal solution for optimization problems. This algorithm retains the initial three best solutions acquired
and directs other search agents, including omegas, to refresh their positions accordingly. The parameters a,
A, and C are important in guiding the exploration process of the algorithm, as shown in Appendix C and
Fig. 10. Both variables A and C are coefficient vectors, with a starting from 2 and linearly decreasing to 0
over the iterations. This decrease causes the algorithm to gradually shift its focus from exploration, which
involves a broad search of the solution space, to exploitation, which involves a more focused search in the
local area around the best solutions found so far. Finally, to simulate the hunting process and identify
promising areas within the search space, formulas in Appendix C are executed continually for each search
agent during optimization, as illustrated in Fig. 10 [54].

6.2. Multi-objective Feasibility Enhanced Particle Swarm Optimization Algorithm (MOFEPSOA)

MOFEPSOA, developed by Hasanoglu and Dolen, is a method designed for addressing multi-objective
problems with constraints. It deals exclusively with inequality constraints, requiring any equality
constraints to be converted into inequality constraints. The algorithm begins by initializing parameters and
assessing particle positions for feasibility. If a position is feasible, it updates velocities and flight behaviours
accordingly; otherwise, it adjusts them for infeasible positions. Subsequently, the algorithm rechecks the
particle's new position for feasibility [56]. In this paper, MOFEPSOA will compute the objective vectors
(LOCE, IR, and CO,RA) and include the current solution in the best set. It will update the best solution in
the objective vector if others do not dominate it. If the new particle position is not the best, it checks if it is
not the final particle. If there are remaining iterations, MOFEPSOA repeats the previous steps from
initialization. Finally, upon reaching the stopping criteria for the number of particles and iterations,
MOFEPSOA presents all feasible non-dominant trade-off solutions as the Pareto front. More detailed
explanations of the algorithm are presented in [57].

6.3. Employing Fuzzy Logic method for compromised Solution Identification

Many common approaches can find the best non-dominant solution, such as the fuzzy logic method. The
fuzzy logic method uses the fuzzy membership function y; (F;) to find the best non-dominant solution out
of all non-dominant solutions stored in the archive of the MOGWOA [58]. The fuzzy membership function
in (39) is used to convert each objective function (F;) to a membership value in range between (0, 1) [59].
Where F™™ and F/*** represent the minimum and maximum objective function values, respectively.
1,F;(x) < Fmin
0, F;(x) = Fme* (39)

Fmax_ Fi(x) .
14 L min max
Fmax_Fmin'Fi SFl(x) < Fi
i i

wi(F) =

As introduced before, this study will investigate three main scenarios. Therefore, a multi-objective
optimization is performed to find three corresponding best solutions which are the reliable and affordable.
Equation (40) is used to minimize LCOE (x) and maximize IR(x), whereas (41) is used to maximize
CO>RA(x) while minimizing LCOE (x) . Finally, (42) is used to minimize LCOE (x) and maximize
CO>RA(x) and IR (x) simultaneously.

.. . 1
Minimize Fy(x) = [LC OE (x), M] (40)
Minimize F,(x) = [cong(x) ,LCOE(x)] (41)
. . . p— 1 1
Minimize F3(x) = [LCOE(x), G COZRAGD ] (42)
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7. Results and Discussion

MATLAB R2022a is utilized to simulate the energy management system for the Crystal Lake territory
case study. The MOGWO algorithm is employed to execute the system based on the data collected for the
year 2022. The analysis includes three scenarios: the 1% scenario aims to maximize ROF (IR) whilst
minimizing COF (LCOE), the 2" scenario focuses on maximizing EOF (C0,RA) whilst minimizing COF,
and the 3™ scenario is for maximizing both ROF and EOF while minimizing COF. Accordingly, the
MOFEPSOA is utilized to validate the findings obtained from MOGWOA.

7.1. Optimization using MOGWO algorithm

This study employs the MOGWOA technique to tackle the optimization problem, utilizing the
mentioned decision variables of renewable components. For each scenario, a set of solutions is generated,
typically amounting to around 100 solutions for each Pareto front. From this set, four essential solutions
are selected and discussed, depending on the specific scenario. For instance, in the 1% scenario, the first
solution, termed the reliable solution, represents the highest IR value and the highest LCOE value. The
second solution known as the economic solution, exhibits the lowest IR value and the lowest LCOE value,
named. The third solution, referred to as the compromised solution, lies somewhere between reliable and
affordable solutions. The compromised solution is chosen based on its proximity to the origin, indicating
reliability and cost-effectiveness in one aspect, and affordability and ecological sustainability in another.
The Pareto frontier optimization for the 1% scenario is shown in Fig. 11.

Table 1 presents the optimization outcomes for the 15 scenario with three selected solutions, as observed
in Fig. 11, detailing the objective functions of LCOE, and IR, and the decision variables Npy, Ny, and
Ny . Notably, the optimal solution highlights the system's reliability, achieving an IR of 99.772%. However,
this reliability comes at a cost, with an LCOE of 0.0557088%/kWh. Economic insights reveal that the LCOE
stands at 0.04745$/kWh, with an associated IR of 99.722% for the economic solution. Subsequently, the
best solution is to install 4710 solar panels, 19 wind turbines, and 8 hydro-turbines. The chosen point aims
to minimize the system's LCOE, whilst maximizing systems reliability.

Pareto Front For the 1° Scenario of the Proposed System
COF(LCOE) vs. ROF(IR)
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Fig. 11. Pareto Front For the 1 Scenario of the proposed system by MOGWOA.
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Table 1. Optimization using MOGWOA for the 1% Scenario; COF (LCOE) vs. ROF (IR)

COF (LCOE) vs. ROF (IR)

Quantity Economic Reliable Best Solution
Objective Functions LCOE in $/kWh 0.04745 0.06589 0.055708
IR in % 99.722 99.802 99.772
Npy 2500 7878 4710
Decision Variables Nyr 17 20 19
Ny 7 9 8
Epy,, 1.224321 3.85808 2306623
o Eyr 4711992 5.54352 5.2663443
Energies in Enyaro,. .. 7.2039247 6.126815 6.70430538
GWh/year turbine
Egsoia 0.00318518 0.52458969 0.10043583
E, 15.2327969
Epurchased 2.43467 1.0199436 1.4114235
Eyupp gy, 0.096581824 0.8211559 0.3989326
LOLP in % 3.6 1.701 2.3973
Other Indicators ACS in Million $/year 1.04597354 1.0903 0.98936
CEA in 103 ton/year 1.27260922 0.61141779 0.84609526
RSF in % 47.292 40.221 44.012

Fig. 12 illustrates the Pareto frontier optimization for the 2™ scenario implemented using MOGWOA..
It aims to minimize COF (LCOE) and maximize EOF (CO,RA). This way, it could help decision makers
and design engineers who care more about environmental impacts to effectively recognize how integrating
renewables could mitigate GHG emissions while minimizing the system’s cost, as shown in Fig. 12.

Pareto Front of the 2nd Scenario For the Proposed System
COF(LCOE) vs. EOF(COZRA)
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Fig. 12. Pareto Front For the 2™ Scenario of the proposed system by MOGWOA.

Table 2 shows the objective functions, decision variables, energies, and other performance indicators
for the 2" scenario. Compared with the economic and ecological cases, it can be noticed that the optimal
solution achieved a compromised set of solutions, with 5639 solar panels, 19 wind turbines, and 8 hydro-
turbines. Additionally, the findings are close to those obtained using the 1% scenario, which proves the



638
639

640
641
642
643
644

645
646

22 Author name / Energy Conversion and Management 00 (2024) 000-000

effectiveness of the optimization algorithm and the proposed methodology.

Table 2. Optimization using MOGWOA for the 2" Scenario; COF (LCOE) vs. EOF (CO2RA)

COF (LCOE) vs. EOF (CO:RA)

Quantity Economical Ecological Best Solution
Objective LCOE in $/kWh 0.04911 0.066457 0.059181
Functions CO2RA in 10° ton/year 8.0056 8.7082 8.3008
Decision Npy 2964 8150 5639
Variables Nwr 18 20 19
Ny: 7 9 8
Epy i 1.4515561 3.991289 2.7615806
) Ewr 4.9891683 5.5435203 5.2663443
Energies Enyaro ) 6.9300397 6.085227 1.35779573
in GWh turbine
Egsota 0.01125435 0.5805854 0.17126333
E, 15.2327969
Epurchased 2.00571 1.01293624 1.35779573
Epipe 0.1965026 0.84950283 0.47434083
LOLP in % 3.3904 1.7009 2.2945
Other ACS in Million $/year 1.0482 1.1054 1.051
Indicators CEA in 10° ton/year 1.202346 0.6072172 0.81394744
RSF in % 45.494 39.948 42.352

In this paper, modified triple objective functions are employed to enhance the simulation and accuracy
of the proposed system. This approach is uncommon in similar studies as it incorporates three objective
functions (reliability, ecological, and economic) into a triple Pareto frontier analysis, as illustrated in Table
3 and Fig. 13. Existing research typically focuses on two objective functions, making this method distinct
in its comprehensive consideration of all three aspects simultaneously.

Triple Pareto Front For the 3 rd Scenario of the Proposed System
ROF(R) vs. COF(LCOE) & EOF(COZRA)
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0.04
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Fig. 13. Triple Pareto Front For the 3™ Scenario of the proposed system using MOGWOA.
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Table 3. Optimization using MOGWOA for the 3" Scenario: Triple Objective Functions
“ROF (IR) vs. COF (LCOE) & EOF (CO2RA)”

ROF (IR) vs. COF (LCOE) & EOF (CO,RA)

Quantity Economic Reliable Ecological  Best Solution
Objective IR in % 99.638 99.812 99.812 99.705
Functions LCOE in $/kWh 0.042771 0.069025 0.069025 0.046147
COzRA in 10 ton/year 7.7887 9.0393 9.0393 7.9142
Npy 2052 9823 9823 5124
Decision Ny 17 20 20 19
Variables Ny, 7 9 9 8
Storage Capacity in GWh 14.9734
Naay in days 8807
Epyin 1.00492347  4.81060586 4.81060586 2.50937
Eyr 4.71199224 5.54352 5.54352 5.2663443
) Epyaro ) 731769778  5.86857699 5.86857699 6.5881848
Energies turbine
in GWh Epurchased 220215013 0.9769594  0.9769594 1.3859264
Egsota 0.00141861  0.99834236 0.99834236 0.12942049
E;, 15.232796912
Eyupp oy, 0.076158288  0.99708479 0.99708479 0.42996824
LOLP in % 3.6872 1.6324 1.6324 2.3516
Other ACS in Million $/year 1.0303 1.1877 1.1877 1.0167
Indicators CEA in 10 ton/year 1.32010613 0.58565 0.58565 0.830810725
RSF in % 48.039 38.526 38.526 43.25

The blue circles represent the candidate solutions, while the green circle highlights a solution that is both
reliable and ecological, with the values of 99.812% and 0.069025 x 103 ton/year, respectively, as outlined
in Table 3. This is because the algorithms aim to maximize both IR and CO.RA. However, the cost is taken
into account with a minimum economic LCOE of 0.042771$/kWh. Upon closer examination of Table 3, it
becomes evident that the fuzzy logic approach yields the optimal solution among the economic, reliable,
and ecological objective functions. This optimal solution achieves an IR of 99.705%, a LCOE of 0.046147
$/kWh, and a CO2RA of 7.9142 103 ton/year. The associated decision variables are Np,= 5124, Ny,r=19,
and Ny, = 8.

7.2. Power computation analysis

Once the objective functions, decision variables, energy values, and other system indicators are
determined for each scenario outlined in section 7.1, an evaluation of the system's performance in the 3™
scenario will be provided in this section. Fig. 14 illustrates how much renewable power could be generated
monthly throughout 2022. It reveals the contributions from solar PV, wind, and hydro energy resources,
showing their combined generated power. Each month is visible along the horizontal axis, with the amount
of power generated in MW, shown on the vertical axis. This visualization helps us understand patterns in
renewable energy production over the year, revealing any seasonal fluctuations and emphasizing the
importance of each renewable energy source in sufficiently meeting the load demand.

Solar PV is chosen from renewable resources to show the average monthly output power for the year
2022, shown in Fig. 15. From the graph, it is evident that the highest PV output occurs between April and
August, coinciding with periods of increased solar irradiance during these months. Conversely, the lowest
average PV output power is observed in winter, corresponding to times when solar irradiance is



24 Author name / Energy Conversion and Management 00 (2024) 000-000

670 comparatively lower in Michigan. This highlights the influence of seasonal variations in solar irradiance
671 on PV power generation throughout the year.

; iI3V|onthly Mean Generated Power by Renewable Energy Resources in 2022
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673 Fig. 14. The monthly mean generated power by renewable energy resources of the 3™ scenario in MW.
674 The average purchased and sold power from and to the grid and the pumping power to UCL for each

675 month are depicted in Fig. 16. It presents the performance in the best case of the third scenario. The plot
676 effectively visualizes the monthly trends in power generation, with distinct lines representing grid-
677 purchased power, grid-sold power, and pumping power. It is noticeable that grid-purchased power exhibits
678 fluctuations throughout the year, with higher values observed after September till the end of the year,
679 possibly indicative of increased energy demand during winter. On the other hand, the grid-sold power
680 shows relatively consistent levels across the months because of the priority of the extra power being pumped
681 to the UCL. Overall, the visualization offers valuable insights into the dynamics of power generation and

682  consumption for the year, providing useful information for energy management and decision-making.
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685 Fig. 15. The monthly average solar PV output power for the best solution of the 3" scenario in MW.
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Mean Generated Power By Grid and Pumping Power to UCL
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Fig. 16. Average generated power by grid and pumping power to UCL in each month
for the best case of the 3" scenario.

Fig. 17 states the findings of the operational strategy simulation for the optimized 3™ scenario, focusing
on a summer day, specifically July 1%, 2022. One notable observation is the absence of hydro pumping
during nighttime hours, attributed to the lack of solar PV power availability. During the daytime, typically
between 10:00 A.M. and 4:00 P.M., the solar and wind-generated power meets the load demand, with
excess energy utilized for pumping water from the lower reservoir to the UCL. Additionally, it is
highlighted that the energy balance equation is maintained in each scenario, as described previously in
equation (29). Subsequently, around 2:00 P.M., the total load demand, sold, and pumping power comprises
the energy supplied by both the PV system and the wind plant, with zero purchased power since the grid
serves as a backup source in instances of renewable energy deficit.

Hourly Power Data for the First Day of June
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Fig. 17. Hourly power data for June, 1% 2022 for the optimal case of the 3™ scenario.
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7.3. Comparative analysis of findings using MOFEPSOA

In this section, a comparative analysis of the findings in Section 7.1 is carried out using MOFEPSOA to
test the effectiveness of MOGWOA. By comparing the results obtained previously, the performance of
MOGWOA can be assessed. The Pareto fronts of the 1% and 2" scenarios are shown in Fig. 18.

Pareto Front For the 1°' Scenario of the Proposed System
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Fig. 18. Pareto fronts for the 1% and 2" scenarios of the proposed system by MOFEPSOA.

Table 4 displays the objective function values and decision variables for the 3™ scenario obtained using
MOFEPSOA. The percentage difference between MOGWOA and MOFEPSOA is consistently below 7%
for all values, particularly compared with the findings in the optimal solution of Table 3. Moreover, the
triple Pareto front optimization curve produced by MOFEPSOA closely aligns with MOGWOA's results in
Fig. 19, affirming the accuracy and effectiveness of the proposed methodology in simulating the system.

Table 4. Comparative analysis for the 3 Scenario using MOFEPSOA based on MOGWOA findings.
ROF (IR) vs. COF (LCOE) & EOF (CO2RA)

Quantity Using MOFEPSOA Percentage
. Reliable Best dlfferen.ce for Best
Economic & Ecolosical Solution Solution from
& MOGWOA in %
Objective IR in % 99.722 99.814 99.739 0.09
Functions LCOE in $/kWh 0.04745 0.069464 0.049348 6.704
CORA in 103 ton/year 7.9556 9.1243 8.0124 1.23
Decision Npy 2117 10251 5029 1.8714
Variables Ny 17 19 20 5.128
Ny 8 9 8 0
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Triple Pareto Front For the 3 rd Scenario By MOPSOA
ROF(IR) vs. COF(LCOE) & EOF(COZRA)
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Fig. 19. Triple Pareto Front For the 3™ Scenario of the proposed system using MOFEPSOA.

8. Conclusions

Recently, with growing electricity demand and increasing ecological concerns, the significance of
RERs, including hydro storage systems, has become increasingly apparent. This has made a global shift
towards cleaner and more sustainable energy alternatives to replace conventional fossil fuel infrastructure
with clean, affordable, and reliable options. This has inspired this paper to investigate renewable energy
resource concerns, painting the maximum reliability, maximum emission reduction, and minimum systems'
lifetime cost. This paper examines the utilization of on-grid solar PV, wind farms, and PHESS to meet the
energy needs of Crystal's Lake territory in Michigan as a case study. A realistic analysis was conducted
using measured data for the system's design from the year 2022, including solar data, ambient temperature,
wind velocity, hydrological information, and community-scale energy demand specific to the chosen
location. The primary objective is to assess the potential of untapped sites for renewable energy generation,
with Crystal's Lake identified as particularly promising due to its substantial storage capacity of about
14.9734 GWh, despite being classified as a MHPP. Through the application of a MOGWOA, optimal
sizing, and energy management strategies were formulated for various scenarios. Economic, environmental,
and reliability criteria were utilized as the three objective functions, yielding promising outcomes,
particularly in the third scenario where triple objective functions were considered. For each scenario,
multiple solutions were identified, including economic, ecological, reliable, and a best-compromised
solution achieved through a fuzzy logic approach. Notably, the third scenario yielded the lowest LCOE at
0.046147 $/kWh, a strong index of reliability of 99.705%, and a significant reduction in CO, emissions by
7.9142 10° tons per year. This scenario also revealed the optimum number of solar panels was 5124, 19
wind turbines, and 8 hydro-turbine generator sets. Furthermore, the renewable storage factor was
determined to be 43.25%, indicating optimal utilization of available PHESS. Energy management analysis
further validated the efficacy of the system. Subsequently, the findings were validated usinga MOFEPSOA,
ensuring accuracy with a percentage difference lower than 7% across all results. The approach described in
this research offers valuable perspectives for comparable locations aiming to utilize renewable energy,
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738 specifically from unused storage reservoirs. By optimizing the integration of RES, this research offers a
739 roadmap for maximizing the utilization of clean energy sources and promoting a more sustainable future.

740 Appendix A

741 TABLE 5. Specifications of Renewable Components
Component Parameters Value
Maximum power (Ppqy) in Watt 290
Module Efficiency STC in % 17.72 %
Short circuit current (Iy.) in A 9.67
Solar PV Module Open circuit voltage (V,.) in V 39.3
(CanadianSolar CS6K- Maximum power current (Iypp) in A 9.05
290MS) Maximum power voltage (Vypp) in V 32.1
Temperature coefficient of V, in %/°C -0.3
Temperature coefficient of I;. in %/°C 0.053
NOCT (°C) 45
Twps,src in °C 20
GTIyocr in Watt/m? 800
Dimensions for Area (L, X W,,,) in m’ 1.65%0.992
Nominal Power 100 kW
Frequency 50 Hz
. . Diameter 20m
Wind Turbine 3
(Vestas V200-100 kW) Swept Area 314.0m
Hub height 40 m
Cut-in Wind Speed (v.;) 3.3 mss
Rated Wind Speed (v,.) 13 m/s
Cut-out Wind Speed (v,,) 25 m/s
Average Lake width (Wy,) 3.12 km
Elevation 183 m
Ug?geggsﬁzl[gglfe Difference from Lake Michig_an (Hairr) 0.8 km
Average Lake length (Lycp) 12.87 km
Average depth (Dyc;) 21.55m
742 Appendix B
743 TABLE 6. Financial data for LCOE computation
Cost type PV array [60] | Wind farm [60] | PHS facility [61] | Converter [61]
CC ($/kW) 896 998 930 687
OMC ($/kW.year) 15 20 15.52 687
RC ($/kW) 896 998 930 0
Lifetime (years) 25 20 25 15
Grid costs

Egp Cost ($/kWh) | 0.37
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Egso1a Cost ($/kWh) [62] | 0.176
Financial Parameters
i' (%) 8
finfiation (%) 2
Project lifetime (N)
25
Appendix C
D=I|C. %,®) - X (43)
Xt+1)=X,)— A.D (44)
A=2d.#—d (45)
C=2.% (46)
Bll:'_)l')?a_)? 47)
Dp=1C,. X5 — X| (48)
Ds =|Cs. X5 — X| (49)
X, =X, — 4 .(D) (50)
X, =X; — A, .(Dp) (51)
X =Xs — A;.(Ds) (52)
X(t+1) =220 (53)
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