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Abstract—This paper investigates the problem of robust PID
control for nonlinear power systems with uncertainties. In this
paper, we analyze the challenges posed by nonlinearities and
uncertainties in power systems, as well as the limitations of
traditional linearization methods. On this basis, a PID control
design method is proposed, which utilizes only the Lipschitz
constant information of the nonlinear uncertainties to achieve
global stability control for the power systems. The paper pro-
vides a rigorous mathematical foundation to demonstrate the
effectiveness and robustness of the controller. Finally, simulation
studies are conducted to validate and evaluate the performance
of the proposed model, algorithm, and controller design.

Index Terms—Modern power system, PID control, parameter
design, convergence, robustness.

I. INTRODUCTION

As an indispensable infrastructure, modern power systems
(MPSs) provide essential support for economic development
and everyday activities [1], [2]. With the continuous growth
of society’s demand for energy and the rapid development
of technology, the complexity and scale of power systems
are correspondingly increasing. As distributed energy systems,
microgrids can be interconnected with the power grid or
operate independently. Microgrids integrate various energy
sources, including wind power [3], solar power [4], and battery
storage systems [5], and are equipped with flexible load control
technologies. Through this configuration, microgrids not only
enhance the reliability and resilience of local energy supplies
but also optimize energy usage efficiency, reduce dependence
on long-distance transmission, and contribute to the flexibility
and sustainability of power systems.

In power systems, controlling and maintaining system sta-
bility are of paramount importance. Effective control not
only enhances the reliability, resilience, and performance of
MPS but also ensures continuous power supply and protects
the integrity of critical infrastructure. However, power sys-
tems, being practical systems, exhibit nonlinear and uncertain
characteristics due to the nonlinear properties of equipment,
load fluctuations, external noise, and other factors [6]–[8].
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These characteristics make the power system a complex and
uncertain network, complicating the study of control problems
[9], [10]. Furthermore, the validation of controller effective-
ness often relies on experimental evidence, lacking rigorous
theoretical foundations.

The conventional approach in existing literature for dealing
with nonlinear systems typically linearizes nonlinear dynamic
systems around nominal operating points [11], [12]. However,
this approach has several limitations. For instance, lineariza-
tion typically occurs near the operating point, and accuracy
decreases as the system operates further from these points.
Simplifying nonlinear behavior may fail to accurately describe
the system’s dynamic characteristics, leading to and even
invalid control strategies. Additionally, linearized models are
effective only within a limited range; significant changes in
operating conditions can render the linearized model invalid,
resulting in suboptimal control performance. Furthermore,
important nonlinear characteristics of power systems are often
overlooked during linearization, which may lead to insufficient
system responses in practical applications. Nonlinear systems
usually exhibit complex dynamic responses that linear models
cannot capture, potentially causing unexpected behavior in
real-world applications. Lastly, linearized control systems tend
to have poor robustness when facing model uncertainties and
external disturbances, making them susceptible to performance
degradation due to changes in system parameters and external
perturbations.

Therefore, designing robust controllers to deal with nonlin-
ear uncertainties in power systems and rigorously ensuring
the effectiveness and robustness of the controllers from a
mathematical theory perspective is the starting point and the
motivation of our research. Due to the simplicity and ease
of implementation of PID control, it has been widely used
in engineering applications [13]. Additionally, PID has the
capability to handle nonlinear uncertainties [14]. Therefore,
this paper employs PID control to address the control problems
of nonlinear power systems with uncertainties.

The main contributions of this paper are as follows:
1) It investigates the PID control problem for nonlinear

uncertain power systems.
2) It proposes a parameter design method for PID con-

trollers that only utilizes the nonlinear Lipschitz constant
information, enabling the design of PID controllers
that achieve global stability and control objectives for
uncertain nonlinear power systems.

3) It provides a rigorous mathematical theoretical founda-
tion for the effectiveness and robustness of the proposed



controller.
4) It validates and evaluates the robustness of the proposed

model, controller design, convergence characteristics,
and algorithms through simulation studies.

The rest of this paper is organized as follows. Section II
introduces the notations of this paper. Section III presents
the nonlinear state space model of power systems. Section IV
discusses the robust PID control for nonlinear uncertain sys-
tems. Section V presents performance evaluation case studies.
Finally, we conclude the paper with some remarks in Section
VI.

II. NOTATIONS

Denote R as (−∞,∞). Denote Rn as the n-dimensional
Euclidean space, Rm×n as the space of m× n real matrices.
Denote In as the identity matrix of dimension n × n. For
a vector x ∈ Rn, its Euclidean norm is denoted by ∥x∥.
For a matrix M ∈ Rm×n, its norm is denoted by ∥M∥ =
supx∈Rn,∥x∥=1 ∥Mx∥, and its transpose is denoted by M ′.
Let Ck(Rn,Rm) be the space of functions from Rn to Rm

with k-times continuous partial derivatives.

III. NONLINEAR DYNAMIC MODELS OF POWER SYSTEMS
WITH MICROGRIDS

Microgrids are localized grids that can disconnect from the
traditional grid to operate autonomously, enhancing reliability
and resilience. They incorporate various sources of power
generation and storage, including traditional generators, wind
turbines, solar panels, battery storage systems, and controllable
loads. The integration of these diverse power sources and
storage systems allows microgrids to operate flexibly and
efficiently, providing reliable power even in the event of
disturbances or disconnections from the main grid.

In [15], [16], buses are divided into two types: dynamic bus
and non-dynamic bus. For dynamic Bus i, denote zdi as the
local state variable, z−i as the neighboring variables, vdi as the
local control input, and ℓdi as the local load. Then, dynamic
Bus i is characterized by the state model,

żdi = fi(z
d
i , z

−
i , vdi , ℓ

d
i ). (1)

For non-dynamic Bus j, denote zndj as the local system
variable, z−j as the neighboring variables, vndj as the local
control input, and ℓndj as the local load. Then, the non-dynamic
Bus j is in a steady state or pseudo-steady state that is
characterized by an implicit algebraic relationship,

0 = gj(z
nd
j , z−j , vndj , ℓndj ). (2)

Denote zd, vd, and ℓd as the state variables, control vari-
ables, and loads of dynamic buses, respectively. Denote znd,
vnd, and ℓnd as the system variables, control variables, and
loads of non-dynamic buses, respectively. From (2) for all non-
dynamic buses, the equation has a unique solution such that

znd = H(zd, vnd, ℓnd). (3)

Then, by using (1) and substituting (3), we obtain the dynamic
system

żd = F 0(zd, vd, vnd, ℓd, ℓnd). (4)

The control objective of the power system is to control
the system state to the nominal operating point, that is,
the equilibrium point. Given the steady-state loads ℓ̄d, ℓ̄nd,
and inputs v̄d, v̄nd, the steady-state z̄d (which represents
the equilibrium point or the nominal operating condition) is
determined as the solution to F 0(z̄d, v̄d, v̄nd, ℓ̄d, ℓ̄nd) = 0.
Denote the perturbation variables from the nominal operating
point as x = zd − z̄d, u = vd − v̄d, un = vnd − v̄nd, ζ =
ℓd − ℓ̄d, ζn = ℓnd − ℓ̄nd, by (4), the dynamics can be written
as the following nonlinear dynamic system,

ẋ = F (x, u, un, ζ, ζn). (5)

The nonlinear state equation (1) is general in representing
a bus system’ dynamic. For instance, it can represent a swing
equation that is a common dynamic model for synchronous
generators,

Miω̇i + hi(ωi) = P in
i − PL

i − P out
i , (6)

where δi is the electric angle, ωi = δ̇i. Mi is the equivalent
electric-side inertia. hi(·) is the damping effect, which is
usually taken as its approximate value near the equilibrium
point, denoted as hi(·) = biωi with bi > 0. P out

i represents the
total transmitted power from Bus i to its neighboring buses.
P in
i represents the equivalent electric-side real power input

that is considered as the local control input. PL
i represents

the local real power load on Bus i that is considered as a
disturbance.

For both dynamic and non-dynamic buses, the interaction
between local variables and neighboring buses follows stan-
dard power flow relationships. For an AC power microgrid,
voltages and currents will be represented by their phasors
V⃗ = V ∠δ and I⃗ = I∠γ. Consider the transmission line
between Bus i and Bus j with impedance Zij∠θij . The current
through the line is

Iij∠γ =
Vi∠δi−Vj∠δj

Zij∠θij
=

Vi

Zij
∠(δi−θij)−

Vj

Zij
∠(δj−θij).

Denote δij = δi − δj . The complex power flow from Bus i to
Bus j at Bus i is

Sij = Vi∠δi × Iij∠(−γ) =
V 2
i

Zij
∠θij −

ViVj

Zij
∠(θij + δij),

indicating that the transmitted real and reactive powers at Bus
i are

Pij=
V 2
i

Zij
cos(θij)−

ViVj

Zij
cos(θij+δij),

Qij=
V 2
i

Zij
sin(θij)−

ViVj

Zij
sin(θij+δij).

Then, P out
i =

∑
j∈Ni

Pij .
We now illustrate the general dynamic modeling approach

discussed in this section with a case study.



Fig. 1. Two-Bus system

Example 3.1: Consider the two-Bus system shown in Fig.
1, with dynamic equation (6). Suppose both Bus 1 and Bus 2
are dynamic dispatchable buses, and the transmission line is
lossless, namely the angle of impedance θ12 = 90o. Suppose
hi(ω1) = biωi, bi > 0, i = 1, 2. Denote β = V1V2/Z12. Then,
the system has dynamics

δ̇1 = ω1,

ω̇1 = − b1ω1

M1
+ 1

M1
(−β sin(δ1 − δ2) + P in

1 − PL
1 ),

δ̇2 = ω2,

ω̇2 = − b2ω2

M2
+ 1

M2
(β sin(δ1 − δ2) + P in

2 − PL
2 ).

In order to derive the dynamic equation (5), we given vd1 =
P in
1 , vd2 = P in

2 , ℓd1 = PL
1 , ℓd2 = PL

2 , and the equilibrium point
is ω̄1 = 0, ω̄2 = 0, and δ̄ = δ̄1 − δ̄2 = sin−1

(
P in

1 −PL
1

β

)
.

Denote states x =

[
x1

x2

]
, x1 =

[
x11

x12

]
=

[
δ1 − δ̄1
δ2 − δ̄2

]
, x2 =[

x21

x22

]
=

[
ω1 − ω̄1

ω2 − ω̄2

]
, and control u =

[
P in
1 − P̄ in

1

P in
2 − P̄ in

2

]
. Then,

the system dynamics can be rewritten as

ẋ1 = x2,

ẋ2 =

[
− b1

M1
x21 − β

M1
sin(x11 − x12 + δ̄)

− b2
M2

x22 +
β

M2
sin(x11 − x12 + δ̄)

]

+

[
1

M1
0

0 1
M2

]
u+

[
1

M1
(P̄ in

1 − PL
1 )

1
M2

(P̄ in
2 − PL

2 )

]
.

The equilibrium point of the above system is 0.

IV. ROBUST PID CONTROL OF NONLINEAR UNCERTAIN
SYSTEMS

Linearization near the nominal operating point is a common
method to solve the control problem of the nonlinear power
system. Although linearization facilitates simplified analysis
and control design, it also brings some problems.

Firstly, it reduces accuracy as linearization is typically valid
only near specific operating points, failing to accurately model
system behavior across broader operational ranges. Secondly,
linearized models have limited applicability, as they may
not adequately represent the nonlinear dynamics of power
grid components under varying conditions. Additionally, lin-
earization may overlook critical nonlinear effects, which are
crucial in realistic system responses. This approach also lacks
robustness compared to nonlinear control methods, making it
more susceptible to disturbances and uncertainties in practical
applications.

Therefore, in order to avoid the problems of accuracy,
applicability and robustness may caused by linearization, this
paper designs a PID controller for the nonlinear power system,
which has a simple structure, is easy to implement, and
provides a theoretical foundation for its reliability.

In this section, we describe PID controller design proce-
dures. Some methods recently introduced in [14] are utilized.

Consider the PID-controlled system{
ẋ1 = x2,

ẋ2 = f(x1, x2, u),
(7)

u(t) = ki

∫ t

0

e(s)ds+ kpe(t) + kdė(t), (8)

where x1, x2 ∈ Rn are the system states, u ∈ Rn is the
PID controller with the control error e(t) = x∗ − x1(t)
and the control target x∗, and f(·) ∈ C2(R3n,Rn) is an
unknown nonlinear function. PID parameters kp, ki, kd are
positive constants that should be designed.
f(·) is an uncertain function. We introduce the following as-

sumption to quantitatively measure the size of the uncertainty
and to develop a rigorous mathematical framework.

Assumption 4.1: The nonlinear function f(·) satisfies the
Lipschitz condition

|f(x, u)− f(y, u)| ≤ L|x− y|, ∀x, y ∈ R2n, u ∈ Rn,

where L is a known positive constant. f(·) has continuous
partial differential w.r.t u, and satisfies

∂f(x, u)

∂u
≥ bIn > 0, ∀x ∈ R2n, u ∈ Rn,

where b is a known positive constant.
We will show that the PID parameters can be designed based

on the Lipschitz constant of the uncertain nonlinear function
f(·), such that the overall system can be stabilized globally
and achieves the control objective.

Theorem 4.1: Consider the uncertain PID controlled system
(7) and (8) with the unknown nonlinear function f(·) satisfying
Assumption 4.1. Suppose that the positive PID parameters
kp, ki, kd are taken from the following set

Ω =
{
(kp, ki, kd)

∣∣ k2p − 2kikd > 2L(kp + kd)/b,

k2d − kp/b > 2L(kp + kd)/b
}
.

Then, for any initial states (x1(0), x2(0)) ∈ R2n, the closed-
loop system will achieve

∥x1(t)− x∗∥2 → 0, ∥x2(t)∥2 → 0, as t → ∞,

exponentially.
The above theorem is a special case of Theorem 1 in [14]

under the deterministic case. We briefly outline the proof here.
Proof: Firstly, denote y = [y′0, y

′
1, y

′
2]

′,

y0(t) =

∫ t

0

(
x1(s)− x∗)ds+ k−1

i u∗,

y1(t) = x1(t)− x∗, y2(t) = x2(t),

ŷ(t) = kiy0(t) + kpy1(t) + kdy2(t),



where u∗ is the unique solution of f(x∗, 0, u∗) = 0. Then, we
can rewrite the PID control (8) as

u(t) = −ŷ(t) + u∗.

The closed-loop system (7) and (8) turns into
ẏ0 = y1,

ẏ1 = y2,

ẏ2 = f(y1 + x∗, y2,−ŷ + u∗).

(9)

Secondly, define the matrix

P =
1

2

2bkikp 2bkikd ki
2bkikd 2bkpkd − ki kp
ki kp kd

 .

From Lemma 3 in [14], P is positive definite if (kp, ki, kd) ∈
Ω.

Next, we consider the Lyapunov candidate V = y′Py,
which can be verified to be positive definite. Then, calculating
V̇ along (9), and using the conditions in Assumption 4.1, from
Theorem 1 in [14], it can be verified that there exists some
positive constant λ such that V̇ ≤ −λV. Therefore, we obtain
that ∥y(t)∥2 → 0 as t → ∞. Hence, the theorem is proved.

□
The following corollary provides a straightforward method

for parameter selection, and shows that Ω is a nonempty
unbounded open set.

Corollary 4.1: For any given ki > 0, as long as kp = kd ≥
2ki + (4L+ 1)/b, then (ki, kp, kd) ∈ Ω.

Remark 4.1: Theorem 4.1 demonstrates that PID control
has large-scale robustness against system nonlinear uncertain-
ties and the selection of PID gains. This contributes to the
widespread applicability of PID control. On the one hand,
we do not need to know the specific parameter values of the
unknown nonlinear dynamics of the power system, nor do we
need to utilize its specific structural equations; we only need to
use its Lipschitz constant. On the other hand, PID parameters
can be selected arbitrarily within an unbounded open set.

Remark 4.2: From Theorem 4.1, we know that if the
nonlinear dynamics (5) of the bus system satisfy Assumption
4.1, then we can design a PID controller to achieve stability
and achieve the control objectives. In fact, in the frequency
regulation, the dynamic system of a synchronous machine is
described by the swing equation (6). As shown in the previous
section, it can be verified that its nonlinear dynamics are
Lipschitz continuous. Therefore, we can use a PID controller
to regulate this nonlinear system, and theoretically ensure that
it achieves the desired regulation objective.

V. CASE STUDY

In this section, we consider the two-Bus system in Example
3.1. We assume the loads are fixed, namely, PL

1 = ℓ̄d1, P
L
2 =

ℓ̄d2. Then, the system can be written as

ẋ1 = x2,

ẋ2 =

[
− b1

M1
x21 − β

M1
sin(x11 − x12 + δ̄)

− b2
M2

x22 +
β

M2
sin(x11 − x12 + δ̄)

]

+

[
1

M1
0

0 1
M2

]
u+

[
1

M1
(P̄ in

1 − ℓ̄d1)
1

M2
(P̄ in

2 − ℓ̄d2)

]
,

where P̄ in
1 , P̄ in

2 , ℓ̄d1, ℓ̄
d
2 are given, (M1,M2, b1, b2, β, δ̄) are

unknown system parameter set and δ̄ = sin−1
(

P̄ in
1 −ℓ̄d1
β

)
. The

control objective is to control the electric angle δ1 and δ2 to the

normal point, i.e, the system state x1 =

[
x11

x12

]
=

[
δ1 − δ̄1
δ2 − δ̄2

]
to zero (i.e., equilibrium point). We use PID controller

u(t) = −ki

∫ t

0

e(s)ds− kpe(t)− kdė(t),

where e(t) = −x1(t).
Assume P̄ in

1 = 100, P̄ in
2 = 50, ℓ̄d1 = 70, ℓ̄d2 =

80. We take 3 different systems with parameter set
(M1,M2, b1, b2, β, δ̄) as (1, 1.5, 0.2, 0.3, 50, 0.6435) for sys-
tem 1, (1.5, 1.5, 0.25, 0.2, 80, 0.3844) for system 2, and
(1.5, 2, 0.3, 0.25, 100, 0.3047) for system 3. The initial
states for system 1 is [0.6, 0.4, 0.5, 0.2]′, for system 2 is
[0.4, 0.3, 0.1, 0.5]′, for system 3 is [0.5, 0.6, 0.2, 0.7]′, are also
randomly taken. It can be verified that all the system parameter
sets satisfy Assumption 4.1 with L = 119, b = 0.45. By
calculating

∂f

∂x1
=

[
− β

M1
cos(x11 − x12 + δ̄) β

M1
cos(x11 − x12 + δ̄)

β
M2

cos(x11 − x12 + δ̄) − β
M2

cos(x11 − x12 + δ̄)

]

=β cos(x11 − x12 + δ̄)

[
− 1

M1

1
M1

1
M2

− 1
M2

]
,

∂f

∂x2
=

[
− b1

M1
0

0 − b2
M2

]
,

∂f

∂u
=

[ 1
M1

0

0 1
M2

]
.

Then,

∥ ∂f

∂[x′
1, x

′
2]
∥ ≤ ∥ ∂f

∂x1
∥+ ∥ ∂f

∂x2
∥

≤max{β∥
[
− 1

M1

1
M1

1
M2

− 1
M2

]
∥+ ∥

[
− b1

M1
0

0 − b2
M2

]
∥}

=max{85.1837, 106.8333, 118.0511}
=118.0511 < L,

and

min{ 1

M1
,

1

M2
} = 0.5 > b.

Note that when designing the PID control parameters, we only
need to use the values of L and b, rather than knowing the
specific values of the system parameter set. The values of
L and b can be obtained by using the range of the system
parameter sets.



According to Theorem 4.1 and Corollary 4.1, we take PID
parameters (kp, ki, kd) = (1062, 1, 1062) in Ω. Then, Figs. 2-
4 shows the trajectories of x11, x12 in three different systems,
which shows that the designed PID controller can achieve the
control objective in all systems. Therefore, the result illustrates
the robustness and control capabilities of PID.
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Fig. 2. Trajectories of x11, x12 in system 1
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Fig. 3. Trajectories of x11, x12 in system 2
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Fig. 4. Trajectories of x11, x12 in system 3

VI. CONCLUSIONS

This paper proposes an effective control strategy for
robust PID control in nonlinear uncertain power systems.
Different from traditional linearization methods, this approach
only utilizes the Lipschitz constant to design controllers

without linearization, ensuring global stability and robustness
of the system. Through rigorous mathematical analysis
and simulation studies, the effectiveness of this method in
power grid environments is validated. This research not
only provides new theoretical and methodological support
for power system control but also ensures system stability
and reliability in practical applications. Future research can
further optimize control algorithms, improve system response
speed, and enhance disturbance rejection capabilities.
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