Characteristic polynomials of sparse non-Hermitian random
matrices

levgenii Afanasiev* Tatyana Shcherbina '

Abstract

We consider the asymptotic local behavior of the second correlation functions of the
characteristic polynomials of sparse non-Hermitian random matrices X,, whose entries
have the form i, = djiw;, with iid complex standard Gaussian w;;, and normalised iid
Bernoulli(p) di. It is shown that, as p — oo, the local asymptotic behavior of the second
correlation function of characteristic polynomials near zy € C coincides with those for
Ginibre ensemble: it converges to a determinant with Ginibre kernel in the bulk |zo| < 1,
and it is factorized if |zo| > 1. For the finite p > 0, the behavior is different and exhibits
the transition between different regimes depending on values p and |zo|?.

1 Introduction

Introduce n x n non-Hermitian random matrices
Xn = (%) =15 (1.1)
whose entries can be written in the form
Tjk = djpwji
with i.i.d. complex random variables w;; such that
E{wjr} =E{w}} =0, E{jwy’} =1, (1.2)
and normalized i.i.d. Bernoulli(p), 0 < p < n, indicators d;; independent of {w;;}, i.e.

d = 1), W?th probab?l?ty e, ) (1.3)
VP | 0, with probability 1 — 2.

We will refer to this ensemble as to sparse non-Hermitian random matrices. Parameter p
can be fixed or may depend on n. Clearly, this ensemble interpolates between non-Hermitian
random matrices with iid entries for p = n and very sparse matrices (which have, on average,
p non-zero entries in a row) for a fixed p.

The limiting empirical spectral distributions for such matrices with p growing together
with n was excessively studied in the mathematical literature (see, e.g., [28], [14], [30], [7] and
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references therein) with an optimal result obtained by Rudelson and Tikhomirov in [21]: as
soon as p — oo together with n, the empirical spectral distribution of sparse non-Hermitian
random matrices converges weakly in probability to the circular law, i.e. to the uniform
distribution on a unit disk. The existence of the limiting empirical spectral distributions for
finite p > 0 (in this case it is not a circular law anymore) was obtained very recently in [22].

The local eigenvalue statistics of (1.1) is much less studied. For a non-Hermitian matrices
with iid random entries (i.e. p = n case) the local eigenvalue statistics in the bulk and at
the edge of the spectrum coincide with those of the Ginibre ensemble, i.e. matrices with iid
Gaussian entries. This is known as the universality of non-Hermitian random matrices (see
[29], [LLL[17], [20], [12], [1] and references therein). For the sparse case, the universality at
the edge of the spectrum for n® < p < % was obtained recently in [15]. The bulk universality
with p < n is still an open question.

In this paper we are going to study the local behavior of correlation functions of charac-
teristic polynomials. For the non-Hermitian random matrices it can be defined as

k
fulzty . 2p) = E{ [ det(X, — =) det(X,, — zs)*}. (1.4)
s=1

We are interested in the asymptotic behavior of fy for matrices (1.1) as n — oo and
z=20+ S5 § =12 (1.5)

Characteristic polynomials are the objects of independent interest because of their connec-
tions to the number theory, quantum chaos, integrable systems, combinatorics, representation
theory and others. In additional, although fj is not a local object in terms of eigenvalue statis-
tics, it is also expected to be universal in some sense. In particular, it was proved in [2] (see
also [0] for the Gaussian (Ginibre) case) that for non-Hermitian random matrices H with iid
complex entries with mean zero, variance one, and 2k finite moments for any z; = 20+¢;/v/n,
j=1,.,kand |z| <1 we get

K2—k f det(K (G, ¢))k
lim (215 2k) A (K (¢ C;g)) J (16)
n—00 I, (%) |A(Q)]
where
K(wl,U)Q) — e—‘w1|2/2—‘w2|2/2+w1ﬁ)2’ (17)
A(¢) is a Vandermonde determinant of (p,...,(x, and Cj is constant depending only on

the fourth cumulant x4 = E[|H11[*] — 2 of the elements distribution, but not on the higher
moments. In particular, this means that the local limiting behavior (1.6) of non-Hermitian
matrices with iid entries coincides with those for the Ginibre ensemble as soon as the elements
distribution has four Gaussian moments, i.e. the local behavior of the correlation functions
of characteristic polynomials also exhibits a certain form of universality. Similar results were
obtained for many classical Hermitian random matrix ensembles (see, e.g., [9], [10], [27],]24],
[25L,[1]; [26]; etc.)

Notice that the local asymptotic behavior of characteristic polynomials of the sparse Her-
mitian random matrices was obtained in [!]. In particular, it was shown that while for p — oo
the behavior coincides with that for Gaussian Unitary Ensemble (GUE), i.e. Hermitian ma-
trices with iid (up to the symmetry) Gaussian entries. For the finite p the local asymptotic
behavior of the second correlation function of characteristic polynomials of sparse Hermitian
random matrices demonstrates the transition: when p < 2 the second correlation function of



|z0]?

>

Figure 1: phase diagram of the three different types of behavior of f,

characteristic polynomials factorizes in the limit n — oo, while for p > 2 there appears an in-
terval (A_(p), A+ (p)) such that inside (A_(p), A+(p)) the second correlation function behaves
like that for GUE, while outside the interval the second correlation function is still factorized.

The goal of the current paper is to establish similar result for the sparse non-Hermitian
matrices (1.1). Define

b=,/ 2rp) (1.8)
with p of (1.3). Notice that if p is finite, then

= g n~t n 00
b—\/;+0( ), — 00, (1.9)

and
b=0@p %), n— oo, (1.10)
if p — oo but p < (1 —¢)n for some € > 0.

The main result of the paper is the following theorem:

Theorem 1. Let X,, be the sparse non-Hermitian complex random matrices (1.1) with the
standard complex Gaussian wji, and finite fized p > 0. Then for the second correlation function
of characteristic polynomials fo of (1.4) with z1,z2 from (1.5) we have

(i) if (b,]20|?) € 1, then

fa(21,22) — oY (R(E0(1—(2)))? det(K (vBG, ﬁCj))ﬁjzl, (1.11)

i
nohoe Via(z1, 21)fa (22, 22) BIAQ))

where K is defined in (1.7) and 5 € [0,1] is a solution (the largest one, if several) to
the equation

pB—p+2=plzol* (1 - 5)*2—plzol* (1 - B)),



and v > 0 is a certain constant depending on p and |zo|* (see (3.71)).
(i) if (b, |20|%) € Qa, then

lim fa(z1, 22) _ o p(R(E0(G1—C2))? (1.12)
n—00 \ /fy(21, 21)fa (22, 22)

(iii) if (b, |20]?) € Q3, then
y fa(z1, 22) B
1m —
n—00 \ /fy(21, 21)f2 (22, 22)

The domains §;, 1 = 1,2,3 are shown in Figure 1. Here vy is the curve

b2 —bv2 — b2
2 )

(1.13)

bell,V2],

|z0f* =

and 72, 3 are certain explicit curves that will be defined later (see Lemma 4 and Lemma 7).
Remark 1. The asymptotic behavior of the second correlation function is given by
(i) for (b, |Z0’2) e

det {eﬁgﬁc—k }2
jk=1

BIAQ)I

fo(21, 22) = C(C1, (2)n” exp {Cin + Co(C1, (2)v/n } (1+0(1)), (1.14)

(ii) for (b,]z0]?) € Q2

4 2
fole1, 20) = O mexp {n (—1 I R b2) vl e + @))}

b? b? (1.15)
< exp { £ [20R(0(C1 +2))” = RE(CE + )] | (1+0(1),
(iii) for (b, |20|%) € Q3
fa(en20) = e {mtog ol + 2R+ )}
(1 B W) (1 B W) (1.16)

< exp {—14%@8«% " c%))} ,

|20

where C, O, Cy, C'T will be defined later (see (3.73), (3.74), (3.75), (3.78)).

In the case p — oo we can also get

Theorem 2. Let X,, be the sparse non-Hermitian complex random matrices (1.1) with the
standard complex Gaussian wji and p — oo but p < (1 —e)n for some € > 0. Then the
limiting behavior of second correlation function of characteristic polynomials fa of (1.4) with
21, 22 from (1.5) coincides with those for Ginibre ensemble (1.6) in the bulk, i.e. if |z < 1.
If |z0] > 1, then (1.13) holds.



In order to prove Theorems 1-2 we are going to apply the supersymmetry techniques
(SUSY). SUSY techniques is based on the representation of the determinant as an integral
(formal) over the Grassmann variables, which allows to obtain the integral representation for
the main spectral characteristics of random matrices (such as density of states, correlation
functions, characteristic polynomial, etc.) as an integral containing both complex and Grass-
mann (anticommuting) variables. Although at a heuristic level SUSY was actively used in
theoretical physics literature (see e.g. reviews [13], [19]) for several decades, the rigorous anal-
ysis of such integrals poses a very serious challenge. However, the method was successfully
applied to the rigorous study of local regime of some random matrix ensembles, including
the most successful applications to the Gaussian Hermitian random band matrices (see [23]
and reference therein). The asymptotic behavior of characteristic polynomials is known to be
especially convenient for the SUSY approach and were successfully studied by the techniques
for many Hermitian (see, e.g., [9], [10], [24], [25],[1], [20] etc.) and some non-Hermitian (see,
e.g., [5], [2], [3]) ensembles.

The paper organized as follows. In Section 2 we give the brief outline of SUSY techniques
and obtain the SUSY integral representation of fy of (1.4). Section 3 is devoted to the proof of
Theorem 1 by performing the saddle-point analysis of the obtained representation: in Section
3.1 we determine the main saddle-points that can give the leading contribution to the integral;
in Section 3.2 we determine the domain of domination of each of the obtained saddle-point;
finally, the contribution of each of the saddle-points is computed in Section 3.3.

2 Integral representation for f,

In this section we obtain a convenient integral representation for the correlation function of
characteristic polynomials fa defined by (1.4).

Proposition 1. Let X,, be defined by (1.1) and (1.2). Then the second correlation function
of the characteristic polynomials fa defined by (1.4) can be represented in the following form

5 .
fo(21, 22) = (ﬁ) /e"f(Q’”)dev dv, (2.1)

™

where Q) is a complex 2 X 2 matriz, v € C,

2
dQ = ] dQjk dQx;

g.k=1
and
F(Q,v) = —trQ*Q — [vf® +log h(Q, v); (2.2)
hQ,v) = det A + bvdet Q* + bi det Q + b? |v|*; (2.3)
- - ( —Z Q [z O
a-a@-(220 %) 2=(3 2 (2.4)

with b of (1.8).

2.1 Proof of Proposition 1

To derive the integral representation of fo we will use the SUSY. For the reader convenience,
we start with a very brief outline of the basic formulas of SUSY techniques we need. More
detailed information about the techniques and its applications to random matrix theory can
be found, e.g., in [13] or [19].



2.2 SUSY techniques: basic formulas

Let us consider two sets of formal variables {1;}7_;, {v; }7—1, which satisfy the anticommu-
tation relations

Note that this definition implies wjz = @5 = 0. These two sets of variables {wj}?zl and
{Jj };‘:1 generate the Grassmann algebra 2. Taking into account that %2 = 0, we have that
all elements of 2 are polynomials of {1); ;‘:1 and {@j}?zl of degree at most one in each

variable. We can also define functions of the Grassmann variables. Let x be an element of 2,
ie. . B - o
X=a+ Y (a;+ b)) + Y (ajthitbr + bjtbyp + cinthjthy) + .. (2.6)
j=1 i#k
For any sufficiently smooth function f we define by f(x) the element of 2 obtained by sub-
stituting x — a in the Taylor series of f at the point a:

f"(a)

o (x—a)*+...

fx)=a+ f'(a)(x —a) +

Since x is a polynomial of {¢;}_;, {@j}?:l of the form (2.6), according to (2.5) there exists
such [ that (x — a)! = 0, and hence the series terminates after a finite number of terms and

so f(x) e 2.
Following Berezin [3], we define the operation of integration with respect to the anticom-

muting variables in a formal way:

/dwj Z/dwj:O, /wjd% :/qud@wj =1

and then extend the definition to the general element of 2 by the linearity. A multiple
integral is defined to be a repeated integral. Assume also that the “differentials” d; and
d v, anticommute with each other and with the variables ¢; and 1. Thus, according to the
definition, if

k
Py k) =po+ D Pt + Y PiniaCinin + o PLo k1 Uk,

Ji=1 J1<g2
then
/ FWn, o )k . At = Pra, i

The key formulas we need in this subsection are the well-known complex Gaussian inte-
gration formula for a complex n-dimensional vector ¢

/exp {—t*Bt — t*hy — hit} dt*dt = m"det ' Bexp{hiB 'hs}, (2.7)
Cn

valid for any positive definite matrix B and its analog for Grassmann n-dimensional vector T
(see [13], Ch 2.4):

/exp {—7TAT — vy — v T} drTdr = det Bexp{v] B vy} (2.8)

6



valid for an arbitrary complex matrix B. Here and below 71 = (71,...,7,).
We will need also the following Hubbard-Stratonovich transformation formulas which ba-
sically is an employment of (2.7) in the reverse direction:

e® = g1 /e““+b“_uuda du. (2.9)
C

Here a,b can be complex numbers or sums of the products of even numbers of Grassmann
variables (i.e. commuting elements of Grassmann algebra).

2.3 Integral representation

Rewrite the expression (1.4) for fa using (2.8)

fa(z1, z2) —E{/exp{ —iqu (X — Ze "0, }d@d@}

where ¢;, 0;, j = 1,2 are n-dimensional vectors with components ¢; and 0y, respectively, ©
and ® are n x 2 matrices composed of columns 81,02 and ¢1, ¢2, and

2 2
d® = [[ do}d¢;, do =[] do; de;.
j=1 j=1
Denoting ¢r = (¢r1, dr2)t, Ok = (011, 0k2)t we can rewrite the previous formula as

fg(zl,ZQ) =E { /exp { ZQO}:ZQDk + Zﬂ;Z*f}k

k=1 k=1

+ Z (<I><I)+)lk$k;l + Z (@@+)klfkl}dq)d@}, (2.10)

k=1 k=1

where Z is defined in (2.4) and ©F, ®* are 2 x n matrices composed of rows 67,05 and

o7, ¢ respectively.
Let us introduce a notation

P (t1, tz) =K {etlxll‘*‘tﬂn} )

Then the expectation in (2.10) can be written in the following form

fa(z1, 22) / H ¥ (@011, (00T )11)

k=1
X exp { or Z, + Z 19+Z*19k}d<1>d@
k=1
:/exp{ Pr Zcpk+219;2*19k
k=1 k=1

+ > log ) (22 )ik, (OO )) }d@d@.
kl=1



Expansion of log ® into series gives us

fa(z1,22) = /exp { ZgoZ'Zgok + Zﬂzz*ﬂk

k=1 k=1
n 2
K
+> ) f;, ((@0%))" (©01))" }d@d@, (2.11)
k,l=1p,s= 0
with
orts
Kps = ——— lo ,
P = Gogaeg, 08V (W1 92) R
Using (1.1)—(1.3), one can compute
k0,0 = 0;
k1,0 = Fo,1 = E{w11} = 0;
Koo =Foz = B{z},} — E*{zn} = 0;
) (2.12)
K11 = E{|$11| }— ’E{xll}‘
2(n —p)

B 1 _ 9 g2 2y _
ko2 = E{|z1|"} {lz1a]7} on?

Let us transform the terms in the exponent again. Denote
To1 =A{1,2}, oo ={{1,2}} (2.13)

For non-zero terms with p = s =1 or p = s = 2 one can write

> ((@01))" ((061)0)°
ki=1

-y (st) (Som) -3 5 Mo o

k=1 kl=1a€ls, q=1
BGIQS

*pls! Z > Hﬁkﬁr Hm;aq H Plag H 1Br

kil=1a€ly,r=1

BED,s
n s p
et 3 (S T (o ) (S 1len T ). - e
(gg%gm k=1 r=1 q=1 k=1q=1
2,5

At this point the Hubbard—Stratonovich transformation (2.9) is applied. It yields for
p=s=1lorp=s=2

oo s 0 T T ) (5 [T v 1175 ) |

k=1q=1

S S 2
- / eXp{ Zyﬁ "y anﬁ v =y }
x gy dgy?, (2.15)



where

~(k.p,s) _ s
yﬁap nlip7 H kBr H ¢kaq7
r=

(2.16)
yaép’ = 4/MKps H Qbkaq H gk,&
Then the combination of (2.11), (2.14) and (2.15) gives
5 ) n
fo(21, 22) = (@) /e—trQ Q-lvl® 11 4@ dQdv*dv (2.17)
T
k=1
where
k= /eXp {ar2 + apa} do; dprdd ddy, (2.18)
apo = — (tl“ V1@ + tr Q*Ym) + o} Zpr + O Z* O,
aka = — (0¥ + Vi) (2.19)

(1,1) ~(k,1,1)

In the formulas above @, Yk 1 and Y}, 1 are matrices whose entries are g of o Ysa and y(k L1)

Oé
with o, 8 = 1,2 respectively, and v = q((faz), Y/]g’g = ygff 2) Yio = y&’i}2’2) with o = {1,2}.
Therefore, v € C, and @ is a 2 X 2 complex matrix.

Fortunately, the integral in (2.17) over ® and © factorizes. Therefore, the integration
can be performed over ¢ and 9 separately for every k. Lemma 1 provides a corresponding
result.

Lemma 1. Let j; be defined by (2.18). Then

jr = det A+ bvdet Q* + bodet Q + b2 |v|*, (2.20)

where A is defined in (2.4) and b= /iRy 3 = An=p)

pn

Proof. The integral ji is computed by the expansion of the exponent e®-4 into series. We
have

2
2’ ) e 2dp dprdd; dy, (2.21)

a
k= /<1+ak,4+k4

because a; 4 = 0. Recalling the definition (2.16) of y,3
can render a2 and ag 4 in the form

(k,p,s)

and the values (2.12) of ks, one

ago = —p,':Apk, (2.22)
aka = —b (0,50, Pk20k1v + 01 Or20k16k2) (2.23)

where A is defined in (2.4),
P = (g:) (2.24)



and b= /mrzz = /2“2 Then we can compute the integral (2.21) term-wise using (2.8):

pn
/ e PLAPEdpTdpy, = det A;

- -+ " _
- /b (0,50, PraPr1v + U651 Sr20k1 Ok2) € PrPrdpldpy = b(v det Q* + 7 det Q);

2

b — - 2 _
2/(9k29k1¢k2¢klv+U¢k1¢k29k19k2) e ”zAp’“dp;dpk:

b? / 0[* 0,50, k2Bt Die1 12011 Oradp dpr, = b* |v].

A substitution of (2.20) into (2.17) gives (2.1).

3 Saddle-point analysis

In order to perform the asymptotic analysis of (2.1) let us change the variables
Q=UTV* v—uvdetUV",

where @Q = UTV™ is the singular value decomposition of the matrix @, i.e.

T = diag{t;}7_,, t; >0, UV eU(_2).

2
The Jacobian of such change is 27t A%(T?) ] t; (see e.g. [16]) with A(T?) = (¢? — t3)?, and
=1

J
hence we obtain

2 5
foz1, 20) = :/A2(T2)t1t2 exp {nf(T,U,V,v)}
D

(3.1)
x dp(U)du(V')dT dvdv,
where
2
D={(T,U,V,v) |t; >0,j=1,2, U,V €U®2)}, dI =]]dt;, (3.2)
j=1
 is a Haar measure on U(2), and
1
f(T7 vavav) :fO(Tav)+ﬁfT(T7 U?MU)ﬂ (33)
fo(T,v) = —tr T? — [v|? + log ho(T, v); (3.4)
2
ho(T,v) = [ [(l20l* + £3) + 2bt1taRv + b2[v]; (3.5)
j=1
Fo(T,U,V,0) = Vo(f(UTV*,vdet UV*) — fo(T,v)) (3.6)
with f of (2.2). Note that h of (2.3) in new variables takes the form
hQ,v) = det A + bv det T* + bo det T + b* |v|* . (3.7)

10



3.1 Saddle-points

Since we use the Laplace method to analyse (3.1), we are interested in the saddle-points where
the global maximum of fo(T,v) = fo(T,x,y) with v = x + iy is achieved.
We start with the following simple lemma

Lemma 2. The function fo: [0,00)2 x C — R defined by (3.4) attains its global mazimum
value. Moreover, if (T ) is a point of the global mazimum then t; = to.

Proof. The function fy(T,v) is continuous and

TBIEOO fO(T U) oo
V—00

Therefore, fy attains its global maximum. Next, by AM-GM and QM-GM inequalities

2
2bt1tox < b(tl + tg) ]x\ .

4+t
(ol + £)(1z0f* + ) < (\zr L4 ) , (3.8)

Note that the inequality (3.8) is strict if ¢; # to > 0. Hence, for ¢; # t2 we have

fo(T,v) = —tr T? — |v]?® + log [(|20]2 +t2)(|20)* + 13) + 2bt1tax + b2 |v]?

< —trT? — |v|* + log : = fo(tI, || + iy),

_|_
(yzo\ + i ) + (82 + 2) || + b2 u]?

242
t1+ 2

where t = 2t . Thus, a point with ¢; # to cannot be a global maximum point of fy. [

Now we are ready to prove

Proposition 2. Function fo(T,v) = fo(ti,t2,x,y) with v = x + iy of (3.4) may attain its
global mazimum only at the saddle-points of these three types:

1. x-saddle point: ty =to =t #0, x = x4, y = 0.

Here x, = ab and « € [0,1] is a real solution to the equation

20(1 — a)’V? + 1 — a = |%)?, (3.9)
such that
(6% — 8a +2)b* — 1 <0, (3.10)
and
2= el e (3.11)
T l-a ' )

The value of fo at this point is

2 2
Fr(a, b, |20) = fo(tl,tzw,y)‘l = —a’b’ — 1a|zo\ +2ab” + o g1|0. (3.12)
II. v-saddle points: t; =ty =0, |[v]? = 2% + y? = 1 — |20|*/b°.
The value of fo at this point is
2 |20/ * 2
Fri(b,]20]7) = fo(tl,tQ,ﬂf,y)‘H =—(1- bT) + log b”. (3.13)

11



. Zero saddle-point: t1 =t =x =y = 0.
The value of fo at this point is

Frr1(b,]201%) = fo(ta, t2, z,9y) e log |zo/*. (3.14)

Proof. Taking the derivatives of fy of (3.4), we get the following system of equations for the
stationary points

blity + b’z 0
hO(T7U) B
b2y _0
YV (T, v)
t1(|20|* + t3) + bats
hO(T7U)
s ta(|20]? + t2) + bty
L ho(T,v)

—t1 + =0

=0

According to Lemma 2, we want to consider only points with t; = to = t, so the system
transforms to

bt* + b*x
ho(t,’l)) B
Ly Y (3.15)
Y hO(t7U) B .
t(|z0* 4 %) + bat

ho(t,v)

—t+ 0

To find the solutions of (3.15), consider first the case y = 0. Then (3.15) can be rewritten as

bt? + b’z
_ Z 7T
T ho(T0)
i t(|z0]* + ¢*) + bt 0
hO(T7U) B
Clearly, if t = 0, then we can have x = 0, or
4
ho(0 v):b2:>x2:1fﬁ
0\Y, b2 .
which gives two solutions:
t1 =1t =1= , T=Y=VU, (3.16)
+ _ 2 |20/ _
1—t2—t—0, zr=1- 02 ny. (3.17)
Ift # 0, we get
oL, v) =bx +t° + |20/, .
ho(T bx + t° 2 3.18
and hence from the first equation of (3.15)
2
bt2 + b’z = xho(T,v) = t* = :Z|ZO| —bx (3.19)
-

12



if x # b. Substituting this to the r.h.s of (3.18), we get

2
b + 12+ |z* = M,
b—x
and hence
b2 4 b 2
ho(T,v) = 0 _20|>2 — 2bx|z0|? = bZ—OL: = 2z(b—x)? +b—x = |2|%, (3.20)

if b # 0 and |z9| # 0. The last one is a cubic equation with respect to x, which may have
three real roots. It is convenient to write

T = ab, (3.21)
and hence from (3.19), (3.20) we get

ol (T = 1P 3.22
ao, 0( ’,U)_l—a’ ( )

azo|?

t? =
11—«
2a(1 — a)%? + 1 — o = |20)°.

Now we need

Lemma 3. Among all stationary points corresponding to real roots of the equation
2a(1 — a)?p?* + 1 —a = |2|% (3.23)

the global mazimum of fo can be achieved only at the saddle point corresponding to the solution
a of (3.23) lying on [0,1] and such that (3.10) holds, i.e.

(6% — 8a+2)b> — 1 <0, (3.24)
The saddle-point corresponding to this solution exists if and only if one of the following holds
() b< L, 2o <1;

(i) be (5,1, |22 < = (b), where

42 +9 4 +6
2(b) = —— + — 1+ 5o (3.25)

(iii) b (1,/202), |20 € [P0 2 (b);

(i) b e [\/3575, V3, |z € [Pl b2l

In addition, at this saddle-point
1

A — 3.26
= 1-2a(l-2a)’ (3:26)
\7«“0|2 2 2
hy = ho(ts, x4,0) = 1= bxy + t5 + | 20| (3.27)
-«
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The proof of Lemma 3 is given after the proof of Proposition 2.
If b =0, then the first equation of (3.15) implies = 0, and then

ho(T,v) =12 + |z0> = (* + |20]*)* = * + |20)* =t = /1 — |22

for |zp] < 1.
If |z9| = 0, then

ho(T,v) = t? +bx = (12 + bx)? =t? + br = t> + bz = 1,

and hence the first equation of (3.15) gives x = b, thus

tlztgzm, r=0b y=0
for b < 1. Notice also that z = b # 0 always implies

2+ b =2+ b + |20|* = |20| = 0.
Thus, the case t; =ta =t # 0, y = 0 for |z| # 0, b # 0 gives the solution

t1=to=1t,, z=x,=0ab, y=0 (3.28)
where « € [0,1] and

alzl*

1 ab?

2a(1— )b +1—a= |z, =

if such solution exists and (3.26) holds (see Lemma 3).
If zo =0, but b < 1, then the solution takes the form

t1:t2:\/1—b2, x:b, y:0.

Notice that the last solution can be considered as a limiting case of (3.28), so one can consider
(3.28) also for |zp| = 0. Same is true for the solution

t1=tao=+1—1|2?, z=y=0

obtained for b = 0, |zp| < 1.
Assume now that y # 0. Then the second equation of (3.15) gives

ho(T, v) = b2,

and hence the first equation gives ¢ = 0. Thus the previous equation implies

4
20|t + D2 (2* +y?) =P =2 +yP =1 ‘Zb%
if |20|2 < b. Hence, another family of solutions takes the form
o= t0 =0 2,2 _ |20/*
1=112=Y, Zv+y—1—bT (329)

if [20/? < b. Note that this includes (3.17), so one can include here y = 0.

14



Proof of Lemma 3.
Notice that as soon as (3.23) is satisfied we get

2 2 20 2020 2 |20/
fo(T,v) = =2t* — 2= + log ho(T,v) = a“b* — ——— + 2b“a(1 — a) + log ]
-« -«
2 2
7% B G PO | PO S
l-« 11—«
Here we used (3.21) — (3.22) and
2
20%a(l —a) = %" _
1-a
Taking the derivative with respect to a of the function above we get
2 1 20(1 — a)?? + 1 — a — |2|?
20b? — 0! = . 3.30
Y a—ar T1za (1—a) (3:30)

Suppose (3.23) has three real roots. Then, according to (3.30), two of them are the local
minimums, and the middle one is a local maximum of the function above, and hence the
value of fy in the saddle-point associated to the middle root of (3.23) is greater then those of
other two. Notice that if p(a) = 2a(1 — a)?b? + 1 — a — |2|?, then

p(0) =1— |z p(1)=—|2|?

and hence the biggest root of p(a) is always grater than 1. If |20]? < 1, then (3.23) must has
a non-positive root and the root between 0 and 1, and so the middle root belongs to [0, 1].
If |20/? > 1, then one root is still bigger than 1, and two other roots, if exist, must be of the
same sign (since the product of three roots is (|zg|? — 1)/2b%). It is easy to see that the point
with negative x and t # 0 cannot be a global maximum of fy since changing the sign of x
evidently increases the value of fj, thus we interested only in the case when all three roots
are positive. As was mentioned, one of them is greater than 1. Two other roots should be
at the same side of 1, and since the sum of all three roots is 2 according to Vieta’s formula,
it implies that two smaller roots must lie on [0,1]. In addition, at the middle root p’ must
be negative which gives (3.10). Notice also that if #2 of (3.22) corresponding to this middle
root is negative, then ¢? corresponding to the smallest root is also negative (since 1/(1 — )
increases on [0,1)), and the corresponding t? is always negative for a > 1. This also implies
that in the case when p(«) has only one real root a > 1 the saddle-point corresponding to
the root does not exists since t? < 0.

Thus, the saddle-point corresponding to the solution of (3.23) exists and can be a global
maximum of fp only if (3.23) has a solution « € [0, 1] and this solution satisfies (3.10) and

oz

— —b2 _p2
> ab® = 2a(1 — )b + 1 > b? = a € [0 bhvebn) (3.31)
The last condition guarantees the existence of ¢, (see (3.11)) and implies (3.26). Notice that
since 0 < 2a(1 — ) < 1/2, we immediately get that b < v/2 and (3.31) is always satisfied if
b<1.

From the discussion above, if |z9| < 1, then the solution « of (3.23) satisfying (3.10) exists.

Note that
24 /1453
vV (3.32)

Pa)=0<=a=as = 3
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Therefore, since ay > 1, if |29 > 1, then two positive solutions on [0, 1] exist if
a->0, pla-)>0

which is equivalent to b > % and 1 < |20)? < z_(b) = p(a_) + |20)* with z_(b) of (3.25).

Therefore, if b < 1, then *-saddle point exists if and only if (i) or (ii) holds, and if b € (1, /2]
and |29|? < z_(b), then the solution « of (3.23) satisfying (3.10) exists.
If b € (1,4/2], then in order to satisfy (3.31) we must have

_ _hH2 _ 12
a € [b2=ts bhEvEShY) (3.33)

)

Notice that if b € [ 5+57‘/5, V2], then it is easy to check that

—Vo=BZ b2
[P, RG] C o, 1,

and hence p'(«) < 0 for all « satisfying (3.33). Therefore, if

— _ _ 2_ _ 2 —
0f? € P(RGE) + [z0f, p(=FEE) + [aof?) = [T, ety

then the solution «, of (3.23) satisfying (3.10) and (3.33) exists, and so does x-saddle point,
which gives (iv).

Ifbel,y/ 5+—5\/3), then it is easy to check that

17*73%*172<a_<b+7v2%#<17

and so possible values of |z|? should correspond to a € [a_, 2E¥2=b2 V22b7b2] which gives (iii).
The expression for h, can be obtained straightforwardly from (3.22). O

3.2 Main saddle-points

Depending on the values of |z9| and b, the main contribution to (3.1) is given by the different
saddle-points.
Notice first that if [29|?> < b and so the v-saddle point exists, then

Fri(b, |20l*) = Frrr(b, |20/). (3.34)

Indeed, according to (3.13) — (3.14)

2 2\ |Z0|4 ’Z0|4
Frr(b,|20]") = Frr(b, |20]7) = ke 1—log 2 0.
Compare now the values at x-saddle point and v-saddle points:
Lemma 4. Let |29|?> < b (i.e. v-saddle point exists). Then
(i) If one of the following holds
e b<1, |2 <1
e b (1,v2] and
b2 — b2 — b2
P2l <,
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then x-saddle point exists and
F[(Oé, b') |ZO‘2) Z FII(ba ’20|2)7
where Fr, Frr are defined in (3.12) — (5.13).

(ii) If b € (1,4/2], but |20| > 1, then there exists a curve z1(b) such that x-saddle point exists
for 1 < |z]?> < min(z1(b),b) and

F[(OJ, b, ’Zo‘2> > F][(b, ‘Zo’Q), 1 < ‘Zo’Z < min(zl(b),b). (3.35)
If min(21(b),b) < |20|> < b, then either x-point does not exist, or

Fr(a,b,|20|?) < Frr(b,|20]?). (3.36)

Therefore, the curve s on Figure 1 is
|Zo|2:zl(b), b:zl(b) < b.

It coincides with

20f? b2 + bv/2 — b2
=V
2

for allb € | %,\/ﬁ]

Proof. We start with (i). It is easy to check that z_(b) > 1 (see (3.25)) and, given b > 1,
Prv2-b
— 2L

Thus the existence of x-saddle point in the conditions of (i) follows from Lemma 3.
Now, according to (3.9), we have

|20)?

1_a:2a(1—a)b2+1.

Therefore,

Fr(a,b, |20%) = Frr(b, |20/?) = —|20/? (22 + 22) 4+ 200 — 0%* + 1

1—a)?
+log(2a(1 — ) + b%) = b*(2a — 50’ + 403 — 4a%(1 — a)?) — (b?) (3.37)
+ (1 =20 — 4a(l — a)?) +log(2a(1 — a) + b%),

where to obtain the last equality we substitute |29|> = 2a(1 — a)?b? + 1 — a and open the

parentheses.
Fix o and consider s = 1/b*> > 1 — 2a(1 — a) (recall that if *-saddle point exists, then we
have (3.26)). Denote

H(s) =s"1-(2a — 502 + 403 — 402(1 — a)t) — (1 — a)?s (3.38)
+ (1 — 20— 4a(l — a)®) +log(2a(1 — a) + s).

One can easily check that
H(l1-2a(l —a))=0. (3.39)
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Moreover, computing

200 — 5a? + 403 — 402(1 — )t 1
H'(s) = — —(1l-a)
(s) s2 (1—a)+ 20(1 — ) + s’
one can also check
H1-2a(1-a))=0
and 1+ 201 )
s —14+2a(l —«
H'(s) = :
(S) 82(5 + 20[(1 . Oé)) g(S)’
where
g(s) = —(1 — a)%s> + 20 — a?)s + 4a*(1 — ) + 2a3(1 — ). (3.40)
Since
s—142a(1 —a) >0

$2(s+2a(l —a)) —
for s > 1 —2a(1 — «), the sign of H'(s) is determined by the sign of g(s).
Recall that the existence of v-point implies

|20 =2a(1 —a)?* +1—a<b=bc (b_(a),by(a)),

where

1++4/1-8a(l—a)3
da(l — «)?

Since it is easy to check that by () > v/2 and b_(a)? < (1 — 2a(1 — a))~! for any «a € [0, 1],

we are interested in b € [b_(a), (1 — 2a(1 — a))~1/?], i.e.

bi() = (3.41)

s€[l—2a(l —a),sola)], so(a)=(b_(a))2 (3.42)
Notice that

g(1 —2a(1—a))=—1—-a)*(1 - 2a(1 — a))* + 2a — ®)(1 — 2a(1 — )
+402(1 — ) 4+ 203(1 — ) = —(4a® — 6+ 1)(1 — 2a(1 — a)),

and hence we get

g(1—2a(1—a)) <0, acl0,3=5), (3.43)
g(1—2a(l—a))>0, ac [3_4‘/5, 1]

Now we need the following simple lemma

Lemma 5. If |2 <1, b < (1 —2a(1 — a))~"/? and |20|?> < b, then o > 1 — %

Proof. Indeed, according to (3.9), |z|> < 1 implies

1

201l — )’ +1—-a<l=a>1— ——, 3.44
(1-a) <1—azi-- (3.41)
which gives the statement for b > 1. If b < 1, then we must have b_(a) < 1 (see (3.41)) which
also implies 1 — a < 1/v/2. O
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According to Lemma 5, in the conditions of Lemma 4 (i) we have a > 1 —1/v/2 > 3%/5,
and thus ¢g(1 — 2a(1 —a)) > 0. As g is a quadratic polynomial with negative top coefficient,
it has exactly one root on [1 — 2a(1 — a), 00), hence, the same is true for H'(s). Thus H(s)
increases for [1 — 2a(1 — «),a) with a certain a > 1 — 2a(1 — «), and then decreases.

Therefore, if H(so(a)) > 0, then H(s) > 0 for all s € [1 —2a(1 — a),so(a)] and o >
1-1/v2.

It remains to check

H(so(a)) >0, a>1-1/V2. (3.45)
If s = sp(e) (i.e. b="b_(a)), then
|20 = 2a(1 —@)?* +1—a =b, (3.46)
H(so(a)) = — ff‘ba 2082 — 022 — log(b(1 — a))

=b—1-a%® —a+2a%h* —log(b(l — a)) =: (b, a)

where we have used (3.37), (3.38), (3.46) and

b
2ab* — a?b? = 2a(1 — a)b® + o?b? = T o™ 1+ a?b?
b

1_az2a(1—a)52+1.

Taking the derivative with respect to a we get

(07

ro(b,a) = (1—b2(2 — 8ar + 6a2)).

l1-«a
Taking into account (3.10), 7/, (b,a) > 0, and hence r(b, ) increases in a. At a =1—1/v/2
we get
1 b
r(b,1—1/V2) =b—2+ — — (V2 —-1)3h?/2 — log —,
( /V2) 7 ( )°b"/2 —log 7
which, as one can easily check, is positive for all b € (0,1/2). Therefore, r(b,a) > 0 for all
« > 1—1/4/2, and hence we obtain (3.45), which finishes the proof of Lemma 4 (i).

Let’s now prove (ii). Suppose |z9| > 1. Proceeding similarly to the proof of (i), we want
to study when H(s) > 0 for 1 — 2a(l — a) < s < so(a), where H is defined at (3.38) and
so(a) is defined in (3.42). Since ¢g(0) > 0, 1 —2a(1 — ) > 0, and according to (3.43), we have
forall s > 1 —2a(l —«)

35

0
g(s) <0, a< T

and hence

3-5
4

H'(s) <0, a< :>H(3)<0ifa<3_4\/5,3>1—2a(1—a).

Therefore, if a < 3_4‘/5, and x-saddle point exists, then (3.36) holds.

Let a > 3_47‘/5. According to (3.43), then

H(s) >0, se[l—2a(l—a),s(a), (3.47)
H(s) <0, s2>s(a),
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where s;(a) is a solution of H(a,s) = 0 bigger than 1 — 2a(1 — «) (which exists since
H(s) = —o00, s = o0) for a < 1. Notice that

:5_\/5

1 < 80(374\/5).

31(3%/5) =1-20(l-a) 5
a="7

S

Recall that we are interested in s such that 1 — 2a(1 — «) < s < so(a). If H(sp(a)) >0
(i.e. si(a) > sp(a)), then H(s) > 0 for all such s. Numerically, one can compute that this
happens if a > ag =~ 0.22. Note that the exact numerical value of ag is not important here
and is given for reference only. What we really going to use is that

S cap<i-F (3.48)

which follows from (3.45).

If % < a < ag, then H(s) > 0 for s € [1 —2a(l — a),si1(a)], and H(s) < 0 for
s € [s1(a), so(@)].

Notice also that if % <« <1, then

60 —8a+2<1-2a(l—a)<s= (6 —8a+2)b>—-1<0 (3.49)

for all b = 1/s with s > 1 — 2a(1 — a).
Now we will need

Lemma 6. In the notations above we have

si(a) >0

as soon as 3*4\/5 <a<l-— % (and so, in particular, if 3%@ <a<aw)

The proof of Lemma 6 is given after the proof of Lemma 4.
Note that it is easy to check that sj(a) > 0 for 1 > a > 3_T‘/5. This and the lemma
implies that (3.47) can be rewritten as

H(a,s) >0
if
$<s< 5_4‘/5, a € [1”22871; HVQQS*I] or (3.50)
=P <s <L ag(@(s),

and H(a,s) < 0 or x-saddle point does not exist in the remaining domain. Here &;(s) is
an inverse function to s;(«a) for % < a < o and to sp(a) for o € [ap,1]. In terms of
b € (1,+/2] the domain (3.50) can be rewritten as

\/ 5‘*'5—‘/5 <b<V2, ac[™ VQ%*I’Q; bt VQ?;I’Q] or (3.51)

1<b< /55 ac o), 2=

where aq(b) = a1(1/b%).

It remains to notice that for o > 3_4‘/5, b < 1720}(176“)

2a(1 — )?* +1 —a), = (6* — 8a+2)b* —1 <0,
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and hence in terms of b, |2|? (3.51) takes the form

VIS b < VB, |nf? € [EbEE, PenyEE o (3:52)

1<b< /305 |52 e B2t (p)]

with
21(0) = 2a(1 — )?V? +1 — «

a=a; (b)

According to the definition of ag, we get z1(b) = b for 1 < b < 1/4/s1(ap). Notice that

because of Lemma 6 and (3.48), so(ap) < so(1 — %) = 1, and hence 1/4/s1(a0) > 1. The

exact value of \/s1(ap) is not important here, but numerically, 1/4/s1(ap) ~ 1.11.
The existence of x-saddle point in the domain (3.52) follows from (3.49) (which gives

21(b) < z_(b)) and Lemma 3. This finishes the proof of Lemma 4. O

Proof of Lemma 6 Taking into account the definition of s;(«), we get
H(a,s1(a)) = 0 = Hy (o, s1()) + 81 (a) - Hy(, 51(a)) = 0.

Since H.(a, s1(ar)) < 0, it is enough to check that H] («, s1(«)) > 0. Taking the derivative of
(3.38) one get

1 1
§H(’1:f-(1—5a+6a2—4a(1—a)4+8a2(1—a)3)+(1—a)s
s
1 -2«
—1-21—a)®+6a(l —a)?+ ———M—
(1—-0a)’+6a(l —a) +s—|—2o¢(1—a)

s+2a(l—a)—1

" s(s+2a(1—a)) (e, 9),

where
q(a,s) = (1 —a)s® + s(—a—2(1 — a)® + 6a(l — @)?) — 2a(1 — a)(1 — 32)(2(1 — a)® — 1).

If 3%6 <a<l-— %, then it is easy to check that

q(a,0) < 0.
In addition,
q(a,1 —2a(1 —a)) = 8a® — 1602 +8a — 1 = (2a — 1)(4a* —6a +1) > 0

for 3_T\/g <a<l-— % Since ¢(a, s) is a quadratic polynomial in s and 1 — 2a(1 — a) > 0,
the consideration above gives
q(a,s) >0

for all s > 1 —2a(l — «) including s = s1(«), which implies the lemma. O
Next we compare the values at v-saddle points and the zero saddle point:

Lemma 7. (i) If |29 < 1, then
Fr(a,b,|20]%) > Frrr(b, |20/?)

wherever x-saddle point exists, i.e.
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e b<1, |2 <1;
o be (1,V2], =20 < ;2 < 1.

(i) if |20> > max(1,b), b > 1/v/2, then there exists a curve z2(b) such that
Fr(a,b,|2l?) > Frir(b, |20?), max(1,b) < |z0|* < 22(b).
If |20|> > 22(b), then x-saddle point does not erist or

Fi(a,b, |20%) < Frrr(b, |20[2).

(iii) if |20] > 1, but b < 1//2, then x-saddle point does not exist.
Therefore, the curve vz on Figure 1 is

|z0]% = 22(b), b: 22(b) > b.

Proof. We start with (i). Notice that if |29|?> < b and so the v-point exists, then the statement
follows from (3.34) and Lemma 4. It is easy to see also that the second derivative with respect
to t of fo(tI,v) at zero saddle-point has the form

1" 1
(5)0(0,0) = 4( -5 —1).
and hence it is positive for |29|?> < 1. Therefore, this stationary point cannot be a point of
local maximum. Hence, if |29|?> > b and so the v-point does not exist, the global maximum
can be achieved only at the *-saddle point (see Proposition 2) which implies (i). (iii) follows
from Lemma 3.
It remains to prove (ii). Assume |2|> > 1, b > 1/1/2. Since we are interested in the case

|02 > b and the *-point exists, according to Lemma 3, we need to consider b € [%, \/ 5+75\/5]
max(1,b) < |zo|* < z_(b)
with z_ of (3.25). Since
z_(b) > b=b< by~ 1.128, (3.53)

we are interested in b € [%, bo.
In addition, we get

a>a_(b)

with a_ of (3.32) and, since |zg| > 1 (see (3.44)),

1
a<l———
b2
Define
W (e, b) = Fr(a,b,|20|*) = Frrr(a, b, |20) (3.54)
2 2
= —a?? — 1‘”°| + 2ab% — log(|20)2(1 — @)
—

= b%(2a — 5a® + 40®) — 2a — 2log(1 — a) — log(1 + 2a(1 — a)b?).

Here we used )
|20

1ia:1+2a(1—a)b2.
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Consider now

9 1 (1—2a)b?
N 14 20(1 — a)b?
«
= 1 b2_ 11la — 2 2b41— 21_ 9
Ao+ 200 —a)py) LTI (734 1a=8a7) +257(1 — a)*(1 = Ba + 6a7))
«

1— )1+ 2a(1 — a)p?) (201 — a)(B3a — 1)6? + 1) (1 — a) (20 — 1)b? +1).

According to (3.24),
2(1 —a)(3a — 1)b? +1=1—b*6a® — 8a+2) > 0.

Since a < 1 — ﬁ <1/2, we have for a € [o_(b),1 — ﬁ]

(1= a)20 = D413 1~ (1 - a_(B)(1 ~ 20_()) = =L VEI

for b < /2. Therefore, we obtain

W' (a,b) >0, «a€a_(b),1— 1]

bv2
and hence W (a, b) increases on a € [a—(b),1 — ﬁ]
o . . _ 1
In addition, if « =1 — Vit then
20 =1, ¥ = 55,
and so
wW(l - ﬁ, b) = b*(2a — 502 + 4a?) — 2a — log(1 — )
2a — 502 + 4a3
= —2a — log(1 —
200 — 50 + 4a3 a? ot
_9 S —-_ 2 >
= T =) atat o =sa e =Y
Therefore,
Wi(a,b) >0, «ac¢ [ai(b),1— ﬁ] (3.55)

where a;(b) = a_(b) if W(a_(b),b) > 0 and aq(b) € [a—(b),1 — ﬁ] such that

W(ai1(b),b) =0

it W(a_(b),b) < 0.
According to (3.24), it gives that (3.55) holds for any b € [1/v/2,v/2], max(1,b) < |2|? <
z9(b) where
29(b) = 201 (b)(1 — a1 (0))?6% 4+ 1 — a1 (b),

and the opposite inequality holds if |29|? > 22(b), as desired.
Notice that one can compute numerically that starting from b > b; ~ 1.11 we get 22(b) < b,
and so the interval max(1,b) < |20]? < 22(b) is empty. O
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3.3 Integral estimates

Now we proceed to the integral estimates. Consider first the domain €2; where the *-saddle
point dominates (see Lemmas 4-7). In a standard way the integration domain in (3.1) can be
restricted as follows

9 5
fo(z1, 20) = % / ATty x TV quy(U)dp(V)dT dodv + O(e7?),

=

where

5 ={T,U,V,0) e D||T| +|v] <r}

and D is defined in (3.2).

The next step is to restrict the integration domain by 1‘\’/gﬁn—neighborhood of the *-saddle

point. To this end we need to expand f near the x-saddle point (t.1,x,):

Lemma 8. Let T be a 2 x 2 diagonal matriz such that |T|| < logn and © = & + ij be a
complex number with |0] <logn. Then uniformly in U and V

~1/2 |20]* + ¢2
D
+n (T, UV, ) + O(n~**1og®n)

F(td + ﬁ:ﬁ, U, V,2x + =0) = fou + 1 tr(20 2 + 202%)

(3.56)

where
7,0, V,9) = gymtr [0 +br) T2~ s.TP — P 4 20l +£2) 2057
+ 2;* :(2t* tr T+ tr Pp)? 4 4bt, @ tr T + 2ba, (tr T)? + 20 \zﬂ (3.57)
- 2,112 :2h*(t* tr T+ 2,2) + (|20)> + ) tr Py g GIkE
Z= (Cl 0) . Zp=DBZB (3.58)
0 G

P =22y + 202y,

and fo« = fo(tel, ).
Proof. 1f Q = U(t.I +n~'/2T)V* then the matrix A (2.4) has the form

D) (5 2)

where ~
—20l  t -2y T
A == A = ~ .
0 (—t*I —201> S < -7 —Z;;)
One gets
log det A = logdet Ag + log det AalA = logdet Ay + trlog(1 + n_l/QAalAl)
_logdetAo—i—%ter Al—%tr(AO Al) +O < m
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uniformly in U and V. Moreover,

e (—201 —t*I)
P+ \ L —20l)

Atg -1 20Zu + 6T —z2T + 4.2}
0 |20’2 +12 \—tZ2y + 20T T+ 202y
-1 o ~
tr AO Al = |20’2 n tz tr |:2t*T + P1:| s
-1 2 2 2\ 2 A
tr(Ag1Ap)? = it [2@* — |22 T2 + 4t P, T

+ 2 ZE + 22(25)% - 2tEZUZ{;]

where P = 202y + 202;,. (3.59) implies

1
det A = (|z0]* + 2)? <1 + —ntrAalAl

f
1 —1 432 —1 442 log® n
Further,
Ttity = T, 42 + i(t% + 2ot tr T)
* U \/ﬁ * *k Ux
, ) - . o n (3.61)
+ o <2t*xtrT+x*(trT) —x trT ) +0 < N > .
Equations (3.60) and (3.61) yield for Q@ = U(t.I + n~Y2T)V* v = x, + n~ /%%
1 ~
hQ,v) = he + — [(|zo\2 + t3)ay + 26t2F + 2ba,t. tr T + 2b2x*:f}
v (3.62)

1 F 5 [ o
N 27 a% gt 4bt*‘%trT+ 2b;c*(trT)2 . 26517* tI'TZ —+ 2[)&}2 -+ 2bg2:| + 0] < 0og n) )
n

=

where h is defined in (3.7), hy is defined in (3.27), and

(|20 + 12) tr Ag Ay = tr [Qtj n Pl] ,
(Iz0” +£2) tr(Ag " Ar)?
tr [2@3 —z)T? + 4t PIT + 2222 + 22(25)2 — 222,25

a
a2

(3.63)

Using (3.27) and (3.15), the equation (3.62) can be transformed to

1 ~ -
A(Qu) =het [2h*t* tr T + 2hza + (|22 + 12) tr Pl} (3.64)

1 ) ) ) »
+ 5 [0F = ap + 4043 e T 4 20 (0 T)? = 26 tr T2 4 2032 + 26| + O ( %) '
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Substituting (3.64) into (3.3) and expanding the logarithm, we obtain

2
122l + 8

A tr(ZOZ + Z()Z*)

. . 2
+ n_l{— tr T2 — 3% — % — [Zh*t* tr T + 2h.z. 2 + (|zo|2 + tz) tr Pl}

2h?2
1 . . .
+ 5 [a? — ag + 4Abt, Z tr T + 2bx, (tr T)? — 2bx, tr T? + 2072 + 2bgﬂ } + 0(5’55‘).
*
The last expansion, (3.63), and (3.27) imply (3.56). O

We also need

Lemma 9. Let the x-saddle-point (ty,t«, x4, 0) defined by Proposition 2 be a unique global
mazximum point of the function fo(T,v) = fo(t1,t2,z,y). Set

f(Tavavv) :f(T>U7VY7’U)_f*7

where f. = f(t.1,1,1,x,) with f of (3.3). Then for sufficiently large n and ¢ > 0 there exists

C>0 ’
3 1

max f(T’ U’ V,U) S _C —

lof%LSIITft*IHHv*x*\SC !

uniformly in U and V.

Proof. First let us check that the first derivatives of f, are bounded in the J-neighborhood of
the manifold (t.1,U,V,z,), U,V € U(2), where f, is defined in (3.6) and § is n-independent.
Indeed, since h and hg are polynomials,

19| [0~ fo)| _|9Cogh —logho)| _ |1 dho 1 Oh| _ C

Vn 0s Os ds hg ds h 9s|~ /n’

where s is either t1, to x or y. Let T be a real diagonal 2 x 2 matrix of unit norm and let
vg € C be a number on the unit circle. Then for any Tr and vg and for lo% < g <§we

1 0hp 1 0Oh C
< . <

have
d -~
%f(t*f +0Tg, UV, 2z, + U’UE) = <VT7m7yf0(t*I +0Tg, e + UUE), uE)

+ n71/2<vT7x7yfr(t*I + UTE’ L]7 ‘/v7 T —+ O-UE)’ UE>
— <VT,:E7yf0(t*I + O‘TE‘, T —|— UUE))“E) + O(n—l/Q)’

where up denotes a vector (tg1,tg2, g, yr) and (-,-) is a standard real scalar product. Ex-
panding the scalar product by Taylor formula and considering that Vr, , fo(t«1, z.) = 0, we
obtain

d -
%f(t*f +0Tg, U, V,xs + ovp) = o(fi (], 2 )up, up) +r1 + O(n~?),

where f{/ is a matrix of second order derivatives of fo w.r.t. T, z and y and |r1| < Co?.
 (t«I, ) is non-negative definite, because (t,I,z4) is a global maximum. Putting Z = 0
into (3.56) and (3.57) one obtains

2
202 4 bre 2 tbte 4y (9, b 0
2 _ 23+bo. 2 | b b
(2o =) t(2m - ) 1+222-F 0
0 0 0 -£
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A straightforward check shows that det f{(t.1, z,) > 0. Hence f{(t+1, z.) is negative definite
and %(t*l +0Tg,U,V,z, + ovg) is negative and

max f(T,U,V,v) = max f(T,U,V,v)

L 1
8 STt |+l <5 e N

3.65
log?n ( )

Sf(t*I,U,V,l‘*)—C _f*'
Notice that f, is bounded from above uniformly in n and (¢,,t, =4, 0) is a point of global
maximum of the function fy. These facts imply that ¢ in (3.65) can be replaced by ¢

~ 1 2
max F(TU,V,0) < f(LIUV,2) - fo — C—2 2

1
LTt [ +Hv—as| <c n

It remains to deduce from Lemma 8 that f(t.I,U,V,z.) — f« = O(n~!) uniformly in U
and V. OJ

Lemma 9 yields

2nd e+

™

fo(z1, 22) = ( / AQ(TQ)tltge”f(T’U’V’”)d,u(U)d,u(V)dez‘;dv+O(e_011°g2”)>,

Qn (tsI,x4)

where by Q,(T',9) we denote a 1(\’;;;—neighborhood of the point (7', ), i.e.

<

) L 1
Qn(T,@):{(T,U,V,v)eD\ |7 -7 < 222 o — 9] < Og"}, (3.66)

Vn NLD
Changing the variables T = ¢, I + ﬁf and v = x, + ﬁf}, and expanding A?(T?)tity and
the function f according to Lemma 8, we obtain

fo(21, 20) = 8:"lkn / A2(T) exp {g(T, U, v,@)} dp(U)dp(V)dTdido(1 + o(1))  (3.67)

V2 (0)
with & of (3.57) and

2 2
t
k,, = n2 exp {nfo* + \/ﬁ"zO'th *tr (202 + zOZ*)} . (3.68)

*

Let us change the variables V= WU . Taking into account that the Haar measure is invariant
w.r.t. shifts, we get

8td

™

fa(z1,22) =

kn/deaEdgj / du(U) / du(W)N(T)exp{&(T,U,W,@)}(1+0(1)),

R4 U(2) U(2)

where

. 1 . .
Q(l,UW,0) = 32—t [—4(753 4 b, ) UT2U* — 44, UTU*P — P? + 2(|20)* + tf)ZZ{EV}

*

+ [(2t* tr T + tr P)? + 4bt, & tr T + 2bx, (tr T)? + 20 yﬁﬂ — |o|?

2h

1 ~ 2
~ 52 [Qt*h* tr T + 2x.h. 2 + (]20\2 + tz) tr P}
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with

P=ZZ+ 2Z}.

The next step is to change the variables (T, U) — H such that H = UTU*. The Jacobian is
2ZA72(T) (see e.g. [10]). Thus

16t
fazo + S+ $5) = oyt [t [ dsdg [ du(W) exp (6a(HW,9)) (14 (1),
Hy  R2 U(2)

where Hs is a space of hermitian 2 x 2 matrices and

dH = d(H)11d(H )22dR(H)12dS(H )12,

2
1 [ "
E(H,W,0) = —tr [ 2v/82 4 ba, H + ————P | +2(|2)> + 2 tr ZZ3;
2h., /12 + bx,
b
o [(21:* tr H + tr P)? + 4bt, @ tr H + 2bx, (tr H)? + 2% |5|* — 2 fba:* tr P2
1 N 2 2 2 <12
- [zt*h* tr H + 2a.ha@ + (|20] +t*)trp} — 182
*
Shifting the variables H — H — mP and moving integration back to the real axis, one
has
16t} L 8
f (ZO + \f’ 20 + f) - 7'('2 k. dH d.%'dy d:u(W) exXp {53(H7 va)} (1 + 0(1))7
Ha R2 U(2)
where
E3(H, W, 0) = . bz P2 +2(|20)* +12) 225
3 y WW,V) = 2h* t2 n b 20 %%
2\ T ol (1 = _ (B _
o |(H)| )V g (Buu) — (g w)
by (hat? + 2(hy — |20|*)bz,) P2
AR2(£2 1 bz )2 (tr P)
with
262 4 b g2 Mitboe (9, b
B _ 2 2{3 . Qt*];l;bl* 2t2 b.Z’: t* 2:1;,* _ h% )
be(2m =) t(20 ) 12
(H)1n bir P Tyt (2 |Zo|z -1)
u = (H)22 ) q = h (t2+b$ ) x*t*(2‘20| —1)
7 TN 24 2z 22
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The Gaussian integration over H and © implies

fazo + S0+ 5) = LGl [ du() (3.69)

U(2)
{ 1
X eXp hf
2

(G ok [ dp(W) exp { [1 _ ﬂ tr ZW* Z* W} (14 o(1)),
e

_ ba, |20/
t2 + bx.

+ (Jz0]* + t2)

trZW*Z*W} (14 0(1))

where

47Tt4h 8h* bl’* 9 .92 2 )
C(C1,¢2) = 2+ ba. \/(h* ~ 1) det B exp {_2h*(t§—|—b:p*) tr(Z52° + 25(27) )} (3.70)

1 b (hit? + 2(hy — | 20| )bz,
xexp{2<B—1q,q>+ 2ol 2 20—l “@rp)?}.

AR2(£2 + bz, )2

Straightforwardly substituting the expressions (3.22)(3.23), (3.27) for ¢2, hs, and then for
|20|* into (3.70) one can get

o baa(het 4 20k — ol be) :
exp {2 <B q, q> + 202 + b 2 (tr P)* » = exp {fy (tr P) /4} )

where
202(1 — (1 — 4a + 2a2)b?)

(1—(1—4a+3a2)b?)(1+ (2a — 2a2)b?)

N = (3.71)

and « is as in Lemma 3.
For computing the integral over the unitary group, we use the well-known Harish Chan-
dra/Itsykson—Zuber formula

Proposition 3 (see, e.g., 18], A5). Let A and B be normal d x d matrices with distinct
eigenvalues {aj};l:l and {bj}?zl respectively. Then

=1\ det{exp(ta;by)}?
/ exp{ttr AU*BU }du(U <H] > o d)/zAzA)Aj(k )1,
U(d)

where t is some constant, i is a Haar measure, and A(A) = [] (a; — ax).
>k

An application of the formula to (3.69) gives

det{exp[( *) CJC’“} }jk 1

fa(z0 + f,zo + \C}) = C(C1, G2 )kn ( — b—) 1A (2))?
hx

1+0(1),  (3.72)

where

drctih, 8. R .
C(¢,¢) = 2t e \/(h ) detBeXp{_ZhQ tr(2222 + 22(2 )2)+7(trP)2/4} (3.73)
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with 7 of (3.71). If we denote =1 — ;’L—i and

= fox, (3.74)
|20/ +t2

Ca(C1,¢2) = ™

(ZQZ + Z()Z*) , (375)

then (3.72) implies (1.14). The equation on S follows from

b*(1-a) _ (=Bl

= 1
‘2’0|2 b2 +

B=1-
and (3.23). Here we also used (3.27). Now using

tr P = 20(C1 + () + 20(G1 + C2),
(20(C1 + C2) + 20(C1 + (2)) — 2(20G1 + 20¢1)% — 2(Z02 + 20G2) = —4(R(Z0(G1 — (2)))7,

we get (1.11).
Suppose now (b, |z0]?) € € where the main contribution is given by v-saddle point.

Writing
vo =roe'?, ro=14/1-— |zol4 Jb%, 0 =T,

changing the variables T = T and v = (ro + f 7)e’? and proceeding similarly to Lemmas

%\

8-9, we obtain

27‘0 kI I

fo(21, 29) = / AX(T?)iyis exp {§H(T u,v, v)} dp(U)dp(V)dT didp(1 + o(1)),

V182 (0)
(3.76)
where

T, UV, 7e?) = tr {—Q(bro cosp + b2 — |zH)T? — 2322 - zg(Z*)Z}

202

1 -
+ = o2 [(trPl) + 2bry cosgo(trT)Q] o7 [Zb rof + |z0)? trPl] ,

2
2 *
kT = /2 exp {n ( 1+ |b2‘ + log 52) + \/ﬁ‘ £2| tr (202 + 22 )} : (3.77)

Taking the integral w.r.t. 7 one gets

1
QW@ZWWW{

552 [(tr 202 + tr202%)* — 25 tr 2% — 23 tr(2*)?] } (14 o(1)),

where

\f /Oodtl dtQ/dgoA2(T2)t1t2(1+o( ))

1 - -
X exp {b2 [—(bro cos ¢ + b? — \20]2) tr T2 4 brg cos cp(trT)z} } )

(3.78)

Since 1/2b% = p/4 according to (1.9), this implies (1.12) and (1.15).
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Slmllarly, if (b, |zo| ) € Q3 where zero saddle point is dominant, changing the variables
T=-1Tandv= one obtains

7 vt
fol21, 22) = 2kt / A2(T?)i1 iy exp {f”I(T U, v, v)} dp(U)du(V)dT dodi(1 + o(1)),
Vi (0)
where

. i 1 2o . oo
ETUV0) = gt =2l ") % = 5527 = (2] + g ol ol
0 0

and

kT — exp {nlog |z0|* + \/72 tr (202 + ZOZ*)} . (3.79)

|20

Taking integration with respect to t1,f; > 0 and with respect to ¥ we get

KT (1 + o(1)

1 )2 ¢
(1 a \ZOF) (1 a |za\4>
which implies (1.13) and (1.16).

Theorem 2 follows from the consideration above for b = 0 (see (1.10)) with minor modifi-
cations.
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