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In this paper, we study the integrated hurricane relief logistics and evacuation planning (IHRLEP) problem,
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Email: yongjis@clemson.edu approaches based on two-stage stochastic programming (2SSP). Utilizing historical forecast errors modeled

using the auto-regressive model of order one, we generate hurricane scenarios and approximate the hurri-
cane process as a Markov chain, and each Markovian state is characterized by the hurricane’s location and
intensity attributes. We conduct a comprehensive numerical experiment based on case studies motivated
by Hurricane Florence and Hurricane Ian. Through the computational results, we demonstrate the value of
fully adaptive policies given by the MSSP model over static ones given by the 2SSP model in terms of the
out-of-sample performance. By conducting an extensive sensitivity analysis, we offer insights into how the

value of fully adaptive policies varies in comparison to static ones with key problem parameters.
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1 | INTRODUCTION

Hurricanes are among the deadliest natural disasters in the United States. Hurricane Laura [34] in 2020 caused 81 deaths and an
estimated 23.3 billion US dollars worth of infrastructure damage, while Hurricane Ian 2022 caused 150 deaths and an estimated
112 billion US dollars [13]. People under the threat of a hurricane may opt to evacuate to shelters because of personal safety
concerns, power outages, and flooding [6]. While most evacuees shelter in hotels or resort to families and friends, on average
around 11% evacuees from the potential affected areas, which we refer to as demand points (DPs), evacuate to public shelters
that we refer to as shelter points (SPs) [6]. In the meantime, relief items (such as food, water, and medical kits) are prepositioned
at the SPs, which are typically shipped from the main distribution center (MDC) or an incident support base established by the
Federal Emergency Management Agency (FEMA) for the hurricane event. Clearly, the operations of evacuation and the relief
item pre-positioning at the SPs must be coordinated to ensure the well-being of the evacuees at the SPs. In this paper, we study
an integrated hurricane relief logistics and evacuation planning (IHRLEP) problem.

The evacuation operation is a multi-period process. A timely evacuation plan is crucial to ensure sufficient time for the
evacuation operation, which can last two to three days. After the hurricane’s formation, at a frequency of every six hours,
the National Hurricane Center (NHC) issues a hurricane forecast advisory up to the next five days, including the hurricane’s
projected track (longitude, latitude) and intensity (wind speed). The projected landfall location of an impending hurricane
determines what we refer to as the risk zone. Inside the risk zone, the evacuation demand from the DPs, i.e., the number
of evacuees, depends on the evacuation behavior, such as the socioeconomic background and risk attitudes of the affected
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population, under the projected hurricane’s attributes [10]. The challenge here is that the hurricane forecast is imperfect and
subject to forecast errors, which imposes uncertainty on the hurricane’s future attributes and hence the corresponding demand.
In this case, a deterministic optimization model may be insufficient to address the challenges brought by the various sources of
uncertainty in this process. It is preferred to utilize models and approaches based on optimization under uncertainty.

One key consideration in developing these models and approaches is to balance between the (evacuation) operation lead
time and the hurricane’s forecast uncertainty. The evacuation plans made in earlier stages of the hurricane’s evolution may
suffer from higher potential forecast errors (FEs). For example, they may lead to a significant mismatch between the estimated
demand of relief items and the actual realized demand. On the other hand, despite the fact that evacuation plans made with a
more accurate forecast as the hurricane moves closer to its landfall can address potential demand mismatch, it may suffer from
the insufficient amount of time to effectively execute the evacuation. Therefore, it is important to address the challenge in the
timing of decision making in logistics and evacuation planning.

Multi-stage stochastic programming (MSSP) models have shown to be effective in sequential decision-making under uncer-
tainty, especially in applications that arise in large-scale network systems such as supply chain and energy [52, 35]. MSSP
models are fully adaptive in the sense that the decisions at each stage are made according to the realized system state at
that point. Despite its flexibility and adaptability, it is computationally challenging to obtain an optimal decision policy for
the MSSP model [42]. Alternatively, one may consider a static decision policy based on a two-stage stochastic programming
(2SSP) approximation to the MSSP. A 2SSP model solved at the beginning of the planning horizon may be lack of flexibility
in adapting its decisions according to uncertainty realization. This shortcoming can be partially addressed by implementing the
2SSP model in a rolling-horizon (RH) procedure [23]. In this procedure, we sequentially solve a 2SSP model as the so-called
stochastic look-ahead model (SLAM) at every stage the planning horizon, but only implement the decisions that apply to the
current stage.

In this paper, we formulate a multi-period IHRLEP problem as an MSSP by integrating the evacuation decisions relief
logistics decisions to minimize the overall expected operational over the network. The contribution of our paper is three-hold.
First, we propose a fully adaptive MSSP model to formulate the IHRLEP and demonstrate its advantage over a static policy
given by a 2SSP model through numerical experiments. Second, we demonstrate how to model the time-dependent evolution
of forecast uncertainty based on historical hurricane forecast errors and how to integrate this information within an MSSP
model. Third, we discuss two different settings of the hurricane process based on whether or not the hurricane’s landfall time is
random or deterministic, and demonstrate the value of the fully adaptive policy over the static policy using realistic case studies
inspired by Hurricane Florence and Ian.

The remainder of the paper is structured as follows: Section 2 provides a brief literature review. Section 3 describes the
mathematical formulations of the MSSP model and its 2SSP approximation for the IHRLEP problem. Section 4 presents
the solution methods used for solving MSSP and 2SSP models. Section 5 presents the experimental setup, followed by the
presentation of numerical results and discussions based on two case studies in Section 6. Section 7 summarizes the paper with
some concluding remarks.

2 | LITERATURE REVIEW

In this paper, we delve into an integrated decision making problem where evacuation operations and their impacts on the
demand for relief items are closely intertwined. It is noteworthy that the existing body of literature primarily treats evacuation
and relief logistics as distinct and separate challenges. Furthermore, the few investigations pertaining to the integrated problem
typically confine themselves to a single-period deterministic planning model. In the subsequent sections, we first review studies
focusing on evacuation and relief logistics separately, followed by a discussion of recent literature dedicated to the integrated
problem.

2.1 | Disaster relief logistics planning

Our paper directly contributes to the issue of disaster relief logistics planning in terms of relief item pre-positioning. In a survey
paper conducted by [41], the authors underscore that existing research predominantly concentrates on traditional supply-side
cost-related objectives. They advocate for future research efforts to bridge this gap by integrating demand-side costs into the
model objectives. Additionally, they emphasize the importance of exploring research avenues related to pre-positioning as a
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risk mitigation strategy and the synergistic approach to addressing pre-positioning challenges within the context of disaster
preparedness.

Stochastic optimization models for relief pre-positioning

Due to the various sources of uncertainty in disaster relief logistics, two-stage stochastic optimization models have been popular
in this context. For example, studies by [32] and [8] have provided insights into relief item pre-positioning under uncertain sup-
ply and demand for relief items. [15] introduced a rolling horizon method that employs a two-stage mixed-integer programming
model to address pre-positioning. They focused on minimizing the logistics and social costs associated with unsatisfied de-
mand under hurricane uncertainty. [47] developed a two-stage robust optimization model specifically tailored to hurricane relief
logistics, accounting for demand uncertainty tied to hurricane severity and logistics pre-positioning disruptions during land-
fall. [51] expanded upon hurricane relief logistics by incorporating social costs in a two-stage robust optimization framework.
They explored the trade-offs between early pre-positioning and waiting for hurricane evolution. [22] addressed pre-positioning
in a two-echelon logistics network with a two-stage location allocation model, ensuring demand satisfaction across multiple
earthquake scenarios.

In addition to two-stage stochastic optimization, other optimization models and solution approaches have been proposed
in the literature. For example, [44] investigated a chance-constrained stochastic programming model, focusing on maximiz-
ing pre-positioning response within budget constraints in humanitarian operations. [48] introduced a two-stage risk-averse
distributionally robust optimization (DRO) approach. Their model integrated facility location and multi-commodity flow con-
siderations, minimizing first-stage costs related to facility placement and relief purchases, while also accounting for worst-case
second-stage relief supply costs. [40] studied the timing of preparedness activities. Their analysis considered logistics pre-
positioning and response costs, as well as the minimum travel time required for transporting relief items to demand zones. [45]
proposed a multi-tier logistics network model with random hurricane landfall times. Pre-positioning was carried out across three
tiers, with uncertain demand realized during the landfall period. [21] and [7] delved into the optimization of pre-positioning
specific resources, such as diesel fuel and pharmaceutical supplies, within emergency relief operations.

These studies collectively contribute to the development of effective strategies for pre-positioning relief items, taking into
account diverse factors, uncertainties, and optimization objectives. However, these decisions do not take into account the
decisions made in evacuation operation. The stochastic demand data for relief items in these studies is not influenced by the
evacuation decisions. In our study, we make decisions for the pre-positioning and supply of relief items in coordination with
the evacuation decisions.

2.2 | Hurricane evacuation planning

Various dynamic and stochastic models have been utilized in evacuation planning to optimize dynamic evacuation decision
policies. For instance, [25] discussed the application of a genetic algorithm to identify feasible solutions for a multi-period evac-
uation network, encompassing different modes of transportation from evacuation zones to shelters. Similarly, [31] addressed
the capacitated network flow problem to maximize the total number of evacuations within a short evacuation window. While
these studies underscore the significance of dynamic evacuation planning as a multi-period endeavor, they often overlook the
uncertainty associated with evacuation start times and the unfolding of demand throughout the planning horizon. Partially ad-
dressing this gap, [39] proposed a dynamic, forecast-driven Markov decision process model aimed at determining optimal
evacuation timings. However, their stochastic model primarily focuses on identifying the evacuation start time and does not
integrate seamlessly with evacuation and relief logistics decisions.

In the literature of stochastic programming and its applications, models for evacuation have been well-studied due to their
dynamic and uncertain nature. For example, [50] formulated the evacuation problem with uncertainty in travel time and ca-
pacity of evacuation routes in a scenario based stochastic programming framework. The two-stage model discussed by [11]
considered the uncertainty in evacuation demand and disruptions in road caused by the disaster. Moreover, [9] developed a bi-
level stochastic optimization model that focuses on determining the appropriate number of evacuees and their evacuation routes.
Further expanding on these ideas, [49] proposed a two-stage model that integrates strategic decisions both before and after
a disaster, aiming to minimize travel costs. This model particularly considers the effects of disruptions on the transportation
network, which introduces uncertainties in travel time and the routes’ evacuation capacities. [18] proposed an MSSP model,
aiming to optimize the timing of evacuation orders and the travel time for evacuees. Their model considers evacuee behavior
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and hazard assessment as critical factors. A risk-averse two-stage model with chance constraints was proposed by [30] that
addresses demand uncertainty in evacuation while minimizing the evacuation time.

Despite the extensive studies on optimizing evacuation decisions, most of the literature that focused on evacuation problem
does not consider the concurrent task of providing the evacuees with relief items, which is directly affected by the evacuation
decisions. The evacuation problem alone accounts for the timely evacuation and safety of the evacuees. However, integrating
relief logistics together helps decision makers to efficiently pre-position the relief items to reduce the logistics cost and social
cost in providing relief items to evacuees at SPs. In our paper, we extend these concepts by factoring in demand uncertainty
and examining how evacuation decisions influence the efficacy of the relief logistics network.

2.3 | Integrated disaster relief logistics and evacuation planning

Among a few recent papers in the literature that consider the integrated evacuation and relief logistics problem, [46] proposed
a three-tier network consisting of a relief logistics network and an evacuation network in a single period planning horizon.
Their multi-objective model in a deterministic setting focused on minimizing the logistics and fixed cost. Specifically, their
objective constituted the minimization of maximum travel distance for evacuees, cost of relief transportation, and cost related
with opening SPs and distribution centers. Hurricane uncertainty in an integrated model was discussed by [17]. The authors
incorporated uncertainty in demand realization, as a result of the uncertain hurricane process on the evacuation side of the
network and the impact of associated evacuation decisions on the relief logistics side of the network into a two-stage stochastic
programming model that minimizes the expected logistics cost of the entire network and the cost of the worst case scenario.
This paper is the closest to our paper in the sense that it studies the impact of evacuation decisions on the relief logistics in case
of hurricane uncertainty. However, this study is limited to a single period planning. Our study fills this gap by proposing an
integrated framework in a multi-period setting.

In this paper, we combine the evacuation and relief logistics decisions in a multi-period IHRLEP and propose fully adaptive,
static, and dynamic policies to solve the problem. We demonstrate the value of a fully adaptive policy over a static policy and
analyze the effect of decisions made on the evacuation side to the relief item pre-positioning decisions.

3 | STOCHASTIC PROGRAMMING MODELS AND SOLUTION APPROACHES

In this section, we describe the stochastic programming models for the IHRLEP to minimize the total expected evacuation and
logistics cost over the planning horizon. We begin by defining the following sets:
Sets
1 Set of DPs.
J Set of SPs.
T Set of time periods in the planning horizon: {1,2,.. ., T}.
We use index j = O to represent the MDC and set J U {0} to represent the set of all facilities on the logistics side of the

network, i.e., the SPs and the MDC. The notation for the parameters of the IHERLP problem is presented as follows:

Parameters
D;  The total population of location i € I before evacuation.
gj  Maximum number of evacuees allowed at SP j € J.
One-time setup cost of SP j € J upon activation.

ia)
~y

é; Keep-up cost (per period) of an active SPj € J.
dij  The distance between location i € 1 UJ U {0} and locationj € /U J U {0} \ {i}
Lf] Unit evacuation cost from DPi € I to SPj € J.
cj’fJ. Unit transportation cost of relief items from j’ € J U {0} to SPj € J.
cl’.J £ Unit penalty cost for unsatisfied evacuation demand at DP i € I.
ch Unit cost of emergency relief items shipped to SPj € J.
c? Unit procurement cost of relief items from the MDC to SPs.
cf Unit cost for unused relief items to be shipped out of SPj € J.
c;’“’R Unit inventory cost of relief items in SP j € J per period.
cf’”’E Unit operating cost of SP j € J (per evacuee) per period.
' ¢  Amount of relief items needed per evacuee per period.

With the sets and parameters stated above, we continue by defining a fully adaptive MSSP model. We note that because of
the full adaptability, we refer to terms “stage” and “period” interchangeably in this model.
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3.1 | A multi-stage stochastic programming model

To start, we follow [43] and provide a nested formulation of a generic risk-neutral MSSP model in (1). At each period ¢t € T, the
(xs, y;) pair represents the state and local decision variables, respectively, which will be explained in detail later in the context
of the IHRLEP problem. The random vector &, represents the realization of the underlying stochastic process at t € 7, and ¢
represents the realized history of this stochastic process up to time 7, i.e., {£1, - ,&}. The feasible set X; at t € T depends on
the state variable from 7 — 1, i.e., x,_1, and random vector &;. As a convention in MSSP, the initial condition x, is known and &;
is deterministic.

min 1 (x1, 31
(1,51 €X1(x0,€1) fi Gy

* Elg[l] (Xz.yz)Ig)i(ﬁxl.ﬁz)fz (x2.y2) Elgm [ T Elg[rﬁ” |:(XT,)’T)g)lfiTI(§fr-1,ET)fT bz, YT):| :| :| O

In general, the stochastic process denoted by {¢&,},c7 is typically represented in the form of a scenario tree, possibly after

certain discretization. However, the size of the scenario tree grows exponentially fast as the number of stages increases. In

this paper, we resort to a Markov chain (MC) approximation of the underlying stochastic process, which is validated through

historical data for the IHRLEP problem as we demonstrate in Section 5. This makes it computationally much more viable to
solve formulation (1). Before we proceed, we note that such a Markovian assumption allows us to rewrite (1) as:

min 1 (X1, y1)
(x1,y1)E€X1(x0,61) Y Y

+ e (xz,yz)%li’ﬁxl ,ﬁz)fz (2. y2) + By |: o+ B |:(x1,,vr)g(1'1(}€'r1 »E'r)fT Ger YT):| :| :| ’ @
where random vector &, represents the realization of the Markovian state at period ¢.

The task of finding an optimal decision policy for (2) can be accomplished by a stage-wise decomposition framework, in
which the sum of the immediate cost and the expected future cost at every stage ¢ for each Markovian state &, is minimized.
Specifically, for each Markovian state &, in each stage t € T, we define the associated subproblem using dynamic programming
equations below:

Qi(x1. &) = min,(x y) + Qpf () (3a)

s.t. ;\f’x, + I:I,E’y, > l;f’ + Ef”x,_l, (3b)

where Q;(-, &) is called the cost-to-go (CTG) function at stage t and Qf;l() = Ee¢, 16, [0:41(, &+1)] is called the expected CTG
function. Since t = T is the terminal stage, the expected CTG function Q?ﬁr](-) = 0 for any state {7 in the terminal stage 7.
Each Markovian state & corresponds to a set of parameters & := {;\f’,l:lf’, Ef’,éf”} used in (3). At a stage ¢, given values of
state variables x,_; and a Markovian state &, the stage-f problem is optimized to minimize the immediate cost f;(x;, y;) plus the
expected future cost that is represented by the expected CTG function Qi{l (7).

To formulate the MSSP model for the IHRLEP problem, we describe the specific characteristics of the decision variables,
objective function, constraints, and the underlying MC model. In our MSSP model for IHRLEP, the objective function f;(:) is
a linear function of x, and y,, and matrices A,, H, and vectors b, are deterministic for each # € 7. The uncertain parameters,
which correspond to the evacuation demand realization at each period ¢ € T (as a result of the Markovian state &, of hurricane),
is part of B,g'.

Markov chain model

As we demonstrate in more details in Section 5, the Markovian state & includes the hurricane track and intensity information
and we assume that the demand realization at ¢ can be computed according to a given mapping from the Markovian state. More
specifically, the Markovian states associated with the hurricane are categorized into absorbing states and transient states. We
assume that the absorbing states are of two types: final-stage states and landfall states. The final-stage states include all the
states at ¢+ = T, while the landfall states are the states that correspond to the hurricane’s landfall prior to reaching the final
stage T. We will elaborate on this later as we describe the two different cases associated with deterministic versus stochastic
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landfall time. All other states, i.e., the states that are not absorbing, are transient states. The transition probabilities pe¢, ¢, from
Markovian state &; to &, for each pair of (&, &,+1) are known. In our numerical experiments, these transition probabilities are
estimated from historical data using certain discretization techniques, as will be shown in Section 5. Given a hurricane state &,
we let D; ¢, denote the associated demand at DP i € /1, which corresponds to evacuation needs in DP i at period f, represented as
a fraction of the remaining vulnerable population in this DP. We assume that D; ¢, can be computed based on a given mapping
estimated from empirical evacuation behavioral studies [6, 24]. We note that the evacuation demand being modeled as a fraction
of the remaining vulnerable population at DPs is a key characteristics of our model. As a result of this, the unfulfilled demand
at a period does not mean a complete disposal of the evacuees from the system as they can be accounted for in later periods.

Decision variables

Our proposed MSSP formulation involves both continuous and integer decision variables. The integer decision variables are
associated with the status of the activation of SPs. In practice, public shelters (which we model as SPs) are activated based on
hurricane forecasts [1]. We make the following assumption about the activation of SPs.

Assumption 1. The SPs need to be activated to use and they stay open until the end of the planning horizon once activated.

Ideally, the decision maker may choose to implement an adaptive SP activation decision policy as hurricane uncertainty
unfolds since the fixed cost to activate and maintain SPs can be very high. However, this would result in a fully adaptive mixed
integer MSSP model, which is notoriously challenging to solve [53]. Furthermore, SP facilities include a variety of public
building such as schools and hospitals [1]. The lead time for shelter opening can be long as the shelter preparation may require
significant amount of time in advance. Based on these considerations, we limit these integer decision variables to the first stage
only in our MSSP formulation with the following assumption:

Assumption 2. The activation of SPs must be made at the beginning of the planning horizon, constituting the first-stage
decisions regarding SPs opening.

The decision variables for each stage-t problem of the proposed MSSP model for the IHRLEP problem are defined on Table 1.
The decision variables e;,/e;, and ¢;, represent the number of evacuees and relief items, respectively, at their corresponding
locations. These variables are the state variables as they are carried over to the subsequent periods in the planning horizon. In
what follows, we denote the vectors of all state variables and their corresponding values at a stage t € T for brevity by X;
and X, respectively. At the start of the planning horizon, the initial conditions of the state variables are defined as follows:
¢0=0,Vj €J,ey9=D; Viel, fj,o =0, Vj € J. All other variables are local variables that only participate in the stage-
problem associated with Markovian state &,. An illustrative example of the decision variables is presented in Figure Al in the
Appendix.

TABLE 1 The decision variables for each stage-¢ problem of the proposed MSSP model.

zi € {0,1}  Whether or not SP j € J is open
L, Inventory level of relief items at j € J at the end of period .

eislej;  Number of evacuees at location i € I/j € J at the end of period .
vijr.  Number of people to evacuate from i € / toj € J at period t.
ujy  Unmet evacuation demand at i € [/ at period ¢.
Xjrj,  Amount of relief items shipped fromj’ € JU {0} \ {j} to SPj € J at period .
gj«/hjy  Amount of emergencylunused relief items shipped to/from j € J at period ¢.

In terms of the periods, we consider each period to be 12 hours long which is motivated by the NHC’s point forecast
intervals [2]. We note that one period in our model is sufficient to carry out the transportation of relief items and evacuees
between any pair of locations, which is stated by Assumption 3. This allows us to model the underlying optimization problem
using a multi-period network flow formulation instead of the more complicated time-indexed network flow formulation.

Assumption 3. The transportation of relief items and evacuees between any pair of locations can be completed within one
period.



Multi-stage Stochastic Programming for Integrated Network Optimization in Hurricane Relief Logistics and Evacuation Planning 7

3.1.1 | The first-stage problem

The first-stage problem of the proposed MSSP model includes both the binary decision variables on SP activation and the
continuous decision variables on logistics operation, which is defined as follows:

. F P R R E
Ql = min Z(Cj + C; X |T|)Zj + Z(C‘ + COJ')X()J"] + Z Z C//ij/xf’l + Z Z Ci,/'yi,/,]+

i€l jes jrel jel il jel
Z Cngj,l + Z C;-[]’ljyl + Z cl[-)Eu,-,l + Z cj’-""Eej,l + Z le-nVjo’l + le (Xl) (421)
jel jel icl jel =
S.t. ZyiJ’l +u; = D,'yflé,"(), Viel (4b)
i€l
eip— Z)’i,j,l =e, Viecl (4¢)
jeJs
Go+ Y Vi =en. V€S (4d)
iel
e < gz, VjelJ (4e)
by < bqjz, VjEJT (4f)
Ui+ g1 — dej1 < ¢qiz, Vi € J (4g)
Gi0+Xoj1 + Z Xjrj1 = Z Xjjr1—dej1 +ga—hii =41, VjeJ (4h)
JESJH 7 EJiFH
> X < o+ g —de. Vi€ J (4i)
J €I JFH
ui,ein >0, Vielej,1,h1,81 >0, Vel 4)
yiju =0, Viel, VjeJ;xj >0, VjieJuU{0}, Vj/ eJ j?’j/ (4k)
Zel01) VieT, Vel 41)

where Qg‘ (X7) is the expected CTG function at ¢ = 2, which is defined as:

Qg‘(XO =Eee, [02(X1,8)] = Z Pee;D2(X1,8),

§€EE

where p¢, ¢, gives the transition probability from &; to &.

In the objective function (4a), the first term represents the one-time fixed cost and the per-period keep-up cost associated
with the activation of SPs, respectively. The second term represents the overall cost linked to procuring relief items at the MDC
and shipping to SPs. The third and fourth terms present the cost related to the transportation of relief items among SPs and the
transportation of evacuees from DPs to SPs, respectively. The fifth and sixth terms represent the emergency transportation cost
of relief items and the salvage value for unused relief items, respectively. The seventh term represents the penalty cost incurred
due to unmet evacuation demand. The eighth and ninth terms account for the inventory costs incurred in holding evacuees and
relief items, respectively. The last term represents the expected CTG function at ¢ = 2 as indicated above.

Regarding the constraints, (4b) models the demand fulfillment and captures the unsatisfied demand. Constraints (4c) and (4d)
represent the number of evacuees at the SPs and DPs, respectively. Additionally, constraints (4e) and (4f) present the capacity
constraints of SPs concerning the number of evacuees and relief items, respectively.

We next describe the constraints related to the inventory flow balance of relief items at an SP. Constraint (4h) is the inventory
balance constraint for relief items at the SPs. The terms in (4h) are organized in a specific order to ensure an adequate supply of
relief items to meet demand while satisfying the capacity constraints following the sequence of operation at SP j € J, which is
illustrated in Figure 1. First, the initial inventory ¢; and the emergency shipments at time ¢ are available to fulfill demand. The
remaining inventory after addressing demand becomes accessible for shipment to other SPs denoted as j/ € J\ {j}. Afterwards,
the relief items dispatched from the MDC and all other SPs j/ € J\ {j} are integrated into the inventory. Subsequently, any
surplus items are shipped out to either mitigate inventory costs or comply with inventory storage constraints. Constraint (4g)
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FIGURE 1 Sequence of flow of relief items at SPj € J.

imposes the capacity constraints on the SPs. Additionally, constraint (4i) ensures that the total shipment among SPs does not
surpass the available inventory.

3.1.2 | The stage—t problem

Recall that we made the assumption that the SP opening decisions are made only in the first stage. We thus use notation
Zj, Vj € J to represent these decisions, which will be treated as input parameters to the stage-# problem at ¢ > 1. The stage-
problem is similar to the first-stage problem, and the initial conditions are given by X,_;, the values of the state variables from
t—1, including: fj‘,_], Vj€J, e, Viel and e, 1, Vj € J. Given a realization of the Markovian state &, the initial condition
X,1, and first-stage SP activation decisions Z, we define the corresponding CTG function for the stage-¢ problem as follows:

% 2 : P R R E G
0/(Xi-1,2,&) = min Z(C + COJ)-XOJ,t + Z Z Cir X' g + Z Z CipYijr+ Z C; 8jrt

jer je jel icl jeJ jeJ
S e X e Y e+ 3 R, 4 05,06 e
jel iel jel jeJ
S.t. Zyi‘j’[ + Ui = Di,f,éi,t—la Viel (Sb)
jeJ
Ciit = Y Yije =€ Vi€ (5¢)
j€l
Gt + Y Vija=ejes Y € J (5d)
i€l
e < qizj, VjieJ (5e)
fj’, < ¢Qj2j, VjielJ (59)
b1+ 8jo— dejy < bq;zj, Vj € J (52)
Z Xjj e < Ej,z—l + g~ VjES (5h)
J'elj
G+ x0,0 + Z Xt i = Z Xjjra = Q€+ & —hjy =iy, Vj €J (51)
VAL VSR
Uit, €y Z O’ Vi e Iy €jts gj,t& hj,h 8jt Z O’ VJ eJ (5.])

yiJ,t Z 0, Vi e I, v] € J;xjj’,t 2 0, v] eJu {0}9 v.]/ eJ ]#]/ (Sk)
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In formulation (5), Qf;l(X,, 2) is the expected CTG function at t + 1 associated with Markovian state &, which is defined as:

O (X1 2) = Bt [Qre1 (Xis 2, 1)

_ {ngezm Pe e Q1 (X1, 2, §1)  if &, 1S transient

e . (6)
0 if & is absorbing

3.2 | Alternative stochastic programming models and solution approaches

MSSP models are known to be computationally challenging to solve. We next discuss two alternative solutions approaches to
MSSP that are based on a two-stage stochastic programming (2SSP) model.

32.1 | A two-stage stochastic programming model

The 2SSP model proposed here can be thought of as a restriction of the MSSP model in the sense that the decision sequence
is reduced into two stages. Specifically, the decision associated with a set of state variables over all periods in the planning
horizon, including the first-stage SP activation decisions, are made in the first stage. The stochastic evolution of hurricane, and
thus the demand realization, is represented by a number of scenarios & = (15, -+ ,&,), Vs € S, which, for example, can
be generated by sampling from the underlying MC process. Here t; < T represents the period when the hurricane gets into
an absorbing state under scenario s, which means that every scenario corresponds to a sequence of transient states followed
by an absorbing state at the end. An optimal decision policy of a 2SSP model consists of the values of the first-stage decision
variables and the values of the recourse decisions for each scenario s € S.

3.22 | 2SSP as a stochastic look-ahead model

At any period ¢ € T, one can define a 2SSP model according to the realized Markovian state & at ¢ and a set of scenarios
generated from &, for the remainder of the planning horizon, which is referred to as a stochastic look-ahead model (SLAM) [37].
If the SLAM is only created and solved at r = 1, the corresponding decisions associated with the state variables over all the
periods in the planning horizon are used in a static fashion regardless of the realization of uncertainty, which we refer to as
the static 2SSP approach. The decision policy associated with static 2SSP entirely loses the adaptability of the state variables
according to the realization of uncertainty, as the same values for the first-stage state variables are applied to all hurricane
scenarios. This motivates the so-called rolling-horizon procedure that applies the 2SSP model at each period ¢ as a SLAM for
the remainder of the planning horizon, where only the decisions associated with the current period ¢ are implemented. In this
case, the adaptability of the decision policy directly comes from the newly realized information used to construct the SLAM
in each period z. For generality, we next present the 2SSP model that is used as a SLAM starting at any period ¢’ < T for the
IHERLP problem.

We consider a 2SSP model used as a SLAM starting at any period ¢’ < T with the planning horizon defined as {¢/, 7' +1,...,T}.
The first-stage variables include ¢;,, Vj € J,Vt € {¢, +1,...,T}, which correspond to the inventory levels at SPs for the
entire planning horizon. We emphasize that, variables ¢;;, Vj € J and e;;, Vi € I, forall ¢ € {f +1,---,T}, which are defined
as state variables in the MSSP model (4) and (5), are not treated as the state variables in 2SSP model. This is because contrary
to the inventory of relief items ¢;, at SP j, which are treated as the state variables since the corresponding recourse decisions
to transport relief items in or out from the SPs are readily available in the form of g;, and £, this simple recourse cannot be
applied to the number of evacuees at SPs ¢;, and DPs e;, since we cannot force people to evacuate if the evacuation demand is
lower than expected. In other words, treating ¢;, and e;, variables as state variables is inappropriate from a practical perspective
in our 2SSP model. Instead, these decisions are defined as the second-stage decisions, dependent on the demand realization
associated with each sample path. This marks a major difference between our MSSP and 2SSP models. The 2SSP model has
only the state variables on the logistics side of the network and requires the complete sample path information &, - - - , &, s for
the recourse decisions for each sample path s.

The SP activation decisions {z;},c; are also the first-stage variables in the SLAM defined at ' = 1, but their values will be
used as input parameters for the SLAM defined for any ¢’ > 1, according to Assumption 2. All the local variables defined in
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model (4) and (5) associated with period ¢’ are naturally also the first-stage decisions, and all other local variables, i.e., those
defined for ¢t € {f +1,---,T}, are defined as second-stage decision variables. We next describe in detail the first-stage and
second-stage problems associated with the 2SSP model defined at period ¢ < T. We note that unlike the MSSP model, terms
“stage” and “period” cannot be used interchangeably to describe the 2SSP model.

3.2.3 |  The first-stage problem of SLAM at ¢ = 1

When ¢’ = 1, the input parameters correspond to the same initial conditions as the first-stage problem of the MSSP model (4a).
The key distinction of the first-stage problem of SLAM at ' = 1 from ¢’ > 1 is the incorporation of the SPs activation decisions
at /' = 1 with the corresponding fixed costs accrued on the process which is presented as follows:

min Z(c +cf><IT|)zJ+Z(c +COJ)X()J1+Z Z /XJJ/1+ZZC,J)’I,;1

jeJs JjeJ JEJ j e iel jeJ
+Zc ng+ZC hjl+Zc u,1+Zc’”"EeJ1+ Z Zc'"‘kfjt+2p3s (7a)
jeJ jedJ iel jeJ T} jeJ seS
s.t. (4b) — (4e) and (4g) — (41)
i < pgizj, VjeJ, Vee {1,2,---,T}, (7b)

where 6; is introduced to represent the second-stage objective value for each scenario s € S in a Benders decomposition
framework, as will be explained in more detail in Section 4.

324 | The first-stage problem of SLAM at ¢ > 1

When ¢ > 1, the input parameters to the 2SSP model defined over the planning horizon of {¢,# + 1,...,T} include: (i) the
values of the state variables from ¢ -1, including {fj,l/_] }jes; (i) the number of evacuees at SPs and DPs at ' —1, i.e., {&,—1 }jes
and {&;,_1 };es, respectively; and (iii) the realization of the Markovian state & at . The solution to z variables {Z;};c; from the
problem (7) at ' = 1 is used as an input parameter. The resulting first-stage model is as follows:

min E (C +COJ).XOJ[’ + g E /ij 1 + § § CIJyIJT'+

JjEJ JEJ jreNj i€l jeJ

InvE InvR
E cj 8y + g ¢ hj,,/ + E c,/ Uiy + g e + E g "+ g PsBs (8a)
= j€J icl = } jed ses

s.t. (4b) — (4d) and (4h) — (4i) applicable at ¢
(4e) and (4g) applicable at ¢’ with variables {z;};c; replaced by {Z;} e,

Uy < ¢gizj, VjeJ, Nre{t, - T} (8b)
32,5 | The second-stage problem of the 2SSP model
For the 2SSP model defined as a SLAM over the planning horizon of {#,# + 1,..., T}, the second-stage variables include all
the local decision variables as well as {e;;}ic; and {e;,}jcs att € {f' + 1,/ +2,...,T}. A set of scenarios S is given, where

each scenario s € S represents a sample path of the hurricane’s evolution from ¢ + 1 until the respective landfall period £, < T,
which occurs with probability p,. The corresponding demand realization vector under a sample path s € S is represented as
({Diy+1stier {Dirsastier, - - - » {Dis, s Jier)- The second-stage problem of the 2SSP model defined over the planning horizon of
{¢,f +1,...,T} is defined as follows:

i InvE
i Z (ZZ l,/ylal”+§ : " le¥+§ :(C +C0,/)x0,1zv+§ E , ],/xl,/ st

te{t’'+1,..., i€l jeJ jeJ jedJ JEJ jred

Z Cngj,t,s + Z Cflhj,t,s + Z Cl[')Eui,t,x> - < Z Z IWRE ) i< (9a)

jeJ JjeJ i€l te{ty+1,....T} jeJ
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S.t. Zyt}iyt.s +uiss = Diss€ir1, Viel,Vt e {t/ +1,..,1} (9b)
jeJ
Cits = Cir-ls— Zyi,/‘,t,s, Vi € I! Vi S {t, + 1’ ~-~,t‘v} (90)
JjeJ
Ciy s = é[’t/, Viel (9d)
Cias = s+ Y Vijasws Y ELVEE ({ +1,..15) (%e)
iel
€iys = éj,,/, Vield O
€jts S quls v.] € J’ vt € {t/ + 1’ oeey ts} (9g)
gj,t—l + X015 T Z Xt jits — Z Xjjr 15— Pejrs + &jrs — Pjss = Aj,u
VASVAL/4 J'edj#
Vieavte {t +1,..,1) (%h)
Z Xijras <1+ gins— Pejus Vi €V E {1 +1,.014) (91)
J' el j#
gj,t—l + 8jts — qbej,,,s < ¢Qj2j, YVt € {l/ + 1, ey ts},Vj cJ (9])
Uisss€irs >0, Vi€ LVt e {f' +1,--- 1} (9k)
Vijes >0, Vie L VjeJNre (' +1,- 1) 9D
Xijas >0,V €JULO), V' € :j#] NVt et +1,-- 1) (9m)
ej,I,S’ gj,t,S’ gj,z,x Z O’ VJ 6 J7 Vt 6 {t/ + 1’ et 7tS}' (9n)

We note that the second component of the objective function (9a) models the “reimbursement” [45] of the first-stage logistics
costs incurred after the terminating stage #, for scenario s € S if #;, < T. After solving the first-stage problem, we obtain the
values for the inventory decisions éj,,, V¢t =¢,---,T. But since under a particular scenario s € § with terminal period ¢, < T,
the first-stage inventory decisions éjt vVt € {t; +1,---,T} are not implemented. The second component of the objective
function (9a) is thereby introduced to represent the return on the planned but unused inventory after hurricane’s termination in
scenario s. In terms of the constraints, (9d) and (9f) are used to make scenario copies of the first-stage decisions for the number

of evacuees, which ensure that the number of evacuees at DPs and SPs at ¢’ are the same under all scenarios.

4 | SOLUTION METHODS FOR THE 2SSP AND MSSP MODELS

We apply the stochastic dual dynamic programming (SDDP) and Benders decomposition (BD) algorithms to solve the MSSP
and 2SSP models, respectively [19, 27]. Since these algorithms are standard approaches in the literature to solve the respective
stochastic programming models, we briefly describe the general approach and present the derivations of the cutting planes used
in our setting.

41 | Benders decomposition for 2SSP

To implement BD for solving the 2SSP model, we decompose the 2SSP problem into two problems: a master problem (MP)
and a set of subproblems, one for each scenario. The initial MP is a relaxation of the first-stage 2SSP model (7) in which a
continuous non-negative variable 6, substitutes the second-stage problem for each scenario s € S, representing the second-
stage value. The second-stage model (9) is decomposed into |S| subproblems, one for each s € S. The vanilla version of the BD
algorithm can be described as follows. Since MP is a relaxed problem, its optimal solution provides a lower bound (LB) of the
original problem. The MP is solved to achieve relaxed first-stage solutions. The subproblem for each s € § is feasible for any
feasible MP solution in our problem because of the relatively complete recourse. Once MP is solved optimally, the subproblem
is solved for each scenario s € S by replacing the first-stage variables in the problem with the optimal MP solutions. The overall
objective value for the optimal first-stage solutions from MP and the optimal second-stage solutions from the subproblems
becomes an upper bound (UB) of the original problem.
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We reformulate all the constraints in the subproblems by moving the given first-stage solutions to the right-hand side (RHS)
of the second-stage constraints. We rewrite the inequality constraints as the ">" constraints for standardization. Given a first-
stage solution (e, é Z é), let )\fgtfj)y, )\1(9;)?, )\ﬁgs), /\j(gths), )\ﬁ';, and )\j(gtjz be the optimal dual solutions associated with the constraints
(9d), (91), (9g), (9h), (91), (9)), and (9k), respectively. We generate and add the Benders optimality cut (10) to the MP at ¢’ = 1 if
it is violated by the first-stage solution (e, g, Z, é), for each scenario s € S. For the MP at ' > 1, since the solution of z variables
obtained from solving the SLAM at ' = 1 are used in the formulation (8), Benders cut (11) is generated, where the terms
associated with solution z appear as constants, and added to the MP if it is violated by the first-stage solution (e, é, é), for each
scenario s € S.

Benders cut for MP at ¢ = 1

9d 9f)
0y >Z)\§[,)e,,/ +Z/\(t, €t

il JjeJ
g (9h) (9h) (91) (C1)]
+Z Z ( )\tsquj-'-)\jtse ( >\le )\jIS+)\jtS> gjvtfl_ jts¢quj> (10)
JEJ te{t’'+1,...1;}

Benders cut for MP at ¢/ > 1

9 9)
2y 3 (_A( - NDoa5) + 3 Mhew + 3 N
JEJ te{t’+1,..., iel jeJ
-y z (s (A A2) ) an
JEJ te{t’'+1,...,
The cuts are added to the MP iteratively until the desired gap between LB and UB is achieved. The BD algorithm can be inte-
grated in the branch-and-bound procedure for solving the MP via the lazy constraint callback in modern integer programming
solvers such as Gurobi.

42 | Stochastic dual dynamic programming for MSSP

We apply the SDDP algorithm to solve the MSSP model defined in (4) and (5). In SDDP, the expected CTG functions Ql 1 ()
defined via the dynamic programming equations (4) and (5), are approximated by a convex piecewise linear under-estimator.
By a sequence of forward and backward passes applied on the randomly drawn samples from the scenario tree (with respect
to the underlying MC process), the under-approximation functions are updated by adding the Benders optimality cuts. To do
so, we adopt a standard epigraph representation and introduce variables % for each Markovian state £, € Z, to represent the
corresponding expected CTG function. One subtlety here is that since the SP opening decisions z; are made at the first stage, we
introduce auxiliary variables, z;, to make a copy of all z; variables locally for each expected CTG function for ¢ > 1 as follows:

=2 Vied (12)

We note that it is important that local copies of these first-stage integer solutions z, applicable across all periods, are employed.
This allows for the propagation of complete first-stage solution information to subsequent CTG functions, which ensures that
cuts are introduced at the first stage with respect to all z variables. Given that the local variables z;; in (12) encapsulate the
solution Z; pertinent to the CTG functions Q,(-), we replace Z; in constraints (5e), (5f), and (5g) by the local variable z;,. This
substitution ensures the consistency in the representation of the first-stage solution information across all periods.

Hllustration of the SDDP algorithm
The SDDP algorithm unfolds as an iterative process. In each iteration k of SDDP, we solve the first-stage problem, incorporating
the Benders cutting planes introduced up to iteration k — 1 to approximate the second-stage expected CTG function Q? (+), and
obtain a first-stage solution X;. Subsequently, we draw a Monte-Carlo sample and obtain a sample path s: (52,5, 53,5, ‘e ,fm)
based on transition probabilities of the underlying MC model, where #, is the terminal stage of sample path s, meaning that
state é,hs is an absorbing state.

Given the first-stage solution X; and the Markovian state 523 sampled at r = 2, we solve the corresponding stage-2 problem
with the current approximation of the associated expected CTG function Q3“( ) and obtain X,. The sequential resolution of
all stage-t problems follows, employing solutions X, and the realized hurricane Markovian states f, sfort=3,4,--- . This
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sequential process is referred to as the forward pass of the SDDP algorithm. An example of the forward pass on a random
sample is presented in Figure A2 in the Appendix.

Following the sample path obtained from the forward pass and the solutions obtained along the sample path, X;, X,, - - - , th’
we start the backward pass. During this pass, we go back in time, i.e., from f = £, #,—1,- - - , 1, and generate Benders optimality
cuts with X, chosen as the reference points and incorporate them into the respective stage-¢ problems in each stage ¢. These
cuts will be used to improve the approximations to the expected CTG functions. We note that no cuts are generated for the
expected CTG function corresponding to any absorbing state. An illustration of this process is presented in Figure A3 in the
Appendix. It is important to note that not all the Markovian states in stage ¢ are accessible from the states in stage # — 1 based
on the transition probabilities of the MC. However, we solve all the stage-¢ problems associated with all the Markovian states
& € E, using solutions X,’s collected from the forward pass for the purpose of cut sharing. The cut sharing idea is applicable
to the IHRLEP problem given the relatively complete recourse property, i.e., solution X, is always feasible given any X,_; in all
possible states &;. An illustration of cut sharing is presented in Figure A4 in the Appendix. After solving all stage-f problems
for all states &,, we generate cut coefficients using optimal dual solutions and introduce the aggregated cuts (weighted by the
transition probabilities) to all the expected CTG function approximation associated with & ;.

Specifically, let afs’b), S afgg) be the dual solutions associated with constraints (5b), ---,(5g) and let af{z) be the dual
solutions associated with constraint (12), that are used to approximate the expected CTG function associated with Markovian
state &;. At an iteration L of the algorithm, let a;' be the constant of cuts added at iterations / = 1, - - - , L—1 to the CTG function

of state § and ;' be the dual coefficients associated with the cuts. The under-approximation of the expected CTG function
for] () is updated at every iteration by adding the cut as follows:

' Eiv Eix
0% > Z 9 &m [Z ((Di,fm sty + 0‘(55),[) ei,t)

§t+1 EEHI iel
Erv Erv Eie Eiv
£ (0‘<Sdl>,fefJ + (‘0%51)1,; — sy + O‘(Sgl),/) Ej,,)
jeJ
L
oS it e 5] @
t'eT jeJ =1

In each iteration of SDDP, the under-approximation of the expected CTG functions Qi’l(-) are updated for all Markovian

states & for all # € T via cut sharing. Throughout the SDDP algorithm, the LB is updated as the optimal objective value of
the first-stage problem in each iteration. Following any iteration, a statistical UB can be computed by collecting the cumulative
objective values over a number of randomly generated sample paths. Let i and & be the sample mean and sample standard
deviation of the total cost on the forward pass, respectively, of M randomly generated samples. We compute the statistical UB

(confidence interval) with 95% confidence as: B
g
VM
The SDDP algorithm is shown to converge with probability one [36]. One could create a stopping criterion based on the
gap between LB and the statistical UB. We choose to implement a practical termination criterion that keeps track of the LB
progress: we terminate the SDDP procedure if the LB fails to improve beyond a specified threshold over a user-defined number
of iterations.

UB = [i +1.96 x

5 | EXPERIMENTAL SETUP

In this section, we discuss our experiment setup and the computational results. We present case studies motivated by Hurricane
Florence 2018 and Hurricane Ian 2022 with the assumption of deterministic and random landfall time, respectively. We start
by discussing how we model the forecast uncertainty for the purpose of scenario generation.

51 | Modeling forecast errors

The way we model hurricane forecast errors depends on the assumption on whether the terminal period is deterministic or
random for the proposed MSSP and 2SSP models, depending on whether the landfall time is assumed to be deterministic or
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random. For the deterministic landfall time case, we use the NHC’s historical track and intensity forecast error (FE) data to
generate scenarios, whereas for the random landfall case, we use NHC’s along, cross, and intensity FE data. Our stochastic
model for characterizing the FE is constructed based on data available from the NHC’s forecast verification report [5], which is
released each year at the end of every hurricane season. The forecast verification is done by comparing the point forecast made
at a period, for all periods up to five days in the future, against the the actual hurricane trajectory commonly known as best track.
At any time of the historical point forecast, the forecast errors are available for the forecast made for 12,24, 36, 48, 72,96, and
120 hours in the future. However, as stated by Assumption 3, our model requires each period to be 12 hours long. Hence we
introduce forecast errors at 60 and 108 hours as the average of the errors at 48 and 72 hours, and 96 and 120 hours, respectively.

The track FE at each period is defined as the great circle distance, which gives an absolute distance between the forecast
track and the best track. The along and cross errors are the actual trajectory FE along the direction and across the orthogonal
direction of the point forecast. The intensity error is given as the difference between the forecast and the best track wind speed.
An illustration of these concepts is presented in Figure AS in the Appendix.

51.1 | A time-series model of the FE process from historical data

Our preliminary data analysis indicates that the Pearson correlation coefficient [16] of FE between two subsequent periods is
greater than 0.5 for all types of FEs described above. The results are deferred to Figure A6 in the Appendix. We also observe
that the Pearson correlation coefficient of FEs associated with two non-consecutive periods decreases as the number of periods
in between increases. This motivates us to model the FE process using the autoregressive model of order one (AR-1) [12],
which captures the Markovian structure of the FE process exhibited in the historical data.

Specifically, let 7, represent the FE at period ¢, then according to the AR-1 model, we have: 1, = pn._; + €;, where ¢, S
N, 0?), ¥t € T\ {1} and n; is deterministic. It is clear that the AR-1 model assumes the FE data to be normally distributed
at every period. We thereby perform a normality test with the support of box plots and quantile-quantile (Q-Q) plots [14] for
intensity, along, and cross errors. An illustration of the FEs at 024 hours is presented in Figures A7 and A8 in the Appendix. In
contrast, the great-circle track error is not normally distributed which is shown in Figures A9a and A9b in the Appendix. The
non-normal distribution of the track FE is due to heavy tails observed. To address this, we transform the track FE data using a
log transformation as follows:

N =log (n,+1), Vr € T\ {1},

where 7/ is the transformed track FE, 7, is the original track FE, and 1 is added to avoid log(0) in absolute track FE data. We
see that the normality assumption is valid after the transformation which is supported by Figures A9c and A9d in the Appendix.

51.1.1 | Parameter estimation for the AR-1 model

We estimate parameters (p, o) in the AR-1 model using the maximum likelihood estimation (MLE) based on the NHC’s official
FE data of tropical storms from 2017 to 2021 [5], and we denote the estimated parameters as p,, and o2,,. At any period ¢, the
FE 1, = pmieni-1 + €15 € ~ N(O, O"%lle). The estimated parameters are presented in Table Al in the Appendix. Given 7, Py and

o2, arealization of 7, can be obtained by sampling ¢, ~ N(0, 02,,).

5112 | Independence between different types of FEs

So far we have discussed the Markovian structure of individual FE processes (implied by the AR-1 models). Since the demand
is a function of both hurricane track and intensity, we are interested in constructing hurricane scenarios with a joint distribution
of the FEs. We use unidirectional track FEs with the point track forecast to create track scenarios in case of deterministic landfall
case. In case of random landfall, we use along and cross FEs to create track scenarios. The Pearson correlation coefficients
shown in Table A2 and the scatter plots shown in Figure A10 in the Appendix indicate that the intensity, track, along, and cross
FEs are roughly independent to each other. The independence of FEs allows us to create hurricane scenarios by sampling each
type of FE independently and then combine them together with their joint transition probabilities computed as the product of
their individual transition probabilities.

5.2 | Instance generation for the Hurricane Florence case study

Hurricane Florence made landfall in the states of North Carolina and South Carolina in 2018. In this computational experiment,
we present the IHRLEP problem for the State of South Carolina considering a deterministic landfall time. We consider a
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planning horizon of five days (or equivalently, 120 hours) prior to the projected landfall time given by the NHC forecast. The
total number of periods in the planning horizon is 11, each being 12 hours long, starting at 120 hours (¢ = 0) prior to landfall.
We assume that the hurricane makes landfall deterministically at r = 10. We assume that the coastal line of South Carolina is
straight for simplicity. We define the study region as an area extending 200 miles around the endpoints of the 170-mile-long
coastal line.

52.1 | Demand and shelter points generation

Hurricanes that make landfall beyond the study region produce zero demand at all DPs. We assume the ZIP code locations of
eight coastal SC counties that are within 50 miles from the coastal line are vulnerable to a hurricane landfall within the study
region. We represent the DPs’ locations by projecting the geographical locations of all vulnerable ZIP codes onto the coastal
line. We set D;, Vi € I to be 5% of the vulnerable population of the respective DPs [6]. Since the number of ZIP codes in a
vulnerable region is too large to consider each of them as an independent DP, we use the K-Means clustering approach [26] to
cluster the projected locations and population into I/l = 10, to represent the DPs to our model. Furthermore, the SC Emergency
Management Division (SCEMD) maintains a list of candidate SPs in every county of SC. Similarly, we use K-Means clustering
with IJI = 10 to generate the candidate SPs by the cluster centers for the location with the capacity aggregated. A visual
representation of the shelters at the county level and an example of this aggregation is shown in Figure A12 in the Appendix.
We pick the central location of Greenville county as the location of MDC and assume that it has an unlimited supply capacity
of relief items. The logistics network of South Carolina for Florence case study is shown in Figure 2a.
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FIGURE 2 An illustration of locations (of DPs, SPs, and the MDC), hurricane scenarios, and MC discretization for Hurri-

cane Florence case study. The sizes of the markers representing SPs/DPs are proportional to their capacity and demand levels,
respectively.

52.2 | Hurricane scenario generation

A hurricane scenario & at time ¢t € T is defined by its location and intensity, denoted as: & := (&, &y, &t ine)s Where & 1=
(&:x, &y) represents the spatial coordinates and & ;,, represents the intensity, measured as the hurricane category on the Saffir-
Simpson scale. We use track and intensity AR-1 error models with Hurricane Florence’s point forecast given by NHC 120 hours
prior to its landfall to generate hurricane scenarios. Since the track error is a great-circle distance, we only have information
about the magnitude of the error but not the direction. Hence, to come up with a case study with deterministic landfall time,
we make the following assumptions about the evolution of Hurricane Florence: (i) the forward speed of the hurricane, i.e., the
movement along the direction orthogonal to the study region (y—axis), is deterministic at each period and is given by NHC’s
point forecast; (ii) the movement of the hurricane along the direction parallel to study region (x—axis) is random which is given
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by the point forecast and the track error sampled from AR-1 model for track error. The directions of the x- and y-axes are shown
in Figure 2b.

Since the track errors are given in the absolute great circle distance, sampled track errors are either added to or subtracted
from the point forecast along x—axis, for the entire path, which is decided based on a random Bernoulli trial, to create track
scenarios. Since the AR-1 FE samples for track error are the log—transformed, we restore the transformation using the following
rule:

~trans

el —1,Vee T\{l},

~trans

where 7)™ is the sampled track error from the AR-1 model of the log—transformed track FE, and 7, is the original track FE
error after restoring the transformation. Since the AR-1 model for the transformed track FE has a low variance and we assume
11 = 0, we observe a very low variability in track FE samples which does not sufficiently represent the true distribution. Hence
for the sake of sufficient variability in the track samples, we fix the absolute track FE at ¢ = 2 to be the average absolute track
error from historical data. In sampling, the same random Bernoulli trial is applied at t = 2 to create scenarios at either sides of
the forecast. An example of the track scenarios is shown in Figure 2b. In the figure, the transient and absorbing states depict the
discretized Markovian states for MSSP, which we will elaborate in Section 5.4. The intensity scenarios are created by adding
the intensity error samples to the intensity point forecast. The resulting intensity in terms of wind speed is represented by the
respective hurricane categories indicated by Saffir-Simpson (SS) hurricane wind scale.

52.3 | Demand estimation

In addition to hurricane position and intensity, SCEMD estimates the demand based on additional factors such as storm surge
and flood warnings. In fact, demand estimation/prediction for hurricane evacuation is itself a complex problem that has been
extensively studied in the literature, see, e.g., [38]. For simplicity, we estimate demand based on the distance of DPs from the
hurricane position, hurricane intensity, and the lead time (7) which is the number of periods until the hurricane’s landfall. While
the distance and intensity are random, the lead-time is deterministic in this case study as we assume a deterministic landfall
time. Since we assume a deterministic forward speed, and the deviation of the hurricane track occurs only along the x—axis, we
use the distance of the hurricane’s position from the DPs along x— and y— axes as the basis of demand realization according to
location, and lead-time, respectively. In practice, evacuation is completed in 2 — 3 days prior of hurricane landfall [28]. Hence
we assume that the evacuation operation begins at r = 4, i.e., six periods before the landfall. We set y.x as the distance of
the hurricane’s location at t = 4 given by the point forecast and the hurricane’s landfall location, so that demand at ¢ < 4 is
zero at all DPs. We define x;,,x as the extent, measured in miles, of the study region, representing the length of the coastal area
extended by 200 miles from each endpoint in a straight line, that is, xy.x = 2 x 200 + 170 = 570.

A positive demand (D;¢,) for DP i € I at a period ¢, as a product of demand realization according to intensity(D}f‘f‘/), lead
time(DZ&), and location(D}f’g), will incur if its location, given by its x- and y-coordinates: L; . and L; ,, respectively, is within a
certain threshold in both the x- and y- axes, xmax and ymax, respectively, which is given by:

D¢, :=Di{ x D] x DI
— ft,int « <1 _ lgt,x _Li,x|> > <1 _ lgt,y _Li,y|> (14)

iNfmax Xmax Ymax

5.3 | Instance generation for the Hurricane Ian case study

Hurricane Tan 2022 made landfall in Florida [3]. Contrary to the Hurricane Florence case for the state of SC, an irregular
geographical shape of the coastline of Florida imposes challenges if one restricts to the deterministic landfall time setting. In the
random landfall time case, the hurricane track error scenarios are created using both the along and cross FEs of the hurricane
track. In this case, we categorize the hurricane states as either transient or absorbing based on the actual coordinates of the
hurricane’s location and its relative distance to the study region of the state of Florida. The landfall time corresponds to the
first period that the hurricane reaches an absorbing state. For this case study we consider a planning horizon of T = 16 periods.
Since the point forecast by NHC is only available up to 11 periods, we use the moving average of two forecast points as the
point forecast for # > 11. We proceed by defining the logistics network of this case study.
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53.1 | Demand and shelter point generation

The Florida Division of Emergency Management categorizes the state of Florida into ten hurricane regions [4]. Each region has
a set of available shelters at different locations and an estimated number of vulnerable people who would evacuate to public
shelters. We represent each hurricane region as one candidate SP with their capacities aggregated at the central location of the
region. We consider ten DPs, one for each hurricane region, with the aggregated demand located at the nearest GIS location
at the coastline. The location of the MDC is picked randomly, away from the coastline, at the location with high population
assuming sufficient availability of the relief items. All locations are illustrated in Figure 3a.
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(a) (b)

FIGURE 3 An illustration of locations (of DPs, SPs, and the MDC), hurricane scenarios, and MC discretization for Hur-

ricane lan case study. The sizes of the markers representing SPs/DPs are proportional to their capacity and demand levels,
respectively.

5.3.2 | Hurricane scenario generation

Hurricane scenarios are generated by using the point track and intensity forecast with along, cross, and intensity FE samples.
Given the point forecast, a random realization of the along and cross errors may result in a sample path that terminates at an
in-land location, i.e., it does not necessarily terminate on the coast line. Since the landfall of the hurricane is defined as the first
time it reaches the land, we approximate the location of the last period of the sample path to be the intersection of the hurricane

track and the coastline. An example of the hurricane’s track scenarios is shown in Figure 3b. The Markovian states depicted in
the figure will be explained in detail in Section 5.4.

53.3 | Demand estimation

Similar to the Florence case, the demand (D;¢,) of DP i at each time # is a function of distance between the DP and the hurricane
location, hurricane intensity, and the time until the hurricane’s landfall. When the hurricane’s landfall time is random, as is
the case for the Hurricane Ian case study, the time until the hurricane’s landfall is a random variable. We thereby define the
demand at a period to depend on hurricane track, intensity, and the expected time until landfall. The expected time until landfall
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for any transient Markovian state (IE[#,]) is computed based on the transition probabilities associated with the MC, or can be
estimated empirically as the average landfall period of a number of randomly generated scenarios, using the error realizations
of the sample path at 7. Specifically, in equation (14), the demand realization according to lead time (D7) and location (D}f’g)

is computed as (1 - %), and (1 - M) , respectively.

54 | Markov chain discretization

The forecast error (FE) samples derived from the AR-1 models offer a means to generate demand estimates applicable directly
to 2SSP models. For modeling the MSSP, we approximate the hurricane process as an MC, a concept alternatively described
through the policy graph framework introduced in [20].

Specifically, recall that we denote the FEs as & := (£7,¢&!) for the Hurricane Florence case and & := (£4,£C,¢!) for the
Hurricane Ian case. Here, &7, EA, ff , and 5{ correspond to the error realizations of track, along, cross, and intensity FEs,
respectively. We note that ¢7 represents the one-dimensional track error, which, when combined with the track point forecast,
yields the respective location (&, &,,). Similarly, overlaying the along and cross forecast errors (£, £°) onto the point track
forecast provides the location (& x, &) In the Florence case, all states at the final stage are classified as absorbing, while in the
Ian case, the Markovian states are characterized as either absorbing or transient based on the associated location information.

We now discuss how to construct an MC discretization for the MSSP according to a set of FE scenarios sampled from the
AR-1 models. For the state space of the MC on hurricane intensity, we use the Saffir-Simpson scale given by: {0, 1,---,5}.
We construct the transition probability matrix of the MC on intensity using the empirical probability distribution according to
10000 randomly generated intensity scenarios from the AR-1 FE model of intensity, converted into their respective hurricane
categories. To construct an MC discretization for hurricane’s location, we perform an MC discretization on the FEs first, and
then overlay the discretized FEs onto the track point forecast to obtain the Markovian states related to locations. Finally, based
on the obtained location information associated with the Markovian states, we classify them as either transient or absorbing
states. We next discuss the detailed discretization technique for the track, along, and cross FEs into MCs and obtaining the
corresponding transition probability matrix.

54.1 | Discretization of forecast errors
We adopt the MC discretization technique proposed by [33]. Specifically, let [fm]f;1 represent the set of Markovian states at
stage ¢, and the collection of {[£ l,s]f;p S, [513]5;1} represents the state space of the MC lattice. Given a sequence of random
vectors {7}, with probability distribution P, the optimal discretization at each stage  can be obtained by solving the following
optimization problem.
min / _min_{|n = &[|dPm,) (15)
(&1l e
Problem (15) is known to be NP-hard, and an approximate solution can be obtained by the approach of sample average
approximation (SAA) [33]. In SAA, we randomly draw samples from the FE’s distribution and update the discretization points
{ft,s}ir The n™ sample drawn is assigned to the nearest discretization point from the (n — 1) iteration. The initialization
conditions are chosen arbitrarily. The updating rule is as follows:

& =

!, otherwise

{ i By = &5 if s = argmingy s (19 - €85 )

As a result of the iterations above, the final discretized states after training with N samples are &, = 5%‘, Vs=1,---8,Vt=
1,---,T. The sets of all random samples, {7} }2’:1 that are closest to the respective &, Vs = 1,---,S,Vt = 1,---,T are
represented by I, . and can be used to compute the transition probabilities between the Markovian states as follows:

St Tre, G1) X I, () ,
e A,H s Vs=1,---,8., Vs =1,--- Sy, t=1,--- , T—1 (16)
Zn:l ]IF&J (77z")

where I, (7)) is an indicator function that represents whether or not training sample 7" at period 7 is in set I'¢, .

pfr.sagm,s’ =
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We use 10000 randomly generated scenarios to train the MC discretization model for track, along, and cross FEs, respectively.
Since the number of Markovian states at a period is inversely proportional to the total discretization loss, the larger number of
Markovian states used, the better representation for the data process is achieved. However, a large number of Markovian states
will lead to high computational effort for solving the MSSP model. To keep it computationally more viable, we start by using
a predefined number of Markovian states at t = T: we set 10 states for the track error and five states each for along and cross
errors. We then compute the average discretization error over the states at = T and use it as the discretization error threshold.
Then, for each period < T, we choose the maximum number of states that the corresponding discretization error falls below
this threshold. An example for discretization of track error is presented in Figure A11 in the Appendix. We define sets =7, =4,
and E,C as the the discretized MC state space of track, along, and cross FEs.

54.2 | Generation of the MC model for MSSP from the discretized forecast errors

The MC model for MSSP is constructed by combining the MC state spaces of intensity and track scenarios, each represented
by independent MC processes. Recall that at each period ¢ € T, the state space of MC state on intensity, denoted as =/, consists
of hurricane categories {0, 1, - - ,5}. Similarly, the state spaces of MC states on track, along, and cross FEs, denoted as =7, =4,
and EC, respectively, are described in the previous section. For the Hurricane Florence case study, we then overlay =7 onto the
point track forecast to obtain the state space == of MC state on hurricane’s location, i.e., each pair (&, &) € =F represents
the hurricane location state. Similarly, for the Hurricane Ian case study, we overlay =4 and =C onto the point track forecast
to obtain the MC state on hurricane’s location. The illustrations of the MC states on Hurricane Florence and Hurricane Ian
are shown in Figure 2b and Figure 3b, respectively, and the numbers of Markovian states used in the Hurricane Florence and
Hurricane Ian in each period are provided in Table A3 and Table A4 in the Appendix, respectively. Furthermore, for Hurricane
Ian case study, all hurricane states at t = T and states at ¢ < T that represent inland locations or are within five miles from the
coastline are categorized as absorbing states. All other states are categorized as transient states.

55 | Logistics cost parameters

In our numerical experiment, we adapt the generation of the logistics cost parameters for both of our case studies from [17]
with some modifications as shown on Table 2.

TABLE 2 Description of logistics cost parameters used in the numerical experiments.

Parameter description Notation  Value

One-time setup cost of SP cf g x k¥

Keep-up cost (per period) of an active SP c]f- ' xwiw =01

Unit inventory cost of relief items in SP cj’-"”R P x IR, IR — (1
Unit relief handling cost per evacuee in SP e cP x KIWE; IE = 0.1
Unit cost of emergency relief items shipped to SP ch cf+ cg. x kG; kG =100
Unit cost for unused relief items to be shipped out of SP ff —cP x stk = 0.1

Unit evacuation cost of evacuees ¢f/ dij x RASIE, jodistE = () |
Unit transportation cost of relief items cj’SJ dyr j X RASIR, LdistE — () 0]
Amount of relief items needed per evacuee per period 1

The hyper-parameters «’s (with various superscripts) in Table 2 are the cost factors associated with the respective cost
parameters. The values of «’s magnify the corresponding logistics cost parameters in a linear fashion. The estimation of hyper-
parameters «’s can be regulated by historical disaster logistics observations. In our experiments, due to lack of historical data,
we randomly pick the values suitable for our model, and we analyze the impact of different values of x”, k%, and ¢” parameters

through sensitivity analyses in Section 6.
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5.6 | Out-of-sample experiment setup

In this section, we describe our out-of-sample experiment setup to evaluate the out-of-sample performance of the decision
policies obtained from the MSSP models and the 2SSP-based approaches. We emphasize that the hurricane scenarios that
are used for solving the MSSP and 2SSP models are referred to as the in-sample scenarios. A hurricane scenario that is
obtained from overlaying a sample of the FEs (from the AR-1 models with the same parameter specification) on the initial point
forecast is referred to as an out-of-sample (OOS) scenario. Either the sample average approximation (SAA) used in 2SSP-based
approaches or the MC discretization used in MSSP models only provides us a set of decision policies defined (and trained)
on the given in-sample scenarios. An OOS experiment to analyze the cost of a decision policy over a set of OOS scenarios is
necessary to test the actual performance of the decision policies trained from the in-sample scenarios. Given an MC disretization
with state space =, Vt € T, the fully adaptive decision policy associated with the MSSP is well-defined. We conduct an OOS
test for the performance of the optimal policies over a collection of OOS scenarios sampled from the discretized MC model,
which we refer to as the OOS scenarios from the MC. Additionally, we conduct an OOS test on the OOS scenarios sampled
from the AR-1 models for the FEs, which we refer to as the true OOS scenarios, to compute the value of the optimal policies
trained by the MSSP model on the discretized MC.

56.1 | OOS test of the MSSP model on true QOS scenarios

MSSP models are optimized over a recombining scenario tree defined by the MC model, where each transient Markovian state is
associated with an expected CTG function trained through the SDDP algorithm. After running the SDDP algorithm, we retrieve
the optimal first-stage solution and the trained expected CTG functions associated with all the transient Markovian states and
use them in the OOS test. The total cost along an OOS scenario from the MC can be computed by utilizing the expected CTG
functions associated with the Markovian states on this OOS scenario. However, the OOS test on a true OOS scenario cannot
be done in the same manner since the hurricane states on the true OOS scenario may not correspond to any Markovian state.
Having a good policy to pick the right expected CTG function for each state along the true OOS scenario is crucial to minimize
the performance discrepancy between training (in-sample performance) and testing (out-of-sample performance). We proceed
by describing the policies we use in our case studies.
OOS test in Hurricane Florence case study

Given a true OOS scenario {7;,- -+ ,nr}, ateach period t = 2,3, - - - , T, we adopt the decision policy induced by the expected
CTG function (trained from the SDDP algorithm) associated with the Markovian state that is closest to 7, based on a certain
metric. Specifically, let (1!, n!) denote the hurricane’s intensity (represented in the SS scale) and track information associated
with 7,. Recall that every Markovian state & € Z; is represented by the respectlve hurricane intensity and track attributes:
5, = (¢!, ¢1). To determine the closest Markovian state ft =, to 7, we select f, such that §t € argmin{l¢! —nfl: & € Z,} and
f, such that f, € argmin{l¢f - 1 & € Z;}. We then select the expected CTG function associated with 5, = (fll , E,T ), which
is given by Q, +1(+), and solve it using the OOS data 7),.
0OS test in Hurricane Ian case study

The assumption of random landfall time in the Hurricane Ian case study makes the approach for OOS test on the true OOS
scenarios slightly different than the Florence case. Let {n;,- - -, 7, } be an OOS scenario where ¢, < T represents the terminal
stage of the OOS scenario. Unlike in Florence case, the hurricane track scenarios in this case are characterized by along and
cross FEs. For a given OOS state 7, := (n/, 7%, n°), our objective is to select the expected CTG function associated with the
state & = (¢!, €4, £C) that is closest to 7;. To achieve this, we proceed by selecting & € argmin{l¢/ — 7/l : & € Z,}, followed
by &8 € argmin{IEA =l : & € 5}, and €€ € argmin{IE€ — 1€l : & € F,}, in this specific order. We denote the closest
Markovian state é, € =, to 1, calculated using the described steps, as 5, € argmin{ll§ —nill : & € =Z;}. However, the expected
CTG function that we pick this way may be associated with an absorbing state for 7 < ¢, or associated with a transient state for
t = t,. Since a sample path is characterized as a sequence of transient states followed by an absorbing state at the termination,
we modify the policy for picking the expected CTG functions using the following two heuristics:

H1 Define a set of sequence of hurricane states from the MC model that are closest to the OOS states: S7! = {§~, : 5, €
argmin{||& —n,| : & € E,t = 1,--- ;). Define 7, = argmin,{& € SH! : & is absorbing}. Solve a sequence of CTG
functions Q;ét(j(tfl, z,m) 1 & € ST for t < 1 followed by the sequence of cost functions Q; ()A(,x,l, 2,&) : Qp1(-) = 0 for
re {iS’”' ,ts}~
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H2 For all ¢+ < t, pick the expected CTG function associated with state é such that é, €
arg min {Hg, -l & € Eh & s transient}; for t = ,, set the expected CTG function to be Q; () = 0 in the OOS test.

In terms of the selection of the expected CTG functions, heuristic H2 is similar to Florence case. However, in the presence of
non-terminal absorbing states with the minimum distance to transient OOS states, the demand after the absorbing state should
be satisfied locally without considering future cost. This may result into an expensive cost of a true OOS scenario. Hence
going from the deterministic to random landfall case, it is critical to find an appropriate policy for choosing the expected CTG
function in the OOS test with true OOS scenarios. We will demonstrate this with numerical results in Section 6.

562 | OOS test of the 2SSP model

An optimal solution to the 2SSP model solved at r = 1 provides a static decision policy, which corresponds to a set of first-
stage decisions that are made before the hurricane uncertainty is unfolded. Since the recourse decisions of the proposed 2SSP
model only include those associated with the in-sample scenarios, the recourse policy for any arbitrary OOS may not be readily
available. Hence, given a first-stage decision, to compute the cost of a static decision policy from the 2SSP model on an OOS
scenario, we need to apply certain policies to define the recourse decisions. Recall that our 2SSP subproblem (9) takes the entire
sample path information {7;,--- , 7, } to optimize the recourse policy because of variables e;’s that link all periods together are
treated as recourse variables instead of the first-stage variables. One policy is to supply the entire OOS scenario data and solve
the second-stage subproblem (9) with the optimal first-stage solution to find the corresponding optimal recourse decision for
the OOS scenario. We refer to this policy as 2SSP-anticipative. We note that the 2SSP-anticipative policy is not implementable
in practice, since at any period, an implementable policy should only take into consideration the information available up to
that period and not the future, but it is useful in our benchmark to provide an optimistic bound on the 2SSP solution. On the
other hand, we employ an implementable myopic heuristic approach that we refer to as 2SSP-myopic, in which given the first-
stage solution and the OOS scenario, we sequentially solve a deterministic problem at every period to determine the optimal
recourse decision for that period only. Specifically, for given first-stage solutions, (Z, /) and the OOS data {m,---,n,}, wesolve
deterministic optimization problem (17) at every period ¢t = 2, - - - , ¢, by utilizing the initial conditions (é,_;) and uncertainty
realization D,,, to determine the local decisions, y;, e;, X/, &, I, 4, and update the initial conditions for the next period. Atz = 1,
the initial conditions are &;0 = D;, Vi € 1, &j0 =0, Vj € J.

: E InvE P, R R
min E E Ci,,')’z’J,t*‘E ¢ ej,,+E (c +c0J)x0J,,+E E ¢ X at

icl jeJ JjeJ JjeJ JjeJ jlel
Z C]ng,t + Z C;Ihj,t + Z CfEui,z (17a)
jeJ jeJ icl
S.UY Yia+ttiy = Dig i, Vi €1 (17b)
j€J
€is =Gt — Y Vijur Vi€ (17¢)
jeJ
€ = €1 + Z)’i,j,z, vjelJ (17d)
i€l
e < gz, Vj€J (17e)
Gumd + %00+ > Xpja— D Xjjra— e+ gu—hip =L, Nj €T (17f)
J el j#’ Jelj#’
Z Xjjrp < Ej,z—l + 8 — ¢ej,z, Vield (17g)
Jelj#
i1 + gju— dejs < dqiz N € J (17h)
ui, e >0, Viel (171)
Vija>0,Yiel,Vjel (17))

Xy >0,V €JU0}, V] ed:jZ) (17K)
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ej’[, gj’[, gj,; Z O, Vj E J (171)

57 | Implementation details

The first-stage problem in MSSP and 2SSP models is a mixed-integer linear programming (MILP) problem. One approach
to add cuts to the first-stage problem in Benders and SDDP algorithms is to solve the first-stage problem to optimality at
every iteration and add cuts (10) and (13) generated with the optimal first-stage solution, which we refer to as the simple
Benders/SDDP approach. However, in the presence of large number of integer variables, solving first-stage MILP problem
to optimality at every iteration can be computationally expensive. In such cases, an alternative approach is to add cuts to the
incumbent solution of the branch-and-bound tree of the first-stage MILP problem in /azy fashion. We refer to this approach
as branch-and-cut (BC) with lazy constraints. Through our initial experiments, BC with lazy constraints is found to be more
efficient than the simple Benders approach for the 2SSP models. However, for SDDP, BC with lazy constraints does not produce
better results compared to the simple SDDP. We thereby use BC with lazy constraints for static 2SSP and simple SDDP to
solve MSSP models.

We set the time limit of six hours for solving each instance in all our experiments. We set the cut violation threshold to 1073
in the cutting plane generation. The termination criterion of the SDDP algorithm is regulated by a lower bound improvement
threshold in which we stop the SDDP algorithm if the relative gap between the lower bounds in 1000 subsequent iterations
is less than 7 = 1073 or the time limit is reached. At the time of termination, we report the statistical upper bound computed
with M = 10000 sample paths. All the implementations are done in Python 3, utilizing the Gurobi optimization solver version
10.0 on Palmetto cluster, a high performance computing cluster at Clemson University, with 2.60GHz, 64 cores processor, and
128GB memory.

6 | NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results from our experiments. As mentioned in Sections 5.2 and 5.3, we consider an
integrated evacuation and logistics network with I/l = I/1 = 10 in both case studies. We create instances with different parameters
by varying the values of ¥, xPZ, and ¢” as mentioned in Section 5.5. We refer to a combination of 7, F, and c” as a cost
configuration. We create a baseline instance with x7 = 5, kP = 200, and c” = 5 and we use it as the basis for comparing with
other configurations. Since we are interested in analyzing the impact of each cost parameter to the results, we change the value
of one parameter at a time while keeping the other two the same as the base model through a sensitivity analysis (SA). For the
SA of the fixed cost, we pick different values of xF € {1,10,20,50} while keeping the values of xZ and ¢’ the same as the
base model and report the corresponding results. The SA of the penalty and purchase cost are done in a similar manner with
instances created with 7% € {50, 100, 300, 500}, and ¢ € {1, 10, 50, 100}, respectively. These settings altogether give us 13
cost configurations for each case study. The ranges of ", xkFZ, and ¢ are chosen to represent the respective cost parameter’s
low to high ends. The lower end of k”F is determined based on the principle that the unit penalty for not meeting evacuation
demand, on average, should surpass the costs linked with providing the corresponding amount of relief commodities, including
procurement, transportation, and inventory, as well as emergency procurement costs.

In each case study, we provide an analysis of three key components: the first-stage SP activation decisions, the performance of
the algorithms employed, and the OOS test results. The latter two aspects are examined across the aforementioned 13 different
cost configurations. Additionally, we utilize an in-sample scenario size of IS| = 100 for solving the 2SSP models in both case
studies. This determination is based on the outcomes of our preliminary experiments, which have indicated that this sample
size is sufficient from the in-sample stability perspective. In the tables to be shown later in this section, we use the following
abbreviations.

6.1 | Case study on Hurricane Florence
In the Hurricane Florence case study, we assume a time horizon of |71 = 11, where all the Markovian states are absorbing

at t = 11, and all other states are transient. Table 4 presents the results of the SDDP and Benders decomposition algorithms
for solving the MSSP model and 2SSP model in the Hurricane Florence case study, respectively. Within the time limit of six
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TABLE 3 Abbreviations used in result tables.

Name Description

Time Computational time in seconds

# Nodes Number of nodes explored in the branch-and-bound tree of the 2SSP master problem

# Iterations Number of iterations of the SDDP algorithm until termination

LB The lower bound provided by the SDDP algorithm at termination

UB* UB*:=p+1.96 x ﬁ;M = 10000. The upper confidence limit of the statistical UB of the SDDP at termination
Gap Gap := Uli/*[;LB X 100%, the relative gap (in percentage) between the LB and UB* provided by the SDDP algorithm
CI of obj Cli= 1 + 1.96 x %;M = 10000. 95% confidence interval of the objective in the OOS test

P-GAP Performance gap in terms of the objective value (in percentage) between the MSSP model and the 2SSP models

2-A/2-M/MS  2SSP-anticipative/2SSP-myopic/MSSP

hours, the Benders decomposition algorithm terminates with an optimal solution to the 2SSP model, while the SDDP algorithm
converges to a low gap (< 2%) between the lower bound and the statistical upper bound. The computational time of the SDDP
algorithm is 2.42 times more, on average, than the Benders decomposition algorithm.

TABLE 4 Algorithm results for Hurricane Florence case study.

Benders decomposition for 2SSP SDDP for MSSP
& KPE P Objective Time  # Nodes LB UB* Gap Time # Iterations
5 200 5 1.99 x 106 6737.83 4211 191 x 106 193 x 10° 0.99%  14857.63 2898
1 200 5 1.35 x 10°  5732.77 4581 127 x 10° 129 x 10°  1.59%  18089.16 3232
10 200 5 276 x 10°  7551.95 4667 269 x 10° 271 x 106  0.96%  14863.41 2850
20 200 5 427 x 10°  5545.95 3663 420 x 106 424 x10° 095% 13086.34 2631
50 200 5 8.52 x 10°  4821.06 3407 847 x 10° 855 x 10° 1.04%  9385.49 2177
5 50 5 1.95 x 106 5155.38 4125 1.88 x 106 1.88 x 10° 0.34% 21602.84 3471
5 100 5 1.98 x 10 6811.09 4337 1.90 x 10° 192 x 10° 1.11% 19216.16 3288
5 300 5 1.99 x 10°  6797.05 4272 191 x 106 1.92 x 10° 0.70%  13412.19 2769
5 500 5 1.99 x 106 5829.71 3792 192 x 106 193 x 10° 0.70%  14553.34 2860
5 200 1 1.09 x 10°  6360.30 4258 1.07 x 106 1.08 x 10° 0.77%  13678.55 2745
5 200 10 | 3.07 x10° 7584.86 4476 292 x 10° 297 x 10°  1.62%  10233.64 2377
5 200 50 | 1.11x107 387123 3504 1.09 x 107 1.10 x 107 0.64%  5209.70 1625
5 200 100 | 1.73x 107  1314.11 2344 1.73 x 107 173 x 107 031%  21603.99 4397
6.1.1 | Shelters activation decision

Figure 4 illustrates the activation decisions of SPs in the base configuration of both the 2SSP and MSSP models for the Florence
case study. Given that SPs are activated at # = 1 based on the first-stage decision, the decisions regarding shelter openings are
notably similar between the two models across all instances. The activation of SPs is influenced by various factors, including
their distances from the MDC and DPs, their capacities, and the associated fixed costs.

The MSSP model incorporates adaptive decision-making for the inventory levels of relief items, whereas the 2SSP model
relies solely on a static first-stage solution. Consequently, in the MSSP model, where inventory levels can be adjusted accord-
ing to demand realizations, the emergency relief commodity transportation is minimized to the most extent. Thus the activation
decisions of SPs in the MSSP model are more influenced by the evacuation costs. Conversely, in the 2SSP model, optimized
with an entire sample path information but with non-adaptive relief inventory decisions, the emergency relief items transporta-
tion cost cannot be avoided to meet inventory requirements in various scenarios. Due to this non-adaptive nature, the activation
decisions of SPs in the 2SSP model are equally influenced by the relief commodity transportation cost and evacuation cost,
resulting in SP activation based on the proximity to the MDC as well. Nonetheless, SPs with higher capacities and lower
evacuation costs are activated in both models due to significant cost savings, irrespective of the adaptiveness of the model.
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FIGURE 4 Activation of SPs in Florence case study for k' =5, KPE =200, ¢ = 5.

6.1.2 | 0OOS performance

In this section, we examine the performance of static and adaptive policies through OOS testing, utilizing scenarios generated
from MC model and true OOS scenarios. Tables 5 and 6 provide the average cost with 95% confidence intervals (CIs) for the
MSSP model, 2SSP-anticipative, and 2SSP-myopic.

TABLE 5 OOS test results of Florence case study on OOS scenarios from the MC model.

MSSP 2SSP-anticipative 2SSP-myopic
kI KPE P CI of obj CI of obj P-Gap CI of obj P-Gap
5 200 5 1.93 x 106 £8.17 x 103 | 1.99 x 10° £8.59 x 10> 3.35% | 3.05 x 10° £+ 1.36 x 10  36.69%
1 200 5 1.30 x 10° £7.41 x 103 | 1.34 x 10° £ 6.16 x 10° 2.75% | 238 x 10° £ 1.19 x 10  45.34%
10 200 5 273 x 109 £8.72 x 103 | 2.76 x 106 +8.97 x 10>  1.62% | 3.78 x 10° + 1.38 x 10*  28.17%
20 200 5 425 % 10°+1.28 x 10* | 429 x 10°+1.38 x 10*  1.02% | 5.31 x 10° £ 1.77 x 10*  19.88%
50 200 5 8.50 x 10° £2.17 x 10* | 8.55 x 100 +£2.46 x 10*  0.57% | 9.53 x 100 £2.77 x 10*  10.78%
5 50 5 1.89 x 106 £825 x 103 | 1.94 x 106 £7.62 x 103>  2.73% | 2.95 x 10° £ 1.26 x 10  36.00%
5 100 5 1.93 x 100 4+ 8.60 x 103 | 1.96 x 10 +7.34 x 10°  1.95% | 2.98 x 10° + 1.26 x 10*  35.46%
5 300 5 1.92 x 10° £7.81 x 103 | 2.00 x 10° £8.71 x 10>  4.11% | 3.02 x 10° £ 1.36 x 10*  36.44%
5 500 5 1.93 x 100 +£7.67 x 103 | 1.99 x 10° +£7.23 x 10°  2.77% | 3.02 x 10° £ 1.26 x 10*  36.05%
5 200 1 1.08 X 10° £227 x 103 | 1.11 x 10° £3.81 x 10° 231% | 1.93 x 10° £7.84 x 10°  44.04%
5 200 10 | 2.94 x 1004+ 1.47 x 10* | 3.07 x 10° £ 1.44 x 10*  4.37% | 4.24 x 10° +£1.95 x 10*  30.76%
5 200 50 | 1.06x 107 +£7.05 x 10* | 1.11 x 107 £7.03 x 10*  526% | 1.23 x 10" £7.19 x 10* 13.97%
5 200 100 | 1.74 x 107 £1.41 x 10° | 1.75x 107 £1.45 x 105  0.67% | 2.11 x 107 £1.43 x 10°  17.62%

To begin with, the average MSSP cost, across all configurations, on true OOS scenarios is only 1.5% higher than the aver-
age cost of OOS scenarios from the MC model, indicating that the MC approximation effectively captures the characteristics
of the underlying stochastic process. Across all cost configurations, the MSSP model exhibits better cost efficiency than 2SSP-
anticipative and 2SSP-myopic with gaps 2.58% and 30.09%, respectively, for OOS scenarios generated from the MC model.
Similarly, for true OOS scenarios, the gaps of 1.46% and 19.19% are observed, respectively. These consistent findings under-
score the superior cost efficiency of the MSSP model compared to the 2SSP model in both test cases. Moreover, these results
support the assertion that 2SSP-anticipative outperforms 2SSP-myopic due to its ability to optimize over the entire sample
path with future evacuation decisions optimized at t = 1 because of its information advantage. On the other hand, even with
this impractical information advantage, the 2SSP-anticipative is still outperformed by the MSSP policy by a significant mar-
gin, indicating the value of adaptability exhibited by the decision policy associated with the MSSP model. Additionally, the
wider confidence interval (CI) for 2SSP-myopic compared to MSSP and 2SSP-anticipative indicates higher variability in its
performance.

For the OOS test conducted over the OOS scenarios from the MC model, the MSSP model, being fully adaptive and opti-
mized over the entire recombining tree of the MC model, outperforms the static 2SSP model. However, the gap between the
MSSP model and static 2SSP model (in terms of both 2SSP-anticipative and 2SSP-myopic) narrows when testing over true
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TABLE 6 OOS test results of Florence case study on the true OOS scenarios.

MSSP 2SSP-anticipative 2SSP-myopic
&F KPE P CI of obj CI of obj P-Gap CI of obj P-Gap
5 200 5 1.97 x 10° £4.55 x 103 | 2.00 x 10° £ 6.45 x 10°  1.77% | 2.93 x 10° £ 1.27 x 107  32.86%
1 200 5 133 x 106 £4.11 x 103 | 1.36 x 10° £6.34 x 10°  1.95% | 2.33 x 10° £ 1.24 x 107 42.70%
10 200 5 275 % 10° £4.82 x 103 | 2.78 x 100 +6.89 x 10>  1.07% | 3.71 x 10° £ 1.35 x 10*  25.84%
20 200 5 429 x 10°4+6.98 x 10° | 4.30 x 10°£8.69 x 10>  0.30% | 5.29 x 10° 4+ 1.70 x 10*  18.90%
50 200 5 8.52 x 100 £ 1.17 x 10* | 8.54 x 10° 4+ 1.50 x 10*  0.30% | 9.48 x 100 +£2.94 x 10*  10.20%
5 50 5 1.92 x 10° £4.56 x 103 | 1.97 x 10° £6.75 x 10°  227% | 2.95 x 10° + 1.32 x 107  34.88%
5 100 5 1.96 x 100 £4.75 x 103 | 1.99 x 10° £ 6.50 x 10°  1.48% | 2.92 x 10° +1.27 x 10*  32.86%
5 30 5 1.96 x 106 +4.37 x 103 | 2.01 x 10° £ 6.58 x 10°  2.46% | 2.96 x 10° +1.29 x 10*  33.95%
5 500 5 1.97 x 106 £ 4.30 x 103 | 2.01 x 10° £6.68 x 10°  2.29% | 2.98 x 10° + 1.31 x 10*  33.93%
5 200 1 1.09 x 10 £ 128 x 103 | 1.10 x 10° £3.83 x 10°  1.02% | 1.94 x 10° £ 7.50 x 10°  43.90%
5 200 10 | 3.01 x 10°+£8.16 x 10> | 3.09 x 10° +9.85 x 10> 2.64% | 3.98 x 100 +1.93 x 10*  24.34%
5 200 50 | 1.09x 107 £3.89 x 10* | 1.11 x 107 £4.11 x 10*  2.01% | 1.17 x 107 £8.05 x 10*  6.78%
5 200 100 | 1.76 x 107 £7.77 x 10* | 1.75 x 107 £ 7.85 x 10*  -0.55% | 2.17 x 107 £ 1.54 x 10°  18.95%

OOS scenarios. This is not surprising because the optimization of the static 2SSP model is done with a set of scenarios sampled
directly from the underlying stochastic process (i.e., the AR-1 models), whereas the MSSP model is optimized over the MC
approximation.

The breakdown of cost components for each model is detailed in Table 7. Analysis of the base configuration reveals that in
MSSP, a higher proportion of costs is attributed to relief prepositioning (encompassing relief purchase and inventory) and fixed
costs compared to the 2SSP model (both 2SSP-anticipative and 2SSP-myopic). Conversely, the emergency cost in the 2SSP
model constitutes a larger proportion of the total cost than in the MSSP model. This difference highlights the efficacy of the
MSSP model’s fully adaptive relief inventory decision-making, facilitating more efficient demand satisfaction through regular
inventory and reducing reliance on costly emergency transportation, which is more prevalent in the static 2SSP model due to
its non-adaptive relief inventory decisions.

TABLE 7 Proportion of cost components, on average, of the OOS test on true OOS scenarios in Hurricane Florence case study.

Fixed Inventory Penalty Emergency Relief Purchase Transportation
kF wPE P MS 2A 2M | MS 2A 2M | MS 2A 2M | MS 2A 2M | MS 2A 2M | MS 2A 2M
5 200 5 40% 39% 27% | 9% 8% 6% 1% 1% 1% 9% 10% 36% | 38% 37% 28% | 3% 3% 3%
1 200 5 13% 12% 7% 14% 13% 8% 0% 0% 0% 9% 14% 46% | 60% 56% 36% | 5% 5% 3%
10 200 5 56% 55% 41% | 7% 6% 4% 2% 2% 1% 1% 7%  28% | 32% 271% 22% | 2% 3% 2%
20 200 5 68% 68% 56% | 4% 4% 4% 4% 4% 3% 1% 3%  20% | 20% 19% 16% | 2% 2% 2%
50 200 5 80% 78% 10% | 2% 2% 2% 7% 9% 8% 3% 2%  11% | 8% 9% 8% 1% 0% 0%
5 50 5 38% 37% 25% | 9% 10% 6% 2% 2% 1% | 12% 8%  36% | 36% 41% 29% | 3% 3% 2%
5 100 5 39% 39% 26% | 9% 9% 6% 2% 1% 1% 13% 10% 36% | 34% 38% 28% | 4% 3% 3%
5 300 5 41%  39% 27% | 9% 8% 6% 1% 1% 1% 9% 10% 37% | 38% 37% 28% | 3% 3% 3%
5 500 5 41% 40% 27% | 9% 8% 6% 0% 1% 1% 8% 10% 36% | 39% 38% 28% | 3% 3% 3%
5 200 1 3% T2% 41% | 4% 4% 2% 1% 1% 1% 0% 1% 43% | 17% 16% 10% | 6% 5% 4%
5 200 10 | 26% 25% 20% | 10% 10% 8% 1% 1% 1% | 23% 24% 35% | 38% 37% 35% | 3% 3% 2%
5 200 50 5% 7% 7% 9% 7% 8% 6% 7% 0% | 65% 18% 85% | 14% 0% 0% 1% 1% 1%
5 200 100 | 4% 4% 3% 4% 4% 8% | 50% 53% 3% | 42% 39% 85% | 0% 0% 0% 0% 0% 0%

In the context of evacuations, where evacuees at SPs receive relief items periodically throughout the planning horizon, the
decision between evacuation and incurring penalty costs can be complex. Evacuees subject to penalty costs at a particular period
are not guaranteed to be accounted for in future demand. Consequently, in certain scenarios, it may be more beneficial to incur
a penalty once rather than evacuate, particularly if demand for relief items at SPs can be met through emergency transportation
for the remaining periods due to lack of sufficient relief inventory. While 2SSP-anticipative optimizes policies across the entire
sample path, effectively balancing this trade-off (although in an impractical fashion), the MSSP model incorporates future
expected costs via its expected CTG function. Conversely, 2SSP-myopic prioritizes short-term (local) decisions, leading to
a reliance on evacuation strategies to avoid immediate penalty costs. However, the lack of consideration for future demand
results in increased reliance on emergency transportation in subsequent periods, leading to higher emergency costs and less
cost efficiency overall.
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Moving forward, we focus our discussion on the results of the sensitivity analysis for fixed, penalty, and purchase costs,
particularly emphasizing insights drawn from the OOS test on true OOS scenarios, as similar conclusions can be derived for
the results on OOS scenarios from the MC model.

6.1.2.1 | Sensitivity analysis on fixed cost

When ' = 1, the fixed costs incurred are minimal, as evidenced by the proportion of fixed costs shown in Table 7, thus
making costs related to relief logistics and transportation more dominant. However, as /" increases, the fixed costs become the
predominant component of the total cost. The MSSP model, with its adaptive relief logistics capabilities, sees relief logistics
costs, including relief purchase, inventory, and transportation, as more dominant when ' takes smaller values. Moreover, it
efficiently avoids expensive emergency costs thanks to its adaptive inventory levels. Conversely, the non-adaptive first-stage
relief inventory in the 2SSP models leads to higher emergency costs to fulfill demand not met by the static inventory levels.
Additionally, we also see that a higher fixed cost makes the evacuation cost more expensive, leading to a relatively larger
accumulation of penalty costs. In this case, since the fixed cost primarily corresponds to the first-stage decisions of activating
SPs, the MSSP model’s relief logistics adaptability offers little advantage with a very large 7 value.

6.122 | Sensitivity analysis on penalty cost

The sensitivity analysis for x*F yields consistent outcomes across the specified range. Table 6 demonstrates that average costs
and performance gap for various x/ values remain similar across all models. Notably, penalty costs represent no more than 2%
of the total cost across all ¥ configurations (see Table 7). The chosen range of x’F ensures that penalty costs outweigh relief
logistics costs on average. Evacuation is favored over paying high penalty costs when sufficient relief inventory is available
at SPs. Conversely, in scenarios where the available relief inventory falls short of meeting the demand of relief items at SPs,
evacuation still becomes the preferred option because the combined cost of emergency relief supply and evacuee transportation
is set to be lower than the penalty cost of not evacuating. Successful evacuations, rather than penalty costs, predominantly meet
evacuation demands, explaining the consistent results across different x"% values. Furthermore, unevacuated evacuees may
contribute to demand estimates in subsequent periods. In hurricane scenarios with initially high demand during evacuation, a
one-time penalty cost may prove more cost-efficient than continuous relief item supply costs. Consequently, some penalty costs
may be incurred, particularly when x7Z is low. Conversely, at maximum ~"Z, even a single-period penalty cost exceeds multi-
period relief logistics costs, prompting more evacuations. Moreover, a higher evacuation rate with large x*Z reduces emergency
transportation costs in the MSSP model due to its adaptive relief inventory management. In contrast, the non-adaptive relief
inventory in 2SSP-anticipative leads to emergency costs satisfying relief item demands at SPs. Additionally, emergency costs
constitute a more significant component in 2SSP-myopic due to its myopic decision-making policy based solely on local costs.

6.123 | Sensitivity analysis on purchase cost

The purchase cost directly influences inventory and emergency costs (see Table 2). When c” is at its lowest (c” = 1), both the
purchase and fixed costs become more dominant in MSSP and 2SSP-anticipative as shown in Table 7. Consequently, sufficient
relief logistics pre-positioning is achieved, even in the static 2SSP model. Given that 2SSP-anticipative optimizes evacuation
decisions with complete sample path information, costly penalty and emergency expenses are avoided due to the availability
of adequate relief inventory. Consequently, MSSP’s adaptability offers less advantage, resulting in lower performance gap
compared to the case when ¢ = 10. Conversely, when the purchase cost is at its highest (c” = 100), relief item pre-positioning
becomes expensive, leading to demand satisfaction through more frequent penalty and emergency costs. With high purchase
costs, emergency costs also increase. Since all evacuees at SPs should receive relief items every period but evacuees accounted
for demand in one period are not necessarily accounted for in subsequent periods, at high purchase costs, it becomes beneficial
to anticipate future demand to avoid costly delivery of relief items to SPs early on. Given that MSSP optimizes evacuation
decisions based on the expected CTG functions and 2SSP-anticipative optimizes based on complete scenario information, the
overall cost of 2SSP-anticipative is lower than MSSP in the case of high purchase costs in the OOS test. On the other hand, as
purchase and emergency costs become more dominant in all models when ¢ is increased from 1 to 10, the performance gap
relative to 2SSP-myopic decreases, as 2SSP-myopic efficiently optimizes local emergency costs. At c¢” = 50, due to expensive
relief purchases, most demand at SPs is met through emergency transportation, further reducing performance gap. However,
at ¢ = 100, due to the high costs associated with emergency and relief supplies, the optimal solution in 2SSP-myopic is to
evacuate and pay emergency costs, which is more cost-effective than penalty costs locally. Consequently, emergency costs
become dominant, resulting in an increase in the performance gap.
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6.2 | Case study on Hurricane Ian

In this section, we focus on the results of our case study on Hurricane Ian, where the landfall time is assumed to be random with
a planning horizon of 71 = 15. The findings derived from the application of the Benders decomposition and SDDP algorithms
across 13 model configurations are presented in Table 8. Notably, while the Benders decomposition algorithm attains optimality
within the time limit of six hours, the SDDP algorithm terminates at an average gap of 9.2% at the time limit. The computational
time required by the SDDP algorithm to reach this gap is, on average, 6.6 times longer than that of the 2SSP model. Furthermore,
the average computational time of the SDDP algorithm across all cost configurations for the Ian case surpasses that of the
corresponding Florence case by 41%, while the optimality gap in the Florence case remains below 2% for all configurations.
This observation underscores the computationally demanding nature of the SDDP model for cases with random landfall time.

TABLE 8 Algorithm results for Hurricane Ian case study.

Benders decomposition for 2SSP SDDP for MSSP
w&F RPE P Objective Time  # Nodes LB UB* Gap Time  # Iterations
5 200 5 2.97 x 107 3559.58 4022 248 x 107 276 x 107 10.02% - 2739
1 200 5 2.23 x 107 2463.25 1796 1.76 x 107 192 x 107  8.46% - 2495
10 200 5 3.86 x 107 4775.76 3974 337 x 107 3.66 x 107 7.96% - 2278
20 200 5 5.52 % 107 3128.73 3377 5.08 x 107 5.65x 107 10.11% - 2367
50 200 5 9.99 x 107 3604.99 2977 9.68 x 107 1.01 x 108 4.57% - 2356
5 50 5 2.84 x 107 5082.04 4648 243 x 107 2.64 x 107  8.00% - 2348
5 100 5 2.94 x 107 5889.95 4890 246 x 107 276 x 107 10.62% - 2366
5 300 5 2.99 x 107 3665.96 4827 248 x 107 2.87 x 107 13.59% - 2336
5 50 5 3.00 x 107 4002.48 4605 250 x 107 292 x 107 14.66% - 2386
5 200 1 1.93 x 107 5420.17 4585 1.74 x 107 191 x 107  9.06% - 2392
5 200 10 423 x 107 3115.46 3424 340 x 107 3.84 x 107  11.46% - 2290
5 200 50 1.34 x 108 2230.84 1321 1.07 x 108 1.15x 108 6.91% - 2442
5 200 100 1.68 x 108 299.90 654 1.57 x 108 1.63 x 108 4.14%  7991.75 1392

“-”: The time limit of six hours is reached

Shelters activation

The activated shelters in the base configuration of both the 2SSP and MSSP models for the Ian case study are depicted in
Figure 5. Notably, the number of activated SPs in the Ian case exceeds that of the Florence case. This difference can be attributed
to the higher demand observed over a longer planning horizon in the Ian case compared to the Florence case. Similar to the
Florence case, the decision of SP activation demonstrates a high level of similarity between the 2SSP and MSSP models in the
Ian case, as this decision is made at the first stage in both models. Only two SPs exhibit different activation decisions between
the two models, a phenomenon which can be explained similarly to the Florence case.

Performance of the heuristic policies for choosing the expected CTG functions in the OOS test

The OOS test in the Ian case can be conducted using two heuristics described in Section 5.6.1. The results of the OOS test
for the base instance using 10000 true OOS scenarios, including a 95% CI of the average cost and the percentages of the
cost components, are presented in Table 9 for both heuristics. We observe that the average OOS cost in the MSSP model
with heuristic H1 is 31% lower than that with H2. Furthermore, the OOS objective value under H1 is only 3% higher than
the in-sample objective value as seen in Table 8. It is noteworthy that the proportion of the total cost allocated to relief items
prepositioning (including purchase, fixed, inventory, and transportation costs) is higher in H1 compared to H2, while the
emergency cost is higher in H2. Furthermore, the proportions of cost components in the in-sample results and the OOS test
results under heuristic HI are similar. When employing H1, a series of expected CTG functions linked with transient states
are computed, thereby encompassing the expected future costs, before addressing the terminal absorbing state of the OOS.
Consequently, this approach facilitates more informed prepositioning decisions and helps avoid expensive emergency costs.
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FIGURE 5 Activation of SPs in Ian case study for kF =5, kPE =200, P = 5.

This suggests that heuristic H1 is more cost-effective than H2 and substantially reduces the discrepancy between in-sample
(training) and OOS (testing) results. Therefore, we opt to utilize heuristic H1 for the OOS test in the subsequent analyses.

TABLE 9 Selection of OOS heuristics in Hurricane Ian case study.

Approach Average cost Fixed Inventory Penalty Emergency Purchase Transportation

In-sample | 2.75 x 107 £2.05 x 10° | 33% 7% 1% 3% 29% 27%

OO0OS-H1 2.82 x 107 £ 1.39 x 10° 33% 7% 1% 4% 28% 28%

0OO0S-H2 4.07 x 107 £6.25 x 10° 23% 5% 0% 34% 20% 19%
6.2.1 | OOS test performance

In this section, we discuss the performance of static and adaptive policies through OOS tests. Tables 10 and 11 present the
results of these tests conducted on OOS scenarios from the MC model and true OOS scenarios, respectively. Notably, the SDDP
algorithm terminates at the time limit in 12 out of 13 configurations. Consequently, the MSSP policies utilized in the OOS
testing may not be the optimal policies.

Across all cost configurations, MSSP demonstrates a 7.01% higher cost efficiency than 2SSP-anticipative and a 40.26%
higher efficiency than 2SSP-myopic for OOS scenarios generated from the MC model. Similarly, for true OOS scenarios,
MSSP yields average cost savings of 6.63% and 41.99%, respectively. It is noteworthy that both OOS test results highlight the
superior cost-saving capabilities of the MSSP model in the Ian case compared to the Florence case. This can be attributed to
the variability in the landfall period observed in the sample paths, which benefits the adaptive decision-making process of relief
prepositioning in the MSSP model.

The breakdown of cost components for each approach is detailed in Table 12. A notable distinction from the results in the
Florence case is that the transportation costs (relief items and evacuees) constitute a higher percentage of the total cost. This
can be attributed to the increased demand observed over a longer planning horizon and the more extensive logistics network in
the Tan case study, where transportation emerges as a major cost factor.

Another significant difference lies in the 2SSP model, where the first-stage decision involves relief inventory and the start
time of evacuation may vary across scenarios due to the different terminal stages in different scenarios. Consequently, a
higher level of inventory is generally maintained in the 2SSP model to enhance the robustness of relief supply across all sce-
narios. However, such inventory management is less critical for MSSP, where relief inventory is treated as a state variable.
Additionally, the higher relief inventory levels in the 2SSP model enable the avoidance of emergency transportation costs in
2SSP-anticipative, as it optimizes evacuation decisions with complete sample path information, resulting in a smaller propor-
tion of emergency costs. However, inventory and purchase costs constitute a larger fraction of the total cost in 2SSP-anticipative
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compared to MSSP, as observed in the base configuration results. Conversely, the emergency transportation emerges as a major
cost component in 2SSP-myopic due to the myopic evacuation decisions made locally.

In contrast to the Florence case, where MSSP showed higher performance gap for OOS scenarios generated from the MC
model compared to true OOS scenarios, the lan case exhibits a consistent pattern of performance gap, with respect to 2SSP-
anticipative, across both types of OOS scenarios. Specifically, the average costs for true OOS scenarios are slightly higher, with
differences of 0.6%, 0.1%, and 4.2% for MSSP, 2SSP-anticipative, and 2SSP-myopic, respectively, compared to OOS scenarios
from the MC model. In contrast, in the Florence case, these differences were 1.5%, 0.1%, and —1.0%. This suggests that the
MC approximation in the Ian case performs better, possibly due to the more sophisticated modeling of uncertainty in hurricane
position using cross- and track-errors instead of just one track-error as in the Florence case.

In the subsequent sections, our focus shifts to discussing the OOS test results obtained from true OOS scenarios, presented
in the form of sensitivity analysis. It is worth noting that similar insights can be drawn for the test results on OOS scenarios
generated from the MC model.

TABLE 10 OOS test results of Hurricane Ian case study on OOS scenarios from the MC model.

MSSP 2SSP-anticipative 2SSP-myopic
& KPE P CI of obj CI of obj P-Gap CI of obj P-Gap
5 200 5 | 275x107+£1.01x105 | 3.01 x 107 £9.88 x 10 8.74% | 525 x 10’ +£4.81 x 10° 47.57%
1 200 5 1.91 x 107 £9.31 x 10* | 227 x 107 £8.92 x 10 15.87% | 478 x 107 £5.26 x 10°  60.07%
10 200 5 3.64 x 107 £ 1.07 x 10° | 391 x 107 +£9.88 x 10*  6.66% | 6.13 x 107 +4.81 x 105  40.61%
20 200 5 5.64 x 107 £1.11 x 105 | 563 x 107 £1.12 x 10>  -0.12% | 7.80 x 107 £4.74 x 10°  27.70%
50 200 5 1.01 x 108 £220 x 105 | 1.01 x 108 £2.44 x 105 0.19% | 123 x 108 £547 x 105 17.86%
5 50 5 263 x 107 £1.01 x 10° | 2.87 x 107 £1.02 x 10° 821% | 5.07 x 107 £4.69 x 10°  48.08%
5 100 5 275 x 107 £9.70 x 10* | 2.97 x 107 £9.07 x 10*  7.65% | 5.19 x 107 £4.76 x 10°  47.10%
5 300 5 2.86 x 107 £9.93 x 10* | 3.04 x 107 £9.56 x 10*  574% | 545 x 107 £5.17 x 10°  47.51%
5 500 5 291 x 107 £9.76 x 10* | 3.05 x 107 £9.13 x 10*  4.41% | 550 x 107 £5.18 x 10°  46.99%
5 200 1 1.90 x 107 £ 6.14 x 10* | 1.95 x 107 £5.70 x 10*  2.28% | 4.14 x 107 £4.48 x 10° 54.02%
5 200 10 | 3.82x107+1.67x10° | 433 x 107 £1.54 x 105  11.68% | 6.61 x 107 £526 x 10°  42.13%
5 200 50 | 1.15x 108 +6.35x10° | 1.39 x 108 £6.32 x 105 17.65% | 1.67 x 108 £9.81 x 105  31.49%
5 200 100 | 1.63 x 103 £9.58 x 10° | 1.66 x 108 +1.01 x 10°  2.12% | 1.85 x 108 +1.07 x 10°  12.18%

6.2.1.1 | Sensitivity analysis on fixed cost

The sensitivity analysis of fixed costs yields results consistent with those observed in the Florence case. When " is low, a higher
dominance of relief purchase and transportation costs is observed, as illustrated in Table 12. Consequently, the MSSP model
benefits more from its adaptive decision-making capabilities. However, as kT increases, fixed costs become more dominant,
diminishing the impact of adaptive decision-making on performance gap.

Given the longer planning horizon in the Ian case compared to the Florence case, the total keep-up cost of SPs is higher in the
former. Interestingly, although fixed costs represent a smaller percentage of the total cost in the Ian case, this is counterbalanced
by the higher percentage of penalty and transportation costs. With a higher demand observed over a longer planning horizon in
the Tan case, penalty costs increase, particularly at high fixed costs.

6212 | Sensitivity analysis on penalty cost

Similar to the Florence case results, the sensitivity analysis results of x7¥ indicate consistent outcomes within the selected
range, with the average cost changing by less than 5% across all approaches. This aligns with the observation that penalty cost
is less sensitive to the overall cost, and at high values of x"F, the MSSP model incurs zero penalty cost. As k”F increases,
the penalty cost takes up a smaller percentage of the total cost, reflecting a trade-off with the emergency cost, which slightly
increases. This suggests that while penalty cost gets more expensive, the combination of evacuee transportation and emergency
relief supply is still relatively cheaper, representing a better trade-off decision.

62.13 | Sensitivity analysis on purchase cost

Similar to the observations in the Florence case, we find that the performance gap with respect to 2SSP-anticipative is lower
when the purchase cost (cF) is either at its lowest or highest values compared to configurations in between. As shown in
Table 12, when the purchase cost is at its minimum value (¢ = 1), both MSSP and 2SSP-anticipative exhibit a growing
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TABLE 11 OOS test results of Hurricane Ian case study on true OOS scenarios.

MSSP 2SSP-anticipative 2SSP-myopic
&F o RkPE P CI of obj CI of obj P-Gap CI of obj P-Gap
5 200 5 282 % 107 £1.39 x 105 | 299 x 107 £ 143 x 10° 5.91% | 535 x 107 +8.88 x 10°  47.32%
1 200 5 193 x 107 £1.25 x 105 | 225 x 107 £1.26 x 10°  14.25% | 491 x 107 £9.77 x 10°  60.69%
10 200 5 3.62 x 107 + 1.46 x 10° | 3.89 x 107 £ 1.66 x 10°  7.03% | 6.18 x 107 +8.72 x 105  41.47%
20 200 5 5.61 x 107 £1.49 x 105 | 558 x 107 £2.15 x 10°  -0.65% | 7.98 x 107 £9.11 x 10°  29.67%
50 200 5 9.99 x 107 £3.42 x 105 | 1.01 x 103 +£4.49 x 10°  1.54% | 1.23 x 103 +9.64 x 10° 19.11%
5 50 5 2.60 x 107 £1.36 x 10° | 2.87 x 107 £ 1.63 x 10°  9.35% | 5.15 x 107 £8.52 x 10° 49.43%
5 100 5 275 % 107 £1.28 x 10° | 297 x 107 £1.58 x 10°  7.57% | 5.37 x 107 +8.89 x 10°  48.88%
5 300 5 286 x 107 £1.33 x 107 | 3.02 x 107 £1.57 x 10°  544% | 537 x 107 £8.94 x 10°  46.85%
5 500 5 294 x 107 £1.30 x 10° | 3.03 x 107 £1.49 x 10°  3.22% | 5.61 x 107 £9.61 x 10°  47.64%
5 200 1 1.90 x 107 +8.84 x 10% | 1.96 x 107 £8.16 x 10*  3.07% | 424 x 107 £8.43 x 10°  55.26%
5 200 10 | 3.75x 107 +£224 x 10° | 426 x 107 £2.24 x 10° 11.84% | 6.73 x 107 £9.55 x 10°  44.24%
5 200 50 | 1.14 x 103 4+8.52x 10° | 1.35x 108 £9.60 x 10°  15.62% | 1.73 x 108 £ 1.63 x 10®  34.05%
5 200 100 | 1.69 x 108 +1.44 x 10° | 1.73 x 103 £1.52 x 10°  1.93% | 2.15 x 108 £ 1.72 x 10°  21.26%

TABLE 12 Proportion of cost components, on average, of OOS test on true OOS scenarios in Hurricane Ian case study.

Fixed Inventory Penalty Emergency Relief Purchase Transportation
kF KPE P MS 2-A 2-M | MS 2-A 2-M | MS 2-A 2-M | MS  2-A  2-M | MS 2-A 2-M | MS 2-A 2-M
5 200 5 33%  30% 17% 7% 9% 5% 1% 2% 1% 4% 1%  44% | 28% 34% 19% | 28% 25% 15%
1 200 5 11% 9% 4% 10% 11% 6% 0% 0% 0% 4% 2%  54% | 40% 46% 21% | 35% 32% 15%
10 200 5 49% 44%  28% 5% 6% 4% 2% 3% 2% 3% 1% 37% | 21% 26% 16% | 19% 20% 13%
20 200 5 65% 58% 41% 3% 4% 3% 1% 6% 4% 4% 0%  29% | 14% 18% 13% | 14% 13% 10%
50 200 5 73% 66%  54% 2% 2% 2% 10% 16% 13% | 1% 0% 17% | 7% 9% 7% 7% 7% 6%
5 50 5 31% 24% 14% 7% 8% 4% 5% 12% 7% 1% 0% 43% | 29% 33% 18% | 27% 24% 14%
5 100 5 34%  27% 15% 7% 9% 5% 1% 5% 3% 3% 1% 43% | 28% 34% 19% | 27% 24% 15%
5 300 5 36% 30% 17% 7% 9% 5% 0% 3% 2% 4% 1%  44% | 27% 34% 19% | 26% 25% 14%
5 500 5 37% 30% 16% 7% 9% 4% 0% 1% 1% 5% 2%  46% | 27% 34% 18% | 24% 25% 14%
5 200 1 47%  46% 21% 2% 3% 1% 3% 3% 1% 3% 0%  53% 8% 11% 5% 37% 38% 18%
5 200 10 | 24% 21% 13% | 10% 11% 7% 1% 1% 1% 3% 3%  37% | 41% 47% 30% | 20% 17% 11%
5 200 50 8% 6% 5% 13% 12% 10% | 9% 12% 6% 4% 14% 29% | 60% 50%  45% 6% 5% 5%
5 200 100 | 3% 1% 1% 4% 1% 2% 70% 83% 59% | 6% 14% 36% | 15% 0% 0% 1% 1% 1%

dominance of transportation and fixed costs. This dominance underscores a high rate of relief items purchase and evacuation.
Even in the static 2SSP model, there is effective pre-positioning of relief logistics with a sufficient inventory level, ensuring
robustness to accommodate demand for most hurricane scenarios. Moreover, leveraging the complete sample-path information
in 2SSP-anticipative facilitates evacuation optimization, leading to minimized penalties and emergency costs through adequate
provisioning of relief inventory. The adaptability advantage of the MSSP model diminishes under these conditions, resulting in
a decreased performance gap compared to when ¢’ = 10.

Similarly, as the purchase cost increases to its maximum value (c” = 100), the pre-positioning of relief items becomes
more expensive, leading to a higher frequency of local penalties and emergency costs incurred to meet demand in both MSSP
and 2SSP-anticipative. With the non-adaptive inventory state variables in 2SSP-anticipative, paying emergency cost locally
appears to be more cost-effective than the regular procurement and inventory costs for relief items spanning multiple periods.
Consequently, the performance gap with respect to 2SSP-anticipative becomes lower. However, at ¢ = 10 or 50, MSSP
efficiently satisfies demand through inventory rather than emergency costs, despite the higher relief commodity purchase cost.

Meanwhile, for 2SSP-myopic, which lacks foresight into future demand information, the corresponding solution involves
evacuation carried out with emergency costs, which is more cost-effective than incurring local penalty costs. Consequently,
emergency costs emerge as the dominant factor, leading to an increase in the performance gap with respect to 2SSP-myopic.

7 | CONCLUSION AND FUTURE RESEARCH

In this paper, we have studied an integrated problem of hurricane evacuation and relief logistics planning under the evolving
uncertainty of hurricane attributes. The main advantage for a decision maker to integrate these two operations is that efficient
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propositioning decisions can be made depending on the evacuation decisions which are unknown initially. We have demon-
strated an approach to model the time-dependent forecast uncertainty using historical errors using the AR—1 model, integrate it
with a point forecast of the hurricane’s trajectory (intensity and track) to generate hurricane scenarios, and approximate the hur-
ricane process as a Markov chain model using the generated scenarios for the proposed MSSP model. We have conducted two
case studies, on Hurricane Florence and Hurricane Ian in South Carolina and Florida respectively, and considered determinis-
tic and random landfall times in these studies. Our extensive numerical experiments on OOS scenarios have demonstrated the
effectiveness of the fully adaptive MSSP model in terms of minimizing the expected overall cost, despite their computational
challenges compared to the 2SSP model in both cases. Specifically, the MSSP model has exhibited higher cost efficiency in the
random landfall time case compared to the deterministic case, showcasing its effectiveness in these more complex settings.

In our model, we have limited the SP activation decisions to the first stage only mainly because of the additional computa-
tional complexity that would be introduced once we make these decisions adaptive as well. One future research direction is to
consider a fully adaptive mixed-integer MSSP model with adaptive decisions of SP activation as the hurricane attributes unfold.
Additionally, our model treats the allocations of evacuees from DPs to SPs as decision variables. However, in practice, evac-
uees subject to evacuation orders may not adhere to the model’s prescribed decisions and opt to evacuate independently. This
scenario can be modeled as a bi-level optimization problem. At the upper level, decisions regarding SP activation and evacuee
flow are made, while at the lower level, the number of evacuees adhering to specific routes under a hurricane scenario is de-
termined. A relevant study by [29] addresses a similar problem, employing a two-stage location allocation model at the upper
level and incorporating travel time and volume considerations in the lower level. Furthermore, our model estimates demand
by assuming that evacuees voluntarily seek public shelters. However, in reality, mandatory evacuation orders may be issued
by state agencies, altering the demand dynamics. This consideration motivates the development of novel MSSP models with
decision-dependent uncertainty.
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APPENDIX

A ADDITIONAL TABLES AND FIGURES
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FIGURE A1l An illustration of decision variables on an example network with 17l = I/l = 3. Node “sink” is a dummy node
for shipping out the unused relief items from SPs, which is used in the flow balance constraints defined at the SPs. The decision
variable u;, is defined in a self-loop at i; to indicate the unmet demand at ¢ which can be accounted for at # + 1.

$

Q Absorbing state O Transient state = Sampled scenario

FIGURE A2 Illustration of the forward pass of the SDDP algorithm.

TABLE Al Estimated AR-1 parameters from historical data using the maximum likelihood estimation.

Parameters | Along | Cross | Track | Intensity
Pmle 1.12 1.09 1.05 0.98
Omle 39.12 33.18 | 0.38 8.03
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O Absorbing state O Transient state === Sampled scenario

FIGURE A3 Solving stage-f problems with X, in the backward pass of the SDDP algorithm.
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FIGURE A4 Anillustration of cut sharing in the backward pass of the SDDP algorithm.
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FIGURE A5 Anillustration of track FEs.

TABLE A2 Pearson correlation coefficients for different types of FEs at various forecast lead times.
Hours 012 024 036 048 072 096 120
Track-Intensity FE | 0.005 | 0.02 0.03 | 0.017 | -0.01 | -0.065 | -0.056
Along-Cross FE | 0.021 | 0.041 | 0.065 | 0.112 | 0.058 | -0.046 | -0.075

TABLE A3 Number of Markovian states at each period for the Hurricane Florence case study. For each period #: ST is the
number of track states at £, S’ is the number of intensity states, and S¢ = ST x SL.
Hours | 000 | 012 | 024 | 036 | 048 | 060 | 072 | 084 | 096 | 108 | 120

ST 1 2 4 4 5 6 7 9 1 |14 |15
St 1 6 6 6 6 6 6 6 6 6 6
St 1 12 [ 24 [24 |30 [36 [42 [54 [ 66 |84 [90
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TABLE A4 Number of Markovian states at each period for the Hurricane Ian case study. For each period #: S and S are
the number of along and cross states at z, respectively, S’ is the number of intensity states, and S¢ = S{* x S¢ x SL.

Hours | 000 | 012 | 024 | 036 | 048 | 060 | 072 | 084 | 096 108 120 132 144 156 168
S{‘ 1 2 2 3 3 3 3 3 4 4 4 5 5 5 5
StL 1 2 3 3 3 3 4 4 4 4 5 5 5 5 5
S{ 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6
St 1 24 36 54 54 54 72 72 72 72 120 150 150 150 150
012h 024h 036h 048h 072h 096h 120h 012h 024h 036h 048h 072h 096h 120h 012h 024h 036h 048h 072h 096h 120h 012h 024h 036h 048h 072h 096h 120h
) 054 043 026 0.16 0.16 031 0.11 -0.01 -0.03 0.09 0.63 0.55 042 0.19 0.10
5 041 026 025 028 0.07 0.03 0.18 0.12
0.62 040 036h 045 0.17 0.08 029
048h 0.37
072h|0.11 028 0.45 022 038 050 044 042 0.56 0.69
0.26 040 052 096h1-0.01 0.07 0.17 028 096h10.13 026 0.36 041 0.61 0.19 030 040 0.49 0.69
0.25 032 041 0.50 0 120h/-0.03 0.03 0.08 0.13 0.39 [0:6 120h/0.09 0.18 029 0.37 0.44 0.55 0.10 0.12 0.14 020 038

(a) Track error

(b) Intensity error

(c) Along error

(d) Cross error

FIGURE A6 Pearson correlation coefficients between FEs at various forecast lead times from historical data.
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FIGURE A9 Track error distribution and Q-Q plots at 024A.
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FIGURE A10 Correlation between different FEs.
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(a) Shelters at county level (b) Clustered candidate shelters

FIGURE A12 Tllustration of SPs in the Hurricane Florence case study.

(c¢) Clustered demand points



