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Constrained Earth system models show 
a stronger reduction in future Northern 
Hemisphere snowmelt water
 

Yuanfang Chai    1, Chiyuan Miao    1  , Pierre Gentine    2, Lawrence Mudryk    3, 
Chad W. Thackeray    4, Wouter R. Berghuijs    5, Yi Wu1, Xuewei Fan1, 
Louise Slater    6, Qiaohong Sun    7 & Francis Zwiers    7,8

Although Earth system models (ESMs) tend to overestimate historical land 
surface warming, they also overestimate snow amounts in the Northern 
Hemisphere. By combining ground-based datasets and ESMs, we find that 
this paradoxical phenomenon is predominantly driven by an overestimation 
of light snowfall frequency. Using spatially distributed emergent constraints, 
we show that this paradox persists in mid- (2041–2060) and long-term  
(2081–2100) projections, affecting more than half of the Northern 
Hemisphere’s land surface. ESMs underestimate the frequency of freezing 
days by 12–19% and overestimate snow water equivalent by 28–34%. 
Constrained projections indicate that the raw ESM outputs overestimate 
future Northern Hemisphere snowmelt water by 12–16% across 53–60% of the 
Northern Hemisphere’s land surface. This snowmelt water overprediction 
implies that the amount of water available in the future for agriculture, 
industry, ecosystems and domestic use may be lower than unadjusted ESM 
projections suggest.

Terrestrial water is stored as snow in winter, and subsequently melts 
partially or completely during the spring and summer due to warming 
temperatures, releasing water through infiltration, which recharges 
soil moisture, or as runoff, which increases streamflow1–11. As the largest 
freshwater storage reservoir, snowmelt water is critical for domestic 
water supply, agriculture, hydroelectric power and ecosystems5,12. 
Snowmelt water in the Northern Hemisphere (NH) accounts for approxi-
mately one-third of all irrigation water13, and supports one-fourth of 
global gross domestic product12 and approximately one-sixth of Earth’s 
population14. Decreases in snow volumes caused by global warming15,16 
are greatly affecting the hydrological cycle and are therefore often cited 

as a key threat to irrigated agriculture and food security5–9,15–17. Consider-
ing the importance of snow in shaping the global water cycle, a reliable 
understanding of the spatial dynamics of snow conditions in response 
to our warming climate is urgently required. This is especially true in 
the NH, which accounts for around 98% of global snow volume18,19.

Recent studies have found considerable uncertainties in snow 
modelling across Earth system models (ESMs)20,21. These uncertainties 
underpin a ‘snow water resources paradox’ in the context of surface 
warming: Coupled Model Intercomparison Project phase 6 (CMIP6) 
and phase 5 (CMIP5) ESMs tend to overestimate historical warming 
trends1–4 and underestimate the frequency of freezing days (days with 
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Climatology Centre (GPCC) daily precipitation data, we estimate 
the intensities and frequencies of light (1–10 kg m−2 d−1), moderate  
(10–30 kg m−2 d−1) and heavy (≥30 kg m−2 d−1; Methods) snowfall for the 
period 1982–2014. We find that the CMIP6 models overestimate the 
total snowfall amount by 1,530 Gt. Although the simulated moderate 
and heavy snowfall amounts are close to those observed, the simulated 
light snowfall amount (5,859 ± 1,050 Gt) is overestimated by 28.3% or 
1,293 Gt, relative to the GPCC estimate (4,566 ± 185 Gt; Fig. 1a; P < 0.05). 
Using other daily precipitation datasets from the Climate Prediction 
Center (CPC) and the Multi-Source Weighted-Ensemble Precipitation 
(MSWEP) to estimate light snowfall, we again show that the CMIP6 
models overestimate the light snowfall amount (Supplementary Text 
1 and Supplementary Fig. 2). A quantitative analysis of the mechanisms 
further indicates that total snowfall is the primary contributor to NH 
mean SWE biases, accounting for 91.5% of the total bias. Among the 
components of total snowfall, light snowfall contributes the most to 
SWE biases at 69.5 ± 9.8%, followed by moderate snowfall (11.1 ± 6.9%) 
and heavy snowfall (10.9 ± 3.1%). The remaining SWE bias primarily 
stems from snowmelt water (8.5%). We therefore conclude that the 
overestimation of light snowfall is the dominant factor underlying 
the snow water resources paradox. The monthly scale analysis (Sup-
plementary Text 2 and Supplementary Figs. 3–5) and the analysis of 
the Land Surface, Snow and Soil Moisture Model Intercomparison 
Project (LS3MIP) CMIP6 offline experiment (Supplementary Text 3 
and Supplementary Figs. 6–9) both support the dominant role of the 
light snowfall bias in contributing to the positive SWE bias, while snow 
melting physics also plays a critical role, particularly during the snow 
ablation period. While land–atmosphere coupling is not a primary fac-
tor contributing to the NH mean SWE bias, its impact can be significant 
in specific regions.

This conclusion regarding the dominant role of light snowfall 
bias in contributing to the positive SWE bias is further supported by 
the highly consistent geographical distributions of the overestimated 
SWE (Fig. 1c), light snowfall amount (Fig. 1d) and light snowfall fre-
quency (Fig. 1e). Further analysis indicates that snowfall intensity 
(mean snowfall per snow day) is virtually identical in CMIP6 mod-
els and observations (2.98 ± 0.04 mm d−1 versus 3.00 ± 0.24 mm d−1, 
respectively), but that the CMIP6 models significantly overestimate 
light snowfall frequency (31.0 ± 4.4 days per year), a bias of +27.0% or 
6.6 days per year compared with observed values (24.4 ± 0.8 days per 
year, P < 0.05). This substantial bias in light snowfall frequency causes 
about 67.9% of the NH mean SWE bias, and far exceeds that of snowfall 
intensity (1.6%). Our regional analysis further supports this finding 
(Supplementary Text 4). However, it also highlights the critical roles of 
snowmelt processes, heavy snowfall and snowfall intensity in certain 
areas (Supplementary Fig. 10).

In contrast, in some regions, particularly in central eastern Siberia, 
SWE has increased even with rising temperatures due to the atmos-
pheric dynamic-induced moisture convergence. Therefore, in these 
areas specifically, the occurrence of a positive bias in SWE in the ESMs 
is reasonable and not necessarily a paradox. On the other hand, some 
recent studies have raised concerns that very high resolution regional 
models may be too cold in high surface elevation regions to produce 
sufficient SWE38–40, leading to a negative SWE bias that contrasts with 
the positive bias in CMIP6 models. The negative SWE bias in regional 
models probably arises from the underestimation of precipitation 
(including snowfall)38, whereas the positive SWE bias in CMIP6 models 
is mainly attributed to an overestimation of light snowfall. Both cases 
emphasize the critical role of precipitation in SWE simulations.

Future freezing day frequency and SWE
Projections of freezing day frequency (Supplementary Fig. 11a,b) and 
SWE (Supplementary Fig. 11c,d) during the extended NH cold season 
both exhibit large differences across the CMIP6 models in the mid- 
(2041–2060) and long term (2081–2100). For example, the models 

daily mean temperature below 0 °C) when snowfall tends to occur, 
while overestimating snow water equivalent (SWE) relative to observa-
tions in recent decades5–9. We show that this paradox, which leads to 
the overestimation of annual snowmelt water, persists in future SWE 
and snowmelt water projections made with CMIP6 models. The future 
of NH SWE and snowmelt water resources remains unclear, given this 
paradox. This leads to confusion about future snow amounts as the 
climate warms14,22,23, undermining estimations of future snow water 
resources and the ability of water management policies to address 
potential snow water resource shortages.

Emergent constraint methods can help reduce uncertainty in SWE 
and temperature projections arising from the snow water resources 
paradox4,24–36. By reducing these uncertainties, emergent constraints 
can help us assess whether the snow water resources paradox persists in 
the future projections, thus providing more reliable and accurate future 
snow projections for better management of future water resources. In 
this study, we introduce a spatially distributed hierarchical emergent 
constraint on future mid- (2041–2060) and long-term (2081–2100) 
NH SWE and freezing day frequency using 31 CMIP6 models (Supple-
mentary Table 1) under four Shared Socioeconomic Pathway (SSP) 
emission scenarios (SSP126, SSP245, SSP370 and SSP585). Observa-
tionally constrained estimates of future SWE are then used to refine 
projections of future snowmelt water. These spatially constrained 
results help to better support the formulation of regional policies for 
water resources management that address local climate warming and 
environmental protection.

Snow water resources paradox over the historical 
period
Based on the Berkeley Earth land temperature record37, we find that 
the frequency of freezing days is underestimated by the CMIP6 models 
(119 ± 19 days, ensemble mean ± s.d. of CMIP6 models) compared with 
observations (136 ± 4 days; Fig. 1a) in the extended NH cold season 
(excluding months from June to September) for the period 1982–2014. 
This underestimation occurs across more than nine-tenths of the NH’s 
land surface (Fig. 1b, excluding snow-free regions).

Given that snowfall depends on both temperature and precipita-
tion, a lower freezing day frequency in the CMIP6 ESMs implies reduced 
snow accumulation relative to observations. However, the CMIP6 models 
significantly overestimate (P < 0.05) the NH mean SWE (3,275 ± 1,279 Gt) 
by 50% compared with the observation-based estimate of 2,115 ± 777 Gt.  
This observation-based estimate is derived from nine SWE datasets 
(Supplementary Table 2): seven reanalysis datasets (Modern-Era Retro-
spective analysis for Research and Applications, Version 2 (MERRA-2),  
European Centre for Medium-range Weather Forecasts ReAnalysis 
5-Land (ERA5-Land), Global Land Data Assimilation System Version 
2 (GLDAS-v2), National Centers for Environmental Prediction Ver-
sion 2 (NCEP2), Famine Early Warning Systems Network Land Data 
Assimilation System (FLDAS), Climate Forecast System Reanalysis 
(CFSR) and European Centre for Medium-range Weather Forecasts ReA-
nalysis 5 (ERA5)) and two satellite and ground-based datasets (Global 
Snow Monitoring for Climate Research-Version 3 (GlobSnow-v3) and 
European Space Agency Snow Climate Change Initiative-Version 2 
(SnowCCI-v2)). The overestimation occurs in every year from 1982 
to 2014 (Supplementary Fig. 1). This snow water resources paradox is 
manifested as an overestimation of SWE by the CMIP6 models across 
61% of the NH land surface (Fig. 1c, blue regions) despite substantial 
underestimation of freezing day frequency.

A recent study found that the positive bias in SWE is related to a 
positive bias in precipitation during the accumulation season, while 
the effect of temperature is minimal, especially in the coldest regions5. 
Given the overestimation of precipitation and the underestimation of 
freezing day frequency, we hypothesize that the abnormally high SWE 
in CMIP6 models (Fig. 1c) might be due to an incorrect representation 
of snowfall (intensity and frequency). Using the Global Precipitation 
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project multi-year average mid-term future freezing day frequency and 
future SWE of 43.5–132.8 days (minimum–maximum) and 1,458–6,379 
Gt respectively under SSP245. Using the emergent constraints, we 
obtain constrained estimates of future freezing day frequency and 
SWE with reduced uncertainty.

We first examine the emergent relationships between historical 
and future freezing day frequency across the CMIP6 models at each 
grid cell under four emission scenarios, and similarly consider such 
relationships for SWE. We find that the relationships for freezing day 
frequency (Fig. 2a and Supplementary Fig. 12) and SWE (Fig. 2b and 
Supplementary Fig. 13) are both statistically significant across more 
than nine-tenths of the NH (P < 0.05). This provides a basis for produc-
ing observationally constrained projections of future freezing day 

frequency and SWE conditions across much of the NH. The remain-
ing regions, which either have insignificant relationships (P > 0.05; 
Fig. 2a,b) or snow-free conditions throughout the year, are excluded 
from the following analysis. This approach (focusing on the projec-
tion of a variable onto itself)24 has also been used to constrain projec-
tions of future CO2 concentrations41 and the ratio of transpiration to 
evapotranspiration42.

These relationships allow us to use observation-based estimates 
to constrain future freezing day frequency and SWE (Methods). We 
estimated the observed freezing day frequency from the Berkeley Earth 
temperature product that incorporates more temperature observa-
tions (over 40,000 records) than other available products37. Other data 
products provide highly consistent results (Supplementary Fig. 14). 

Observation-based estimates
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Fig. 1 | Characteristics and mechanisms of the snow water resources paradox 
in the extended NH cold season for the period 1982–2014. Regions without 
seasonal snow cover are excluded (grey areas). a, Relationships among 
temperature, snowfall, SWE and snowmelt water based on observation-based 
datasets and CMIP6 simulations. The snowfall frequency represents the multi-
year average occurrence of light (1–10 kg m−2 d−1), moderate (10–30 kg m−2 d−1) 
and heavy (≥30 kg m−2 d−1) snowfall. Blue arrows indicate that a variable (for 
example, overestimated snowfall) can increase the amount of the next variable 
(for example, overestimated SWE); red arrows indicate a decreasing effect.  

Snow sublimation is excluded due to its minimal impact on snow water 
resources compared with snowfall and snowmelt. b–e, Biases (CMIP6 minus 
observation-based estimates) in the multi-year average freezing day frequency 
(b), SWE (c), light snow amount (d) and light snowfall frequency (1–10 kg m−2 d−1;  
e). Blue regions indicate overestimation by the ESMs, while red regions 
show underestimation. Regions with oblique lines demonstrate statistically 
significant differences between CMIP6 models and observation-based 
estimates (P < 0.05) as determined by a two-sided t-test. Maps in b–e generated 
using MATLAB R2022b.
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Applying the constraints substantially narrows the spread of freezing 
day frequency projections from the CMIP6 models over 90% of the 
NH’s land surface under SSP245 for the mid-term projections (Fig. 2c), 
with the projected ranges significantly reducing from 64–138 days 
(mean ± 1 s.d.) to 99–141 days (P < 0.01). Application of the constraint 
at each grid cell, therefore, decreases projection uncertainty by 41%. 
Similar uncertainty reductions of 42–62% are obtained under the four 
emission scenarios in both the mid- and long-term future projections 
(Supplementary Fig. 15). Figure 2e suggests that the CMIP6 models 
underestimate the mid-term NH freezing day frequency by 16% under 
SSP245, with best estimates increasing from the original projections 
of 101 ± 37 days to the constrained results of 120 ± 21 days. This appar-
ent underestimation occurs across more than nine-tenths of the NH’s 
land surface. The underestimation of future freezing day frequency is 
consistently seen across the four SSPs in the mid-term projections (by 
16–19%, depending on SSP) and in the long-term projections (12–13%; 
Supplementary Fig. 16).

In contrast with freezing day frequency, there is greater uncer-
tainty amongst the long-term observation-based SWE datasets 
(Supplementary Fig. 11) due to the sparsity of in situ observations, 
simplified descriptions of physical snow processes, different retrieval 
algorithms, satellite data uncertainties and land surface model forc-
ing uncertainty6,43–45. We therefore apply a hierarchical emergent 
constraint framework46 (Methods) to account for the observational 
uncertainty in SWE across nine observation-based datasets and to 
constrain future SWE projections. The resulting constraint reduces the 
uncertainty of future mid-term NH mean SWE by 39% under SSP245, 
with the projected ranges reducing from 965–4,587 Gt to 967–3,177 Gt 
(P < 0.01). Similar uncertainty reductions of 36–39% (depending on the 
SSP) are obtained at mid-term under the other SSPs (Supplementary 
Fig. 17). The constraints provide uncertainty reductions of 25–34% in 
the long-term projections under the four SSPs (Supplementary Fig. 17). 
The largest uncertainty reductions are obtained in the snow-abundant 
regions of the Tibetan Plateau and the northern high latitudes (>50° N;  
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Fig. 2 | Observationally constrained projections of mean freezing day 
frequency and mean SWE in the extended NH cold season for the period 
2041–2060 under SSP245 at the grid level. Regions without seasonal snow 
cover are excluded (grey areas). a, Pearson’s correlation coefficients of emergent 
relationships between historical (1982–2014) and future (mid-term future  
period 2041–2060) simulations of mean freezing day frequency across the 
CMIP6 models. b, Correlation coefficients of emergent relationships between 
historical and mid-term future SWE simulations across the CMIP6 models.  
c, Percentage of uncertainty reduction for future mean freezing day frequency, 
relative to the original CMIP6 projections. d, Percentage of uncertainty reduction 

for future mean SWE. e, Constrained future mean freezing day frequency minus 
unconstrained future mean freezing day frequency. Brown regions indicate 
an overestimation of future mean freezing day frequency by ESMs, while blue 
regions show an underestimation. f, Constrained future mean SWE minus 
unconstrained future mean SWE. Emergent constraints on future freezing day 
frequency use the Berkeley Earth temperature  product. Emergent constraints on 
future SWE use the nine SWE datasets (derived from GlobSnow-v3, SnowCCI-v2, 
MERRA-2, ERA5-Land, GLDAS-v2, NCEP2, FLDAS, CFSR and ERA5) and account 
for observational uncertainty by using the spread across observation-based 
products. Maps generated using MATLAB R2022b.
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Fig. 2c, d). In contrast with freezing day frequency, the application of 
our emergent constraint to SWE significantly decreases raw model 
projections of mid-term SWE under SSP245 from 2,776 ± 1,811 Gt to 
2,072 ± 1,105 Gt (P < 0.01), indicating that models probably overes-
timate future SWE by 34% (Fig. 2f). Consistent results are obtained 
for the mid-term period and for the long-term period under the four 
SSPs, with SWE overestimated by 28–34% (Supplementary Fig. 18). 
The localized results show that the unconstrained ensemble overes-
timates SWE across more than half of the NH’s land surface (Fig. 2f 
and Supplementary Fig. 18). The fact that the constraints increase 
the raw freezing day projections and decrease the raw SWE projec-
tions suggests that the snow water resources paradox persists in the 
future projections. Further investigation using a variety of approaches, 
including multi-scale consistency, out-of-sample testing in CMIP5 and 
model-based cross-validation47,48 (Supplementary Text 5), confirms the 
robustness of these constrained projections.

Mechanisms of the snow water resources paradox 
in the future
To investigate the mechanisms underpinning the paradox in the pro-
jections, we examined the emergent relationships between historical 
and future simulations of light snow frequency and found that the 
relationships were significant over approximately nine-tenths of the 
NH’s land surface (P < 0.05; Supplementary Fig. 23). Combining the 
observed estimates of light snow frequency from the GPCC product, we 
found that the CMIP6 models overestimate the mid-term future light 
snow frequency by 26–28% (Supplementary Fig. 24), with the origi-
nal projections of 24.3 ± 10.6 days (SSP126), 24.5 ± 10.5 days (SSP245), 
23.9 ± 10.5 days (SSP370) and 23.2 ± 10.5 days (SSP585) decreasing 

to the constrained values of 19.3 ± 7.6 days, 19.1 ± 7.8 days, 18.8 ± 7.8 
days and 18.2 ± 7.6 days, respectively. In the long-term future pro-
jections, we again found an overestimation of 24–28%. Importantly, 
the overestimation (Supplementary Fig. 24) is mainly located in the 
regions where the future snow water resources paradox exists (Fig. 2f).  
This implies that the overestimation of future light snow frequency 
is the principal reason for the future snow water resources paradox. 
A fundamental mechanism may be related to the climate model bias 
towards the frequency of light precipitation (that is, the ‘drizzle prob-
lem’; Supplementary Text 6)49–56.

A greater potential threat to water resources
The snow water resources paradox affects snowmelt water, as reflected 
by the significant relationships between hemispheric average future 
SWE and snowmelt water across the CMIP6 models (0.88 ≤ R ≤ 0.93; 
Supplementary Fig. 25 and Supplementary Table 4). Thus, by diagnos-
ing and applying the relationship between future projections of SWE 
and future snowmelt water, it may be possible to use the constrained 
future SWE to provide a meaningful constraint on future snowmelt 
water based on the traditional emergent constraint method. Previous 
studies have also applied this method of using constrained estimates 
to refine the other projected climate variables4,28,31,42.

We examined the relationship between future SWE and snowmelt 
water in each grid cell and found that they remain statistically signifi-
cant over nine-tenths of the NH’s land surface (P < 0.05; Fig. 3a and Sup-
plementary Fig. 26). Combining these relationships with the gridded 
constrained results of future SWE shows that the constrained estimate 
of future NH snowmelt water shifts from the raw CMIP6 projections of 
150 ± 33 mm yr−1 (under SSP245) to 132 ± 20 mm yr−1 during the mid-term 
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Fig. 3 | Implications for future annual mean snowmelt water in the NH under 
SSP245 for the period 2041–2060 at the grid level. a, Correlation coefficients 
for the emergent relationship between future SWE and future snowmelt water in 
each grid cell. b, Constrained future snowmelt water minus unconstrained future 
snowmelt water. c, Constrained future snowmelt water minus unconstrained 
results in the 36 snow-dominated regions. Orange circles represent 
overestimation of future snowmelt water by the CMIP6 models, and blue circles 
represent underestimation of future snowmelt water. For names of river basins, 

see Supplementary Tables 5 and 6. The regions with insignificant emergent 
relationships (P > 0.05) and with snow-free conditions throughout the year are 
excluded. d, Snow drought durations as a proportion of the extended cold season 
under SSP245 for mid-term future projections. D0, D1, D2, D3 and D4 correspond 
to abnormally dry, moderate drought, severe drought, extreme drought and 
exceptional drought, respectively (refer to the definitions in Supplementary 
Table 7). Maps in a–c generated using MATLAB R2022b.
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future period. This indicates that the CMIP6 models probably overesti-
mate NH snowmelt water by 12–16% under the four SSPs in both mid- and 
long-term future projections. The overestimation affects over half of 
the total NH area (Fig. 3b and Supplementary Fig. 27), especially in the 
snow-abundant regions of northern North America (overestimated 
by 22–29%), eastern Asia (20–27%) and the Tibetan Plateau (9–14%). 
Applying this two-stage constraint also lowers the uncertainty of future 
snowmelt water projections, with the uncertainty reduced by 33–37%. 
This indicates that the future snowmelt water supply risk is likely to be 
underestimated if the persistence of the snow water resources paradox 
is ignored and unadjusted ESM projections are employed.

To provide more meaningful information for water resources 
management at the basin scale, we applied the emergent relationships 
between future SWE and snowmelt water in 36 large snow-dominated 
river basins (≥70,000 km2 based on the HydroBASINS dataset57; Sup-
plementary Tables 5 and 6)12. The constrained results show that CMIP6 
models are likely to statistically overestimate future snowmelt water 
in 25–28 of these basins (Fig. 3c, and Supplementary Tables 5 and 6; 
P < 0.01). To enhance the evaluation of potential snow water resource 
shortages in these river basins, we employed the standardized snow 
water equivalent index (Supplementary Text 7) to assess future risks 
of snow water resource deficits based on the constrained future SWE. 
Our findings indicate that snow water shortages are likely to become 
more severe in the future, with more regions facing the risk of extreme 
drought (Supplementary Text 8). In the Arctic region, including the 
Kolyma, Pyasina and Mackenzie river basins, varying degrees of snow 
drought (Fig. 3d and Supplementary Fig. 29) could impact dissolved 
organic carbon and nutrient transport, threatening the sustainability of 
Arctic ecosystems and altering carbon cycle dynamics in the Arctic shelf 
and ocean. For river basins like the Caniapiscau and Colorado, where 
economic development relies heavily on hydropower11, our constrained 
projections suggest prolonged snow drought (Fig. 3d and Supplemen-
tary Fig. 29). The Fraser River, crucial for Pacific Ocean salmon popula-
tions, also faces high snow drought risks, potentially affecting salmon 
migrations. The Rhine River basin, heavily influenced by meltwater, 
faces remarkable snow drought risk, with severe drought (D2) and worse 
(extreme (D3) and exceptional (D4) drought) lasting for up to 25.4% 
of the extended cold season under SSP585. Conversely, river basins 
in northeastern Asia, such as the Lena (18.5–51.1% of the cold season), 
Amur (8.3–55.3%) and Kolyma (18.9–34.4%), show shorter durations of 
snow drought with a relatively stable standardized snow water equiva-
lent index, indicating lesser impacts compared with other regions. This 
is attributed to the increased atmospheric moisture holding capacity 
and moisture convergence induced by atmospheric dynamics15.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41558-025-02308-y.
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Methods
ESM datasets
SWE, snowmelt water, temperature and precipitation during the histori-
cal (1982–2014) and future (2015–2100) periods were acquired from the 
CMIP6 models to derive the emergent relationships and to analyse the 
plausible mechanisms under the low- (SSP126), medium- (SSP245) and 
high-emission (SSP370 and SSP585) scenarios. Data for SWE were also 
acquired from the CMIP5 models under the Representative Concentra-
tion Pathway 45 and 85 emission scenarios to test the robustness of the 
emergent relationships. Here, we used one realization per model (that 
is, the first realization). We re-gridded all CMIP5 and CMIP6 outputs and 
observation-based datasets to a common 0.5° × 0.5° latitude–longitude 
spatial resolution. Effectively, glaciated grid cells occur in climate 
models when the annual accumulation of snowfall exceeds snowmelt 
and sublimation losses in high-elevation areas with low annual mean 
temperatures. While this tends to happen in reasonable locations where 
glaciers and ice sheets also exist in the real world (for example, along the 
coastal mountains of Alaska, at high-elevation regions of the Canadian 
Arctic, in High Mountain Asia, and over Greenland and Antarctica), the 
models do not explicitly distinguish between glaciers and seasonal 
snow. In some models, SWE can accumulate to large amounts over such 
grid cells (for example, greater than 500 kg m−2)6. Additionally, there 
is substantial inter-model variability in the maximum amount of snow 
each model accumulates. Therefore, neither the climatological mean 
SWE nor the trends accurately represent seasonal snow in the real world. 
To eliminate the effect of these ‘glaciated’ grid cells, we removed all SWE 
values greater than 500 kg m−2 in the CMIP6 models, following ref. 6.

Observation-based datasets
We used SWE data from nine datasets (GlobSnow-v3, SnowCCI-v2, 
MERRA-2, ERA5-Land, ERA5, CFSR, GLDAS-v2, FLDAS and NCEP2). The 
GlobSnow-v3 and SnowCCI-v2 datasets are satellite and ground-based 
datasets, while the remaining seven are reanalysis datasets. As men-
tioned earlier, for clarity, we refer to these two categories collectively 
as the observation-based estimates throughout the text. These datasets 
have been evaluated and extensively used for climatic and hydro-
logical research and climate model evaluation58–62. The GlobSnow-v3 
and SnowCCI-v2 datasets, which combine satellite-based passive 
microwave radiometer data with ground-based synoptic snow depth 
observations, provide SWE data63,64. The MERRA-2 dataset, which is a 
National Aeronautics and Space Administration atmospheric reanalysis 
dataset, has assimilated available in situ and satellite observations into 
a climate model since 1980, with a resolution of 0.625° × 0.5° (ref. 65). 
ERA5-Land66 and ERA567 both use the Hydrology Tiled European Centre 
for Medium-Range Weather Forecasts Scheme for Surface Exchanges 
land surface model (HTESSEL) to provide reanalysed SWE datasets at 
resolutions of 0.75° × 0.75° and 0.25° × 0.25°, respectively. CFSR cov-
ers the period from 1979 to 2019, with 0.5° × 0.5° spatial resolution8. 
Proved to agree well with regional gauge-based observations68–70, the 
CFSR dataset has been widely applied to estimate the observational 
characteristics of NH SWE, and it has also been used for calibration 
and validation of ESMs (for example, CMIP5 models)71,72. The GLDAS-v2 
dataset uses advanced land surface modelling and data assimilation 
techniques to provide a temporally consistent series from 1948 to 
2014, forced entirely with the Princeton meteorological forcing input 
data, with a resolution of 0.1° × 0.1° (ref. 73). FLDAS is simulated from 
the Noah 3.6.1 model in the Famine Early Warning Systems Network 
Land Data Assimilation System, with a resolution of 0.1° × 0.1° from 
January 1982 to the present74. The simulation uses MERRA-2 data and 
Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) 
six-hourly rainfall data. The NCEP Reanalysis 2 project uses a frozen 
analysis/forecast system to perform data assimilation using past data 
from 1979 to the near-present with 2.5° × 2.5° spatial resolution75. Dif-
ferences amongst these nine SWE datasets compared with 11,071 in situ 
SWE observation stations are discussed in Supplementary Text 9.

The Berkeley Earth land daily temperature record utilizes signifi-
cantly more land station data (over 40,000 stations) compared with 
the other products37, and is therefore used to estimate the observed 
freezing day frequency (that is, the number of days with temperature 
lower than 0 °C). The GPCC daily precipitation product is the most com-
monly used product that uses data acquired from more than 85,000 
stations worldwide76. On days with freezing temperatures, observed 
light snowfall (1–10 kg m−2 d−1), moderate snowfall (10–30 kg m−2 d−1) 
and heavy snowfall (≥30 kg m−2 d−1) are estimated based on the GPCC 
data. The choice of temperature threshold for determining freezing 
days is critical, particularly in conditions near freezing, and this is 
especially important for estimating light snowfall. We conducted an 
uncertainty analysis on the impact of temperature thresholds on light 
snowfall estimates and found that the selection of different thresholds 
did not affect our conclusions (Supplementary Text 10).

Hierarchical emergent constraint framework
The hierarchical emergent constraint framework applied here explic-
itly relates future climate, current climate and observations through 
conditional probability distributions46. This method allows us to fully 
consider the observational uncertainty across the nine SWE datasets. 
The core of the emergent constraint method is to identify a strong 
statistical relationship between an element x of the observable climate 
and an important variable y describing the future simulated state (equa-
tion (1)), across an ESM ensemble46. Once diagnosed from an ensemble 
of models, this emergent relationship can be applied to the observed 
value of x to produce a more reliable and accurate future climate pro-
jection for y (equations (3) and (4))77. When certain models estimate 
particularly anomalous SWE, these anomalous values can impact the 
effectiveness of the emergent constraint, requiring their removal. We 
used the Z-score method to identify outlier models: if the estimated 
value from a given model simulation exceeds three times the standard 
deviation from the mean, it is classified as an outlier. The details of the 
method are described in ref. 46.

y = a(x − x) + y (1)

where a is obtained using equation (2), and ̄y and ̄x are the multi-model 
ensemble mean values of y and x, respectively. Here, ρ is the correlation 
coefficient between y and x; σy and σx are the standard deviations of y 
and x, respectively, across an ESM ensemble:

a = ρ
σy
σx

(2)

The constrained future Earth system variable ̄yc and its variance 
can be estimated using equations (3) and (4), respectively:

yc = y + a

1 + SNR
−1 (x0 − x) (3)

σ2yc = (1 − ρ2

1 + SNR
−1 )σ

2
y (4)

SNR, the signal-to-noise ratio, defines the relative strength of  
the signal variability to the noise variability77, estimated by using  
equation (5), where σ2x  and σ2o are the variances across the models  
and across the different observation-based datasets, respectively77:

SNR =
σ2x
σ2o

(5)

Model-based cross-validation
The question arises as to how we can determine whether the con-
strained projections are closer to the actual values compared with 
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their raw projections, given the absence of observational data for the 
future period. The model-based cross-validation method addresses 
this concern directly by selecting one of the CMIP6 models’ projections 
of future SWE as a ‘pseudo observation’78. The discrepancy in future 
SWE between the ‘pseudo observation’ and the multi-model mean 
estimate of the remaining CMIP6 models serves to estimate the raw 
bias in the CMIP6 projections. Subsequently, combining the ‘pseudo 
observation’ with the emergent relationship across the remaining 
CMIP6 models provides the constrained estimate of future SWE. The 
difference between the ‘pseudo observation’ and the constrained 
results represents the constrained bias after applying the emergent 
constraint. This process is repeated for each CMIP6 model at the 
grid-cell level, allowing us to compare the raw bias and the constrained 
bias in the SWE projections. There is confidence in the observationally 
constrained projection if the constrained pseudo-future projection 
has lower bias and uncertainty than the raw multi-model mean projec-
tion obtained from the ensemble of models that excludes the model 
that provided the pseudo observations of the past and future.

Data availability
The daily precipitation products from GPCC, CPC and MSWEP were 
derived from https://opendata.dwd.de/climate_environment/GPCC/
full_data_daily_v2022/, https://psl.noaa.gov/data/gridded/data.cpc.
globalprecip.html and https://www.gloh2o.org/mswep/, respectively. 
The daily temperature records from Berkeley Earth, ERA5-Land, MERRA-2 
and the Japanese 55-year Reanalysis ( JRA-55) were derived from https://
berkeleyearth.org/data/, https://cds.climate.copernicus.eu/datasets/
reanalysis-era5-land?tab=overview, https://gmao.gsfc.nasa.gov/rea-
nalysis/MERRA-2/ and https://rda.ucar.edu/datasets/d628000/, respec-
tively. The CMIP6 model simulations, including SWE, snowmelt water, 
precipitation and temperature, were acquired from https://esgf-node.
llnl.gov/projects/cmip6/. The CMIP5 model simulations were acquired 
from https://esgf-node.llnl.gov/projects/cmip5/. The observation-based 
SWE datasets were acquired from GlobSnow-v3 (https://doi.org/10.1594/
PANGAEA.911944)79, SnowCCI-v2 (https://catalogue.ceda.ac.uk/uuid/
93cf539bc3004cc8b98006e69078d86b/), MERRA-2 (https://gmao.
gsfc.nasa.gov/reanalysis/MERRA-2/), ERA5-Land (https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-mean
s?tab=overview), GLDAS-v2 (https://disc.gsfc.nasa.gov/datasets/
GLDAS_CLSM10_M_2.0/summary?keywords=snow%20water%20
equivalent), NCEP2 (https://psl.noaa.gov/data/gridded/data.ncep.
reanalysis2.html), FLDAS (https://disc.gsfc.nasa.gov/datasets/FLDAS_
NOAH01_C_GL_M_001/summary?keywords=snow%20water%20equiva-
lent), CFSR (https://esgf-node.llnl.gov/search/create-ip/) and ERA5 
(https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-lev-
els-monthly-means?tab=overview). The Offline Land Model Experiment 
(LMIP) and the Prescribed Land Surface States (LFMIP) CMIP6 experi-
ments, including SWE and snowmelt water, were derived from https://
aims2.llnl.gov/search/cmip6/.

Code availability
Codes to reproduce the study are available via GitHub at https://github. 
com/alanchai/Overcoming-the-Northern-Hemisphere-snow-water- 
resources-paradox.git (ref. 80).
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