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Although Earth system models (ESMs) tend to overestimate historical land

surface warming, they also overestimate snow amounts in the Northern
Hemisphere. By combining ground-based datasets and ESMs, we find that
this paradoxical phenomenon is predominantly driven by an overestimation
oflight snowfall frequency. Using spatially distributed emergent constraints,
we show that this paradox persists in mid- (2041-2060) and long-term
(2081-2100) projections, affecting more than half of the Northern
Hemisphere’s land surface. ESMs underestimate the frequency of freezing
days by 12-19% and overestimate snow water equivalent by 28-34%.
Constrained projections indicate that the raw ESM outputs overestimate
future Northern Hemisphere snowmelt water by 12-16% across 53-60% of the
Northern Hemisphere’s land surface. This snowmelt water overprediction
implies that the amount of water available in the future for agriculture,
industry, ecosystems and domestic use may be lower than unadjusted ESM
projections suggest.

Terrestrial water is stored as snow in winter, and subsequently melts
partially or completely during the spring and summer due to warming
temperatures, releasing water through infiltration, which recharges
soilmoisture, or as runoff, whichincreases streamflow’ ™. As the largest
freshwater storage reservoir, snowmelt water is critical for domestic
water supply, agriculture, hydroelectric power and ecosystems®'2,
Snowmeltwaterinthe NorthernHemisphere (NH) accounts for approxi-
mately one-third of all irrigation water”, and supports one-fourth of
global gross domestic product' and approximately one-sixth of Earth’s
population™. Decreases in snow volumes caused by global warming"'®
aregreatly affecting the hydrological cycle and are therefore often cited

asakey threattoirrigated agriculture and food security® . Consider-
ingtheimportance of snow in shaping the global water cycle, areliable
understanding of the spatial dynamics of snow conditionsin response
to our warming climate is urgently required. This is especially true in
the NH, which accounts for around 98% of global snow volume®”.
Recent studies have found considerable uncertainties in snow
modelling across Earth system models (ESMs)*?. These uncertainties
underpin a ‘snow water resources paradox’ in the context of surface
warming: Coupled Model Intercomparison Project phase 6 (CMIP6)
and phase 5 (CMIP5) ESMs tend to overestimate historical warming
trends'* and underestimate the frequency of freezing days (days with
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daily mean temperature below 0 °C) when snowfall tends to occur,
while overestimating snow water equivalent (SWE) relative to observa-
tions in recent decades®’. We show that this paradox, which leads to
the overestimation of annual snowmelt water, persists in future SWE
and snowmelt water projections made with CMIP6 models. The future
of NH SWE and snowmelt water resources remains unclear, given this
paradox. This leads to confusion about future snow amounts as the
climate warms'*?>*, undermining estimations of future snow water
resources and the ability of water management policies to address
potential snow water resource shortages.

Emergent constraint methods can help reduce uncertainty in SWE
and temperature projections arising from the snow water resources
paradox***-3¢, By reducing these uncertainties, emergent constraints
canhelp usassess whether the snow water resources paradox persistsin
the future projections, thus providing more reliable and accurate future
snow projections for better management of future water resources. In
this study, we introduce a spatially distributed hierarchical emergent
constraint on future mid- (2041-2060) and long-term (2081-2100)
NH SWE and freezing day frequency using 31 CMIP6 models (Supple-
mentary Table 1) under four Shared Socioeconomic Pathway (SSP)
emission scenarios (SSP126, SSP245, SSP370 and SSP585). Observa-
tionally constrained estimates of future SWE are then used to refine
projections of future snowmelt water. These spatially constrained
results help to better support the formulation of regional policies for
water resources management thataddress local climate warming and
environmental protection.

Snow water resources paradox over the historical
period

Based on the Berkeley Earth land temperature record”, we find that
the frequency of freezing days is underestimated by the CMIP6 models
(119 £ 19 days, ensemble mean + s.d. of CMIP6 models) compared with
observations (136 + 4 days; Fig. 1a) in the extended NH cold season
(excluding months from June to September) for the period 1982-2014.
This underestimation occurs across more than nine-tenths of the NH’s
land surface (Fig. 1b, excluding snow-free regions).

Given that snowfall depends on both temperature and precipita-
tion, alower freezing day frequency inthe CMIP6 ESMsimplies reduced
snowaccumulationrelativetoobservations. However, the CMIP6 models
significantly overestimate (P < 0.05) the NHmean SWE (3,275 + 1,279 Gt)
by 50% compared with the observation-based estimate of 2,115 + 777 Gt.
This observation-based estimate is derived from nine SWE datasets
(Supplementary Table 2): seven reanalysis datasets (Modern-Era Retro-
spective analysis for Research and Applications, Version 2 (MERRA-2),
European Centre for Medium-range Weather Forecasts ReAnalysis
5-Land (ERAS-Land), Global Land Data Assimilation System Version
2 (GLDAS-v2), National Centers for Environmental Prediction Ver-
sion 2 (NCEP2), Famine Early Warning Systems Network Land Data
Assimilation System (FLDAS), Climate Forecast System Reanalysis
(CFSR) and European Centre for Medium-range Weather Forecasts ReA-
nalysis 5 (ERAS5)) and two satellite and ground-based datasets (Global
Snow Monitoring for Climate Research-Version 3 (GlobSnow-v3) and
European Space Agency Snow Climate Change Initiative-Version 2
(SnowCClI-v2)). The overestimation occurs in every year from 1982
t0 2014 (Supplementary Fig. 1). This snow water resources paradox is
manifested as an overestimation of SWE by the CMIP6 models across
61% of the NH land surface (Fig. 1c, blue regions) despite substantial
underestimation of freezing day frequency.

Arecent study found that the positive bias in SWE is related to a
positive bias in precipitation during the accumulation season, while
the effect of temperature is minimal, especially in the coldest regions’.
Giventhe overestimation of precipitation and the underestimation of
freezing day frequency, we hypothesize that the abnormally high SWE
in CMIP6 models (Fig. 1c) might be due to anincorrect representation
of snowfall (intensity and frequency). Using the Global Precipitation

Climatology Centre (GPCC) daily precipitation data, we estimate
the intensities and frequencies of light (1-10 kg m2 d™), moderate
(10-30 kg m2d™) and heavy (=30 kg m2d™’; Methods) snowfall for the
period 1982-2014. We find that the CMIP6 models overestimate the
total snowfall amount by 1,530 Gt. Although the simulated moderate
and heavy snowfallamounts are close to those observed, the simulated
light snowfall amount (5,859 + 1,050 Gt) is overestimated by 28.3% or
1,293 Gt, relative to the GPCC estimate (4,566 + 185 Gt; Fig.1a; P < 0.05).
Using other daily precipitation datasets from the Climate Prediction
Center (CPC) and the Multi-Source Weighted-Ensemble Precipitation
(MSWEP) to estimate light snowfall, we again show that the CMIP6
models overestimate the light snowfall amount (Supplementary Text
1and Supplementary Fig. 2). A quantitative analysis of the mechanisms
further indicates that total snowfall is the primary contributor to NH
mean SWE biases, accounting for 91.5% of the total bias. Among the
components of total snowfall, light snowfall contributes the most to
SWE biases at 69.5 + 9.8%, followed by moderate snowfall (11.1 + 6.9%)
and heavy snowfall (10.9 + 3.1%). The remaining SWE bias primarily
stems from snowmelt water (8.5%). We therefore conclude that the
overestimation of light snowfall is the dominant factor underlying
the snow water resources paradox. The monthly scale analysis (Sup-
plementary Text 2 and Supplementary Figs. 3-5) and the analysis of
the Land Surface, Snow and Soil Moisture Model Intercomparison
Project (LS3MIP) CMIP6 offline experiment (Supplementary Text 3
and Supplementary Figs. 6-9) both support the dominant role of the
light snowfall biasin contributing to the positive SWE bias, while snow
melting physics also plays a critical role, particularly during the snow
ablation period. Whileland-atmosphere couplingisnot a primary fac-
tor contributing to the NH mean SWE bias, itsimpact can be significant
inspecificregions.

This conclusion regarding the dominant role of light snowfall
bias in contributing to the positive SWE bias is further supported by
the highly consistent geographical distributions of the overestimated
SWE (Fig. 1c), light snowfall amount (Fig. 1d) and light snowfall fre-
quency (Fig. 1e). Further analysis indicates that snowfall intensity
(mean snowfall per snow day) is virtually identical in CMIP6 mod-
els and observations (2.98 + 0.04 mm d* versus 3.00 + 0.24 mmd™,
respectively), but that the CMIP6 models significantly overestimate
light snowfall frequency (31.0 + 4.4 days per year), a bias of +27.0% or
6.6 days per year compared with observed values (24.4 + 0.8 days per
year, P< 0.05). This substantial bias in light snowfall frequency causes
about 67.9% of the NH mean SWE bias, and far exceeds that of snowfall
intensity (1.6%). Our regional analysis further supports this finding
(Supplementary Text4). However, it also highlights the critical roles of
snowmelt processes, heavy snowfall and snowfall intensity in certain
areas (Supplementary Fig. 10).

Incontrast,insomeregions, particularly in central eastern Siberia,
SWE has increased even with rising temperatures due to the atmos-
pheric dynamic-induced moisture convergence. Therefore, in these
areas specifically, the occurrence of a positive biasin SWE in the ESMs
isreasonable and not necessarily a paradox. On the other hand, some
recent studies have raised concerns that very high resolution regional
models may be too cold in high surface elevation regions to produce
sufficient SWE***°, leading to a negative SWE bias that contrasts with
the positive bias in CMIP6 models. The negative SWE bias in regional
models probably arises from the underestimation of precipitation
(including snowfall)*®, whereas the positive SWE bias in CMIP6 models
ismainly attributed to an overestimation of light snowfall. Both cases
emphasize the critical role of precipitation in SWE simulations.

Future freezing day frequency and SWE

Projections of freezing day frequency (Supplementary Fig.11a,b) and
SWE (Supplementary Fig. 11c,d) during the extended NH cold season
both exhibit large differences across the CMIP6 models in the mid-
(2041-2060) and long term (2081-2100). For example, the models
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Fig.1| Characteristics and mechanisms of the snow water resources paradox
inthe extended NH cold season for the period 1982-2014. Regions without
seasonal snow cover are excluded (grey areas). a, Relationships among
temperature, snowfall, SWE and snowmelt water based on observation-based
datasets and CMIP6 simulations. The snowfall frequency represents the multi-
year average occurrence of light (1-10 kg m2d™), moderate (10-30 kg m2d™)
and heavy (=30 kg m2d™) snowfall. Blue arrows indicate that a variable (for
example, overestimated snowfall) canincrease the amount of the next variable
(for example, overestimated SWE); red arrows indicate a decreasing effect.
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Snow sublimationis excluded due to its minimal impact on snow water
resources compared with snowfall and snowmelt. b-e, Biases (CMIP6 minus
observation-based estimates) in the multi-year average freezing day frequency
(b), SWE (c¢), light snow amount (d) and light snowfall frequency (1-10 kg m2d™;
e).Blue regionsindicate overestimation by the ESMs, while red regions

show underestimation. Regions with oblique lines demonstrate statistically
significant differences between CMIP6 models and observation-based
estimates (P < 0.05) as determined by a two-sided ¢-test. Maps in b-e generated
using MATLAB R2022b.

project multi-year average mid-term future freezing day frequency and
future SWE of 43.5-132.8 days (minimum-maximum) and 1,458-6,379
Gt respectively under SSP245. Using the emergent constraints, we
obtain constrained estimates of future freezing day frequency and
SWE with reduced uncertainty.

We first examine the emergent relationships between historical
and future freezing day frequency across the CMIP6 models at each
grid cell under four emission scenarios, and similarly consider such
relationships for SWE. We find that the relationships for freezing day
frequency (Fig. 2a and Supplementary Fig. 12) and SWE (Fig. 2b and
Supplementary Fig. 13) are both statistically significant across more
than nine-tenths of the NH (P < 0.05). This provides a basis for produc-
ing observationally constrained projections of future freezing day

frequency and SWE conditions across much of the NH. The remain-
ing regions, which either have insignificant relationships (P> 0.05;
Fig. 2a,b) or snow-free conditions throughout the year, are excluded
from the following analysis. This approach (focusing on the projec-
tion of a variable onto itself)** has also been used to constrain projec-
tions of future CO, concentrations*' and the ratio of transpiration to
evapotranspiration*’.

These relationships allow us to use observation-based estimates
to constrain future freezing day frequency and SWE (Methods). We
estimated the observed freezing day frequency fromthe Berkeley Earth
temperature product that incorporates more temperature observa-
tions (over 40,000 records) than other available products”. Other data
products provide highly consistent results (Supplementary Fig. 14).
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Fig. 2| Observationally constrained projections of mean freezing day
frequency and mean SWE in the extended NH cold season for the period
2041-2060 under SSP245 at the grid level. Regions without seasonal snow
cover are excluded (grey areas). a, Pearson’s correlation coefficients of emergent
relationships between historical (1982-2014) and future (mid-term future

period 2041-2060) simulations of mean freezing day frequency across the
CMIP6 models. b, Correlation coefficients of emergent relationships between
historical and mid-term future SWE simulations across the CMIP6 models.

¢, Percentage of uncertainty reduction for future mean freezing day frequency,
relative to the original CMIP6 projections. d, Percentage of uncertainty reduction
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for future mean SWE. e, Constrained future mean freezing day frequency minus
unconstrained future mean freezing day frequency. Brown regions indicate

an overestimation of future mean freezing day frequency by ESMs, while blue
regions show an underestimation. f, Constrained future mean SWE minus
unconstrained future mean SWE. Emergent constraints on future freezing day
frequency use the Berkeley Earth temperature product. Emergent constraintson
future SWE use the nine SWE datasets (derived from GlobSnow-v3, SnowCClI-v2,
MERRA-2, ERAS-Land, GLDAS-v2, NCEP2, FLDAS, CFSR and ERAS5) and account

for observational uncertainty by using the spread across observation-based
products. Maps generated using MATLAB R2022b.

Applying the constraints substantially narrows the spread of freezing
day frequency projections from the CMIP6 models over 90% of the
NH’s land surface under SSP245 for the mid-term projections (Fig. 2c),
with the projected ranges significantly reducing from 64-138 days
(mean t1s.d.) to 99-141days (P < 0.01). Application of the constraint
at each grid cell, therefore, decreases projection uncertainty by 41%.
Similar uncertainty reductions of 42-62% are obtained under the four
emission scenarios inboth the mid- and long-term future projections
(Supplementary Fig. 15). Figure 2e suggests that the CMIP6 models
underestimate the mid-term NH freezing day frequency by 16% under
SSP245, with best estimates increasing from the original projections
of101 + 37 days to the constrained results of 120 + 21 days. This appar-
ent underestimation occurs across more than nine-tenths of the NH’s
land surface. The underestimation of future freezing day frequency is
consistently seenacross the four SSPsin the mid-term projections (by
16-19%, depending on SSP) and in the long-term projections (12-13%;
Supplementary Fig. 16).

In contrast with freezing day frequency, there is greater uncer-
tainty amongst the long-term observation-based SWE datasets
(Supplementary Fig. 11) due to the sparsity of in situ observations,
simplified descriptions of physical snow processes, different retrieval
algorithms, satellite data uncertainties and land surface model forc-
ing uncertainty®*~*, We therefore apply a hierarchical emergent
constraint framework*¢ (Methods) to account for the observational
uncertainty in SWE across nine observation-based datasets and to
constrain future SWE projections. Theresulting constraint reduces the
uncertainty of future mid-term NH mean SWE by 39% under SSP245,
with the projected ranges reducing from 965-4,587 Gt to 967-3,177 Gt
(P<0.01).Similar uncertainty reductions of 36-39% (depending on the
SSP) are obtained at mid-term under the other SSPs (Supplementary
Fig.17). The constraints provide uncertainty reductions of 25-34% in
thelong-term projections under the four SSPs (Supplementary Fig. 17).
Thelargest uncertainty reductions are obtained in the snow-abundant
regions of the Tibetan Plateau and the northern high latitudes (>50°N;
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see Supplementary Tables 5and 6. The regions with insignificant emergent
relationships (P> 0.05) and with snow-free conditions throughout the year are
excluded. d, Snow drought durations as a proportion of the extended cold season
under SSP245 for mid-term future projections. DO, D1, D2, D3 and D4 correspond
to abnormally dry, moderate drought, severe drought, extreme drought and
exceptional drought, respectively (refer to the definitionsin Supplementary
Table 7). Mapsin a-c generated using MATLAB R2022b.

Fig. 2c, d). In contrast with freezing day frequency, the application of
our emergent constraint to SWE significantly decreases raw model
projections of mid-term SWE under SSP245 from 2,776 +1,811 Gt to
2,072 £1,105 Gt (P< 0.01), indicating that models probably overes-
timate future SWE by 34% (Fig. 2f). Consistent results are obtained
for the mid-term period and for the long-term period under the four
SSPs, with SWE overestimated by 28-34% (Supplementary Fig. 18).
The localized results show that the unconstrained ensemble overes-
timates SWE across more than half of the NH’s land surface (Fig. 2f
and Supplementary Fig. 18). The fact that the constraints increase
the raw freezing day projections and decrease the raw SWE projec-
tions suggests that the snow water resources paradox persists in the
future projections. Further investigation using a variety of approaches,
including multi-scale consistency, out-of-sample testing in CMIP5 and
model-based cross-validation*”*® (Supplementary Text 5), confirms the
robustness of these constrained projections.

Mechanisms of the snow water resources paradox
inthe future

To investigate the mechanisms underpinning the paradox in the pro-
jections, we examined the emergent relationships between historical
and future simulations of light snow frequency and found that the
relationships were significant over approximately nine-tenths of the
NH’s land surface (P < 0.05; Supplementary Fig. 23). Combining the
observed estimates of light snow frequency from the GPCC product, we
found that the CMIP6 models overestimate the mid-term future light
snow frequency by 26-28% (Supplementary Fig. 24), with the origi-
nal projections of 24.3 +10.6 days (SSP126), 24.5 + 10.5 days (SSP245),
23.9 +10.5 days (SSP370) and 23.2 +10.5 days (SSP585) decreasing

to the constrained values 0of 19.3 + 7.6 days, 19.1 + 7.8 days, 18.8 + 7.8
days and 18.2 + 7.6 days, respectively. In the long-term future pro-
jections, we again found an overestimation of 24-28%. Importantly,
the overestimation (Supplementary Fig. 24) is mainly located in the
regions where the future snow water resources paradox exists (Fig. 2f).
This implies that the overestimation of future light snow frequency
is the principal reason for the future snow water resources paradox.
A fundamental mechanism may be related to the climate model bias
towards the frequency of light precipitation (that s, the ‘drizzle prob-
lem’; Supplementary Text 6)*°°.

A greater potential threat to water resources

The snow water resources paradox affects snowmelt water, as reflected
by the significant relationships between hemispheric average future
SWE and snowmelt water across the CMIP6 models (0.88 <R <0.93;
Supplementary Fig. 25and Supplementary Table 4). Thus, by diagnos-
ing and applying the relationship between future projections of SWE
and future snowmelt water, it may be possible to use the constrained
future SWE to provide a meaningful constraint on future snowmelt
water based on the traditional emergent constraint method. Previous
studies have also applied this method of using constrained estimates
torefine the other projected climate variables*?**"*,

We examined therelationship between future SWE and snowmelt
water in each grid cell and found that they remain statistically signifi-
cantover nine-tenths of the NH’s land surface (P < 0.05; Fig. 3aand Sup-
plementary Fig. 26). Combining these relationships with the gridded
constrained results of future SWE shows that the constrained estimate
of future NH snowmelt water shifts from the raw CMIP6 projections of
150 +33 mm yr* (under SSP245) to 132 + 20 mm yr " during the mid-term
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future period. This indicates that the CMIP6 models probably overesti-
mate NH snowmelt water by 12-16% under the four SSPsin both mid-and
long-term future projections. The overestimation affects over half of
thetotal NHarea (Fig.3b and Supplementary Fig.27), especiallyin the
snow-abundant regions of northern North America (overestimated
by 22-29%), eastern Asia (20-27%) and the Tibetan Plateau (9-14%).
Applying this two-stage constraint also lowers the uncertainty of future
snowmelt water projections, with the uncertainty reduced by 33-37%.
Thisindicates that the future snowmelt water supply riskis likely to be
underestimated if the persistence of the snow water resources paradox
isignored and unadjusted ESM projections are employed.

To provide more meaningful information for water resources
management at the basinscale, we applied the emergent relationships
between future SWE and snowmelt water in 36 large snow-dominated
river basins (70,000 km? based on the HydroBASINS dataset™; Sup-
plementary Tables Sand 6)". The constrained results show that CMIP6
models are likely to statistically overestimate future snowmelt water
in 25-28 of these basins (Fig. 3¢, and Supplementary Tables 5 and 6;
P <0.01). To enhance the evaluation of potential snow water resource
shortages in these river basins, we employed the standardized snow
water equivalent index (Supplementary Text 7) to assess future risks
of snow water resource deficits based on the constrained future SWE.
Our findings indicate that snow water shortages are likely to become
more severeinthe future, with moreregions facing the risk of extreme
drought (Supplementary Text 8). In the Arctic region, including the
Kolyma, Pyasina and Mackenzie river basins, varying degrees of snow
drought (Fig. 3d and Supplementary Fig. 29) could impact dissolved
organiccarbonand nutrient transport, threatening the sustainability of
Arcticecosystems and altering carbon cycle dynamicsin the Arctic shelf
and ocean. For river basins like the Caniapiscau and Colorado, where
economic development relies heavily on hydropower”, our constrained
projections suggest prolonged snow drought (Fig.3d and Supplemen-
tary Fig.29). The Fraser River, crucial for Pacific Ocean salmon popula-
tions, also faces high snow drought risks, potentially affecting salmon
migrations. The Rhine River basin, heavily influenced by meltwater,
facesremarkable snow drought risk, with severe drought (D2) and worse
(extreme (D3) and exceptional (D4) drought) lasting for up to 25.4%
of the extended cold season under SSP585. Conversely, river basins
in northeastern Asia, such as the Lena (18.5-51.1% of the cold season),
Amur (8.3-55.3%) and Kolyma (18.9-34.4%), show shorter durations of
snow drought with arelatively stable standardized snow water equiva-
lentindex, indicating lesserimpacts compared with other regions. This
isattributed to the increased atmospheric moisture holding capacity
and moisture convergence induced by atmospheric dynamics®.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41558-025-02308-y.
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Methods

ESM datasets

SWE, snowmelt water, temperature and precipitation during the histori-
cal (1982-2014) and future (2015-2100) periods were acquired from the
CMIP6 modelsto derive the emergent relationships and to analyse the
plausible mechanisms under the low- (SSP126), medium- (SSP245) and
high-emission (SSP370 and SSP585) scenarios. Data for SWE were also
acquired fromthe CMIP5S models under the Representative Concentra-
tion Pathway 45 and 85 emission scenarios to test the robustness of the
emergentrelationships. Here, we used one realization per model (that
is, thefirst realization). We re-gridded all CMIP5 and CMIP6 outputs and
observation-based datasets toacommon 0.5° x 0.5° latitude-longitude
spatial resolution. Effectively, glaciated grid cells occur in climate
models when the annual accumulation of snowfall exceeds snowmelt
and sublimation losses in high-elevation areas with low annual mean
temperatures. While this tends to happenin reasonable locations where
glaciersandice sheetsalso existintherealworld (for example, along the
coastal mountains of Alaska, at high-elevation regions of the Canadian
Arctic,inHigh Mountain Asia, and over Greenland and Antarctica), the
models do not explicitly distinguish between glaciers and seasonal
snow. Insome models, SWE can accumulate to large amounts over such
grid cells (for example, greater than 500 kg m™)°. Additionally, there
issubstantialinter-model variability in the maximum amount of snow
eachmodel accumulates. Therefore, neither the climatological mean
SWEnorthe trendsaccurately represent seasonal snowin the real world.
Toeliminate the effect of these ‘glaciated’ grid cells, we removed all SWE
values greater than 500 kg m2in the CMIP6 models, following ref. 6.

Observation-based datasets

We used SWE data from nine datasets (GlobSnow-v3, SnowCCl-v2,
MERRA-2, ERA5-Land, ERAS, CFSR, GLDAS-v2, FLDAS and NCEP2). The
GlobSnow-v3 and SnowCCl-v2 datasets are satellite and ground-based
datasets, while the remaining seven are reanalysis datasets. As men-
tioned earlier, for clarity, we refer to these two categories collectively
asthe observation-based estimates throughout the text. These datasets
have been evaluated and extensively used for climatic and hydro-
logical research and climate model evaluation®* 2, The GlobSnow-v3
and SnowCClI-v2 datasets, which combine satellite-based passive
microwave radiometer data with ground-based synoptic snow depth
observations, provide SWE data®***, The MERRA-2 dataset, which is a
National Aeronautics and Space Administration atmospheric reanalysis
dataset, has assimilated available in situ and satellite observationsinto
aclimate model since 1980, with a resolution of 0.625° x 0.5° (ref. 65).
ERAS5-Land® and ERA5% both use the Hydrology Tiled European Centre
for Medium-Range Weather Forecasts Scheme for Surface Exchanges
land surface model (HTESSEL) to provide reanalysed SWE datasets at
resolutions of 0.75° x 0.75° and 0.25° x 0.25°, respectively. CFSR cov-
ers the period from 1979 to 2019, with 0.5° x 0.5° spatial resolution®.
Proved to agree well with regional gauge-based observations®®*7°, the
CFSR dataset has been widely applied to estimate the observational
characteristics of NH SWE, and it has also been used for calibration
and validation of ESMs (for example, CMIP5 models)””. The GLDAS-v2
dataset uses advanced land surface modelling and data assimilation
techniques to provide a temporally consistent series from 1948 to
2014, forced entirely with the Princeton meteorological forcing input
data, with aresolution of 0.1° x 0.1° (ref. 73). FLDAS is simulated from
the Noah 3.6.1 model in the Famine Early Warning Systems Network
Land Data Assimilation System, with a resolution of 0.1° x 0.1° from
January 1982 to the present’™. The simulation uses MERRA-2 data and
Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)
six-hourly rainfall data. The NCEP Reanalysis 2 project uses a frozen
analysis/forecast system to perform data assimilation using past data
from 1979 to the near-present with 2.5° x 2.5° spatial resolution”. Dif-
ferences amongst these nine SWE datasets compared with 11,071 in situ
SWE observation stations are discussed in Supplementary Text 9.

The Berkeley Earth land daily temperature record utilizes signifi-
cantly more land station data (over 40,000 stations) compared with
the other products®, and is therefore used to estimate the observed
freezing day frequency (that is, the number of days with temperature
lower than 0 °C). The GPCC daily precipitation productis the most com-
monly used product that uses data acquired from more than 85,000
stations worldwide’. On days with freezing temperatures, observed
light snowfall (1-10 kg m2 d™), moderate snowfall (10-30 kg m=d™)
and heavy snowfall (=30 kg m2d™) are estimated based on the GPCC
data. The choice of temperature threshold for determining freezing
days is critical, particularly in conditions near freezing, and this is
especially important for estimating light snowfall. We conducted an
uncertainty analysis on theimpact of temperature thresholds on light
snowfall estimates and found that the selection of different thresholds
did not affect our conclusions (Supplementary Text 10).

Hierarchical emergent constraint framework

The hierarchical emergent constraint framework applied here explic-
itly relates future climate, current climate and observations through
conditional probability distributions*®. This method allows us to fully
consider the observational uncertainty across the nine SWE datasets.
The core of the emergent constraint method is to identify a strong
statistical relationship between an element.x of the observable climate
andanimportantvariable y describing the future simulated state (equa-
tion (1)), across an ESM ensemble*. Once diagnosed from anensemble
of models, this emergent relationship can be applied to the observed
value of xto produce a more reliable and accurate future climate pro-
jection for y (equations (3) and (4))””. When certain models estimate
particularly anomalous SWE, these anomalous values can impact the
effectiveness of the emergent constraint, requiring their removal. We
used the Z-score method to identify outlier models: if the estimated
value fromagiven model simulation exceeds three times the standard
deviation fromthe mean, itis classified as an outlier. The details of the
method are described in ref. 46.

y=ax-x+y @
where ais obtained using equation (2),and yand x are the multi-model
ensemble meanvalues of yand x, respectively. Here, pis the correlation

coefficient between y and x; 0, and g, are the standard deviations of y
and x, respectively, across an ESM ensemble:

O,
a=pz ©)
X

The constrained future Earth system variable yand its variance
can be estimated using equations (3) and (4), respectively:

Je=y+ — (o~ ¥) 3)
1+ SNR
P2
02 =(1——)02 4)
e 1+SNR7Y/

SNR, the signal-to-noise ratio, defines the relative strength of
the signal variability to the noise variability”’, estimated by using
equation (5), where o2 and ¢? are the variances across the models
and across the different observation-based datasets, respectively””:

SNR = (5)

o
o,
Model-based cross-validation

The question arises as to how we can determine whether the con-
strained projections are closer to the actual values compared with
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their raw projections, given the absence of observational data for the
future period. The model-based cross-validation method addresses
this concern directly by selecting one of the CMIP6 models’ projections
of future SWE as a ‘pseudo observation’”®, The discrepancy in future
SWE between the ‘pseudo observation’ and the multi-model mean
estimate of the remaining CMIP6 models serves to estimate the raw
biasinthe CMIP6 projections. Subsequently, combining the ‘pseudo
observation’ with the emergent relationship across the remaining
CMIP6 models provides the constrained estimate of future SWE. The
difference between the ‘pseudo observation’ and the constrained
results represents the constrained bias after applying the emergent
constraint. This process is repeated for each CMIP6 model at the
grid-celllevel, allowing us to compare the raw bias and the constrained
biasinthe SWE projections. There is confidence in the observationally
constrained projection if the constrained pseudo-future projection
haslower bias and uncertainty than the raw multi-model mean projec-
tion obtained from the ensemble of models that excludes the model
that provided the pseudo observations of the past and future.

Data availability

The daily precipitation products from GPCC, CPC and MSWEP were
derived from https://opendata.dwd.de/climate_environment/GPCC/
full_data_daily_v2022/, https://psl.noaa.gov/data/gridded/data.cpc.
globalprecip.htmland https://www.gloh20.org/mswep/, respectively.
Thedaily temperaturerecords from Berkeley Earth, ERA5-Land, MERRA-2
andtheJapanese 55-year Reanalysis (JRA-55) were derived from https://
berkeleyearth.org/data/, https://cds.climate.copernicus.eu/datasets/
reanalysis-era5-land?tab=overview, https://gmao.gsfc.nasa.gov/rea-
nalysis/MERRA-2/and https://rda.ucar.edu/datasets/d628000/, respec-
tively. The CMIP6 model simulations, including SWE, snowmelt water,
precipitation and temperature, were acquired from https://esgf-node.
linl.gov/projects/cmip6/. The CMIP5 model simulations were acquired
fromhttps://esgf-node.lInl.gov/projects/cmip5/. The observation-based
SWE datasets were acquired from GlobSnow-v3 (https://doi.org/10.1594/
PANGAEA.911944)”°, SnowCCI-v2 (https://catalogue.ceda.ac.uk/uuid/
93¢f539bc3004¢cc8b98006e69078d86b/), MERRA-2 (https://gmao.
gsfc.nasa.gov/reanalysis/MERRA-2/), ERA5-Land (https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-mean
s?tab=overview), GLDAS-v2 (https://disc.gsfc.nasa.gov/datasets/
GLDAS_CLSM10_M_2.0/summary?keywords=snow%20water%20
equivalent), NCEP2 (https://psl.noaa.gov/data/gridded/data.ncep.
reanalysis2.html), FLDAS (https://disc.gsfc.nasa.gov/datasets/FLDAS_
NOAHO1_C_GL_M_001/summary?keywords=snow%20water%20equiva-
lent), CFSR (https://esgf-node.linl.gov/search/create-ip/) and ERAS5
(https://cds.climate.copernicus.eu/datasets/reanalysis-eraS-single-lev-
els-monthly-means?tab=overview). The Offline Land Model Experiment
(LMIP) and the Prescribed Land Surface States (LFMIP) CMIP6 experi-
ments, including SWE and snowmelt water, were derived from https://
aims2.lInl.gov/search/cmip6/.

Code availability

Codestoreproduce thestudy areavailable via GitHub at https://github.
com/alanchai/Overcoming-the-Northern-Hemisphere-snow-water-
resources-paradox.git (ref. 80).
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