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Abstract

Markov chain Monte Carlo (MCMC) allows one to generate dependent replicates from a posterior
distribution for effectively any Bayesian hierarchical model. However, MCMC can produce a
significant computational burden. This motivates us to consider finding expressions of the posterior
distribution that are computationally straightforward to obtain independent replicates from directly.
We focus on a broad class of Bayesian hierarchical models for spatially dependent data, which are
often modeled via a latent Gaussian process (LGP). First, we derive a new class of distributions
referred to as the generalized conjugate multivariate (GCM) distribution. The GCM distribution’s
theoretical development follows that of the conjugate multivariate (CM) distribution with two main
differences: the GCM allows for latent Gaussian process assumptions, and the GCM explicitly
accounts for hyperparameters through marginalization. The development of GCM is needed to
obtain independent replicates directly from the exact posterior distribution, which has an efficient
regression form. Hence, we refer to our method as Exact Posterior Regression (EPR). Simulation
studies with weakly stationary spatial processes and spatial basis function expansions are provided.
We provide an analysis of poverty incidence from the U.S. Census Bureau, and an analysis of high-
dimensional remote sensing data. Supplementary materials for this article are available online.
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1 Introduction

MCMC has become an invaluable tool in statistics and is covered in standard text books (Robert
and Casella, 2004). MCMC is an all-purpose strategy that allows one to obtain dependent samples
from a generic posterior distribution. There are several theoretical considerations that one needs to
consider when implementing MCMC to obtain samples from the posterior distribution including,
ergodicity, irreducibility, and positive recurrence of the MCMC. In addition to theoretical consid-
erations, practical implementation issues arise, including, a potential for high computational costs,
assessing convergence (Gelman and Rubin, 1992; Cowles and Carlin, 1996), tuning the MCMC
(Roberts and Rosenthal, 2009), and computing the effective sample size of the Markov chain (Vats
et al., 2019), among other considerations. One of the current state-of-the-art techniques in MCMC
is Hamiltonian Monte Carlo (HMC, Neal, 2011). HMC is a Metropolis—Hastings algorithm, where
Hamiltonian dynamic evolution is used to propose a new value. In general, HMC leads to “fast
mixing” (i.e., converges relatively quickly to the posterior distribution) because it provides a sam-
ple from the joint posterior distribution of all processes and parameters, and moreover, has been
optimized efficiently using the software Stan (Carpenter et al., 2017).

Of course, MCMC is not needed if one can obtain independent replicates directly from the
posterior distribution efficiently. In this article, we revisit the problem of generating independent
replicates directly from the posterior distribution for a broad class of hierarchical models. This
class of hierarchical models could be applied in many of the settings in which one would use a
latent Gaussian process model (LGP, e.g., see Gelfand and Schliep, 2016). Much of the current
literature does not consider solving this problem, since obtaining independent replicates directly
from the exact posterior distribution for Bayesian spatial LGPs is a difficult problem, and MCMC
can easily be adapted to many settings. We consider Bayesian spatial hierarchical models for Gaus-
sian distributed data, Poisson distributed data, and binomial distributed data. The samples from our

proposed model are independently drawn, and hence avoid issues with convergence, tuning, and



positive autocorrelations in a MCMC. Moreover, our exact replicates have an interpretable projec-
tion formulation. This regression-type projection can be computed efficiently using known block
matrix inversion formulas (Lu and Shiou, 2002). Thus, we refer to our method as Exact Posterior
Regression (EPR), which is the one of the contributions of this article.

Conjugate prior distributions are often restricted to the data type. For example, for binomial,
negative binomial, Bernoulli, and multinomial distributed data, the fixed and random effects are
conjugate with the multivariate logit-beta distribution (Gao and Bradley, 2019; Bradley et al.,
2019), which is the special case of the conjugate multivariate (CM) distribution. Similarly, Poisson
and Weibull distributed data are conjugate with the multivariate log-gamma distribution (Bradley
et al., 2018; Hu and Bradley, 2018; Xu et al., 2023; H.-C.Yang et al., 2019; Parker et al., 2020,
2021), another special case of the CM distribution. Finally, mixed effects models for Gaussian
distributed data regularly make use of Gaussian priors for fixed and random effects (Gelman et al.,
2013), which is also a type of CM distribution. Thus, our second major contribution is to ex-
tend the conjugate multivariate (CM) distribution (Bradley et al., 2020a) to allow for Gaussian
priors. Additionally, conjugate prior distributions and the CM distribution do not allow one to
explicitly account for hyperparameters without the use of MCMC or approximate Bayesian tech-
niques. Thus, in our extension of the CM to Gaussian prior specifications we marginalize across
hyperparameters. We call this new distribution the generalized CM (GCM) distribution, which
allows for standard Gaussian priors (e.g., see Gelfand and Schliep, 2016, for a recent discussion).
Furthermore, we develop conditional distributions for GCM distributed random vectors.

A key step in our formulation is the incorporation of what we call a “discrepancy term,” which
is simply an additive term introduced into a mixed effects model similar to that of Bradley et al.
(2020b) and Bradley et al. (2023). This term has been interpreted as a way to incorporate signal-to-
noise dependence (Bradley et al., 2020b) in Generalized Linear Mixed Effects Models (GLMM),
and has also been interpreted as a type of model averaging (Bradley et al., 2023). Classical spatial

hierarchical models set these discrepancy terms equal to zero. When these terms are not set equal to



zero and instead given a type of improper prior then we show that the implied posterior distribution
for fixed effects, random effects, and discrepancy terms will be of the form of a GCM, which we
can directly sample from. Draws of the fixed and random effects will then be used for inference
(e.g., regression estimation and spatial prediction) bypassing the need for MCMC.

We emphasize the high potential impact of the contributions of EPR and GCM, since much of
the literature places a high consistent emphasis on using MCMC strategies to obtain asymptotically
exact correlated samples from the posterior distribution. In the context of generalized linear mixed
effects models (GLMM) and LGPs, EPR has the potential to circumvent the use of MCMC or
approximate Bayesian strategies in several settings where it is commonly used. For example, at
the time of writing this manuscript the following papers use MCMC in a spatial LGP setting: Kang
et al. (2023), Konomi et al. (2023), Porter et al. (2023), Vranckx et al. (2023), and Zhang et al.
(2023a), among others. All of these analyses can easily be adapted to be implemented using EPR,
which completely avoids MCMC.

EPR allows one to efficiently analyze several types of correlated spatial data. In particular, we
consider modeling three “types of data,” namely, conditionally Gaussian, Poisson, and binomial
distributed spatial data. Computationally expensive MCMC techniques have become a standard
for modeling spatial data (Robert and Casella, 2011; Gelfand and Schliep, 2016). Also, a common
approximate Bayesian technique used frequently in the spatial statistics literature is referred to
as integrated nested Laplace approximations (INLA, Lindgren et al., 2022). In this article, we
compare MCMC and INLA applied to traditional LGPs to EPR.

To summarize, the contributions of this article can be classified into three groups:

1. The first group of contributions of this article develops the GCM distribution. This includes
integral expressions for the GCM distribution and the conditional GCM distribution (i.e.,
the conditional distribution of one sub-vector of a GCM) up to a proportionality constant.

The key literature on conjugate modeling began with Diaconis and Ylvisaker (1979)’s semi-



nal paper which formally developed univariate conjugate models for the exponential family.
Then Chen and Ibrahim (2003) developed Diaconis and Ylvisaker (1979)’s work in the con-
text of fixed effects models and Bradley et al. (2020a) developed Diaconis and Ylvisaker
(1979)’s work in the context of mixed effects models. However, all of these papers require
one to match the form of the prior distribution with that of the likelihood. The development
of the GCM allows one to consider Gaussian priors. Moreover, this literature often does
not emphasize hyperparameters; however, our development explicitly addresses hyperpa-
rameters through marginalization. It should be noted that the theoretical development of the
GCM is similar to that of the CM distribution (Bradley et al., 2020a). However, the GCM
has an enormous practical advantage over the CM by allowing one to use a more standard
class of prior distributions (i.e., Gaussian) for spatial data and avoids MCMC updates of
hyperparameters. For example, when using the CM for a Poisson data settings, one uses
multivariate log-gamma priors for fixed and random effects and updates shape/rate parame-
ters in an MCMC. When taking a GCM approach one can use Gaussian priors for many (but

not all) of the fixed and random effects and avoid sampling hyperparameters in an MCMC.

. The second group of contributions of this article is that we show that one can completely
avoid the use of MCMC in settings in which a Bayesian LGP model could be used. In partic-
ular, our Bayesian hierarchical model results in a GCM posterior distribution for discrepancy
terms, fixed, and random effects, with independent replicates that one can compute without
approximations, which we call EPR. Much of the Bayesian literature is shifting focus on
avoiding MCMC through the use of approximate Bayesian methods (e.g., see Wainwright
and Jordan, 2008; Rue et al., 2009) or through direct sampling of the posterior distributions
in special cases for Gaussian data (Zhang et al., 2021; van Erven and Szabd, 2021; Shirota
et al., 2023; Zhang et al., 2023b). Recently, Bradley et al. (2023) developed an exact sam-

pler from the posterior distribution for a particular deep Bayesian statistical model for Gaus-



sian and non-Gaussian spatio-temporal data referred to as the deep hierarchical generalized
transformation model. EPR adds to this growing literature by allowing one to independently
sample from the posterior from a broad class of spatial hierarchical models. By “broad” we
mean that similar versions of our proposed model can be written for many existing LGPs. In
this article, we consider settings that incorporate spatial basis functions, weakly stationary

spatial processes, and conditional autoregressive models.

3. The third group of contributions is the development of EPR for high-dimensional settings.
Specifically, we use standard block matrix algebra techniques along with dimension reduc-
tion to aid in the computation of EPR (see Theorems 3.3 and 3.4). We demonstrate the size
of data that can be efficiently analyzed with EPR through a benchmark high-dimensional
dataset consisting of binary cloud mask data from Bradley et al. (2020a), where we analyze

spatial Bernoulli observations on the order of 2.4 million observations.

The remainder of the article proceeds as follows. Before we introduce our proposed hierarchical
model, we will first provide derivations of the GCM and conditional GCM distribution (i.e., the
conditional distribution of one sub-vector of a GCM) in Section 2. We emphasize that GCM
random vectors are derived through how they are simulated. Then, in Section 3 we show that
our proposed model’s posterior distribution for discrepancy terms, fixed, and random effects is
GCM, and we describe how to efficiently sample independent replicates directly from the marginal
posterior of the fixed effects, and random effects (which we call EPR). Illustrations are provided in
Section 4, which includes several simulations/comparisons (15 in total) including common models
used in spatial statistics: weakly stationary spatial processes, spatial basis function expansions, and
conditional autoregressive models. The main goal of our illustrations is to compare EPR to several
traditional Bayesian spatial LGPs. Proofs and additional details, examples, and simulations are

given in the Supplementary Material. A discussion is given in Section 5.



2 Preliminary Derivations: The Generalized Conjugate Multi-

variate Distribution

We now derive the generalized conjugate multivariate (GCM) distribution. This development is
similar to the development of the CM distribution from Bradley et al. (2020a). The difference
between the GCM and CM is that the GCM drops the assumption of identical classes of Diaconis-
Ylvisaker (DY) random variable (Diaconis and Ylvisaker, 1979), and marginalizes across a generic
d-dimensional real-valued parameter vector 8. We give a review of both the DY and CM distribu-
tions, along with a notation table, in Supplementary Appendix A to provide the reader additional
preliminary information. The GCM is needed for our main contribution of EPR in Section 4.

The GCM is defined by the transformation,

Yy = By + VuD(0)wy, (1
where the n = YX_ n;-dimensional random vector wy = (W},...,wy)’, the n;-dimensional ran-
dom vector Wy = (Wi 1, ..., Wi, )" With (k,i)-th element wy; ~ DY (4 ;, Kiis Wk), “DY” is a short

hand for the DY distribution, the subscript “M” stands for “Multi-type” (as there are multiple types
of DY random variables indexed by k), the n x n real-valued matrix V,, is an invertible covariance
parameter matrix, K ; > 0, O ;/Ki; € 2% defines the support for oy ;, % is the support of wy ;, and
M, is an unknown n-dimensional real-valued location parameter vector. Let @y = (0 1, . -, (Xk,nk)/ ,
Ke = (Kity-- o Kk )'s Oy = (@],..., @), and Ky = (K),...,Kg)". The function j is re-
ferred to as the unit log partition function, and we consider y;(w) = w?, W (w) = exp(w), and
v3(w) = log{1+exp(w)} for real-valued w. It is known that w;; is normally distributed with
mean %11’1 and variance ﬁ“, wy ; is the log of a gamma random variable with shape o ; and rate

K> i, and ws ; is the logit of a beta random variable with shape parameters o3 ; and rate k3 ; — 03 ;

(Bradley et al., 2020a).



Let D: Q — R" x R" be a known n x n matrix valued function, such that D(0)~! exists for
every d-dimensional 8 € Q for a generic real-valued set Q. Let O be distributed according to
the proper density 7(0), where 0 is independent of W,,, &y, Ky, and Vy,. Sampling from the
marginal distribution y,,|l,,, Vi, @, Ky (marginalizing across 0) is straightforward; namely,
first sample @ from 7(0) and then compute the transformation in (1) to produce a sample from
F(Yarllas, Vir, @ar, Kpr). The probability density function (pdf) for yy, |y, Vs, @ar, Kar is stated

in Theorem 2.1.

Theorem 2.1. Let y,, be defined as in (1). Then the pdf for y,, is given by,

yM|“M7VM7aM7KM>

= / )4y exp [awa(e)_]VA_/[] a1 — Byg) — KWy {D(e)_]VA_/[] vy —HBy)}]de, (2

/V 13 1
where Ny = {deeig(l)}gizk‘/;‘)k )}’ Y €SS =y =My +VuD(0)c,c = {Ck,i}ack,i S

%70 EQvi: 1,...,l’lk,k: 17"'7K}’ (Xk,i/K‘k,ie '%o Kk,i>0’ WM{VM(yM_#M)}: (Wl {JIVM(-YM_”'M>}/7
"7'I’K{JKVM(yM—“M)}/)/, the ny x n matrix J, = <0nk ety A, 0, vk s )for l <k<K,
’ =

Ji = (Inl,On1 K ) Jx = < nxk) nj’Ink>’ 0, is an n X m matrix ofzeros, I, is an ny X ny
e
identity matrix, the n-dimensional vector Gy = (@,..., &), and the n-dimensional vector

Ky =(K},...,Kg).

Proof: See Supplementary Appendix B.

Note that we use the notation of a bold y j(h) to represent a vector with i-th component (not
bolded) y;(h;) for h = (hy,...,h,)". We use the shorthand GCM(@s, Kar, 1y, Vir, T, D5 y,,) for
the density in (2).

Sampling directly from a GCM distribution requires two items:



1. One must be able to sample the random vector @ directly from its prior distribution 7.

2. One must be able to the sample independent DY random variables contained in the vector

Wy

In this article, the parameter vector @ typically consists of variance parameters and spatial range
parameters. These parameters will be given independent inverse gamma prior or uniform prior
distributions, which one can sample from directly. Additionally, the class of hierarchical models
in Section 3 lead to DY random variables that are either independent univariate normal, beta,
or gamma random variables, which are straightforward to simulate from directly using standard
software. The fact that we can sample independent replicates of a GCM random vector directly is
crucial in Section 3, where we show that a certain class of hierarchical models leads to a posterior
distribution for discrepancy terms, fixed, and random effects that is GCM (i.e., is of the form in
Theorem 2.1), and hence, one can directly sample from it.

A related distribution to the GCM is what we call the conditional GCM. By “conditional GCM,”
we mean the conditional distribution of y!) given y(®) when (y(l),y(z)) are jointly GCM. We
provide the integral expression for the conditional GCM in Theorem 2.2 up to a proportionality

constant.

Theorem 2.2. Lety,, = (y\"',y®Y ~ GCM(0tys, ks, iy, Vir, 7, D; W,,), wherey(V is r-dimensional
and y?) is (n — r)-dimensional. Also, let V' = (H,Q), where H is an x r and Q is nx (n—r).

Then, it follows

SO,y Vi, s, Kur)
n(6) / o) _ pl ot —Lppg(1) g%
/. Get ()3 | @D (O) Hy) — h ¥y {D(0) By — i, }] ab,
where ', =D(0)~'V,'w,, —D(0)'Qy?).

Proof: See Supplementary Appendix B.



We use the shorthand cGCM (@, K, 13y, H, w,D; W) for the conditional GCM in Theorem 2.2.

It is not known how to simulate directly from a cGCM.

3 Methodology

In this section, we outline how to sample from the posterior distribution for discrepancy terms,
fixed, and random effects from a general class of spatial hierarchical models. We define EPR in
Section 3.1 for areal spatial data, discuss hyperprior specifications in Section 3.2, define the exten-
sion to spatial process models in Section 3.3, and discuss computational issues and implementation
in Sections 3.4 and 3.5. The statement of our model in Section 3.1 is given for data distributed ac-
cording to a generic member of the exponential family. To aid practitioners interested in using this
method, we provide more accessible model statements for specific cases (i.e., Gaussian, binomial,

and Poisson data) in Supplementary Appendix C.

3.1 Exact Posterior Regression for Regional Data

Suppose we observe data from the exponential family, let the total number of observations be
denoted with n, and denote the n-dimensional data vector with z = (Z1,...,Z,)’. Let Z; represent
the data at region i (e.g., counties, census tracts, etc.). Then assume Z; belongs to a member of the

exponential family of distributions. In particular, we assume one of the following:
Zi’Ybbi,k ~ EF(Yi7bi,k7 ll/k>’ i= 13 PR k= 172737 (3)

where “EF” is a shorthand for the natural exponential family (see Supplementary Appendix A for

more details), and b; ; Wi (Y;) is the log-partition function. For example, when b; | = 2}7 with Gi2 >



0 and y(V;) = Yi2 we have that Z;|Y;,b; | is normally distributed with mean Y; and variance 61-2.
When b; > = 1 and y»(Y;) = exp(Y;) we have that Z;|Y;, b; > is Poisson distributed with mean exp(Y;).
Similarly, when b; 3 = m; with integer m; > 1 and y;3(Y;) = log{1 +exp(Y;)} we have that Z;|Y;,b; 3
is binomial distributed with sample size m; and probability of success exp(Y;)/{1+exp(¥;)}. Let
the n-dimensional vector by = (b, ... ,bmk)’ . In this article, we consider these three cases (i.e.,
normal, Poisson and binomial distributed cases), and note that binomial distributed data allows for
Bernoulli distributed data as a special case (i.e., m; = 1), and multinomial distributed data when
using a stick-breaking representation of the multinomial (e.g., see Bradley et al., 2019, for stick-
breaking in the context of CM prior distributions). Organize the latent random variable Y; into the
n-dimensional vectory = (Y1,...,Y,)".

Consider the following linear model assumption for y (McCullagh and Nelder, 1989):

y=XB+Gn+(§-8,), 4)

where X is a n X p matrix of known covariates, and B is an unknown p-dimensional vector of
regression coefficients. Let B have a Gaussian prior with p-dimensional location vector Dy (0)6 B>
and p x p covariance matrix Dg(0)Dg(0)’, where Dg(8) : Q — R” x RP. Let G be a nx r
matrix of coefficients for the r-dimensional random effects 7). Several choices for G are available
including a known pre-specified matrix of basis functions (e.g., splines (Wahba, 1990), wavelets
(Novikov et al., 2005), Moran’s I basis functions (Hughes and Haran, 2013), etc.), or a matrix
square root of a known spatial covariance matrix. We assume 1) is Gaussian with r-dimensional
location vector Dy (0)8, and r X r covariance matrix Dy, (0)Dy(0), where D, (0) : Q — R" x R".
Let 0 be a generic d-dimensional parameter vector with prior distribution 7(0). The fourth term
8, has recently been introduced to the spatial mixed effects model literature (Bradley et al., 2020b,
2023), and models the error introduced by allowing the mixed effects representation y = X +

Gn + & to be different from the natural parameter y. That is, 8, is the error term caused by

10



incorporating non-zeroy —y(= 8y).

Traditionally, the fine-scale variability term é is assumed to be Gaussian (Cressie and Wikle,
2011). In our framework, we will be able to draw independent replicates from the exact posterior
distribution for discrepancy terms, fixed, and random effects if we specify & to be a cGCM that
is “close” to a Gaussian distribution. Specifically, let the distribution for & be proportional to a
cGCM (@, K¢, 32 ,He, 7z, De; W ), where the 2n-dimensional discrepancy parameter 32 = (8; —
B'X —n'G, 8% ), 8y and & are n-dimensional real-vectors, and 2n x n matrix-valued precision
parameter Hg = (Géln,ln)/ . The 2n-dimensional shape parameter o = 02,1 when the data is
assumed Gaussian, and & £ = (océ 1 ,, 017,1)/ when the data is assumed to be distributed according
to the Poisson or binomial distributions, where og > 0 and 1,, is a r X n matrix of ones. The 2n-
dimensional shape parameter Ke = (01 1, %117,,)’ when the data is assumed to be either Gaussian
or Poisson distributed, and Ke = (2065 1 ,, %117,1)/ when the data is assumed to be distributed
according to the binomial distribution. Let D¢ = o¢ Lo, with 652 >0 and g (0) =1(6 = 652) with

1(-) defined to be the indicator function. The unit-log partition function Y is,

Ve (h) = (wi(i), -, Wilha), Wi (hY), - wi (),

for any h = (hy,...,h,, A7, ... NSNS R?". 1t is straightforward to verify that when o = 0 we
have that cGCM(@¢, K¢, 6 E He, e, De; l[lé) is proportional to a Gaussian distribution with mean
85 and covariance Ggln with O € 0. This choice of cGCM with og > 0 will ensure that the
implied posterior distribution for discrepancy terms, fixed, and random effects has parameters that
do not lie on the boundary of the parameter space. In the case of a Gaussian data model, this
c¢GCM distribution is exactly a Gaussian distribution, where & follows a normal distribution with
mean 8¢ and covariance Gézln. For Poisson and binomial data, |B, 7, 8y, 8¢ is proportional to a
conditional GCM distribution that is “close” to a Gaussian distribution as otz approaches zero. By

“proportional to a conditional GCM” we mean that we do not include the normalizing constant for

11



f(€IB,n.6,,6 5) in our expression of the hierarchical model for binomial and Poisson cases, since
this normalizing constant is unknown. More technical details on the fine-scale model specification
and how this class of cGCM is “close” to a Gaussian is provided in Supplementary Appendix D.
The terms XB, Gn, and & are covered in standard textbooks in spatio-temporal statistics
(Cressie and Wikle, 2011), and are referred to as large-scale variability, small-scale variability,
and fine-scale variability, respectively. In more recent literature a fourth term has been consid-
ered (Bradley et al., 2020b, 2023); that is, the (2n + p + r)-dimensional vector 8 = (8;, 823, 5;7,
8’5)’ discrepancy parameter. Previous uses of a discrepancy term have led to MCMC algorithms
to sample from f({|z) that were computationally more efficient, in terms of Central Processing
Unit (CPU) times, than MCMC algorithms to sample from f({|z,q = 0,;) derived from tradi-
tional LGPs (e.g., see Bradley et al., 2020b; Bradley, 2022). In our case, a particular form of
0 leads the fixed and random effects to be distributed according to a GCM, which from Sec-
tion 2, we know how to sample from directly without approximations and without MCMC. Specif-
ically, let & = —blkdiag(L,,Dg(6)""',D;(0)" !, Gléln)Qq, where “blkdiag” is the block diago-
nal operator and Q are an (2n+ p + r) X n eigenvectors of the orthogonal complement of the

(2n+p+r) x (n+ p+r) matrix,

I, X G
0,, 1, 0,,
H— p; 14 p : (5)
Or,n Or,p I
I, On,p On,r

so that QQ' = Ipy4 p+r — HH'H) " 'H' and H'Q = 0,4 .+ ., where recall that idempotent matrices
have eigenvalues equal to zero or one. The free parameter q is now referred to as the “discrepancy
term,” which is assumed unknown. Several LGPs in the literature set q = 0, ;. However, if one

instead assumes an improper prior on q then the posterior distribution of § = (5/, B/, n’) and q is

12



GCM, as seen in Theorem 3.1 below.

Theorem 3.1. Suppose Z|Y;, b; s are independently distributed according to (3). Assume the model
for'y in (4), the improper prior f(q) = 1, and let the hyperparameters 0 have a proper prior
distribution (0) = (0 N {067 }°)[1i=, ®(c?) where “c” denotes the set complement. Let 1(0)

be any proper distribution that can be simulated from directly. Then
(¢'.q') |z ~ GCM (o, K1, 0201p1r1, Vi, T, D5 W y),

where D(0)~! = blkdiag(I,,Dg(8) "', Dy(0)~!, L1,), V,,' = (H,Q) is defined by (5), D5 =

r o in
diag (GL} i=1,... ,n>, the (2n+ p + r)-dimensional unit-log partition function

(k) = (W(ht), ..., Wi(hn), Wi (7). ...,y (h:‘l+p+,))/f0r (2n+ p + r)-dimensional real-valued
vectorh = (hy,...,hn,hi,... .l ,.,)', and the (2n+ p +r)-dimensional location and shape/scale
parameter vectors are defined as follows: Gy = (2D, 01 pipir) and

Ky = (%117nD’6, %ll,nﬂ)ﬂ)’ when the data is normally distributed; 0y = (7' + oy, 01 ntp+r)

and Ky = (11 4, %117n+p+r)’ when the data is Poisson distributed; and 0ty = (z'+ 0g 114,01 i p1r)

and Ky = (m' + 20, 11, %117,,4_[,4_,)’ when the data is binomial distributed.

Proof: See Supplementary Appendix B.

In Supplementary Appendix B, we also show that the posterior distribution for { and q in Theo-
rem 3.1 is proper. This is an important consideration, since we specify an improper prior for the
discrepancy parameter q.

In Theorem 3.1 the presence of oz > 0, arising from our cGCM specification for &, leads to
strictly positive elements in the vectors @), and K3, when the data vector z contains zero elements,
which can occur in the Poisson or binomial data settings. Hence, the presence of a cGCM (cho-
sen to be close to a Gaussian) fine-scale term allows one to avoid the boundaries of the parameter

space, leading to a well-defined GCM that one can sample from directly. Theorem 3.1 allows one
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to obtain replicates directly from the posterior distribution f(&,q|z) using a familiar projection

expression, as seen below in Theorem 3.2.

Theorem 3.2. Denote a replicate of §, q, andy using f(&,qlz) from Theorem (3.1) with §,, . @, »

and y,,,. Then

§pop=(HH) 'H'w (6)
Qrep = Q'W, (7)
yrep = (In70n.,n+p+r)HCrep + (Inaon,n+p+r)quep = (In70n7n+p+r)w (8)

where the (2n+ p+r)-dimensional random vector w is GCM (0, K, 02n+ pv-r 13 Lons prs T, D5 Wiy,

where Oy, Ky, T, D, and Y, are the same as defined in Theorem 3.1.

Proof: See Supplementary Appendix B.

In Theorem 3.2, the vector (2n+ p + r)-dimensional vector w = D(0)wy, = (y’,ep,wb,wg,w’é)’ ,
where y,,, 1s easy to generate since it consists of independent DY random variables, wg ~
GCM(0,,1,31,.1,0,1,1,,7,Dg(0); ), wy ~ GCM(0,,1,51,1,0,1,1,, 7, D (60); ¥, ), and w is
n-dimensional consisting of independent Gaussian random variables with mean zero and variance
Gg. Thus, it is straightforward to compute w when it is straightforward to sample from the marginal
prior distributions for B and 1 when setting the discrepancy parameter equal to zero. To do this
one can, for example, sample from the joint distribution of wg and 6, where first one samples
0 from 7 then samples wg from a Gaussian distribution with mean zero and covariance matrix
D3(0)Dg(6)'. The projection (H' H)~'H'w can be computed on the order of n + p* 4 r* opera-
tions with storage on the order of n(p + r) + p? +r?, when G is dense. When G is identity with
r=n, (H H)_lH' w can be computed on the order of p> operations with storage on the order of

np -+ p?. For the details on computing (H'H) ~'H'w see Section 3.4.

14



The solution in the Gaussian special case is very similar to that in Murphy (2007) and Zhang
et al. (2023b). Namely, a different regression arises in (6) from Murphy (2007) and Zhang et al.
(2023b) due to our incorporation of a fine-scale variability term. Recall that the presence of fine-
scale terms is particularly important for non-Gaussian data, since shape parameters and rate pa-
rameters in &, and K, in Theorem 3.1 are non-zero when count-valued observations are zero (i.e.,
the first stack components of &, and Ks) leading to a proper GCM. Thus, one exciting feature of
Theorem 3.2 is that we obtain Gaussian like simulations of replicates from the marginal posterior
distribution f({|z) for non-Gaussian data. Equation (6) can also be seen as a parsimonious special
case of the sampler in Bradley et al. (2023) with considerably fewer parameters.

The class of distributions that our model’s posterior belongs to is GCM, and in Supplementary
Appendix E we show that the traditional LGP’s posterior distribution (setting &z =0 and q =0,,1)
is a conditional GCM. In Section 4, we empirically investigate the consequences for using a GCM
posterior distribution for § and q instead of the more traditional cGCM posterior distribution for
¢ by generating the data from a traditional LGP model and comparing several metrics.

Theorem 3.2 and Supplementary Appendix E provides the motivation for including the discrep-
ancy parameter . Namely, this discrepancy parameter leads to easy-to-compute direct simulations
from the posterior distribution for £ and q, whereas, the cGCM posterior distribution for § can not
be sampled from directly. However, the incorporation of ¢ leads to a model that is clearly overpa-
rameterized. Thus, a simple solution is to perform inference on § using exact replicates from (6),
which generates values from the marginal distribution f({|z). Then use the estimator of q =0, ;.
This is the general strategy used in the CM literature (Bradley et al., 2020a) implemented using a
type of block Gibbs sampler. Let y represent the profile of y using the plug-in estimator q = 0,, 1, s0
that ¥, = (o Ot p ) HE o)y = XBropy + GM ey + & 1o Where &, = (87,5 Breps M) More-
over, one might similarly use y,,, = XB,. » + G, for inference on y, which would implicitly
estimate both q and & to be zero after marginalizing them from the posterior distribution for §

and q.
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The random vector y,,, has a very important interpretation. If one assumes Z;|Y; is distributed
according to the natural exponential family in (3), and Y; is independently distributed according
to the DY distribution then we have that the implied posterior distribution for {Y;} is equal in
distribution to y,,, in Theorem 3.2. Thus, y,,, represents a replicate from the posterior distribution
from a saturated model. Recall in the goodness-of-fit literature that saturated models define a
separate parameter for each datum and is meant to overfit the data, and then, measures of deviance
from the saturated model are used to select more parsimonious models (e.g., see Bradley, 2022,
for a recent paper). This provides additional motivation for using the marginal distribution f({|z)
and ?,ep (or y,,,) to perform inference on y, which implies the use of the estimator of q = 0,
(and € =0, ). In the recent literature Yrep — Ve » (= —8) is referred to as “discrepancy error,” and
hence we refer to 8 as a discrepancy term (Bradley et al., 2020b, 2023).

It is important to clarify how our model could be considered an LGP. By “latent” we mean
that a process is not directly observed, but rather the observation Z is observed. In our new model
there are three latent vectorized processes, namely y = XB+Gn, y=XB+Gn + &, andy =
XB +Gn +& — 8,. We assume B is given a Gaussian prior and 7 is given a Gaussian process
model, and hence, y is considered a LGP. However, for Poisson and binomial data & is given a
conditional GCM prior, and thus, y is a latent process but is non-Gaussian. Similarly, y includes

8y which is not Gaussian distributed, and hence, y is a latent process but is non-Gaussian.

3.2 Hyperprior Considerations

In general, O consists of variance/covariance parameters for fixed and random effects. Thus, the
purpose of 6 and the hyperprior 7(0) is to allow our variance/covariance parameters to be un-
known. When multiplying the likelihood, prior distributions, and process models the matrix D(0)
appears in our expression of the posterior distribution for § and q, and represents a matrix square

root factorization of covariance parameters. While we account for hyperparameter uncertainty,
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only the marginal posterior distribution for § is used for inference (i.e., f(&,B,n|z)), and conse-
quently, the role of the hyperprior specification is diminished. However, EPR is extremely flexible
and allows one to modify the dependence structure of hyperparameters easily, as 7(0) is allowed to
be any non-conjugate hyperprior that is proper. To demonstrate that large modifications to our pro-
cedure are not required when changing hyperpriors, we consider several hyperpriors with different
dependence structure that are common in spatial statistics, including diagonal covariance matrices
(Sections 4.1 and 4.4), covariance matrices based on the exponential covariogram (Section 4.2),
and covariance matrices based on the conditional autoregressive model (Section 4.3).

In the context of generalized linear mixed effects models, there are prior specifications for
0 that are either difficult to simulate from or are not possible to simulate from. For example, im-
proper priors such as f(0) = 1 or Jeffreys prior (Jeffreys, 1946), among others, can not be sampled
from directly. Other priors may require MCMC to sample from including constrained/truncated
Bayesian models with intractable normalizing constants (e.g., see Dunson and Neelon, 2003,
among others), which would then obfuscate our goal of obtaining an “MCMC free” method. The
hyperparameter 0 represents the variance/covariance parameters, and hence, its dimension is at
most on the order of 72 + p2, and in dimension reduction settings, these values will be small (i.e.,
r,p < n). However, of course, one should expect computational difficulties with simulating from
the Gaussian priors/process models (for B and 1) and hyperpriors as the dimension of @ grows, as

this is a common problem for many spatial statistical models (Bradley et al., 2016).

3.3 Spatial Process Modeling with Exact Posterior Regression

The mixed effects model specification in Section 3.1 may be deceptively simple; however, we em-
phasize that several modern statistical models can use EPR including process models (e.g., spatial
and spatio-temporal statistical models). See Hodges (2013) for a thorough treatment of how spa-

tial and temporal statistical models can be written as a richly parameterized mixed effects model.
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Although, of course, process models are different from mixed effects models, implementation of
additive process models are similar to that of mixed effects models for a given collection of lo-
cation/times. For example, consider locations s € D, where D is a generic spatial domain (e.g., a
lattice or subset of R?). We introduce process into our notation functionally so that, for example,
Z; is written as Z(s;), where sy, ...,s, € D. Consider the following multivariate spatial statistical

model,

Y(s) =x(s)'B+g(s)'n +(&(s) — &(s)): s € D,

where x(s) is a p-dimensional vector of spatially varying covariates, g(s) is a r-dimensional vector
of spatial basis functions, & (s) is a random process, and §(s) is an unknown mean function. Sup-
pose we are interested in estimation and prediction at the observed locations Dg = {s;:i=1,...,n}
and an additional m locations Dp € {uy,...,u,} CD.LetT =n+m.

Then stacking over locations in Do U Dp yields,

y=XB+Gn+(§-4,), )

where “U” is the set union, n-dimensional vector y = (Y (s) : s € Dg)’, and the n X p matrix X =
(x(s) : s € Dg)’, where we note that X can be computed by pre-multiplying the covariates stacked
over Do UDp by a n x T incidence matrix E = (e(s) : s € Do UDp)’ with T-dimensional vector
e(s)=(I(s=sy),...I(s=sy),I(s=uy),...,I(s=u,)) and I(-) denoting the indicator function.
That is X = EX7, where the T x p matrix X7 = (x(s) : s € Do UDp)’. In a similar manner let the
n x T matrix G = EGr, where the T x T matrix Gy = (g(s) : s € Do UDp)'. Here, we let G be
the matrix square root of a parameterized covariance matrix (e.g., Gr may be the Cholesky of a
T x T covariance matrix with (i, j)-th element defined by the exponential covariogram). We let
&. B, n, and 8, in (9) have the same specifications as in Section 3 with D, = I.. Comparing our
mixed effects model setup in (4) and the process model specification in (9) we see that process

modeling can be implemented with EPR. That is, Theorems 3.1 and 3.2 (i.e., EPR) can be applied
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to the stacked expression in Equation (9). We illustrate this with spatial basis function expansions,
weakly stationary spatial processes, and the conditional autoregressive model (Besag et al., 1991)
in Section 4. To predict the process at both observed and prediction locations, posterior summaries
of y; = X7 B + Grn will be used.

In the case where inference on Y (sp) with so ¢ Do U Dp is of interest then one does not need
to modify Dp and re-run EPR provided one can compute x(sg) and g(so). In this case, one can
compute ?[b] (so) =x(s0)'B ?jp +g(so)'n [rlz]p, where B [r[;]p and N L@,, are the b-th independent replicate
of B and N obtained when sampling with sy ¢ Do U Dp. Then posterior summaries of iv([b] (so)
across b can be used for inference on Y (sp).

In practice, EPR may not always be scale-able for process modeling with large n and T, since
it is not always straightforward to simulate directly from the prior distribution, nor is it always
straightforward to compute G. In this article, we consider one example with a reduced rank as-
sumption (Cressie and Johannesson, 2008; Banerjee et al., 2008; Hughes and Haran, 2013) by
defining G to consist of r < T spatially referenced basis functions (e.g., see Section 4.1). Al-
though we consider r < T to achieve scalability, there are options to consider when implementing
EPR with r > T. In particular, one might consider the “data subset model” from (Bradley, 2021)
to achieve scale-able inference, or sparse matrix Cholesky decompositions (e.g., see Datta et al.,
2016).

Computing G can be computationally challenging in certain cases. For example, if G is inter-
preted as a Cholesky matrix from a known covariance matrix with parameter vector 8 then there
are well-known computational considerations here. In particular, sparse Cholesky strategies such
as those used in Datta et al. (2016) would be needed in this setting. These difficulties are exacer-
bated by the fact that as one continually samples 0 from its hyperprior, one needs to recompute G
if G is parameterized. In high-dimensional settings it would be more amenable to consider fixed

classes (i.e., G not parameterized) of point-referenced (Wikle, 2010) or regional basis functions

(Bradley et al., 2015), such as the Obled-Cruetin basis functions (Bradley et al., 2017), which
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would only need to be computed one time and without Cholesky factorizations.

3.4 Computational Considerations

For large n the EPR formulation may not look practically feasible. However, standard block matrix
inversion techniques can be used to reduce the order of operations to inverses of r X r matrices,

p X p matrices, and n X n diagonal matrices (Lu and Shiou, 2002).

Theorem 3.3. The following expression holds,

A'+A'B(D-B'A"'B)"'BA~! —A"'B(D-BA"'B)"!
(HH) ! = , (10)

—(D-B'A"'B)"'B'A~! (D—-B'A~'B)"!
where A = 2I,,, the n X (p+r) matrix B = (X, G), the (p+r) x (p+r) matrix

XX+1, XG
D= : (11D

GX GG+,
the (p+r) X (p+r) matrix

A*fl _{_A*le*(D* . C*A*le*)flC*A*fl _A*le*(D* . C*A*le*)fl
(D—B'A~'B)"!' =
_(D*_C*A*—IB*)—lc*A*—l (D*_C*A*—IB*)—I

the p x p matrix A* = YX'X +1,, the p x r matrix B* = 3X'G, the r x p matrix C* = 3G'X, and

the r X r matrix D* = %G'G—I—Ir.

Proof: See Supplementary Appendix B.

Theorem 3.3 allows us to reduce the inverse of the (n+ p+r) x (n+ p+r) matrix HH to the
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inverse of the p X p matrix A*, and the r X r matrix (D* — C*A*~'B*)~!. When p and r are both
“small,” these inverses are computationally efficient.

Simulation from the marginal posterior distribution of § using EPR does not necessarily require
first computing a matrix of the form (H'H)~!, storing this matrix, and then computing a (n -+
p + r)-dimensional vector of the form (H'H)~'H'w. In fact this order of operations may require
impractical storage, since the (n+ p+r) x (n+ p +r) matrix (H'H)~! may be high-dimensional.
To avoid these issues one can instead compute/store the (n+ p + r)-dimensional vector of the form

(H'H)~'H'w that avoids storage of high-dimensional matrices.

Theorem 3.4. Let w = (w’e,wb,w’n,wg)’, we € R", wg € RP, wy € R’, and wg € R". Then the

following expression holds,

(F-KL'K')"'(R—-KL'P)
(HH) 'H'w = : (12)

—L'K'(F-KL7'K')"'(R—KL~'P)+L'P

where the (n+ p)-dimensional vector R = (w, +wg',w X + wb)’, the r-dimensional vector P =
G'we+wn, the r x (n+p) matrixK' = (G',G'X), the r x r matrix L= G'G+1,, the (n+ p) x (n+p)

2I, X
matrix F = , and the (n+ p) x (n+ p) matrix

X XX+I,

F—-KL 'K e
The (n+ p) X (n+ p) matrix,
(F_ KL K) Fi, Fpp
Fy Fo
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where the n x n matrix F) = 2I, — GL™'G’, the n x pmatrix Bjp =X — GL'G'X, the p X p matrix
Fy=XX+1,—-X'GL™'G'X, the n x n matrix F; = F{' + F'B12(F, — B|,F{'B1,)"'B|,F",
the n x p matrix F1y = —Flelz(Fz —B’lelelz)_l, the p X n matrix

Fy = —(F,—B\,F['B12)"'B\,F ', the p x p matrix Fy, = (F2 — B|,F|'B12)~!, and the n x n
matrix F{' = 1I, + 1G(L- 1G'G)~'G.

Proof: See Supplementary Appendix B.

Careful examination of the order of operations show that Theorem (3.4) allows one to compute the
vector (H'H)~"H'w by storing/computing the n x p matrix X, the n x r matrix G (when r = n we
set G = I,), the r x r matrix L™!, the r x r matrix (L— %G/G)*l, the p x p matrix F,, and the
p % p matrix Fy;. These computations are straightforward when r and p are “small” or when p is

small and G is diagonal.

3.5 Implementation of Exact Posterior Regression

The following gives step-by-step instructions on obtaining efficient independent replicates directly
from the posterior distribution of § (i.e., f(§|z)) using Theorem 3.1, which we refer to as EPR.

We consider Gaussian data with unknown non-constant variance, Poisson data, and binomial data.

1. Store/compute the n x p matrix X, the n X r matrix G, the r x r matrix L™!, the r x r matrix

(L— %G'G)’l, the p x p matrix F5, and the p x p matrix Fy,. Setb = 1.

2. Simulate w according to Theorem 3.2.
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3. From Theorem 3.2 compute

¢l = &r B niy) = (H'H) 'Hw
yup - (Inyon,n+p+r)w
vl =xBY +Genl, + &Y

Yidp = XB iy + Glrep,

with the value of w generated in Step 2. Efficient computation of (H'H) 'H'w can be

achieved via Theorem 3.4 and the values stored in Item 1.

4. Setb=>b+1. Repeat Steps 2—3 until b = B when G does not consist of unknown parameters.

Repeat Steps 1 — 3 until b = B when G is parameterized.

The goal of this algorithm is to provide B independent replicates of (& reps Yre p,§rep,§,e »). Since
Theorem 3.2, produces a single draw of (& reps Yre p,ire 1 Yrep)» W Tepeat the computations in
Theorem 3.2 (in Step 3) B times to produce B independent replicates of (& ,ep,y,ep,ﬁrep,§,ep).
Summaries of the B independent posterior replicates are used for inference (e.g., component-wise
means, variances, quantiles, etc.).

To sample from the GCM posterior according to Theorem 3.2, the main computational bottle-
neck is the computation of (H'H)~'H'w. Theorem 3.4 reduces the computational complexity from
the naive calculation of an inverse of a (n+ p+r) X (n+ p +r) matrix to the computational com-
plexity arising from an inverse of a n x n diagonal matrix, inverses of p X p matrices, and inverses
of r x r matrices. Thus, not only are we able to obtain independent replicates drawn directly from
the posterior, if the values of p and r are small (i.e., a dimension reduction setting), these replicates
are easy to compute.

When using known basis function expansions to define G, repeated matrix operations that

one might see in a Gibbs sampler are avoided, since matrix inversions are only required a single
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time in Step 1. Additionally, B does not have to be as large as what one requires for an MCMC,
since one does not require a burn-in period, thinning, or have concerns of mixing and positive

autocorrelations in the MCMC.

4 Illustrations

We provide illustrations of EPR in several settings covered in standard textbooks on spatial and
spatio-temporal modeling (e.g., see Cressie, 1993; Rue and Held, 2005; Cressie and Wikle, 2011;
Banerjee et al., 2015, among others). In particular, we illustrate EPR in the context of spatial basis
function expansions, weakly stationary spatial processes, conditional autoregressive models, and
dimension reduction in high-dimensional settings.

In our illustrations, we offer comparisons to standard spatial statistical models (i.e., LGPs) fit-
ted via INLA and MCMC. By standard we mean q equal to a zero vector and ¢tz = 0 to produce an
LGP. Moreover, we simulate the data from an LGP so that q is equal to the zero vector. As a result,
the models fitted with INLA and MCMC are correctly specified to not include a discrepancy term,
however, our model implemented with EPR is misspecified, since it models & with a conditional
GCM (for non-Gaussian data) and q as not necessarily equal to zero. This misspecified setting is
of particular interest because it is arguably more common to drop q from the additive model and
generate & from a normal distribution (or set equal to zero). Furthermore, these simulation studies
will allow us to empirically investigate the implications of including both our conditional GCM
model for § and the discrepancy term q on inference. We provide simulation studies for the case
where the data is generated with a discrepancy term in Supplementary Appendix F.

We also provide a sensitivity study in Supplementary Appendix G on the choice of B and found
that B = 100 provides similar results as B = 500 and B = 1,000. As such, we set B = 100 in this
section. All prior specifications used for the models fitted via INLA, MCMC and EPR are listed

in Supplementary Appendix H. To avoid an unfavorable specification, the models fitted with the
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computational tools INLA and MCMC are based on their package’s default prior specifications or
flat prior specifications when no default is available.

Our simulations are fairly low dimensional so that it is straightforward to obtain results over
multiple replicates (i.e., n = 400). As such, we include a high-dimensional illustration in Section

4.4. This example demonstrates the scale in which EPR can be implemented.

4.1 Spatial Basis Function Expansions

Spatial basis function expansions have become a standard in spatial statistics, with common classes
of basis functions including Fourier basis functions, wavelet basis functions (Huang and Cressie,
1999), radial basis functions (Cressie and Johannesson, 2008), and splines (Wahba, 1990), among
others. In this section, we compare models that make use of basis function expansions fitted with
EPR, INLA, and MCMC. The Bayesian hierarchical models implemented with INLA and MCMC
both correctly assume that no discrepancy term is present. Additionally, the models that apply both
INLA and MCMC use improper priors for fixed and random effects (i.e., B and 1), and the variance
parameter for normal data. For ease of exposition, we refer to the model fitted with both INLA and
MCMC as the “null-discrepancy model,” since the data model is specified without a discrepancy
term. Similarly, we call the model fitted with EPR as the “discrepancy model,” since it incorrectly
includes an additional discrepancy term in the additive model. The discrepancy model assumes
an inverse gamma priors on variance parameters. The range parameter is given a uniform zero
to 0.5 prior. See Supplementary Appendix H for more details. The P6lya-Gamma augmentation
technique (Polson et al., 2013) is a particularly efficient approach to fit latent Gaussian process
models using MCMC, and is one of the more computationally competitive techniques in MCMC,
which we use for Bernoulli data in this section. In the Poisson MCMC implementation we make
use of a new extremely efficient algorithm by D’ Angelo and Canale (2022) that extends the Pdlya-

Gamma augmentation technique for Poisson data. MCMC was implemented with 10,000 replicates
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with a burn-in of 5,000.

We simulate data from the following models,

Zl(S)|n1,---,1130,5(8)»02(5)NNormal(-1—x1 —x(s +Zg] )N, +6(s) ())

Z>(8)IN1,- -, M30,E(s) NPoisson{exp (—H—O.le( )+ 0.4x5(s) + Zg] ) }

exp (2 x1(s) —2x2(s) +z3-:1 gils)n; +§(s))

Z3(s)|n1,- -, M30,E(s) ~ Bernoulli
+exp (=2 xi(s) ~2x2(s) + 32 (), + & (5))

(13)

where {n;} are independently distributed according to a normal distribution with mean zero and
variance 0.04, s € {0,0.002,...,1}, 62(s) are uniform distributed over 0.15 to 2, and for each s
we sample & (s) independently from a normal distribution with mean zero and variance of 0.02
for Bernoulli data, variance of 0.01 for Poisson data, and variance of 0.15 for normal data. We
observe n = 400 randomly selected locations, x;(s) is an independent Bernoulli random variable
with probability exp(s)/(1+exp(s)), x2(s) is an independent Bernoulli random variable with prob-
ability exp(—0.01s)/(1 +exp(—0.01s)), g,(s) = exp(—||s —u;||?), {u;} are equally spaced across
the spatial domain, and || - || is the Euclidean distance. All models use the basis functions and
covariates that generate the data.

In Figure 1, we see that each method is fairly comparable in terms of predictive performance.
Moreover, the discrepancy model implemented with EPR tends to give larger measures of un-
certainty than the null-discrepancy model fitted with INLA and MCMC, both of which produce
credible intervals that do not contain the true values of the latent process. The discrepancy model
implemented with EPR is misspecified in this simulation study, since it includes a conditional
GCM model for € (for non-Gaussian settings) and the discrepancy term q. In general, as you

include additional random effects into a model, one obtains larger credible intervals. As a result,
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Figure 1: Predictions for models fitted with EPR, INLA, and MCMC computed for the spatial basis
function illustration. The first row presents results for binary spatial data, the second row presents
results for Poisson spatial data, and the third row presents results for Gaussian spatial data. The
black points represent the true value of the latent process, the red line represents the posterior mean
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of y, and the shaded region represents pointwise 95% credible intervals, respectively.

EPR’s credible intervals tend to be more conservative (i.e., larger), which in turn lead to credible

intervals that tend to cover the generative true values more often. The fact that the predictions are
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similar is notable, since INLA and MCMC are both approximate methods (MCMC is exact in the
limit), whereas EPR is an exact method for a different hierarchical model. Moreover, EPR (and
INLA) does not require the additional overhead of MCMC diagnostics.

To assess the performance over multiple replicates, we use the central processing unit (CPU)
time (seconds), the mean squared error (MSE) between the estimated regression coefficients and
{n;} and corresponding true values, the mean squared prediction error (MSPE) between the latent
process and predicted latent process (using y), and the continuous rank probability score (CRPS)
(Gneiting and Katzfuss, 2014) averaged over missing locations and scaled so that small values are
preferable. The CRPS is useful since it is metric that evaluates the entire predictive distribution so
that uncertainty in the predictions is considered. In Table 1, we provide the average MSPE, MSE,
CRPS, and CPU plus or minus two standard deviations over 50 independent replicates by method
and data type.

In Table 1, the confidence intervals (CIs) for MSPE in the normal and Poisson setting are
all overlapping, suggesting that the discrepancy model implemented with EPR does the same as
the null-discrepancy model implemented with either INLA or MCMC. However, in the logistic
regression case the discrepancy model implemented with EPR has preferable MSPE than the null-
discrepancy model fitted with either INLA or MCMC. Similarly, the discrepancy model fitted with
EPR appears preferable in terms of CRPS to the null-discrepancy model in the logistic (fitted with
either INLA or MCMC) and Poisson (fitted with MCMC) regression cases. The CRPS appears
indistinguishable in the normal regression case for all methods/computational tools, as the CIs
overlap. The MSE is preferable for the discrepancy model fitted with EPR in the logistic and
normal regression cases, but appears indistinguishable (confidence intervals overlap) to that of the
null-discrepancy model fitted with MCMC in the Poisson setting. EPR is consistently and consid-
erably preferable in terms CPU time in all settings. The performance in CPU time is especially
notable, since the null-discrepancy model fitted with INLA and MCMC are both approximate

methods (MCMC is exact in the limit), whereas EPR is an exact MCMC free method for a differ-
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Type MSPE MSE CRPS CPU

EPR Losistic 0.0038 0.189 0.167 0.487
& (0.0033,0.0042)  (0.166,0.211)  (0.150,0.184)  (0.468,0.507)
0.0068 2.098 0215 2320
INLA  Logisti
O8HC0.0056,0.0081)  (1.397,2.799)  (0.190,0.239)  (2.241,2.398)
» 0.0046 3.626 0.567 125.115
MEMC - Logistic ) 0040,0.0051)  (2.715,4.537)  (0.560,0.574) (123.291,126.939)
PR Poisson 0.011 0.0095 0.060 0.46
(0.01095,0.01186)  (0.0090,0.01000)  (0.058,0.062) (0.45,0.47)
. 0.014 20.552 0.064 2202
INLA P
OSSR 0.013,0.015)  (17.204,23.899)  (0.062,0.066)  (2.135,2.270)
MEMC - Poisson (0.01(1)é(,)2).20131) (0.085(??)?111) (8.682',6:73) (23.62736,72337.798)
0.202 1.863 0.292 0.346
EPR  Normal
orma (0.197,0.207) (1.810,1.916)  (0.278,0.307)  (0.327,0.365)
0.202 28.634 0.283 2.589
INLA |
N Normal ) 106,0208)  (24.378,32.891)  (0.278,0.200)  (2.515,2.663)
0.202 26.730 0.284 24.203

MCM N 1
CMC orma (0.196,0.208) (22.836,30.624)  (0.278,0.290) (23.369,25.037)

Table 1: Fifty independent replicates data vectors are drawn according to (13), and several meth-
ods are applied to each replicated data vector. The first column indicates EPR, INLA, and MCMC,
which are applied to the discrepancy model and null-discrepancy model (see Supplementary Ap-
pendix H for more detail). The type column indicates logistic regression, Poisson regression, and
normal regression. The values represent averages over 50 independent simulated data sets and the
parenthetical represent the confidence interval (CI) (i.e., average plus or minus two standard devi-
ations). The MSE, MSPE, CRPS, and CPU (in seconds) are indicated in the column header. The
MSPE for Poisson regression is computed on the log-scale so that the values are easier to present,
where logistic spatial regression’s MSPE was computed on the expit scale. Outliers were removed
when computing MSE values.

ent hierarchical model. That is, EPR produces similar-to-better predictions and superior regression
estimates in a faster time than that of the state-of-the-art approximate Bayes and MCMC based

methods in this study.

4.2 Weakly Stationary Spatial Processes

A classical assumption for spatially referenced data is that the latent spatial process is weakly

stationary. In particular, weakly stationary spatial processes have mean zero and the covariance of
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the process at any two locations is a positive definite function evaluated at the spatial lag, where
this covariance function is referred to as a covariogram. In this section, we compare models fitted
with EPR, INLA, and MCMC. We fit an LGP implemented with MCMC through the R package
spBayes (Finley et al., 2012) using the exponential covariogram. The exponential covariogram is
a well-known choice, but there are several other choices available (e.g, see Cressie, 1993, among

others). The simulated data are generated as follows,

Z1(s)|v(s),0%(s) ~ Normal (— x(s) + v(s), 6%(s))

Z(s)|v(s) ~ Poisson{exp (3+2x(s)+ v(s))}
exp (—x(s) +v(s))
[ Fexp(—x(5) 1 v(s)) } (9

Z3(s)|v(s) ~ Bernoulli{

where x(-) are generated from a standard uniform distribution of a 15 x 15 grid of the unit square,
o2 (s) are uniform distributed over 0.15 to 2, and v(s) is generated as a weakly stationary spatial
process with exponential covariogram with range parameter 0.25, nugget zero for Gaussian and
Bernoulli data, nugget 0.64 for Poisson data, and variance 2 on a 15 x 15 grid of the unit square.
The slope, intercept, and nugget for the Poisson example were chosen so that the percent of zero
count-valued observations to be small (roughly one percent) to avoid zero inflation. The discrep-
ancy model is fitted with EPR, and specifies inverse gamma priors on all variance parameters with
shape 1 and rate parameter given a gamma hyperprior with shape and rate set to 1. The range
parameter is given a uniform zero to 0.5 prior. In this example, the discrepancy model specifies
G via a Cholesky matrix of the covariance matrix formed by the exponential covariogram. The
default prior specifications are used when implementing the stochastic partial differential equation
(SPDE) approach (Lindgren et al., 2011) using INLA, and spBayes default prior specifications are
used for the LGP implementation via MCMC (see Supplementary Appendix H for more details).

The data models for SPDE and LGP correctly do not include a discrepancy term.
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Figure 2: Illustration of predictions from models fitted with EPR, INLA, and MCMC for weakly
stationary processes. The first row presents results for binary spatial data, the second row presents
results for Poisson spatial data, and the third row presents results for Gaussian spatial data. The left
column contains the latent process on the inverse link scale. Second, Third, and Fourth columns
display the posterior mean when using EPR, INLA, and MCMC, respectively. Let s = (x,y)’.

In Figure 2, we provide plots of one simulated replicate and fitted means computed using
EPR, INLA, and MCMC. The fitted posterior standard deviations for this example are provided
in Figure 3. In general, we see that all methods perform similarly for this example, however,
the discrepancy model implemented with EPR tends to have larger posterior standard deviation.
MCMC can result in larger estimates of variability, as quite often positive dependence is introduced
via rejection steps in a Metropolis algorithm. EPR’s larger uncertainty quantification here are due
to the fact that the model EPR is derived from is misspecified in this simulation study, since it

includes q. Similar to Section 4.1, we see that EPR’s credible intervals tend to be more conservative
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Figure 3: Illustration of posterior standard deviations from models fitted with EPR, INLA, and
MCMC for weakly stationary processes for the simulated replicate in the first column of Figure 2.
The first row presents results for binary spatial data, the second row presents results for Poisson
spatial data, and the third row presents results for Gaussian spatial data. First, second, and third
columns display the posterior standard deviations computed using discrepancy model with EPR,
SPDE/INLA, and LGP/MCMC, respectively.

(i.e., larger), which in turn lead to credible intervals that tend to cover the generative true values
more often. The fact that the predictions are similar is again notable since, INLA and MCMC are
both approximate methods (MCMC is exact in the limit), whereas EPR is an exact MCMC free
method for a different model.

Instead of writing SPDE implemented with INLA, we write SPDE/INLA, and similarly we
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Type MSPE MSE CRPS CPU
EPR Losistic 0.0288 0.551 0.631 15.224
& (0.0270,0.0306)  (0.322,0.780)  (0.610,0.651)  (14.801,15.647)
0.0313 0.660 0.651 8.461
INLA  Logisti
O8N 0.0293,0.0333)  (0.303,1.018)  (0.608,0.694)  (6.150,10.771)
i, 0.0383 0.503 1.009 363.162
MEMC - Logistic ) 1354 0.0412)  (0.240,0.756)  (0.964,1.054) (346.763,379.560)
PR Porsson 0.564 4.662 0.591 16.645
(0.544,0.583)  (4.019,5.307)  (0.567,0.614)  (15.081,18.208)
. 0.845 1.328 0.581 5.085
INLA P
OISO (0.818,0.873)  (0.788,1.868)  (0.563,0.599)  (4.892,5.678)
. 0.815 8.771 0510 392.913
MCMC P
CMC - Poisson 700 0.840)  (3.777,13.765)  (0.497,0.524)  (363.218,422.608)
0.736 0.571 0.529 14.862
EPR  Normal
O 0.709,0.763)  (0.382,0.759)  (0.506,0.551)  (14.543,15.181)
1.423 1.437 0.553 8.669
INLA I
N Normal | 370,1.475)  (0.905,1.970)  (0.538,0.567)  (8.129,9.209)
MOMC Normal 1.469 1.940 0.586 122.448

(1.413,1.525)

(1.416,2.464)

(0.568,0.604)

(121.527,123.369)

Table 2: Fifty independent replicates data vectors are drawn according to (14), and several meth-
ods are applied to each replicated data vector. The first column indicates EPR, INLA, and MCMC,
which are applied to the discrepancy model, SPDE, and an LGP (see Supplementary Appendix H
for more detail). The type column indicates logistic regression, Poisson regression, and normal
regression. The values represent averages over 50 independent simulated data sets and the paren-
thetical represent the confidence interval (CI) (i.e., average plus or minus two standard deviations).
The MSE, MSPE, CRPS, and CPU (in seconds) are indicated in the column header. The MSPE
for Poisson regression is computed on the log-scale so that the values are easier to present, where
logistic spatial regression’s MSPE was computed on the expit scale.

write LGP/MCMC. In Table 2, when comparing the confidence intervals for MSPE in the Poisson
and normal data cases, we see that the discrepancy model fitted with EPR outperforms SPDE/INLA
and the LGP/MCMC model. In the logistic regression case, the MSPE of the discrepancy model
fitted with EPR is preferable to that of the LGP/MCMC model. The discrepancy model fitted with
EPR is preferable in terms of MSE for the normal case, has overlapping CIs with SPDE/INLA and
LGP/MCMC in the logistic case, and is less preferable than SPDE/INLA in the Poisson regression

case. The discrepancy model fitted with EPR is preferable to LGP/MCMC in terms of CRPS
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for the normal and logistic settings, is less preferable than LGP/MCMC in the Poisson regression
case, and has overlapping Cls with SPDE/INLA in all cases. For all three types of spatial linear
mixed models the LGP/MCMC has a considerably larger CPU time than SPDE/INLA and the
discrepancy model implemented with EPR, and SPDE/INLA has moderately smaller CPU time
than the discrepancy model implemented with EPR. EPR performs marginally slower than it did
in Section 4.1, since G needs to be computed every step of the sampler, whereas the radial basis

function in Section 4.1 only needed to be computed once.

4.3 Intrinsic Conditional Autoregressive Model for American Community

Survey Poverty Estimates

The U.S. Census Bureau’s ACS provides demographic statistics over several geographies and over
I-year and 5-year time periods (Torrieri, 2007). As such, it has become a very useful tool for
poverty estimation (Molina and Rao, 2010). Small area estimation of poverty is a crucial and
standard problem in both demography and official statistics (Rao, 2003), since it is a key variable
for determining economic disparities, public policy, and monitoring the financial circumstances at
various levels of geography (e.g., see Theil, 1996). Considering the wide-applicability of EPR, it
is important to investigate its performance in standard settings such as poverty estimation. Conse-
quently, in this section, we compare a Besag, York, and Mollié (BYM, Besag et al., 1991) model
fitted with INLA and MCMC to a discrepancy model (implemented with EPR) for poverty estima-
tion over U.S. counties in Florida in 2019 using ACS 1-year period estimates.

Standard demographic related covariates are used; namely, ACS five year period estimates of
the median age, the ratio of the population of males to females, and the population (on the log
scale) of those who identify as white alone, black or African American alone, and Asian alone.
We assume the population of those under the poverty status as binomial distributed with m; rep-

resenting the i-th county’s population. The discrepancy model assumes Gg = 0.5 (chosen with
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Figure 4: We plot the log ACS estimates (as a reference) along with a plot of the posterior mean
and standard deviations computed from 500 independent replicates of EPR.

cross validation), and the default prior specifications are used for INLA and MCMC for the BYM
model. Let W be the row normalized first order binary adjacency matrix. When implementing the
discrepancy model with EPR we define G to be the value such that GG’ = (I, — W)~ !, which is the
matrix square root of the covariance matrix (computed using the spectral decomposition) implied
by the intrinsic conditional autoregressive model with unit variance. We apply EPR according to
Section 3.5 with B = 500 independent replicates from the posterior distribution for § and BYM
with MCMC using the R package CARBayes with 20,000 replicates with a burn-in of 10,000 (Lee,
2013).

Plots of the predicted mean and standard deviation of y versus the log-data using EPR are
provided in Figure 4. In general, we see predictions that reflect the pattern of the data with spa-
tial smoothing. Table 3 contains several metrics comparing the predictive performance of the
discrepancy model implemented with EPR, a BYM fitted with INLA, and a BYM fitted with
MCMC. The leave-one-out cross validation error (Wahba, 1990) is used to assess the predic-
tive performance. Specifically, an observation is left out, and the model is used to predict this

value. We compute the relative cross-validation (CV) error and a leave-one-out strictly proper

35



Cv CRPS CPU

EPR 0.1558 0.1699 49.14
INLA  0.1567 0.1756 243.51
MCMC 0.8461 1.2678 661.49

Table 3: Let CV be the relative leave-one-out cross-validation error for poverty computed on the

logit scale. That is, let CV = r?ean} {abs (logit (%) —E_; [IZD /abs(logit <HZ7’> ) }, where E_;
ie{l,...,n ! !

is the posterior expected value that leaves out Z;, “abs” is the absolute value operator, and “logit”

is the logit operator. In the column CRPS we evaluate the average CRPS evaluated at the leave

one out logit-value. We also provide the CPU time (seconds) to compute the leave-out-out cross-

validation criterion.

scoring rule (e.g., see Yao et al., 2018, among others). Specifically, the relative CV is de-
fined as CV = iel?lear:l} {abs <logit (%) —E_; [IZD /abs(logit (%))}, where E_; is the poste-
rior expected Value“ti;at leaves out Z;, “abs” is the absolute value operator, Y; is the i-th compo-
nent of y and “logit” is the logit operator. We use the word “relative” since the absolute error
abs <10git (%) —E_; [17,} > is weighted by (or is relative to) 1/abs(logit (%) ). The leave-one-out
CRPS = Y, crps(Normal [E,,-(E),var,i(?,-)} ,logit(Z;/m;)), where var_; is the posterior vari-
ance that leaves out Z;, and @ is the standard normal cumulative distribution function, ¢ is the stan-
dard normal pdf function, and crps(Normal(u, 62),x) = o {% [243 (%) — 1] +2¢ (%) — \/LE}
is the continuous rank probability score from Gneiting et al. (2005). The relative CV suggest that
leave-one-out predictions are roughly within 15% of the hold-out proportion for the discrepancy
model implemented with EPR and BYM/INLA, and BYM/MCMC has a large relative CV at 85%.
These results suggest that the discrepancy model implemented with EPR and BYM/INLA are
comparable in terms of CV and CRPS. In general, BYM/INLA and the discrepancy model im-
plemented with EPR produce more similar estimates of the regression coefficients (MSE between

these two estimated regression coefficients is 0.2523), and BYM/MCMC and BYM/INLA pro-

duce dissimilar regression estimates (MSE between these two estimated regression coefficients is
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Data Predicted Probability of a Clear Sky Posterior Standard Deviation
0.9 0.3

Figure 5: In the left panel, we plot MODIS cloud mask data from Bradley et al. (2020a) (white-
value indicates a cloud, and black value indicates clear sky), in the middle panel we plot the
predicted probability of a clear sky, and in the right panel we plot the posterior standard deviation.

1.4634). Computationally, EPR is preferable in terms of CPU time followed closely by INLA.

MCMC took considerably longer to implement the leave-one-out analysis.

4.4 Benchmark Binary MODIS Cloud Mask Data

In this section, we consider the benchmark cloud mask dataset recorded via the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) onboard the National Aeronautics and Space Admin-
istration’s (NASA) Terra satellite (Sengupta et al., 2016; Bradley et al., 2020a; Lee and Haran,
2022). The MODIS instrument transforms spectral radiance measurements into a level-2 (i.e.,1
km by 1 km grid) cloud mask (i.e., binary values) through cloud-detection algorithms. This is
a fairly high-dimensional dataset with 2,748,620 observations. We define the discrepancy model
with the same exact (low-dimensional) basis functions and covariates used in Bradley et al. (2020a)
to illustrate dimension reduction for EPR. We also use the same prior specifications as in Section
4.1.

We holdout 5% of the data to estimate a threshold on EPR predicted probability to clas-
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Method False Positive False Negative CpU

EPR 0.21 0.27 10.4 hours
MCMC 0.22 0.28 16 hours
SVM 0.11 0.53 3 days

Table 4: The false positive rates and false negative rates are based on the 5% testing data. To
classify a predicted clear sky as cloud or no cloud we use another 5% of the data as a validation
dataset to determine a threshold on the predicted probability, where the threshold is chosen to
minimize the false positive and false negative rate in the validation dataset. The values for MCMC
and SVM were computed in Bradley et al. (2020a). The final column presents approximate CPU
times.

sify the presence of a cloud, and hold out another 5% testing data for cross-validation so that
n=2,473,758. A plot of the data, EPR-based predicted probability of clear sky, and prediction
standard deviations are displayed in Figure 5. It is clear from the plot that the predicted probability
of clear sky follows the patterns of the observed dataset. That is, when the response is a 1 (indi-
cated with black) the predicted probability is larger and vice versa. In Table 4, we compare false
positive and false negative rates of EPR to that computed using the latent CM (or LCM) model
(Bradley et al., 2020a) implemented with MCMC and to support vector machines (SVM, Hastie
et al., 2009). The discrepancy model implemented with EPR not only produces smaller false posi-
tive and false negative rates than LCM/MCMC, the CPU time is faster on the order of hours. SVM
has smaller false positive rates, but considerably higher false negative rates, and is considerably

more time intensive than both the discrepancy model implemented with EPR and LCM/MCMC.

5 Discussion

This paper describes how to efficiently sample independent replicates directly from the posterior
distribution of fixed and random effects using a broad class of spatial latent Gaussian process mod-

els. This development required the introduction of the GCM distribution and the conditional GCM
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distribution. The use of the GCM allows one to consider any class of CM’s for their prior distribu-
tions on fixed and random effects. Our development explicitly addresses hyperparameters through
marginalization. We make use of the GCM in settings where one traditionally would use a LGP to
produce what we call EPR, which represents an efficiently generated independent sample from the
posterior distribution. We show that the posterior distribution for fixed and random effects for our
hierarchical model (referred to as the discrepancy model) are GCM, which we can directly sample
from without approximations and without MCMC. Furthermore, we use matrix algebra techniques
and dimension reduction to aid in the computation of EPR in high-dimensional settings. The
performance of our model is particularly exciting in the misspecified case (i.e., the case when the
discrepancy parameter q = 0, 1). The misspecified discrepancy model produces larger more con-
servative credible intervals, while still being able to produce comparable predictions and regression
point estimates to those of the correctly specified traditional LGP model.

The results in this paper solve an important problem for Bayesian analysis that is regularly
overlooked (i.e., obtaining efficient independent replicates directly from the posterior distribution
in Bayesian spatial hierarchical models). One might also consider empirical Bayesian variations
of EPR as our solution also allows one to sample independent replicates directly from the posterior
predictive distribution when using point mass specification of 7 (i.e.,point mass on an estimate),
which avoids MCMC in empirical Bayesian settings as well. Specifically, Theorems 3.1 — 3.3
can be used with a plug-in estimator of 8. However, plug-in estimators have unchecked sam-
pling variability (provided that the plug-in estimator is a non-constant function of the data), and
the development of the GCM provides a straightforward solution that accounts for all sources of
variability.

A key area of future development is the use of model selection criteria for the discrepancy
model. For example, the Akaike information criterion (AIC, Akaike, 1974), Bayesian information
criterion (BIC, Schwarz, 1978), and the likelihood ratio (e.g., see Casella and Berger, 2002, for a

standard reference) all require methodological/computational development for use on the discrep-
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ancy model since the expression of the marginal likelihood f(z|B, 0) contains integrals (across q,
1, and &) that are not known. Other related criteria such as the conditional Akaike information
criterion (Vaida and Blanchard, 2005) similarly requires an expression of the marginal data model
(that integrates out q) f(z|B,n,&) that does not have a closed form. The nested relationship be-
tween the discrepancy model and the traditional LGP (see Supplementary Appendix E) may aid
with deriving these expressions. In our applications, we used other traditional criteria to evaluate
the discrepancy model that do not require approximating an integral. In particular, we used the
leave-one-out cross-validation and cross-validation to assess predictive performance (Hastie et al.,
2009) and the continuous rank probability score (CRPS) to assess both prediction and uncertainty
quantification (Gneiting and Raftery, 2007). In our real data analyses these metrics were all similar
in value between the discrepancy model and a comparable hierarchical model that did not include a
discrepancy parameter, and the discrepancy model was more computationally efficient in terms of
CPU time. In general, one should keep in mind statistical accuracy and computation convenience
when choosing a model.

While we feel that the results in this manuscript represent a significant advancement in
Bayesian modeling of spatial data, it is important to state that MCMC and INLA will always be
standard tools. In particular, in this paper, EPR has only been developed in the context of settings
where generalized linear mixed models are appropriate, where the data are conditionally Gaus-
sian, binomial, and Poisson. This implies that finite mixture models, Dirichlet process models,
zero-inflated models, extreme-value models, and other settings, currently, can not be implemented
using EPR. Moreover, inference using EPR is limited to summaries of regression coefficients and
the latent process, since 0 is marginalized. Additionally, EPR is not computationally feasible when
both 7 is large and the basis function matrices are dense and full rank. Thus, when 7 is large we
make use of dimension reduction to perform inference and we include the MODIS cloud-mask
illustration of this case. This opens up the possibility for further methodological/computational

development of EPR in these settings. However, we hope the theory developed in this article
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leads to further theoretical developments that allows one to sample independent replicates from

the posterior distribution in other settings.

Supplemental Materials

Appendices: This document includes the necessary reviews, notation tables, proofs of technical
results, example model specifications, notations, additional details on the fine-scale variance
parameter, additional simulations, and prior specifications used in the illustrations. (supple-

ment.pdf)

R Code: All R code use in the illustrations. Please read the file “Read Me” found in the zip file
for more details. Several of the files are quite large, and for access to these files please see

the file “LargeCodeFiles” contained in the zip file for more details. (Code.zip)
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