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Abstract—The discrete-time finite Markov chains constitute a
class of stochastic models employed across various industries for
over 100 years. However, the binary nature of the states and
state transitions renders this modeling methodology unsuitable
for many practical systems, such as those in biomedicine, which
are characterized by intrinsic vagueness and imprecision in
states and events that cause state transitions. To address this
fundamental limitation, we have extended in this paper Markov
chains to fuzzy Markov chains capable of handling fuzzy states
and fuzzy events. This innovative and significant advancement
is founded on the theory of Stochastic Fuzzy Discrete Event
Systems (SFDES) and the supervised learning algorithm for
Fuzzy Discrete Event Systems (FDES), recently published by the
authors. Our major technical contribution lies in mathematically
generalizing a traditional Markov chain with N states to a fuzzy
Markov chain with N fuzzy states, which is represented by
an SFDES consisting of N FDES. Each FDES has its own
N x N event transition matrix that is automatically learned by the
aforementioned learning algorithm. Crucially, the fuzzy Markov
chain fully preserves the stochastic characteristics defined by
the transition probability matrix of the binary Markov chain,
ensuring identical stochastic behaviors. A defuzzifier is used to
yield crisp model output. The structurally more complex fuzzy
Markov chain encompasses its binary counterpart as a special
case and degenerates into it when fuzzy states degenerate into
binary states. A simulation example is provided to illustrate
the systematic design procedure and demonstrate the higher
prediction accuracy of the fuzzy Markov chain over its binary
counterpart. Capable of effectively representing and processing
vague and imprecise state and event information, fuzzy Markov
chains hold a key advantage and have the potential to solve
real-world stochastic problems beyond the reach of conventional
Markov chains, especially in biomedicine.

Index Terms—stochastic modeling, Markov chains, fuzzy
Markov chains, stochastic fuzzy discrete event systems, fuzzy
automaton, supervised learning

I. INTRODUCTION

A Markov chain (or Markov process) is a stochastic model
characterizing a system in which a sequence of events takes
place that will cause system state to change in a random
manner. Markov chains have achieved widespread success in
countless practical applications since their first appearance in
the turn of the last century. The Markov chains involved in this
study are of the discrete-time type and have a finite number
of states, which are frequently used and studied. They will
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simply be referred as the Markov chains from now on unless
otherwise indicated. A Markov chain generates a random state
sequence as its output, forming a time series. The state at time
to leads to the state at ¢1, which subsequently leads to the state
at to, and so forth. Therefore, the model can be viewed as a
process that iteratively employs the current state as the pre-
event state to generate a new state, which is the post-event
state, when an event occurs.

A state of a Markov chain represents a M -dimensional
hypercube that is formed by M intervals of M random vari-
ables (one interval for one variable). The states are mutually
exclusive because the hypercubes do not overlap. The states
hence are binary in that the system can be only in one state
at any moment of time. Changes in the values of the M
variables do not necessarily cause the system to change state.
The system state remains the same as long as values of the
M variables stay within the same M intervals. The system
transfers from one state to another abruptly when value of at
least one variable falls into a different interval.

The binary nature of the states and state transitions makes
the Markov chains unsuitable for modeling systems whose
states and events are intrinsically vague and imprecise. A case
in point is biomedical systems. As an example, description
of a hospitalized patient’s clinical state necessitates the use
of ambiguous and subjective terms like “Stable State,” “Fair
State,” “Serious State,” and “Improved State.” Furthermore,
a patient can be in multiple states (e.g., “Serious State” and
“Stable State”) simultaneously with different extents. Simi-
larly, the notation of an event causing a system to change
from one binary state to another cannot effectively handle the
reality in biomedicine. For instance, disease treatment (e.g.,
surgery) is an event that may transfer a patient to more than
one state concurrently with varying degrees (e.g., patient is
more in “Improved State” and less in “Fair State” at the same
time).

Initiatives to incorporate fuzzy sets theory to mitigate the
limitations of traditional Markov chains commenced in the
early 1980s [1]. One approach entails replacing probabilities
in a transition probability matrix with fuzzy numbers or fuzzy
sets, which can be viewed as subjective probability estimates
expressed in vague terms (e.g., a “moderate” chance). The
fuzzy numbers and sets, which can be either type-1 or type-
2, are used to model stochastic uncertainties that are actually
treated as possibilities (e.g., [1], [2], [3], [4], [5], [6], [7]). The
transition probability matrix is then used as a fuzzy relation
to infer a post-event state from a pre-event state. Treating a



transition probability matrix as a transition possibility matrix
(i.e., fuzzy relation) alters the stochastic characteristics of
the original problem, a transformation undesirable for many
practical applications. Another approach involves expanding
the binary states of Markov chains into fuzzy states, wherein
state transition probabilities are considered as possibilities
(e.g., [8], [9], [10], [11]). A recent survey on fuzzy Markov
chains is available [12], in which a list of references is
provided.

In this paper, we present a totally different approach to
addressing the aforementioned fundamental limitation of bi-
nary Markov chains. We have established a novel rigorous
mathematical framework for generalizing traditional Markov
chains to fuzzy Markov chains. These fuzzy Markov chains are
capable of: (1) capturing and representing ambiguous states as
fuzzy states, and (2) representing and processing vague events.
The creation of fuzzy Markov chains is possible only because
we discovered in this study an intriguing connection between
conventional Markov chains and a class of Fuzzy Discrete
Event Systems (FDES) called Stochastic Fuzzy Discrete Event
Systems (SFDES), which we recently developed [13].

What we found is that a fuzzy Markov chain can be
represented by an SFDES, and importantly, the SFDES retains
the stochastic characteristics defined by the transition proba-
bility matrix of the original binary Markov chain, which is
assumed to be available or obtainable through measurements
and calculations. A supervised learning algorithm that we
previously developed can be employed to learn the event
transition matrices of the SFDES. Consequently, the fuzzy
Markov chain preserves the stochastic characteristics of the
binary Markov chain, leading to identical stochastic behaviors.

We will prove mathematically that the fuzzy Markov chain
encompasses the binary Markov chain as a special case and
degenerates into it when fuzzy states reduce to interval states.

The ability of fuzzy Markov chains to handle fuzzy states
and events provides substantial advantages over conventional
Markov chains, resulting in improved models and more accu-
rate predictions. These capabilities make fuzzy Markov chains
well-suited for addressing practical stochastic problems char-
acterized by ambiguous states and vague events, particularly
in fields like biomedicine, where conventional Markov chains
fall short.

Clearly, the fuzzy Markov chains are SFDES-based. It
should be pointed out that the notion of a fuzzy Markov chain
is never mentioned in our previous publications and thus is
innovative with respect to our previous studies. SFDES is
founded on the theory of FDES that we introduced in 2001
[14] to model systems involving vague states and events. The
theory extends and complements the conventional discrete
event systems theory that was originated in the 1980s for
modeling a class of discrete-time systems whose system state
change is a result of occurrences of a sequence of events [15].
It is important to note that while Markov chains and discrete
event systems are both event-driven, they represent distinct
modeling methodologies developed for different systems and
with different objectives.

For better presentation, we need to provide an introduction
to FDES first.

A. Introduction to Fuzzy Discrete Event Systems

The foundation of the FDES theory rests on the notations of
“fuzzy state” and “fuzzy event.” A fuzzy automaton, similar
to its binary counterpart, mathematically models an FDES and
is represented by

G=(Q %, ¢9) (D

where system state Q is a vector represented by N individual
fuzzy states, qo, is an initial fuzzy state vector, X is a set of
fuzzy events, each of which is characterized by an N x N
event transition matrix, and ¢ : Q X ¥ — Q is an event
transition mapping. Memberships of the individual fuzzy states
are in [0, 1], so are the elements of the event transition matrix.
That means the fuzzy state and fuzzy event can have partial
memberships, and binary state and crisp event are special cases
of fuzzy state and fuzzy event, respectively (0 or 1 is a special
case of [0, 1]). For any specific FDES, given a pre-event fuzzy
state vector and an event transition matrix, the post-event fuzzy
state vector can be computed using a fuzzy inference operation
such as the widely-used max-product composition operation.
System state before and after occurrence of an event is called
the pre-event state and post-event state, respectively. The
corresponding state vectors are referred as the pre-event fuzzy
state vector and post-event fuzzy state vector, respectively.

For a concrete FDES and its operation, the reader is referred
to the illustrative numerical FDES example in the Fuzzy
Logic Toolbox of MATLAB version R2024a. This example,
developed collaboratively with the first author of the present
paper, is publicly accessible free of charge on MathWorks’
website, along with its MATLAB code [?].

The theoretical framework of FDES has been expanded
significantly in various directions. These extensions include
state-based control [16], state-feedback control [17], supervi-
sory control [18], [19], [20], [21], [22], decentralized control
[23], [24], [25], online control [26], detectabilities [27], diag-
nosability [24], [28], [29], prognosis [30], [31], predictability
[32], and opacity [33], [34]. Additionally, controllability of
FDES has been studied [35]. Type-2 fuzzy sets have been used
to expand the type-1-fuzzy-set-dominated FDES framework
[36], and the notions of generalized FDES [35] and semi-
discrete events with fuzzy logic [37] have been proposed. The
modeling of FDES based on a generalized linguistic variable
has been explored [38]. Most efforts in the literature focus
on the deterministic FDES. Nevertheless, modeling of the
nondeterministic FDES is investigated in [39] while modeling
and control of the probabilistic FDES are addressed in [40].
A recent survey of the FDES literature is available [41].

The event transition matrix governs the state-to-state transi-
tion of an FDES and hence is crucial for determining proper-
ties of the FDES such as observability [42] and predictability
[32]. It is worthy noting that the matrix’s elements are possibil-
ities. Thus, they are fundamentally different from the elements
in a Markov chain’s transition matrix, which are probabilities.
Manually building the event transition matrix of a FDES for
a specific application can be a difficult and daunting task.
This motivated us to develop stochastic-gradient-descent-based
online supervised learning algorithms to automatically learn



the event transition matrix from pre- and post-event fuzzy state
vector pairs under various conditions that may arise in practice
[43], [44], [44], [45], [46], [47]. As one will see below, one
of the algorithms will be utilized to learn fuzzy automata in
an SFDES representing a fuzzy Markov chain.

B. Overview of the Paper

SFDES is a new class of nondeterminstic FDES and is
substantially different from the probabilistic FDES that we put
forward earlier. An SFDES consists of two or more FDES that
are represented by fuzzy automata. Each of the fuzzy automata
represents a fuzzy event with an event occurrence probability.
In the presence of a pre-event fuzzy state vector, one does not
know which of the multiple fuzzy events will occur and thus
cannot know or determine the post-event fuzzy state vector
beforehand. At any moment, which event will take place is
random. We have developed two techniques to identify fuzzy
automata of an SFDES under different conditions on pre- and
post-event fuzzy state vector pairs [13][48].

SFDES represents one of the latest advancements in FDES
theory. Originating independently and not influenced by
Markov chain theory, this development holds intrinsic sig-
nificance. Consequently, the establishment of a connection
between SFDES and Markov chains becomes intriguing and
noteworthy. Furthermore, leveraging this connection allows
for the systematic expansion of Markov chains into fuzzy
Markov chains with mathematical rigor. This marks a pivotal
theoretical advancement and represents our most significant
contribution.

The second significant theoretical development and our
contribution lie in our mathematical proof that Markov chains
are a special case of SFDES. More specifically, a Markov
chain with an N X NV transition probability matrix can be rep-
resented by N2 crisp automata of an SFDES whose occurrence
probabilities are the same as the N? transition probabilities
in the transition matrix. It is important to point out that
this representation is exact - the SFDES fully preserves the
stochastic nature of the Markov chain without any change.
Next, on the basis of this representation, we extend the
binary states to fuzzy states for the Markov chain through N2
fuzzy automata of the SFDES without altering its stochastic
properties.

We not only establish connections among conventional
Markov chains, fuzzy Markov chains, and SFDES but also
devise a systematic procedure for designing and constructing
fuzzy Markov chains. This represents the third crucial theoret-
ical development and our contribution. Given pre- and post-
event data pairs for Markov chain modeling, the pairs will
first be used to calculate/estimate the transition probability
matrix of a Markov chain. Hence, the occurrence probabilities
of the N? fuzzy automata of the SFDES representing the
fuzzy Markov chain are known. The N? FDES of the N2
fuzzy automata employ fuzzy sets to transform binary states
into fuzzy states, and we elucidate the underlying design
principles governing this process. The data pairs and one of the
supervised learning algorithms that we developed previously
will be utilized to learn the N? event transition matrices of

the FDES. A centroid defuzzification algorithm is introduced
to convert a post-event fuzzy state vector to a numerical
value, if crisp output, as oppose to fuzzy output, is desired
for the fuzzy Markov chain. We also show how the batch
least-squares method can be utilized to optimize parameters
in the defuzzification algorithm to potentially enhance model
accuracy.

In the next section, we introduce SFDES, which will be
followed by major theoretical developments of the fuzzy
Markov chains in Sections III and IV. In Section V, a detailed
simulation example is presented to illustrate the key design
steps and also show preliminary evidence on the advantage of
the fuzzy Markov chain over its binary counterpart in terms of
model accuracy. Considerations regarding design choices are
elaborated upon in Section VI. Conclusions are drawn in the
last section.

II. INTRODUCTION TO STOCHASTIC Fuzzy DISCRETE
EVENT SYSTEMS

Assume an SFDES is comprised of H FDES, each of which
is represented by a fuzzy automaton Gp, k=1,... H. The
fuzzy automata take place randomly one at a time based on
their occurrence probabilities with the probability for G}, being
pi. If two or more events occur consecutively for at least one
of the fuzzy automata, the SFDES is said to be a multi-event
SFDES. Otherwise, the SFDES is of the single-event type,
meaning each of its fuzzy automata has only one event. This
study involves single-event SFDES only.

G, meets the mathematical definition given in (1). Gy
has only one fuzzy event, which is denoted as ¥, and is
represented by an N x N event transition matrix, that is,
- (afj) ~Nxn With all the matrix elements falling in [0, 1].
The elements in a row (or a column) of o  are not required to
be summed to 1. The states in the row and column directions
are arranged identically.

System state of an SFDES is represented by Q in (1)
where Q = [Q1,Q2,...,QN]. Membership value of Q;,
denoted by S;, is in [0, 1], and the fuzzy state vector
6 = [S1,S9,...,SN] characterizes the system state. Q is
usually expressed as an intuitive linguistic term set (e.g., Q
= [“Improved State,” “Fair State,” “Stable State,” “Serious
State™]). S; can be obtained by applying a fuzzy set (or sets)
defined for @; to the value (or values) of the variable (or vari-
ables) related to ;. The fuzzy set can be multi-dimensional
if more than one variable is involved. Alternatively, multiple
one-dimensional fuzzy sets, one for a variable, can be used
along with a fuzzy aggregator (e.g., a fuzzy AND operator) to
produce S;.

If an event takes place, the SFDES will transfer from a
pre-event fuzzy state (first such state is the initial state) to a
post-event fuzzy state through the event transition matrix of the
fuzzy automaton representing the event. The post-event state
can be computed by using a fuzzy inference operator. Assume
pre-event fuzzy state vector is 6, = [S10, Soo, ,SNo)
and fuzzy event ;. occurs. Then, the post-event fuzzy state



vector of the system, denoted as (:)1, is

él = (:)0 oWy
a’£1 a% a’}:N
= [S10, Sa0, , So] o a1 Q3 asn
a?\n a]fv2 a?VN
=[S11, So1, Sl

The symbol o denotes a fuzzy inference operation such as
the widely-used max-product composition method or max-
min composition method. As an example, if the max-product
composition operation is used, the result of ®; above is
attained as

Si1 = max(SlOa]fj7520a§j7...7SNOa§“\,j) )

where 1 < j < N.

An SFDES becomes a stochastic discrete event system if the
fuzzy automaton is replaced by the conventional automaton
whose states and events are binary. We have the following
definition.

Definition 1: A stochastic discrete event system is an SFDES
whose states are binary and each of its event transition matrix
contains all 0’s except for a single occurrence of 1.

For a stochastic discrete event system, S; and afj are either
0 or 1, hence lifk contains a single 1 (i.e., a state is allowed to
only transfer to one state at a time). There will be no fuzzy sets
for the variables related to ();. Like their SFDES counterparts,
stochastic discrete event systems can also be classified as
single-event stochastic discrete event systems and multi-event
stochastic discrete event systems. Stochastic discrete event
systems form a special class of SFDES.

It is noteworthy that the concept of a stochastic discrete
event system is innovative; it has not been previously discussed
in the literature of FDES or discrete event systems.

III. CONNECTIONS BETWEEN MARKOV CHAINS AND
STOCHASTIC (FuzzY) DISCRETE EVENT SYSTEMS

A. Discrete-Time Finite Markov Chains

Without loss of generality, assume the Markov chains in-
volve M continuous random variables, denoted as x;, that
are defined on [oy, 5], ¢ = 1,2,..., M. Let the random
variable vector be X = [x1, X2, ...,z ). The interval [«;, §;]
is divided into [V; subintervals. Denote the first subinterval that
starts with «;, second subinterval,. . ., last subinterval that ends
with 3; as Lt,L%,. .. ,Lﬁ\,i, respectively. This results in a total
of N = Ny x Ny x --- x N, different combinations of the
total K = Zf\il N; subintervals. Each combination represents
a hypercube in the M -dimensional space. That means there are
a total of IV different states, one state for a hypercube. Denote
the hypercube corresponding to State ¢ of the Markov chains
as Cy.

Example 1: Suppose z; is defined on [0, 20] that is divided
into four subintervals (e.g., N1 = 4). They are [0, 4], (4, 9],
(9, 15], (15, 20], which are L1, L3, L} and L}. Assume z5 is
defined on [-2 5] has two subintervals L% =[-2,2] and L2 =
(2, 5]. There are N = 4 x 2 = 8 different combinations of

the subintervals. Each combination occupies a rectangle area
(i.e., hypercube) in the x;-z5 space and represents a state.

We comment that there exist discrete-time Markov chains
whose state definition does not rely on continuous random
variables. These Markov chains are not covered in this study.

The transition probability matrix of the Markov chains,
denoted as P, is N x N. Conventionally, the N states are
arranged in the same way in the row direction and the
column direction, and the rows and columns represent pre-
and post-event states, respectively. The matrix elements are
fix and time-independent state transition probabilities, denoted
as pi;, 1 < 4,5 < N, and p;; are non-negative and satisfy
Z;.V:lpij = 1. By definition, a Markov chain must meet
the requirement that the probability of entering any new state
depends only on the previous state and is unrelated to any
other historical states. A transition matrix P together with the
initial probability associated with each state completely defines
a Markov chain [49].

The probability of State ¢ transferring to State j is p;; which
in practice can be estimated by counting the number of times
that State ¢ transferring to State j in all the state transitions.
State ¢ transferring to State j forms a pair of pre-event state
and post-event state, denoted as (State ¢, State j), and the
number of such pairs is designated by 2;;. That means p;; ~
Q;;/8, where Q;, = Z;\le €2;;. The larger the €;;, the more
accurate the estimation of p;;. The total number of state pairs
is 2 = Zf\il QL*

To develop a Markov chain model, a sequence of n sets
of values of the M variables generated by the system being
modeled at n different times is assumed to be available. The
values are mapped by the subintervals into hypercubes or
states, resulting in the corresponding sequence of hypercubes
or states. Then n — 1 pairs of pre- and post-event states (or
hypercubes) can be obtained, with post-event state (or hyper-
cubes) of current pair being pre-event state (or hypercubes) of
next pair. We denote pre- and post-event state pair as (State 1,
State j) and the corresponding hypercube pair as (C;, C;).

B. Discrete-Time Finite Markov Chains Are a Class of Single-
Event Stochastic (Fuzzy) Discrete Event Systems

We link the Markov chains to the stochastic discrete event
systems through the following theorem.
Theorem 1: The discrete-time finite Markov chains are a class
of the single-event stochastic discrete event systems.
Proof: Given a Markov chain with N states and transition
probability matrix P = (p;;)nx N, we can always configure
a single-event stochastic discrete event system using the same
N states. We do not configure a multi-event stochastic discrete
event system because for the Markov chain, the probability of
entering any new state depends only on the previous system
state and is unrelated to any other historical states. The single-
event stochastic discrete event system will consist of N2
discrete event systems, and the event transition matrices of
their N2 automata are N x N with the states arranged in the
same way as those for the transition probability matrix P of
the Markov chain in terms of the row and column. We denote
the automata as G5, 1 < 4,5 < N, and let the occurrence



probability of G;; be p;;, which means G;; covers transfer of
system state from State ¢ to State j. To make this state transfer
happens, we let all the elements in the event transition matrix
of G;; be 0 except for the two elements corresponding to (¢, 5)
which are set to 1. It can be easily proven that the post-event
state vector resulted from fuzzy inference involving G;; and a
pre-event state vector whose only nonzero membership is 1 for
the ¢-th element (i.e., State 7) will have 0 membership value
everywhere except 1 for the j-th element (i.e., State j) when
either the max-product composition method or the max-min
composition method is used for computing state transfer.

At this point, we have proved that functionality and char-
acteristics of the Markov chain and the single-event stochastic
discrete event system are exactly the same.

A Markov chain can be represented as a single-event
stochastic discrete event system. The reverse is generally
not true. A single-event stochastic discrete event system is
a Markov chain only when its stochastic characteristics is
defined by the transition probability matrix of the Markov
chain. Hence, one can conclude that the Markov chains are
a class of the single-event stochastic discrete event systems.
QED

The proof of Theorem 1 is constructive. That is, the proof is
accomplished by constructing the single-event discrete event
systems that are equivalent to the Markov chains. Note that
for automaton G';;, only State ¢ in the pre-event state vector
and State j in the post-event state vector are involved in
state transfer. The remaining states do not participate because
their membership values are 0. We call an individual state the
Dominant State if its membership value is the highest among
the IV states in a state vector (Two or more individual states
can be the Dominant States simultaneously if they all have the
same highest membership values). The remaining individual
states are named the Non-dominant States. States ¢ and j
are the Dominant States of G;;. These state designations will
facilitate comprehension later during the transition from ~’State
1 transfers to State 57 in a binary Markov chain to “Fuzzy State
1 transfers to Fuzzy State j” in the corresponding Markov
chain with fuzzy states (i.e., the fuzzy Markov chains).

In summary, given a Markov chain described in Subsection
III-A, a single-event discrete event system can be easily made,
which consists of N? automata G;; with pre- and post-
event Dominant States being States ¢ and j, respectively. The
occurrence probability of G; is p;;. €;; pairs of (Dominant
State ¢, Dominant State j) are associated with G;;.

The stochastic nature of a Markov chain is dictated by the

transition probability matrix P. This characteristic is fully pre-
served by the corresponding single-event discrete event system
through its N? automata G;; whose occurrence probabilities
are p;;. Note that (Dominant State 7, Dominant State j) of G;
are binary and correspond to (State ¢, State j) of the original
Markov chains, and the two pairs are associated with the same
p;j. Thus, we can state the following result.
Corollary 1: The single-event stochastic discrete event sys-
tems share the identical stochastic nature characterized in
the transition probability matrix P of the discrete-time finite
Markov chains.

For brevity, a formal proof is omitted. The presentation in

this subsection clearly indicates the correctness of this finding.

IV. Fuzzy MARKOV CHAINS REALIZED THROUGH
SUPERVISED LEARNING STOCHASTIC Fuzzy DISCRETE
EVENT SYSTEMS

A. Extending Binary States of the Discrete-Time Finite Markov
Chains to Fuzzy States

For a discrete-time finite Markov chains, it remains in the
same state as long as each value of the M variables stays
within the same subinterval, no matter how big the changes
of the values are. Such character causes abrupt state change,
which often fails to represent gradual state changes in the
reality (e.g., change of patient’s clinical state). The binary
nature of states makes it impossible for the Markov chain
to be in two or more states simultaneously, let alone events
transferring from one state to multiple states at the same time.
All in all, the Markov chains are incapable of effectively
modeling systems whose states and events are intrinsically
imprecise or vague.

We now expand the binary states to fuzzy states. On the
basis of the Markov chains in Subsection III-A, a continuous
fuzzy set is defined on [«;, 3;] for each of the NV; subintervals
of z;, resulting in NN; fuzzy sets. The total number of fuzzy
sets for the M wvariables is K. The fuzzy sets dedicated
to the subintervals L{,L5,...,LY are denoted respectively
as Fj(z;),F3(x;).....F (z;). It should be stressed that the
universe discourse of F}(xz;) is [ay, 3;], not L};. Given a
specific value of x;, some or all of the N; fuzzy sets may have
nonzero membership values, depending on how the fuzzy sets
are defined.

All the K fuzzy sets are required to be convex. Fj (z;) is
convex if and only if for any a, b € [a;,3;] and any A€
0,1], Fi(Aa+ (1— \)b) > min(Fi(a), F2(0)). F(z) is
also required to have at least one membership value being
1 and not have membership value 1 outside the subinterval

5,» which are common requirements for fuzzy systems in the
literature. Finally, suppose L = [di _,.d}] and x; € L},
h=1,2,...,N;. The K fuzzy sets must be so defined that (1)
Ff(dl) FQ(dl) 2)forh =3,4,...,N;—2, Ffl (dy ) =
Fh( ho1) = Fh(dl) Fh+1( l)s and 3) FN 71(dN ) =

F (dly,_1). There is no other restriction on the fuzzy sets
and the fuzzy sets can be symmetrical or asymmetrical. The
reason for imposing these mild requirements is to ensure that
when z; € Li, the value of Fj(x;) is the highest among
the N; values from the N; fuzzy sets fuzzifying z;. We call
Fj(x;) the Primary Fuzzy Set for L’ . The remaining N; — 1
fuzzy sets are named the Secondary Fuzzy Sets as far as L
is concerned. These distinctions in the fuzzy sets will help us
introduce an important notion called the Dominant State later.

Example 2: Continue with Example 1. Suppose four fuzzy
sets dedicated to the four subintervals of xq, L% to L}l, are as
shown in Fig. 1. They all meet the three requirements.

Most, if not all, popular fuzzy sets are convex and can be
easily configured to meet the above-mentioned requirements.
They include the Gaussian type, triangular type, and trape-
zoidal type.



Fig. 1: Four hypothetical fuzzy sets for fuzzifying z;.

The fuzzy sets fuzzify the N binary states through fuzzifi-
cation of the values of the M variables, resulting in N fuzzy
states. Specially, M Primary Fuzzy Sets, each of which is
responsible for a subinterval in which one of the M variables
lies, covers one hypercube, or equivalently one state. Because
the relationship among the M subintervals is intersection (i.e.,
binary AND), the relationship among the corresponding M
Primary Fuzzy Sets is fuzzy intersection (i.e., fuzzy AND).
Hence either the product fuzzy AND operator or the min fuzzy
AND operator can be used to calculate a combined/aggregated
membership for the hypercube and the state. This aggregated
membership is the membership for the fuzzy state covering
the hypercube. The aggregated membership for hypercube
Cy, hence for State g, is denoted as S,. The N aggregated
membership values form a pre-event fuzzy state vector. Given
a particular value of X, some or all of the N fuzzy states may
have nonzero membership values, depending on the definitions
of the K fuzzy sets.

At this point, we have extended the Markov chains with NV
binary states characterized by N M-dimensional hypercubes
to the Markov chains with N fuzzy states covering the same
N hypercubes. Basically, a Markov chain with fuzzy states
consists of the transition probability matrix P of the original
Markov chains and a set of N fuzzy states, each of which is
determined by M Primary Fuzzy Sets fuzzifying M variables.

B. Enabling Fuzzy Event Handling for the Fuzzy Markov
Chains through Stochastic Fuzzy Discrete Event Systems

As stated earlier, we require our target fuzzy Markov chains
to not only have fuzzy states, but also have the ability to handle
fuzzy events. As is, the Markov chains with fuzzy states cannot
deal with fuzzy events. A fuzzy event means a pre-event fuzzy
state transfers to a post-event fuzzy state. Since a fuzzy state
implies that the N individual states (e.g., © in Section 1I)
can all have nonzero membership values, the question is how
should a Markov chain with fuzzy states compute fuzzy state
transfer? Recall that fuzzy state transfer is calculated using a
pre-event fuzzy state vector, an event transition matrix, and
a fuzzy inference method. Therefore, it is obvious that the
Markov chains with fuzzy states are incapable of handling

fuzzy events due to their structural deficiency - they do not
have event transition matrices.

SFDES can bridge the gap. Given a Markov chain, a single-
event stochastic discrete event system that is equivalent to
the Markov chain can be constructed, per Theorem 1. The
stochastic discrete event system consists of [V 2 automata Gij,
1 <4,j < N. The occurrence probability of G;; is p;;, which
is the probability of Dominant State ¢ transferring to Dominant
State j, or equivalently, State ¢ transferring to State j for the
original Markov chains. For a Markov chains with fuzzy states,
we now show how to construct a single-event SFDES based
on the stochastic discrete event system so that the resulting
SFDES can not only represent the Markov chain with fuzzy
states, but also is capable of computing fuzzy state transfer.

The single-event SFDES will have the same N fuzzy states
as the Markov chain with fuzzy states does. There are N2
FDES in the SFDES, each is represented by a fuzzy automaton
denoted as éi]‘, 1 <14,7 < N, and the occurrence probability
of éij is p;;. The N fuzzy states in the N x IV event transition
matrix of éij, denoted as i’ij, are arranged in the same way
as those in the Markov chain with fuzzy states in terms of the
row and column. C?ij is associated with the ;; pairs of (State
i, State j) like G5 is. Recall that the pairs of (State ¢, State
7) of the original Markov chains represent the state transfer
whose probability is p;;. These pairs are corresponded by the
pairs of (Dominant State ¢, Dominant State ;) of the nonfuzzy
automaton G';;. We now establish a condition for the pairs of
(State ¢, State j) to be pairs of (Dominant State ¢, Dominant
State j) of the fuzzy automaton G;.

Lemma 1: A sufficient condition for the pairs of (State 7, State
7) of the binary Markov chains that represent the state transfer
with probability p;; to become the pairs of (Dominant State
1, Dominant State j) of the fuzzy automaton éij having the
same probability is that the element of the i-th row and j-th
column of the event transition matrix ¥; is 1.

Proof: The individual state 7 represents a hypercube formed
by M subintervals, one for each of the M variables. When the
value of z; is fuzzified by its respective N; fuzzy sets F} (z;),
the membership value of the Primary Fuzzy Set responsible
for the subinterval where the value of x; lies will be higher
than those of the rest of the /N; — 1 Non-primary Fuzzy Sets
because of the way the N, fuzzy sets are defined in IV-A. This
is true for all the M values of the M variables. Therefore,
the aggregated membership value for the hypercuble, that is,
State ¢, will be higher than the rest of the NV — 1 hypercubes
or states, regardless of the type of fuzzy AND operator used.
This makes State ¢ the Dominant State relative to the other
individual states in the pre-event state vector.

If the element of the ¢-th row and j-th column of the event
transition matrix li'ij is 1, the membership value of the j-
th individual state in the post-event fuzzy state vector will
have the highest membership value among the NV states, which
means State j is the Dominant State. This is the case for both
the max-product and max-min fuzzy inference methods. QED

We comment that the definitions of the K fuzzy sets given
in IV-A are quite systematic and general. They represent one
way to make State ¢ the Dominant State :. There may exist
other ways of defining the fuzzy sets that can achieve the same



goal. For better presentation, we do not dive deeper into this
matter in this paper.

All in all, éij is the fuzzy counterpart of G;;. At this

point, we have successfully equipped the Markov chains with
fuzzy states with the ability of handling fuzzy events. This
capability is realized through single-event SFDES. In light of
these developments, we have the following finding.
Theorem 2: When the condition set in Lemma 1 is satis-
fied, discrete-time finite fuzzy Markov chains with the same
stochastic characteristics defined by the transition probability
matrix P of the binary Markov chains can be realized through
single-event SFDES.
Proof: The presentation in this and previous subsections has
already shown constructively: (1) how the binary Markov
chains can be extended to have fuzzy states, and (2) how the
Markov chains with fuzzy states can be equipped with fuzzy-
event-handling ability through single-event SFDES.

Other than fuzzy states and ability of handling fuzzy events,
a third and final requirement for our target fuzzy Markov
chains is to preserve the stochastic characteristics of the binary
Markov chains. Recall that the ;; pairs of (State 7, State
7) of the binary Markov chains represent the transfer from
State 7 to State j and the state transition probability is p;;.
After the fuzzification of State ¢ in these pairs in the fuzzy
automaton C;’ij whose occurrence probability is p;j, €2;; pre-
event fuzzy state vectors will result, with the individual State @
being the Dominant State. When the condition set in Lemma
1 is met, the individual State j will be the Dominant State
in the corresponding €);; post-event fuzzy state vectors as a
result of applying either the max-product inference method
or the max-min inference method to the pre-event fuzzy state
vectors. Note that (Dominant State ¢, Dominant State j) of G‘ij
degenerates into (State ¢, State j) of the binary Markov chains
when all the Non-dominant States in the fuzzy state vectors
have zero membership value. Hence, with an occurrence
probability of p;;, the fuzzy automaton G’Z-j maintains the
stochastic nature defined by the state transition probability p;;
of the binary Markov chain. QED

It is worth emphasizing that because the fuzzy Markov
chains preserve the stochastic characteristics defined by the
transition probability matrix of binary Markov chains, stochas-
tic properties of the fuzzy and binary Markov chains, such as
steady-state probabilities and multi-step transition probabilities
[49], are identical.

We name the fuzzy Markov chains mentioned in Theorem

2 the Stochastic-Fuzzy-Discrete-Event-System-Based Fuzzy
Markov Chains (SFDES-Based Fuzzy Markov Chains for
short) and it is formally defined as follows:
Definition 2: A SFDES-Based Fuzzy Markov Chain is a
single-event SFDES whose event transition matrices satisfy
Lemma 1 and its stochastic characteristics is defined by
the transition probability matrix of the corresponding binary
Markov chain.

The following statement is obvious.

Corollary 2: The discrete-time finite SFDES-Based Fuzzy
Markov Chains are a class of single-event SFDES.

Theorem 3: A discrete-time finite Markov chain is a special
case of the discrete-time finite SFDES-Based Fuzzy Markov

Chains.
Proof: A binary Markov chains does not involve with fuzzy
sets, and hence the membership values for states can only be
0 or 1. To align an SFDES-Based Fuzzy Markov Chains with
it, we introduce K special fuzzy sets for the fuzzy Markov
chain as follows: Primary Fuzzy Set E}(z;) responsible for
the subinterval Li = [d} ,,d}] has a membership value
of 1 everywhere in the subinterval and O everywhere else
in [ay, B;]. With these K special fuzzy sets, (State i, State
7) of the binary Markov chains becomes a special case of
(Dominant State ¢, Dominant State j) of the SFDES realizing
the fuzzy Markov chain because all the Non-dominant States
in the fuzzy state vectors have zero membership value. The
special fuzzy sets also make each event transition matrix of
the SFDES contain only one non-zero element. Actually, the
value of that element is 1, and the element is at the i-th row
and the j-th column of W¥;;. At this point, the single-event
SFDES degenerates into a single-event stochastic nonfuzzy
discrete event system, which incorporates discrete-time finite
Markov chains per Theorem 1. QED

Theorem 3 and Corollary 2 lead to the following conclusion.
Corollary 3: The discrete-time finite Markov chains are
special cases of single-event SFDES.

C. Supervised Learning of the Event Transition Matrices of
the SFDES-Based Fuzzy Markov Chains

With the structure of the SFDES-Based Fuzzy Markov
Chains having been designed, a key question then is how
to determine the element values for each of the N? event
transition matrices of G;? The answer is that they can all
be automatically learned, one at a time, using an online
stochastic-gradient-based supervised learning algorithm that
we developed previously [44]. That algorithm learns each of
the event transition matrices independent using the paired pre-
and post-event fuzzy state vectors that are related to it.

Such fuzzy state vector pairs are available for the N2 fuzzy
automata that we just constructed. Recall that there are a total
of ) state pairs that characterize state transfer for the binary
Markov chains. Correspondingly, for the fuzzy Markov chains,
state transfer is characterized by 2 pairs of pre- and post-event
fuzzy state vectors. States ¢ and j are the pre-event state and
post-event state, respectively, with the transition probability
of p;; for the binary Markov chain. They are the respective
Dominant States in the pre- and post-event fuzzy state vectors
for the corresponding fuzzy automaton éij of the SFDES-
Based Fuzzy Markov Chains with the occurrence probability
of G‘ij being p;;.

The fuzzy state vector pairs corresponding to the £);; pairs
of (State ¢, State j) can be obtained for éij, 1 <4, <N
by fuzzifying the values of two sets of M variables that
correspond to State ¢ and State j. IN; membership values
will result for the N; Primary Fuzzy Sets Fi(x;),Fi(z;).. ..,
F}V (x;) that cover the N; subintervals of x;. How many of
the memberships will be nonzero depends on the definitions of
Fi(x;),F3(2:),. ... Fi, (x;) as well as specific values of the
M variables. Aggregation of these memberships (see Section
IV-A) will generate N membership values, one for each



individual state. They constitute a pre- or post-event fuzzy
state vector, depending on whether the M variables are pre-
or post-event.

Therefore, €;; palrs of pre- and post-event fuzzy state vec-
tors, denoted as (@ diJ ®7), h=1,2,...,9Q;;, that correspond
to (State ¢, State j) are avallable for learning of the event
transition matrix \ilij of éw Owing to the definitions of the
K fuzzy sets in Section IV-A, States ¢ and j are the Dominant
States in the fuzzy state vectors. Let the variable vectors
corresponding to ©),’ and ®;’ be denoted as X}’ and X7,
respectively, and they form a pre- and post- event variable vec-
tor pair 4(X;f, X3)). We also let @” = [S1 ‘1 Sy Boeo Synl
and &)/ = [Si]h,S;jh,... SN}h] Sk’h and Sk’h are the
aggregated membership values of the M memberships resulted
from fuzzification of the values of the M variables in X;f and
X/ , respectively.

Wlth (@1, ®17), the learning algorithm can learn the N x
N event transition matrix \Il” of G” The algorithm works
iteratively. One pair of the fuzzy state vectors leads to one
iteration of the matrix element value updating. Let ¥,;(h) =
(a%. (h))Nxn, where the value of a¥ modified after the

mn

h-th iteration of parameter updating is denoted by a(h)%

mn
while the corresponding event transition matrix is denoted by

W,;(h). The h-th pair, (@}, ®}7), will update the value of

a}ﬁm(h 1),1<m,n<N, usmg the following formula:
() = @il (h = 1) = AS} ()], = 57,08 )
where

187, =S,
0, otherwise.

n(h—1) @

W:{

Initial values of a% = (i.e., a4 (0)) are usually set randomly.
A is learning rate, which is a hyperparameter. Its value needs
to be decided by the modeler. The same A value may be
used for the learning of all the matrices. Actual post-event
fuzzy state vector due to pre-event fuzzy state vector @”
is denoted as &7 = (97,95, 8%, T is computed
by using ©%, \ilij(h”— 1), and the max-product composition.
More specifically, &/ = @/ o ,;(h — 1).

Because States ¢ and j are the Dominant State of the pre-
and post-event fuzzy state vectors, respectively, for the fuzzy
automaton GZ], it is likely that the element in the ¢ row and
j-th column of the event transition matrix lIIL jis 1 (e, a

= 1) when the learning of \II” is completed. If not, it needs
to be set to 1 so that the condition set in Lemma 1 is met.

The process of learning the event transition matrix W;; is
as follows: €;; pairs of (O, 'iﬁf) are fed to the algorithm
consecutively one pair a time. The algorithm uses formula (3)
to modify the values of the matrix elements. When all the €2;;
data pairs are used, one round of parameter learning has been
completed. More rounds of the sample feeding may be desired
as it can lead to more parameter updating, which may produce
better learning outcome. The learning ends either when the
pre-set round of sampling feeding has been performed or
changes in matrix element values between two consecutive
rounds are smaller than a pre-set threshold.

Learning of the event transition matrices takes place one
matrix a time, and learning of each matrix is independent

one from another. The learning continues until all the N2
event transition matrices of the single-event SFDES have been
learned.

The size of €;; affects learning outcome for \ilw Our
limited simulation study indicates that a large sample size
may not be needed. For example, only 100 sample pairs were
enough to learn a 4 x 4 event transition matrix accurately after
60 rounds of sample feeding [44].

Computing time for executing the learning of the event
transition matrix W;; depends on the magnitudes of N and
Q;;. The larger they are, the longer computing time. Our
simulation experience suggests that a relatively new typical
personal computer could complete the learning of one event
transition matrix involving moderate magnitudes of N and
sample pairs in less than 20 seconds. For a more complex
FDES with larger magnitudes of N and sample pairs, the
execution time is expected to be longer, but not prohibitively
long. With the rapid advancement of computer hardware,
computing time is not considered a bottleneck.

D. Defuzzifying Post-Event Fuzzy States of the SFDES-Based
Fuzzy Markov Chains for Crisp Model Output

Given a binary Markov chain and a value of X, the
value will first be mapped to a pre-event individual state
(i.e., hypercube), say State ¢. The post-event state will then
be determined randomly based on the transition probability
matrix. Suppose that State j is the post-event state.

For the corresponding fuzzy Markov chain, the value of X
will first be fuzzified, resulting in a pre-event fuzzy state vector
with IV aggregated membership values, one for each of the IV
states. One of the states is the Dominant State, and in this
case it is State 7. Aligning with the binary Markov chain, the
fuzzy automaton C;’ij is randomly selected to act, producing
a post-event fuzzy state vector whose Dominant State is State
7, if the condition in Lemma 1 is met. In some applications,
output of the SFDES-Based Fuzzy Markov Chains in the form
of fuzzy state vectors may be appropriate and natural from the
standpoint of man-machine interface. In many applications,
however, fuzzy output may not be acceptable and crisp output
is required. If this is the case, the post-event fuzzy state vector
needs to be defuzzified to yield a crisp model output.

There are different defuzzifiers in the literature, each with
pros and cons. Here, we consider two major ones - the max-
imum defuzzifier and the centroid defuzzifier. The maximum
defuzzifier takes the value of the universe of discourse that
corresponds to the highest membership value of the fuzzy set
being defuzzified as the crisp output. When this defuzzifier is
applied to the fuzzy Markov chains, the following finding is
attained.

Theorem 4: If a discrete-time finite SFDES-Based Fuzzy
Markov Chain satisfying the condition in Lemma 1 employs
the maximum defuzzifier, its input-output mapping is identical
to that of the binary Markov chain.

Proof: The proof is straightforward. As mentioned earlier
in this subsection, for any p;;, output of an SFDES-Based
Fuzzy Markov Chain meeting the condition in Lemma 1 is a
fuzzy state vector whose Dominant State coincides with the



post-event state of the corresponding binary Markov chain.
Hence, when the maximum defuzzifier is applied to the fuzzy
state vector, the defuzzification result is that Dominant State
because its membership value is the highest among the N
states. This is to say the Dominant State is the same as the
post-event state of the corresponding binary Markov chain.
This holds true for any values of ¢ and j. QED.

This result is of theoretical interest only as practically
speaking, there is no advantage to use a fuzzy Markov chain
with the maximum defuzzifer. Using the binary Markov chain
would be far simpler.

The centroid defuzzifer, which is the most widely-used
defuzzifier in the fuzzy system literature, takes the member-
ship values of all the N fuzzy states into account in the
defuzzification process. In order for this defuzzifier to work
for the fuzzy Markov chains, each of the IV states needs to
have a representative value that will be used in defuzzifcation.
Theoretically speaking, any value in a hypercube can serve
as the representative value for the state associated with that
hypercube. Practically speaking, though, some values may
offer better representation than other values. The choice can
also be application-dependent. In what follows, we focus on
using the centers of the N hypercubes as the representative
values for the N states. The resulting formula can be easily
modified if other types of representative values are desired.

The center of a M-dimensional hypercube is composed
of M middle points of the M subintervals that form the
hypercube. Denote the center of State k (i.e., the k-th hy-
percube) as Ty = [y§,75,...,7},] where 7¥ is the middle
point of the subinterval of the ¢-th variable in X that is
associated with the hypercube. Given a post-event fuzzy state
vector [5'1, SQ, .8 n], the centroid defuzzifer produces the
following M values, one for each of the M variables:

5'1')/; + 3273 + -+ SN’)/(JIV
Ty = - - ~
! Si+ S+ + Sy
Vector X = [&1,22,...,4n] is a point in the M-dimensional
hypercube, which can serve as output of the SFDES-Based
Fuzzy Markov Chains.
There are M center values for a state/hypercuble, leading to
a total of M x N center values for the NV states/hypercubes. All

these center values are used in (5) and the N? fuzzy automata
employ the same set of the center values.

q=1,2,...,M. (5

E. Customizing Representative Values in Centroid Defuzzi-
fier for Individual Fuzzy Automata via Batch Least-Squares
Method

Instead of using the hypercube center of a state as the
representative value for the state for all the fuzzy automata
in the centroid defuzzifier, one may use the batch least-
squares method to find different sets of representative values
for different automata. The representative values found in this
approach can lead to smaller errors between the defuzzified
output of the fuzzy Markov chain and the desired model output
represented by post-event variable values.

For fuzzy automaton C;'” denote its to-be-found represen-
tative value vector for state k as Ej, = [¢F ¢b ... ¢k,

where &8 € [ag,8,],9 = 1,2,...,M. We avoid the su-
perscription or subscription ij to simplify presentation. {2;;
pairs of pre- and post-event fuzzy state vectors ((:);], i’f)
are available, where <i>§f are the results of fuzzification of
):(27 and h = 1,2,...,9;;. To simplify notations, we use
®p, = [S1,n, 82,n, - Snp] and Xy, = [Z1,p, Zopy - syl
instead of ®;’ and X/, respectively. Replacing I';, by Zj, we
can express (5) as

Sinéy + Son€l + -+ SnnEl

jj = — — =
ot Sin+Sen+--+Snn (6)
=0h60 +0RE2 + -+ 05N
where
D Spyh

O St 4 Son+--+ S’ P=he N
67’s are numbers that are calculated by using &;,. Thus, for
any given ¢, (6) represents {);; linear equations in terms of
the M unknown parameters in Ej. The batch least-squares
method can be directly used to find the optimal values of
Le2,... &N that minimize the error Y7, (#q. — Zqn)>.
Doing this for all the ¢ values will minimize the total error
2211 2:71 (4. — Z4.n)? and achieve the optimal represen-
tative values for the fuzzy automaton C;'l]

For each fuzzy automaton, the least-squares method will
result in N sets of optimal representative values, one for a
state. Each set contains M values, one for a variable in X.
That is, the NV sets of representative values constitute [N points
in the M -dimensional space, one point for a state. It is worth
mentioning that the point for any specific state may lie outside
the hypercube that is associated with that state. This situation
cannot occur when the centers of the states are used in the
defuzzification process.

V. SIMULATION RESULTS

In this section, we provide an example to demonstrate
how to apply the theory presented in Section IV to design
and develop an SFDES-Based Fuzzy Markov Chain based
on a given discrete-time finite binary Markov chain. Through
computer simulations, we will show that owing to fuzzy states
and the ability of handling fuzzy events, the fuzzy Markov
chain outperforms the binary Markov chain in terms of less
prediction errors.

We employed MATLAB (version R2021a) to write a pro-
gram implmenting this example. The program ran on a 2021
MacBook Pro 13” equipped with M1 CPU chips, 16 GB RAM,
and macOS Monterey.

Suppose that a stochastic process with continuous random
variable x is modeled as a two-state discrete-time finite
Markov chain (i.e., N = 2). The states are labeled as "Negative
State” and “Positive State” that cover z = [-10, 0) and x
= [0, 10], respectively (i.e., M = 1, L1 = [-10,0), and
L} = [0,10]). A Gaussian random number generator with a
mean of 0 and a standard deviation of 2 is employed to produce
5000 random numbers in [-10, 10] as samples of x. With an
equal probability of being selected, 2240 of the 5000 numbers
are randomly selected without replacement (i.e., a number can



be selected only once) to form 1120 samples of pre- and post-
event x-value pairs (i.e., {2 = 1120). These sample pairs are
independent one another and the sample size is assumed to be
large enough to reflect the statistical features of the pre- and
post-event pair population in the time series in x.

Based on the values of z, each pair is mapped to a pre- and
post-event state pair, which belongs to one of the following
four state pair groups - the Negative-Negative group, Negative-
Positive group, Positive-Negative group, and Positive-Positive
group. The naming of the groups reflects the nature of the
pairs. For example, the Negative-Positive group has the pre-
and post-event states that are Negative and Positive, respec-
tively. The names of the other three groups can be interpreted
similarly. The four groups cover four different state transitions.
Subsequently, the transition probabilities of the Markov chain
are estimated from the 1120 samples of state pairs (Table
I). The integers in the table are numbers of state pairs (i.e.,
;5,7 = 1,2) while the decimal numbers in the parentheses
are the corresponding state transition probabilities (i.e., p;;).

Negative [-10, 0) | Positive [0, 10]

Negative [-10, 0) 112 (0.2) 448 (0.8)

Positive [0, 10] 160 (0.286) 400 (0.714)

TABLE I: Transition probability matrix of the example two-
state discrete-time finite Markov chain. The rows and columns
represent pre- and post-event states, respectively.

An SFDES-Based Fuzzy Markov Chain corresponding to
the binary Markov chain is then constructed. We chose to use
the fuzzy sets in Fig. 2 for the fuzzification of all the = values
of the state pairs. The fuzzy sets satisfy all the requirements
set in Section IV-A. The fuzzy sets "Negative” and “Positive”
serve as the Primary Fuzzy Sets for the intervals [-10, 0) and
[0, 10], respectively. Conversely, they function as the Non-
primary Fuzzy Sets for [0, 10] and [-10, 0), respectively. With
the fuzzy sets, the binary ”Negative State” and "Positive State”
of the Markov chain lead to respective "Fuzzy Negative State”
and “Fuzzy Positive State” of the fuzzy Markov chain. “Fuzzy
Negative State” is the Dominant State for [-10, 0) while
“Fuzzy Positive State” is the Non-dominant State because the
former always has a higher membership value than the latter
for any x value in this interval. Likewise, for [0, 10], "Fuzzy
Positive State” is the Dominant State and “Fuzzy Negative
State” is the Non-dominant State.

With fuzzification, each z value will have two membership
values, one for each of the two fuzzy sets. In other words,
fuzzification allows each x value to belong to both (fuzzy)
states simultaneously to different extents, better reflecting the
nature of the x values than the interval-based binary catego-
rization used by the conventional Markov chain. This may be
especially desirable for values near 0, such as x = 0.0001
and z = —0.0001. These two example values would lead to
different states in the binary Markov chain despite their very
small difference. In contrast, both values lead to the two fuzzy
sets with almost the same memberships (approximately 0.5),
providing a more realistic and reasonable characterization.
There are many z values that are near 0 as their mean and
standard deviation are known to be 0 and 2, respectively.

Hence, the fuzzy sets play a key role in enabling the fuzzy
Markov chain to potentially outperform the binary Markov
chain in terms of model accuracy.

The SFDES-Based Fuzzy Markov Chain consists of four
fuzzy automata (i.e., éi]‘), one for each of the four state
pair groups. Together, they constitute a single-event SFDES.
Correspondingly, we name these automata as the Negative-
Negative fuzzy automaton, Negative-Positive fuzzy automa-
ton, Positive-Negative fuzzy automaton, and Positive-Positive
fuzzy automaton. Their occurrence probabilities are the same
as their corresponding state pair groups (e.g., 0.8 for the
Negative-Positive fuzzy automaton), which are the transition
probabilities of the binary Markov chain.

To learn the four event transition matrices of the four fuzzy
automata (i.e., W;;), 75% of the x-value pair samples of each
group is used to learn its event transition matrix (e.g., 120
pairs for learning the Positive-Negative fuzzy automaton). The
remaining pairs will be used for testing purpose later. Before
the learning can start, all the z-value pairs are converted
to fuzzy state vector pairs through the fuzzy sets. Via the
fuzzification, each pre-event or post-event x value is mapped
to two membership values in a 1 x 2 fuzzy state vector. The
first membership value is for the fuzzy set ’Positive” and the
second for the fuzzy set “Negative.” This is to say each x-
value pair becomes a fuzzy state vector pair with membership
values. The pre- and post-event states are each represented by
a 1 x 2 fuzzy state vector.
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Fig. 2: Two fuzzy sets for fuzzifying = values associated
with the state pairs in the four state groups.

Feeding all the fuzzy state vector pairs of any one of the four
groups one by one to the above-mentioned learning algorithm
will lead to learning of the event transition matrix of the
fuzzy automaton associated with that state pair group. Multiple
rounds of sample feeding were carried out when needed. The
learning was terminated if the sum of the squared differences
between the computed post-event fuzzy state vectors and the
target post-event fuzzy state vectors stopped decreasing.

We experimented the learning rate A in (3) from 0.1 to 1.5
with an increment of 0.1 and found A = 1.0 to be the best
in terms of the smallest sum of the squared errors. This value
was subsequently used for the learning of all the four event
transition matrices.

Each event transition matrix started with a random initial



matrix and was learned separately. The learned matrices were
as follows:

1 0 i i
[0.4892 0.3750|  fOr Negave-Negative fuzzy automaton,
0.2741  0.9756] for Negative-Positive fuzzy automaton
0.1496  0.3904| gy e ’
[ 1 0'1(?94 for Positive-Negative fuzzy automaton,
[0’0(‘?97 0'61805 for Positive-Positive fuzzy automaton.

Three rounds of the sample feeding were needed in order to
produce the matrices for the Negative-Negative fuzzy automa-
ton and Positive-Negative fuzzy automaton while two rounds
were sufficient for the learning of the other two matrices.
Computer CPU time was under 2.1 seconds for completion
of the learning of any one of the matrices.

Examination of the four learned matrices shows that the
elements corresponding to the Dominant State pairs are 1 for
all but the matrix for the Negative-Positive fuzzy automaton.
For that matrix, the element corresponding to (“Negative
State,” ’Positive State”) is 0.9756, which is very close to 1. We
set this element’s value to 1 so that "Fuzzy Negative State”
and “Fuzzy Positive State” are the Dominant States for the
Negative-Positive fuzzy automaton per Lemma 1.

The z-value pair samples saved for testing purpose were
then used to compare one-step prediction errors made by the
Markov chain and SFDES-Based Fuzzy Markov Chain, group
by group. There are 280 testing samples (1120 x 25%). For the
Markov chain, if a pre-event x value presented was in [0, 10], -
5 would be regarded as the predicted post-event = value for the
Positive-Negative group and 5 would be used for the Positive-
Positive group. The values of -5 and 5 were reasonable choices
because they were the respective middle points of the intervals
[-10, 0) and [0, 10] that covered respectively the “Negative
State” and “’Positive State” of the Markov chain. Similarly, if a
pre-event x value presented was in [-10, 0), the predicted post-
event x value would be either -5 for the Negative-Negative
group or 5 for the Negative-Positive group. The prediction
errors, as measured by the sum of the absolute values of the
differences between the middle points and the post-event x
values in the testing pairs, was then computed for each of the
four x-value pair groups (Table II).

For the fuzzy Markov chain, each of the pre-event = values
in the testing pairs of the four groups was first fuzzified by
the two fuzzy sets in Fig. 2. The resulting 1 x 2 fuzzy state
vectors were then utilized to calculate/predict the post-event
1 x 2 fuzzy state vectors for each of the four groups by
using the max-product composition (2) and the relevant event
transition matrix learned above. For each group, post-event
fuzzy state vectors were defuzzified by the centroid defuzzifier
(5) in which the representative values (i.e., 7;) for the "Fuzzy
Negative State” and “Fuzzy Positive State” were respectively
chosen to be -5 and 5 (the middle points or centers of the

respective intervals for ). The defuzzifier converted each 1 x 2
fuzzy state vector to a x value in [-10, 10]. The prediction
error for each group was subsequently computed, which was
the sum of the absolute values of the differences between
these computed/predicted = values and the group’s post-event
x values in the testing pairs.

Table II shows the comparison results. Clearly, the fuzzy
Markov chain made more accurate predictions than the binary
Markov chain did for each and every group of testing pairs.
For the four groups together, the total prediction errors yielded
by the fuzzy Markov chain is 25.52% less than that produced
by the Markov chain.

We comment that similar improved accuracy on one-step
prediction can be expected if the SFDES-Based Fuzzy Markov
Chain is applied to a time series in x to prospectively predict
next x value of the process based on constantly changing
current reading of x value. Actual current state of the process
is known as it is determined by the current value of . Which
state the process will be in next depends on the current state as
well as the state transition probabilities, and its probability is
determined by Table 1. The fuzzy Markov chain is anticipated
to yield more accurate predicted x values associated with the
possible next states than the binary Markov chain does. Per
Table II, such potential accuracy improvement is for the times
series as a whole, not for each individual prediction.

NN (28) | NP (112) | PN (40) | PP (100) Sum
MC 94.631 394.175 139.121 338.841 966.768
FMC 85.683 171.493 132.986 329.861 720.023

TABLE II: Comparing prediction errors made by the Markov
Chain (MC) and SFDES-Based Fuzzy Markov Chain (FMC).
NN, NP, PN, and PP stand for the Negative-Negative,
Negative-Positive, Positive-Negative, and Positive-Positive z-
value pair groups, respectively. The numbers in the parentheses
indicate numbers of testing pairs.

VI. DESIGN CONSIDERATIONS FOR SFDES-BASED
Fuzzy MARKOV CHAINS

The example Fuzzy Markov Chain provides evidence to
support the central theme of this study - (1) an SFDES-Based
Fuzzy Markov Chain can be developed based on a binary
Markov chain, and (2) the resulting fuzzy Markov chain has
the potential to outperform its binary counterpart in terms of
prediction accuracy. We did not explore this fuzzy Markov
chain with different design choices, which could potentially
result in an even greater reduction in prediction errors.

One such a design choice is to use different trapezoidal
fuzzy sets. By the MATLAB notations, the fuzzy sets in Fig.
2 are trapmf(x,[-11, -10, -1, 1]) for "Negative” and trapmf(z,[-
1, 1, 10, 11]) for "Positive.” It is conceivable that one could
use trapmf(x,[-11, -10, —a, a]), a > 0, for "Negative” and
trapmf(z,[—a, a, 10, 11]) for "Positive” and conduct a search
to find the best value of a that provides the most prediction
error reduction. The search can be conducted manually or
systematically (e.g., through a genetic algorithm).

Instead of the symmetrical fuzzy sets depicted in Fig. 2,
one may opt for asymmetrical trapezoidal fuzzy sets like



trapmf(z,[-11, -10, —a, a]) for ”"Negative” and trapmf(x,[—b,
b, 10, 11]) for “Positive,” b > 0, and conduct a search with
the same objective of maximizing error reduction. The search
would be more difficult and time consuming as two parameters
are involved. An alternative option is to utilize a different type
of fuzzy sets, such as the Gaussian type, whether symmetrical
or asymmetrical. Lastly, distinct fuzzy sets and/or various
types of fuzzy sets may be employed for different fuzzy
automata. However, additional parameters will be involved,
further complicating the search for optimal fuzzy sets.

Another design consideration for the SFDES-Based Fuzzy
Markov Chain pertains to the magnitudes of the representative
values 'y;» in defuzzifier (5). In the above example, the middle
points are used and no attempt is made to search for better rep-
resentative values that could potentially produce even smaller
prediction errors for the testing data. In general, if desired, the
pursuit of such a goal can be undertaken for each individual
fuzzy automaton through the least-squares approach outlined
in Section IV-E. Alternatively, one may use the middle points
as initial values and search, either manually or automatically,
for optimal representative values that will minimize prediction
errors. One systematic approach is to employ an evolutionary
algorithm (e.g., genetic algorithm).

Last but not least, one may utilize an evolutionary algorithm
to concurrently and systematically search for optimal parame-
ters of the fuzzy sets and optimal representative values of the
centroid defuzzifier.

In summary, we have leveraged the simulation example
to address and discuss several design considerations. These
issues are universal and, therefore, play a crucial role in
the design of any fuzzy Markov chains introduced in this
paper. These practical design considerations complement the
theoretical developments presented in Section IV.

VII. CONCLUSION

Building upon the foundations of SFDES and supervised
learning FDES presented in our recent papers, this paper
introduces a fundamentally innovative and unique theory of
SFDES-Based Fuzzy Markov Chains. Utilizing SFDES, a
fuzzy Markov chain can be constructed from a traditional
binary Markov chain. The event transition matrices of the
fuzzy automata within SFDES can then be automatically
learned from sample data. Despite the fuzzy nature of its
states, the stochastic characteristics of the fuzzy Markov chain
remain fully identical to those of the Markov chain. The fuzzy
Markov chain encompasses the corresponding Markov chain
as a special case and reverts to it when its states become binary.

The fuzzy Markov chain possesses the same capabilities as
the conventional Markov chain to model and process random
information. However, the incorporation of fuzzy states, fuzzy
event transition matrices, and fuzzy inference empowers the
fuzzy Markov chain to more effectively represent and process
vague and imprecise information in states and events. This
potentially surpasses the binary Markov chain in terms of
model accuracy. This advantage can be important for many
practical applications, especially in medicine, where a patient
can be in multiple ambiguous clinical states simultaneously

to different extents, and a treatment can transfer a patient to
multiple states concurrently with varying degrees.

Like conventional Markov chains, fuzzy Markov chains
are not blackbox models; their structure and information
processing chain can be intuitively understood and easily
checked by humans. This interpretability is especially crucial
in medical applications, where patient safety is paramount. It
also facilitates easier, quicker, and more cost-effective model
design, development, refinement, and implementation.

We introduce the new theory in a mathematically rigorous
manner. A detailed simulation example is provided to illustrate
key design aspects and demonstrate the advantages of the
fuzzy Markov chain over its binary counterpart. Additionally,
important design issues are discussed.

A fuzzy Markov chain with N states has N? fuzzy event
transition matrices to be learned by the supervised learning
algorithm one by one. A sufficient amount of sample pairs
must be available in order to learn each of the matrices.
Therefore, constructing a fuzzy Markov chain may require
more sample pairs than the corresponding binary Markov
chain, which can be a limitation in practice.

One important issue worthy of future research is the condi-
tions under which a fuzzy Markov chain can serve as a more
accurate model than a binary Markov chain. This question is
technically challenging and is of both theoretical and practical
significance. We believe that the answer depends highly on
the characteristics (e.g., distributions) of the values of the M
variables.

Disease diagnosis and treatment will likely be a highly
fruitful application area for the new technology. Another
potential application area is the prediction of stochastic natural
processes, such as weather. For instance, a fuzzy Markov
chain has the inherent capability of simultaneously calculating
and predicting both the probability of rain (e.g., 80%) and
the extent of the rain (e.g., 2.7 mm) for a future time (e.g.,
tomorrow). Overall, the novel theory of SFDES-Based Fuzzy
Markov Chains holds practical utility in modeling various
systems across different industries, particularly within the field
of biomedicine.
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