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Abstract—We recently introduced a novel category of fuzzy
discrete event systems (FDES) termed stochastic fuzzy discrete
event systems (SFDES), wherein multiple fuzzy automata occur
randomly with different probabilities. We also developed two
techniques for identifying event transition matrices in single-
event SFDES employing the max-product fuzzy inference. One of
them, named the Equation-Systems-Based Technique, focuses on
single-event SFDES identification, where the fuzzy automaton of
each FDES has only one event. Expanding on our research, this
paper delves into multi-event SFDES identification, allowing each
FDES to encompass a sequence of events. Upon activation of an
FDES, all its events occur sequentially. Our mathematical proof
first establishes the associativity of the max-product inference
operation, leading to the introduction of a pivotal concept
called an Equivalent Overall Event Transition Matrix for a
consecutive event sequence. This concept establishes a theoretical
framework for utilizing the Equation-Systems-Based Technique
in a novel three-step method for identifying multi-event SFDES.
The technique is employed in the first two steps to: (1) determine
the number of fuzzy automata in a SFDES, and (2) calculate their
occurrence frequencies. In the third step, multi-event transition
matrices of the SFDES are learned by using stochastic-gradient-
descent-based algorithms that we previously developed for multi-
event FDES, provided the numbers of consecutive events for
each fuzzy automaton within the SFDES are known. Theoretical
analysis reveals the interconnections between the event transition
matrices learned by the algorithms, the Equivalent Overall Event
Transition Matrices derived from these matrices, and the target
event transition matrices. To illustrate our findings, we present
an informative example.

Index Terms—fuzzy automaton, fuzzy discrete event systems,
stochastic discrete event systems, system identification, supervised
learning

I. INTRODUCTION

The fuzzy discrete events systems (FDES) theory extends
the discrete event systems (DES) theory that originated in the
1980s [1]. In DES, a system is composed of states, events, and
state transitions that occur due to a sequence of events. This
framework is useful for modeling practical systems that cannot
be adequately described by differential or difference equations.
These systems share a common characteristic - qualitative
changes in system state are the results of occurrences of a
sequence of events.

The supervisory control theory of DES [2], [3] introduced
fundamental concepts such as controllability [4] and observ-
ability [5]. This led to the investigation of other important top-
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ics, including robust control, online control, decentralized con-
trol, limited-lookahead control, control under partial observa-
tion, and hierarchical control. DES theory has found practical
applications in various fields such as air-traffic management,
communications, smart grids, manufacturing, transportation,
and computers.

The DES theory mandates binary state representation at two
discrete levels, making it ill-suited for event-driven systems
with ambiguous states characterized by continuous levels, as
often encountered in healthcare. Describing an individual’s
health state typically involves subjectivity and ambiguity,
lacking absolute certainty.

In order to effectively represent and process ambiguity and
subjectivity in event-driven systems with continuous states, we
expanded the DES theory by integrating it with fuzzy sets
and fuzzy logic, resulting in the development of the FDES
theory. This involved introduction of the notations of “fuzzy
state” and “fuzzy event” [6]. A fuzzy automaton, similar to its
crisp counterpart, mathematically modeled an FDES and was
represented by

G=(Q,% ¢do) 1)

where Q was a vector representing N individual fuzzy states,
do Was an initial (i.e., pre-event) fuzzy state vector, > was a
set of fuzzy events, each of which was characterized by an
N x N event transition matrix, and ¢ : Q x ¥ — Q was an
event transition mapping.

To represent ambiguity and subjectivity in DES, we ex-
tended the binary state to a fuzzy state by allowing mem-
bership of a state to be in the interval [0, 1], rather than
0 or 1. In addition, we allowed the elements of the event
transition matrix to be in [0, 1], rather than O or 1, so
that both the fuzzy state and fuzzy event could have partial
memberships. We also generalized the transition mapping
through fuzzy inference. These generalizations establish a DES
and its associated automaton as a special case of an FDES
with a fuzzy automaton. In [6], we also extended the parallel
composition, optimal control, and observability of DES to
FDES.

Other researchers have expanded the theoretical framework
of FDES in various directions. These extensions include
state-based control [7], state-feedback control [8], supervisory
control [9], [10], [11], [12], decentralized control [13], [14],
[15], online control [16], detectabilities [17], diagnosability
[14], [18], [19], prognosis [20], [21], predictability [22], and
opacity [23], [24]. Additionally, controllability of FDES has
been studied [25]. Type-2 fuzzy sets have been used to expand
the type-1-fuzzy-set-dominated FDES framework [26], and the



notions of generalized FDES [25] and semi-discrete events
with fuzzy logic [27] have been proposed. The modeling of
FDES based on a generalized linguistic variable has been
explored [28]. In terms of applications, we studied decision-
making using FDES and developed a new method for practical
problems [29]. This method has been applied to optimal regi-
men selection in HIV/AIDS treatments with good retrospective
clinical results [30], [31]. Non-medical applications of FDES
include mobile robots [32], [33], [34] and air conditioning
systems [35], [36]. A recent survey of the FDES literature is
available [37].

The event transition matrix governs the state-to-state tran-
sitions within an FDES, thereby determining its crucial prop-
erties such as observability [1] and predictability [2]. Con-
sequently, this matrix is of paramount importance. Manually
crafting a matrix for a specific application can be an ardu-
ous and time-intensive endeavor, frequently necessitating the
expertise of a domain specialist, such as a physician.

The challenge of manually producing an event transition
matrix for an FDES motivated us to develop stochastic-
gradient-descent-based online learning algorithms to learn the
event transition matrix using pre- and post-event state vector
pairs. We have developed four sets of learning algorithms to
address different practical conditions that may arise for single-
event FDES: (1) when both pre- and post-event individual
states are known [39], [40], (2) when post-event individual
states are available, but the corresponding pre-event individual
states are not and they are linked to variables with known
values [40], (3) when pre-event individual states are given,
but the corresponding post-event individual states are unknown
and they are linked to variables whose values are known [41],
and (4) when both pre- and post-event individual states are
unknown, but they are associated with variables with known
values [42]. Moreover, we have developed learning algorithms
to simultaneously learn multiple event transition matrices of
an event sequence for multi-event FDES [43]. These learning
algorithms are the only ones currently available in the literature
for deterministic FDES.

As far as we are aware, most publications in the literature on
FDES, except [44], [45], [46], [47], focus on the deterministic
FDES, where the post-event state is computed from the pre-
event state without any randomness. Modeling of the nonde-
terministic FDES is investigated in [44] while modeling and
control of probabilistic FDES (PFDES for short) are addressed
by us in [45].

We recently proposed a totally new class of probabilistic
FDES and named them the stochastic FDES (SFDES for short)
[46]. A SFDES consists of two or more fuzzy automata. Each
of the fuzzy automata represents a sequence of fuzzy events
with an occurrence probability. In the presence of a pre-event
state, one does not know which of the fuzzy event sequences
will occur and thus cannot know or determine the post-event
state beforehand. At any moment, which event sequence will
take place is random. While both the SFDES and the PFDES
[45] deal with randomness in fuzzy automata, they differ
fundamentally and are created for modeling different kinds
of systems. A PFDES has only one fuzzy automaton while a
SFDES has at least two fuzzy automata. A fuzzy automaton in

a SFDES can characterize, for example, a patient or a group
of similar patients. This feature offers a significant advantage
over PFDES and makes SFDES more suitable for certain
applications.

SFDES can be a useful modeling tool for practical prob-
lems, especially those in biomedicine. For example, SFDES
can be utilize to model a disease treatment, which can be
regarded as a fuzzy event or a fuzzy event sequence. It is
common knowledge that treatment of many diseases, espe-
cially those involving cancer and heart, does not guarantee im-
provement, let alone cure. For these and many other diseases,
there can be only three possible treatment outcome states (aka,
post-event states) for any specific patient -“improved,” “barely
changed,” and “worsen.” Patient states like these are genuinely
ambiguous (and can also be subjective), and hence are true
fuzzy states. There can be overlaps between such fuzzy states
as well. Disease treatment is such a complex process involving
many known and unknown physiological mechanisms and
factors in the body that even highly experienced specialist
physicians cannot reliably predict treatment outcome state for
any given patient. Which outcome state will be reached for
any particular patient is fundamentally uncontrollable and thus
appears to be at least somewhat random from the standpoint
of the physician and patient.

For a population of patients suffering a same disease, an
identical treatment can lead to different treatment outcomes
for different patients. A treatment may be modeled by mul-
tiple fuzzy automata of a SFDES, one for each treatment
outcome. Each fuzzy automaton represents one of poorly-
understood physiological processes in patient body that leads
to a treatment outcome state (e.g., “serious condition” or
“stable condition”). Pre- and post-treatment state pairs for
each patient in the population may be attained using his/her
medical and personal information. The state pairs can then be
used to potentially find out: (1) number of fuzzy automata in
the SFDES, (2) their event transition matrices, and (3) their
occurrence probabilities. Successful completion of the model
identification can result in a clinically useful SFDES model.

In [46], we not only proposed the notion of a SFDES, but
developed a technique called the Prerequired-Pre-Event-State-
Based Technique to identify single-event SFDES. SFDES can
be categorized into single-event type and multi-event type.
The latter type allows two or more consecutive events (i.e.,
an event sequence) to occur for any fuzzy automaton in a
SFDES while the former type only permits one event for each
automaton. Regardless of the types, events are required to
be independent one another. From an application standpoint,
single-event SFDES can be adequate for modeling real-world
problems (e.g., disease treatment).

For a single-event SFDES with N individual states, the
technique first creates the following N pre-event state vectors:
®;=[10..0,0;=[01..0]....,.06n=[00 ... 1],
each of which is 1 x N. It then feeds them one at a time to the
SFDES being identified to obtain the post-event state vectors.
Completing feeding of all the N vectors is regarded as one
round of feeding. The technique performs rounds of feeding.
The post-event state vector corresponding to @y, is actually
the h-th row of one of the event transition matrices of the



SFDES, although we do not know which matrix owns the
row in the vector-feeding stage. After the feeding stage, the
technique has a mechanism to correctly assign all these rows
to the matrices as well as to estimate occurrence probabilities
of the fuzzy automata. The technique is suitable for single-
event SFDES using either the max-product or max-min fuzzy
inference method,. Importantly, the technique is easy to use
as it achieves the identification goals without any adjustable
parameter or hyperparameter. Two necessary and sufficient
conditions and two sufficient conditions are established for the
identification of single-event SFDES with different settings.

This Prerequired-Pre-Event-State-Based Technique is de-
veloped for application scenario where the above-mentioned
particular N pre-event state vectors can be used. There are ap-
plications for which the technique is proper. Nevertheless, the
technique may not be suitable for other applications because
the particular N pre-event state vectors @y, that it requires
are not permissible. This motivated us to develop another
identification technique for single-event SFDES, which is
called the Equation-Systems-Based Technique [47]. The name
reflects the fact that event transition matrices are identified
through solving sets of equations relating pre-event state vector
to post-event state vector. The important difference between
the two techniques is that now we do not require or set
pre-event state vectors to any particular levels. The second
technique is capable of using whatever pre-event state vectors
available to identify a single-event SFDES model that uses the
max-product fuzzy inference (it does not work for the max-
min fuzzy inference).

These two methods were devised exclusively for identify-
ing single-event SFDES. Consequently, they are not directly
applicable to the identification of multi-event SFDES, which
are the focal systems of interest in this paper.

Can the Equation-Systems-Based Technique contribute to
our endeavor to identify multi-event SFDES using max-
product fuzzy inference? Indeed, it can. With this objective
in mind, we shall first mathematically establish that the max-
product operation is associative. This property leads us to
introduce the notion of an Equivalent Overall Event Transition
Matrix for a sequence of events in a multi-event FDES. This
new concept lays a foundation for developing an innovative
three-step method in Subsection C of Section V below for
identifying multi-event SFDES.

The first two steps of the three-step process involve: (1)
determining the number of fuzzy automata in a SFDES com-
prising R multi-event FDES, where the value of R is unknown,
and (2) calculating their occurrence frequencies. Utilizing the
notation of the Equivalent Overall Event Transition Matrix,
we can treat the multi-event SFDES as R single-event SFDES
from the standpoint of the pre-event state of the first event and
the post-event state of the last event in each of the R multi-
event FDES. Leveraging this approach, the Equation-Systems-
Based Technique is employed to achieve both objectives.

The third step of the new method involves acquiring the
transition matrices for each of the R multi-event FDES,
which collectively constitute the multi-event SFDES. This
is accomplished by employing the aforementioned stochastic
gradient descent-based algorithms previously developed in our

work [43], leveraging the known counts of events within each
FDES. The algorithms were developed for multi-event FDES,
and consequently, they are incapable of identifying multi-
event SFDES. However, through the notation of the Equivalent
Overall Event Transition Matrix, the challenge of identifying
a multi-event SFDES comprising R multi-event FDES can
be effectively reframed as a sequential identification process
of the R multi-event FDES individually. This transformation
renders the algorithms entirely applicable.

Finally, we theoretically analyze the event transition ma-
trices learned by the gradient descent-based algorithms, elu-
cidating the interconnections between these matrices, their
Equivalent Overall Event Transition Matrix, and the Equivalent
Overall Event Transition Matrix constituted by the target
event transition matrices. This foundational comprehension
of the algorithms was previously unattainable during their
development due to the absence of the Equivalent Overall
Event Transition Matrix notation.

In the next section, we will introduce SFDES, which will be
followed by a problem statement in Section III. In Section IV,
we will prove the max-product operation to be associative and
establish the concept of the Equivalent Overall Event Transi-
tion Matrix for a sequence of consecutive events. In Section
V, we will utilize this concept to develop the novel three-step
method for identifying multi-event SFDES. Simulation results
will be presented in Section VI to demonstrate the method.
Conclusions will be drawn in the last section.

II. INTRODUCTION TO STOCHASTIC FuzzYy DISCRETE
EVENT SYSTEMS

A SFDES is composed of two or more FDES, each of which
is represented by an fuzzy automaton. The fuzzy automata
take place randomly one at a time based on their occurrence
probabilities. If two or more events occur consecutively for
at least one of the fuzzy automata, the SFDES is said to be
a multi-event SFDES (in contrast, a SFDES is of the single-
event type if each of the fuzzy automata has only one event).

Like its crisp counterpart, a fuzzy automaton [6] is mathe-
matically represented by

G = (Q7 Za 907 qO)

where Q is a state vector containing N individual fuzzy
states. More specifically, Q = [Q1, Qa, . .., Q n]. Membership
value of @;, denoted by S;, is in [0, 1], and the vector
® = [S51,5,,...,SnN] represents the overall state of the fuzzy
automaton, which is referred as the system state. qo is the
initial (fuzzy) state. 3 is a set of (2 fuzzy events, each of
which is denoted by W, and is represented by an N x N
event transition matrix:

a1k A12k A1Nk
~ asip  a a
b, = 21k 22k 2Nk
aN1k QN2k ANNk

where 1 < k& <  and all the matrix elements fall in [0,
1]. In this study, the elements in a row (or a column) of Wy
are not required to be summed to 1. ¢ : Q X X — Q is

an event transition mapping. After an event takes place, the



system will transfer from a pre-event state (first such state is
the initial state), through its event transition matrix, to a post-
event system state, which can be computed by using a fuzzy
inference operator.

To illustrate, assume pre-event  state is O =
[S10 S20 Sno] and event Wy occurs. Then, post-event
state of the system, denoted as @1 = [S1; So1 Sn1l, is
©, =0)o0

a11k ai2k 1Nk

21k G22k 2Nk
= [510 S20 SNO] o

N1k QGN2k ANNk
=[S Sa SNl

The symbol o denotes fuzzy inference operation, which in this
paper is the max-product operation. Thus,

Sj1 = max(Si0aijk, S2002jk; - SNOAN jk)- 2

For notional convenience, we define ¢(®y, lI~lk) =0@qoT,.

Each fuzzy automaton in a SFDES can have one sequence
of consecutive events. If M events ¥, ¥y, ..., ¥,, take
place consecutively one after another, the system state af-
ter occurrence of the last event W v, denoted as Oy =
[Siv Som SN, can be computed:

On =0p0F,0F,---0Fy

and alternatively, it can be expressed as

O = p(©g, U1 ¥, ... Ty). (3)

Since a SFDES has more than one fuzzy automaton, when
necessary, we will use a subscription or superscription of h
to index the h-th FDES or fuzzy automaton from now on
(e.g., lIlk represents the k-th event of the h-th FDES/fuzzy
automaton).

III. PROBLEM STATEMENT

Without loss of generality, assume a multi-event SFDES
contains R (> 1) FDES with N individual states. Also,
suppose that the value of R is unknown, but the value
of N is available (in a real-world application, one usually
knows the number of individual states in the system being
modeled). The h-th FDES, represented by fuzzy automaton
G, with occurrence probability pp, h = 1,2,..., R, has M,
consecutive events represented by event transmon matrices
h wh Wk hy,- It is required that at least one of the
fuzzy automata has two or more consecutive events (otherwise,
it is a single-event SFDES). When the h-th FDES acts on a
pre-event state, its M), consecutive events will take place one
after another with the order \Ill, \Ilh, .. \Ilh . Neither the
transition matrices nor the occurrence probablhtles are known;
they need to be identified. M}, is assumed to be known for all
h.

To identify the SFDES, we feed a series of H random pre-
event states, one at a time, to it. They will be acted upon
randomly by the R FDES according to their occurrence prob-
abilities. One pre-event state will be taken by one FDES only.

We record every pre-event state along with the corresponding
post-event state exhibited by the SFDES. The occurrence of
any event in any of the R event sequences is unobservable, and
only the post-event state of the last event i”f\b/fh is available.
That is, only the outcome of (@, ¥f ¥k ... Wk, ), denoted
as ®yy, », is available. The pre- and post-event states are
paired and are recorded as such. They are represented by
(©}.,8%,,).7=1,2,..., H. Here, the subscription M * means
it can be the post-event state of the last event of any one of
the R consecutive event sequences.

Data availability plays a critical role in any system identifi-
cation and machine learning. This study is no exception. We
assume ample state pairs are available in this study. That is,
H can be as large as it needs to be.

In summary, the following assumptions are made regarding
the unknown aspects of a SFDES to be identified: (1) the value
of R, (2) all event transition matrices, and (3) the occurrence
probability of any one of the R FDES within the SFDES.
Also unknown are (1) which FDES acts on which pre-event
state, and (2) post-event states of all the events in any event
sequence except the last event. Conversely, N is presumed to
be known, as well as M}, for h = 1,2, ..., R. Additionally, H
is assumed to be sufficiently large. It is worth noting that these
assumptions render the multi-event SFDES largely unknown
to the modeler initially, thereby underscoring the relevance
of the new technique developed in this paper to real-world
problems, consequently enhancing its practical utility.

With these assumptions, we ask the following questions: (1)
how to determine the number of fuzzy automata in the SFDES
(i.e., the value of R), (2) how to determine fuzzy automata’s
occurrence frequencies as a way to estimate their occurrence
probabilities, and (3) how to identify all the event transition
matrices of the R fuzzy automata?

We develop an innovative three-step SFDES identification
technique below that will answer all these questions. We
first introduce a new concept: the “equivalent overall event
transition matrix” as we need it to represent a sequence of
consecutive events in a collective manner. Development of the
three-step technique relies on this notion.

IV. EQUIVALENT OVERALL EVENT TRANSITION MATRIX
FOR COLLECTIVELY REPRESENTING AN EVENT SEQUENCE

In this section, we will first prove the max-product operation
to be associative and will then use this property to introduce
the notion of the Equivalent Overall Event Transition Matrix.
As will be shown in the next section, this new concept can
be utilized to effectively transform the problem of identifying
a multi-event SFDES to the problem of identifying a single-
event SFDES, paving the way to answer the aforementioned
three questions. To this end, we have
Lemma 1: The max-product operation employed in multi-
event SFDES or multi-event FDES is associative. In other
words, for any system state ®¢ and any fuzzy event transition
matrices \111 and \IIQ, the following equations are valid:

@00@10@2:(@00‘111)0@2:@00(\1’10\1:’2)

The proof of this lemma is provided in Appendix.



Extending Lemma 1 to cover three or more events, we have
Theorem 1: In multi-event SFDES or multi-event FDES,
given any system state ®¢ and any sequence of fuzzy events
represented by event transition matrices \ill, ‘i’g, R N Mo
where M > 1, the following holds true:

@Oo\illolilgon-oilM:@Oo(\illolil20~-~o\ilM).
“)
Proof: We first introduce the following notation:
illk = ‘i’lo'ilzo---o\ilk.
Because of Lemma 1, the left side of (4) can be written as
OpoT;0Wy0---0W
= (@goP,0W,y)0---0Wy,
=00 (T 0W,)0---0Wyy
=@poW0Ws0---0Wy,
= (@00@120@3)0---0@]\4
=0p0 (Fr20W3) 0 0Py
=0poW30W, 00Ty
= 0O °‘I~’1(M71) oW,y
=©g0 (¥yy_1)0Tu)
= ©po ¥y

oW M. Thus, the left and
QED

Note that W1y = ¥y 0 ¥yo---
right sides of equation (4) are equal.

Corollary 1: In multi-event SFDES or multi-event FDES,
given any system state ® and any sequence of fuzzy events
represented by event transition matrices \ill, \ilz, ce, N7 Mo
one can always find such an event transition matrix U

\i/:ijloiIQO---O\i/]\/j
that satisfies the following condition:
@00@2900‘:‘&10&’2---0@]\/[.

Note that ¥ = 'i’l v and W has the same dimensionality
as the other matrices.

Example 1: Assume there is a multi-event SFDES and one
of the fuzzy automata has the following three event transition
matrices:

=~ 1.0 0.75| = 0.68 0.44| = 0.83 0.07
Y= [0.32 0.11] P2 = [0.95 0.57} ¥s = [0.46 0.69
and ®y = [0.21 0.65]. Use the given information to show

the correctness of Corollary 1 and Theorem 1.
Using the notations in Theorem 1 and noting that M = 3,
we get

T3 =Ty 0Fy0, = {0.5914 0.3036] |

0.1806 0.097

_ It can be easily verified that ®¢ o W, 0W,o0 @3 =0po
W3 = [0.1242 0.0638], which is expected per Corollary 1
or Theorem 1.

It is important to point out that ¥ is determined by U,

\ilg, ...,and o » only and is unrelated to the pre-event state
©y. That means it is an intrinsic property of the events and
the event transition matrices involved.
Definition: The event transition matrix ¥ in Corollary 1 is
defined as the Equivalent Overall Event Transition Matrix of
Wy, W,, ..., ¥, because it provides a collective characteri-
zation of the event sequence.

As a concrete instance, in Example 1,

§ . _ [05914 0.3036
137 10.1806  0.097

is the Equivalent Overall Event Transition Matrix of ‘ill, lilg,
and ‘i’3.

With the nature of \ill »m in Theorem 1 being revealed,
the theorem can be better understood. Basically it states that
given a pre-event state, the post-event state of a series of M
consecutive events can be calculated in two different ways and
the result will be the same: (1) apply the M event transition
matrices one at a time to the post-event state of the previous
event, starting with the first transition matrix being applied
to the pre-event state, and (2) obtain the Equivalent Overall
Event Transition Matrix of the M event transition matrices
first and then apply it to the pre-event state. Example 1 shows
this point as a concrete example.

For the R fuzzy automata formulated in Section III, there are
R Equivalent Overall Event Transition Matrices, designated as
Why,  h=1,2,... R, one for each of the fuzzy automata.

In light of Corollary 1, the following result is obvious.
Corollary 2: For a multi-event FDES with a sequence of M
events, where the value of M, pre-event state of the first event,
and post-event state of the last event are available, from the
perspective of these pre- and post-event states, the M events
can be collectively viewed as a single event whose event
transition matrix is the Equivalent Overall Event Transition
Matrix of the M event transition matrices.

Related to the multi-event fuzzy automaton in Example 1,
assuming the only information available is: (1) there are three
events, and (2) the pre-event state of event ¥, and post-event
state of event ‘i’g, then \i’l, @2, and ‘i’g can be collectively
treated as a single-event automaton whose event transition
matrix is \illg.

V. IDENTIFICATION OF MULTI-EVENT STOCHASTIC
Fuzzy DISCRETE EVENT SYSTEMS

The notion of the Equivalent Overall Event Transition Ma-
trix of an event sequence serves as a crucial link that bridges
the significant gap between identification of the multi-event
SFDES and identification of the single-event SFDES that we
previously achieved already [46][47]. Owing to Corollary 2,
one of the two identification techniques that we developed for
the single-event SFDES identification, namely the Equation-
Systems-Based Technique, becomes usable in the first step
of the multi-event SFDES identification. It also makes the
stochastic gradient descent algorithms that we developed pre-
viously for learning multi-event transition matrices in FDES
[43] applicable to the identification of the event transition



matrices in each of the R fuzzy automata in the multi-event
SFDES.

Below, we will first provide a brief description of these pre-
existing technique and algorithms, and will then show how to
apply them, in combination with the notion of the Equivalent
Overall Event Transition Matrix, to the identification of the
multi-event SFDES.

A. Pre-existing Equation-Systems-Based Technique for Identi-
fying Event Transition Matrices in Single-Event SFDES [47]

Our pre-existing Equation-Systems-Based Technique is ca-
pable of using pairs of pre-event state and post-event state
generated by a single-event SFDES that uses the max-product
fuzzy inference to: (1) determine how many fuzzy automata
are in the single-event SFDES, (2) calculate the occurrence
frequency of each fuzzy automaton, and (3) identify the event
transition matrix of each fuzzy automaton. We named the
technique the Equation-Systems-Based Technique because of
the principle that the technique was based on - event transition
matrices were identified through solving sets of equations
relating the pre-event state to the post-event state. We proved
theoretically that attaining these three goals was guaranteed
if the number of pre-event-state-post-event-state pairs was
large enough. Note that this is not a statistical approach or
machine learning approach. The technique does not have an
objective function to minimize. Element values of an event
transition matrix are not estimated or learned through an
iterative updating process. Rather, they are calculated from
equations and the resulting element values are exact without
any deviation to the underlying true values. There are a total
of N x H systems of equations involved in the identification
of a single-event SFDES having N individual states when
H sample state pairs are available. There are no issues such
as local minimums of an objective function, and there is no
hyperparameter to set, making the technique easy to use.

The technique operates in two identification phases. In the
first phase, values of all elements of event transition matrices
are determined through equation sets without knowing which
element belongs to which matrix. In the second phase, the
elements are assigned to the event transition matrices through
a mechanism called the Linked-Elements-Based Assignment
Method. Moreover, in the process, the technique determines
retrospectively which pair of pre-event state and post-event
state was acted upon by which fuzzy automaton. It then uses
this information to calculate the occurrence frequency of each
and every one of the fuzzy automata (i.e., percentage of the
pairs acted upon by an fuzzy automaton in the total number
of pairs).

The technique works no matter how many fuzzy automata
are in a SFDES, how larger their event transition matrices are,
and how different or similar their occurrence probabilities may
be.

B. Pre-existing Supervised Learning Algorithms for Learning
Multi-Event Transition Matrices in FDES [43]

Our work in [43] is devoted to identification of multi-
event FDES (not SFDES) that adopts the max-product fuzzy

inference. We derived a set of stochastic-gradient-descent-
based formulas capable of learning event transition matrices
of consecutive events (e.g., lill, ‘i’g, and ‘i’g of the multi-
event automaton in Example 1). Number of events in an event
sequence needs to be provided first so that the algorithms
knows how many transition matrices need to be learned.
Availability of sufficient pre-event-state-post-event-state pairs
is a requirement for the learning to be complete and successful.

To simplify matter, learning rates for different event tran-
sition matrices of an automaton are assumed to be the same.
Thus, there is only one hyperparameter to set for the algo-
rithms, which is the learning rate \ for updating element values
of the event transition matrices being learned. Optimal value of
the hyperparameter needs to be found experimentally in a trial-
and-error fashion. Our experience with simulations indicates
it is generally not a difficult process.

We devised two variations of gradient descent learning
algorithms, differing solely in the min() operator used within
the max-product fuzzy inference. One variant substitutes the
traditional “hard” max() with a ”soft” max(). In the other
variant, we developed a novel adaptive learning rate scheme,
resulting in accelerated and more efficient learning. The degree
of adaptation is adjustable through a hyperparameter 7. This
latter variant will be utilized in a simulation example later.

It would take a large space to provide a detailed description
of the learning algorithms as well as the Equation-Systems-
Based Technique. Space limit precludes such a possibility. The
reader is advised to find full information through the papers
[47][43].

C. Identifying Multi-Event SFDES via a Novel Three-Step
Method

Identification of a multi-event SFDES has never been at-
tempted in the literature before. The three-step identification
method that we develop in this paper for this goal represents
one of the main contributions of this study.

In the first step, we apply the Equcation-Systems-Based
Technique to the H state vector pairs, (@), ©7,,), one at
a time. The technique will: (1) yield the number of fuzzy
automata in the SFDES (i.e., the value of R), and (2) identify
R event transition matrices. The R matrices identified are
actually the Equivalent Overall Event Transition Matrices of
the R sequences of consecutive events. This is because in
light of Corollary 2, these Equivalent Overall Event Transition
Matrices collectively represent a single-event SFDES from the
perspective of model input (i.e., ©}) and model output (i.e.,
@5\4*). So, at this point, the number of fuzzy automata (i.e.,
the value of R) has been determined, which is the first of the
three questions raised in Section III for multi-event SFDES
identification.

The second step focuses on the second question, that is,
how to determine the occurrence frequencies of the R fuzzy
automata as a way to estimate their occurrence probabilities.
Note that in the process of identifying the R Equivalent Over-
all Event Transition Matrices in the first step, the Equation-
Systems-Based Technique has already sorted out, retrospec-
tively and one by one, which of the H state vector pairs
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was acted upon by which fuzzy automaton. This information
enables one to easily calculate the occurrence frequency for
each of the R fuzzy automata.

We comment that the notion of the Equivalent Overall Event
Transition Matrix is of fundamental importance as it makes
these two identification steps possible.

The third step is to identify all the event transition matrices
of the R fuzzy automata, which is the third question in Section
III. Recall that there are M} matrices to be identified for the
h-th fuzzy automaton, and the value of M}, is assumed to be
known. Because each fuzzy automaton is a multi-event FDES,
our pre-existing stochastic-gradient-descent-based learning al-
gorithms mentioned above can be utilized to accomplish the
task.

Other than the value of M}, we also need to provide the
learning algorithms with the (©], ©7,,) pairs that belong
to the h-th fuzzy automata. In this regard, recall in the first
step above, the Equation-Systems-Based Technique sorts out,
retrospectively and one by one, which pair of (®}, ©7,,)
was acted upon by which fuzzy automaton. That means we
can do the same here also and use the resulting pairs to build
a set of (@, ©),,) pairs for each of the R fuzzy automata.
Specifically, suppose the number of (@%, ©,,) pairs tied to
the h-th fuzzy automaton is Ly, where L1+ Lo+ --+Lp = H.
Those pairs are denoted as (@75, @ﬁ/[h), k=1,2,..., L.

The learning algorithms will learn the transition event
matrices for one fuzzy automaton a time. With the value of
M), and (©f,©%, ), where ©f = [Sf, S5, Sk.o] and
ek, =[St Siu. Shaz,]» the learning algorithms
learn the M}, underlying/true event transition matrices of the
h-th fuzzy automaton, which are designated as ﬁlh, lilh, e,
and ﬁl}j/fh Denote the corresponding actual transition matrices
being iteratively modified as ¥/, ¥, ... and 'ilé(h with the
Equivalent Overall Event Transition Matrix for the h-th fuzzy
automaton being \il’th. Also, denote the actual post-event
state of the last transition matrix W/, in response to ©F as
(:)ﬁh, where (:)’X/[h = [S’th Sth, Sk, 1, |- The learning
algorithms update the elements of the transition matrices to
minimize the following objective function:

N

1 ~
By = 3 Z(Sth - SJ]?Mh)2' @)
j=1

Learning is halted when the normalized sum of errors

Ly N
> > S,

k
- Sth|
k=1j=1

avg .__
B9 =

(6)

L,N
is less than a user-specified stopping threshold e, which is the
same regardless of h.

When the transition matrices of all the R fuzzy automata
have been successfully learned, the third and final step of the
identification process is completed.

The three-step identification method for multi-event SFDES
utilizes the techniques that we have previously published and
thus has solid theoretical base. Theoretically speaking, the
method works no matter how small or large a multi-event
SFDES is. Computing time for executing the method primarily

depends on the magnitudes of N, R, M}, and H. Our simula-
tion experience suggests that a relatively new typical personal
computer could complete the entire identification process for
cases involving moderate magnitudes of N, R, Mj, and H
within minutes. For more complex multi-event SFDES models
with larger magnitudes of N, R, M}, and H, the execution
time is expected to be longer, but not prohibitively long. With
the rapid advancement of computer hardware, computing time
is not considered a bottleneck for the new method.

It is worth to mention that under certain conditions, the
above assumption that the value of M} is known and is
provided to the learning algorithms may be circumvented.
One such condition is that in real-world applications, values
of certain elements of some event transition matrices have
specific meanings or interpretations and are hence expected
to be in certain ranges. The modeler may be able to use
his domain expertise to judge whether the matrices learned
for his particular application are sensible or not. In cases
like this, even if M} is unknown, the modeler can run the
learning algorithms by assuming different values for M} and
then inspects the matrices learned to decide which M, value
is correct.

This identification method employs paired pre- and post-
event state vectors of event sequences to facilitate the three-
step identification process. Applicability of the method extends
to practical systems characterized by event-driven states, pro-
vided the aforementioned assumptions hold true. The qual-
ity of the resulting multi-event SFDES model, gauged by
disparities between actual and computed post-event state,
hinges upon the fitness of the actual system to the SFDES
framework, alongside its max-product inference. Obviously, if
any of the assumptions proves false, the method’s applicability
diminishes.

D. Examining Event Transition Matrices Learned in the Third
Identification Step Using the Concept of the Equivalent Over-
all Event Transition Matrix

Convergence of the learning of the event transition matrices
in the third step depends on such factors as training samples,
values of the learning rates, and initial values of the matrices
to be learned. In the context of this study, convergence means
progressive reduction of E;"?, for all h, through training,
which will eventually end up with an acceptable small final
value if the settings are proper. When this happens, we say
the learning has converged.

Whatever training samples available will be used for train-
ing. The modeler has little control over them. Random matri-
ces whose element values are in [0, 1] are used as the initial
event transition matrices. The learning rates are empirically
determined through trial-and-error, which is common in the
machine learning field.

Like most machine learning techniques, establishing theo-
retical conditions for learning convergence is technically very
challenging. Nevertheless, to a certain extent, convergence can
be investigated through simulations and that is what we did
when developing the algorithms [43]. As an example, one
of the simulated FDES in [43] had three consecutive events



with NV being 4. Starting with random initial values for the
matrices, the multi-event FDES was trained using 200 sample
pairs. Through training, E7"Y (the subscription is 1 because
there is only one fuzzy automaton) reduced quickly with a
final reading of mere 1.04402 x 10~!° when training was
completed.

An important question to ask is whether a smaller value
of E;"Y always indicates smaller element-wise differences
between the learned matrices W, % ... and \Il and
their respective target matrices \Ill, Wt .. and \Ilh ?
Unfortunately, the answer is no. This is because the post-
event states of \I’l, lIlz, ...,and Ph M, —1 are assumed to be
unknown and only ©F and @ are assumed to be available
to the learning algorlthms. Such uncompromising yet realistic
assumptions make it impossible to directly force the elements
of the matrices being learned, namely \i!h, \ilh, ...,and \ilﬁ/jh,
to approximate the corresponding elements of the respective
underlying event transition matrices. This is an inevitable
consequence of the unavailability of the intermediate post-
event states.

Example 2: Continue on Example 1. If the learning algo-
rithms are given only the following information: (1) there are
three events (i.e., M = 3), and (2) the pre-state of event U,
and post-event state of event N 3, then the three event transition
matrices learned may not be the same as ¥y, ¥y, and ¥s.
This is understandable as post-event states of \ill and \ilg are
unavailable, making learning more difficult.

An important follow-up question is this: how to inter-
pret/understand the learned event transition matrices since they
may be different from their target transition matrices? We were
aware of this issue and chose not to raise it in [43] as we did
not have a reasonable answer then.

After the publication of [43], our research persisted in
addressing the issue, attempting strategies to reconcile dis-
parities between the learned matrices and the target matrices,
all to no avail. Through simulations, we observed that despite
notable discrepancies in the learned matrices due to diverse
initial conditions and learning rates, the matrix resulting from
the learned matrices through the max-product inference bore
resemblance to the matrix computed by the target matrices
using the same inference. This revelation led us to realize
that the multi-event learning was, in fact, a form of single-
event learning when viewed from the perspective of input-
output state pairs. This realization prompted us to contemplate
the concept of an Equivalent Overall Event Transition Matrix.
To ensure mathematical rigor in this notation, we embarked
on establishing the associativity of the max-product fuzzy
inference, a task which we successfully accomplished.

The notion of the Equivalent Overall Event Transition
Matrix and the related Corollary 2 developed above enable
us to re-examine this issue from a fresh new perspective. We
can now conclude that the learned matrices are optimized
through training in such a way that the Equivalent Overall
Event Transition Matrix that they constitute will approximate
that constituted by the underlying target transition matrices.

We now formally prove this finding in a general setting.

Assume there are M consecutive events \ill, \ilg, R 0 M
of a target fuzzy automaton in a multi-event SFDES (or FDES)

to be learned and their Equivalent Overall Event Transition
Matrix is W,y = [b;;]. The value of M is known. Sample
pairs (OF, @’fw), k=1,2,...,H, are available for training,
where ©%, = [SF,, Sk, S% 7). The corresponding
target events are denoted as \ill, \Ilg, .. \Il M with the Equiv-
alent Overall Event Transition Matrix bemg Wy = = [d;;]. The
post-event state of W, is ©%, = [SF,, Sk, ... Sk./] We
have the following finding.
Theorem 2: Due to the nature of the training sample pairs, U,
W,, ..., W, learned by the stochastic-gradient-descent-based
algorlthms are optimized in such a manner that their Equiva-
lent Overall Event Transition Matrix \111 M approximates \Il1 M
constituted by the target event transition matrices.
Proof: The learning algorithms only know the value of M
and the training sample pairs (©F, ®% ). Due to Corollary 2,
©F and O, are treated and indeed used by the algorithms
as pre- and post-event states of a single event. Also owing to
Corollary 2, the event transition matrix of that apparent single
event is the Equivalent Overall Event Transition Matrix \i'l M-
Values of the elements in \i’l, \i’g, . \il ar are adjusted by the
learning algorithms with the aim of minimizing the differences
between W1, and ¥y through minimizing £, in (5). QED
Example 3: Continue on Example 2. Because \ill, \Ilg, and
U5 are _unknown, their Equivalent Overall Event Transition
Matrlx \1113 is hence unknown. Through learning, \Ill, lIlg, and
W5 are obtained, and their Equivalent Overall Event Transition
Matrix can be computed (i.e., ‘i’lg = \ill o\ilg O‘i’g). ‘i’lg will
resemble to W13, and the degree of the similarity is related to
E}"9 in (6). The smaller the E}"9, the higher the similarity.
The following result furthers Theorem 2 by quantifying the
similarity between \ill v and \ill M-
Theorem 3: When learning converges, error of approximating
\Ill M by W, s as measured by the Euclidean norm is bounded:

~ - N X ASpaz
H‘I’lM - ‘I’lMH < 507
where
_ kK &k
ASmaz = 1g}ca<XH(|S1M S Ml 1520 — Saaly o

k Gk
SN = Snul)
k
and from non-zero S7, only,
0
szn

B k
= 1ir]lclﬁ (51075207-~'75N0)' (8)

To a limit, U1, — W1 when AS,,0e — O.
Proof: Note that according to the Euclidean norm,

104 — Ol =

\/(SfM*S{CM)Q + (Shyr = SEa)? + -+ (ki

Thus, for any value of &, because of (7), the error bound is

= Sh)?

H®§\/l - ®]I€\/I|| < v NASmax~

The assumed learning convergence implies that as learning
progresses, AS,, ., decreases. At the same time, the value of
ET"9 also becomes smaller and smaller and can reduce to such
an extent that it is smaller than e.
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Because of (3) and Corollary 1, the following equations are
true:

|©%, — 4|
=||p(OF, 1Py ... U)) — p(OF, & 1T, ... Ty
=[|p(OF, ¥1rr) — 0(OF, ¥1p)||.
Note that for ¢(©%, ¥, ,,), which yields ©%
S;CM = max(SfOblj, Sgobgj, ceey S;ﬂvob]\lj)
and for go((-)’g, 1111M), which produces (:)’fw
Sk = maz(Stydis, Shydaj, ..., Skodn;).-

In the early rounds of learning, AS,,, ., may not be very small.
At that time, it is likely that for SJ’?M = S}“lobh ; and S;?M =
Sﬁod I1,5- 11 # I>. However, as learning is converging, AS;,q,
will become smaller and smaller and will eventually reach such

a point that [} = I :__I, 1<I<N,fork=1,2,...,H. At
that stage, for o(@F, W11,) — 0(OF, W),

|S¥nr = Sharl = [SFobr; — Stodis| = Sfolbry — dij
for j =1,2,...,N. Due to (7), from the above equations, we

have
S§O|blj - d1j| < ASmax

which means when S%; # 0 and owing to (8),

AS’”LEZ ASmaa:

Sk T SY,

min

|brj — drj] <

This last inequality leads us to:

. N N
(R 257 2RV DI

j=11i=1

ASmaac 2 N AS’”LG%

]lll min

It is obvious that W1, — Wy as ASmar — O. QED

Theorem 3 establishes an error measure that characterizes
the error between the target Equivalent Overall Event Transi-
tion Matrix and the Equivalent Overall Event Transition Matrix
learned by the learning algorithms. The measure is related to
the number of states N, pre-event state (which is represented
by S9...), and maximal error between target and actual post-
event states of the last event of the event sequence (which is
characterized by AS,,qz). S?nm depends on the sample state
pairs, which are given and unchangeable. Hence, to minimize
the error measure is to minimize AS,,q:, Which is intuitive
and sensible.

Theorems 2 and 3 provide a much-needed new and insight-
ful understanding of the event transition matrices produced by
the learning algorithms for a multi-event FDES. Clearly, the
notion of the Equivalent Overall Event Transition Matrix plays

an essential role in this development.

VI. ILLUSTRATIVE EXAMPLE

Development of the three-step multi-event SFDES identi-
fication technique utilizes: (1) the notion of the Equivalent
Overall Event Transition Matrix, (2) the pre-existing Equation-
Systems-Based Technique, and (3) the pre-existing stochastic-
gradient-descent-based multi-event learning algorithms. Com-
puter simulations were already performed previously to val-
idate the theoretical development of the two pre-existing
techniques for single-event SFDES and multi-event FDES.
Their role in identifying multi-event SFDES is presented in
detail above. The validity of the new method has been theoret-
ically established, which can be verified in a mathematically
rigorous manner. Computer simulation, in contrast, is much
less effective in this regard and is indeed unsuitable.

The multi-event SFDES example provided below is meant
to offer a concrete illustration demonstrating the step-by-
step application of the new method. Because the method is
innovative and there exists no similar method in the literature,
a comparative study is neither warranted, nor possible.

A. Example

Parameters of the example multi-event SFDES are as fol-
lows: three individual states (N = 3), two fuzzy automata
(R = 2), numbers of consecutive events for the first and
second fuzzy automata are 3 (M; = 3) and 2 (My = 2),
respectively. The parameters are deliberately chosen to be
relatively modest yet representative, as they offer insights
that can be generalized to larger values when necessary.
Despite their seemingly modest values, the chosen parameters
encapsulate fundamental dynamics applicable across varying
scales. This deliberate choice allows for a focused presentation
of the new method, providing a clear understanding of its
multi-step identification process. Moreover, the insights gained
from analyzing this small-scale scenario can be extrapolated
to larger configurations with confidence, as the underlying
principles are the same.

The randomly-generated true/target event transition matrices
of the first fuzzy automaton are

3 1.0 081 0.18 3 0.82 0.28 0.32
¥l=1019 0.14 066|, W®i;=[0.21 0.62 0.49
0.32 0.78 0.3 0.83 0.45 0.64

. 0.86 0.68 0.29

wl=| 054 001 0.01

0.29 091 048

with the true/target event transition matrices of the second
fuzzy automaton being

0.17 0.85 0.48 _
0.63 0.67 07|, W¥3= 1096 0.19 0.66
0.38 0.68 0.16 0.47 0.33 0.22

There are a total of 400 sample pairs (H = 400) - 280
pairs are intended for the first fuzzy automaton and 120 pairs
intended for the second automaton. That makes theoretical oc-
currence probabilities for the first and second fuzzy automata
0.7 and 0.3, respectively. For each sample pair, the post-event

_ 0.33 0.84 0.07
&2 =



state vector is computed by using the pre-event state vector, the
fuzzy event transition matrices involved, and the max-product
fuzzy inference.

B. Simulation Programs and Settings

We modified our previous programs in MATLAB (ver-
sion 2021a) that were for implementing the Equation-
Systems-Based Technique for single-event FDES as well as
the stochastic-gradient-descent-based learning algorithms for
multi-event FDES. The modified programs were employed to
identify the example multi-event SFDES.

Generators producing uniformly distributed random num-
bers were used to create: (1) the true/target event transition
matrices, and (2) the sample pre-event-state-post-event-state
pairs. MATLAB commands RandStream(’mlfg6331_64’) and
randsample() were jointly used to distribute the pre-event
state vectors to the fuzzy automata according to provided
occurrence probabilities. In the mean time, they also created a
random order list that reflected the occurrence probabilities
so that the programs could use it to control which fuzzy
automaton to act on which pre-event state.

The programs ran on a 2021 MacBook Pro 13” equipped
with M1 CPU chips, 16 GB RAM, and the macOS Monterey.

In the third identification step, the multi-event SFDES
identification method employed the pre-existing stochastic-
gradient-descent-based multi-event learning algorithms to
learn the event transition matrices of the two fuzzy automata.
The adaptive learning rate version of the algorithms was
adopted with the hyperparameter 7 empirically set to 3.5.
The algorithms were provided with values of M; = 3 and
My = 2. The following settings were the same for learning
either automaton: (1) the initial event transition matrices were
all random, and (2) the learning process consisted of 100
epochs, each epoch comprising the training of the model using
all the sample pairs. At the end of the 100th epoch, the overall
learning error was measured by E;" in (6), where h = 1 or 2
to indicate the first or second fuzzy automaton in the example.

C. Simulation Results

MATLAB commands RandStream(’mlfg6331_64’) and
randsample() in the programs assign 270 and 130 sample
pairs to the first and second fuzzy automata, respectively.
This process and its outcome are random and are completely
controlled and determined by the commands. This actual
distribution of the 400 pairs slightly modifies the intended
occurrence probabilities of 0.7 and 0.3 to 0.675 and 0.325 for
the first and second fuzzy automata, respectively.

In the first identification step, the multi-event identification
method utilizes the Equation-Systems-Based Technique and
correctly finds out, from N x H = 1200 systems of equations,
that there are two fuzzy automata (i.e., R = 2), and also
identifies the Equivalent Overall Event Transition Matrix for
the event sequence of the first fuzzy automaton as

0.7052 0.5576 0.2378
0.471108 0.384384 0.202752
0.261144 0.347802 0.183456

<9
‘1’13*

and the Equivalent Overall Event Transition Matrix for the
event sequence of the second fuzzy automaton as

0.816 0.1615 0.561
0.6432 0.5292 0.4422
0.6528 0.3192 0.4488

=5
‘Il12*

The CPU time is 1.45 seconds. As anticipated, they are iden-
tical to the corresponding Equivalent Overall Event Transition
Matrices that are theoretically computed using the target event
transition matrices, which are W}, = 1o W} o W} for the
first automaton, and W2, = W? o W3 for the second fuzzy
automaton.

In the second identification step, the multi-event SFDES
identification method uses the Equation-Systems-Based Tech-
nique and correctly traces back and finds all the pre- and post-
event state pairs that are associated with each of the two Equiv-
alent Overall Event Transition Matrices. More specifically, it
correctly finds the 270 and 130 sample pairs for the first
and second fuzzy automata, respectively. Using these pairs,
the method calculates the occurrence frequencies for the first
and second fuzzy automata. The respective results, 170/400
= 0.675 and 130/400 = 0.325, are precisely accurate.

In the third identification step, with the 270 pre- and post-
event state pairs associated with the first Equivalent Overall
Event Transition Matrix and the learning rates set to 0.02
(this value was determined experimentally, without significant
effort invested in finding the optimal value), the gradient
descent multi-event learning algorithms learn the three event
transitions matrices of the first fuzzy automaton with the
following result:

R [1.000 0.862 0.770]
¥l = 10667 0.576 0.656|,
0.370  0.319 0.594
R [1.000 0.506 0.214]
wl= 10074 0898 0.564]|,
10.756  0.405 0.984
X [0.338 0.186 0.196]
wi=10911 0.721 0.208].
0446 0.595 0.314)

At the end of the learning process (i.e., the end of the
100th epoch), E;*? = 1.88319 x 10~ 4, indicating excellent
convergence. The learning process takes 4.17 seconds of CPU
time. Although the learned matrices differ from their target
matrices, as anticipated based on our analyses above, the
absolute value of the element-wise differences between the
theoretical Equivalent Overall Event Transition Matrix @%3
and the actual one computed using Wi, = ¥l o ¥l o ¥l is
under 10~ 12. In other words, the learned Equivalent Overall
Event Transition Matrix is extremely close to the true one.
This is consistent with Theorem 3 given the very small Ef‘ v9,

The gradient descent algorithms then learn the two event
transition matrices of the second fuzzy automaton using the
130 sample state pairs. The learning rates are empirically set
to 0.1. The learning process takes less than 3.1 seconds of



CPU time to produce the following event transition matrices

[0.253 0.912 0.825]
W2 = 0.827 0.719 0.544]
0.499  0.730 0.660 |
[0.777 0.640 0.259]
W2 = [0.777 0.095 0.615],
0989 0.001 0.268 ]

which are different from their corresponding target matrices.
The absolute value of the element-wise differences between
the theoretical Equivalent Overall Event Transition Matrix \I~lf2
and the actual one computed using W2, = ¥2 o U2, never-
theless, is less than 107'°. The learning process converges
strongly, evidenced by E3'"9 = 1.76506 x 1016,

In summary, the simulation results for the example align
well with our theoretical analyses.

VII. CONCLUSION

Multi-event SFDES can be useful in modeling of a class
of practical systems in various industries. We develop a
novel three-step method capable of modeling such systems.
The development of the method relies on the notion of the
Equivalent Overall Event Transition Matrix that we newly
introduced and utilizes the Equation-Systems-Based Technique
and stochastic-gradient-descent-based multi-event learning al-
gorithms that we previously developed for identifying single-
event SFDES and multi-event FDES, respectively (we are not
aware of any new literature on these topics). This new notion
enables us to effectively transform the problem of multi-event
SFDES identification to the problems of single-event SFDES
identification and identification of multiple multi-event FDES,
paving the way for subsequent direct utilization of the two pre-
existing techniques in the new three-step multi-event SFDES
identification method. We carry out a theoretical analysis of the
event transition matrices produced by the learning algorithms
and reveal the interconnections between these matrices, the
Equivalent Overall Event Transition Matrices constituted by
them, and the target event transition matrices.

Biomedical application challenges are notably conducive
to modeling as multi-event SFDES. This is owing to the
stochastic and unpredictable nature of disease progression,
regardless of treatment. Moreover, states of patients and dis-
eases inherently possess vagueness and imprecision. The new
three-step identification method introduces a novel modeling
approach previously unavailable, offering the potential to more
effectively address the unmet needs within these domains, as
well as in other industries.

As mentioned earlier, because the stochastic-gradient-
descent-based algorithms are allowed to use only pre-event
state of the first event and post-event state of the last event of
an event sequence, which is an uncompromising yet realistic
assumption that we have chosen to adopt, the event transition
matrices of a multi-event FDES it learns may not be the same
as the underlying event transition matrices (but the Equivalent
Overall Event Transition Matrix it learns can be very close to
the underlying Equivalent Overall Event Transition Matrix).
The three-step identification method utilizes these learning

algorithms; hence, the identification of multi-event SFDES is
bound by the same limitations. How to improve the multi-event
FDES identification outcome under this substantial constraint
is an important but challenging issue for future research.

VIII. APPENDIX

Proof of Lemma I:
We need to prove

@00\1’10@2: (@00\1’1)0‘112 :@00(@10@2). (9)
We will prove the first part of the equations first. Note that

(@0 o ‘i}l) o ‘i’g

a111 a121 a1N1
a211 @221 a2N1
=[S0 S20 Sno) o
aN11 AaN21 GNN1
a112 @122 a1N2
o a212  A222 a2N2
aGN12 AN22 AGNN2
ail2  Aai22 a1N2
a212  A222 a2N2
= [511 So1 SNl]O
aNi12 aN22 AN N2
= [S12 Sa Sna)
where
Sjl = mCLIE(S10a1j1, Sgo&gjl, ...,SNoale) (10)
and
Sjo = maxz(S11a152, S21a252, ..., SN1an,2).  (11)

Obviously, calculation of @y o ¥y o ¥y will follow the
exactly same steps. Thus,

@00@10@2:(900{[}1)0@2.

We then prove (®g o \ill) oW, = O o~(\i11 o \il2)
Substituting (10) into (11), one gets, for (@g o ¥;) o Wy,

Sj2 = max(max(sl(]alllalj% 520@211(11]'27 D) SNOaNllale)a

mam(sloalzlazjz, 5200221a2j27 sy SNoaN21a2j2)a

max(S10a1N10N 2, S2002N10Nj25 -, SNOANN1AN;2))
which can be simplified to
Sj2 = ma$(510a111a1j2, 52061211611]'2, ) SN()aNllaljZ»

5100121a2j2, Szoazzlazjz, ceey SNoaNzlazjz,

S1001N1aNj2, S2002N1ANj2; -y SNOANN1ANj2)-
(12)



On the other hand, for ®¢ o (lill o lilz),

a1l a121 a1N1
~ ~ a a a
U, 00, = 211 221 2N1
anNi11  an21 ANN1
a112 A122 a1N2
o @212 @222 A2N2
aN12 AN22 ANN2
Let
¥ =v,0W¥,
where W is defined as
b1 bi2 bin
~ b b b
¥ — 21 22 2N
bnt bno bnn

For the max-product operations in \ill o liIQ, it is easy to see
that

bij = max(ai11a12, @i210252, - - -, GiN1AN;2)-
Therefore,
~ ~ -~ ’ ’ 7
BOpo(P10W;y)=0pgoW =[S, Sy Snol
where
’
SjQ = max(Sloblj, Sgobgj, ceey SNOij)
= maz(Siomax(ai116152, 1210252, - - ., CIN1GN;2),
Szomax(aznaljz, 42210252, - - - 7a2NlaNj2)7
Snomaz(ani161j2, AN21G252, - - -, ANN1GN;2))
= ma$(510a111¢11j2, 510&121a2j2, sy SloalNlaNjZ)a
S20a21101 52, 52002210252, - - -, S2002N14N52),
SNoaN11a1j2, SNOAN21G2j2; - - - SNOUNN1GN;2)-

Comparing S;Q with Sjo in (12), one sees S;-Q = Sj2. QED

REFERENCES
[1]
2]
[3]

C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Springer Nature, 3rd ed., 2021.

W. M. Wonham, K. Cai, et al., “Supervisory control of discrete-event
systems,” 2019.

W. Wonham, K. Cai, and K. Rudie, “Supervisory control of discrete-
event systems: A brief history,” Annual Reviews in Control, vol. 45,
pp. 250-256, 2018.

P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM journal on control and optimization,
vol. 25, no. 1, pp. 206-230, 1987.

F. Lin and W. M. Wonham, “On observability of discrete-event systems,”
Information sciences, vol. 44, no. 3, pp. 173-198, 1988.

F. Lin and H. Ying, “Modeling and control of fuzzy discrete event
systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 32, no. 4, pp. 408415, 2002.

Y. Cao, M. Ying, and G. Chen, “State-based control of fuzzy discrete-
event systems,” I[EEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 37, no. 2, pp. 410-424, 2007.

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

F. Lin and H. Ying, “State-feedback control of fuzzy discrete-event
systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 40, no. 3, pp. 951-956, 2009.

Y. Cao and M. Ying, “Supervisory control of fuzzy discrete event
systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 35, no. 2, pp. 366-371, 2005.

D. Qiu, “Supervisory control of fuzzy discrete event systems: a formal
approach,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 35, no. 1, pp. 72-88, 2005.

W. Deng and D. Qiu, “Supervisory control of fuzzy discrete-event sys-
tems for simulation equivalence,” IEEE Transactions on Fuzzy Systems,
vol. 23, no. 1, pp. 178-192, 2014.

W. Deng and D. Qiu, “Bifuzzy discrete event systems and their super-
visory control theory,” IEEE Transactions on Fuzzy Systems, vol. 23,
no. 6, pp. 2107-2121, 2015.

Y. Cao and M. Ying, “Observability and decentralized control of fuzzy
discrete-event systems,” IEEE Transactions on Fuzzy Systems, vol. 14,
no. 2, pp. 202-216, 2006.

W. Deng and D. Qiu, “State-based decentralized diagnosis of bi-fuzzy
discrete event systems,” [EEE Transactions on Fuzzy Systems, vol. 25,
no. 4, pp. 854-867, 2016.

A. Jayasiri, G. K. Mann, and R. G. Gosine, “Generalizing the decen-
tralized control of fuzzy discrete event systems,” I[EEE Transactions on
Fuzzy Systems, vol. 20, no. 4, pp. 699-714, 2011.

X. Yin, “A belief-evolution-based approach for online control of fuzzy
discrete-event systems under partial observation,” IEEE Transactions on
Fuzzy Systems, vol. 25, no. 6, pp. 1830-1836, 2016.

A. O. Mekki, F. Lin, and H. Ying, “On detectabilities of fuzzy discrete
event systems,” IEEE Transactions on Fuzzy Systems, vol. 30, no. 2,
pp. 426436, 2020.

E. Kilic, “Diagnosability of fuzzy discrete event systems,” Information
Sciences, vol. 178, no. 3, pp. 858-870, 2008.

F. Liu and D. Qiu, “Diagnosability of fuzzy discrete-event systems: A
fuzzy approach,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 2,
pp. 372-384, 2009.

B. Benmessahel, M. Touahria, F. Nouioua, J. Gaber, and P. Lorenz, “De-
centralized prognosis of fuzzy discrete-event systems,” Iranian Journal
of Fuzzy Systems, vol. 16, no. 3, pp. 127-143, 2019.

T. Zhu, F. Liu, and C. Xiao, “Reliable fuzzy prognosability of de-
centralized fuzzy discrete-event systems and verification algorithm,”
Information Sciences, 2023.

B. Benmessahel, M. Touahria, and F. Nouioua, “Predictability of fuzzy
discrete event systems,” Discrete Event Dynamic Systems, vol. 27,
pp. 641-673, 2017.

W. Deng, J. Yang, C. Jiang, and D. Qiu, “Opacity of fuzzy discrete event
systems,” in 2019 Chinese control and decision conference (CCDC),
pp. 1840-1845, IEEE, 2019.

W. Deng, D. Qiu, and J. Yang, “Opacity measures of fuzzy discrete
event systems,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 9,
pp. 2612-2622, 2020.

M. Nie and W. W. Tan, “Theory of generalized fuzzy discrete-event
systems,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 1, pp. 98—
110, 2014.

X. Du, H. Ying, and F. Lin, “Theory of extended fuzzy discrete-event
systems for handling ranges of knowledge uncertainties and subjectiv-
ity,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 2, pp. 316-328,
2008.

S. Raczynski, “The space of models, semi-discrete events with fuzzy
logic,” in Models for Research and Understanding: Exploring Dynamic
Systems, Unconventional Approaches, and Applications, pp. 207-228,
Springer, 2023.

S. Zhang and J. Chen, “Modelling of fuzzy discrete event systems based
on a generalized linguistic variable and their generalized possibilistic
kriple structure representation,” in Advances in Natural Computation,
Fuzzy Systems and Knowledge Discovery: Proceedings of the ICNC-
FSKD 2022, pp. 437-446, Springer, 2023.

F. Lin, H. Ying, R. D. MacArthur, J. A. Cohn, D. Barth-Jones, and L. R.
Crane, “Decision making in fuzzy discrete event systems,” Information
Sciences, vol. 177, no. 18, pp. 3749-3763, 2007.

H. Ying, FE. Lin, R. D. MacArthur, J. A. Cohn, D. C. Barth-Jones, H. Ye,
and L. R. Crane, “A fuzzy discrete event system approach to determining
optimal hiv/aids treatment regimens,” IEEE Transactions on Information
Technology in Biomedicine, vol. 10, no. 4, pp. 663-676, 2006.

H. Ying, FE. Lin, R. D. MacArthur, J. A. Cohn, D. C. Barth-Jones, H. Ye,
and L. R. Crane, “A self-learning fuzzy discrete event system for hiv/aids
treatment regimen selection,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 37, no. 4, pp. 966-979, 2007.



(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

R. Huq, G. K. Mann, and R. G. Gosine, “Behavior-modulation technique
in mobile robotics using fuzzy discrete event system,” IEEE Transactions
on Robotics, vol. 22, no. 5, pp. 903-916, 2006.

R. Liu, Y.-X. Wang, and L. Zhang, “An fdes-based shared control
method for asynchronous brain-actuated robot,” IEEE Transactions on
Cybernetics, vol. 46, no. 6, pp. 1452-1462, 2015.

K. W. Schmidt and Y. S. Boutalis, “Fuzzy discrete event systems
for multiobjective control: Framework and application to mobile robot
navigation,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 5,
pp. 910-922, 2012.

L. Danmei, L. Weichun, Z. Hui, and S. Shihuang, “A fuzzy discrete
event system control and decision making in air conditioning system,”
in 2008 Chinese control and decision conference, pp. 3147-3151, IEEE,
2008.

D. Li, W. Lan, H. Zhou, and S. Shao, “Control of fuzzy discrete event
systems and its application to air conditioning system,” International
Journal of Modelling, Identification and Control, vol. 8, no. 2, pp. 122—
129, 2009.

N. J. Khan, G. Ahamad, M. Naseem, and Q. R. Khan, “Fuzzy discrete
event system (fdes): A survey,” in Renewable Power for Sustainable
Growth: Proceedings of International Conference on Renewal Power
(ICRP 2020), pp. 531-544, Springer, 2021.

D. Qiu and F. Liu, “Fuzzy discrete-event systems under fuzzy observabil-
ity and a test algorithm,” IEEE Transactions on Fuzzy Systems, vol. 17,
no. 3, pp. 578-589, 2008.

H. Ying, F. Lin, and R. Sherwin, “Fuzzy discrete event systems with
gradient-based online learning,” in 2019 IEEE international conference
on fuzzy systems (FUZZ-IEEE), pp. 1-6, IEEE, 2019.

H. Ying and F. Lin, “Online self-learning fuzzy discrete event systems,”
IEEE Transactions on Fuzzy Systems, vol. 28, no. 9, pp. 2185-2194,
2019.

H. Ying and F. Lin, “Learning fuzzy automaton’s event transition matrix
when post-event state is unknown,” IEEE Transactions on Cybernetics,
vol. 52, no. 6, pp. 4993-5000, 2020.

H. Ying and F. Lin, “Self-learning fuzzy automaton with input and
output fuzzy sets for system modelling,” IEEE Transactions on Emerging
Topics in Computational Intelligence, 2022.

F. Lin and H. Ying, “Supervised learning of multievent transition matri-
ces in fuzzy discrete-event systems,” IEEE Transactions on Cybernetics,
2022.

Y. Cao, Y. Ezawa, G. Chen, and H. Pan, “Modeling and specification of
nondeterministic fuzzy discrete-event systems,” Decision Making Under
Constraints, pp. 45-58, 2020.

F. Lin and H. Ying, “Modeling and control of probabilistic fuzzy
discrete event systems,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 6, no. 2, pp. 399-408, 2021.

H. Ying and F. Lin, “Stochastic fuzzy discrete event systems and their
model identification,” IEEE Transactions on Cybernetics, in press.

H. Ying and F. Lin, “Identification of single-event stochastic fuzzy
discrete event systems: An equation-systems-based approach,” IEEE
Transactions on Fuzzy Systems, in press.



