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Obtaining accurate and dense three-dimensional estimates of turbulent wall-bounded flows11
is notoriously challenging and this limitation negatively impacts geophysical and engineering12
applications such as weather forecasting, climate predictions, air quality monitoring, and flow13
control. This study introduces a physics-informed variational autoencoder model that recon-14
structs realizable three-dimensional turbulent velocity fields from two-dimensional planar15
measurements thereof. Physics knowledge is introduced as soft and hard constraints in the16
loss term and network architecture, respectively, to enhance model robustness and leverage17
inductive biases alongside observational ones. The performance of the proposed framework18
is examined in a turbulent open-channel flow application. The model excels in precisely19
reconstructing the dynamic flow patterns at any given time and location, including turbulent20
coherent structures, while also providing accurate time- and spatially-averaged flow statistics.21
The model outperforms state-of-the-art classical approaches for flow reconstruction such as22
the linear stochastic estimation method. By incorporating physical constraints, it can offer23
more accurate predictions of small-scale flow structures and maintain better consistency with24
the fundamental equations governing the system when compared to a purely data-driven25
approach.26

Key words: Deep Learning, Variational Autoencoder, Direct Numerical Simulation, Open-27
Channel Flow28

1. Introduction29

Advancing our understanding and ability to model turbulent flows is critical for accurate30
weather forecasting (Skamarock et al. 2008) and climate projection (Mochida & Lun 2008;31
Toparlar et al. 2015), to improve urban sustainability and resilience (Chen et al. 2012; Casola32
2019; Krayenhoff et al. 2020; Kameyama et al. 2020), and to design more performant and33
reliable engineering systems (Cheikh & Momen 2020; Chung et al. 2021). Historically,34
scientific discoveries in the field of turbulence have been achieved through computational35
methods (Scotti et al. 1993; Moser et al. 1999; Bou-Zeid et al. 2005; Chung & Pullin36
2009; Lee & Moser 2015), experimental techniques (Champagne et al. 1967; Raupach et al.37
1980; Gong & Ibbetson 1989; Prasad 2000; Elsinga et al. 2006; Elsinga & Marusic 2010;38

† Email address for correspondence: mg3929@columbia.edu
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2

Westerweel et al. 2013), and field observations (Menzies & Hardesty 1989; Gal-Chen et al.39
1992; Rotach et al. 2005).40

From laboratory and field observation perspectives, various sensing technologies, includ-41
ing hot-wire anemometry (Kuo & Corrsin 1971), particle image velocimetry (PIV) (Adrian42
2005), three-dimensional (3-D) sonic anemometers (Foken & Wichura 1996), distributed43
temperature sensing technique (Thomas et al. 2012), thermal infrared cameras (Christen et al.44
2012), and light detection and ranging (LiDAR) (Grund et al. 2001), have been employed to45
gain insight on turbulent flows. Despite their utility, these approaches are typically limited to46
point or planar measurements. For example, in-situ eddy covariance stations only provide a47
few discrete points in space due to the high cost of 3-D sonic anemometers and their involved48
deployment and maintenance procedures. Likewise, LiDAR and PIV measurements are49
generally limited to two-dimensional (2-D) planes. This sparse spatial coverage often proves50
inadequate for completely characterizing a turbulent flow.51

Motivated by this limitation, several techniques have been proposed to reconstruct 3-D52
turbulent flows from sparse measurements (Van Doorne & Westerweel 2007; Ganapathisub-53
ramani et al. 2008; Vétel et al. 2010; Seo et al. 2016; Chandramouli et al. 2019; Bauweraerts54
& Meyers 2021). Traditional approaches have relied on the Taylor frozen-turbulence hy-55
pothesis (Lin et al. 2001; Van Doorne & Westerweel 2007), flow homogeneity assumptions56
(Chandramouli et al. 2019), intrinsic and extrinsic camera parameters (Pavlík et al. 2017),57
and techniques such as linear stochastic estimation (LSE) (Murray & Ukeiley 2003; Podvin58
et al. 2006). For instance, Ganapathisubramani et al. (2008) utilized a cinematographic59
stereoscopic PIV technique to collect time-resolved measurements. By applying Taylor’s60
hypothesis, this study reconstructed a 3-D quasi-instantaneous velocity field for the turbulent61
jet. This allowed them to compute first- and second-order velocity statistics within a volume,62
providing valuable information about the statistical properties and flow behavior. However,63
a significant limitation of these traditional approaches is their reliance on assumptions that64
are not universal across flow systems and often require ad-hoc tuning, making it challenging65
to generalize across flow phenomena.66

Reconstructing 3-D objects from 2-D images has been a long-standing and ill-posed in-67
verse problem in computer vision (Han et al. 2019). Recent deep learning (DL)-based68
generative models have shown promising progress in reconstructing 3-D scenes of an object69
from a single or multiple images (Choy et al. 2016; Tulsiani et al. 2017; Henzler et al. 2018;70
Biffi et al. 2019; Tahir et al. 2021; Mildenhall et al. 2021; Yu et al. 2021). Particularly,71
convolutional neural network (CNN)-based Autoencoders (AEs) and their variants have72
emerged as an effective solution for predicting 3-D objects from a set of 2-D images (Choy73
et al. 2016; Fan et al. 2017; Biffi et al. 2019; Tahir et al. 2021; Tucsok et al. 2022). These74
models utilize an encoder-decoder architecture commonly employed for compression or75
dimensionality reduction tasks (Glaws et al. 2020; Theis et al. 2022). For example, AE has76
been successfully applied to compress images (Cheng et al. 2018) and large-scale turbulent77
flow simulations (Glaws et al. 2020). In the traditional AE framework, the encoder module78
extracts a low-dimensional representation, known as a latent space, from the input data.79
Subsequently, the decoder module reconstructs the original input from this latent space80
representation. When applied to the task of 3-D reconstruction, the encoder module generates81
a unique low-dimensional representation of 2-D input images, while the decoder module82
generates a corresponding 3-D representation. These capabilities provide a promising avenue83
for reconstructing 3-D turbulent flow fields from sparsely distributed information. Moreover,84
contrary to the traditional reconstruction methods mentioned above, DL-based approaches85
do not depend heavily on explicit assumptions about the flow systems, thus offering a fruitful86
pathway for accurate and reliable predictions.87

Recently, DL has driven numerous advances in fluid dynamics, including accelerating88
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3

numerical simulations (Kochkov et al. 2021; Jeon et al. 2022), developing improved turbu-89
lence closure models (Ling et al. 2016; Cheng et al. 2022), predicting the spatiotemporal90
behavior of turbulent flows (Lee & You 2019; Cai et al. 2021), surrogate modeling of91
urban boundary layer flows (Hora & Giometto 2024), estimating skin-friction drag over92
ocean surfaces (Yousefi et al. 2024a,b), and turbulence spectral enrichment efforts (Liu93
et al. 2020a; Kim et al. 2021). Despite these successes, black-box DL models can produce94
physically inconsistent or implausible predictions because they do not inherently incorporate95
the physical laws governing the phenomena under consideration (Raissi et al. 2019b). To96
address this challenge, the physics-informed neural network (PINN) methodology has been97
introduced. PINNs incorporate fundamental physical symmetries and domain knowledge98
into the DL architecture and loss function, thereby constraining the model to adhere to99
physics constraints alongside observational data, enhancing its performance and robustness100
(Karniadakis et al. 2021; Cuomo et al. 2022).101

In recent years, there has been a growing interest in utilizing PINNs to reconstruct turbulent102
flow fields from spatially limited and noisy measurements (Cai et al. 2021; Yousif et al.103
2023a; Clark Di Leoni et al. 2023). For example, Cai et al. (2021) introduced a method for in-104
ferring buoyancy-driven velocity and pressure fields from snapshots of 3-D temperature from105
Schlieren imaging. Their approach is based on the Raissi et al. (2019b) methodology and106
proved capable of capturing natural convection over an espresso cup. In Yousif et al. (2023a),107
the authors employed physics-informed generative adversarial networks (Goodfellow et al.108
2014) to reconstruct 3-D turbulent flow from using 2-D cross-plane measurements. Their109
study aimed to propose a framework for reconstructing 3-D flows from PIV measurements110
while reducing the storage costs associated with extensive datasets obtained from experi-111
ments and high-fidelity simulations. Similarly, Clark Di Leoni et al. (2023) presented a112
method for reconstructing full and structured Eulerian velocity and pressure fields from 3-D113
sparse and noisy particle track laboratory measurements. They compared the accuracy of114
PINN with the constrained cost minimization method (Agarwal et al. 2021), demonstrating115
the superior performance of PINN in reconstructing velocity and pressure fields, even for116
noisy measurements. Collectively, these studies highlight the potential of PINN in accurately117
reconstructing turbulent flow fields from limited and noisy measurements.118

Building from these works, this study introduces a physics-informed variational auto-119
encoder (PVAE) model that accurately reconstructs 3-D turbulent flow fields from 2-D planar120
flow measurements obtained at a single wall-parallel plane. The choice of a variational121
autoencoder (VAE)-based model is motivated by its proven ability to reconstruct 3-D objects122
from 2-D images and capture high-frequency details with accuracy, particularly in tasks such123
as image transformation and super-resolution problems (Liu et al. 2020b,c; Tahir et al. 2021;124
Chira et al. 2023). This characteristic is especially valuable when tackling multiscale flow125
phenomena. Generative adversarial networks can serve as a viable alternative to VAEs for126
turbulence synthesis, as they have shown considerable promise in this area (Stengel et al.127
2020; Kim et al. 2021; Drygala et al. 2022). However, generative adversarial networks often128
face significant challenges, including notoriously difficult training processes (Mescheder129
et al. 2017; Gui et al. 2021), optimization/training instability (Salimans et al. 2016), vanish-130
ing gradient problem (Sinn & Rawat 2018), and mode dropping/collapse issues (Bau et al.131
2019). In this work, we show that the simpler PVAE approach excels in the considered task.132

The proposed PVAE model is designed to learn a mapping F that takes 2-D velocity field133
measurements at the pre-specified wall-normal plane as input and estimates the correspond-134
ing 3-D velocity field in the computational domain, as shown in figure 1. The mapping F135
can be defined as136

u
rec

= F (umeas), (1.1)137
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Figure 1: The schematic illustrates the process of using a Variational Autoencoder
(VAE)-based generative model to reconstruct a three-dimensional (3-D) flow field

urec (�푥1, �푥2, �푥3) from a given one wall-parallel plane at height �푥∗
3
= �푥3,�푖 , i.e.,

umeas (�푥1, �푥2, �푥
∗
3
) where �푥1, �푥2, and �푥3 denote three Cartesian coordinates. The framework

predicts all three velocity components over the considered plane, but only the streamwise
component is shown here for simplicity. A conceptual schematic of the network

architecture is also shown.

where u
meas

= (�푢meas
1

, �푢meas
2

, �푢meas
3

) denotes the measured velocity field at a given wall-138
parallel plane located at �푥3 = ℎ/2 (unless otherwise specified), where ℎ is the half channel139
width and u

rec
= (�푢rec

1
, �푢rec

2
, �푢rec

3
) denotes the reconstructed velocity in the 3-D spatial do-140

main. The residuals of the governing equations, including the incompressible Navier-Stokes141
equations and enstrophy, are incorporated as regularization terms into the loss function of142
the black-box VAE model. Additionally, boundary conditions (BCs) are embedded into the143
architecture of the VAE using padding operations. Unlike previous studies that require cross-144
plane or 3-D dense measurements (Cai et al. 2021; Yousif et al. 2023a; Clark Di Leoni et al.145
2023), the proposed model only needs three components of the velocity field at one wall-146
parallel plane. Moreover, the physical realizability of the reconstructed flow field using PVAE147
is examined and compared against a black box counterpart, i.e., a VAE and a traditional fluid148
dynamics LSE technique. Both DL models, namely the PVAE and the VAE, as well as LSE149
method, are trained and evaluated using data from direct numerical simulations (DNS) of150
turbulent channel flow at a friction Reynolds number of �푅�푒�휏 = �푢�휏ℎ/�휈 = 250, where �푢�휏 is151
the so-called friction velocity, and �휈 is the kinematic molecular viscosity of the fluid.152

The remainder of the paper is organized as follows. The numerical algorithm and dataset153
are described in §2.1. §2.2 introduces the details of the PVAE and VAE models. The154
LSE approach is introduced in §2.3. In §3, we assess the performance of the proposed155
reconstruction methods and their performance against the LSE. Findings are discussed in156
§4 and conclusions are drawn in §5.157
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2. Methodology158

2.1. Numerical setup and high-fidelity dataset159

Training and test datasets are obtained from the DNS of turbulent open-channel flow simu-160
lations. We solve the incompressible Navier-Stokes equations in rotation form, namely,161

�휕�푢�푖

�휕�푡
+ �푢 �푗

(

�휕�푢�푖

�휕�푥 �푗

−
�휕�푢 �푗

�휕�푥�푖

)

= −
1

�휌

�휕�푝∗

�휕�푥�푖
+ �휈

�휕�푢2
�푖

�휕�푥2
�푗

+ �푓1�훿�푖1 in Ω × [0, �푇] , (2.1)162

163
�휕�푢�푖

�휕�푥�푖
= 0 in Ω × [0, �푇] , (2.2)164

where �푥�푖 is the ith component of the position vector x = (�푥1, �푥2, �푥3), �푥1, �푥2, and �푥3 denote165
the streamwise, cross-stream, and wall-normal directions, respectively, �푢�푖 is the velocity166
component in the ith direction, �푝∗ = �푝 + �휌�푢2

�푗 is a modified pressure, �휈 is the kinematic167
viscosity of the fluid, �푓1�훿�푖1 is a constant pressure gradient driving the flow in the �푥1 direction,168
�휌 is a constant fluid density, Ω = [0, �퐿1] × [0, �퐿2] × [0, ℎ] and defines the computational169
domain, �푡 is time, and �푇 is the integration time. Periodic boundary conditions apply in the170
wall-parallel (�푥1, �푥2) directions, and a no-slip boundary condition is enforced at the lower171
surface Γ�푏�표�푡�푡�표�푚 = {x |�푥3 = 0}, and a free slip boundary condition at the top of the domain172
Γ�푡�표�푝 = {x |�푥3 = ℎ}.173

Equations are discretized via a pseudospectral collocation approach (Orszag 1969) in the174
wall-parallel direction and a second-order centered staggered finite differences scheme in the175
wall-normal direction. Nonlinear terms are fully dealiased using the 3/2 rule (Canuto et al.176
2007). A fully explicit second-order Adams Bashforth method is used for time integration,177
and a fractional step method is used to solve resulting algebraic equations (Chorin 1968).178
For more details on the algorithm, please refer to Albertson & Parlange (1999). Over the179
past two decades, this solver has been extensively used to conduct fluid dynamics research180
and validated against field and laboratory measurements (see, e.g., Meneveau et al. 1996;181
Porté-Agel et al. 2000; Porté-Agel 2004; Lu & Porté-Agel 2010; Hultmark et al. 2013; Shah182
& Bou-Zeid 2014; Pan et al. 2014; Fang & Porté-Agel 2015; Anderson et al. 2015; Giometto183
et al. 2016, 2017).184

As part of this study, a DNS of an open-channel flow is conducted at �푅�푒�휏 = 250. The185
computational domain Ω = [0, 2�휋ℎ] × [0, 4

3
�휋ℎ] × [0, ℎ] is discretized using 128× 128× 288186

collocation nodes in the �푥1, �푥2, and �푥3 direction, respectively. 6×103 instantaneous snapshots187
of the three velocity components and pressure fields are collected every �푇+

= �푇�푢�휏/ℎ = 10−3188
after the flow has fully developed. To reduce the computational cost of training the DL model189
and graphics processing unit (GPU) memory requirements, DNS results are interpolated190
from the 128 × 128 × 288 grid onto a coarser 128 × 128 × 64 grid. This is achieved by191
applying a top-hat filter and sub-sampling at twice the new Nyquist frequency.192

The interpolated dataset is partitioned into training, validation, and test sets, comprising193
80%, 10%, and 10% of the total snapshots, respectively. The training set is utilized for194
model training, while the validation set is employed to monitor model performance during the195
training and hyperparameter optimization phase. The test set is reserved for the assessment196
of the model performance. The PVAE, VAE, and LSE approach all use the same dataset for197
the training and evaluation.198

For the efficient training of the DL models, it is also recommended to scale data using pre-199
processing techniques such as min-max normalization or standardization, typically within200
the range [−1, 1] or [0, 1], as suggested in Goodfellow et al. (2016). For this, we standardize201

the data by subtracting the (�휇 = 〈�푧〉) and dividing it by standard deviation (�휎 = 〈(�푧 − �휇)2〉
1
2 )202
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6

of the training dataset, i.e., �푧 = �푧−�휇

�휎
to accelerate the training process. Throughout the study,203

(·) is used to denote time-averaging or ensemble averaging (depending on the context), 〈·〉204
is temporal and spatial averaging along the wall-parallel directions, time fluctuations are205

written as (·)′ (therefore (·)′ = 0) and (·)′
�푅�푀�푆

denotes the root mean square (RMS) of the206
fluctuation.207

2.2. Deep learning208

This study aims to find a mapping F that maps 2-D planar wall measurements to a 3-D209
velocity field (see equation 1.1). To approximate the target mapping F , we propose two DL210
models: VAE and PVAE, which we discuss in the following sub-sections §2.2.1 and §2.2.2,211
respectively. To assess the effectiveness and viability of the proposed DL models, we also212
compare their performance against a traditional LSE approach, described in §2.3.213

2.2.1. Variational autoencoder214

To model the mapping F , we employ a CNN-based VAE model. This method has proven215
effective in processing grid-like data across diverse domains such as computer vision (Liu216
et al. 2020b,c), biomedical imaging (Wei & Mahmood 2020), and scientific machine learning217
(Wang et al. 2021b; Solera-Rico et al. 2024). VAE models are generative models consisting218
of two parts: an encoder module that maps the input data to parameters of the probability219
distribution of the latent space, and a decoder module that reconstructs the quantity of interest220
from the realization drawn from this latent space (Kingma & Welling 2014). During the221
training phase of VAE, the objective is to minimize the loss function known as the evidence222
lower bound (ELBO), which consists of two terms: the reconstruction loss (Ldata) and223
the regularization loss (Lreg). The reconstruction loss aims to minimize the discrepancy224
between the ground truth and reconstructed data, while the regularization term guides the225
network toward aligning the probability distribution generated by the encoder with the prior226
distribution over the latent space. The Ldata leverages standard mean-squared error loss227
function, and Lreg is implemented using the Kullback-Leibler (KL) divergence (Joyce 2011),228
which measures the difference between two probability distributions. For more information,229
we recommend readers refer to Kingma & Welling (2014).230

The probabilistic encoder (a.k.a., recognition model) and decoder (a.k.a., generative231
model) network is represented as �푞�휙 (z |^) and �푝�휃 ( ˆ̂ |z), respectively, where z represents232

latent space, ^ and ˆ̂ are the input and output, �휙 and �휃 are the parameters of the encoder233
and decoder network, respectively. Typically, VAE assumes a prior distribution as an234
isotropic multi-variate Gaussian distribution �푝(z) = N(0, O) and a posterior as a Gaussian235
distribution with diagonal co-variance �푞�휙 (z |^) = N[�휇�휙 (^), �푑�푖�푎�푔(�휎

2
�휙 (^))], where �휇�휙 and236

�휎�휙 are the encoded parameters of latent space probability distribution. The advantage of237
this assumption is that it provides an exact expression for Lreg and promotes stable training238
of VAEs. The objective function of the VAE network (LVAE) can be expressed as follows:239

LVAE = Ldata + Lreg =
1

�푛

�푛
∑

�푖=1

(�푋�푖 − �̂푋�푖)
2 +

1

2

�푘
∑

�푖=1

(�휎2
�휙,�푖 + �휇2

�휙,�푖 − 1 − ln(�휎2
�휙,�푖)), (2.3)240

where �푋�푖 and �̂푋�푖 are the actual and predicted values, �푘 is the dimension of latent space and241
�푛 is the number of training data samples. This choice of LVAE also aligns with the existing242
several VAE-based studies of turbulent flows (Wang et al. 2021b; Kang et al. 2022; Solera-243
Rico et al. 2024).244

The overall architecture of the residual block and VAE model are illustrated in figures 2 and245
3, respectively. The choice of utilizing residual block in the VAE model is motivated by the246
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7

Figure 2: Architecture of the residual block. Conv3D denotes the 3-D convolutional layer,
Swish represents the non-linear layer, and the (+) operator represents the elementwise

addition operation of a tensor.

Figure 3: Diagram showcases the architecture of the VAE network, illustrating the number
of channels (�푐) and stride (�푠) for each convolutional layer and residual block. The values
for the number of filters ( �푓 ), kernel size (�푘), and stride (�푠) are uniformly set to 42, 3, and

1, respectively. At each cuboidal block, the top quantity represents the number of
filters/channels, and the bottom quantity represents the volumetric spatial dimensions of

the output from the corresponding layers. Various components and operations are denoted
as follows: NL represents the Swish non-linearity, RB represents the residual block, MP

represents the max pooling layer, CL represents the convolutional layer, RS represents the
reshape layer, DL represents the dense layer, SL represents the sampling layer, and US

represents the upsampling layer.

susceptibility of deep neural networks to the vanishing gradient problem (Hochreiter 1998).247
Empirically, residual blocks with skip connections have been shown to alleviate this issue,248
ensuring efficient training (He et al. 2016). Many existing studies have leveraged residual249
block-based DL models to model turbulent flows (for example, Xuan & Shen 2023). As250
shown in figure 2, the output of the residual block is the sum of the linear projection of the251
original input and the output of two convolutional and one non-linear layers. The choice of252
non-linearity in the DL model is critical as it can significantly impact the model’s training253
process and performance on a given task or objective (Goodfellow et al. 2016). We have254
compared the performance of several types of non-linearity, including the hyperbolic tangent255
function and the sigmoid function (Goodfellow et al. 2016), rectified linear units (ReLU)256
(Nair & Hinton 2010), and Swish (Ramachandran et al. 2017). The Swish non-linearity257
outperformed other non-linearities in the reconstruction task for the considered flow system;258
thus, we selected it for the present work. This choice aligns with previous research on DL259
models for turbulent flows (Raissi et al. 2019a; Hora & Giometto 2024).260

The input fed to the VAE model consists of velocity measurements acquired at the wall-261
parallel plan, resulting in input dimensions of 1 × 128 × 128 × 3. As shown in figure 3, the262
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8

encoder module of VAE consists of one convolutional layer, four residual blocks and max263
pooling layers, a dense layer, a sampling layer, a reshape layer, and swish non-linearity. The264
stack of residual blocks and pooling layer extracts the feature maps and compresses the input265
of size 1 × 128 × 128 × 3 to 1 × 16 × 16 × 8 �푓 , where �푓 is set to 42. Next, we employ266
the dense layer to encode the extracted feature maps into the parameter space (-�휙,2�휙) of267
the latent space distributions. For our work, the dimension of the latent space is set to 200268
as it ensures good reconstruction accuracy. To obtain a realization of latent space (z), we269
utilize a sampling layer z ∼ �푞�휙 (z |^) which leverages reparametrization approach described270
in Kingma & Welling (2014); Rezende et al. (2014). In the sampling layer, we first sample a271
random vector u ∼ N(0, O) and then generate z as272

z = �휇�휙 (x) + �휎�휙 (x) ⊙ u, (2.4)273

where ⊙ is the element-wise product. This approach allows for the differentiation of the274
ELBO with respect to the model parameters and enables the use of gradient-based optimiza-275
tion methods.276

Further, we have a decoder model (see figure 3) to decode the 3-D velocity fields from277
the latent space. It consists of dense layers, which transform the latent space into a high-278
dimensional space ∈ �푅21504 (512 �푓 in the figure 3), and a reshape layer that transforms the279
output of the dense layer into a tensor of rank four, which represents the spatial feature maps.280
Further, we employ four residual blocks followed by upsampling layers to perform non-linear281
transformation and increase the feature map resolution. Finally, we have a convolution layer282
with a linear activation function that outputs the tensor of size 128×128×64×3, representing283
the 3-D velocity field. It is important to note that the input and output of the VAE model are284
based on the same time instant, with each instant considered independently; consequently,285
no temporal information is utilized in the reconstruction process. In the next section, we will286
describe our proposed PVAE model.287

2.2.2. Physics-informed variational autoencoder288

As mentioned in §1, purely data-driven DL models may excel at fitting data from high-fidelity289
models and observations. However, their predictions may lack physical consistency and lead290
to poor generalization performance. To improve the black box VAE model’s performance291
and physical realizability, we constrain the VAE network to match additional quantities and292
satisfy selected physical symmetries of the system. In PVAE, the VAE is constrained to match293
the enstrophy (E) of the reference DNS case and to satisfy the momentum (equation 2.1) and294
continuity equations (equation 2.2). These biases are introduced as soft constraints into the295
loss function via three separate regularization terms, namely LE, LC, and LM, whereas BCs296
are enforced as hard constraints. To enforce the residual of the physical constraint into the297
loss function, we employ a normalized error based on L�푛 norm, i.e., �푒�푛, defined as298

�푒�푛 =
| |X − X̂| |�푛�푛
| |X| |�푛�푛

, (2.5)299

X and X̂ are actual and predicted quantity of interest, | |X| |�푛�푛 =
1
�푁

∑�푁
�푖=1 �푋

�푛
�푖

and �푛 is the order300
of the norm. To ensure consistency with the mean-squared error used as a reconstruction301
loss in LVAE (see equation 2.3), we set �푛 = 2. During our experimentation, we found that302
�푒2 also ensures stable training of the PVAE model. A detailed discussion of each physical303
constraint is provided in the following.304

Turbulence is a broadband phenomenon characterized by power-law velocity spectra with305
negative exponents at high wavenumbers, meaning that the kinetic energy of small-scale306
motions is much smaller than that of larger scales. Accurately capturing high-wavenumber307
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9

variations in the flow field is expected to be challenging when using DL models (Lippe et al.308
2024). Since small-scale motions are the main contributors to E, LE biases the PVAE model309
towards high wavenumber modes, thus enriching the prediction with small-scale information.310
LE is defined as311

LE = �푒2(E
DNS,Erec) , (2.6)312

where E = �휔�푖�휔�푖 is defined as an enstrophy field, �휔�푖 = �휖�푖 �푗�푘 (�휕�푢�푘/�휕�푥 �푗) is the vorticity tensor,313
�휖�푖 �푗�푘 is the Levi-Civita symbol, and EDNS and Erec are the DNS and PVAE reconstructed314
enstrophy fields, respectively.315

The flow system considered in this study involves incompressible fluids; therefore, it must316
satisfy the M and C equations. To achieve this goal, the residuals of the M and C equations are317
introduced as a soft constraint in the loss function to penalize deviations from these equations,318
following the methodology used in previous works (Raissi et al. 2019b; Gao et al. 2021; Clark319
Di Leoni et al. 2023). The constraining of the PVAE model to learn the residual functions320
will bias the model to comply with the M and C equations (see equations 2.1 and 2.2), thereby321
improving the realizability of the generated predictions. LM and LC can be defined as322

LM = �푒2(M(uDNS, �푝DNS),M(urec, �푝DNS)), , (2.7)323
324

LC = �푒2(C(uDNS),C(urec)), (2.8)325

where M(u, �푝) and C(u) represents the residual of the M and C equation, respectively and326
�푝DNS represents the reference DNS pressure field.327

The loss function (LPVAE) minimized for the PVAE model during training is a combination328
of a content loss (Lcontent) and a physics loss (Lphysics) and is defined as329

Lphysics = (1 − �휆C)LM + �휆CLC, (2.9)330

Lcontent = (1 − �휆�퐸)LVAE + �휆ELΩ
, (2.10)331

LPVAE = (1 − �휆P)Lcontent + �휆PLphysics, (2.11)332

where �휆C, �휆E, and �휆P are the regularization constant for LC, L�퐸 , and Lphysics, respectively333
used to balance each term of the LPVAE. LE,LM and LC comprise both spatial and temporal334
derivatives. Spatial derivatives are computed via a second-order accurate centered finite-335
difference scheme. A non-trainable convolution kernel is engineered to evaluate spatial336
derivatives based on the finite difference scheme (Gao et al. 2021; Xuan & Shen 2023).337
While we also explored using higher-order schemes, we found no significant improvement in338
the reconstruction accuracy and hence settled for second order. One plausible explanation is339
that the majority of the reconstructed structures are low-wavenumber modes, for which the340
second-order accurate scheme suffices in resolving them (Xuan & Shen 2023). To calculate341
the pressure gradient (�휕�푝/�휕�푥�푖) and acceleration (�휕�푢�푖/�휕�푡) terms in the M equation, flow fields342
from the DNS dataset are leveraged. This is appropriate because the pressure and velocity343
information is only required during the training phase, and once the network is trained, it344
can reconstruct flow fields without any additional information. It is worth noticing that the345
residuals of the governing equations in LM and LC are calculated against the residuals of346
the governing equations on reference DNS data instead of a null tensor. This is so because347
the DNS is initially carried out using a pseudo-spectral approach and, therefore, may not348
satisfy the governing equations with zero residuals on the finite-difference stencil. We use349
the residuals on the DNS data to ensure fair comparisons of the violation of the governing350
equations. Lastly, BCs are enforced as a hard constraint through a padding operation–351
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specifically, by adding extra pixels or ghost cells around the edges of the input data, as352
described in Gao et al. (2021). For instance, to enforce Dirichlet BCs, a constant padding353
value is uniformly applied around the input data.354

2.2.3. Model parameters355

In §2.2.1 and §2.2.2, we described the VAE and PVAE architectures; this section discusses356
corresponding model hyperparameters and the training setup.357

The performance and computational cost of the CNN-based models are influenced by358
various parameters, including kernel sizes, number of kernel/channels (feature maps) in359
the convolutional layer, and the downsampling and upsampling ratio of max pooling and360
upsampling layer, among others. A typical choice for kernel size lies between 3 to 7 to capture361
fine-grained details and extract relevant features of the dataset (Simonyan & Zisserman362
2014; Xuan & Shen 2023). The number of channels also affects the performance of the363
model; ideally, more channels can increase the model’s capacity to capture and describe364
a wider variety of features (Goodfellow et al. 2016). To balance model performance and365
computational cost, we set the kernel size to 3 and the number of channels to a multiple of366
f, where f is set to 42 (see figure 3). The upsampling and downsampling ratio is kept as two,367
which is a common choice (Kang et al. 2022).368

For the PVAE model, the optimal values of �휆E, �휆C, and �휆P, are determined through a369
Grid-based hyperparameter search approach (Goodfellow et al. 2016). To avoid the trivial370
solution of zero fields becoming a local minimum, these parameter values are restricted to the371
[0, 0.50] range, as suggested in Subramaniam et al. (2020). Although not explicitly shown372
here, hyperparameter analysis revealed that �휆E = 0.25, �휆P = 0.25, �휆C = 0.50 is optimal373
for the PVAE model, as it achieved the best overall performance on the validation dataset.374
We also acknowledge that other hyperparameter tuning methods, such as random search375
or Bayesian optimization, could be explored to improve the model’s performance further376
(Goodfellow et al. 2016).377

The VAE and PVAE model with the aforementioned setup is designed using the Tensor-378
Flow ML library (Abadi et al. 2016). Trainable parameters are randomly initialized using379
realization drawn from a uniform distribution (Glorot & Bengio 2010), as done before by the380
authors (Hora & Giometto 2024; Yousefi et al. 2024b). The learning rate is kept constant at381
5× 10−4 throughout the training and trained end-to-end by backpropagation using the Adam382
optimizer (Kingma & Ba 2014). Due to GPU memory limitations, an effective mini-batch383
size of 100 is employed. The number of epochs chosen is 5000 epochs, and it is based on the384
observation that extending training beyond this point did not yield significant improvements385
in the reconstruction accuracy on the validation dataset.386

2.3. Linear stochastic estimation387

To better assess the performance of the proposed DL model, we will compare its predic-388
tions against a more traditional approach based on the LSE technique (Adrian & Moin389
1988). Traditionally employed for the extraction of coherent structures in turbulent flows390
(Christensen & Adrian 2001), the LSE method has more recently found applications in391
reconstructing velocity fields across various scenarios. These applications include off-wall392
plane velocity fluctuation reconstruction in turbulent open-channel flow using wall-shear-393
stress components and pressure measurements (Guastoni et al. 2021), reconstructing 3-D394
velocity fields from surface velocity and elevation measurements (Xuan & Shen 2023), and395
characterizing vorticity fields (Wang et al. 2021a). Consequently, the LSE method offers a396
suitable benchmark for our study.397

The LSE method involves estimating a linear expression comprising empirical parameters398
from the measured quantifies to infer unknown quantities. In the context of this work, the399
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LSE is employed to estimate the 3-D velocity field fluctuations from 2-D measurements.400
Mathematically, this operation is defined as401

�푢
′,rec
�푖

= Q�푖 �푗�푢
′,meas
�푗

, �푗 = 1, 2, 3, (2.12)402

where Q�푖 �푗 is a linear operator. This linear operator, Q�푖 �푗 , is determined by minimizing the403
mean squared difference between the reconstructed and corresponding DNS velocity fields.404
For the reconstructed velocity field u

′,rec and the corresponding DNS field u
′,DNS, the mean405

squared discrepancy D can be expressed in an integral form as406

D =

∫ ∫ ∫

�푉
(u′,rec − u

′,DNS) (u′,rec − u
′,DNS)

∫ ∫ ∫

�푉
�푑�푉

. (2.13)407

The optimal value of Q�푖 �푗 is determined by minimizing D (Wang et al. 2021a). Further,408
this optimization problem can be formulated as409

Q�푖 �푗�푢
′,meas
�푗

(r)�푢′,meas
�푚 (r′) = �푢

′,DNS
�푖

�푢
′,meas
�푚 (r′), �푚 = 1, 2, 3. (2.14)410

Here, r ∈ �푉 is a position vector, �푢meas
�푗

(r)�푢meas
�푚 (r′) can be defined as averaged measured411

velocity distribution given an event of �푢�푖,meas
�푚 occurring at r

′ and similarly, �푢DNS
�푖

�푢meas
�푚 (r′) as412

conditionally averaged velocity distribution for the event �푢meas
�푚 (Wang et al. 2021a; Xuan &413

Shen 2023). In general, equation 2.14 leads to a linear system with a large number of variables414
directly linked to the discretization of the spatial domain. This characteristic renders the415
computational solution of such a linear system impractical. To circumvent this limitation,416
and as suggested by Wang et al. (2021a) and Xuan & Shen (2023), we leveraged the wall-417
parallel homogeneity inherent in open-channel flow. This enabled us to decouple equation418
2.12 in the wall-normal direction, making it possible to independently evaluate it for each419
wall-parallel (�푥1 − �푥2) plane. For more information on the LSE approach, we recommend420
readers to refer Wang et al. (2021a) and Xuan & Shen (2023).421

3. Results422

In this section, we evaluate the performance of the PVAE, VAE, and LSE models. A423
qualitative and quantitative comparison of the reconstructed velocity field, using instanta-424
neous pseudo-color maps alongside corresponding probability density function and vortical425
structures using the Q criterion, is presented in §3.1. Next, we examine the energy spectra426
and auto-correlation of the reconstructed flow and compare them to DNS results in §3.2. The427
space- and time-averaged wall-normal profiles of turbulent flow statistics are presented in the428
§3.3. Moreover, we conduct a physical realizability analysis focusing on the residual of the429
momentum and continuity equations, elaborated upon in §3.4. Finally, in §3.5, we explore430
the impact of measurement on the reconstruction accuracy of the models.431

3.1. Reconstructed instantaneous flow field432

In this and the subsequent §3.2, we use a single snapshot from the test dataset as an illustrative433
example to compare the reconstructed flow field with the ground truth DNS results. To434
begin with, we test the ability of the PVAE to reconstruct the 3-D instantaneous velocity field435
fluctuations using pseudocolor maps, as these are a valuable starting point for characterizing436
discrepancies between reference and predicted fields. To this end, instantaneous streamwise437
(�푢′+

1
), cross-stream (�푢′+

2
), and wall-normal (�푢′+

3
) velocity fluctuations from the PVAE are438

compared against corresponding DNS, VAE, and LSE predictions over a chosen wall-parallel439
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Figure 4: Instantaneous snapshot of normalized streamwise �푢′+
1

(top), cross-stream �푢′+
2

(middle), and the vertical �푢′+
3

(bottom) velocity fluctuations at height �푥3 = 2ℎ/5.
Reference direct numerical simulation (DNS), physics-informed variational autoencoder

(PVAE), VAE, and linear stochastic estimation (LSE) results are shown in panels
corresponding to columns (a), (b), (c), and (d), respectively. ℎ is the height of the

computational domain, and �푥1 and �푥2 are streamwise and cross-streamwise directions.
The superscript + indicates a quantity scaled in inner units using the fluid viscosity �휈 and

the friction velocity �푢�휏 .

plane in figure 4. All velocity fluctuation components are scaled in inner units using �휈440
and �푢�휏 . The rationale for examining velocity fluctuations is that these provide an intuitive441
picture of the spatial structure of the flow while also enabling comparison with the LSE442
approach (which can only predict fluctuations as described in §2.3). It is evident from443
figure 4 that predictions from both the PVAE and VAE models at the (arbitrarily chosen)444
�푥3 = 2ℎ/5 plane are in remarkable agreement with the reference DNS data and surpass445
the performance of the traditional LSE approach. For the instantaneous streamwise veloc-446
ity fluctuation component �푢′+

1
, the reference DNS solution is characterized by streamwise-447

elongated, high- and low-speed streaks flanking each other in the cross-stream direction.448
The DL models excel in reconstructing both the spatial variability and the magnitude of449
these flow features. The spanwise �푢′+

2
and vertical �푢′+

3
velocity fluctuations feature modes of450

variability that are relatively more compact in space when compared to those of the �푢′+
1

field,451
which are expected to pose a challenge for data-driven approaches (Xuan & Shen 2023).452
Nonetheless, based on visual inspection, the DL methods again exhibit remarkable accuracy453
in capturing these instantaneous fields. Interestingly, the addition of physical constraints does454
not appear to yield any apparent improvement in the structure of the predicted instantaneous455
flow field. LSE predictions appear more homogeneous on the considered plane, resulting456
in a loss of critical spatial variability details. This behavior is particularly noticeable in the457
representation of high wavenumber modes. Although not shown here, the LSE performance458
significantly degrades at planes more distant from the �푥3 = ℎ/2 sampling location—a finding459
consistent with that from other studies (Suzuki & Hasegawa 2017; Xuan & Shen 2023). The460
upcoming discussion will focus exclusively on the DL approaches.461
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Figure 5: Empirical probability density function (PDF) of �푢′+
1

(a), cross-stream �푢′+
2

(b),
and the wall-normal �푢′+

3
(c) velocity fluctuations for the DNS (red), VAE (green), and
PVAE (blue) models at �푥3 = 2ℎ/5.

To gain further insight into the spatial variability of the flow fields, figure 5 presents462
histograms of the �푢′+

1
, �푢′+

2
, and �푢′+

3
fields evaluated over the aforementioned plane. Panels a, b,463

and c in figure 5 correspond to �푢′+
1

, �푢′+
2

, and �푢′+
3

fluctuation fields, respectively. The histogram464
uses blue color for PVAE, green for VAE, and red for the ground truth DNS results. The figure465
demonstrates that both the PVAE and VAE models successfully capture the majority of the466
DNS velocity variability. However, larger discrepancies compared to the reference DNS data467
are observed near the mode of the distributions, representing the most frequent events. The468
results again indicate that incorporating physical constraints does not improve the predictions469
of the DL models.470

The predictive capabilities of the PVAE model are further assessed in terms of coherent471
vortex structures, the building blocks of turbulence. Coherent vortices are defined as flow472
regions with long-lasting vorticity concentration �휔, allowing for a local roll-up of the sur-473
rounding fluid (Lesieur 1997). These structures play a crucial role in transporting mass,474
energy, and momentum within turbulent flows and have been the focus of sustained research475
in the past decades (Robinson 1991). Analyzing vortical structures in the predictions of DL476
models is also important because a mean squared error function is utilized to minimize the477
discrepancy between the reconstructed velocity field and the corresponding ground truth data478
(see §2.2). However, this error minimization on the velocity field does not inherently ensure479
an accurate representation of vortical structures in the reconstructed flow fields. In figure480
6, we present selected isosurfaces of the Q-criterion (Dubief & Delcayre 2000) obtained481
from the reference DNS, the PVAE, and the VAE models. These visualizations effectively482
demonstrate the presence of hairpin heads and tails, corroborating findings from previous483
studies (Scott et al. 1991). Notably, the vortical structures observed in the reconstructed484
instantaneous velocity fields of the DL models exhibit a remarkable resemblance to the DNS485
data, indicating that the proposed formulations can accurately reproduce the salient features486
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Figure 6: Instantaneous turbulent vortical structures extracted using Q criterion for the
DNS (top), PVAE (middle), and VAE (bottom) cases. Different colors and transparency

denote isosurfaces with different Q magnitudes.

of boundary-layer turbulence. Upon visual inspection, it is also apparent that the PVAE and487
VAE flow fields are qualitatively similar, and the inclusion of physical constraints does not488
appear to enhance the representation of the vortical structure.489

To provide a quantitative measure of model accuracy, we next compare predictions in terms490
of a normalized mean-squared error (�푒2) (see equation 2.5). Focusing on the �푥3 = 2ℎ/5491
plane from figure 4, the PVAE (VAE) �푒2 error is 2.8% (3.3%) for �푢′+

1
, 4.8% (5.4%) for �푢′+

2
,492

and 5.8% (7.6%) for the �푢′+
3

velocity fluctuation components. The error in the streamwise493
velocity component (�푢′+

1
) is relatively lower than that for the cross-stream and wall-normal494

components (�푢′+
2

and �푢′+
3

). This phenomenon has also been noted in recent work by Yousif495
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Figure 7: Vertical structure of the normalized one-dimensional energy spectra of
streamwise velocity (�퐸11�푢

−2
�휏 �푥−1

3
) components at height �푥3 = 2ℎ/5. The solid gray line

depicts the (�푘1�푥3)
−1 production range and (�푘1�푥3)

−5/3 in the inertial subrange scaling.

et al. (2023a), where it was suggested that such a disparity may be attributed to the dominance496
of the streamwise velocity field in pressure-driven wall-bounded flows (Pope 2000), which497
consequently becomes the primary focus of DL models during their predictions. Another498
plausible reason for the variable accuracy in predicting velocity field is the use of a cumulative499
loss function (Hora & Giometto 2024). Hora & Giometto (2024) noted that the cumulative500
loss function does not impose specific constraints on individual predicted quantities, leading501
to variable accuracy in flow statistics predictions. Nevertheless, in the considered plane,502
errors are modest, and the overall accuracy of model predictions would be suitable for most503
geophysical and engineering applications assuming the same error magnitudes at higher �푅�푒�휏 .504

Based on the above analysis, it can be concluded that both the PVAE and VAE models can505
qualitatively reconstruct the instantaneous velocity field at the unseen wall-parallel plane and506
outperform the LSE approach. For a more quantitative assessment of model performance,507
we next examine the reconstructed velocity spectra and two-point correlation statistics.508

3.2. Energy spectra, and two-point correlations509

One-dimensional streamwise spectra of streamwise velocity (�퐸11) are shown in figure 7. The510
spectra corresponding to the PVAE, DNS, and VAE models are represented using blue, red,511
and green colors, respectively. It is apparent from the figure that the DL models accurately512
capture the energy distribution of large-scale structures (small �푘1). However, notable dif-513
ferences between the DNS and DL models appear as the �푘1 values increase, particularly514
for the VAE model. These discrepancies highlight a limitation in accurately learning and515
reproducing small-scale flow variability. This behavior can be explained via the frequency516
principle (F-principle). According to this principle, when a DL model is trained using the517
mean-squared objective function, low-frequency information is usually learned with greater518
accuracy when compared to high-frequency information (Xu et al. 2019; Zhang et al. 2022).519
Further, the error analysis using �푒2 (see equation 2.5) of PVAE (VAE) reveals that for the area520
under the curve of streamwise energy �퐸11 spectra in the production (�푘1�푥3 < 1) and inertial521
and dissipation subranges (�푘1�푥3 > 1) are 0.4% (0.1%) and 1.3% (3.1)%, respectively. The522
enstrophy loss term introduced in the PVAE model yields an apparent improvement in this523
sense, but local (in �푘1) errors remain substantial, corroborating the argument made in Beucler524
et al. (2021) that soft constraints may not enable the DL model to satisfy the physics exactly.525
Overall, results indicate that the PVAE performs marginally better than the VAE model and526
that both DL models successfully capture the overall kinetic energy of the flow.527

We next examine the spatial coherence of the predicted flow field via the two-point auto-528
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Figure 8: One-dimensional spatial autocorrelation (�푅11) of streamwise velocity at height
�푥3 ≈ 2ℎ/5 along the streamwise (a) and cross-stream direction (b).

correlation �푅11 function along the streamwise (�푥1) and cross-stream directions (�푥2), shown529
in figure 8. From a physical perspective, it is notable that �푅11 remains finite within the530
considered range of �푟1/ℎ (figure 8, a), implying that the selected computational domain is531
not large enough for the flow to decorrelate completely. Additionally, the spatial autocorre-532
lation plot reveals negative lobes in the cross-stream direction (figure 8, b), highlighting the533
presence of streamwise-elongated high- and low-momentum streaks, flanking each other in534
the cross-stream direction (Zhou et al. 1999). This quantity relates to the velocity spectrum,535
and we can observe that the PVAE model does an excellent job of predicting such a profile,536
suggesting that the proposed formulation can effectively capture the large-scale structure of537
the flow field—the ones primarily contributing to flow coherence. Moreover, the VAE model538
also aligns remarkably well with the DNS profile, underscoring that integration of physical539
constraints does not significantly enhance model performance in this specific aspect.540

3.3. One-dimensional flow statistics541

The wall-normal structure of flow statistics has been the subject of sustained research in the542
past decades, owing to the key role they play in controlling surface drag as well as mass and543
energy exchanges across a range of applications (Nagib & Chauhan 2008). Figure 9 compares544
the DL and DNS predictions in terms of normalized streamwise velocity (a) and root-mean-545
square (RMS) velocity (b,c,d) profiles. Focusing on 〈�푢+

1
〉, it is apparent that the proposed546

PVAE and VAE models accurately predict such a quantity. DL-based RMS profiles are also547
in great agreement with corresponding DNS data, indicating that the DL algorithms are able548
to correctly capture second-order moments of the velocity field. The maximum percentage549
error of the PVAE (VAE) model occurs at the peak of the profiles, with a max(�푒1) error of550
5.4% (3.9%) for 〈�푢′+

1,RMS
〉, 6.6% (4.2%) for 〈�푢′+

2,RMS
〉, and 10.2% (6.5%) for 〈�푢′+

3,RMS
〉.551

All in all, this and the previous sections have shown that both the PVAE and VAE mod-552
els can reconstruct 3-D flow fields from 2-D planar measurements that are in excellent553
agreement with corresponding DNS results in terms of coherent structures, velocity spectra,554
spatial flow coherence, and one-dimensional profiles of velocity statistics. However, we555
note that although physical constraints such as momentum and mass conservation have been556
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Figure 9: Vertical structure of normalized mean streamwise velocity 〈�푢+
1
〉 (a), streamwise

〈�푢′+
1,RMS

〉 (b), cross-stream 〈�푢′+
2,RMS

〉 (c), and wall-normal 〈�푢′+
3,RMS

〉 (d) root mean square
(RMS) velocity fluctuations. 〈·〉 denotes the averaging operation in time and along

coordinates of statistical homogeneity (�푥1, �푥2).

incorporated into the objective function of the PVAE model, this has not led to significant557
improvements in terms of model performance when compared to the VAE formulation, with558
the exception of velocity spectra. This finding suggests that the “physics-less” VAE model559
might have approximately learned these constraints during the training process, which would560
justify its accuracy. To gain further insight into this, the next section examines the ability of561
the proposed models to conserve mass and momentum—the constraints explicitly enforced562
in the PVAE.563

3.4. Physical realizability564

The considered flow system is governed by the incompressible Navier-Stokes and mass-565
conservation equations, i.e., M and C equations (equations 2.1 and 2.2). Compliance with566
these symmetries is, hence, an important requisite in the model assessment. To determine567
how well the proposed DL algorithms adhere to the conservation equations throughout the568
training phase, the physics residuals LM and LC (equations 2.7 and 2.8) are presented569
against the number of training epochs. These residuals, depicted in figure 10, function as570
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Figure 10: Continuity (LC) (a) and momentum(LM) (b) regularization term against
number of epochs. Epochs indicate the number of iterations used in the learning process.

indicators of the deviation from the governing equations. Upon completing the training571
phase, the LC and LM losses associated with the PVAE model are approximately half of572
those recorded for the VAE counterpart. The incorporation of physical constraints also yields573
a more rapid convergence of the corresponding loss terms, which is especially apparent for574
the LM loss. This result underscores the important role played by physical constraints in575
guiding the learning process toward solutions that are more consistent with the governing576
equations. However, it is pertinent to note that when considering the scale of magnitude,577
losses from the VAE model are still within a comparable range to those of the PVAE, thereby578
justifying the commendable performance of the former in accurately capturing flow statistics.579
Similar to the findings in the previous sections, we observe that adding physical laws as a soft580
constraint to the DL model does not ensure that the predictions satisfy these laws exactly, and581
thus, there is a need to apply them as a hard constraint (Beucler et al. 2021).582

In terms of computing time, training the PVAE and VAE models using four NVIDIA RTX583
A6000 GPUs took approximately five and four days, respectively. Given the modest increase584
in computational cost associated with training the PVAE, introducing physical constraints585
may be justified for applications that demand higher accuracy in small-scale feature recon-586
structions and better consistency with the underlying governing equations.587

3.5. Impact of measurement plane on reconstruction accuracy588

Results presented in the preceding sections are representative of reconstructed flows based589
on planar measurements sampled at �푥3 = ℎ/2. However, information may be available at590
different wall-normal distances, and the choice of sampling plane may impact the predictive591
accuracy of the proposed model. To investigate model sensitivity to the measurement loca-592
tion, two additional sampling locations are here considered, namely �푥3 ∈ {ℎ/4, 3ℎ/4}, or593
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Figure 11: Mean (�휇) and standard deviation (�휎) of the reconstruction error (�푒) for the
PVAE (a) and VAE (b) model across different sampling planes. Three sampling planes are

considered for evaluating these statistics, namely �푥3 = {ℎ/4, ℎ/2, 3ℎ/4}. Solid lines
depict �휇(�푒), ±�휎(�푒) (dark color), and ±2�휎(�푒) (light color). The analysis excludes the

bottom and top boundaries due to the presence of zero values.

equivalently, �푥+
3
= {62.5, 187.5}. A PVAE model with fixed architecture and hyperparame-594

ters is trained for each of these sampling locations. For comparison, a corresponding VAE595
model is also trained for each of these sampling locations, yielding a total of four additional596
DL predictions.597

Model performance is evaluated in a statistical sense via comparison of reconstruction598
error as a function of �푥+

3
for the streamwise (�푢′+

1
), cross-stream (�푢′+

2
), and wall-normal (�푢′+

3
)599

velocity fluctuations. Figure 11 presents the results of such an analysis. In this figure, the600
reconstruction error �푒(�푥+

3
) of a velocity component is defined as601

�푒(�푥+3 ) =
1

�푛

�푛
∑

�푘=1

∫ ∫

�푥1 ,�푥2
(�푢′,rec,k

�푗
− �푢

′,DNS,k
�푗

)2�푑�푥1�푑�푥2

∫ ∫

�푥1 ,�푥2
(�푢′,DNS,k

�푗
)2�푑�푥1�푑�푥2

, (3.1)602

where �푢′�푗 is the �푗 �푡ℎ component of velocity fluctuations, k is the �푘 �푡ℎ sample, and �푛 is the total603

number of samples in the test dataset. Further, the mean and standard deviation of �푒(�푥+
3
), at604

each wall-normal location are defined as �휇 =
1
3

∑3
�푖=1 �푒�푖 (�푥

+
3
) and �휎 =

√

1
3

∑3
�푖=1 [�푒�푖 (�푥

+
3
) − �휇]2,605

respectively. Here, �푒�푖 (�푥+3 ) represents the reconstruction error corresponding to the DL mod-606

els trained at the �푖�푡ℎ sampling plane. Shaded regions in figure 11 depict the error variability607
amongst models trained using varied sampling locations. As shown in figure 11, the overall608
reconstruction error of both models is within 7% for �푢′+

1
and �푢′+

2
and can reach up to about609

15% for the �푢′+
3

velocity fluctuation. The PVAE slightly outperforms the VAE in predict-610
ing velocity fluctuations overall. Close to the wall, both models exhibit relatively larger611

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
3
9
1
6
3

 30 June 2025 20:39:50



20

reconstruction errors for the �푢′+
1

and �푢′+
2

velocity fluctuation components, with a gradual612
improvement as we move towards the channel half width. The behavior of �푢′+

3
deviates613

from this pattern, displaying relatively higher error values near both the wall and the free614
surface. This behavior can be easily explained when considering the small magnitude of wall-615
normal velocity fluctuation in the vicinity of the lower and top boundaries, which magnify616
relative errors. The bottom and top boundaries are rigid lids, which significantly dampen617
�푢′+

3
velocity fluctuations and lead to energy redistribution to the wall-parallel planes. What618

is also apparent from the figure both models feature small �휎 values (fraction of a percent),619
indicating that model performance is insensitive to the choice of sampling location at the620
considered Reynolds number. In summary, the proposed PVAE model is highly accurate621
and is expected to yield consistent performance irrespective of the wall-parallel sampling622
plane. The inclusion of physical constraints also yields a modest but consistent improvement623
in performance when compared to the black box approach.624

4. Discussion625

This section offers a perspective on the previous findings and investigates the cause of626
observed discrepancies in the proposed model predictions. §3.1 demonstrated that the DL627
models effectively reconstructed the 3-D velocity flow fields from 2-D planar wall-parallel628
measurements and outperformed the traditional LSE approach. However, the accuracy of629
DL models varies depending on the specific flow variable. In particular, DL models showed630
higher accuracy in capturing the streamwise (�푢1) velocity field compared to the cross-stream631
(�푢2) and wall-normal (�푢3) components. Results in §3.2 also showed that DL models ac-632
curately captured the large-scale structures; however, they faced challenges in representing633
the small-scale structure. The integration of the enstrophy constraint in the PVAE model634
enhanced its ability to capture small-scale structures, though slight discrepancies still existed635
locally for large wavenumbers. Further, in §3.4, we found that the inclusion of physical636
constraints, namely, incompressible Navier-Stokes, improved the consistency of the recon-637
structed flow fields with the governing equations, though the predictions did not fully satisfy638
these constraints. The following paragraphs will provide further insights into these findings639
and discuss strategies to address these limitations and improve model performance.640

As discussed in §2, both the DL and LSE approaches primarily use convolution operations.641
However, the DL models demonstrated superior performance compared to the LSE approach642
in reconstructing 3-D velocity fields from 2-D measurements (see §3.1). The success of643
DL models could be attributed to their use of non-linear transformation. The DL models644
employed a two-step transformation process: first, the input was transformed linearly using645
convolutional layers, followed by the application of Swish functions to introduce non-linear646
effects. In contrast, the transformation in the LSE was purely linear, using the Q operator647
(see §2.3). Additionally, the DL model includes upsampling and downsampling layers, which648
adjust the resolution or number of grid points in the outputs of the convolutional layers. This649
allows the filters/kernels in different convolutional layers to efficiently process features at650
varying spatial scales, improving the model’s ability to capture a wide range of scales present651
in the data. The combination of convolutional, non-linearity, upsampling, and downsampling652
layers enabled the DL models to approximate a complex F mapping (as described in equation653
1.1), which the LSE model could not achieve. This finding is consistent with numerous654
studies that have demonstrated the superior performance of non-linear DL models over linear655
methods in addressing turbulent flow problems (Guastoni et al. 2021; Xuan & Shen 2023).656

The quantitative error analysis using the normalized mean square error metric in §3.1657
showed that the DL models captured the streamwise (�푢1) velocity field with greater accuracy658
compared to the cross-stream (�푢2) and wall-normal (�푢3) components. During the training659
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phase of DL models, we utilized standard mean-squared error function as a Ldata (equivalent660
to the error of the kinetic energy) which is an aggregated measure of the reconstruction661
accuracy for the different velocity component. In the considered open-channel flow setup,662
the Reynolds stress tensor is highly anisotropic—a property stemming from the distinct663
distribution of �푢1, �푢2, and �푢3. Anisotropy is the root cause of the observed imbalance in664
the loss terms, ultimately impacting the accuracy of the model in capturing the different665
velocity components (Clark Di Leoni et al. 2023). One plausible approach to alleviate this666
issue is to separate the Ldata (equation 2.3) into three components with different weights, i.e.,667

Ldata =

3
∑

�푗=1

�훽 �푗

1

�푛

�푛
∑

�푖=1

(�푢DNS
�푗 ,�푖 − �푢rec

�푗 ,�푖)
2 , (4.1)668

where �훽 �푗 is an independent hyperparameter utilized to balance each term of Ldata (Clark669
Di Leoni et al. 2023). The value of �훽 �푗’s can be determined by incorporating them as trainable670
parameters of the model (Xiang et al. 2022).671

In §3.2, we analyzed energy spectra to evaluate the capability of DL models to reconstruct672
flow scales in turbulent channel flow. Both DL models accurately captured the large-scale673
structures; however, notable differences between the DNS and DL model predictions were674
apparent for the small-scale structures, particularly for the VAE model. The limitations675
of the DL models in capturing small-scale structures can be attributed to the F-principle.676
According to this principle, when training a DL model, it tends to learn the low-frequency677
components more accurately and quickly while exhibiting relatively poorer performance678
with high-frequency components, as discussed in existing studies (Xu et al. 2019; Zhang679
et al. 2022). The marginally better performance of the PVAE model over the VAE model680
in capturing small-scale structures could be attributed to the enstrophy constraint. During681
the training of the PVAE model, enstrophy was added as a soft constraint, which led to682
better prediction of small-scale structures. However, this approach still resulted in some683
minor discrepancies, as soft constraints do not precisely satisfy physical laws (Beucler et al.684
2021). Recently, Lippe et al. (2024) proposed a partial differential equations (PDE)-Refiner685
approach which enhances DL models’ ability to accurately model structures corresponding686
to all wavenumbers. Therefore, employing a PDE-Refiner approach for the reconstruction687
of velocity fields could potentially enhance model performance and more accurately capture688
small-scale structures.689

In §3, the findings revealed that the incorporation of the momentum and mass conservation690
as a soft constraint alongside the observation data did not yield any discernible advantage691
in the reconstruction accuracy. However, it was observed that for the flow system under692
consideration, the physical constraints enhanced the physical realizability of the DL model693
(see §3.4). To introduce these physical principles as soft constraints in the loss term, we694
introduced �휆∗ as new hyperparameters. For this study, we employed a grid-based hyperpa-695
rameter search approach to identify the optimal values. However, alternative strategies could696
be explored to determine these additional hyperparameters, potentially yielding improved697
results. For example, they could be updated based on the analysis of the Hessian of the loss698
function (Wang et al. 2021c) or integrated into the model as trainable parameters (Xiang699
et al. 2022). An alternative approach is to enforce governing equations as hard constraints,700
which can enable deep learning models to precisely adhere to physical laws, as demonstrated701
by Beucler et al. (2021); Gao et al. (2021).702

In §3, DL models and LSE approach are trained and tested with the dataset corresponding703
to open-channel flow at �푅�푒�휏 = 250. We expect the model to perform accurately for �푅�푒�휏704
values below 250; however, for �푅�푒�휏 higher than 250, performance is likely to degrade due705
to the emergence of finer small-scale structures at higher �푅�푒�휏 (Pope 2000). To address706

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
3
9
1
6
3

 30 June 2025 20:39:50



22

this, transfer learning–a technique that adapts a model trained on one task for a related task707
(Weiss et al. 2016)–could be employed to extend model capabilities to higher �푅�푒�휏 (see, e.g.,708
Guastoni et al. 2021; Yousif et al. 2022, 2023a,b). Instead of training a model from scratch709
for higher �푅�푒�휏 , transfer learning allows the reuse of pre-learned features from a lower �푅�푒�휏710
case to accelerate the training and reduce data requirements for higher �푅�푒�휏 cases (see, for711
example, Guastoni et al. 2021; Yousif et al. 2023b).712

5. Conclusions713

This study has proposed a PVAE model reconstructing 3-D flow fields from 2-D wall-714
parallel measurements in an open-channel flow at �푅�푒�휏 = 250. Physics-based constraints,715
including momentum and continuity equations, enstrophy, and boundary conditions, have716
been incorporated into the loss function and architecture of the DL model as soft and hard717
constraints to improve the model’s performance. The reconstruction abilities of the PVAE718
have been compared against a corresponding black-box VAE (no physics constraints) and719
a more traditional LSE reconstruction method. Model assessment has focused on recon-720
structed instantaneous 3-D flow fields and coherent structures, velocity histograms, energy721
spectra, two-point correlations, one-dimensional first- and second-order flow statistics, and722
the residual with respect to the governing equations. This analysis focused on assessing the723
benefits of the proposed DL architecture over traditional methodologies as well as the impact724
of physical constraints on model accuracy and robustness.725

A qualitative analysis based on visual inspection of the reconstructed instantaneous snap-726
shots, histograms, and vorticity structures of velocity fields has indicated that PVAE model727
predictions are in remarkable agreement with reference DNS velocity, albeit with minor728
discrepancies. Visual inspection of the reconstructed instantaneous snapshots against the729
corresponding DNS results has also demonstrated that the model is in remarkable agreement730
with the reference solution and outperforms the classical LSE approach. A quantitative error731
analysis has indicated that the streamwise (�푢1) velocity field is captured with higher accuracy732
when compared to the cross-stream (�푢2) and wall-normal (�푢3) components. As briefly733
mentioned in §4, one plausible reason is the use of a cumulative loss function. To mitigate this734
issue, Ldata can be separated into three components, with �훽 �푗 employed to balance individual735
term within Ldata.736

Evaluation of energy spectra and two-point autocorrelation has further confirmed that737
the PVAE performs well in capturing large-scale flow structures, with minor discrepancies738
for high wavenumber modes. Further, aside from minor discrepancies in the reconstructed739
peak velocity RMSs, double-averaged flow statistics were also found to be in very good740
agreement with corresponding DNS data, demonstrating that the proposed model has learned741
the energetic scales of the flow—the main contributors to the mean and RMS velocity742
statistics. While the addition of physical constraints did not lead to apparent improvements in743
terms of large-scale features and double-averaged flow profiles, it did improve the ability of744
the model to capture small-scale structures and the physical realizability of the reconstructed745
flow fields (see figure 7). Notably, the inclusion of physical constraints reduced the residual746
on the momentum (continuity) equation by ≈ 56% (41%). In terms of computational cost,747
introducing physical constraints leads to a modest 20% increase in the computational cost748
when using an equivalent number of training samples and epochs—a cost that may be justified749
in applications requiring accuracy in terms of physical realizability. Lastly, it has been shown750
that predictions from the PVAE model are insensitive to the sampling-plane location for the751
considered flow system. We note that this might not hold true at higher Reynolds numbers.752

Overall, this study demonstrates that PVAE models can accurately reconstruct 3-D open753
channel flow at �푅�푒�휏 = 250 from 2-D wall-parallel measurements at arbitrary wall-normal754
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distance from the surface, surpassing the performance of traditional LSE techniques. This755
capability is of interest to the engineering and geophysics communities, given the aforemen-756
tioned challenges associated with performing dense measurements of 3-D turbulent flow757
fields in both laboratory and full-scale environments. The proposed formulation can also758
assist in compressing 3-D data into a convenient 2-D framework for data archival, yielding759
storage reduction. Although we focused on a specific case involving neutrally stratified760
turbulent open-channel flow, the proposed approach can be easily extended to more complex761
flow systems where complex surface morphologies, thermal stratification, and other flow762
physics are involved.763
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