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Obtaining accurate and dense three-dimensional estimates of turbulent wall-bounded flows
is notoriously challenging and this limitation negatively impacts geophysical and engineering
applications such as weather forecasting, climate predictions, air quality monitoring, and flow
control. This study introduces a physics-informed variational autoencoder model that recon-
structs realizable three-dimensional turbulent velocity fields from two-dimensional planar
measurements thereof. Physics knowledge is introduced as soft and hard constraints in the
loss term and network architecture, respectively, to enhance model robustness and leverage
inductive biases alongside observational ones. The performance of the proposed framework
is examined in a turbulent open-channel flow application. The model excels in precisely
reconstructing the dynamic flow patterns at any given time and location, including turbulent
coherent structures, while also providing accurate time- and spatially-averaged flow statistics.
The model outperforms state-of-the-art classical approaches for flow reconstruction such as
the linear stochastic estimation method. By incorporating physical constraints, it can offer
more accurate predictions of small-scale flow structures and maintain better consistency with
the fundamental equations governing the system when compared to a purely data-driven
approach.

Key words: Deep Learning, Variational Autoencoder, Direct Numerical Simulation, Open-
Channel Flow

1. Introduction

Advancing our understanding and ability to model turbulent flows is critical for accurate
weather forecasting (Skamarock et al. 2008) and climate projection (Mochida & Lun 2008;
Toparlar et al. 2015), to improve urban sustainability and resilience (Chen et al. 2012; Casola
2019; Krayenhoff et al. 2020; Kameyama et al. 2020), and to design more performant and
reliable engineering systems (Cheikh & Momen 2020; Chung er al. 2021). Historically,
scientific discoveries in the field of turbulence have been achieved through computational
methods (Scotti er al. 1993; Moser er al. 1999; Bou-Zeid et al. 2005; Chung & Pullin
2009; Lee & Moser 2015), experimental techniques (Champagne et al. 1967; Raupach et al.
1980; Gong & Ibbetson 1989; Prasad 2000; Elsinga et al. 2006; Elsinga & Marusic 2010;
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Westerweel ef al. 2013), and field observations (Menzies & Hardesty 1989; Gal-Chen et al.
1992; Rotach et al. 2005).

From laboratory and field observation perspectives, various sensing technologies, includ-
ing hot-wire anemometry (Kuo & Corrsin 1971), particle image velocimetry (PIV) (Adrian
2005), three-dimensional (3-D) sonic anemometers (Foken & Wichura 1996), distributed
temperature sensing technique (Thomas et al. 2012), thermal infrared cameras (Christen et al.
2012), and light detection and ranging (LiDAR) (Grund et al. 2001), have been employed to
gain insight on turbulent flows. Despite their utility, these approaches are typically limited to
point or planar measurements. For example, in-situ eddy covariance stations only provide a
few discrete points in space due to the high cost of 3-D sonic anemometers and their involved
deployment and maintenance procedures. Likewise, LIDAR and PIV measurements are
generally limited to two-dimensional (2-D) planes. This sparse spatial coverage often proves
inadequate for completely characterizing a turbulent flow.

Motivated by this limitation, several techniques have been proposed to reconstruct 3-D
turbulent flows from sparse measurements (Van Doorne & Westerweel 2007; Ganapathisub-
ramani et al. 2008; Vétel et al. 2010; Seo et al. 2016; Chandramouli et al. 2019; Bauweraerts
& Meyers 2021). Traditional approaches have relied on the Taylor frozen-turbulence hy-
pothesis (Lin et al. 2001; Van Doorne & Westerweel 2007), flow homogeneity assumptions
(Chandramouli et al. 2019), intrinsic and extrinsic camera parameters (Pavlik er al. 2017),
and techniques such as linear stochastic estimation (LSE) (Murray & Ukeiley 2003; Podvin
et al. 2006). For instance, Ganapathisubramani et al. (2008) utilized a cinematographic
stereoscopic PIV technique to collect time-resolved measurements. By applying Taylor’s
hypothesis, this study reconstructed a 3-D quasi-instantaneous velocity field for the turbulent
jet. This allowed them to compute first- and second-order velocity statistics within a volume,
providing valuable information about the statistical properties and flow behavior. However,
a significant limitation of these traditional approaches is their reliance on assumptions that
are not universal across flow systems and often require ad-hoc tuning, making it challenging
to generalize across flow phenomena.

Reconstructing 3-D objects from 2-D images has been a long-standing and ill-posed in-
verse problem in computer vision (Han et al. 2019). Recent deep learning (DL)-based
generative models have shown promising progress in reconstructing 3-D scenes of an object
from a single or multiple images (Choy et al. 2016; Tulsiani et al. 2017; Henzler et al. 2018;
Biffi et al. 2019; Tahir et al. 2021; Mildenhall et al. 2021; Yu et al. 2021). Particularly,
convolutional neural network (CNN)-based Autoencoders (AEs) and their variants have
emerged as an effective solution for predicting 3-D objects from a set of 2-D images (Choy
et al. 2016; Fan et al. 2017; Biffi et al. 2019; Tahir et al. 2021; Tucsok et al. 2022). These
models utilize an encoder-decoder architecture commonly employed for compression or
dimensionality reduction tasks (Glaws et al. 2020; Theis et al. 2022). For example, AE has
been successfully applied to compress images (Cheng et al. 2018) and large-scale turbulent
flow simulations (Glaws et al. 2020). In the traditional AE framework, the encoder module
extracts a low-dimensional representation, known as a latent space, from the input data.
Subsequently, the decoder module reconstructs the original input from this latent space
representation. When applied to the task of 3-D reconstruction, the encoder module generates
a unique low-dimensional representation of 2-D input images, while the decoder module
generates a corresponding 3-D representation. These capabilities provide a promising avenue
for reconstructing 3-D turbulent flow fields from sparsely distributed information. Moreover,
contrary to the traditional reconstruction methods mentioned above, DL-based approaches
do not depend heavily on explicit assumptions about the flow systems, thus offering a fruitful
pathway for accurate and reliable predictions.

Recently, DL has driven numerous advances in fluid dynamics, including accelerating
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numerical simulations (Kochkov et al. 2021; Jeon et al. 2022), developing improved turbu-
lence closure models (Ling et al. 2016; Cheng et al. 2022), predicting the spatiotemporal
behavior of turbulent flows (Lee & You 2019; Cai et al. 2021), surrogate modeling of
urban boundary layer flows (Hora & Giometto 2024), estimating skin-friction drag over
ocean surfaces (Yousefi et al. 2024a,b), and turbulence spectral enrichment efforts (Liu
et al. 2020a; Kim et al. 2021). Despite these successes, black-box DL models can produce
physically inconsistent or implausible predictions because they do not inherently incorporate
the physical laws governing the phenomena under consideration (Raissi ef al. 2019b). To
address this challenge, the physics-informed neural network (PINN) methodology has been
introduced. PINNSs incorporate fundamental physical symmetries and domain knowledge
into the DL architecture and loss function, thereby constraining the model to adhere to
physics constraints alongside observational data, enhancing its performance and robustness
(Karniadakis et al. 2021; Cuomo et al. 2022).

In recent years, there has been a growing interest in utilizing PINNs to reconstruct turbulent
flow fields from spatially limited and noisy measurements (Cai er al. 2021; Yousif et al.
2023a; Clark Di Leoni et al. 2023). For example, Cai ez al. (2021) introduced a method for in-
ferring buoyancy-driven velocity and pressure fields from snapshots of 3-D temperature from
Schlieren imaging. Their approach is based on the Raissi e al. (2019b) methodology and
proved capable of capturing natural convection over an espresso cup. In Yousif et al. (2023a),
the authors employed physics-informed generative adversarial networks (Goodfellow et al.
2014) to reconstruct 3-D turbulent flow from using 2-D cross-plane measurements. Their
study aimed to propose a framework for reconstructing 3-D flows from PIV measurements
while reducing the storage costs associated with extensive datasets obtained from experi-
ments and high-fidelity simulations. Similarly, Clark Di Leoni et al. (2023) presented a
method for reconstructing full and structured Eulerian velocity and pressure fields from 3-D
sparse and noisy particle track laboratory measurements. They compared the accuracy of
PINN with the constrained cost minimization method (Agarwal et al. 2021), demonstrating
the superior performance of PINN in reconstructing velocity and pressure fields, even for
noisy measurements. Collectively, these studies highlight the potential of PINN in accurately
reconstructing turbulent flow fields from limited and noisy measurements.

Building from these works, this study introduces a physics-informed variational auto-
encoder (PVAE) model that accurately reconstructs 3-D turbulent flow fields from 2-D planar
flow measurements obtained at a single wall-parallel plane. The choice of a variational
autoencoder (VAE)-based model is motivated by its proven ability to reconstruct 3-D objects
from 2-D images and capture high-frequency details with accuracy, particularly in tasks such
as image transformation and super-resolution problems (Liu et al. 2020b,c; Tahir et al. 2021;
Chira et al. 2023). This characteristic is especially valuable when tackling multiscale flow
phenomena. Generative adversarial networks can serve as a viable alternative to VAEs for
turbulence synthesis, as they have shown considerable promise in this area (Stengel et al.
2020; Kim ez al. 2021; Drygala et al. 2022). However, generative adversarial networks often
face significant challenges, including notoriously difficult training processes (Mescheder
et al. 2017; Gui et al. 2021), optimization/training instability (Salimans ez al. 2016), vanish-
ing gradient problem (Sinn & Rawat 2018), and mode dropping/collapse issues (Bau et al.
2019). In this work, we show that the simpler PVAE approach excels in the considered task.

The proposed PVAE model is designed to learn a mapping ¥ that takes 2-D velocity field
measurements at the pre-specified wall-normal plane as input and estimates the correspond-
ing 3-D velocity field in the computational domain, as shown in figure 1. The mapping 7
can be defined as

uee = T(umeaS), (11)
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Figure 1: The schematic illustrates the process of using a Variational Autoencoder
(VAE)-based generative model to reconstruct a three-dimensional (3-D) flow field
u"(x1, x2, x3) from a given one wall-parallel plane at height x5 = x3 ;, i.e.,
u™® (xy,xp,x5) where x1, x2, and x3 denote three Cartesian coordinates. The framework
predicts all three velocity components over the considered plane, but only the streamwise
component is shown here for simplicity. A conceptual schematic of the network
architecture is also shown.

where u™® = (u“‘eas,urz"e“s,ug‘eas) denotes the measured velocity field at a given wall-
parallel plane located at x3 = /2 (unless otherwise specified), where / is the half channel
width and u™® = (u‘fc, u&“, u‘fc) denotes the reconstructed velocity in the 3-D spatial do-
main. The residuals of the governing equations, including the incompressible Navier-Stokes
equations and enstrophy, are incorporated as regularization terms into the loss function of
the black-box VAE model. Additionally, boundary conditions (BCs) are embedded into the
architecture of the VAE using padding operations. Unlike previous studies that require cross-
plane or 3-D dense measurements (Cai et al. 2021; Yousif et al. 2023a; Clark Di Leoni et al.
2023), the proposed model only needs three components of the velocity field at one wall-
parallel plane. Moreover, the physical realizability of the reconstructed flow field using PVAE
is examined and compared against a black box counterpart, i.e., a VAE and a traditional fluid
dynamics LSE technique. Both DL models, namely the PVAE and the VAE, as well as LSE
method, are trained and evaluated using data from direct numerical simulations (DNS) of
turbulent channel flow at a friction Reynolds number of Re, = u.h/v = 250, where u is
the so-called friction velocity, and v is the kinematic molecular viscosity of the fluid.

The remainder of the paper is organized as follows. The numerical algorithm and dataset
are described in §2.1. §2.2 introduces the details of the PVAE and VAE models. The
LSE approach is introduced in §2.3. In §3, we assess the performance of the proposed
reconstruction methods and their performance against the LSE. Findings are discussed in
§4 and conclusions are drawn in §5.
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2. Methodology
2.1. Numerical setup and high-fidelity dataset

Training and test datasets are obtained from the DNS of turbulent open-channel flow simu-
lations. We solve the incompressible Navier-Stokes equations in rotation form, namely,

Ou; du;  Ou; 1op*  ou? .
Y [ttt [P S Qx[0,7T], 2.1
o +uj ((%Cj e > On +V6x§+fl 1 inQx[0,7T] 2.1)
Mi () inx[0.T] . 2.2)
(’)xi

where x; is the i component of the position vector x = (x1,x2,x3), X1, X2, and x3 denote
the streamwise, cross-stream, and wall-normal directions, respectively, u; is the velocity
component in the i direction, p* = p + pu% is a modified pressure, v is the kinematic
viscosity of the fluid, f;6;; is a constant pressure gradient driving the flow in the x; direction,
p is a constant fluid density, Q = [0, L] X [0, L2] x [0, i] and defines the computational
domain, 7 is time, and 7 is the integration time. Periodic boundary conditions apply in the
wall-parallel (x,x) directions, and a no-slip boundary condition is enforced at the lower
surface Tporrom = {x|x3 = 0}, and a free slip boundary condition at the top of the domain
rt()p = {x|x3 = h}

Equations are discretized via a pseudospectral collocation approach (Orszag 1969) in the
wall-parallel direction and a second-order centered staggered finite differences scheme in the
wall-normal direction. Nonlinear terms are fully dealiased using the 3/2 rule (Canuto et al.
2007). A fully explicit second-order Adams Bashforth method is used for time integration,
and a fractional step method is used to solve resulting algebraic equations (Chorin 1968).
For more details on the algorithm, please refer to Albertson & Parlange (1999). Over the
past two decades, this solver has been extensively used to conduct fluid dynamics research
and validated against field and laboratory measurements (see, e.g., Meneveau et al. 1996;
Porté-Agel et al. 2000; Porté-Agel 2004; Lu & Porté-Agel 2010; Hultmark ez al. 2013; Shah
& Bou-Zeid 2014; Pan et al. 2014; Fang & Porté-Agel 2015; Anderson et al. 2015; Giometto
et al. 2016, 2017).

As part of this study, a DNS of an open-channel flow is conducted at Re; = 250. The
computational domain Q = [0, 27rh] % [0, %nh] % [0, k] is discretized using 128 x 128 x 288
collocation nodes in the x1, x2, and x3 direction, respectively. 6x 103 instantaneous snapshots
of the three velocity components and pressure fields are collected every T+ = Tu,/h = 1073
after the flow has fully developed. To reduce the computational cost of training the DL model
and graphics processing unit (GPU) memory requirements, DNS results are interpolated
from the 128 x 128 x 288 grid onto a coarser 128 x 128 x 64 grid. This is achieved by
applying a top-hat filter and sub-sampling at twice the new Nyquist frequency.

The interpolated dataset is partitioned into training, validation, and test sets, comprising
80%, 10%, and 10% of the total snapshots, respectively. The training set is utilized for
model training, while the validation set is employed to monitor model performance during the
training and hyperparameter optimization phase. The test set is reserved for the assessment
of the model performance. The PVAE, VAE, and LSE approach all use the same dataset for
the training and evaluation.

For the efficient training of the DL models, it is also recommended to scale data using pre-
processing techniques such as min-max normalization or standardization, typically within
the range [—1, 1] or [0, 1], as suggested in Goodfellow et al. (2016). For this, we standardize
the data by subtracting the (¢ = (z)) and dividing it by standard deviation (o~ = ((z — ,u)z)%)
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of the training dataset, i.e., Z = % to accelerate the training process. Throughout the study,
() is used to denote time-averaging or ensemble averaging (depending on the context), {-)
is temporal and spatial averaging along the wall-parallel directions, time fluctuations are
written as (+) (therefore (-)’ = 0) and (-)§,,s denotes the root mean square (RMS) of the
fluctuation.

2.2. Deep learning

This study aims to find a mapping # that maps 2-D planar wall measurements to a 3-D
velocity field (see equation 1.1). To approximate the target mapping ¥, we propose two DL
models: VAE and PVAE, which we discuss in the following sub-sections §2.2.1 and §2.2.2,
respectively. To assess the effectiveness and viability of the proposed DL models, we also
compare their performance against a traditional LSE approach, described in §2.3.

2.2.1. Variational autoencoder

To model the mapping ¥, we employ a CNN-based VAE model. This method has proven
effective in processing grid-like data across diverse domains such as computer vision (Liu
et al. 2020b,c), biomedical imaging (Wei & Mahmood 2020), and scientific machine learning
(Wang et al. 2021b; Solera-Rico et al. 2024). VAE models are generative models consisting
of two parts: an encoder module that maps the input data to parameters of the probability
distribution of the latent space, and a decoder module that reconstructs the quantity of interest
from the realization drawn from this latent space (Kingma & Welling 2014). During the
training phase of VAE, the objective is to minimize the loss function known as the evidence
lower bound (ELBO), which consists of two terms: the reconstruction loss (Lgam) and
the regularization loss (Lrg). The reconstruction loss aims to minimize the discrepancy
between the ground truth and reconstructed data, while the regularization term guides the
network toward aligning the probability distribution generated by the encoder with the prior
distribution over the latent space. The Lga, leverages standard mean-squared error loss
function, and Ly is implemented using the Kullback-Leibler (KL) divergence (Joyce 2011),
which measures the difference between two probability distributions. For more information,
we recommend readers refer to Kingma & Welling (2014).

The probabilistic encoder (a.k.a., recognition model) and decoder (a.k.a., generative
model) network is represented as g 4(z|X) and po(X|z), respectively, where z represents
latent space, X and X are the input and output, ¢ and 6 are the parameters of the encoder
and decoder network, respectively. Typically, VAE assumes a prior distribution as an
isotropic multi-variate Gaussian distribution p(z) = N(0,I) and a posterior as a Gaussian
distribution with diagonal co-variance ¢ 4 (z|X) = N'[u4(X), diag(o'é(X))], where p4 and
o4 are the encoded parameters of latent space probability distribution. The advantage of
this assumption is that it provides an exact expression for Lg and promotes stable training
of VAEs. The objective function of the VAE network (Lyag) can be expressed as follows:

1 & PV
Lyae = Laa+ Loeg =~ D (X = R+ 5 3 (05 44y, = 1= In(05 ). 23)
i=1

i=1

where X; and X; are the actual and predicted values, k is the dimension of latent space and
n is the number of training data samples. This choice of Lyag also aligns with the existing
several VAE-based studies of turbulent flows (Wang er al. 2021b; Kang et al. 2022; Solera-
Rico et al. 2024).

The overall architecture of the residual block and VAE model are illustrated in figures 2 and
3, respectively. The choice of utilizing residual block in the VAE model is motivated by the
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Figure 2: Architecture of the residual block. Conv3D denotes the 3-D convolutional layer,
Swish represents the non-linear layer, and the (+) operator represents the elementwise
addition operation of a tensor.
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Figure 3: Diagram showcases the architecture of the VAE network, illustrating the number
of channels (c) and stride (s) for each convolutional layer and residual block. The values
for the number of filters ( f), kernel size (k), and stride (s) are uniformly set to 42, 3, and
1, respectively. At each cuboidal block, the top quantity represents the number of

filters/channels, and the bottom quantity represents the volumetric spatial dimensions of

the output from the corresponding layers. Various components and operations are denoted
as follows: NL represents the Swish non-linearity, RB represents the residual block, MP
represents the max pooling layer, CL represents the convolutional layer, RS represents the

reshape layer, DL represents the dense layer, SL represents the sampling layer, and US
represents the upsampling layer.

susceptibility of deep neural networks to the vanishing gradient problem (Hochreiter 1998).
Empirically, residual blocks with skip connections have been shown to alleviate this issue,
ensuring efficient training (He et al. 2016). Many existing studies have leveraged residual
block-based DL models to model turbulent flows (for example, Xuan & Shen 2023). As
shown in figure 2, the output of the residual block is the sum of the linear projection of the
original input and the output of two convolutional and one non-linear layers. The choice of
non-linearity in the DL model is critical as it can significantly impact the model’s training
process and performance on a given task or objective (Goodfellow et al. 2016). We have
compared the performance of several types of non-linearity, including the hyperbolic tangent
function and the sigmoid function (Goodfellow et al. 2016), rectified linear units (ReLU)
(Nair & Hinton 2010), and Swish (Ramachandran e al. 2017). The Swish non-linearity
outperformed other non-linearities in the reconstruction task for the considered flow system;
thus, we selected it for the present work. This choice aligns with previous research on DL
models for turbulent flows (Raissi e al. 2019a; Hora & Giometto 2024).

The input fed to the VAE model consists of velocity measurements acquired at the wall-
parallel plan, resulting in input dimensions of 1 x 128 x 128 x 3. As shown in figure 3, the
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encoder module of VAE consists of one convolutional layer, four residual blocks and max
pooling layers, a dense layer, a sampling layer, a reshape layer, and swish non-linearity. The
stack of residual blocks and pooling layer extracts the feature maps and compresses the input
of size 1 x 128 x 128 x 3 to 1 x 16 x 16 x 8f, where f is set to 42. Next, we employ
the dense layer to encode the extracted feature maps into the parameter space (4,0 4) of
the latent space distributions. For our work, the dimension of the latent space is set to 200
as it ensures good reconstruction accuracy. To obtain a realization of latent space (z), we
utilize a sampling layer z ~ g4 (z|X) which leverages reparametrization approach described
in Kingma & Welling (2014); Rezende et al. (2014). In the sampling layer, we first sample a
random vector u ~ N'(0, I) and then generate z as

Z2=pgy(x) +04(x)Ou, 2.4

where © is the element-wise product. This approach allows for the differentiation of the
ELBO with respect to the model parameters and enables the use of gradient-based optimiza-
tion methods.

Further, we have a decoder model (see figure 3) to decode the 3-D velocity fields from
the latent space. It consists of dense layers, which transform the latent space into a high-
dimensional space € R*'5% (512 in the figure 3), and a reshape layer that transforms the
output of the dense layer into a tensor of rank four, which represents the spatial feature maps.
Further, we employ four residual blocks followed by upsampling layers to perform non-linear
transformation and increase the feature map resolution. Finally, we have a convolution layer
with a linear activation function that outputs the tensor of size 128x 128 x64 % 3, representing
the 3-D velocity field. It is important to note that the input and output of the VAE model are
based on the same time instant, with each instant considered independently; consequently,
no temporal information is utilized in the reconstruction process. In the next section, we will
describe our proposed PVAE model.

2.2.2. Physics-informed variational autoencoder

As mentioned in § 1, purely data-driven DL models may excel at fitting data from high-fidelity
models and observations. However, their predictions may lack physical consistency and lead
to poor generalization performance. To improve the black box VAE model’s performance
and physical realizability, we constrain the VAE network to match additional quantities and
satisfy selected physical symmetries of the system. In PVAE, the VAE is constrained to match
the enstrophy (E) of the reference DNS case and to satisfy the momentum (equation 2.1) and
continuity equations (equation 2.2). These biases are introduced as soft constraints into the
loss function via three separate regularization terms, namely Lg, Lc, and Ly, whereas BCs
are enforced as hard constraints. To enforce the residual of the physical constraint into the
loss function, we employ a normalized error based on L, norm, i.e., e,, defined as

X - XI5

e @5
X117

e, =
X and X are actual and predicted quantity of interest, ||X||" = ﬁ > i]\i] X" and n is the order
of the norm. To ensure consistency with the mean-squared error used as a reconstruction
loss in Lyag (see equation 2.3), we set n = 2. During our experimentation, we found that
e, also ensures stable training of the PVAE model. A detailed discussion of each physical
constraint is provided in the following.

Turbulence is a broadband phenomenon characterized by power-law velocity spectra with
negative exponents at high wavenumbers, meaning that the kinetic energy of small-scale
motions is much smaller than that of larger scales. Accurately capturing high-wavenumber

06:6€:0Z 20T dunf 0g



AlIP
Publishing

£

311

312

313
314
315
316
317
318
319
320
321
322

323
324

331

332

333
334
335
336
337
338

340
341

343
344
345
346
347
348
349
350
351

9

variations in the flow field is expected to be challenging when using DL models (Lippe ef al.
2024). Since small-scale motions are the main contributors to E, L biases the PVAE model
towards high wavenumber modes, thus enriching the prediction with small-scale information.
Lg is defined as

L = er(EPNSE™), (2.6)

where E = w;w; is defined as an enstrophy field, w; = €;;x(dur/dx;) is the vorticity tensor,
€;jk is the Levi-Civita symbol, and EPNS and E™¢ are the DNS and PVAE reconstructed
enstrophy fields, respectively.

The flow system considered in this study involves incompressible fluids; therefore, it must
satisfy the M and C equations. To achieve this goal, the residuals of the M and C equations are
introduced as a soft constraint in the loss function to penalize deviations from these equations,
following the methodology used in previous works (Raissi et al. 2019b; Gao et al. 2021; Clark
Di Leoni ef al. 2023). The constraining of the PVAE model to learn the residual functions
will bias the model to comply with the M and C equations (see equations 2.1 and 2.2), thereby
improving the realizability of the generated predictions. Ly and L¢ can be defined as

Ly = e2(M(u™™, pP) M(u™e, pP%)), (X))
Lc = e2(CP), Cu™)), 2.8)
where M(u, p) and C(u) represents the residual of the M and C equation, respectively and

pP™S represents the reference DNS pressure field.

The loss function (Lpyag) minimized for the PVAE model during training is a combination
of a content 10ss (Lcontent) and a physics loss (Lpnysics) and is defined as

Lihysics = (1 = Ac) Ly + AcLc, 2.9)
Lcontcnt = (1 - /IE)LVAE + /IELQ’ (2-10)
LpvaE = (1 - /h’)-ccontenl + /IP-LphySiCSs 2.1

where Ac, Ag, and Ap are the regularization constant for L¢, L, and Lppysics, respectively
used to balance each term of the Lpyag. Lg, Lm and L¢ comprise both spatial and temporal
derivatives. Spatial derivatives are computed via a second-order accurate centered finite-
difference scheme. A non-trainable convolution kernel is engineered to evaluate spatial
derivatives based on the finite difference scheme (Gao et al. 2021; Xuan & Shen 2023).
While we also explored using higher-order schemes, we found no significant improvement in
the reconstruction accuracy and hence settled for second order. One plausible explanation is
that the majority of the reconstructed structures are low-wavenumber modes, for which the
second-order accurate scheme suffices in resolving them (Xuan & Shen 2023). To calculate
the pressure gradient (dp/dx;) and acceleration (du; /dt) terms in the M equation, flow fields
from the DNS dataset are leveraged. This is appropriate because the pressure and velocity
information is only required during the training phase, and once the network is trained, it
can reconstruct flow fields without any additional information. It is worth noticing that the
residuals of the governing equations in Ly and L are calculated against the residuals of
the governing equations on reference DNS data instead of a null tensor. This is so because
the DNS is initially carried out using a pseudo-spectral approach and, therefore, may not
satisfy the governing equations with zero residuals on the finite-difference stencil. We use
the residuals on the DNS data to ensure fair comparisons of the violation of the governing
equations. Lastly, BCs are enforced as a hard constraint through a padding operation—
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specifically, by adding extra pixels or ghost cells around the edges of the input data, as
described in Gao et al. (2021). For instance, to enforce Dirichlet BCs, a constant padding
value is uniformly applied around the input data.

2.2.3. Model parameters

In §2.2.1 and §2.2.2, we described the VAE and PVAE architectures; this section discusses
corresponding model hyperparameters and the training setup.

The performance and computational cost of the CNN-based models are influenced by
various parameters, including kernel sizes, number of kernel/channels (feature maps) in
the convolutional layer, and the downsampling and upsampling ratio of max pooling and
upsampling layer, among others. A typical choice for kernel size lies between 3 to 7 to capture
fine-grained details and extract relevant features of the dataset (Simonyan & Zisserman
2014; Xuan & Shen 2023). The number of channels also affects the performance of the
model; ideally, more channels can increase the model’s capacity to capture and describe
a wider variety of features (Goodfellow ez al. 2016). To balance model performance and
computational cost, we set the kernel size to 3 and the number of channels to a multiple of
f, where f is set to 42 (see figure 3). The upsampling and downsampling ratio is kept as two,
which is a common choice (Kang et al. 2022).

For the PVAE model, the optimal values of Ag, Ac, and Ap, are determined through a
Grid-based hyperparameter search approach (Goodfellow et al. 2016). To avoid the trivial
solution of zero fields becoming a local minimum, these parameter values are restricted to the
[0,0.50] range, as suggested in Subramaniam et al. (2020). Although not explicitly shown
here, hyperparameter analysis revealed that Ag = 0.25,1p = 0.25,1c = 0.50 is optimal
for the PVAE model, as it achieved the best overall performance on the validation dataset.
We also acknowledge that other hyperparameter tuning methods, such as random search
or Bayesian optimization, could be explored to improve the model’s performance further
(Goodfellow et al. 2016).

The VAE and PVAE model with the aforementioned setup is designed using the Tensor-
Flow ML library (Abadi ef al. 2016). Trainable parameters are randomly initialized using
realization drawn from a uniform distribution (Glorot & Bengio 2010), as done before by the
authors (Hora & Giometto 2024; Yousefi e al. 2024b). The learning rate is kept constant at
5 x 10~* throughout the training and trained end-to-end by backpropagation using the Adam
optimizer (Kingma & Ba 2014). Due to GPU memory limitations, an effective mini-batch
size of 100 is employed. The number of epochs chosen is 5000 epochs, and it is based on the
observation that extending training beyond this point did not yield significant improvements
in the reconstruction accuracy on the validation dataset.

2.3. Linear stochastic estimation

To better assess the performance of the proposed DL model, we will compare its predic-
tions against a more traditional approach based on the LSE technique (Adrian & Moin
1988). Traditionally employed for the extraction of coherent structures in turbulent flows
(Christensen & Adrian 2001), the LSE method has more recently found applications in
reconstructing velocity fields across various scenarios. These applications include off-wall
plane velocity fluctuation reconstruction in turbulent open-channel flow using wall-shear-
stress components and pressure measurements (Guastoni et al. 2021), reconstructing 3-D
velocity fields from surface velocity and elevation measurements (Xuan & Shen 2023), and
characterizing vorticity fields (Wang et al. 2021a). Consequently, the LSE method offers a
suitable benchmark for our study.

The LSE method involves estimating a linear expression comprising empirical parameters
from the measured quantifies to infer unknown quantities. In the context of this work, the
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LSE is employed to estimate the 3-D velocity field fluctuations from 2-D measurements.
Mathematically, this operation is defined as

W= Q™ j=1,2,3, (2.12)

i =

where Q;; is a linear operator. This linear operator, Q;;, is determined by minimizing the
mean squared difference between the reconstructed and corresponding DNS velocity fields.
For the reconstructed velocity field u”"® and the corresponding DNS field u”PNS, the mean
squared discrepancy D can be expressed in an integral form as

~ /‘ /‘ fv (u/,rcc _ u/,DNS)(u/,rcc _ ur,DNS)

IThav

The optimal value of Q;; is determined by minimizing D (Wang et al. 2021a). Further,
this optimization problem can be formulated as

D

(2.13)

Qiju ;™ (O™ (1) = wp PN (), m = 1,2,3. @.14)

Here, r € V is a position vector, uj",'“s(r)u,“,‘f“(r’) can be defined as averaged measured

velocity distribution given an event of uy,™** occurring at r’ and similarly, uP™Su5e* (r') as

conditionally averaged velocity distribution for the event u},** (Wang et al. 2021a; Xuan &
Shen 2023). In general, equation 2.14 leads to a linear system with a large number of variables
directly linked to the discretization of the spatial domain. This characteristic renders the
computational solution of such a linear system impractical. To circumvent this limitation,
and as suggested by Wang et al. (2021a) and Xuan & Shen (2023), we leveraged the wall-
parallel homogeneity inherent in open-channel flow. This enabled us to decouple equation
2.12 in the wall-normal direction, making it possible to independently evaluate it for each
wall-parallel (x; — x,) plane. For more information on the LSE approach, we recommend
readers to refer Wang et al. (2021a) and Xuan & Shen (2023).

3. Results

In this section, we evaluate the performance of the PVAE, VAE, and LSE models. A
qualitative and quantitative comparison of the reconstructed velocity field, using instanta-
neous pseudo-color maps alongside corresponding probability density function and vortical
structures using the Q criterion, is presented in §3.1. Next, we examine the energy spectra
and auto-correlation of the reconstructed flow and compare them to DNS results in §3.2. The
space- and time-averaged wall-normal profiles of turbulent flow statistics are presented in the
§3.3. Moreover, we conduct a physical realizability analysis focusing on the residual of the
momentum and continuity equations, elaborated upon in §3.4. Finally, in §3.5, we explore
the impact of measurement on the reconstruction accuracy of the models.

3.1. Reconstructed instantaneous flow field
In this and the subsequent §3.2, we use a single snapshot from the test dataset as an illustrative
example to compare the reconstructed flow field with the ground truth DNS results. To
begin with, we test the ability of the PVAE to reconstruct the 3-D instantaneous velocity field
fluctuations using pseudocolor maps, as these are a valuable starting point for characterizing
discrepancies between reference and predicted fields. To this end, instantaneous streamwise
(u}"), cross-stream (u}"), and wall-normal (u5") velocity fluctuations from the PVAE are
compared against corresponding DNS, VAE, and LSE predictions over a chosen wall-parallel
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Figure 4: Instantaneous snapshot of normalized streamwise u’1+ (top), cross-stream u’2+

(middle), and the vertical ué* (bottom) velocity fluctuations at height x3 = 2h/5.
Reference direct numerical simulation (DNS), physics-informed variational autoencoder
(PVAE), VAE, and linear stochastic estimation (LSE) results are shown in panels
corresponding to columns (a), (b), (c), and (d), respectively. £ is the height of the
computational domain, and x| and x, are streamwise and cross-streamwise directions.
The superscript + indicates a quantity scaled in inner units using the fluid viscosity v and
the friction velocity u .

plane in figure 4. All velocity fluctuation components are scaled in inner units using v
and u,. The rationale for examining velocity fluctuations is that these provide an intuitive
picture of the spatial structure of the flow while also enabling comparison with the LSE
approach (which can only predict fluctuations as described in §2.3). It is evident from
figure 4 that predictions from both the PVAE and VAE models at the (arbitrarily chosen)
x3 = 2h/5 plane are in remarkable agreement with the reference DNS data and surpass
the performance of the traditional LSE approach. For the instantaneous streamwise veloc-
ity fluctuation component u}*, the reference DNS solution is characterized by streamwise-
elongated, high- and low-speed streaks flanking each other in the cross-stream direction.
The DL models excel in reconstructing both the spatial variability and the magnitude of
these flow features. The spanwise 5" and vertical u5" velocity fluctuations feature modes of
variability that are relatively more compact in space when compared to those of the /" field,
which are expected to pose a challenge for data-driven approaches (Xuan & Shen 2023).
Nonetheless, based on visual inspection, the DL methods again exhibit remarkable accuracy
in capturing these instantaneous fields. Interestingly, the addition of physical constraints does
not appear to yield any apparent improvement in the structure of the predicted instantaneous
flow field. LSE predictions appear more homogeneous on the considered plane, resulting
in a loss of critical spatial variability details. This behavior is particularly noticeable in the
representation of high wavenumber modes. Although not shown here, the LSE performance
significantly degrades at planes more distant from the x3 = 4/2 sampling location—a finding
consistent with that from other studies (Suzuki & Hasegawa 2017; Xuan & Shen 2023). The
upcoming discussion will focus exclusively on the DL approaches.
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Figure 5: Empirical probability density function (PDF) of u{* (a), cross-stream u5" (b),
and the wall-normal u’; (c) velocity fluctuations for the DNS (red), VAE (green), and
PVAE (blue) models at x3 = 2h/5.

To gain further insight into the spatial variability of the flow fields, figure 5 presents
histograms of the u’1+, ué*, and ué* fields evaluated over the aforementioned plane. Panels a, b,
and c in figure 5 correspond to u}*, u5", and u5" fluctuation fields, respectively. The histogram
uses blue color for PVAE, green for VAE, and red for the ground truth DNS results. The figure
demonstrates that both the PVAE and VAE models successfully capture the majority of the
DNS velocity variability. However, larger discrepancies compared to the reference DNS data
are observed near the mode of the distributions, representing the most frequent events. The
results again indicate that incorporating physical constraints does not improve the predictions
of the DL models.

The predictive capabilities of the PVAE model are further assessed in terms of coherent
vortex structures, the building blocks of turbulence. Coherent vortices are defined as flow
regions with long-lasting vorticity concentration w, allowing for a local roll-up of the sur-
rounding fluid (Lesieur 1997). These structures play a crucial role in transporting mass,
energy, and momentum within turbulent flows and have been the focus of sustained research
in the past decades (Robinson 1991). Analyzing vortical structures in the predictions of DL
models is also important because a mean squared error function is utilized to minimize the
discrepancy between the reconstructed velocity field and the corresponding ground truth data
(see §2.2). However, this error minimization on the velocity field does not inherently ensure
an accurate representation of vortical structures in the reconstructed flow fields. In figure
6, we present selected isosurfaces of the Q-criterion (Dubief & Delcayre 2000) obtained
from the reference DNS, the PVAE, and the VAE models. These visualizations effectively
demonstrate the presence of hairpin heads and tails, corroborating findings from previous
studies (Scott et al. 1991). Notably, the vortical structures observed in the reconstructed
instantaneous velocity fields of the DL models exhibit a remarkable resemblance to the DNS
data, indicating that the proposed formulations can accurately reproduce the salient features
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Figure 6: Instantaneous turbulent vortical structures extracted using Q criterion for the
DNS (top), PVAE (middle), and VAE (bottom) cases. Different colors and transparency
denote isosurfaces with different Q magnitudes.

of boundary-layer turbulence. Upon visual inspection, it is also apparent that the PVAE and
VAE flow fields are qualitatively similar, and the inclusion of physical constraints does not
appear to enhance the representation of the vortical structure.

To provide a quantitative measure of model accuracy, we next compare predictions in terms
of a normalized mean-squared error (e3) (see equation 2.5). Focusing on the x3 = 2h/5
plane from figure 4, the PVAE (VAE) e; error is 2.8% (3.3%) for u}*, 4.8% (5.4%) for u’',
and 5.8% (7.6%) for the uj" velocity fluctuation components. The error in the streamwise
velocity component (u1*) is relatively lower than that for the cross-stream and wall-normal
components («5" and u}"). This phenomenon has also been noted in recent work by Yousif
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Figure 7: Vertical structure of the normalized one-dimensional energy spectra of
streamwise velocity (E |u;2x3’ 1) components at height x3 = 2/2/5. The solid gray line

5/3

depicts the (kx3)~! production range and (k;x3)~>/3 in the inertial subrange scaling.

etal. (2023a), where it was suggested that such a disparity may be attributed to the dominance
of the streamwise velocity field in pressure-driven wall-bounded flows (Pope 2000), which
consequently becomes the primary focus of DL models during their predictions. Another
plausible reason for the variable accuracy in predicting velocity field is the use of a cumulative
loss function (Hora & Giometto 2024). Hora & Giometto (2024) noted that the cumulative
loss function does not impose specific constraints on individual predicted quantities, leading
to variable accuracy in flow statistics predictions. Nevertheless, in the considered plane,
errors are modest, and the overall accuracy of model predictions would be suitable for most
geophysical and engineering applications assuming the same error magnitudes at higher Re ..

Based on the above analysis, it can be concluded that both the PVAE and VAE models can
qualitatively reconstruct the instantaneous velocity field at the unseen wall-parallel plane and
outperform the LSE approach. For a more quantitative assessment of model performance,
we next examine the reconstructed velocity spectra and two-point correlation statistics.

3.2. Energy spectra, and two-point correlations

One-dimensional streamwise spectra of streamwise velocity (E;) are shown in figure 7. The
spectra corresponding to the PVAE, DNS, and VAE models are represented using blue, red,
and green colors, respectively. It is apparent from the figure that the DL models accurately
capture the energy distribution of large-scale structures (small k;). However, notable dif-
ferences between the DNS and DL models appear as the k| values increase, particularly
for the VAE model. These discrepancies highlight a limitation in accurately learning and
reproducing small-scale flow variability. This behavior can be explained via the frequency
principle (F-principle). According to this principle, when a DL model is trained using the
mean-squared objective function, low-frequency information is usually learned with greater
accuracy when compared to high-frequency information (Xu et al. 2019; Zhang et al. 2022).
Further, the error analysis using e, (see equation 2.5) of PVAE (VAE) reveals that for the area
under the curve of streamwise energy E|; spectra in the production (kjx3 < 1) and inertial
and dissipation subranges (kx3 > 1) are 0.4% (0.1%) and 1.3% (3.1)%, respectively. The
enstrophy loss term introduced in the PVAE model yields an apparent improvement in this
sense, but local (in k) errors remain substantial, corroborating the argument made in Beucler
et al. (2021) that soft constraints may not enable the DL model to satisfy the physics exactly.
Overall, results indicate that the PVAE performs marginally better than the VAE model and
that both DL models successfully capture the overall kinetic energy of the flow.

‘We next examine the spatial coherence of the predicted flow field via the two-point auto-
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Figure 8: One-dimensional spatial autocorrelation (R}}) of streamwise velocity at height
x3 ~ 2h/5 along the streamwise (a) and cross-stream direction (b).

correlation R;; function along the streamwise (x;) and cross-stream directions (x;), shown
in figure 8. From a physical perspective, it is notable that Rj; remains finite within the
considered range of r;/h (figure 8, a), implying that the selected computational domain is
not large enough for the flow to decorrelate completely. Additionally, the spatial autocorre-
lation plot reveals negative lobes in the cross-stream direction (figure 8, b), highlighting the
presence of streamwise-elongated high- and low-momentum streaks, flanking each other in
the cross-stream direction (Zhou er al. 1999). This quantity relates to the velocity spectrum,
and we can observe that the PVAE model does an excellent job of predicting such a profile,
suggesting that the proposed formulation can effectively capture the large-scale structure of
the flow field—the ones primarily contributing to flow coherence. Moreover, the VAE model
also aligns remarkably well with the DNS profile, underscoring that integration of physical
constraints does not significantly enhance model performance in this specific aspect.

3.3. One-dimensional flow statistics

The wall-normal structure of flow statistics has been the subject of sustained research in the
past decades, owing to the key role they play in controlling surface drag as well as mass and
energy exchanges across a range of applications (Nagib & Chauhan 2008). Figure 9 compares
the DL and DNS predictions in terms of normalized streamwise velocity (a) and root-mean-
square (RMS) velocity (b,c,d) profiles. Focusing on (u7}), it is apparent that the proposed
PVAE and VAE models accurately predict such a quantity. DL-based RMS profiles are also
in great agreement with corresponding DNS data, indicating that the DL algorithms are able
to correctly capture second-order moments of the velocity field. The maximum percentage
error of the PVAE (VAE) model occurs at the peak of the profiles, with a max(e;) error of
5.4% (3.9%) for (u’lfRMS), 6.6% (4.2%) for (u;RMS), and 10.2% (6.5%) for (ugRMS).

All in all, this and the previous sections have shown that both the PVAE and VAE mod-
els can reconstruct 3-D flow fields from 2-D planar measurements that are in excellent
agreement with corresponding DNS results in terms of coherent structures, velocity spectra,
spatial flow coherence, and one-dimensional profiles of velocity statistics. However, we
note that although physical constraints such as momentum and mass conservation have been
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Figure 9: Vertical structure of normalized mean streamwise velocity <u|+> (a), streamwise
(ullfRMS> (b), cross-stream (uZ’RMS) (c), and wall-normal (u;’RMS) (d) root mean square
(RMS) velocity fluctuations. (-) denotes the averaging operation in time and along
coordinates of statistical homogeneity (x,x;).

incorporated into the objective function of the PVAE model, this has not led to significant
improvements in terms of model performance when compared to the VAE formulation, with
the exception of velocity spectra. This finding suggests that the “physics-less” VAE model
might have approximately learned these constraints during the training process, which would
justify its accuracy. To gain further insight into this, the next section examines the ability of
the proposed models to conserve mass and momentum—the constraints explicitly enforced
in the PVAE.

3.4. Physical realizability

The considered flow system is governed by the incompressible Navier-Stokes and mass-
conservation equations, i.e., M and C equations (equations 2.1 and 2.2). Compliance with
these symmetries is, hence, an important requisite in the model assessment. To determine
how well the proposed DL algorithms adhere to the conservation equations throughout the
training phase, the physics residuals Ly and Lc (equations 2.7 and 2.8) are presented
against the number of training epochs. These residuals, depicted in figure 10, function as
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Figure 10: Continuity (L¢) (a) and momentum(Ly) (b) regularization term against
number of epochs. Epochs indicate the number of iterations used in the learning process.

indicators of the deviation from the governing equations. Upon completing the training
phase, the L and Ly losses associated with the PVAE model are approximately half of
those recorded for the VAE counterpart. The incorporation of physical constraints also yields
a more rapid convergence of the corresponding loss terms, which is especially apparent for
the Ly loss. This result underscores the important role played by physical constraints in
guiding the learning process toward solutions that are more consistent with the governing
equations. However, it is pertinent to note that when considering the scale of magnitude,
losses from the VAE model are still within a comparable range to those of the PVAE, thereby
justifying the commendable performance of the former in accurately capturing flow statistics.
Similar to the findings in the previous sections, we observe that adding physical laws as a soft
constraint to the DL model does not ensure that the predictions satisfy these laws exactly, and
thus, there is a need to apply them as a hard constraint (Beucler ez al. 2021).

In terms of computing time, training the PVAE and VAE models using four NVIDIA RTX
A6000 GPUs took approximately five and four days, respectively. Given the modest increase
in computational cost associated with training the PVAE, introducing physical constraints
may be justified for applications that demand higher accuracy in small-scale feature recon-
structions and better consistency with the underlying governing equations.

3.5. Impact of measurement plane on reconstruction accuracy

Results presented in the preceding sections are representative of reconstructed flows based
on planar measurements sampled at x3 = h/2. However, information may be available at
different wall-normal distances, and the choice of sampling plane may impact the predictive
accuracy of the proposed model. To investigate model sensitivity to the measurement loca-
tion, two additional sampling locations are here considered, namely x3 € {h/4,3h/4}, or
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Figure 11: Mean (u) and standard deviation (o) of the reconstruction error (¢) for the
PVAE (a) and VAE (b) model across different sampling planes. Three sampling planes are
considered for evaluating these statistics, namely x3 = {i/4, h/2,3h/4}. Solid lines
depict p(e), +o (e) (dark color), and £20 (e) (light color). The analysis excludes the
bottom and top boundaries due to the presence of zero values.

equivalently, x] = {62.5, 187.5}. A PVAE model with fixed architecture and hyperparame-
ters is trained for each of these sampling locations. For comparison, a corresponding VAE
model is also trained for each of these sampling locations, yielding a total of four additional
DL predictions.

Model performance is evaluated in a statistical sense via comparison of reconstruction
error as a function of xj for the streamwise (u7*), cross-stream ("), and wall-normal (u5")
velocity fluctuations. Figure 11 presents the results of such an analysis. In this figure, the
reconstruction error e(x}) of a velocity component is defined as

n 7,rec,k 7,DNS, k
+ 1 -//lexz(uf N U )de]dxz
e(x3) - ; Z 7,DNS. ky2
k=1 //x.,xz(uj ) dxydx;

(3.1)

where u} is the j' component of velocity fluctuations, k is the k' sample, and 7 is the total
number of samples in the test dataset. Further, the mean and standard deviation of e(xg), at

each wall-normal location are defined as u = % Z?:l ej(xy) and o = | l% Zf:l [e:(x}) - u]?,

respectively. Here, e,«(x;') represents the reconstruction error corresponding to the DL mod-
els trained at the i*"* sampling plane. Shaded regions in figure 11 depict the error variability
amongst models trained using varied sampling locations. As shown in figure 11, the overall
reconstruction error of both models is within 7% for u{* and /" and can reach up to about
15% for the uj" velocity fluctuation. The PVAE slightly outperforms the VAE in predict-
ing velocity fluctuations overall. Close to the wall, both models exhibit relatively larger

06:6€:0Z 20T dunf 0g



AIP
ﬁé_ Publishing

612
613
614
615
616
617
618
619
620
621
622
623
624

625

626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

20

reconstruction errors for the u{* and u5" velocity fluctuation components, with a gradual
improvement as we move towards the channel half width. The behavior of uj" deviates
from this pattern, displaying relatively higher error values near both the wall and the free
surface. This behavior can be easily explained when considering the small magnitude of wall-
normal velocity fluctuation in the vicinity of the lower and top boundaries, which magnify
relative errors. The bottom and top boundaries are rigid lids, which significantly dampen
uj" velocity fluctuations and lead to energy redistribution to the wall-parallel planes. What
is also apparent from the figure both models feature small o values (fraction of a percent),
indicating that model performance is insensitive to the choice of sampling location at the
considered Reynolds number. In summary, the proposed PVAE model is highly accurate
and is expected to yield consistent performance irrespective of the wall-parallel sampling
plane. The inclusion of physical constraints also yields a modest but consistent improvement
in performance when compared to the black box approach.

4. Discussion

This section offers a perspective on the previous findings and investigates the cause of
observed discrepancies in the proposed model predictions. §3.1 demonstrated that the DL
models effectively reconstructed the 3-D velocity flow fields from 2-D planar wall-parallel
measurements and outperformed the traditional LSE approach. However, the accuracy of
DL models varies depending on the specific flow variable. In particular, DL models showed
higher accuracy in capturing the streamwise (u) velocity field compared to the cross-stream
(u2) and wall-normal (#3) components. Results in §3.2 also showed that DL models ac-
curately captured the large-scale structures; however, they faced challenges in representing
the small-scale structure. The integration of the enstrophy constraint in the PVAE model
enhanced its ability to capture small-scale structures, though slight discrepancies still existed
locally for large wavenumbers. Further, in §3.4, we found that the inclusion of physical
constraints, namely, incompressible Navier-Stokes, improved the consistency of the recon-
structed flow fields with the governing equations, though the predictions did not fully satisfy
these constraints. The following paragraphs will provide further insights into these findings
and discuss strategies to address these limitations and improve model performance.

As discussed in §2, both the DL and LSE approaches primarily use convolution operations.
However, the DL models demonstrated superior performance compared to the LSE approach
in reconstructing 3-D velocity fields from 2-D measurements (see §3.1). The success of
DL models could be attributed to their use of non-linear transformation. The DL models
employed a two-step transformation process: first, the input was transformed linearly using
convolutional layers, followed by the application of Swish functions to introduce non-linear
effects. In contrast, the transformation in the LSE was purely linear, using the Q operator
(see §2.3). Additionally, the DL model includes upsampling and downsampling layers, which
adjust the resolution or number of grid points in the outputs of the convolutional layers. This
allows the filters/kernels in different convolutional layers to efficiently process features at
varying spatial scales, improving the model’s ability to capture a wide range of scales present
in the data. The combination of convolutional, non-linearity, upsampling, and downsampling
layers enabled the DL models to approximate a complex ¥ mapping (as described in equation
1.1), which the LSE model could not achieve. This finding is consistent with numerous
studies that have demonstrated the superior performance of non-linear DL models over linear
methods in addressing turbulent flow problems (Guastoni et al. 2021; Xuan & Shen 2023).

The quantitative error analysis using the normalized mean square error metric in §3.1
showed that the DL models captured the streamwise (i) velocity field with greater accuracy
compared to the cross-stream (#2) and wall-normal (#3) components. During the training

06:6€:0Z 20T dunf 0g



AIP
ﬁé_ Publishing

660
661
662
663
664
665
666
667

668

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

21

phase of DL models, we utilized standard mean-squared error function as a Lga, (equivalent
to the error of the kinetic energy) which is an aggregated measure of the reconstruction
accuracy for the different velocity component. In the considered open-channel flow setup,
the Reynolds stress tensor is highly anisotropic—a property stemming from the distinct
distribution of u;, u, and u3. Anisotropy is the root cause of the observed imbalance in
the loss terms, ultimately impacting the accuracy of the model in capturing the different
velocity components (Clark Di Leoni ef al. 2023). One plausible approach to alleviate this
issue is to separate the Lgat, (equation 2.3) into three components with different weights, i.e.,

3 n
1
Lowa= ) B 0N —u? @1
7= i=1

where §; is an independent hyperparameter utilized to balance each term of Lga, (Clark
Di Leoni et al. 2023). The value of 8;’s can be determined by incorporating them as trainable
parameters of the model (Xiang er al. 2022).

In §3.2, we analyzed energy spectra to evaluate the capability of DL models to reconstruct
flow scales in turbulent channel flow. Both DL models accurately captured the large-scale
structures; however, notable differences between the DNS and DL model predictions were
apparent for the small-scale structures, particularly for the VAE model. The limitations
of the DL models in capturing small-scale structures can be attributed to the F-principle.
According to this principle, when training a DL model, it tends to learn the low-frequency
components more accurately and quickly while exhibiting relatively poorer performance
with high-frequency components, as discussed in existing studies (Xu et al. 2019; Zhang
et al. 2022). The marginally better performance of the PVAE model over the VAE model
in capturing small-scale structures could be attributed to the enstrophy constraint. During
the training of the PVAE model, enstrophy was added as a soft constraint, which led to
better prediction of small-scale structures. However, this approach still resulted in some
minor discrepancies, as soft constraints do not precisely satisfy physical laws (Beucler et al.
2021). Recently, Lippe et al. (2024) proposed a partial differential equations (PDE)-Refiner
approach which enhances DL models’ ability to accurately model structures corresponding
to all wavenumbers. Therefore, employing a PDE-Refiner approach for the reconstruction
of velocity fields could potentially enhance model performance and more accurately capture
small-scale structures.

In §3, the findings revealed that the incorporation of the momentum and mass conservation
as a soft constraint alongside the observation data did not yield any discernible advantage
in the reconstruction accuracy. However, it was observed that for the flow system under
consideration, the physical constraints enhanced the physical realizability of the DL model
(see §3.4). To introduce these physical principles as soft constraints in the loss term, we
introduced A, as new hyperparameters. For this study, we employed a grid-based hyperpa-
rameter search approach to identify the optimal values. However, alternative strategies could
be explored to determine these additional hyperparameters, potentially yielding improved
results. For example, they could be updated based on the analysis of the Hessian of the loss
function (Wang et al. 2021c) or integrated into the model as trainable parameters (Xiang
et al. 2022). An alternative approach is to enforce governing equations as hard constraints,
which can enable deep learning models to precisely adhere to physical laws, as demonstrated
by Beucler ez al. (2021); Gao et al. (2021).

In §3, DL models and LSE approach are trained and tested with the dataset corresponding
to open-channel flow at Re, = 250. We expect the model to perform accurately for Re,
values below 250; however, for Re, higher than 250, performance is likely to degrade due
to the emergence of finer small-scale structures at higher Re, (Pope 2000). To address
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this, transfer learning—a technique that adapts a model trained on one task for a related task
(Weiss et al. 2016)—could be employed to extend model capabilities to higher Re, (see, e.g.,
Guastoni et al. 2021; Yousif et al. 2022, 2023a,b). Instead of training a model from scratch
for higher Re, transfer learning allows the reuse of pre-learned features from a lower Re,
case to accelerate the training and reduce data requirements for higher Re, cases (see, for
example, Guastoni et al. 2021; Yousif et al. 2023D).

5. Conclusions

This study has proposed a PVAE model reconstructing 3-D flow fields from 2-D wall-
parallel measurements in an open-channel flow at Re, = 250. Physics-based constraints,
including momentum and continuity equations, enstrophy, and boundary conditions, have
been incorporated into the loss function and architecture of the DL model as soft and hard
constraints to improve the model’s performance. The reconstruction abilities of the PVAE
have been compared against a corresponding black-box VAE (no physics constraints) and
a more traditional LSE reconstruction method. Model assessment has focused on recon-
structed instantaneous 3-D flow fields and coherent structures, velocity histograms, energy
spectra, two-point correlations, one-dimensional first- and second-order flow statistics, and
the residual with respect to the governing equations. This analysis focused on assessing the
benefits of the proposed DL architecture over traditional methodologies as well as the impact
of physical constraints on model accuracy and robustness.

A qualitative analysis based on visual inspection of the reconstructed instantaneous snap-
shots, histograms, and vorticity structures of velocity fields has indicated that PVAE model
predictions are in remarkable agreement with reference DNS velocity, albeit with minor
discrepancies. Visual inspection of the reconstructed instantaneous snapshots against the
corresponding DNS results has also demonstrated that the model is in remarkable agreement
with the reference solution and outperforms the classical LSE approach. A quantitative error
analysis has indicated that the streamwise (1) velocity field is captured with higher accuracy
when compared to the cross-stream (u2) and wall-normal (u3) components. As briefly
mentioned in §4, one plausible reason is the use of a cumulative loss function. To mitigate this
issue, Lgata can be separated into three components, with §; employed to balance individual
term within Lgy,.

Evaluation of energy spectra and two-point autocorrelation has further confirmed that
the PVAE performs well in capturing large-scale flow structures, with minor discrepancies
for high wavenumber modes. Further, aside from minor discrepancies in the reconstructed
peak velocity RMSs, double-averaged flow statistics were also found to be in very good
agreement with corresponding DNS data, demonstrating that the proposed model has learned
the energetic scales of the flow—the main contributors to the mean and RMS velocity
statistics. While the addition of physical constraints did not lead to apparent improvements in
terms of large-scale features and double-averaged flow profiles, it did improve the ability of
the model to capture small-scale structures and the physical realizability of the reconstructed
flow fields (see figure 7). Notably, the inclusion of physical constraints reduced the residual
on the momentum (continuity) equation by ~ 56% (41%). In terms of computational cost,
introducing physical constraints leads to a modest 20% increase in the computational cost
when using an equivalent number of training samples and epochs—a cost that may be justified
in applications requiring accuracy in terms of physical realizability. Lastly, it has been shown
that predictions from the PVAE model are insensitive to the sampling-plane location for the
considered flow system. We note that this might not hold true at higher Reynolds numbers.

Overall, this study demonstrates that PVAE models can accurately reconstruct 3-D open
channel flow at Re; = 250 from 2-D wall-paralle] measurements at arbitrary wall-normal
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distance from the surface, surpassing the performance of traditional LSE techniques. This
capability is of interest to the engineering and geophysics communities, given the aforemen-
tioned challenges associated with performing dense measurements of 3-D turbulent flow
fields in both laboratory and full-scale environments. The proposed formulation can also
assist in compressing 3-D data into a convenient 2-D framework for data archival, yielding
storage reduction. Although we focused on a specific case involving neutrally stratified
turbulent open-channel flow, the proposed approach can be easily extended to more complex
flow systems where complex surface morphologies, thermal stratification, and other flow
physics are involved.
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