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Significance

 Earth system models are crucial 
tools for projecting global mean 
temperature rise based on 
various Shared Socioeconomic 
Pathways in the sixth phase of the 
Coupled Model Intercomparison 
Project. However, these models 
exhibit significant uncertainties 
that challenge governments and 
stakeholders in developing 
effective climate change 
adaptation strategies. This study 
demonstrates the use of Transfer 
Learning to constrain long-term 
projections of global temperature 
maps by efficiently combining 
models’ simulations with 
historical observations spatially 
resolved on a global scale. This 
allows to reduce the spread of 
multimodel mean temperature 
projections while enhancing the 
reliability of the associated 
regional patterns.
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Precise and reliable climate projections are required for climate adaptation and mitiga-
tion, but Earth system models still exhibit great uncertainties. Several approaches have 
been developed to reduce the spread of climate projections and feedbacks, yet those 
methods cannot capture the nonlinear complexity inherent in the climate system. Using 
a Transfer Learning approach, we show that Machine Learning can be used to optimally 
leverage and merge the knowledge gained from global temperature maps simulated by 
Earth system models and observed in the historical period to reduce the spread of global 
surface air temperature fields projected in the 21st century. We reach an uncertainty 
reduction of more than 50% with respect to state-of-the-art approaches while giving 
evidence that our method provides improved regional temperature patterns together 
with narrower projections uncertainty, urgently required for climate adaptation.

Machine Learning | temperature | CMIP6 | projections | uncertainty

 Climate change is affecting all aspects of the Earth system, impacting ecosystems’ health, 
placing new strains on infrastructures, and affecting human migration ( 1 ,  2 ). Earth system 
models are the main tools used for assessing our changing climate. These models project 
global mean temperature rise according to several Shared Socioeconomic Pathways (SSPs), 
which represent future socioeconomic development scenarios linked to societal actions, 
such as climate change mitigation, adaptation, and impacts ( 3 ).

 However, Earth system models still exhibit substantial uncertainties in their projections, 
even for prescribed greenhouse gas concentrations, posing significant challenges for govern-
ments and stakeholders in developing climate change adaptation strategies. These uncertainties 
have not been reduced with the evolution of models and have even increased in the latest 
generation participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6) 
( 4   – 6 ). For instance, the transient climate response—i.e., the surface temperature warming at 
the time of carbon dioxide (CO2 ) doubling in response to a yearly 1% increase in per-year 
CO2  concentration—produced by CMIP6 simulations is larger than the one produced by 
CMIP3 and 5 models ensembles ( 7 ). In CMIP6, the equilibrium climate sensitivity, i.e., the 
global temperature increase at equilibrium for a doubling of CO2 , was the largest of any gen-
eration of models since the 1990s, ranging from 1.8 to 5.6 °C ( 7 ). It is well known that the 
majority of uncertainties in climate projections can be attributed to small-scale and “fast” 
physical processes, including but not limited to clouds, convection, and ocean turbulence ( 6 , 
 8   – 10 ). By better constraining these physical processes, which are observable on a day-to-day 
basis, it would be possible to reduce the associated uncertainties.

 Some of those issues are reflected in the inconsistency of CMIP6 models to reconstruct 
temperatures observed in the past ( 11 ). The models’ parameters calibration can be challenging 
due to data, time, and computational limitations ( 12 ). This calibration problem—together 
with errors arising from model structural assumptions, scenario uncertainty, and internal var-
iability ( 13 )—hampers the development of models that are fully aligned with historical obser-
vations ( 12 ), raising questions about the reliability of subsequent climate projections ( 14 ).

 Several studies have attempted to constrain CMIP6 simulations with observational data 
by employing a variety of techniques (e.g., paleoclimate reconstructions, emergent con-
straints, model weighting, etc.). One common approach is the use of Reduced-Complexity 
Models (RCMs), also referred to as emulators. These are simplified physics-based models 
designed to replicate the large-scale response of Earth system models at reduced compu-
tational cost. Their parameters can be easily calibrated under reasonable priors (often 
informed by Earth systems models’ distributions) to produce historically consistent hind-
casts, a critical condition for trust in future projections ( 14   – 16 ). However, RCMs usually 
do not capture the spatial details or accuracy required for detailed climate projections ( 16 ).

 In the present study, we demonstrate that Transfer Learning (TL), a recent branch of 
Machine Learning (ML), can be utilized to efficiently leverage knowledge from an 
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ensemble of CMIP6 Earth system models and constrain it to 
match historical observational data. TL enables the exploitation 
of knowledge acquired by a pretrained model on a data-rich task 
as a foundation for enhancing performance on a new but related 
task within the same domain, even with limited data availability 
( 17 ). We show that using this approach, the uncertainty associated 
with multimodel temperature projections can be reduced by opti-
mally fusing models projections and historical observations while 
resolving the regional patterns of climate change. This helps 
enhance the representation of future projections and their associ-
ated spatial patterns, particularly over time scales of a few details 
which are critical for policymakers ( 14 ). 

Constraining Climate Projections

 Various approaches have been proposed to reduce the uncertainties 
of climate models projections. They leverage current or past cli-
mate observations to refine climate sensitivity estimates ( 18 ,  19 ).

 One group of approaches has been exploiting paleoclimate 
proxies (i.e., surrogates for climate variables, such as temperature), 
especially chemical tracers that are now routinely simulated in 
Earth system models, to reduce and better constrain the range of 
climate sensitivity ( 20 ). Paleoclimate records offer tremendous 
potential, but paleoclimate proxies are not exempt from potential 
issues since they are only surrogates of the actual variable of inter-
est, and sometimes strong assumptions might be required to link 
those proxies to climate variables.

 A second group of approaches has used more recent climate 
observations—such as those from the 20th century which do not 
require proxies but cover a shorter time period—to constrain the 
range of climate sensitivity. One of these methods is the use of 
emergent constraints. They relate a physical process, which is an 
important regulator of climate sensitivity (e.g., low cloud reflec-
tivity), and its spread across models to an observation that is used 
to constrain future climate sensitivity within a Bayesian framework 
( 10 ,  21     – 24 ). These techniques, however, also suffer from several 
issues as they assume a linear relationship between the constraining 
and the target variable, while many important climate feedbacks 
are nonlinear ( 24     – 27 ). Emergent constraints are typically cast in 
terms of a univariate constraint, whereas many processes can inter-
act and be multivariate. Moreover, these constraints are critically 
dependent on the models ensemble used ( 28 ) and do not account 
for the pattern effect, which refers to the dependence of the Earth’s 
outgoing radiation on the global surface warming pattern and is 
important for climate sensitivity ( 29 ).

 Simple toy zero-order models of the Earth’s climate can also be 
used to understand the response of the global climate ( 30 ,  31 ) and 
especially the role of different climate feedbacks, such as those 
from water vapor or clouds. Recently, also RCMs have been devel-
oped with this aim, resulting less computationally demanding and 
representing the global climate at annual scales in terms of mac-
roproperties of the climate system. They allow to investigate uncer-
tainties across various components of the climate system and 
provide a framework to perform probabilistic calibrations of their 
parameters based on historical observations and various lines of 
evidence ( 15 ,  16 ). In a recent work, Smith et al. ( 14 ) calibrated 
the FaIRv2.1.0 model with emissions and observational con-
straints updated through 2022 to provide near- and long-term 
warming projections (fair-calibrate v1.4.1). Their study also 
includes an updated calibration of FaIR that was previously devel-
oped in the context of the Sixth Assessment Report of the 
Intergovernmental Panel on Climate Change (IPCC AR6) which 
uses historical emissions data up to 2014 and projections thereafter 
(fair-calibrate v1.4.0). Meinshausen et al. ( 32 ) used the 

probabilistic emulator MAGICC7 ( 33 ) to conduct a comprehen-
sive evaluation of long-term temperature projections according to 
the 2030 nationally determined contributions and long-term 
low-emission development strategies submitted by several coun-
tries around the globe. Quilcaille et al. ( 34 ) integrated OSCAR 
v3.1—an emulator built as a combination of modules, each ded-
icated to different components of the Earth system that can be 
calibrated separately—with historical temperatures and forcing 
constraints. Yet, the spatial patterns of climate response and sea 
surface temperature or the subtle response of cloud-circulation 
feedback are important for the overall climate response. These 
subtleties cannot directly be resolved if RCMs are used ( 30 ,  35 ).

 More accurate projections can also be achieved by applying 
optimal corrections to Earth system models based on historical 
observations. Indeed, available observed warming trends over the 
last decades have been used in several studies to constrain 
model-based temperature projections over the 21st century. 
Tokarska et al. ( 36 ) reduced the uncertainty in future projections 
by downweighing those CMIP6 models whose simulation results 
are not in line with historical warming. Ribes et al. ( 37 ) con-
strained global mean temperature projections using an adaptation 
of Gaussian process regression (also known as kriging) combining 
CMIP6 simulations and historical warming observations since 
1850. Liang et al. ( 38 ) exploited a weighting method that takes 
both model quality and independence into account ( 39 ) to give 
more weight to CMIP6 models that better match the observed 
1970 to 2014 warming. It is worth noting that these constraints 
do not consider the pattern effect in their temperature projections 
as they are computed against global average temperatures.

 Finally, the IPCC Working Group 1 (WG1) assessed the global 
surface air temperature change in the AR6 using multiple lines of 
evidence, including CMIP6 projections up to 2100. CMIP6 pro-
jections were combined with observational constraints on simu-
lated past warming to update estimates in the AR6 ( 40 ).

 Recently, TL has proven to be a powerful tool in scientific 
applications such as weather/climate prediction ( 41 ) and environ-
mental remote sensing ( 42 ). TL techniques have been successfully 
applied to merge the knowledge of climate models simulations 
and observations to make long-lead El-Niño Southern Oscillation 
forecasts ( 43 ,  44 ). In general, there has been a growing interest in 
the scientific community to employ ML to improve climate mod-
els projections, for instance, by enhancing parameterizations. 
There have been some initial attempts to build ML-based climate 
emulators as well. Examples are, for instance, the AI2 Climate 
Emulator ( 45 )—which is trained to reproduce a physics-based 
atmospheric model and predicts several diagnostics; Weber et al. 
( 46 ) who investigate the use of Deep Neural Networks (DNNs) 
as emulators to produce short-term precipitation forecasts; or 
ClimaX, a foundation model trained on CMIP6-derived datasets 
that can be employed for both weather and climate-related down-
stream tasks ( 47 ). However, with respect to these approaches, this 
work represents application of ML and especially TL to simulta-
neously reduce the spread of global climate temperature projec-
tions and improve the corresponding regional patterns.  

Results and Discussion

Leave-One-Out Cross-Validation Approach. This work aims 
to learn, i.e., acquire knowledge, from historical and projected 
climate simulations from CMIP6 models constrained by historical 
observations to provide more precise and reliable climate projections. 
This learning is first acquired by pretraining 66 DNNs, each 
dedicated to one of 22 CMIP6 models across three SSP scenarios: 
SSP2-4.5, SSP3-7.0, and SSP5-8.5. In this initial phase, each DNN D
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learns the complex relationships between CO2 equivalent forcing 
and CMIP6 temperature at a regional scale, capturing the diversity 
of different models’ responses. Given the lack of observations, in 
the future, validating this approach is essential before integrating 
historical observations. Therefore, a rigorous testing phase is 
performed using a leave-one-out cross-validation (also known as 
model-as-truth) strategy (48) where CMIP6 models are used as 
“synthetic observations.” This provides a systematic assessment 
of the DNNs’ ability to generalize and adjust projections across 
different CMIP6 simulations, adding robustness and confidence to 
the approach (see Materials and Methods for further details).

 In the following, we use SSP2-4.5 as a reference since low- 
emission scenarios are currently more likely by the end of the 
century than the high-emission SSP5-8.5 ( 49 ). The global average 
temperature error, rms error (RMSE), percentage of uncertainty 
reduction, and accuracy, along with 5 and 95% in 2081 to 2098, 
are computed for the three SSP scenarios considered (SI Appendix, 
Table S2  and Materials and Methods ).

 The leave-one-out cross-validation shows a mean global average 
error of 0.28 °C and a mean global average RMSE of 0.29 °C, in 
the 2081 to 2098 time period, with respect to the synthetic obser-
vations across all the 22 taken-out models under SSP2-4.5 
(SI Appendix, Table S2 ). The description of each metric is reported 

in Materials and Methods (section Metrics). As an example, 
 Fig. 1A   shows the narrow 5 to 95% confidence range (2.67 to 
3.68 °C) of the global average warming for 2098 relative to the 
1850 to 1900 base period, when FGOALS-f3-L is used as syn-
thetic observation. This reveals that the proposed approach is 
effective at narrowing the temperature uncertainty range (i.e., 
increasing the precision). Moreover, the global average error 
between the average temperatures projected by the DNNs ensem-
ble (average across DNNs, bold blue line in  Fig. 1A  ) and the 
synthetic observations from FGOALS-f3-L (bold red line in 
 Fig. 1A  ) is equal to 0.18 in the 2081 to 2098 time period, as 
reported in SI Appendix, Table S2 . This confirms that good accu-
racy is also achieved. During the leave-one-out cross-validation, 
the role of TL is to transfer prior information from the CMIP6 
models and combine it with the historical simulation of the 
taken-out model (1850 to 2022), thus enabling the DNNs to 
accurately extrapolate temperatures in the future period. In addi-
tion, the fine-tuned DNNs are also able to spatially project all the 
complexity of surface air temperature consistently replicating the 
details of future regional features—such as the land-ocean con-
trast, the Arctic Amplification, the gradient of warming between 
Tropics and mid-latitudes, or colder temperatures over Greenland 
( Fig. 1 B –D  ).          

A B

C

D

Fig. 1.   Leave-one-out cross-validation example (here for FGOALS-f3-L) for the three SSPs considered in the study. (A) Global average warming (baseline: 1850 
to 1900) projected by the DNNs ensemble (average across DNNs; bold blue line) for each SSP scenario and FGOALS-f3-L simulation data (bold red line). The 
projections are generated after TL each DNN on the FGOALS-f3-L historical simulations. Pink shadings show the training set (1850 to 2022). The 5 to 95% ranges 
are reported for the DNNs (dark blue shading; numerical values for the 5 to 95% range of warming prediction in 2098 are present in square brackets), the 
smoothed CMIP6 simulations (light blue shading), and the original CMIP6 simulations (dashed gray lines). (B–D) Maps of surface air temperature projected in 
2081–2098 by FGOALS-f3-L (B) and by the DNNs ensemble (C) under SSP2-4.5 scenario. (D) The difference between the DNNs ensemble and CMIP6 ensemble 
temperature maps is also reported.D
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TL on Observational Data. The leave-one-out cross-validation 
procedure represents a proof of concept to demonstrate the 
effectiveness of transferring knowledge from the climate models 
to synthetic observations, allowing extrapolation beyond the 
historical regime. The same strategy is ultimately applied to real 
observed historical temperature data, which serves as a constraint 
to refine the knowledge initially gained from CMIP6 simulations 
and align the DNNs emulators with real-world temperatures and 
their trends. As a result, the fine-tuned DNNs aim to provide more 
reliable temperature projections for future scenarios by leveraging 
both simulated and observed data (see Materials and Methods for 
further details).

 In the following, the SSP2-4.5 scenario is used again as a reference 
and predicted future warming values are relative to the 1850 to 
1900 baseline period. The ensemble mean and spread (5 to 95% 
range) across the DNNs are used to project future climate change. 
Our estimated global annual mean temperature increase by 2098 
is 2.61 °C (2.36 to 3.03 °C). This can be compared to the CMIP6 
intermodel equal-weight mean of 2.98 °C (2.28 to 4.13 °C) ( Fig. 2 ). 
The fine-tuned DNNs project lower temperatures compared to the 
warmest CMIP6 models whose warming rates might be unrealisti-
cally too high according to several lines of evidence ( 50 ). Concerning 
the 2081 to 2098 time period, we observe a reduction of about 63% 
in the overall uncertainty range compared to the unconstrained 
CMIP6 models ( Fig. 3  and SI Appendix, Table S3 ). It is worth not-
ing that the spread in the CMIP6 global mean temperature projec-
tions is typically sensitive to the subset of models used for the 

ensemble in the standard CMIP6 projections. This is not the case 
in our approach, as all the DNNs trained on independent models 
and then fine-tuned on historical temperature data are projecting 
nearly the same global temperature rise after TL ( Fig. 2 ). Further, 
model filiation does not impact the result, as the models exhibit the 
same performance whether or not they share some lineage 
(SI Appendix ).                

 In comparison to other state-of-the-art methods, including 
some RCMs, aimed at narrowing down the model-based projec-
tions uncertainty, we find a 47% reduction in projections uncer-
tainty with respect to Ribes et al. ( 37 ), 53% with respect to Liang 
et al. ( 38 ), and 57% with respect to Tokarska et al. ( 36 ) under 
SSP2-4.5. Moreover, we obtained a 54% reduction with respect 
to the 5 to 95% range assessed by IPCC WG1 AR6 ( 40 ) and about 
60% compared to the estimate provided by both fair-calibrate 
v1.4.0 and v1.4.1 ( 14 ) ( Fig. 3  and SI Appendix, Table S3 ). Even 
our near-term (2021 to 2040) and mid-term (2041 to 2060) 
projections result in an agreement but with a smaller spread with 
respect to IPCC WG1 AR6 evaluation, fair-calibrate v1.4.0, and 
fair-calibrate v1.4.1 (SI Appendix, Table S4 ).

 We also compared our results with the estimates provided by 
two additional calibrated RCMs. For OSCAR v3.1 ( 34 ), the 
authors report means and SD in 2041 to 2050 and 2091 to 2100 
that we computed and compared in SI Appendix, Table S5 . 
Overall, we observe comparable values between our results and 
the constrained estimates of OSCAR v3.1, except for the projec-
tion in 2091 to 2100 under SSP5-8.5 exhibiting higher temper-
ature value and SD projected by the DNNs ensemble. Regarding 
MAGICC7 ( 32 ), the authors examine the implications for the 
long-term temperature increase resulting from the 2030 nationally 
determined contributions and current energy policies. They iden-
tify eight emission levels and rates of change broadly similar to 
SSP2.4.5, in addition to two other scenarios that include long-term 
low-emission development strategies as well. For our comparison, 
we focused on the eight scenarios that are closer to SSP2-4.5 and 
selected the one with the narrowest uncertainty range. The authors 
report a 5 to 95% temperature range of 1.59 to 3.31 °C by 2100 

Fig. 2.   TL on observations. DNNs ensemble projections (average across DNNs, 
bold red line) of global average warming relative to 1850 to 1900 for each 
scenario. The projections are generated after TL (training set, pink shading: 
1979 to 2016, 2021, 2022; validation set, gray shading: 2017 to 2020) each DNN 
on BEST historical observational data (black dots). Each plot also shows the 
year the 2 °C Paris Agreement threshold will be reached according to the DNNs 
ensemble projections. The 5 to 95% ranges of the projections produced by 
the DNNs (red shading) and the unconstrained smoothed CMIP6 simulations 
(brown shading) are reported. The unconstrained CMIP6 ensemble simulation 
(average across models, bold brown line) is shown as well. For each plot, 
numerical values of the 5 to 95% range of warming predictions in 2098 are 
present in square brackets.

Fig. 3.   Global surface air temperature changes for the long-term period (2081 
to 2100). Global 5 to 95% warming ranges for the long-term period (2081 to 
2100) relative to 1995 to 2014 (Left y axis) and 1850 to 1900 (Right y axis) for 
SSP2-4.5, 3-7.0, and 5-8.5 scenarios. White lines for each box plot represent 
the temporally averaged median values. Note that the bar plots for Ribes et al. 
and this work are computed in the 2081 to 2098 time period. The remaining 
ones are computed in the 2081 to 2100 time period. These results extend 
those reported in Chapter 4 of the IPCC AR6 (40).
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relative to 1850 to 1900. Considering this estimate, our projection 
for 2098 under SSP2-4.5 ( Fig. 2 ) exhibits a 61% reduction in the 
uncertainty range.

 The aforementioned evaluations are also confirmed for SSP3-7.0 
and 5-8.5 ( Fig. 3  and SI Appendix, Tables S3 and S4 ).

 The Paris Agreement aims to “hold the increase in the global 
average temperature to well below 2 °C above preindustrial levels 
and to pursue efforts to limit the temperature increase to 1.5 °C 
above preindustrial levels” ( 40 ). From the analysis made by the 
IPCC WG1 in the AR6, the central estimate of crossing the 
1.5 °C threshold is found to be in the “early 2030s” (for all SSPs 
except 5-8.5), about 10 y earlier than the midpoint of the likely 
range (2030 to 2052) communicated in the Special Report on 
global warming of 1.5 °C ( 51 ) in which continuation on the 
current warming rate was assumed ( 40 ). Moreover, surpassing 
the 1.5 °C threshold was recently estimated by the European 
Center for Medium-Range Weather Forecast between 2030 and 
2035, using a linear extrapolation of the current global warming 
trend ( 52 ).

 Diffenbaugh and Barnes ( 53 ) predicted that 1.5 and 2 °C will 
be reached in 2033 (2028 to 2039) and 2049 (2043 to 2055), 
respectively, under SSP2-4.5. According to our results, the 1.5 °C 
global threshold (relative to 1850 to 1900) will be exceeded in 
2035 (2031 to 2040). Similarly, the 2 °C threshold will be 
exceeded in 2057 (2049 to 2068) (SI Appendix, Table S6 ). Each 
of those years is computed as the first year at which 21 y running 
averages of surface air temperature exceed the given global warm-
ing level, as done in Chapter 4 of IPCC WG1 AR6 ( 40 ).  

Structural and Parametric Errors. Two natural questions come 
to mind after demonstrating the performance of the DNNs. 
First, why can the DNNs project climate change so well? And, 
second, is not the historical data used twice given that some of 
them are used during the model tuning? Those two questions boil 
down to the same underlying causes. Earth system models are a 
simplified representation of the complex physical, chemical, and 
biological processes of the real world. As such, they inherently 
make assumptions regarding the representation of the processes in 
terms of the equations and their structure (e.g., the complexity), 
as well as the values of parameters used in those equations. 
Some of the available historical data are used to tune the major 
models’ parameters (e.g., cloud entrainment rate or microphysical 
parameters) to match the historical climatology or some modes 
of climate variability, such as El Niño (54, 55). Yet, each model is 
inherently limited by its structural assumptions and thus cannot 
optimally use existing data as it can only work within a subspace 
restricted by its complexity and inherent structure. Our DNNs, 
instead, learn how to best leverage both (structurally deficient) 
physics of climate simulations and historical data to improve the 
projections of regional temperature, strongly reducing some of the 
temperature biases that characterize most Earth system models.

 One of the major biases is the “cold tongue” and its extension 
along the equatorial band, which is typically too cold by about 2 °C 
( 56 ) and present in all three generations of CMIP models ( 57 ). 
The DNNs ensemble improves the cold tongue bias by predicting 
higher surface air temperature values than the CMIP6 ensemble 
in the historical period ( Fig. 4 ). Another bias typically present in 

A

B

Fig. 4.   Historical bias surface air temperature maps. (A) Average bias surface air temperature maps in validation years (2017 to 2020) of both DNNs and 
unconstrained CMIP ensembles (average across models) for SSP2-4.5. Some well-known biases are selected and highlighted with the colored boxes—Antarctic 
(green), cold tongue (black), Gulf Stream (purple), South East Atlantic (light blue), North West Pacific (orange), and North East Pacific (light green). The bias maps 
are computed by averaging over time the temperature maps generated by the DNNs and CMIP6 ensembles and subtracting the observation maps averaged 
over the same years. (B) The difference in the surface air temperature maps of the DNNs ensemble with respect to the observation data in each single year is 
also reported.D
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climate models concerns the Arctic Amplification ( 58 ,  59 ). It has 
been shown that, from 1979 to 2021, the Arctic warmed nearly 
four times faster, and both CMIP5 and CMIP6 models underes-
timate it ( 58 ). The maximum warming is observed in the Eurasian 
sector of the Arctic Ocean, near Svalbard and Novaya Zemlya ( 58 ). 
This pattern is captured and improved by the DNNs ensemble 
after the inclusion of the observational constraint and is exploited 
to predict temperature regional variations ( Fig. 4 ). Furthermore, 
coupled Earth system models are affected by sea surface tempera-
ture biases in the location and structure of the Gulf Stream ( 60 , 
 61 ). In particular, warmer temperatures are simulated in the North 
Atlantic region centered on the Mid-Atlantic bight, where the 
modeled Gulf Stream separates from the coast further north than 
observations ( 62 ,  63 ). Also, a well-known and long-standing issue 
in ocean modeling is the cold bias located to the east of the Grand 
Banks of Newfoundland ( 62 ), where the Gulf Stream ends and the 
North Atlantic Current begins; however, in higher-resolution mod-
els, this representation is improved ( 60 ,  64 ,  65 ). Our DNNs 
improved it as well, generating lower surface air temperatures in 
the aforementioned region ( Fig. 4 ).        

 High sea surface temperatures in the western Pacific warm pool 
and lower temperatures in the eastern Pacific cold tongue create a 
zonal contrast in the tropical Pacific atmosphere-ocean state ( 66 ) 
which can diverge across future projections ( 65 ). Most CMIP mod-
els project a higher warming in the equatorial central-eastern Pacific 
than the western Pacific, which corresponds to a weakening of the 
temperature gradient, often called an “El Niño-like” warming pat-
tern ( 66           – 72 ). Yet, this appears to be opposite to the strengthening 
observed since the mid-twentieth century, which appears to be a 
“La Niña-like” warming ( 66 ,  67 ,  71 ). We acknowledge that deter-
mining future responses from unforced natural multidecadal vari-
ability or from a forced response over short periods of time is not 
trivial ( 70 ,  71 ,  73 ). Nonetheless, the contribution of natural varia-
bility to multidecadal trends appears relatively small in this region. 
Thus this suggests a systematic model bias in response to anthropo-
genic forcing ( 70 ,  73 ) as observations are outside the models’ range 
( 67 ). Moreover, it has been shown that a physically consistent 
response to warming could be La Niña-like and that it could have 
been detectable since the late twentieth century ( 71 ), which is 
aligned with our results (SI Appendix, Figs. S9 and S10 ).   

Conclusions

 This work demonstrates that DNNs initially trained to emulate 
Earth system models and then fine-tuned using historical global 
surface air temperature maps can project climate change for pre-
scribed greenhouse gas concentrations with reduced uncertainty 
and improved regional temperature patterns.

 Using this strategy, we substantially reduced the 5 to 95% range 
of projected global surface air temperature across SSP2-4.5, 3-7.0, 
and 5-8.5 scenarios. Specifically, concerning the 5 to 95% warm-
ing confidence range in 2081–2098 under SSP2-4.5, we obtained 
a reduction of 47% with respect to the best state-of-the-art 
approach ( 37 ) and 54% compared to the IPCC WG1 AR6 ( 40 ). 
An improvement with respect to other methods was also observed 
under SSPs 3-7.0 and 5-8.5. Our end-of-century estimate of 
global surface air temperature increase (relative to 1850 to 1900) 
is 2.61 °C (2.36 to 3.03 °C) for SSP2-4.5, which translates into 
exceeding the 1.5 °C threshold of the Paris Agreement in 2035 
(2031 to 2040) under SSP2-4.5. Under the same scenario, the 
2 °C threshold will be exceeded in 2057 (2049 to 2068). Our 
results are in line with recent estimates from the state-of-the-art 
methods [including IPCC WG1 AR6 ( 40 )] and CMIP6 Earth 
systems models but with reduced uncertainty.

 In addition, a significant aspect of our work is the projection of 
annual surface air temperature maps with global coverage, as 
opposed to only providing globally averaged annual values. The 
regional projections produced by the DNNs ensemble show 
improved regional patterns compared to CMIP6 models. It is 
important to note that while our findings indicate that the TL 
approach effectively improves well-known temperature biases 
exhibited by CMIP6 models in the historical period, this does not 
necessarily imply a correction of these biases in future projections. 
This is due to the lack of direct observational data of unknown 
future responses. Indeed, substantial uncertainties still affect future 
greenhouse gas concentration scenarios, especially for end-of-century 
projections. Some of those uncertainties relate to projections of the 
ocean and terrestrial carbon uptake ( 74 ,  75 ), even though there 
have been recent attempts to refine those model estimates ( 76 ). Yet, 
reducing greenhouse gas emissions is clearly the only path forward 
to meet the limits set by the Paris Agreement.

 Some other questions related to the results achieved in this work 
remain open and deserve further investigation. For instance, the 
inclusion of interannual variability would be essential to charac-
terize extreme events and is left for future work. Exploring a hybrid 
approach where DNNs are applied to bias-corrected CMIP6 sim-
ulations would be a further avenue of research, with the aim of 
potentially enhancing the reliability of our projections, yet poten-
tially at the expense of explainability.

 Furthermore, the dominant drivers of forced climate change 
on global and regional scales have been both greenhouse gases and 
anthropogenic aerosols since the Industrial Revolution ( 77 ,  78 ). 
These two factors differ not only in their global mean radiative 
forcing impacts but also in their spatial and temporal evolutions. 
Indeed, long-lived greenhouse gases are globally well-mixed and 
have increased monotonically over the past decades. In contrast, 
anthropogenic aerosols are geographically inhomogeneous due to 
their short atmospheric residence time. Different regions of the 
world exhibited contrasting levels of aerosol emissions in the past, 
which even changed over time with complex spatial patterns and 
time evolutions. These distinct forcing characteristics present a 
challenge to the study of regional and global climate response, 
even if capturing the long-term aerosol trends is crucial to provide 
reliable temperature estimates and projections ( 79   – 81 ). This 
deserves future research despite the challenges posed by the lack 
of good constraints on the spatial variability of historical aerosol 
concentrations.

 Another important consideration in our approach is that the 
same forcing is used for all 22 CMIP6 models under a specific SSP 
scenario. This implies that the uncertainty in historical aerosol 
forcing is represented by the spread among CMIP6 models. In 
IPCC AR5 ( 82 ), it was highlighted that the spread of aerosol forc-
ing among CMIP5 models was narrower than the full range derived 
from observations and other lines of evidence, indicating that 
model-based uncertainty estimates may not fully capture the entire 
variability. Although AR6 provides updated effective radiative forc-
ing (ERF) estimates for aerosols, substantial uncertainties still 
remain ( 83   – 85 ). This limitation suggests that our method, while 
improving projections by constraining simulations to observational 
temperature data, may still underestimate the full range of historical 
aerosol forcing uncertainty. Future investigations will explore ways 
to comprehensively integrate observational constraints on aerosol 
forcing to better account for these uncertainties.

 Nevertheless, this work provides evidence of the efficacy of ML 
in optimally integrating historical observations and climate models 
knowledge, suggesting the potential for improved models’ preci-
sion and reliability in climate projections and a strengthened 
foundation for future predictions.  D
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Materials and Methods

Earth System Models. We use global surface air temperature maps simulated 
from 1850 to 2098 by 22 CMIP6 Earth system models (SI Appendix, Table S1) 
under SSPs 2-4.5, 3-7.0, and 5-8.5. For each model and scenario, we employ a 
single ensemble member. Specifically, the r1i1p1f1 member is chosen as it is 
frequently the primary member in CMIP6 models and is also used in IPCC WG1 
AR6 (40) for evaluating temperature projections. However, this member was una-
vailable for CNRM-CM6-1, CNRM-ESM2-1, and UKESM1-0-LL. For these models, 
we opted for r1i1p1f2. Selecting a single member per model helps us manage 
computational complexity within our framework while ensuring alignment with 
the IPCC’s methodology (40).

Furthermore, some of the CMIP6 models simulations are available at a spatial 
resolution of about 250 km and others at 100 km. The conservative remapping 
(86) is employed to align all simulations with the CanESM5-CanOE grid, which is 
the lowest-resolution one among all those available, with 64 × 128 grid points. 
The coarsest spatial resolution is selected to avoid any synthetic information that 
would be added in case of remapping to a higher-resolution grid. The CMIP6 
simulated maps are gathered at a monthly temporal resolution and subsequently 
averaged over a year to generate the corresponding annual version, which is 
aligned with the temporal resolution (annual) of CO2 equivalent input data.

CO2 Equivalent Data. A single annual CO2 equivalent value is used as predictor 
for each DNN. These CO2 equivalent values are computed from ERF estimates 
which take into account aerosols and greenhouse gases (e.g., CO2, methane, 
nitrous dioxide, etc.) and are simulated by the Minimal CMIP Emulator v1.2 
RCM (87). We have one ERF value per year per SSP scenario. For each ERF value, 
we iteratively calculate the corresponding CO2 equivalent value such that, when 
entered into a CO2 radiative forcing formula, it produces an output within a tol-
erance of less than 1e-5 compared to the ERF value. This calculation results in 
three time series of CO2 equivalent values from 1850 to 2098, one for each SSP 
scenario, with one CO2 equivalent value per year. This is used as a single input 
for the DNNs throughout the pretraining, leave-one-out cross-validation, and 
TL on observations phases. The CO2 radiative forcing formula used in this work 
is reported below. It was introduced by Meinshausen et  al. (88) to represent 
radiative forcing after stratospheric adjustments, relative to preindustrial (1750) 
levels, and is an optimized modification of the simplified formula presented by 
Etminan et al. (89).

RFCO2 = (�� + �N2O
) ⋅ ln

(
C

Co

)

where:

C�MAX = C0 −
b1
2a1

≈ 1808ppm

�� = d1 −
b2
1

4a1
 for C >>> C𝛼max

�� = d1 + a1(C−C0)
2 + b1(C − C0), for C0 << C << C𝛼max

�� = d1 , for C << C0 

�N2O
= c1 ⋅

√
N

a1 = − 2.4785 × 10
−7Wm−2ppm−1

b1 = 0.00075906Wm−2ppm−1

c1 = − 0.0021492Wm−2ppb−0.5

d1 = 5.2488Wm−2

C0 = 277.15ppm

BEST Observational Data. We use historical surface air temperature estimates 
from the global Berkeley Earth Surface Temperatures (BEST) (90) gridded data, 
which are provided on a 1° × 1° latitude/longitude grid with a monthly temporal 

resolution and gathered from 1850 to 2022. Specifically, we select the BEST maps 
with air temperatures at sea ice, in which temperatures in the presence of sea ice 
are extrapolated from land-surface air temperature. This revealed to be a more 
sensible approach for capturing climate change, especially at the poles. Indeed, 
the change of air temperatures over sea ice can be large even if the sea surface tem-
perature under sea ice is not changing, since the latter is strictly connected to the 
water freezing point and can only vary with changes in sea ice cover. Over the last 
decades, the Arctic region was characterized by a very strong warming trend during 
the winter season, and this translated into an additional ~0.1 °C global-average 
temperature rise during the 19th century with respect to estimates not including 
such changes (i.e., estimates based on sea surface temperature under sea ice) (90).

The conservative remapping (86) is used to align the BEST data to the same 
CanESM5-CanOE grid used for CMIP6 data, thus generating temperature fields of 
size 64 × 128 and averaged over time to obtain a single map per year. Although 
the temporal coverage of the BEST dataset starts from 1850, maps prior to 1979 
are excluded after the remapping process due to the lack of data in many regions 
at the time and thus reduced accuracy. For this reason, the temporal domain used 
is 1979 to 2022.

In order to account for aleatoric uncertainty (i.e., uncertainty related to the 
data’s inherent randomness and stochasticity), a noise is added to each annual 
BEST map by sampling the values from a Gaussian distribution (91, 92) with 0 
mean and SD equal to the annual uncertainties—provided by the Berkeley Earth 
group and available with the dataset. These uncertainties represent the statis-
tical and spatial undersampling effects as well as ocean biases (90). To include 
epistemic uncertainty (i.e., uncertainty due to the model’s lack of knowledge 
about the phenomenon of interest), an ensemble technique (93) is exploited. 
Specifically, five datasets are built for each CMIP6 model and for each SSP scenario 
by sampling and adding the random Gaussian noise to the BEST temperature 
maps, thus obtaining an ensemble of 330 (i.e., 5 × 22 × 3) datasets of historical 
observations. This allows estimating structural and aleatoric uncertainties and the 
noise due to internal climate variability. We tried 10 and 20 BEST-perturbed data-
sets per model and scenario as well but did not obtain substantial improvements. 
We did not evaluate Monte Carlo dropout (94) for the quantification of aleatoric 
uncertainty as it has been shown to underestimate the uncertainty (95–97).

TL Approach. This work introduces a TL framework to improve global surface air 
temperature projections by leveraging DNNs pretrained on CMIP6 simulations 
and fine-tuned on observational data. The approach involves training DNNs to 
emulate the spatial temperature patterns of climate models and then refining 
them using historical observations, and can be viewed as a middle ground 
between purely model-based and purely data-driven projections. This strategy 
aims to reduce uncertainty in multimodel projections by blending simulated and 
real-world data, validated through a cross-validation-like process.

The first step of the algorithm involves the use of 66 DNNs to emulate the 
global annual surface air temperature maps simulated by 22 CMIP6 models 
(SI Appendix, Table S1) under SSPs 2-4.5, 3-7.0, and 5-8.5. An individual DNN is 
trained for each CMIP6 model simulation (SI Appendix, Fig. S1A). Each DNN pre-
dicts a single temperature map per year starting from the corresponding annual 
CO2 equivalent concentration. In total, 66 DNNs are implemented and pretrained, 
representing the combination of 22 CMIP6 models and 3 SSP scenarios. The 
pretraining is performed using data from 1850 to 2098, since 2098 is the last 
projection year available in all the selected CMIP6 simulations. Moreover, the 
years from 2070 to 2080 are reserved for validation purposes. The primary goal 
of each DNN in this pretraining phase is to replicate the CMIP6 simulation it is 
trained on as closely as possible, effectively building a robust, tunable emulation 
of CMIP6 temperature projections and capturing the link between CO2 equivalent 
values and temperature spatial patterns (which are inherently complex due to 
the diversity of responses across regions and scenarios).

This work proposes the use of TL to combine the models’ simulations with the 
information from historical observational data with the ultimate goal of reducing 
the uncertainty of multimodel projections. To identify the right amount of infor-
mation transfer and assess the degree of uncertainty reduction and model fit, we 
proceed as follows. For each scenario, one of the 22 CMIP6 simulations is taken 
out and used as ground truth for validation in a leave-one-out cross-validation 
framework (48). This approach allows a robust testing of the TL phase by assessing 
each DNN on synthetic observations (i.e., taken-out model simulations) which 
provide a ground truth even in the future. Specifically, each DNN pretrained on D
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the remaining 21 CMIP6 simulations is fine-tuned on the left-out simulation for 
the corresponding scenario by updating its weights on the (simulated) histori-
cal data from 1850 to 2022—which represent the training set during this phase 
(SI Appendix, Fig. S1B). In other words, the DNNs that were initially pretrained to 
reproduce the CMIP6 models are now fine-tuned on the historical data simulated 
by the left-out model, and the same CO2 equivalent values of the pretraining 
phase are used as input. The 21 fine-tuned DNNs are then used to project global 
surface air temperature maps from 2023 to 2098 (test set) to reproduce the tem-
peratures projected by the left-out model in the long-term future. This procedure 
is then repeated across the 22 CMIP6 models and the three SSP scenarios, thus 
providing multiple validation points and testing combinations.

The goal of the leave-one-out cross-validation described above and applied to 
simulation data is to test the capacity of the proposed TL approach before apply-
ing the same method to real observational data and constraining the warming 
projections, which is done in the next step. Indeed, as was done for the leave-
one-out cross-validation, one DNN is pretrained for each CMIP6 model to map 
the CO2 equivalent values previously described to the corresponding surface air 
temperature global maps from 1850 to 2098 for the three SSP scenarios. This 
results in the implementation and pretraining of a total of 66 DNNs (SI Appendix, 
Fig. S1A). Then, using an ensemble technique (93) (to address epistemic uncer-
tainty) and the TL strategy, the DNNs weights and biases are fine-tuned 5 times 
independently on the historical BEST dataset (1979 to 2016, 2021, 2022; training 
set), each time perturbed through the addition of a noise randomly sampled 
from a Gaussian distribution (thus addressing aleatoric uncertainty) (SI Appendix, 
Fig. S1C). The years 2017 to 2020 are reserved for testing purposes during this 
phase, as the hyperparameters are the same as the DNNs used in the leave-one-
out cross-validation except for the learning rate (see DNNs for further details).

DNNs. The DNNs designed and implemented for each model and scenario share 
the same architecture and hyperparameters configuration.

Four deconvolutional (or transposed convolutional) layers (98) are used to gen-
erate temperature maps from CO2 equivalent scalar values. The scalar input is fed 
to a dense layer made up of 4 × 8 × 128 neurons. Then, the four deconvolutional 
layers have the role of modeling the correlated spatial information and upsampling 
it to perform the deconvolutions and reach the spatial resolution of the target map. 
Specifically, each deconvolutional layer is characterized by 128 kernels with size 
10 × 10 and stride equal to 2. This configuration allows the spatial dimensions 
of the activation volume received by the layer as input to be doubled. The last 
deconvolutional layer returns an activation volume of size 64 × 128 × 128. A 
final convolutional layer with a single kernel of size 5 × 5 and stride equal to 1 is 
needed to refine the spatial information generated by the previous deconvolutional 
layers and generate the final near-surface air temperature map of size 64 × 128.

The best set of hyperparameters was found after a trial-and-error procedure 
involving several configurations. We tested different learning rates for the pre-
training by progressively increasing the value from 1e-8 to 1e-2. We selected a 
learning rate equal to 1e-4 as it revealed a good trade-off between generalization 
accuracy and convergence time, even across different hyperparameter configu-
rations. In the end, the Adam optimizer (99), a learning rate of 1e-4, a batch size 
of 8, and 500 epochs were used for the pretraining.

During TL, we fine-tuned the pretrained layers selecting a lower learning rate 
to not dramatically change the values of the weights adjusted during the pre-
training. This is usually done when training on new data with the aim of keeping 
the old knowledge previously acquired and transferring it to the new learning 
(100). We found good performance with a learning rate about an order of mag-
nitude smaller than the one used during the pretraining, which is a common 
practice in fine-tuning. We used the same hyperparameters for leave-one-out 
cross-validation and fine-tuning on observations phases, except for the learning 
rate. Indeed, with the aim of taking into account the lower number of observa-
tional data available for fine-tuning (1979 to 2022)—~4 times less than those 
available during the leave-one-out cross-validation (1850–2022)—we utilized a 
learning rate equal to 0.25e-5 during the leave-one-out cross-validation and 
equal to 1e-5 during the fine-tuning on observational data. The higher learning 
rate with a lower number of training data helped to reduce the risk of overfitting.

The strategy of freezing some layers during TL was tested as well, but it led to 
worse results. The final set of hyperparameters for TL is Adam optimizer (99), a 
batch size of 16, 500 epochs, and learning rate equal to 0.25e-5 for leave-one-out 
cross-validation and 1e-5 for TL on observational data.

The DNN architecture is the same for both training and TL phases. The loss func-
tion is a standard mean absolute error and both the annual CO2 equivalent values 
and the surface air temperature maps are scaled using Min-Max Normalization in 
the 0 to 1 range. Leaky Rectified Linear Unit activation function (101) was selected 
for the hidden layers and a sigmoid was used for the output layer because of the 
0 to 1 range of Min-Max Normalization of both input and output.

Metrics. Temperature anomalies (also referred to as “warming values”) are com-
puted at the grid-point level for both CMIP6 projections and DNNs predictions, 
each relative to its own climatology. Following Ribes et al. (37), smoothing splines 
with 20 degrees of freedom are also applied at the grid-point level to CMIP6 pro-
jections to reduce the contribution of internal variability. The number of degrees 
of freedom was tuned according to our data to balance the smoothness and fit of 
the resulting time series. In order to compute the spatial averages of the maps 
predicted by the DNNs and simulated by CMIP6 models, a latitude-weighted 
spatial average is employed. The weights scale each point according to the area 
it represents depending on the specific latitude.

In each iteration of the leave-one-out cross-validation, in which a CMIP6 
model is removed from the ensemble (referred to as taken-out model i), the 
following metrics are computed, with results summarized in SI Appendix, 
Table S2.

DNNs ensemble per year = DEi
(y)
=

1

21

∑21

m= 1
T̂
(y)

m,i

where:

•	 y ∈ {2081, . . . , 2098}

•	 m ∈ {1, . . . , 21} is the index of one of the 21 remaining CMIP6 models 
that are fine-tuned on the taken-out model i

•	 i ∈ {1, . . . , 22} is the index of one of the 22 CMIP6 models that is removed 
from the ensemble during the leave-one-out cross-validation

•	 T̂
(y)

m,i
 is the global average warming value (baseline: 1850 to 1900) predicted 

by the DNN (pretrained on the mth CMIP6 model and fine-tuned on the taken-
out model i) for the year y

Global average errori =
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where:

•	
{
T̂
(y)

m,i

}
 is the set of global average warming values (baseline: 1850 to 1900) 

predicted by the 21 DNNs (each pretrained on CMIP6 model m and fine-tuned 
on the taken-out model i) for the year y

•	
{
T
(y)

m,i

}
 is the set of global average warming values (baseline: 1850 to 1900) 

simulated by CMIP6 model m when model i is used as taken-out modelD
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)

Avg 95%CMIP6,i =
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CMIP6,i
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%Uncertainty reductioni =

(
Avg 95%CMIP6,i − Avg 5%CMIP6,i

)
−
(
Avg 95%DNNs,i − Avg 5%DNNs,i

)

(
Avg 95%CMIP6,i − Avg 5%CMIP6,i

) ∗ 100

Avgi =
1

18

∑2098

y = 2081

(
T
(y)

i

)

Accuracyi = Avg medDNNs,i − Avgi

The mean values reported at the bottom of SI Appendix, Table S2 are computed 
as follows:

Mean global average error =
1

22

∑22

i=1
||Global average errori

||

 
Mean global RMSE =

1

22

∑22

i=1

(
Global RMSEi

)

 
Mean accuracy =

1

22

∑22

i=1

(
Accuracyi

)

Some of these values are used to plot SI Appendix, Figs. S5 and S6. Indeed, the 
following quantities are used to plot the light blue and dark blue bars correspond-
ing to each iteration of the leave-one-out cross-validation, in which CMIP6 model 
i is removed from the ensemble and used as taken-out model. Specifically, Avg 
5%CMIP6,i and Avg 95%CMIP6,i are the average 5% and average 95% of the global tem-
peratures simulated by the remaining CMIP6 models of the ensemble and used 
to plot the light blue bar. Avg medCMIP6,i is the median of the global temperatures 
simulated by the remaining CMIP6 models and used to plot the corresponding 
red line.

Avg 5%DNNs,i and Avg 95%DNNs,i are the average 5% and average 95% of the 
global temperatures predicted by the DNNs (fine-tuned on taken-out model i) in 
each iteration and used to plot the dark blue bar. Avg medDNNs is the median of 

the global temperatures predicted by the DNNs (fine-tuned on taken-out model 
i) in each iteration and used to plot the corresponding white line.

Avgi is the average global temperature simulated by the taken-out CMIP6 
model i and used to plot the black and dashed lines.

Data, Materials, and Software Availability. The datasets used in this study 
are freely accessible, with any restriction, from the following public repositories: 
CMIP6 data (https://doi.org/10.24381/cds.c866074c) (102), BEST data: https://
berkeleyearth.org/data/ (90), The source code, along with Fig. 1, SI Appendix, 
Fig. S4 and S7 for all the iterations of the leave-one-out cross-validation, and 
Movie S1 are available on GitHub at https://github.com/francescoimmorlano/
transferring-climate-change-physical-knowledge (103). The data and the 
results are archived on Zenodo at the following DOI: https://doi.org/10.5281/
zenodo.15001003 (104).
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