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Precise and reliable climate projections are required for climate adaptation and mitiga-
tion, but Earth system models still exhibit great uncertainties. Several approaches have
been developed to reduce the spread of climate projections and feedbacks, yet those
methods cannot capture the nonlinear complexity inherent in the climate system. Using
a Transfer Learning approach, we show that Machine Learning can be used to optimally
leverage and merge the knowledge gained from global temperature maps simulated by
Earth system models and observed in the historical period to reduce the spread of global
surface air temperature fields projected in the 21st century. We reach an uncertainty
reduction of more than 50% with respect to state-of-the-art approaches while giving
evidence that our method provides improved regional temperature patterns together
with narrower projections uncertainty, urgently required for climate adaptation.

Machine Learning | temperature | CMIP6 | projections | uncertainty

Climate change is affecting all aspects of the Earth system, impacting ecosystems’ health,
placing new strains on infrastructures, and affecting human migration (1, 2). Earth system
models are the main tools used for assessing our changing climate. These models project
global mean temperature rise according to several Shared Socioeconomic Pathways (SSPs),
which represent future socioeconomic development scenarios linked to societal actions,
such as climate change mitigation, adaptation, and impacts (3).

However, Earth system models still exhibit substantial uncertainties in their projections,
even for prescribed greenhouse gas concentrations, posing significant challenges for govern-
ments and stakeholders in developing climate change adaptation strategies. These uncertainties
have not been reduced with the evolution of models and have even increased in the latest
generation participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6)
(4-6). For instance, the transient climate response—i.e., the surface temperature warming at
the time of carbon dioxide (CO,) doubling in response to a yearly 1% increase in per-year
CO, concentration—produced by CMIP6 simulations is larger than the one produced by
CMIP3 and 5 models ensembles (7). In CMIP6, the equilibrium climate sensitivity, i.e., the
global temperature increase at equilibrium for a doubling of CO,, was the largest of any gen-
eration of models since the 1990s, ranging from 1.8 to 5.6 °C (7). It is well known that the
majority of uncertainties in climate projections can be attributed to small-scale and “fast”
physical processes, including but not limited to clouds, convection, and ocean turbulence (6,
8-10). By better constraining these physical processes, which are observable on a day-to-day
basis, it would be possible to reduce the associated uncertainties.

Some of those issues are reflected in the inconsistency of CMIP6 models to reconstruct
temperatures observed in the past (11). The models’ parameters calibration can be challenging
due to data, time, and computational limitations (12). This calibration problem—together
with errors arising from model structural assumptions, scenario uncertainty, and internal var-
iability (13)—hampers the development of models that are fully aligned with historical obser-
vations (12), raising questions about the reliability of subsequent climate projections (14).

Several studies have attempted to constrain CMIP6 simulations with observational data
by employing a variety of techniques (e.g., paleoclimate reconstructions, emergent con-
straints, model weighting, etc.). One common approach is the use of Reduced-Complexity
Models (RCMs), also referred to as emulators. These are simplified physics-based models
designed to replicate the large-scale response of Earth system models at reduced compu-
tational cost. Their parameters can be easily calibrated under reasonable priors (often
informed by Earth systems models’ distributions) to produce historically consistent hind-
casts, a critical condition for trust in future projections (14—16). However, RCMs usually
do not capture the spatial details or accuracy required for detailed climate projections (16).

In the present study, we demonstrate that Transfer Learning (TL), a recent branch of
Machine Learning (ML), can be utilized to efficiently leverage knowledge from an
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ensemble of CMIP6 Earth system models and constrain it to
match historical observational data. TL enables the exploitation
of knowledge acquired by a pretrained model on a data-rich task
as a foundation for enhancing performance on a new but related
task within the same domain, even with limited data availability
(17). We show that using this approach, the uncertainty associated
with multimodel temperature projections can be reduced by opti-
mally fusing models projections and historical observations while
resolving the regional patterns of climate change. This helps
enhance the representation of future projections and their associ-
ated spatial patterns, particularly over time scales of a few details
which are critical for policymakers (14).

Constraining Climate Projections

Various approaches have been proposed to reduce the uncertainties
of climate models projections. They leverage current or past cli-
mate observations to refine climate sensitivity estimates (18, 19).

One group of approaches has been exploiting paleoclimate
proxies (i.e., surrogates for climate variables, such as temperature),
especially chemical tracers that are now routinely simulated in
Earth system models, to reduce and better constrain the range of
climate sensitivity (20). Paleoclimate records offer tremendous
potential, but paleoclimate proxies are not exempt from potential
issues since they are only surrogates of the actual variable of inter-
est, and sometimes strong assumptions might be required to link
those proxies to climate variables.

A second group of approaches has used more recent climate
observations—such as those from the 20th century which do not
require proxies but cover a shorter time period—to constrain the
range of climate sensitivity. One of these methods is the use of
emergent constraints. They relate a physical process, which is an
important regulator of climate sensitivity (e.g., low cloud reflec-
tivity), and its spread across models to an observation that is used
to constrain future climate sensitivity within a Bayesian framework
(10, 21-24). These techniques, however, also suffer from several
issues as they assume a linear relationship between the constraining
and the target variable, while many important climate feedbacks
are nonlinear (24-27). Emergent constraints are typically cast in
terms of a univariate constraint, whereas many processes can inter-
act and be multivariate. Moreover, these constraints are critically
dependent on the models ensemble used (28) and do not account
for the pattern effect, which refers to the dependence of the Earth’s
outgoing radiation on the global surface warming pattern and is
important for climate sensitivity (29).

Simple toy zero-order models of the Earth’s climate can also be
used to understand the response of the global climate (30, 31) and
especially the role of different climate feedbacks, such as those
from water vapor or clouds. Recently, also RCMs have been devel-
oped with this aim, resulting less computationally demanding and
representing the global climate at annual scales in terms of mac-
roproperties of the climate system. They allow to investigate uncer-
tainties across various components of the climate system and
provide a framework to perform probabilistic calibrations of their
parameters based on historical observations and various lines of
evidence (15, 16). In a recent work, Smith et al. (14) calibrated
the FalRv2.1.0 model with emissions and observational con-
straints updated through 2022 to provide near- and long-term
warming projections (fair-calibrate v1.4.1). Their study also
includes an updated calibration of FalR that was previously devel-
oped in the context of the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC AR6) which
uses historical emissions data up to 2014 and projections thereafter
(fair-calibrate v1.4.0). Meinshausen etal. (32) wused the
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probabilistic emulator MAGICC7 (33) to conduct a comprehen-
sive evaluation of long-term temperature projections according to
the 2030 nationally determined contributions and long-term
low-emission development strategies submitted by several coun-
tries around the globe. Quilcaille et al. (34) integrated OSCAR
v3.1—an emulator built as a combination of modules, each ded-
icated to different components of the Earth system that can be
calibrated separately—with historical temperatures and forcing
constraints. Yet, the spatial patterns of climate response and sea
surface temperature or the subtle response of cloud-circulation
feedback are important for the overall climate response. These
subtleties cannot directly be resolved if RCMs are used (30, 35).

More accurate projections can also be achieved by applying
optimal corrections to Earth system models based on historical
observations. Indeed, available observed warming trends over the
last decades have been used in several studies to constrain
model-based temperature projections over the 21st century.
Tokarska et al. (36) reduced the uncertainty in future projections
by downweighing those CMIP6 models whose simulation results
are not in line with historical warming. Ribes et al. (37) con-
strained global mean temperature projections using an adaptation
of Gaussian process regression (also known as kriging) combining
CMIP6 simulations and historical warming observations since
1850. Liang et al. (38) exploited a weighting method that takes
both model quality and independence into account (39) to give
more weight to CMIP6 models that better match the observed
1970 to 2014 warming. It is worth noting that these constraints
do not consider the pattern effect in their temperature projections
as they are computed against global average temperatures.

Finally, the IPCC Working Group 1 (WG1) assessed the global
surface air temperature change in the ARG using multiple lines of
evidence, including CMIP6 projections up to 2100. CMIP6 pro-
jections were combined with observational constraints on simu-
lated past warming to update estimates in the ARG (40).

Recently, TL has proven to be a powerful tool in scientific
applications such as weather/climate prediction (41) and environ-
mental remote sensing (42). TL techniques have been successfully
applied to merge the knowledge of climate models simulations
and observations to make long-lead El-Nifo Southern Oscillation
forecasts (43, 44). In general, there has been a growing interest in
the scientific community to employ ML to improve climate mod-
els projections, for instance, by enhancing parameterizations.
‘There have been some initial attempts to build ML-based climate
emulators as well. Examples are, for instance, the AI2 Climate
Emulator (45)—which is trained to reproduce a physics-based
atmospheric model and predicts several diagnostics; Weber et al.
(46) who investigate the use of Deep Neural Networks (DNNs)
as emulators to produce short-term precipitation forecasts; or
ClimaX, a foundation model trained on CMIP6-derived datasets
that can be employed for both weather and climate-related down-
stream tasks (47). However, with respect to these approaches, this
work represents application of ML and especially TL to simulta-
neously reduce the spread of global climate temperature projec-
tions and improve the corresponding regional patterns.

Results and Discussion

Leave-One-Out Cross-Validation Approach. This work aims
to learn, i.e., acquire knowledge, from historical and projected
climate simulations from CMIP6 models constrained by historical
observations to provide more precise and reliable climate projections.
This learning is first acquired by pretraining 66 DNNs, each
dedicated to one of 22 CMIP6 models across three SSP scenarios:
SSP2-4.5, SSP3-7.0, and SSP5-8.5. In this initial phase, each DNN
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learns the complex relationships between CO, equivalent forcing
and CMIP6 temperature at a regional scale, capturing the diversity
of different models” responses. Given the lack of observations, in
the future, validating this approach is essential before integrating
historical observations. Therefore, a rigorous testing phase is
performed using a leave-one-out cross-validation (also known as
model-as-truth) strategy (48) where CMIP6 models are used as
“synthetic observations.” This provides a systematic assessment
of the DNNs’ ability to generalize and adjust projections across
different CMIP6 simulations, adding robustness and confidence to
the approach (see Materials and Methods for further details).

In the following, we use SSP2-4.5 as a reference since low-
emission scenarios are currently more likely by the end of the
century than the high-emission SSP5-8.5 (49). The global average
temperature error, rms error (RMSE), percentage of uncertainty
reduction, and accuracy, along with 5 and 95% in 2081 to 2098,
are computed for the three SSP scenarios considered (SI Appendix,
Table S2 and Materials and Methods).

The leave-one-out cross-validation shows a mean global average
error of 0.28 °C and a mean global average RMSE of 0.29 °C, in
the 2081 to 2098 time period, with respect to the synthetic obser-
vations across all the 22 taken-out models under SSP2-4.5
(81 Appendix, Table S2). The description of each metric is reported

A SSP2-4.5

RMSE (2023-2098): 0.21°C — Temperature in 2098: 3.06 °C [2.67-3.68 °C]

in Materials and Methods (section Metrics). As an example,
Fig. 14 shows the narrow 5 to 95% confidence range (2.67 to
3.68 °C) of the global average warming for 2098 relative to the
1850 to 1900 base period, when FGOALS-f3-L is used as syn-
thetic observation. This reveals that the proposed approach is
effective at narrowing the temperature uncertainty range (i.c.,
increasing the precision). Moreover, the global average error
between the average temperatures projected by the DNNs ensem-
ble (average across DNNs, bold blue line in Fig. 14) and the
synthetic observations from FGOALS-f3-L (bold red line in
Fig. 14) is equal to 0.18 in the 2081 to 2098 time period, as
reported in ST Appendix, Table S2. This confirms that good accu-
racy is also achieved. During the leave-one-out cross-validation,
the role of TL is to transfer prior information from the CMIP6
models and combine it with the historical simulation of the
taken-out model (1850 to 2022), thus enabling the DNNs to
accurately extrapolate temperatures in the future period. In addi-
tion, the fine-tuned DNNis are also able to spatially project all the
complexity of surface air temperature consistently replicating the
details of future regional features—such as the land-ocean con-
trast, the Arctic Amplification, the gradient of warming between
Tropics and mid-latitudes, or colder temperatures over Greenland

(Fig. 1 B-D).

Scenario SSP2-4.5
FGOALS-f3-L average temperature (2081-2098)
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4 - = FGOALS-f3-L
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Fig. 1. Leave-one-out cross-validation example (here for FGOALS-f3-L) for the three SSPs considered in the study. (A) Global average warming (baseline: 1850
to 1900) projected by the DNNs ensemble (average across DNNSs; bold blue line) for each SSP scenario and FGOALS-f3-L simulation data (bold red line). The
projections are generated after TL each DNN on the FGOALS-f3-L historical simulations. Pink shadings show the training set (1850 to 2022). The 5 to 95% ranges
are reported for the DNNs (dark blue shading; numerical values for the 5 to 95% range of warming prediction in 2098 are present in square brackets), the
smoothed CMIP6 simulations (light blue shading), and the original CMIP6 simulations (dashed gray lines). (B-D) Maps of surface air temperature projected in
2081-2098 by FGOALS-f3-L (B) and by the DNNs ensemble (C) under SSP2-4.5 scenario. (D) The difference between the DNNs ensemble and CMIP6 ensemble

temperature maps is also reported.
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TL on Observational Data. The leave-one-out cross-validation
procedure represents a proof of concept to demonstrate the
effectiveness of transferring knowledge from the climate models
to synthetic observations, allowing extrapolation beyond the
historical regime. The same strategy is ultimately applied to real
observed historical temperature data, which serves as a constraint
to refine the knowledge initially gained from CMIP6 simulations
and align the DNNs emulators with real-world temperatures and
their trends. As a result, the fine-tuned DNNs aim to provide more
reliable temperature projections for future scenarios by leveraging
both simulated and observed data (see Materials and Methods for
further details).

In the following, the SSP2-4.5 scenario is used again as a reference
and predicted future warming values are relative to the 1850 to
1900 baseline period. The ensemble mean and spread (5 to 95%
range) across the DNNs are used to project future climate change.
Our estimated global annual mean temperature increase by 2098
is 2.61 °C (2.36 to 3.03 °C). This can be compared to the CMIP6
intermodel equal-weight mean of 2.98 °C (2.28 to 4.13 °C) (Fig. 2).
The fine-tuned DNNs project lower temperatures compared to the
warmest CMIP6 models whose warming rates might be unrealisti-
cally too high according to several lines of evidence (50). Concerning
the 2081 to 2098 time period, we observe a reduction of about 63%
in the overall uncertainty range compared to the unconstrained
CMIP6 models (Fig. 3 and S7 Appendix, Table S3). It is worth not-
ing that the spread in the CMIP6 global mean temperature projec-
tions is typically sensitive to the subset of models used for the

Scenario SSP2-4.5 — Temperature in 2098: 2.61 °C [2.36-3.03 °C]

o BEST observational data
4 - = DNNs multi-model mean
= CMIP6 multi-model mean

e T

T

T T T
2016 2022 2040 2057 2080 2098

T
1979 2000

Scenario SSP3-7.0 — Temperature in 2098: 4.21 °C [3.61-4.78 °C]

,M
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2016 2022 2047 2060 2080 2098

Scenario SSP5-8.5 — Temperature in 2098: 4.92 °C [4.04-6.03 °C]
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Fig. 2. TLon observations. DNNs ensemble projections (average across DNNs,
bold red line) of global average warming relative to 1850 to 1900 for each
scenario. The projections are generated after TL (training set, pink shading:
1979 to0 2016, 2021, 2022; validation set, gray shading: 2017 to 2020) each DNN
on BEST historical observational data (black dots). Each plot also shows the
year the 2 °C Paris Agreement threshold will be reached according to the DNNs
ensemble projections. The 5 to 95% ranges of the projections produced by
the DNNs (red shading) and the unconstrained smoothed CMIP6 simulations
(brown shading) are reported. The unconstrained CMIP6 ensemble simulation
(average across models, bold brown line) is shown as well. For each plot,
numerical values of the 5 to 95% range of warming predictions in 2098 are
present in square brackets.
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Fig. 3. Global surface air temperature changes for the long-term period (2081
to 2100). Global 5 to 95% warming ranges for the long-term period (2081 to
2100) relative to 1995 to 2014 (Left y axis) and 1850 to 1900 (Right y axis) for
SSP2-4.5, 3-7.0, and 5-8.5 scenarios. White lines for each box plot represent
the temporally averaged median values. Note that the bar plots for Ribes et al.
and this work are computed in the 2081 to 2098 time period. The remaining
ones are computed in the 2081 to 2100 time period. These results extend
those reported in Chapter 4 of the IPCC AR6 (40).

ensemble in the standard CMIP6 projections. This is not the case
in our approach, as all the DNNs trained on independent models
and then fine-tuned on historical temperature data are projecting
nearly the same global temperature rise after TL (Fig. 2). Further,
model filiation does not impact the result, as the models exhibit the
same performance whether or not they share some lineage
(SI Appendix).

In comparison to other state-of-the-art methods, including
some RCMs, aimed at narrowing down the model-based projec-
tions uncertainty, we find a 47% reduction in projections uncer-
tainty with respect to Ribes et al. (37), 53% with respect to Liang
etal. (38), and 57% with respect to Tokarska et al. (36) under
SSP2-4.5. Moreover, we obtained a 54% reduction with respect
to the 5 to 95% range assessed by IPCC WG1 ARG (40) and about
60% compared to the estimate provided by both fair-calibrate
v1.4.0 and v1.4.1 (14) (Fig. 3 and SI Appendix, Table S3). Even
our near-term (2021 to 2040) and mid-term (2041 to 2060)
projections result in an agreement but with a smaller spread with
respect to IPCC WG1 ARG evaluation, fair-calibrate v1.4.0, and
fair-calibrate v1.4.1 (87 Appendix, Table S4).

We also compared our results with the estimates provided by
two additional calibrated RCMs. For OSCAR v3.1 (34), the
authors report means and SD in 2041 to 2050 and 2091 to 2100
that we computed and compared in S7Appendix, Table S5.
Opverall, we observe comparable values between our results and
the constrained estimates of OSCAR v3.1, except for the projec-
tion in 2091 to 2100 under SSP5-8.5 exhibiting higher temper-
ature value and SD projected by the DNNs ensemble. Regarding
MAGICCY7 (32), the authors examine the implications for the
long-term temperature increase resulting from the 2030 nationally
determined contributions and current energy policies. They iden-
tify eight emission levels and rates of change broadly similar to
SSP2.4.5, in addition to two other scenarios that include long-term
low-emission development strategies as well. For our comparison,
we focused on the eight scenarios that are closer to SSP2-4.5 and
selected the one with the narrowest uncertainty range. The authors
reporta 5 to 95% temperature range of 1.59 to 3.31 °C by 2100
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relative to 1850 to 1900. Considering this estimate, our projection
for 2098 under SSP2-4.5 (Fig. 2) exhibits a 61% reduction in the
uncertainty range.

The aforementioned evaluations are also confirmed for SSP3-7.0
and 5-8.5 (Fig. 3 and SI Appendix, Tables S3 and S4).

The Paris Agreement aims to “hold the increase in the global
average temperature to well below 2 °C above preindustrial levels
and to pursue efforts to limit the temperature increase to 1.5 °C
above preindustrial levels” (40). From the analysis made by the
IPCC WGI in the ARG, the central estimate of crossing the
1.5 °C threshold is found to be in the “early 2030s” (for all SSPs
except 5-8.5), about 10 y earlier than the midpoint of the likely
range (2030 to 2052) communicated in the Special Report on
global warming of 1.5 °C (51) in which continuation on the
current warming rate was assumed (40). Moreover, surpassing
the 1.5 °C threshold was recently estimated by the European
Center for Medium-Range Weather Forecast between 2030 and
2035, using a linear extrapolation of the current global warming
trend (52).

Diffenbaugh and Barnes (53) predicted that 1.5 and 2 °C will
be reached in 2033 (2028 to 2039) and 2049 (2043 to 2055),
respectively, under SSP2-4.5. According to our results, the 1.5 °C
global threshold (relative to 1850 to 1900) will be exceeded in
2035 (2031 to 2040). Similarly, the 2 °C threshold will be
exceeded in 2057 (2049 to 2068) (S Appendix, Table S6). Each
of those years is computed as the first year at which 21 y running
averages of surface air temperature exceed the given global warm-

ing level, as done in Chapter 4 of IPCC WG1 ARG (40).

A

Structural and Parametric Errors. Two natural questions come
to mind after demonstrating the performance of the DNNs.
First, why can the DNNs project climate change so well? And,
second, is not the historical data used twice given that some of
them are used during the model tuning? Those two questions boil
down to the same underlying causes. Earth system models are a
simplified representation of the complex physical, chemical, and
biological processes of the real world. As such, they inherently
make assumptions regarding the representation of the processes in
terms of the equations and their structure (e.g., the complexity),
as well as the values of parameters used in those equations.
Some of the available historical data are used to tune the major
models’ parameters (e.g., cloud entrainment rate or microphysical
parameters) to match the historical climatology or some modes
of climate variability, such as El Nifo (54, 55). Yet, each model is
inherently limited by its structural assumptions and thus cannot
optimally use existing data as it can only work within a subspace
restricted by its complexity and inherent structure. Our DNNs,
instead, learn how to best leverage both (structurally deficient)
physics of climate simulations and historical data to improve the
projections of regional temperature, strongly reducing some of the
temperature biases that characterize most Earth system models.
One of the major biases is the “cold tongue” and its extension
along the equatorial band, which is typically too cold by about 2 °C
(56) and present in all three generations of CMIP models (57).
The DNNs ensemble improves the cold tongue bias by predicting
higher surface air temperature values than the CMIP6 ensemble

in the historical period (Fig. 4). Another bias typically present in

Bias (CMIP6 ensemble—Obs)

T
-5.8 -4.0 -2.0 0.0

T
2.0 4.0 6.0 75

Surface Air Temperature difference [°C]

Difference (DNNs ensemble—QObs)

T —

T T

-2.0 0.0

T
2.0 4.0 6.0 7.5

Surface Air Temperature difference [°C]

Fig. 4. Historical bias surface air temperature maps. (A) Average bias surface air temperature maps in validation years (2017 to 2020) of both DNNs and
unconstrained CMIP ensembles (average across models) for SSP2-4.5. Some well-known biases are selected and highlighted with the colored boxes—Antarctic
(green), cold tongue (black), Gulf Stream (purple), South East Atlantic (light blue), North West Pacific (orange), and North East Pacific (light green). The bias maps
are computed by averaging over time the temperature maps generated by the DNNs and CMIP6 ensembles and subtracting the observation maps averaged
over the same years. (B) The difference in the surface air temperature maps of the DNNs ensemble with respect to the observation data in each single year is
also reported.
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climate models concerns the Arctic Amplification (58, 59). It has
been shown that, from 1979 to 2021, the Arctic warmed nearly
four times faster, and both CMIP5 and CMIP6 models underes-
timate it (58). The maximum warming is observed in the Eurasian
sector of the Arctic Ocean, near Svalbard and Novaya Zemlya (58).
This pattern is captured and improved by the DNNs ensemble
after the inclusion of the observational constraint and is exploited
to predict temperature regional variations (Fig. 4). Furthermore,
coupled Farth system models are affected by sea surface tempera-
ture biases in the location and structure of the Gulf Stream (60,
61). In particular, warmer temperatures are simulated in the North
Adlantic region centered on the Mid-Adantic bight, where the
modeled Gulf Stream separates from the coast further north than
observations (62, 63). Also, a well-known and long-standing issue
in ocean modeling is the cold bias located to the east of the Grand
Banks of Newfoundland (62), where the Gulf Stream ends and the
North Atlantic Current begins; however, in higher-resolution mod-
els, this representation is improved (60, 64, 65). Our DNNs
improved it as well, generating lower surface air temperatures in
the aforementioned region (Fig. 4).

High sea surface temperatures in the western Pacific warm pool
and lower temperatures in the eastern Pacific cold tongue create a
zonal contrast in the tropical Pacific atmosphere-ocean state (66)
which can diverge across future projections (65). Most CMIP mod-
els project a higher warming in the equatorial central-eastern Pacific
than the western Pacific, which corresponds to a weakening of the
temperature gradient, often called an “El Nifio-like” warming pat-
tern (66-72). Yet, this appears to be opposite to the strengthening
observed since the mid-twentieth century, which appears to be a
“La Nifa-like” warming (66, 67, 71). We acknowledge that deter-
mining future responses from unforced natural multidecadal vari-
ability or from a forced response over short periods of time is not
trivial (70, 71, 73). Nonetheless, the contribution of natural varia-
bility to multidecadal trends appears relatively small in this region.
Thus this suggests a systematic model bias in response to anthropo-
genic forcing (70, 73) as observations are outside the models’ range
(67). Moreover, it has been shown that a physically consistent
response to warming could be La Nina-like and that it could have
been detectable since the late twentieth century (71), which is
aligned with our results (S7 Appendix, Figs. S9 and S10).

Conclusions

This work demonstrates that DNNs initially trained to emulate
Earth system models and then fine-tuned using historical global
surface air temperature maps can project climate change for pre-
scribed greenhouse gas concentrations with reduced uncertainty
and improved regional temperature patterns.

Using this strategy, we substantially reduced the 5 to 95% range
of projected global surface air temperature across SSP2-4.5, 3-7.0,
and 5-8.5 scenarios. Specifically, concerning the 5 to 95% warm-
ing confidence range in 2081-2098 under SSP2-4.5, we obtained
a reduction of 47% with respect to the best state-of-the-art
approach (37) and 54% compared to the IPCC WG1 ARG (40).
An improvement with respect to other methods was also observed
under SSPs 3-7.0 and 5-8.5. Our end-of-century estimate of
global surface air temperature increase (relative to 1850 to 1900)
is 2.61 °C (2.36 to 3.03 °C) for SSP2-4.5, which translates into
exceeding the 1.5 °C threshold of the Paris Agreement in 2035
(2031 to 2040) under SSP2-4.5. Under the same scenario, the
2 °C threshold will be exceeded in 2057 (2049 to 2068). Our
results are in line with recent estimates from the state-of-the-art
methods [including IPCC WG1 ARG (40)] and CMIP6 Earth

systems models but with reduced uncertainty.

https://doi.org/10.1073/pnas.2413503122

In addition, a significant aspect of our work is the projection of
annual surface air temperature maps with global coverage, as
opposed to only providing globally averaged annual values. The
regional projections produced by the DNNs ensemble show
improved regional patterns compared to CMIP6 models. It is
important to note that while our findings indicate that the TL
approach effectively improves well-known temperature biases
exhibited by CMIP6 models in the historical period, this does not
necessarily imply a correction of these biases in future projections.
This is due to the lack of direct observational data of unknown
future responses. Indeed, substantial uncertainties still affect future
greenhouse gas concentration scenarios, especially for end-of-century
projections. Some of those uncertainties relate to projections of the
ocean and terrestrial carbon uptake (74, 75), even though there
have been recent attempts to refine those model estimates (76). Yet,
reducing greenhouse gas emissions is clearly the only path forward
to meet the limits set by the Paris Agreement.

Some other questions related to the results achieved in this work
remain open and deserve further investigation. For instance, the
inclusion of interannual variability would be essential to charac-
terize extreme events and is left for future work. Exploring a hybrid
approach where DNNGs are applied to bias-corrected CMIP6 sim-
ulations would be a further avenue of research, with the aim of
potentially enhancing the reliability of our projections, yet poten-
tially at the expense of explainability.

Furthermore, the dominant drivers of forced climate change
on global and regional scales have been both greenhouse gases and
anthropogenic aerosols since the Industrial Revolution (77, 78).
These two factors differ not only in their global mean radiative
forcing impacts but also in their spatial and temporal evolutions.
Indeed, long-lived greenhouse gases are globally well-mixed and
have increased monotonically over the past decades. In contrast,
anthropogenic aerosols are geographically inhomogeneous due to
their short atmospheric residence time. Different regions of the
world exhibited contrasting levels of acrosol emissions in the past,
which even changed over time with complex spatial patterns and
time evolutions. These distinct forcing characteristics present a
challenge to the study of regional and global climate response,
even if capturing the long-term acrosol trends is crucial to provide
reliable temperature estimates and projections (79-81). This
deserves future research despite the challenges posed by the lack
of good constraints on the spatial variability of historical aerosol
concentrations.

Another important consideration in our approach is that the
same forcing is used for all 22 CMIP6 models under a specific SSP
scenario. This implies that the uncertainty in historical aerosol
forcing is represented by the spread among CMIP6 models. In
IPCC ARS5 (82), it was highlighted that the spread of aerosol forc-
ing among CMIP5 models was narrower than the full range derived
from observations and other lines of evidence, indicating that
model-based uncertainty estimates may not fully capture the entire
variability. Although ARG provides updated effective radiative forc-
ing (ERF) estimates for aerosols, substantial uncertainties still
remain (83-85). This limitation suggests that our method, while
improving projections by constraining simulations to observational
temperature data, may still underestimate the full range of historical
aerosol forcing uncertainty. Future investigations will explore ways
to comprehensively integrate observational constraints on aerosol
forcing to better account for these uncertainties.

Nevertheless, this work provides evidence of the efficacy of ML
in optimally integrating historical observations and climate models
knowledge, suggesting the potential for improved models™ preci-
sion and reliability in climate projections and a strengthened
foundation for future predictions.
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Materials and Methods

Earth System Models. We use global surface air temperature maps simulated
from 1850 to 2098 by 22 CMIP6 Earth system models (S/ Appendix, Table S1)
under SSPs 2-4.5, 3-7.0, and 5-8.5. For each model and scenario, we employ a
single ensemble member. Specifically, the r1i1p1f1 member is chosen as it is
frequently the primary member in CMIP6 models and is also used in [IPCCWG1
AR (40) for evaluating temperature projections. However, this member was una-
vailable for CNRM-CM6-1, CNRM-ESM2-1, and UKESM1-0-LL. For these models,
we opted for r1i1p1f2. Selecting a single member per model helps us manage
computational complexity within our framework while ensuring alignment with
the IPCC's methodology (40).

Furthermore, some of the CMIP6 models simulations are available at a spatial
resolution of about 250 km and others at 100 km. The conservative remapping
(86)is employed to align all simulations with the CanESM5-CanOE grid, which is
the lowest-resolution one among all those available, with 64 x 128 grid points.
The coarsest spatial resolution is selected to avoid any synthetic information that
would be added in case of remapping to a higher-resolution grid. The CMIP6
simulated maps are gathered ata monthly temporal resolution and subsequently
averaged over a year to generate the corresponding annual version, which is
aligned with the temporal resolution (annual) of CO, equivalent input data.

€O, Equivalent Data. Asingle annual CO, equivalentvalue is used as predictor
for each DNN. These CO, equivalent values are computed from ERF estimates
which take into account aerosols and greenhouse gases (e.g., CO,, methane,
nitrous dioxide, etc.) and are simulated by the Minimal CMIP Emulator v1.2
RCM (87). We have one ERF value per year per SSP scenario. For each ERF value,
we iteratively calculate the corresponding CO, equivalent value such that, when
entered into a CO, radiative forcing formula, it produces an output within a tol-
erance of less than Te-5 compared to the ERF value. This calculation results in
three time series of CO, equivalent values from 1850 to 2098, one for each SSP
scenario, with one CO, equivalent value per year. This is used as a single input
for the DNNs throughout the pretraining, leave-one-out cross-validation, and
TL on observations phases. The CO, radiative forcing formula used in this work
is reported below. It was introduced by Meinshausen et al. (88) to represent
radiative forcing after stratospheric adjustments, relative to preindustrial (1750)
levels, and is an optimized modification of the simplified formula presented by
Etminan et al.(89).

C
RFcor = (o + ay) - /n<6>

where:
C,. =C—
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1 ~
7, ~ 1808ppm
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r_ 4 _ 2
o =d, o forC>>>C,
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BEST Observational Data. We use historical surface air temperature estimates
from the global Berkeley Earth Surface Temperatures (BEST) (90) gridded data,
which are provided on a 1° x 1° latitude/longitude grid with a monthly temporal
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resolution and gathered from 1850 to 2022. Specifically, we select the BESTmaps
with air temperatures at sea ice, in which temperatures in the presence of sea ice
are extrapolated from land-surface air temperature. This revealed to be a more
sensible approach for capturing climate change, especially at the poles. Indeed,
the change of air temperatures over sea ice can be large even if the sea surface tem-
perature under sea ice is not changing, since the latter is strictly connected to the
water freezing point and can only vary with changes in sea ice cover. Over the last
decades, the Arctic region was characterized by a very strong warming trend during
the winter season, and this translated into an additional ~0.1 °C global-average
temperature rise during the 19th century with respect to estimates not including
such changes (i.e., estimates based on sea surface temperature under sea ice) (90).

The conservative remapping (86) is used to align the BEST data to the same
CanESM5-CanOE grid used for CMIP6 data, thus generating temperature fields of
size 64 x 128 and averaged over time to obtain a single map per year. Although
the temporal coverage of the BEST dataset starts from 1850, maps prior to 1979
are excluded after the remapping process due to the lack of data in many regions
atthe time and thus reduced accuracy. For this reason, the temporal domain used
is 1979 t0 2022.

In order to account for aleatoric uncertainty (i.e., uncertainty related to the
data’s inherent randomness and stochasticity), a noise is added to each annual
BEST map by sampling the values from a Gaussian distribution (91, 92) with 0
mean and SD equal to the annual uncertainties—provided by the Berkeley Earth
group and available with the dataset. These uncertainties represent the statis-
tical and spatial undersampling effects as well as ocean biases (90). To include
epistemic uncertainty (i.e., uncertainty due to the model’s lack of knowledge
about the phenomenon of interest), an ensemble technique (93) is exploited.
Specifically, five datasets are built for each CMIP6 model and for each SSP scenario
by sampling and adding the random Gaussian noise to the BEST temperature
maps, thus obtaining an ensemble of 330 (i.e., 5 x 22 x 3) datasets of historical
observations.This allows estimating structural and aleatoric uncertainties and the
noise due to internal climate variability. We tried 10 and 20 BEST-perturbed data-
sets per model and scenario as well but did not obtain substantial improvements.
We did not evaluate Monte Carlo dropout (94) for the quantification of aleatoric
uncertainty as it has been shown to underestimate the uncertainty (95-97).

TL Approach. This work introduces a TLframework to improve global surface air
temperature projections by leveraging DNNs pretrained on CMIP6 simulations
and fine-tuned on observational data. The approach involves training DNNs to
emulate the spatial temperature patterns of climate models and then refining
them using historical observations, and can be viewed as a middle ground
between purely model-based and purely data-driven projections. This strategy
aims to reduce uncertainty in multimodel projections by blending simulated and
real-world data, validated through a cross-validation-like process.

The first step of the algorithm involves the use of 66 DNNs to emulate the
global annual surface air temperature maps simulated by 22 CMIP6 models
(S1Appendix, Table S1) under SSPs 2-4.5, 3-7.0, and 5-8.5. An individual DNN is
trained for each CMIP6 model simulation (S/ Appendix, Fig. S14). Each DNN pre-
dicts a single temperature map per year starting from the corresponding annual
(0, equivalent concentration. In total, 66 DNNs are implemented and pretrained,
representing the combination of 22 CMIP6 models and 3 SSP scenarios. The
pretraining is performed using data from 1850 to 2098, since 2098 is the last
projection year available in all the selected CMIP6 simulations. Moreover, the
years from 2070 to 2080 are reserved for validation purposes. The primary goal
of each DNN in this pretraining phase is to replicate the CMIPé simulation it is
trained on as closely as possible, effectively building a robust, tunable emulation
of CMIP6 temperature projections and capturing the link between CO, equivalent
values and temperature spatial patterns (which are inherently complex due to
the diversity of responses across regions and scenarios).

This work proposes the use of TLto combine the models' simulations with the
information from historical observational data with the ultimate goal of reducing
the uncertainty of multimodel projections. To identify the right amount of infor-
mation transfer and assess the degree of uncertainty reduction and model fit, we
proceed as follows. For each scenario, one of the 22 CMIP6 simulations is taken
out and used as ground truth for validation in a leave-one-out cross-validation
framework (48). This approach allows a robust testing of the TL phase by assessing
each DNN on synthetic observations (i.e., taken-out model simulations) which
provide a ground truth even in the future. Specifically, each DNN pretrained on
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the remaining 21 CMIP6 simulations is fine-tuned on the left-out simulation for
the corresponding scenario by updating its weights on the (simulated) histori-
cal data from 1850 to 2022-which represent the training set during this phase
(51 Appendix, Fig. S1B). In other words, the DNNs that were initially pretrained to
reproduce the CMIP6 models are now fine-tuned on the historical data simulated
by the left-out model, and the same CO, equivalent values of the pretraining
phase are used as input. The 21 fine-tuned DNNs are then used to project global
surface air temperature maps from 2023 to 2098 (test set) to reproduce the tem-
peratures projected by the left-out model in the long-term future. This procedure
is then repeated across the 22 CMIP6 models and the three SSP scenarios, thus
providing multiple validation points and testing combinations.

The goal of the leave-one-out cross-validation described above and applied to
simulation data is to test the capacity of the proposed TLapproach before apply-
ing the same method to real observational data and constraining the warming
projections, which is done in the next step. Indeed, as was done for the leave-
one-out cross-validation, one DNN is pretrained for each CMIP6 model to map
the CO, equivalent values previously described to the corresponding surface air
temperature global maps from 1850 to 2098 for the three SSP scenarios. This
results in the implementation and pretraining of a total of 66 DNNs (S/ Appendix,
Fig. S14). Then, using an ensemble technique (93) (to address epistemic uncer-
tainty) and the TL strategy, the DNNs weights and biases are fine-tuned 5 times
independently on the historical BEST dataset (1979 t02016,2021,2022; training
set), each time perturbed through the addition of a noise randomly sampled
from a Gaussian distribution (thus addressing aleatoric uncertainty) (S/ Appendix,
Fig. S1C). The years 2017 to 2020 are reserved for testing purposes during this
phase, as the hyperparameters are the same as the DNNs used in the leave-one-
out cross-validation except for the learning rate (see DNNs for further details).

DNNs. The DNNs designed and implemented for each model and scenario share
the same architecture and hyperparameters configuration.

Four deconvolutional (or transposed convolutional) layers (98) are used to gen-
erate temperature maps from CO, equivalent scalar values. The scalar input is fed
toa dense layer made up of 4 x 8 x 128 neurons. Then, the four deconvolutional
layers have the role of modeling the correlated spatial information and upsampling
itto perform the deconvolutions and reach the spatial resolution of the target map.
Specifically, each deconvolutional layer is characterized by 128 kernels with size
10 = 10 and stride equal to 2. This configuration allows the spatial dimensions
of the activation volume received by the layer as input to be doubled. The last
deconvolutional layer returns an activation volume of size 64 x 128 x 128.A
final convolutional layer with a single kernel of size 5 x 5 and stride equal to 1 is
needed to refine the spatial information generated by the previous deconvolutional
layers and generate the final near-surface air temperature map of size 64 x 128.

The best set of hyperparameters was found after a trial-and-error procedure
involving several configurations. We tested different learning rates for the pre-
training by progressively increasing the value from Te-8 to 1e-2. We selected a
learning rate equal to Te-4 as it revealed a good trade-off between generalization
accuracy and convergence time, even across different hyperparameter configu-
rations. In the end, the Adam optimizer (99), a learning rate of 1e-4, a batch size
of 8, and 500 epochs were used for the pretraining.

During TL, we fine-tuned the pretrained layers selecting a lower learning rate
to not dramatically change the values of the weights adjusted during the pre-
training. This is usually done when training on new data with the aim of keeping
the old knowledge previously acquired and transferring it to the new learning
(100). We found good performance with a learning rate about an order of mag-
nitude smaller than the one used during the pretraining, which is a common
practice in fine-tuning. We used the same hyperparameters for leave-one-out
cross-validation and fine-tuning on observations phases, except for the learning
rate. Indeed, with the aim of taking into account the lower number of observa-
tional data available for fine-tuning (1979 to 2022)-~4 times less than those
available during the leave-one-out cross-validation (1850-2022)-we utilized a
learning rate equal to 0.25e-5 during the leave-one-out cross-validation and
equal to Te-5 during the fine-tuning on observational data. The higher learing
rate with a lower number of training data helped to reduce the risk of overfitting.

The strategy of freezing some layers during TLwas tested as well, but it led to
worse results. The final set of hyperparameters for TL is Adam optimizer (99), a
batch size of 16,500 epochs, and leaming rate equal to 0.25e-5 for leave-one-out
cross-validation and Te-5 for TLon observational data.

https://doi.org/10.1073/pnas.2413503122

The DNN architecture is the same for both training and TL phases. The loss func-
tion isa standard mean absolute error and both the annual CO, equivalent values
and the surface air temperature maps are scaled using Min-Max Normalization in
the 0to 1range. Leaky Rectified Linear Unitactivation function (101) was selected
forthe hidden layers and a sigmoid was used for the output layer because of the
0to 1 range of Min-Max Normalization of both input and output.

Metrics. Temperature anomalies (also referred to as "warming values”) are com-
puted at the grid-point level for both CMIP6 projections and DNNs predictions,
each relative to its own climatology. Following Ribes etal. (37), smoothing splines
with 20 degrees of freedom are also applied at the grid-point level to CMIP6 pro-
jections to reduce the contribution of internal variability. The number of degrees
of freedom was tuned according to our data to balance the smoothness and fit of
the resulting time series. In order to compute the spatial averages of the maps
predicted by the DNNs and simulated by CMIP6 models, a latitude-weighted
spatial average is employed. The weights scale each point according to the area
it represents depending on the specific latitude.

In each iteration of the leave-one-out cross-validation, in which a CMIP6
model is removed from the ensemble (referred to as taken-out model i), the
following metrics are computed, with results summarized in SI Appendix,
Table S2.

DNN I DE 0 — A(}’)
s ensemble per year = 51 Z

m=1 m’
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o A(m” is the global average warming value (baseline: 1850 to 1900) predicted
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the global temperatures predicted by the DNNs (fine-tuned on taken-out model
i)in each iteration and used to plot the corresponding white line.

Avg is the average global temperature simulated by the taken-out CMIP6
model j and used to plot the black and dashed lines.

Data, Materials, and Software Availability. The datasets used in this study
are freely accessible, with any restriction, from the following public repositories:
CMIPé6 data (https://doi.org/10.24381/cds.c866074c) (102), BEST data: https:/
berkeleyearth.org/data/ (90), The source code, along with Fig. 1, S/ Appendix,
Fig. S4 and S7 for all the iterations of the leave-one-out cross-validation, and
Movie S1 are available on GitHub at https://github.com/francescoimmorlano/
transferring-climate-change-physical-knowledge (103). The data and the
results are archived on Zenodo at the following DOI: https://doi.org/10.5281/
zen0do.15001003 (104).
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The mean values reported at the bottom of S/ Appendix, Table S2 are computed
as follows:

1 2
Mean global average error = 7 2,&1 |Global average error, |
1 2
Mean global RMSE = - >~ (Global RMSE))

Mean accuracy = 21—2 ZZ (Accuracy;)

Some of these values are used to plot S/ Appendix, Figs. S5 and S6. Indeed, the
following quantities are used to plot the light blue and dark blue bars correspond-
ing to each iteration of the leave-one-out cross-validation, in which CMIP6 model
i is removed from the ensemble and used as taken-out model. Specifically, Avg
5%cuipsand Avg 95% e, are the average 5% and average 95% of the global tem-
peratures simulated by the remaining CMIP6 models of the ensemble and used
to plot the light blue bar. Avg med 5, is the median of the global temperatures
simulated by the remaining CMIP6 models and used to plot the corresponding
red line.

Avg 5%pys; and Avg 95% . are the average 5% and average 95% of the
global temperatures predicted by the DNNs (fine-tuned on taken-out model i) in
each iteration and used to plot the dark blue bar. Avg medpy, is the median of
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