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1 | INTRODUCTION

Climatic extremes such as droughts are increasing in frequency
and severity globally, with cascading effects on wildlife (Bailey &
Pol, 2016; IPCC, 2021; Parmesan & Yohe, 2003). Water is a key
resource for all living things, and water availability greatly impacts
animal movement, distribution and behaviour (Gedir et al., 2020;
McCluney et al., 2012). As such, both acute and long-term changes in
resource availability induced by drought have important implications
for ecological communities. Drought can confer acute reductions in
surface water availability (Inbar & Bruins, 2004; Lake, 2003; Leblanc
et al., 2009), large-scale vegetation die-offs (Kane et al., 2011) and
reductions in availability and nutritional quality of vegetation, which
in turn can cause prey body condition to decline and mortality to in-
crease, potentially increasing predator access to prey (Knight, 1995).
Drought can also have long-term impacts on resource availability, in-
cluding reductions in broad-scale spatial heterogeneity (Pennington
& Collins, 2007), changes in plant community composition (Pearson
et al,, 2017), and vertebrate population declines, genetic bottle-
necks and extirpation (Abraham et al., 2019; Duncan et al., 2012;
Knight, 1995).

Such drought-induced changes can have important impacts on
wildlife community dynamics. For example, by changing the distri-
bution of resources over space, droughts may alter the frequency
of trophic interactions (Amundrud et al., 2019). However, although
alterations in species interactions are an important link between
environmental change and wildlife population declines (Cahill
et al., 2013; Ockendon et al., 2014), the behavioural pathways
through which environmental change alters species interactions
are poorly understood. One mechanism by which this could occur
is through changes in competitive dynamics between co-occurring
species. As ecological niche theory predicts that species with simi-
lar requirements cannot coexist in resource-limited systems unless
they use shared resources differently, we would expect dominant
species to outcompete subordinate species (Gause, 1934). To avoid
this competitive exclusion, animals frequently partition resource use

5. Our findings reveal that drought has a clear signature on the space use of multi-
ple sympatric large carnivore species, which can alter spatiotemporal partition-
ing between competing species. Our study thereby illuminates the links between
environmental change, animal behaviour and intraguild dynamics. While fine-
scale avoidance strategies may facilitate intraguild coexistence during periodic
droughts, large carnivore conservation may require considerable expansion of
protected areas or revised human-carnivore coexistence strategies to accom-
modate the likely long-term increased space demands of large carnivores under

projected increases in drought intensity.

Acinonyx jubatus, climate change, intraguild competition, large carnivore ecology, Lycaon pictus,
movement ecology, Panthera leo, Panthera pardus

in time and space. If environmental changes such as drought lead
to resource scarcity, however, this coexistence may be jeopardized
as animals compete for increasingly limited resources, resulting in
elevated competition between species (Head et al., 2012; Prugh
et al., 2018). Although numerous studies have demonstrated the
impacts of drought at the population or community level (Duncan
et al,, 2012; Goldingay et al., 2023; Prugh et al., 2018), the be-
havioural responses of individuals that drive these broader-scale
impacts are not well known.

Animal movement is a key behavioural process linking individ-
ual responses to resource availability with effects on competition
and other species interactions (Nathan et al., 2008). Indeed, the
space use of many species is strongly influenced by the spatiotem-
poral distribution of resources within their environment (Abrahms
etal., 2021; Hayward et al., 2009; Mueller et al., 2011). Animal move-
ment also fundamentally determines animal occurrence in space and
time, which affects interaction patterns (Costa-Pereira et al., 2022).
For example, in mammalian carnivores, interspecific variation in
space use and habitat selection underpins patterns of spatiotemporal
overlap between species, which in turn drive intraguild interactions
(Jensen & Humphries, 2019). Thus, although movement responses
occur at the individual level, they can scale up to impact community
dynamics (Costa-Pereira et al., 2022; Jeltsch et al., 2013). Drought
events are a valuable lens through which to examine this phenom-
enon, as reduced access to resources such as food and water may
lead to increased competition among consumers, or, conversely, may
cause competitive release (Belant et al., 2010; Pickett et al., 2018).
Understanding how climate-induced resource variability impacts
animal movement, and how species-specific behavioural responses
scale up to impact community dynamics, is critical for predicting
community-level responses to climate extremes like droughts.

Top predators remain among the most understudied taxa regard-
ing the ecological impacts of climate variability (Abrahms et al., 2022;
Cahill et al., 2013; Ockendon et al., 2014; Prugh et al., 2018), and
yet understanding the forces shaping the behavioural and com-
munity responses of top predators to climate extremes is critical
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given that upper trophic levels have cascading top-down ecological
consequences on ecosystems. Large carnivores, in particular, are
keystone species that contribute substantially both to maintaining
healthy ecosystems and to a range of services that benefit people
(Ripple et al., 2014). For example, large carnivores contribute to a
multi-billion-dollar global ecotourism industry (Esposito et al., 2020)
and they reduce fatal vehicle collisions and zoonotic disease trans-
mission by suppressing herbivore populations (Gilbert et al., 2017;
Packer et al., 2003). In addition, large carnivore species are vulner-
able to environmental extremes, which may threaten their viability
under climate change (Rabaiotti et al., 2023). However, the effects
of climate variability on behaviour and ecology in free-living large
carnivore guilds is particularly challenging to identify, as their large
home ranges, low population densities and cryptic behaviours make
long-term observations over a range of climatic conditions difficult
to obtain (Smith et al., 2017). The behavioural responses of large car-
nivores to drought events are therefore a key area for further study
to uncover the potential impacts of increasingly common climatic
extremes on carnivore persistence. Furthermore, we currently lack
understanding of how the impacts of climate variability on individual
carnivore behaviour are linked to broader ecological changes, such
as intraguild dynamics.

Here, we examine the effects of drought on the spatial behaviour
of four sympatric large carnivore species in southern Africa—lions
(Panthera leo), leopards (Panthera pardus), African wild dogs (Lycaon
pictus) and cheetahs (Acinonyx jubatus)—to determine the extent
to which climate-driven resource availability impacts carnivore
space use and intraguild dynamics. Southern Africa is experiencing
progressively frequent and severe drought events (Chivangulula
et al., 2023) and is also home to a large carnivore guild that exhib-
its complex interspecific interactions as they compete for similar
resources in a shared landscape (Vanak et al., 2013). Lions are the
largest and most competitively dominant species within the guild.
The space use of smaller predators such as African wild dogs and
cheetahs is consequently strongly influenced by their avoidance of
larger and more dominant competitors (Broekhuis et al., 2013; Mills
& Gorman, 1997), whereas the space use of dominant predators is
primarily dictated by prey distributions (Vanak et al., 2013). In ad-
dition, water availability can significantly influence the behaviour
and distributions of some African large carnivore species, with un-
known consequences for intraguild competition. For example, lions
move seasonally in response to water conditions, seeking out surface
water in dry conditions when wild prey are aggregated around water-
holes (Valeix et al., 2010). Carnivores may have larger home ranges
when resources like prey or water sources are more sparsely distrib-
uted (Moyer et al., 2007; Tuqa et al., 2014), or alternatively may have
smaller home ranges due to greater concentration around patchy
water sources (Edwards et al., 2013); either of these processes may
alter spatial partitioning between competing species.

We specifically investigated the effects of drought on (1) large
carnivore space use, (2) broad-scale intraguild spatial overlap and (3)
fine-scale intraguild interactions. To evaluate the effects of drought
on carnivore space use, we examined whether carnivore home range
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sizes change in response to drought conditions. We considered two
sets of alternative hypotheses: (1a) Carnivores will exhibit larger
home ranges during drought, for example by ranging over greater
areas to locate scarce resources; or (1b) Carnivores will exhibit
smaller home ranges during drought, for example due to concen-
trating their movements around predictable resources. Second, to
evaluate the effects of drought on broad-scale competitive dynam-
ics, we examined whether spatial overlap between carnivore spe-
cies changes during drought conditions. We hypothesized that (2a)
drought will exacerbate spatial competitive exclusion of subordinate
species, leading to decreased spatial overlap between subordinate
and dominant species. Alternatively, we hypothesized that (2b)
drought will increase subordinate carnivores' risk tolerance, leading
to increased spatial overlap between subordinate and dominant spe-
cies. Finally, to evaluate the effects of any drought-induced spatial
changes on finer-scale intraguild interactions, we examined whether
drought conditions affect interspecific encounter rates. Analogous
to (2a) and (2b), we considered the alternative hypotheses of (3a)
increased competitive exclusion leading to reduced encounter rates
during drought; or (3b) increased risk tolerance leading to increased

encounter rates during drought.

2 | MATERIALS AND METHODS
2.1 | Study system and data collection

Our study area was located in northern Botswana's Okavango Delta
(c. 2700km?; centred at 19°31'S, 23°37’E; elevation c. 950m), which
encompasses Moremi Game Reserve and its adjacent wildlife man-
agement areas. This region experiences strong seasonal climatic
variation, with a wet season occurring between December and May
and a dry season occurring between June and November (mean an-
nual rainfall ~300-600 mm/year). Seasonal flooding in the Okavango
Delta is primarily influenced by rainfall in the Angolan Highlands, with
river discharge and flood extent in the Delta lagging about 6 months
behind Angola's climatic conditions (Byakatonda et al., 2018). Our
study region experienced several government-designated drought
events over the course of the study period, 2011-2022, with drought
years classified as either ‘severe’ or ‘extreme’ occurring in 2014/15,
2015/16, 2018/19 and 2022/2023 (Ministry of Local Government
and Rural Development, 2023; Figure 1). In addition to reduced local
precipitation during these periods, the Delta experienced gener-
ally low flooding levels, reflecting widespread drought conditions
across southern Africa, including in the Angolan Highlands (Mfundisi
et al., 2021). For example, the 2019 drought, one of the most severe
in recent history, resulted in markedly reduced inundation extents in
the Okavango Delta (Mfundisi et al., 2021). Thus, classified drought
events in the study area are characterized by reduced surface water
availability from both local rainfall and floodwater (Byakatonda
et al., 2018; Moses et al., 2023).

Between 2011 and 2022, we collected GPS data from 31 African
wild dogs, 14 lions, 8 leopards and 5 cheetahs across a range of
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climatic conditions (Figure 1, Table S1). Total days of data col-
lected were 9497 days (median 210days/individual) for wild dogs,
9302days (median 349 days/individual) for lions, 3522 days (median
222days/individual) for leopards and 3297 days (median 606days/
individual) for cheetahs (Table S1). Animals were captured across the
study area based on a combination of spoor tracking, sightings and
baited trap sites as part of a long-term carnivore monitoring program
(Rafiqg et al., 2023). For collars deployed between 2011 and 2018,
GPS relocations were collected at 5-min fix intervals when animals
were active, and at 1-h intervals when animals were resting (Hubel
et al., 2016, 2018; Wilson et al., 2018). Collars deployed after 2018
collected relocations at 3-hour intervals. All capture and collaring
was approved by the Royal Veterinary College Ethics and Welfare
Committee, the University of Washington Animal Care and Use
Committee (Protocol #4514-01) and the Botswana Department of
Wildlife and National Parks.

FIGURE 1 (a)Study areain northern
Botswana's Okavango Delta, overlaid with
GPS tracks from collared lions, cheetahs,
African wild dogs and leopards. (b) Time
series of 12-month lagged Standard
Precipitation Index (SPI) values over

the study period calculated from daily
rainfall measurements at our field site,
with government-designated severe-to-
extreme drought events indicated with
shaded boxes. (c, d) Satellite imagery of
the Okavango Delta, overlaid with a raster
of surface water extent in the study area
during a wet period (c), the 2016-2017
wet season, and during a drought period
(d), the 2018-2019 wet season, for
demonstration. The star icon denotes the
field site location. Satellite imagery was
obtained from Google Earth.

2019 2021 2023

2.2 | Droughtindex

To quantify drought severity, we used the Standard Precipitation
Index (SPI), which is commonly used to describe drought condi-
tions (Cancelliere et al., 2007; Tirivarombo et al., 2018) and is the
metric used by the Republic of Botswana to designate drought
events (Batisani, 2020). SPI compares the precipitation total within
a specific time period with the historical average precipitation total
during the same time of year (e.g. for a given location, it compares
the precipitation total from January-March 2022 with the aver-
age January-March precipitation totals from all recorded years). In
this way, SPI is indicative of precipitation anomalies within a speci-
fied time period at an inter-annual timescale, and is independent of
intra-annual variation. Negative SPI values represent anomalously
dry conditions, and positive SPI values represent anomalously wet
conditions.
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We generated monthly SPI values in our study area based on
32.7years (January 1990-October 2022) of daily precipitation
measurements collected from a rain gauge at our field site using
the National Drought Mitigation Center's SPI Generator (National
Drought Mitigation Center, 2018). Across the study period, the
minimum SPI value recorded was -1.26 and the maximum SPI value
recorded was 1.72; the 25th percentile of SPI values was -0.5 and
the 75th percentile was 1.0. SPI values <-0.4 represented severe
to extreme drought events based on the government drought clas-
sifications (Figure 1). We hypothesized that the ecological effects
of drought, such as changes in resource availability, might occur at
multiple temporal scales. For instance, acute resource shifts at the
seasonal scale may represent environmental changes such as sur-
face water availability or primary production, whereas shifts at the
annual scale may represent potential longer-term ecological changes
such as changes in prey abundance or distribution. We therefore
tested lagged SPI values to reflect the effects of drought at both
acute (previous 3months' total precipitation) and longer-term (previ-

ous 12months' total precipitation) timescales.

2.3 | Home range, spatial overlap and encounter
estimation

To quantify carnivore home ranges, we fit Brownian Bridge
Movement Models to GPS relocations (Horne et al., 2007) using
the R package adehabitatHR (Calenge, 2023). All GPS relocations
were first regularized to a 3-hour sampling rate to match the low-
est resolution data collected. This resulted in a total of 57,759 fixes
(median 1548 fixes/individual) for wild dogs, 54,771 fixes (median
2523 fixes/individual) for lions, 16,291 fixes (median 1782 fixes/
individual) for leopards and 14,914 fixes (2213 fixes/individual) for
cheetahs (Table S1). Using these data, we estimated monthly home
range (95% utilization distribution) and core area (50% utilization dis-
tribution) sizes for each individual across the study period. Monthly
estimates for some individuals were excluded from analyses based
on reproductive status, which can affect female home range sizes
in some species (Jhala et al., 2009; Maruping-Mzileni et al., 2020;
Pomilia et al., 2015). Home ranges of individuals within the same
social group were not included if they occurred in the same month
to avoid pseudoreplication, leading to a final set of 22 wild dogs,
11 lions, 8 leopards and 5 cheetahs included in analyses. See
Appendix S1 for details on exclusion criteria.

To examine the impact of drought conditions on spatiotemporal
overlap between carnivore species, we evaluated whether monthly
overlap between individuals of different species (referred to as
dyads, e.g. overlap between ‘cheetah individual 1’ and ‘leopard in-
dividual 1') was related to SPI. We calculated overlap for both home
ranges and core areas in each month using Bhattacharyya's affinity
metric, which represents overlap as a value between 0 (no overlap)
and 1 (perfect overlap; Carroll et al., 2019).

To examine the impact of drought conditions on finer-scale
interactions between carnivore species, we evaluated whether
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encounter rates between individual dyads were related to SPI. We
restricted analysis to 5-min interval encounter data to capture fine-
scale interactions (Table S1). We quantified encounter occurrences
using the R package wildlifeDIl (Long, 2023). Encounters were de-
fined as occurring when simultaneous fixes from individual dyad
members were within a specified distance threshold of one another
(Broekhuis et al., 2013; Rafiqg et al., 2019). Following Long (2023) and
Rafiq et al. (2019), fixes were defined as simultaneous when occur-
ring at half of the sampling frequency, that is within 2.5min of one
another. New encounter events could not occur until dyad members
had vacated the distance threshold and had been separated for at
least 4 hours since their last encounter, as this is a typical duration
of African carnivore activity periods (Cozzi et al., 2012; Hayward
& Slotow, 2009; Rafiqg et al., 2023). We evaluated encounter rates
at two biologically meaningful distance thresholds determined
from field observations: 200 and 400 m, which are critical distance
thresholds for interactions from previous studies on large carnivores
(Elbroch & Quigley, 2017; Jordan et al., 2017; Rafiq et al., 2019,
2020).

2.4 | Statistical analysis

To evaluate the impact of drought conditions on carnivore home
range size, overlap, and encounters, we built linear mixed ef-
fects models with SPI as a predictor in all models (R package glm-
mTMB; Brooks et al., 2023). Before fitting models, we tested data
for temporal autocorrelation in monthly home range and overlap
estimates using acf() function in R's stats package and found no
significant autocorrelation. In all cases, we used bootstrapping
to calculate 95% confidence intervals on model coefficients and
predictions.

For home range size analyses, we fit species-specific models
with a gamma distribution and a log link function, with all mod-
els including home range area as the response variable and SPI as
a predictor variable. For wild dog data which only included one
individual per pack, we included group ID as a random effect to
account for repeated measures. For lions, we included individual
ID nested within group ID as a random effect, whereas for solitary
felids (cheetahs and leopards) only individual ID was included as a
random effect. For lions and cheetahs, we also included sex as a
predictor as it affects felid home range size (Loveridge et al., 2009;
Welch et al., 2015). Sex was not included for leopards as all col-
lared individuals were male.

For overlap analyses, in which the overlap coefficient between
two individuals took values between O and 1, inclusive, we used a
Bernoulli-beta mixture model to accommodate zero-inflation with
SPl as a predictor in all models. First, we used a Bernoulli distribution
with a logit link to evaluate whether SPI had an effect on a binary
response of whether there was (1) or was not (0) overlap between
two species (i.e. the probability of overlap). Second, we used a beta
distribution with a logit link to investigate whether, for those species
that had any overlap >0, SPI had an effect on the amount of overlap.
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For all models, we included an interaction between SPI and species response variable, SPl was a predictor, and dyad ID was included as

dyad (e.g. cheetah-leopard) to allow responses to vary at the species arandom effect. As above, we included an interaction between SPI

dyad level. To account for repeated measures, we included individual and species dyad (e.g. cheetah-leopard) to allow responses to vary at

dyad ID (e.g. ‘cheetah individual 1'-‘leopard individual 1’) as a ran- the species dyad level. All model formulas, analyses and sample sizes

dom effect. Due to convergence issues from insufficient data, we are summarized in Tables S2 and S3.

excluded dyads with fewer than 10 observations distributed across

3 SPI values. This led to the exclusion of the cheetah-leopard spe-

cies pair for the core area Bernoulli model, and cheetah-wild dog, 3 | RESULTS
cheetah-leopard, and wild dog-leopard species pairs for the core
area beta model. 3.1 | Home range size
Finally, for encounter analyses, we used a zero-truncated Poisson
distribution with a log link, as encounters were treated as a count In support of our first hypothesis (1a), we found a general pat-
variable and we only included dyads where the count was >0. In tern across species toward expanded space use as conditions be-
each encounter model, the number of encounters per month was the came drier (Figure 2, Table S4). African wild dogs expanded their
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FIGURE 2 Observed data (points) and model predictions (lines, Table S7) for African wild dog (a), leopard (d) and lion (g) 95% home
range size as a function of Standard Precipitation Index (SPI). Shaded regions represent bootstrapped 95% confidence intervals. For visual
demonstration, maps show how two African wild dog (b, c), leopard (e, f) and lion (h, i) individuals' 95% monthly home ranges expand from a
high (wet) SPI to a low (dry) SPI period.
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home ranges in response to acute (i.e. 3-month) drought condi-
tions, with 95% home range sizes increasing by 35% when in low
(25th percentile) versus high (75th percentile) SPI conditions
(Bo5=-0.21, 95% Cl=-0.30, -0.12). Similarly, wild dog core areas
increased by 65% in low versus high SPI conditions (f;,=-0.33,
95% Cl=-0.48, -0.18). We did not find evidence that wild dog
space use responded to prolonged (i.e. 12-month) drought con-
ditions (f,5=0.002, 95% Cl=-0.1, 0.1; f;,=0.03, 95% CI=-0.2,
0.2). In contrast, both lion and leopard ranges expanded in re-
sponse to prolonged drought conditions. Lion home range sizes
increased by 53% when in low versus high SPI (f,;=-0.28, 95%
Cl=-0.42, -0.15). Lions exhibited a similar pattern of expanding
their core areas under drier conditions (ﬂsO: -0.19, 95% Cl=-0.4,
0.02), however the smaller effect size in combination with a con-
fidence interval that slightly crosses zero indicates that this ef-
fect is uncertain. Leopards increased their home ranges by 66%
(Po5=-0.33, CI=-0.62, -0.05), and their core areas by a marked
228% (f50=-0.78, 95% Cl=-1.22, -0.34), in low versus high SPI
conditions. Finally, cheetahs also demonstrated a tendency to ex-
pand their core areas under prolonged dry conditions, although as
with lion core areas, this effect was uncertain (ﬁ50=—0.22, 95%
Cl=-0.5,0.03). These results suggest that there is a general trend
toward carnivores increasing their space use in drier conditions,
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with the magnitude and certainty of these effects varying across

species.

3.2 | Spatiotemporal overlap

We found moderate support for the hypothesis (2b) that drought con-
ditions increase spatial overlap between dominant (namely, lion) and
subordinate species, although the strength of this relationship var-
ied by timescale and species dyad (Table S5). While the probability
of any overlap between lion and cheetah home ranges decreased in
response to prolonged (12-month) drought conditions (4=4.14, 95%
Cl=1.18,7.29), for lion-cheetah dyads with some home range overlap,
the amount of overlap increased under prolonged drought conditions
(p=-0.65, 95% Cl=-1.29, 0.0; Figure 3). This translated to a 119%
increase in the amount of spatial overlap between lions and cheetahs
when experiencing low (25th percentile) versus high (75th percentile)
SPI. Similarly, the amount of overlap between lion and leopard core
ranges increased in response to prolonged drought (8=-0.4166, 95%
Cl=-0.79, -0.06), with overlap between lions and leopards increasing
by 78% in low versus high SPI conditions. Although the magnitude
of these observed changes in amount of overlap for the lion-cheetah
and lion-leopard dyads suggests a substantial response to drought, the
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FIGURE 3 Observed data (points) and model predictions (lines, Table S8) for amount of home range overlap (beta model) as a function of
Standard Precipitation Index (SPI) for (a) lion-cheetah dyads and (d) lion-leopard dyads, which showed evidence of a response to SPI. Shaded
regions represent bootstrapped 95% confidence intervals. For visual demonstration, maps show how lion-cheetah (b, c) and lion-leopard (e,

f) overlap increases from a high (wet) SPI to a low (dry) SPI period.
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wide confidence intervals which come close to crossing zero indicate
these effects should be interpreted cautiously. There was no effect
of acute drought conditions on overlap with any lion dyads, although
there was weak evidence that the probability of overlap between wild
dog and leopard home ranges ($=-0.9203, 95% Cl=-1.9, 0.09), and
between wild dog and cheetah core areas (8=-1.2761, 95% Cl=-4.2,

0.2), increased in response to acute drought.

3.3 | Encounters

Our encounter analysis led to 184 total encounters at the 200 m dis-
tance threshold: 26 for the lion-cheetah dyad, 48 for the leopard-
wild dog dyad, 50 for the lion-leopard dyad and 60 for the lion-wild
dog dyad. At the 400 m threshold, there were 287 total encounters:
62 for lion-cheetah, 52 for leopard-wild dog, 77 for lion-leopard and
96 for lion-wild dog.

Broad-scale changes in spatiotemporal overlap between species
dyads generally did not translate into changes in fine-scale encoun-
ter rates (Table S6). The only detectable effect of SPI on encounter
rates was a decrease in lion-cheetah encounters at the 400m dis-
tance threshold in response to both acute (4,,,=1.24, 95% CI=0.4,
3.2) and prolonged (4,,,=3.28, CI=0.6, 19.8) drought conditions,
despite increased overlap among lion-cheetah dyads whose home
ranges intersected. Thus, the prediction that drought conditions
would lead to reduced intraguild encounter rates (3a) was supported
by one species dyad, but no effect was observed among the other

dyads evaluated.

4 | DISCUSSION

Understanding how individual behavioural responses to environmental
variability may affect higher-order ecological processes such as inter-
specific competition is a key challenge in ecology, particularly for wide-
ranging and/or elusive species. Our study showcases how species-level
responses to climatic variation and extreme events may scale up to
community-level effects. Specifically, we found evidence that droughts
further expand the already wide-ranging space use of multiple large
carnivore species, leading to increased spatiotemporal overlap be-
tween competing guild members. The increased space requirements
under drought conditions found here not only have likely consequences
for the energetics and competitive dynamics of carnivore species, but
also have important implications for conservation planning and human-
wildlife interactions as long-term aridification and acute drought events
increase into the future (Chivangulula et al., 2023).

Across species, we found that drought increased either home
ranges or core areas, or both, supporting the hypothesis that droughts
may necessitate wider-ranging movements among animals to find
depleted or sparsely distributed resources. This was true even for
classically subordinate species like African wild dogs, whose space
use is primarily influenced by the presence of competitors rather
than resource availability (Vanak et al, 2013). These results are

congruent with general theory on home range formation, in which
animal home ranges are expected to increase as resource availability
decreases (Borger et al., 2008). Indeed, increases in home range size
in response to drought conditions have been documented in multiple
other mammalian taxa and systems (Stradiotto et al., 2009; Waterman
& Fenton, 2000). For example, during a major drought event in the
southern USA, when food resources dramatically declined black bears
expanded their search for food over broader areas, leading to the
largest bear home ranges recorded over a multi-year study (Moyer
et al., 2007). The expansion of space use during droughts documented
here and elsewhere may have underappreciated energetic conse-
quences if carnivores are required to spend more energy to access
water and/or prey during periods of resource scarcity; moreover, re-
duced access to water may exacerbate the concurrent climate impacts
of higher temperatures by making it harder to thermoregulate, which
negatively impacts survival and reproduction in African wild dogs
(Abrahms et al., 2022; Woodroffe et al., 2017).

We additionally found that the spatial responses of carnivores
were sensitive to the duration of drought conditions, with African
wild dogs responding to acute or short-term drought conditions and
felids to prolonged drought conditions, highlighting the importance
of considering the ecological effects of climate events at multiple
scales. As the smallest guild member, wild dogs may be more quickly
excluded by dominant competitors from high-quality resource areas
like waterholes as drought conditions develop (Davies et al., 2021,
Vanak et al., 2013). Larger guild members might find adjusting their
space use to these short-term variations in resource availability en-
ergetically inefficient, but eventually their movements will likely be
affected by reduced resource availability as drought conditions per-
sist. Similar patterns are found in lions in Kenya, where drought led
to home ranges initially shrinking and then ultimately expanding in
response to decreasing prey densities (Tuga et al., 2014). While we
did not have the data to assess drought effects on the availability
of prey species (primarily zebra, Equus quagga, and impala, Aepyceros
melampus) in our system, evidence from multiple ungulate species
indicates that their distributions are strongly driven by the availabil-
ity of surface water and/or primary production (Cain et al., 2008;
Esmaeili et al., 2021), and reduced water availability can lead to more
patchy and dispersed prey distributions over seasonal timescales
(Tomaszewski et al., 2022). In addition to shifts in their distributions,
in the short term drought may make prey species more accessible to
predators, as poor body condition of prey during these periods can
lead to higher hunting success (Mills, 1995). Over longer timescales,
droughts can reduce prey availability to predators via increased mor-
tality and population decline. For example, a major die-off of wil-
debeest (Connochaetes taurinus) in Botswana was causally linked to
drought-induced food depletion, compounded by increased energy
expenditure as animals moved long distances to find food and water
(Williamson & Mbano, 1988). Thus, while identifying the specific
mechanisms underlying carnivores' spatial responses to drought is
beyond our scope, it is clear that a complex combination of ecological
factors including intraguild competition and resource availability can
drive species-specific responses at multiple timescales.
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When considering carnivore responses to drought at varying
scales, it is also important to consider the broader climatic context
of our study region. Although our study defines drought events
based on local rainfall, they are largely driven by larger-scale cli-
matic phenomena like ENSO (El Nifio-Southern Oscillation), which
influence rainfall variability over much of southern Africa (Driver &
Reason, 2017; Moses et al., 2023; Richard et al., 2000), and, by ex-
tension, flood extent and vegetation availability in the Delta (Moses
et al., 2021). As reduced rainfall across Botswana and Angola leads
to diminished river discharge with a 6- to 12-month lag (Byakatonda
et al., 2018; Moses et al., 2023), the 12-month SPI lag employed in
our analysis aims to capture these broad-scale ecological responses.
Given that our study region is located on the outskirts of the Delta
floodwaters, and that flood extent is correlated with broad-scale
drought patterns in this area (Mfundisi et al., 2021), our findings re-
flect broad-scale spatial responses to reductions in both local rainfall
and floodwater. However, future research is needed to investigate
fine-scale behavioural responses of carnivores to both ephemeral
water sources and delta fluctuation.

Consistent with the home range expansion following prolonged
drought conditions observed among lions, leopards, and to a mar-
ginal extent cheetahs, we found that the amount of spatial overlap
between the dominant predator, lions, and the other felids subse-
quently increased. Interestingly, the overall probability of any over-
lap between lions and cheetahs decreased during drought, but for
the dyads whose home ranges did intersect, the amount of spatial
overlap increased. We hypothesize that this may be because the
benefits of accessing high-quality resource areas may outweigh the
costs of lion encounter risk during drought. In other words, resource
scarcity imposed by drought may lead subdominant competitors to
make riskier space use decisions and select for areas of resource
availability regardless of lion presence (i.e. use high-risk, high-reward
locations). This aligns with theory on state-dependent risk-sensitive
foraging, whereby animals use riskier patch selection strategies
when faced with reduced energetic reserves (Caraco, 1980; Houston
& Rosenstrom, 2023; Stephens, 1981). This has been demonstrated
among several taxa in the context of animals shifting their prioriti-
zation of foraging opportunities versus predator or competitor risk
avoidance based on their physical state (Balaban-Feld et al., 2019;
Siegal et al., 2022): for instance, in pumas (Puma concolor), hungrier
individuals engaged in more risky behaviour in relation to human set-
tlements in order to meet their foraging needs (Blecha et al., 2018).

Increases in the spatiotemporal overlap between large carnivore
species may amplify intraguild competition, with potential direct and
indirect negative fitness impacts. As dominant competitors in this
system, lions are a primary cause of mortality for wild dog and chee-
tah young, and they opportunistically steal kills from all guild mem-
bers (Creel & Creel, 2002; Durant, 1998; Mills & Gorman, 1997).
As a result, African wild dogs proactively adjust their space use to
reduce overlap with lions (Davies et al., 2021; Vanak et al., 2013),
and cheetahs and leopards reactively avoid lions to reduce direct en-
counters (Broekhuis et al., 2013; Vanak et al., 2013). In addition, lions
monopolize prey-rich areas, particularly during periods of resource
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limitation such as dry seasons (Vanak et al., 2013). During droughts,
therefore, lions may exclude subordinate competitors from high-
quality resource areas, restricting their access to prey and/or water
(Droge et al., 2017; Swanson et al., 2014). This parallels observa-
tions in Central America, where jaguars (Panthera onca) displayed
increased aggressive interactions and killing of smaller carnivores at
a waterhole during a severe drought, which was attributed to the
reduced ability of competing carnivore species to partition scarce
resources during that period (Perera-Romero et al., 2021).

Across most species dyads, the observed changes in space use
and spatiotemporal overlap during drought did not translate into
changes in direct encounter rates. This is most likely due to the
complex, fine-scale avoidance strategies these species employ to re-
duce direct intraguild encounters, particularly with lions (Broekhuis
et al., 2013; Davies et al., 2021; Vanak et al., 2013). For example,
Rafiq et al., 2020 hypothesized that leopards in our study region use
scent marks to reduce exploitation competition, and in addition to
exhibiting reactive spatial avoidance of lions (Broekhuis et al., 2013;
Durant, 1998), cheetahs avoid temporal overlap with lions at a di-
urnal scale, particularly during peak lion hunting periods (Cornhill
et al., 2023; Droge et al., 2017; Durant, 1998). This complex avoid-
ance behaviour likely explains our singular finding that encounters
between cheetahs and lions decreased during drought even though
dyads that overlapped in home ranges increased their shared space
use at broad spatial scales. Indeed, broad-scale spatial overlap is
an unreliable proxy for direct encounter rates, which are also influ-
enced by the amount of temporal overlap between individuals, the
detectability of individuals within their environment, fine-scale hab-
itat selection strategies and other behavioural adaptations (Suraci
et al., 2022). Future research could examine how similar extreme cli-
mate events affect the fine-scale behavioural strategies of compet-
ing large carnivore species, particularly in fenced reserves that are
commonplace in southern Africa and where large carnivores may not
be able to partition habitat to the same degree as in our relatively
unbounded study area.

Beyond ecological insights, our study provides several im-
portant considerations for the conservation of threatened large
carnivore species under climate change. As increases in drought fre-
quency, duration, and severity are predicted across southern Africa
(Chivangulula et al., 2023; IPCC, 2021), our finding that carnivores
expand their ranges during droughts supports protecting larger re-
serve areas and movement corridors to enhance connectivity, as
these management strategies promote ecosystem resilience to ex-
treme events and provide climate refugia (Heller & Zavaleta, 2009;
Ranius et al., 2023). This is particularly critical for African wild dogs,
whose extensive spatial requirements heighten their vulnerability to
population decline (Woodroffe & Ginsberg, 1999). Furthermore, in-
creasing spatial requirements and reduced availability of natural re-
sources during droughts may exacerbate human-carnivore conflicts
in shared landscapes (Abrahms et al., 2023). Drought events are
associated with increases in human-wildlife conflict among numer-
ous taxa (Newsom et al., 2023; Pérez-Flores et al., 2021; Saberwal
et al., 1994), and in our study region the 2018/2019 drought saw
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some of the highest incidences of livestock depredation by large
carnivores on record (Ministry of Local Government and Rural
Development, 2019). The wider-ranging movements of carnivores
in response to drought found in our study point to a potential mech-
anism underlying these patterns. These insights are particularly
useful given that upper trophic levels remain one of the most un-
derstudied taxa within the literature on the ecological impacts of cli-
mate variability (Abrahms et al., 2022; Cahill et al., 2013; Ockendon
et al.,, 2014; Prugh et al., 2018). Altogether, our study shows that
extreme climate conditions have a clear spatial signature on the be-
haviour of sympatric large carnivore species, shedding light on the
links between climate variability, individual behavioural changes and
potential consequences for community dynamics, and contributing
to our understanding of how ecosystems may respond to projected

water scarcity under ongoing climate change.
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