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Abstract. Traditional solar flare forecasting approaches have mostly re-
lied on physics-based or data-driven models using solar magnetograms,
treating flare predictions as a point-in-time classification problem. This
approach has limitations, particularly in capturing the evolving nature
of solar activity. Recognizing the limitations of traditional flare forecast-
ing approaches, our research aims to uncover hidden relationships and
the evolutionary characteristics of solar flares and their source regions.
Our previously proposed Sliding Window Multivariate Time Series For-
est (Slim-TSF) has shown the feasibility of usage applied on multivariate
time series data. A significant aspect of this study is the comparative
analysis of our updated Slim-TSF framework against the original model
outcomes. Preliminary findings indicate a notable improvement, with an
average increase of 5% in both the True Skill Statistic (TSS) and Heidke
Skill Score (HSS). This enhancement not only underscores the effective-
ness of our refined methodology but also suggests that our systematic
evaluation and feature selection approach can significantly advance the
predictive accuracy of solar flare forecasting models.

Keywords: Multivariate Time Series Classification · Solar Flare Pre-
diction · Interval-based Classification

1 Introduction

Solar weather events, encompassing phenomena like solar flares, coronal mass
ejections (CMEs), solar wind variations, and geomagnetic storms, hold signif-
icant importance for Earth’s environment and human technological systems.
Among many solar phenomena, solar flares are one of the most intense local-
ized explosions of electromagnetic energy emanating from the Sun’s atmosphere.
When such energy bursts out, it usually travels near the speed of light ranging
from several minutes to hours. It often does not occur alone but alongside other
events like coronal mass ejections (CMEs) or solar wind, which can trigger se-
vere geomagnetic storms, extensive radio blackouts on Earth’s daylight side,
and interfere with delicate instruments onboard near-Earth space equipment.
Recent studies have employed physics-based or data-driven models [30] [33] [21]
to predict solar flares using data primarily sourced from solar magnetograms
[35]. Many of these approaches tend to predict solar flares as a classification
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problem using point-in-time measurements (where a single time point is applied
to represent a single event). Such methods often do not consider the intrinsic
temporal evolution nature of data [11] by evaluating different observations as
separate entities, meaning the dynamic essence of flares is usually overlooked.

The characteristics of solar flare evolution are important as they are intri-
cately linked to the dynamic behavior of solar active regions, as delineated in
prior research [6] [26] [27]. Analyzing these temporal characteristics of flares, it
becomes possible to reveal potential implicit relationships and capture uniden-
tified patterns between flares and their originating regions. In our prior study
[19], we utilized ensembles of interval-based classification models on multivariate
time series data for event prediction. However, this method presented a limita-
tion in understanding which features were more pivotal in decision-making and
the rationale behind these decisions. Traditional interval-based classifiers often
do not support systematic evaluation through random sub-interval sampling,
leading to a process where the identification of relevant features (or intervals
from the time series) was arbitrarily generated, thereby missing out on extract-
ing meaningful insights from the model. In our subsequent studies [16] and [18],
we aimed to identify crucial interval features from multivariate time series data
using multi-scale sliding windows with varying interval sizes and step sizes as well
as an innovative feature ranking schema for identifying feature importance. This
advancement seeks to introduce interpretability into previously opaque models,
enhancing our understanding of the decision-making processes underlying model
prediction.

In this study, we expand our previous work focusing more on the systematic
evaluation of our Sliding Window Multivariate Time Series Forest (Slim-TSF)
model. This involves strategically selecting relevant features to enhance our grasp
of the temporal dynamics crucial for solar flare prediction. We’ve introduced an
indexing function to improve the model selection process. This function enables
us to identify optimal models using a concise set of parameters and features that
have shown promise in prior research. Additionally, we employ a customized
internal validation schema to cross-verify our findings, ensuring the robustness
and reliability of our results. This approach has led to a noticeable improvement
in our model’s performance. Specifically, we’ve achieved an average increase of
5% in True Skill Statistics (TSS) and Heidke Skill Score (HSS) compared to
our original Slim-TSF outcomes. This improvement underscores the value of a
systematic feature selection and validation strategy in enhancing the accuracy
of solar flare predictions.

The rest of the paper is organized as follows: Section 2 provides background
information on existing time series classification models pertinent to flare pre-
diction. In Section 3, we provide our problem formulation and introduce our
multivariate time series classification model and feature ranking method used
for extracting relevant feature intervals from provided time series data. Section
4 presents our experimental setup and evaluation framework. Finally, Section 5
provides conclusions from our study and discusses potential avenues for future
research.



Title Suppressed Due to Excessive Length 3

2 Related Work

From the proliferation of available time series datasets [34] and a wide spec-
trum of machine learning-based techniques proposed for time series classifica-
tion, similarity-based and feature-based algorithms are two notable categories
utilized for these predictive tasks. Similarity-based methods predict by mea-
suring the similarity between training and testing instances, using metrics like
Euclidean distance or Dynamic Time Warping (NN-DTW) [5], [32], [4],[22]. In
contrast, feature-based algorithms generate predictions by extracting temporal
features from entire time series or subsequences within them. For solar flare
prediction, both full-disk (e.g., [26][29] [28]) and active region-based (e.g., [19]
[15] [8] [14]) approaches have shown significant impact by utilizing derived time
series features.

Using feature-based algorithms that capture associations between target vari-
ables and time series instances through derived features, this distinction is partic-
ularly evident in tasks like solar flare prediction or other tasks (such as anomaly
detection [13]). For example, [25] extracted basic statistical features like mean
and standard deviation from global time series to feed a multi-layer perceptron
network, though this method neglected localized informative characteristics. In
contrast, [12] enhanced model interpretability by considering local attributes
through piecewise constant modeling and pattern extraction, though it often re-
sulted in simplistic features during selection. Furthermore, [?] incorporated an
extensive range of features such as wavelets and Chebyshev coefficients, but this
method faced high computational costs and lacked inherent interpretability in
high-dimensional data spaces.

It is a challenging task for many feature-based classification methods when
dealing with multivariate time series data because they require additional intri-
cate information across features. Such discriminating features are usually hard
to generate in high-dimensional space due to the unknown interrelations among
input parameters, adding complexity to model construction. To address this
problem, various techniques have been attempted to ensemble univariate models
from individual feature spaces instead of considering the global correlations be-
tween them. These methods focus on extracting relevant features in univariate
aspects and then applying traditional machine learning algorithms for classi-
fication. Common features include statistical measures (e.g., mean, variance),
spectral features (e.g., Fast Fourier Transform coefficients), and time-domain
features (e.g., autocorrelation).

For example, Shapelet-based decision trees [36] combine shapelets (i.e., dis-
criminative subsequences that capture distinctive patterns in time series data)
within an ensemble architecture. This method extracts shapelets from the train-
ing data and constructs an ensemble of decision trees (e.g., random forest), where
each estimator focuses on a different subset of shapelets, typically measured
by Euclidean distance. While effective at capturing local patterns in multivari-
ate time series data, this approach can be computationally expensive and may
struggle to identify relevant shapelets in high-dimensional spaces that are both
informative and broadly applicable. Additionally, shapelets extracted from one
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dataset might not generalize well to other datasets with different dimensionali-
ties, characteristics, and patterns.

To mitigate these issues, the Generalized Random Shapelet Forest (gRSF)
[20] improves upon the original shapelet-based method by measuring distances
between randomly selected time series and others within a threshold distance of
the representative shapelet. Similarly, the Time Series Forest (TSF) [9] incorpo-
rates subseries, but instead of relying on distance measurements from learned
subsequences, it derives summarized statistical features (such as mean, standard
deviation, and gradient) within randomly divided intervals of the univariate
time series. This approach treats each time step as a separate component and
constructs decision trees for each feature dimension to capture temporal rela-
tionships and reduce the high-dimensional feature space. However, this method
may not fully capture the interrelationships between different components of
the time series, leading to a potential loss of crucial inter-channel relationships
and dependencies in multivariate data. The Canonical Interval Forest (CIF) [?]
extends TSF by incorporating additional canonical characteristics of the time
series and catch22 [23] features extracted from each interval. This approach
aims to capture both individual patterns within each time series component and
relationships between different components. However, interpreting an ensemble
of decision trees remains challenging, making it less intuitive to understand the
combined effects of multiple trees on multivariate time series data compared to
single decision trees.

Many of these methods focus solely on understanding how each feature be-
haves independently, without considering interactions between different features.
A relationship within a single time series parameter might be significant for one
specific feature but not necessarily for others. The connections between dis-
tinct features are often unknown upfront. Understanding feature dependencies
in time series data is crucial for improving model interpretability and perfor-
mance [31]. Techniques like Partial Dependence Analysis (PDA) are commonly
used in quantifying these dependencies but can be challenging to explore and
analyze in multivariate aspects. [2] proposes a conceptual framework that refines
the computed partial dependences on combinatorial feature subspaces (i.e., all
the possible combinations of features on all their domains) but still lacks the
capability of capturing intercorrelations that differentiate between features.

In time series classification problems, selecting the most relevant time in-
tervals is crucial when generating features that effectively distinguish our data,
thereby ensuring a robust model. However, identifying these relevant intervals is
difficult because they cannot be directly determined and typically require a com-
putationally expensive search across the entire series. Extracting the underlying
mutual information from these relevant intervals can enhance our understanding
of the predictive process and accelerate the transition from research to practical
applications in flare forecasting models. Our objective in this work is to establish
a framework that can recognize these characteristics and offer deeper insights
into the behavior of classifiers during prediction tasks.
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3 Methodology

In this section, we will outline our approach, including the extraction of statis-
tical features from time intervals, the introduction of the sliding-window time
series forest, and the feature ranking technique we employ.

Our proposed sliding-window multivariate time series forest is an early fu-
sion, interval-based ensemble classification method. Fig. 1 illustrates our feature
generation process using the sliding window operation. This method employs
multiple short decision trees, similar to random forests, which utilize interval-
based features extracted from univariate time series through multi-scale sliding
windows. By combining features from univariate time series at an early stage, we
aim to understand the relationships among these features, using an embedded
feature ranking based on mutual information.

Interval Features To extract well-structured and relevant intervals, we calcu-
late statistical characteristics such as mean, standard deviation, and slope for
each interval. Additionally, we derive transformed features like maximum, mini-
mum, and mean through a localized pooling procedure applied to the individual
interval features extracted from consecutive intervals after the sliding window
operation. In this process, all potential interval sets originating from the same
time series are collected, and pooling functions are applied for consolidation.
Essentially, we consider the highest, lowest, and average values of statistical
properties from each parameter of each subseries obtained through sliding win-
dow operations. Formal definitions and explanations for processing multivariate
time series and extracting vectorized features and transformation are provided
in our previous research [17].

Sliding Window Multivariate Time Series Forest After extracting inter-
val features from subsequences obtained through the sliding window operation
and applying secondary transformations to these statistical attributes, we merge
these two groups of derived features into an input vector. This vector serves as
the foundation for creating a versatile time series classifier we refer to as Slim-
TSF. Among the wide array of supervised learning models available for making
predictions, we have chosen random forest classifiers for two reasons: (1) their
effectiveness and resilience when dealing with noisy, high-dimensional data, and
(2) their ability to select the most relevant features from a given dataset with
respect to a target feature.

It is important to highlight that, depending on the chosen parameter set-
tings, such as using smaller window and step sizes, the interval feature vectors’
data space can expand considerably. Additionally, the process of vectorization
based on the sliding window approach may generate data points that exhibit
some degree of correlation and potential noise. Consequently, it is crucial to sys-
tematically identify and remove these features. This is achieved through the ap-
plication of information-theoretic relevance metrics (e.g., Gini index or entropy).



6 Anli Ji, Chetraj Pandey, and Berkay Aydin

window size (ws1)

step size (ss1)

minf1 meanf1maxf1

Sliding window 
interval generation

Secondary 
transformation

Random Forest

f1’

Ranked Features & 
Aggregate Scores

Model Training
 (e.g., Random Forest, Boosted Trees etc.)

…

window size (ws2)

step size (ss2) …

window size (ws3)

step size (ss3) …

Intervali mean_f1 std_f1 slope_f1 … mean_f3 std_f3 slope_f3 … mean_f1 std_f1 slope_f1 … mean_f3 std_f3 slope_f3
I1 μ_If1,1 σ_If1,1 m_If1,1 … μ_If3,1 σ_If3,1 m_If3,1 … μ_If1,1 σ_If1,1 m_If1,1 … μ_If3,1 σ_If3,1 m_If3,1
I2 μ_If1,2 σ_If1,2 m_If1,2 … μ_If3,2 σ_If3,2 m_If3,2 … μ_If1,2 σ_If1,2 m_If1,2 … μ_If3,2 σ_If3,2 m_If3,2
I3 μ_If1,3 σ_If1,3 m_If1,3 … μ_If3,3 σ_If3,3 m_If3,3 … μ_If1,3 σ_If1,3 m_If1,3 … μ_If3,3 σ_If3,3 m_If3,3
… … … … … … … … … … … … … … … …
In μ_If1,n σ_If1,n m_If1,n … μ_If3,n σ_If3,n m_If3,n … μ_If1,n σ_If1,n m_If1,n … μ_If3,n σ_If3,n m_If3,n

I1
I2

I3

minf3 meanf3maxf3 minf1 meanf1maxf1 minf3 meanf3maxf3

Fig. 1: An illustration of the sliding window-based statistical feature generation.
We first generate subsequences (intervals) with a fixed-size sliding window and
step size. Then, we create vectorized features from these intervals where these
features can be used as input for the sliding window multivariate time series
forest (a random forest built on multivariate time series features) and features
are ranked with aggregated relevance scores.

This meticulous feature selection process ensures the efficacy of our approach by
retaining only the most informative attributes while discarding redundant ones.

Feature Ranking Our ranking methodology involves a systematic process con-
ducted through multiple experiments, denoted by the total number N , each ex-
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ecuted with distinct experimental configurations. This is analogous to a grid
search process. The experiments with different configurations yield individual
selected features, denoted as expj , where j signifies a specific experiment. The
ranking denoted as r, is a mapping that assigns a rank i to each feature, reflect-
ing its position within the ranking. In each experiment, the features are ranked
to create a specific ordering, denoted as rf,i, which designates that feature f
has achieved the ith rank in that particular experiment. Subsequently, the top-
k features selected for inclusion in the selected feature set, denoted as SFSj ,
within each individual experiment j are determined from the ranking r (i.e.,
include features whose rank is less than or equal to k). This selected feature set
is represented as {rf,1, rf,2, ..., rf,k}. In the end, the selected feature sets across
all experiments are aggregated by summing the sparse representation of top-k
membership vectors ( ̂SFSj) from each experiment (as in Eq. 1).

SFS =
∑

j=1,N

̂SFSj (1)

This approach allows for a systematic and consistent method of selecting top
features across multiple experiments, enhancing the robustness and reliability
of the feature selection process. Furthermore, we create a counting vector per
each interval of each parameter, denoted as ctv to represent the value counts
of individual intervals in the selected feature set SFS. This counting vector
serves as a transformation function, indicating the frequency with which a given
interval appears within the top-k selections of the feature set.

Hyperparameter Optimization Hyperparameter optimization is the process
of selecting the optimal hyperparameters to achieve the best performance for a
classifier. This process is applied to determine the optimal hyperparameters of
our slim-TSF classifier. Traditional grid search cross-validation (CV) is designed
for tabulated data and assumes that instances are independent, meaning random
assignment of instances to different training and testing folds does not risk over-
fitting or memorization for the trained models. This can lead to similar instances
being included in both training and testing sets, resulting in models that tend
to memorize rather than learn. While these models may initially show better
results, this is due to sub-optimal sampling rather than stronger generalization
capabilities [1].

In time series analysis, where instances are obtained with a sliding window,
data partitions for training, testing, and validation need to be time-segmented.
Traditional grid search CV cannot ensure that instances from consecutive over-
lapping segments are not placed in both training and testing sets, which un-
dermines the reliability of time series classification performance evaluations. To
address this issue, we implemented a customized CV schema that modifies the
original grid search to split by the SWAN-SF partitions, maintaining continuous
time segmentation instead of randomized sampling. Each time-segmented train-
ing partition dataset is assigned a partition label to ensure it is not included in
both training and testing sets.
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Additionally, we modified the scoring function for our CV, replacing classifi-
cation accuracy with forecast skill scores, primarily the True Skill Statistic score
and the Heidke Skill Score, which will be discussed further in the next section.

4 Experimental Evaluations

The experiments conducted in this study are designed with two primary objec-
tives. Firstly, they aim to demonstrate the effectiveness of time series classifiers
developed using distinct interval features and to perform a comprehensive perfor-
mance comparison among them. Another key objective is to identify the intervals
within the time series that hold the greatest relevance to the initial time series.
This effort is primarily designed to offer interpretable insights into our model. It
involves pinpointing the specific segments of the time series that exert significant
influence on predictions and understanding the aggregation strategies that can
lead to more accurate outcomes.

4.1 Data Collection

For predicting solar flares, we utilized the SWAN-SF dataset, an open-source
multivariate time series dataset introduced in [3]. This dataset offers a com-
prehensive collection of space weather-related physical parameters derived from
solar magnetograms, incorporating data from various solar active regions and
flare observations. Our experiments, encompassing both classification and fea-
ture ranking, utilized all 24 active region parameters provided by the dataset.
These parameters are widely recognized as highly representative of solar activity,
with detailed descriptions available in [7] and [3].

The SWAN-SF dataset is organized into five distinct time-segmented par-
titions to ensure that data instances within each partition do not temporally
overlap. Active regions within the dataset are segmented using a sliding ob-
servation window of 12-hour intervals across the multivariate time series. Each
segment captures essential data, including an active region number (aligned with
NOAA Active Region numbers and HMI Active Region Patches identifiers), a
class label (indicating the maximum intensity flare expected from that region
within the subsequent 24 hours), and start and end timestamps for each segment.

Flare intensity is categorized by the logarithmic classification of peak X-ray
flux into major flaring classes (X, M, C, B, or A). For our analysis, instances
classified as M- and X-class flares are considered flaring (i.e., positive class),
while those classified as C- and B-class flares, along with flare-quiet regions, are
treated as non-flaring (i.e., negative class). This binary classification framework
is applied to model the solar flare forecasting problem as a binary multivariate
time series classification task.

4.2 Experimental Settings

To assess our model’s performance, we employed a binary 2 × 2 contingency
matrix, supplemented by other well-known evaluation metrics for evaluating
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forecasting accuracy. Within these metrics, the positive class corresponds to
significant flare events (≥M1.0 or M- and X-class flares), while the negative
class includes smaller flares and regions with minimal flare activity (i.e., in-
stances labeled below the M1.0 threshold). In this context, True Positives (TPs)
and True Negatives (TNs) represent instances where the model accurately pre-
dicts flaring and non-flaring events, respectively. False Positives (FPs) are false
alarms, where the model incorrectly predicts a flare and False Negatives (FNs)
are misses, where the model fails to predict an actual flare event.

For rigorous evaluation, we utilize the True Skill Statistic (TSS) and a weighted
version of TSS (ωTSS), detailed in Equations Eq. 2 and Eq. 3 respectively. The
TSS measures the difference between the Probability of Detection (recall for
the positive class) and the Probability of False Detection (POFD), providing a
robust indicator of model skill.

TSS =
TP

TP + FN
− FP

FP + TN
(2)

In essence, TSS can be reformulated as the sum of true positive rate (TPR)
and true negative rate (TNR), offset by 1 (TPR + TNR − 1). The general
purpose of TSS is a good all-around forecast evaluation method, especially for
evaluating scores among datasets with different imbalance ratios. However, it
focuses on a simpler, more understandable scoring schema where both TPR and
TNR are treated equally. To change the importance given to each term in this
equation we can use a regularization term α/2, and create the following weighted
TSS (ωTSS):

ωTSS = αTPR+ (2− α)TNR− 1 (3)

Here, α/2 and 1−α/2 are regularization parameters that show how important
each term is. For instance, if correctly predicting an M- or X-class flare is 3 times
more important than correctly predicting a non-flaring class, then we can use
α/2 = 0.75.

The second skill score we employed is the Heidke Skill Score (HSS), which
serves as a critical measure of the forecast’s improvement over a climatology-
aware random prediction. The HSS ranges from -1 to 1, where a score of 0
indicates that the forecast’s accuracy is equivalent to that of a random binary
forecast, based solely on the provided class distributions. The formula for cal-
culating this metric is provided in Eq. 4. Here, P denotes the actual positives,
which is the sum of true positives (TP ) and false negatives (FN )), and N rep-
resents the actual negatives, the sum of false positives (FP ) and true negatives
(TN)).

HSS =
2 · ((TP · TN)− (FN · FP ))

P · (FN + TN) +N · (TP + FP )
(4)
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Fig. 2: Error Bar representation of slim-TSF evaluation with ex-ante bootstrap-
ping feature selection using different class weight (i.e., cw) ratio. The most rele-
vant features are selected (per each model trained) across different class weights
using the log-scale filter. The TSS and HSS scores are shown for each bootstrap-
ping experiment.



Title Suppressed Due to Excessive Length 11

0.0 0.1 0.2 0.3 0.4 0.5
Feature Participation Ratio

TOTUSJH_mean_mean_ws15_ss8

SAVNCPP_std_mean_ws8_ss4

TOTUSJH_mean_slice[16:30]

TOTUSJH_mean_max_ws8_ss4

R_VALUE_mean_mean_ws8_ss4

ABSNJZH_std_min_ws15_ss8

ABSNJZH_std_max_ws15_ss8

ABSNJZH_std_max_ws8_ss4

TOTUSJH_mean_slice[32:46]

TOTUSJH_mean_slice[40:54]

ABSNJZH_std_mean_ws8_ss4

Bootstrap: 10 counts Bootstrap: 100 counts Bootstrap: 1000 counts

Fig. 3: A bar plot representation of feature participation ratio in three bootstrap
evaluation counts. All features from sliding window intervals and transformed
features are used.

4.3 Bootstrapping

In this study, we introduce a novel approach to feature selection that deviates
from the methodology used in [17]. Instead of limiting our selection to only the
top 5 highly ranked parameters from individual experiments, we base our feature
selection on the cumulative results of the entire bootstrapping process. This
involves compiling data from each iteration of the bootstrap subsampling and
identifying the most relevant features based on their frequency of appearance
throughout the random subsampling procedure. To further refine our feature
selection and reduce the risks associated with an overly extensive feature set,
we apply a filter k = log2(N) to select the top k features, where N is the
total number of features. The results of this refined process are illustrated in
Fig. 2a, 2b, and 2c, demonstrating the use of selected important features from
various window and step size configurations. This approach helps to mitigate the
influence of outlier features, which might otherwise compromise the accuracy of
our predictions.

This refined selection strategy enables us to achieve results comparable to
those of our initially proposed Slim-TSF model, but with a significantly smaller
set of parameters and features. Consequently, we can maintain average testing
scores of approximately 60% in TSS and 35% in HSS while utilizing fewer in-
puts. Despite these reductions, the robustness of our feature selection process is
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confirmed through its repeated application with random subsamples of the orig-
inal dataset, ensuring both consistency and reliability. Throughout our studies,
certain features, such as those derived from the Total Unsigned Current Helicity
(TOTUSJH) and the Absolute Value of the Net Current Helicity (ABSNJZH),
are consistently selected across multiple iterations, as shown in Fig.3. These fea-
tures have a participation rate of over 40%, underscoring their critical role in
predicting solar flare events.

4.4 Remarks

In the results, we demonstrate that the Slim-TSF models, using only the top cu-
mulative important features selected from our bootstrapping iterations, perform
comparably, ensuring efficiency and robustness. These models achieve similar
outcomes using fewer but more significant features from the original 24 param-
eters. Notably, models with lower class weights show an average performance
improvement of 5% over previous research [18]. This improvement occurs as we
reduce redundancy by limiting the use of extensive derived features, thereby
increasing feature relevancy. Consequently, the models can concentrate more ef-
fectively on key factors by minimizing the redundancy found in less informative
features, ultimately enhancing performance significantly.

The outcomes of our study systematically evaluate the performance of our
Slim-TSF models, incorporating an additional filter during feature selection.
Specifically, our findings reveal that these models improve when utilizing only
the top k (from a log-scale) most significant features. This highlights the prin-
ciple that quality often outweighs quantity in feature selection, as these stream-
lined models achieve results comparable to their more complex counterparts that
utilize all 24 features. Additionally, it is worth noting that adjusting the class
weight hyperparameter significantly enhances model performance by reducing
the imbalance ratio.

5 Conclusions

This study builds upon our previous work, which utilized interval-based fea-
tures generated from sliding window operations in multivariate time series clas-
sifiers, also useful for ranking key features, intervals, and transformed pooling
features. The primary goal of this work is to enhance the interpretability of high-
dimensional multivariate time series classifiers. By employing a comprehensive
and methodical approach to feature selection, our research not only improves
the predictive accuracy and efficiency of the Slim-TSF model but also offers
valuable insights into solar flare prediction, especially under the constraints of
limited observational data. This advancement marks significant progress in the
field of solar weather forecasting, underscoring the importance of adaptability
and innovation in addressing the challenges of data scarcity.
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