COMPACTIFICATIONS OF PSEUDOFINITE AND
PSEUDO-AMENABLE GROUPS

GABRIEL CONANT, EHUD HRUSHOVSKI, AND ANAND PILLAY

ABSTRACT. We first give simplified and corrected accounts of some results in
[45] on compactifications of pseudofinite groups. For instance, we use a classical
theorem of Turing [57] to give a simplified proof that any definable compacti-
fication of a pseudofinite group has an abelian connected component. We then
discuss the relationship between Turing’s work, the Jordan-Schur Theorem,
and a (relatively) more recent result of Kazhdan [26] on approximate homo-
morphisms, and we use this to widen our scope from finite groups to amenable
groups. In particular, we develop a suitable continuous logic framework for
dealing with definable homomorphisms from pseudo-amenable groups to com-
pact Lie groups. Together with the stabilizer theorems of [21, 35], we obtain
a uniform (but non-quantitative) analogue of Bogolyubov’s Lemma for sets of
positive measure in discrete amenable groups. We conclude with brief remarks
on the case of amenable topological groups.

1. INTRODUCTION

This paper starts as a commentary on the third author’s paper [45], where he
studied definable compactifications of pseudofinite groups, partly as a response to
a question of Boris Zilber about whether (nonabelian) simple compact Lie groups
can be “structurally approximated” by finite groups. This notion of structural
approximation can be translated into relatively standard notions, as was done in
[45]. In any case, among the main results, Theorem 2.2 of [45] was a negative
answer to Zilber’s question in the case of definable or internal compactifications.
A negative answer for absolute compactifications was later obtained by Nikolov,
Schneider, and Thom in [38]. However, the proofs from [45] and [38] both make use
of rather heavy results (described in Section 2). The starting point of the current
paper is to give a short proof in the definable case that uses only classical tools.
This is done in Theorem 2.4. We also use a result of Kazhdan [26] to show that
essentially the same proof works for ultraproducts of torsion amenable groups.

The paper [45] also contained a result (Theorem 3.1 there) on the triviality
of absolute compactifications of ultraproducts of nonabelian finite simple groups.
However, the argument relied on some results from [50] later found to be incorrect.
In Section 3, we give a correct proof, but making use of the full negative solution
to Zilber’s question from [38].

‘We now turn to the motivation for the rest of the paper. The third author’s result
from [45] for definable compactifications later played a key role in the “NIP arith-
metic regularity lemma” from [11], and subsequent related work from [9]. These
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papers focused on proving asymptotic results for subsets of finite groups satisfy-
ing various special assumptions, and [45] was used to access “Bohr neighborhoods”
defined via maps to the torus while working in a nonabelian environment. In or-
der to make various technical aspects of these arguments feasible for transfer with
Lo§’s Theorem, [11] and [9] also used a result of Alekseev, Glebskil, and Gordon
[1] on approximate homomorphisms from finite groups to compact Lie groups. In
fact, this result was first proved by Kazhdan [26] in the setting of approximate
homomorphisms from amenable groups to unitary groups.

In the context of (arithmetic) regularity, a subset (of a group) can be viewed
as a {0, 1}-valued function, but it is often convenient or necessary to expand one’s
viewpoint to include [0, 1]-valued functions. However, the functional setting only
compounds the technical challenges alluded to above. Therefore, here we develop
a more robust foundation for applying Kazhdan’s approximation theorem in these
settings, which circumvents the somewhat ad hoc approach in previous sources. In
particular, we will view definable compactifications as objects of continuous logic,
and prove the following result.

Theorem 1.1. Let L be a language in either classical or continuous logic, which
extends the language of groups. Let G = [[,; Gi be an ultraproduct of a family
{G; : i < w} of L-structures expanding amenable groups. Suppose 7: G — K is a
definable homomorphism, with K a compact Lie group. Then there are homomor-
phisms 1;: G; — K, for i < w, such that T = limy 7;.

See Theorem 4.12 for a restatement and proof of this result. Our approach
first passes through the general situation of an ultraproduct M = [[,, M; (with £
arbitrary) and a definable map f: M — C for some (compact) space C. In Sections
4.1 and 4.2 we take the opportunity to spell out some possibly folkloric facts about
this situation, with an emphasis on the difference between when L is classical versus
continuous.

The key advantage to Theorem 1.1 is the potential to treat 7 syntactically as a
function symbol in continuous logic, and thus transfer first-order statements to the
7;’s directly without further approximation lemmas (c.f., [11, 9]). More precisely,
under some extra assumptions, one can realize the two-sorted structure (G, K, 1)
as an ultraproduct [[,,(G;, K, 7;) (see Corollary 4.13).

Our primary motivation for allowing a continuous language £ in Theorem 1.1
is for use in later applications (by the first and third author) to arithmetic regu-
larity theorems in the functional setting discussed above; see [10]. However, as an
illustration in the case when L is a language in classical first-order logic, we will
combine Theorem 1.1 with the stabilizer theorem of the second author [21] to prove
the following version of Bogolyubov’s Lemma for positive measure sets in amenable
groups (see Theorem 5.9).

Theorem 1.2. Fiz o > 0 and a function e: RT xZT — R*. Let G be an amenable
group with a left-invariant measure p. Suppose A C G is such that u(A) > «. Then
there is a (8,U(n))-Bohr neighborhood B C G, with 6 ,n < O,.(1), such that:

(i) B C(AA™M)?,

(i) AAA™ contains a translate of B, and
(iii) p(B\AA™) < e(6,n)u(B).

Bohr neighborhoods are defined and discussed in greater generality at the start

of Section 5. Here U(n) denotes the unitary group of degree n. If one restricts to
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the special cases of finite groups or abelian groups, then U(n) can be replaced by
the n-dimensional torus T(n) (possibly at the cost of passing to a normal subgroup
of uniformly bounded index; see Proposition 5.4). When G is finite and abelian,
conclusion (4) of the previous theorem is the statement of Bogolyubov’s Lemma, as
originally proved by Ruzsa in [46] (with explicit bounds). The extension to arbitrary
finite groups was proved by the first author in [9] (without explicit bounds). We
will conclude Section 5 with some preliminary remarks on the extension of these
results to arbitrary amenable topological amenable groups (see Proposition 5.17).

Acknowledgements. We thank the referee for providing several corrections and
suggestions for revision. The first author thanks James Hanson for many helpful
discussions, and for pointing out the need to work with absolute neighborhood
retracts in Proposition 4.6.

2. DEFINABLE COMPACTIFICATIONS, TURING, AND KAZHDAN

In [45], the third author proved that if G is a pseudofinite first-order struc-
ture expanding a group, then the connected component of any definable (group)
compactification of G is abelian. Shortly after, this result was generalized to any
compactification of an (abstract) pseudofinite group by Nikolov, Schneider, and
Thom [38]. The argument in [45] is short, but relies on the main structure theo-
rem of Breuillard, Green, and Tao [6] for finite approximate subgroups of arbitrary
groups. The proof of the more general result in [38] is also not very long, but relies
on an intricate result of Nikolov and Segal [39, Theorem 1.2] on commutators in
finite groups, which in turn relies on the classification of finite simple groups.

In this section, we give a short proof of the above result in the definable case,
which uses much more classical tools (compared to [6] and [39]). In particular,
the proof uses only the Peter-Weyl Theorem and a result of Alan Turing on finite
approximations of Lie groups, which itself uses Jordan’s Theorem (any finite sub-
group of a general linear group contains a large abelian subgroup). This strategy
lines up nicely with the proof in [45] from Breuillard-Green-Tao [6]. Indeed, the
“nonstandard” aspects of [6] involve work of Gleason and Yamabe on locally com-
pact groups, as well as commutator estimate techniques inspired by the proof of
Jordan’s Theorem due to Bieberbach and Frobenius. As a conclusion, they show
that Hrushovski’s “Lie model” [21] has a nilpotent connected component. From a
distance, this explains the emergence of nilpotent structure (“nilprogressions”) in
finite approximate subgroups of arbitrary groups. However, in [45], these results
are applied in the special case of compact groups, in which case the connected com-
ponent of the Lie model must be abelian. Thus it makes sense that there would be
a more direct proof using Peter-Weyl and the work of Turing which, roughly speak-
ing, are “compact” analogues of Gleason-Yamabe and the Bieberbach-Frobenius
steps of [6], respectively.

To state Turing’s result, we need the following definition.

Definition 2.1. Let G be a group and suppose K is a metrizable group with a bi-
invariant metric d. Then a map f: G — K is an e-approximate homomorphism
if d(f(xy), f(x)f(y)) < € for all z,y € G. The (metric) group K is finitely e-
approximable if there is an e-approximate homomorphism from a finite group to
K, whose image is an e-net in K. We say K is finitely approximable if it is
finitely e-approximable for all € > 0.
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In the context of the previous definition, one can check that finite approximability
of K does not depend on the choice of invariant metric d.

Recall that any compact Lie group can be equipped with some (not necessarily
unique) bi-invariant metric compatible with the topology.

Theorem 2.2 (Turing [57]). The connected component of any finitely approzimable
compact Lie group is abelian.

Remark 2.3. The previous result does not appear in [57] exactly as we have stated
it. So we take a moment to clarify two key differences.

First, Turing works exclusively with connected Lie groups, and thus only explic-
itly proves Theorem 2.2 in the connected case. However, it is not hard to adjust
his proof to obtain the more general statement. In particular, given a finitely ap-
proximable compact Lie group K, Turing’s proof produces a set X C K of positive
(Haar) measure such that for any = € X, the centralizer C'(x) has positive mea-
sure. Up until this point, the proof does not use connectedness, and assuming K
is connected he then concludes K is abelian. Without assuming connectedness, we
can argue similarly to prove KV is abelian. First, for any z € X, C(z) is a closed
subgroup of finite index (since it has positive measure), and thus contains K°. So
X is contained in the closed subgroup C(K") := (,cxo C(a). Since X has positive
measure, we again conclude that C'(K°) has finite index, and hence contains K°.
Thus K° is abelian.

Second, Turing’s definition of finite e-approximability requires injectivity of the
e-approximate homomorphism involved. But this does not affect finite approxima-
bility for a compact Lie group K. In particular, we may clearly assume K is infinite
and thus positive dimensional. Now suppose f: G — K is an e-approximate ho-
momorphism with G finite, and f(G) is an e-net. Since K has positive dimension,
any open ball is infinite. So for any €* > €, by perturbing f one can construct an
injective e*-approximate homomorphism f*: G — K with f*(G) 2 f(G).

Toward the end of this section, we will sketch a short proof of Theorem 2.2 using
Peter-Weyl, Jordan, and a result of Kazhdan [26] on approximate homomorphisms.
But first let us give the proof of the aforementioned theorem from [45].

Let M be a first-order structure. Given a topological space X, we say that a map
f: M* — X is definable if for any closed C' C X and open U C X, with C C U,
there is a definable set D C M? such that f1(C) C D C fY(U). Equivalently, f
is definable if induces a (necessarily unique) continuous function f*: Sy(M) — X
such that f*(tp(a/M)) = f(a) for all a € M®.!

Now suppose G is a first-order structure expanding a group. A (group) compact-
ification of G is a group homomorphism 7: G — K with dense image, where K
is a compact Hausdorff group. We will focus on definable compactifications. The
canonical example (which is the focus of [45]) is when G is sufficiently saturated,
K = G/GY%? (with the logic topology) for some small model M < G, and 7 is the
quotient map.

Theorem 2.4 (Pillay [45]). Suppose G is a pseudofinite first-order expansion of a
group and 7: G — K is a definable compactification. Then the connected component
of K 1is abelian.

Here Sz (M) denotes the space of complete types over M in free variables z, i.e., the Stone
space of the Boolean algebra of definable subsets of M?*.
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Proof. By the Peter-Weyl Theorem, K is an inverse limit of compact Lie groups,
with surjective projection maps. Since the composition of 7 with any (continuous)
projection map is still a definable compactification, it altogether suffices to assume
that K is a compact Lie group. Equip K with some choice of a bi-invariant com-
patible metric d. We will show that K is finitely approximable,? and thus has an
abelian connected component by Theorem 2.2.

Fix e > 0 and let § = ¢/6. Let A be a finite d-net in K. Givent € A, let C; (resp.,
U) be the closed (resp., open) ball in K of radius § (resp., 26) centered at t. So
we have C; C U, for any t € A. Since 7 is definable, there is a definable set X; C G
such that 771(C;) € Xy € 71(Uy). Since A is a é-net, we have K = [J,c, Ct, and
thus G = (J,c, X¢. Note also that each X; is nonempty since 7(G) is dense in K.
Moreover, if a € X; then d(7(a),t) < 2§ since X; C 7}(U;). From this, we obtain
the following properties (explained below):

(7) For any s,t € A, if X; N X; # () then d(s,t) < 46.

(i) For any r,s,t € A, if there are a,b € G such that a € X,., b € X, and ab € X4,
then d(rs,t) < 6 = e.

Indeed, for (7) if there is some a € X N X; then d(s,t) < d(s,7(a))+d(7(a),t) <

46. Similarly, if r,s,t € A and a,b € G are as in (i), then

d(rs,t) < d(rs,r7(b)) + d(r7(b), 7(a)7(b)) + d(7(a)7(b),t)
=d(s,7(b)) + d(r,7(a)) + d(7(ab),t) < 6.

Since A is finite, we can express the previous data as a first-order sentence
(with existential quantifiers over parameters needed to define X;). Thus, since G is
pseudofinite, we obtain a finite group G, and a cover G = [J,c X¢,c by nonempty
subsets satisfying the analogues of (i) and (i7). Let f: G. — A be any function
such that a € Xy, for all @ € G.. It follows from (i7) that f is an e-approximate
homomorphism. Moreover, given ¢t € A, we know there is some a € X; ., and so
d(f(a),t) < 46 by (i). Since A is a J-net in K, it follows that f(Ge) is a 5d-net
(and thus an e-net) in K. So f witnesses that K is finitely e-approximable. O

Next we aim to give a proof of Turing’s theorem using a result of Kazhdan on
approximate homomorphisms, which was later re-proved by Alekseev, Glebskii, and
Gordon in a stronger form (see Remark 2.6). This result will also allow us to widen
our perspective to amenable groups. Recall that a (discrete) group G is amenable
if it admits a left-invariant finitely additive probability measure on all subsets.

Theorem 2.5 (Kazhdan [26]; Alekseev, Glebskii, Gordon [1]). Let K be a compact
Lie group. Then there is a bi-invariant compatible metric d on K and some ex > 0
such that for any amenable group G and any e-approzimate homomorphism f: G —
K, with € < €k, there is a homomorphism 7: G — K satisfying d(f(a),7(a)) < 2¢
foralla € G.

Remark 2.6. The previous theorem is proved by Kazhdan in [26] for K a unitary
group with metric induced from the operator norm, in which case one can take
ex = 1/200.3 Alekseev, Glebskii, and Gordon [1] modify this result for an arbitrary
compact Lie group K. The proof in [1] is written for finite G, and the authors

2This argument follows the same idea as that of [11, Lemma 5.4], which itself was inspired by
material from unpublished notes of the second author.

3To prevent possible confusion, we note that an e-approximate homomorphism here corresponds
to a “2e-homomorphism” in [26].



6 GABRIEL CONANT, EHUD HRUSHOVSKI, AND ANAND PILLAY

remark that the argument goes through for amenable G, as in Kazhdan’s paper.
We also note that Kazhdan’s proof applies when G is an amenable topological
group, in which case one assumes the approximate homomorphism is continuous
(and obtains continuity in the resulting homomorphism).

One can view Theorem 2.5 as a “rigidity theorem” in the sense of additive
combinatorics and combinatorial number theory (see also Tao’s ICM lecture on
rigidity phenomena in mathematics [52]). The general idea is that mathematical
objects exhibiting approximate structure can be approximated by objects with per-
fect structure. As a specific instance of this, Theorem 2.5 says that an approximate
homomorphism (of an amenable group to a compact Lie group) can be approxi-
mated by a genuine homomorphism.

We now use Theorem 2.5 to give a short proof of Turing’s theorem, which still
emphasizes the fundamental role of Jordan’s Theorem.

Proof of Theorem 2.2. Suppose K is a finitely approximable compact Lie group.
Then by Theorem 2.5 we have, for all m > 0, a finite subgroup G,,, < K which is a
%—net in K. By the Peter-Weyl Theorem, K is isomorphic to a closed subgroup of
GL,,(C) for some n > 1 (see [29, Corollary IV.4.22]). So we may view each G,, as
a finite subgroup of GL,(C). By Jordan’s Theorem [24], there is an integer d > 1
(depending only on n) such that for all m > 0, G,,, contains an abelian subgroup
H,, of index at most d (in G,,). Pick a nonprincipal ultrafilter ¢/ on Z*, and let
G =11, Gmn and H = [[,; Hy,. Then H is an abelian subgroup of G of index at
most d. Moreover, given g € G, if we pick a representative g = [(gm )]y then (g.,) is
a sequence in K with a well-defined ultralimit 7(g) := limy g,, in K depending only
on g. A routine verification then shows that 7: G — K is a group homomorphism.
Moreover, since each G,, is a %—net and U is nonprincipal, it follows that 7 is
surjective. Therefore 7(H) is an abelian subgroup of K of index at most d. It
follows that K° is contained in the closure of 7(H), which is still abelian. (]

Remark 2.7. In the above proof of Theorem 2.2, we needed to replace approxi-
mate homomorphisms by actual homomorphisms in order to obtain genuine finite
subgroups of GL,(C). In doing so, we realized K as a compactification of [[,, G-
So it is worth pointing out that this latter conclusion can be obtained from approx-
imate homomorphisms alone. In particular, suppose K is a finitely approximable
compact metric group. Then for all m > 0 we have a finite group G,, and a
%—approximate homomorphism f,,: G,, — K whose image is a %—net. As in the
above proof, we can choose a nonprincipal ultrafilter &/ and define an ultralimit map
7: [[y Gm — K such that 7(g) = limy fy,(gm). Then a similar routine verification
shows that 7 is a surjective homomorphism. In fact, 7 is even definable in a suitable
expansion of [[,, G, by internal sets (as in Example 2.12 below). Altogether, K is
a definable compactification of a pseudofinite group. So the fact that K is abelian
follows from Theorem 2.4 (proved originally in [45] using different tools), and also
the generalization to arbitrary compactifications from [38]. Indeed, the authors of
[38] explicitly note that their work yields an alternate proof of Turing’s theorem.

Via the previous proof of Theorem 2.2, we obtain a proof of Theorem 2.4 that
uses only the Peter-Weyl Theorem, Jordan’s Theorem, and Theorem 2.5. Of these
tools, only Jordan’s Theorem directly references finite groups. Schur [49] later
proved that any finitely-generated torsion subgroup of GL,,(C) is finite. Using this,
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one can deduce the following generalization of Jordan’s theorem to torsion groups
(see [12, Theorem 36.14] or [53, Chapter 11]).

Fact 2.8 (Jordan-Schur Theorem). For any n > 1 there is some d > 1 such that
any torsion subgroup of GL,,(C) contains an abelian subgroup of index at most d.

The same proof then yields the following generalization of Theorem 2.4.

Theorem 2.9. Suppose G is a first-order structure elementarily equivalent to an
ultraproduct of amenable torsion groups, and 7: G — K is a definable compactifi-
cation. Then the connected component of K is abelian.

As a segue into the next section, we conclude this section with some consequences
for “pseudo-simple” groups. First we recall a well known fact.

Proposition 2.10. Suppose G is an infinite first-order structure elementarily equiv-
alent to an ultraproduct of simple groups and let 7: G — K be a definable compact-
ification of G. Then K is connected.

Proof. If K is not connected, then it has a proper clopen normal subgroup C of
finite index. So 771(C) is a proper (by density of 7(G) in K) definable normal
subgroup of G of finite index. But this contradicts the assumptions on G. O

Corollary 2.11. Suppose G is an infinite first-order structure elementarily equiv-
alent to an ultraproduct of simple amenable torsion groups, and let 7: G — K be a
definable compactification of G. Then:

(a) K is abelian and connected.
(b) If G is nonabelian then K is trivial.

Proof. Part (a) is immediate from Proposition 2.10 and Theorem 2.9. For part (b),
assume G is nonabelian. As in the proof of Theorem 2.4, we may use the Peter-Weyl
Theorem to reduce to the case that K is a compact Lie group. Let € > 0 be arbitrary.
Following the proof of Theorem 2.4, we find a nonabelian simple amenable torsion
group H and an e-approximate homomorphism f: H — K whose image is an e-net
in K. By Theorem 2.5, we can replace f with a genuine homomorphism 7/: H — K
whose image is a 3e-net in K. Since H is nonabelian and simple, and K is abelian,
it follows that 7’ is trivial. So the identity is a 3e-net in K. Since € was arbitrary,
we conclude that K is trivial. (]

If one restricts to finite groups (rather than amenable torsion groups) then, like
Theorem 2.9, the previous corollary also holds for absolute compactifications. How-
ever in this case the proofs require more high-powered tools such as the classification
of finite simple groups. We will elaborate on this in Section 3.

Example 2.12. For completeness, we describe a concrete example showing that
the nonabelian assumption in part (b) of Corollary 2.11 is necessary. Given a
prime number p, define 7,: Z/pZ — S' so that 7,(x) = €*™*/P. Let U be a
nonprincipal ultrafilter on the set of prime numbers and let G = [],, Z/pZ (as a
classical structure in the language of groups). Let 7 = limy 7,: G — S'. Then 7
is a surjective homomorphism. Given a prime p, an € > 0, and some z € S*, set
Ape(2) ={9 € Z/pZ : d(1p(g),2) < €}. Then 7 is definable in the expansion of G
by predicates for the internal sets A(z) = [[,, Ap,e(z) for all € > 0 and z € S*.
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3. ULTRAPRODUCTS OF FINITE SIMPLE GROUPS

The goal of this section is to prove a result about absolute compactifications
of pseudofinite groups elementarily equivalent to an ultraproduct of finite simple
groups. Our primary motivation is to supply a correct proof of Theorem 3.4(b)
below, which appeared previously in work of the third author [45, Theorem 3.1].
However the proof there used a result of Stolz and Thom [50] on the lattice of
normal subgroups of an ultraproduct of finite simple groups, which was later found
to be incorrect (see [48]).

In this section, we follow [33] and use the notation G™ for the subgroup of a
group G generated by all powers a™ for a € G. We will make use of several known
facts about groups, which we now state. The first is really a fusion of two results,
so we provide a short explanation.

Theorem 3.1 (Martinez, Zelmanov [33]; Saxl, Wilson [47]; Babai, Goodman, Py-
ber [2]). For any n > 1 there is some k > 1 such that if G is a finite simple group
of size at least k, then every element of G is a product of k elements in G™ (i.e.,
G=G" .k .Gg").

Ezplanation. Tt was shown in [33] and [47] that for any n > 1 there is some k > 1
such that if G is a finite simple group then either G = G™- .5, .G™ or G has
exponent n. It was shown in [2] that for any n > 1 there are only finitely many
finite simple groups of exponent n. O

Next, we quote [58, Proposition 2.4].

Theorem 3.2 (Wilson [58]). There is an integer m > 1 such that if G is a non-
abelian finite simple group then any element of G is a product of at most m com-
mutators.

The previous result is based on Ore’s Conjecture, which asserts that one can
take m = 1. This was later proved by Liebeck, O’Brien, Shalev, and Tiep [31].

Finally, we state the generalization of Theorem 2.4 for absolute compactifica-
tions.

Theorem 3.3 (Nikolov, Schneider, Thom [38]). Suppose G is elementarily equiv-
alent (in the group language) to an ultraproduct of finite groups, and 7: G — K is
a compactification of G. Then the connected component of K is abelian.

It is worth pointing out that all three of the above theorems rely on the clas-
sification of finite simple groups (for Theorem 3.3 the dependence goes through a
result of Nikolov and Segal [39, Theorem 1.2]). Using these tools, we can prove a
direct analogue of Corollary 2.11 for absolute compactifications of ultraproducts of
finite simple groups.

Theorem 3.4. Suppose G is an infinite group elementarily equivalent (in the group
language) to an ultraproduct of finite simple groups, and 7: G — K is a compacti-
fication of G. Then:

(a) K is connected, and thus abelian by Theorem 3.3.
(b) If G is nonabelian then K is trivial.

Proof. Part (a). If K is not connected, then we can find a proper finite-index clopen
subgroup C' < K, which yields a proper finite-index subgroup 7°(C) of G. So it
suffices to show that G has no proper finite-index subgroups.
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Let H < G be a finite-index subgroup of G. We want to show that G = H.
Without loss of generality, we may assume H is normal. Let n be the index of H in
G, and let k be as in Theorem 3.1. Since G is infinite, it is elementarily equivalent
to an ultraproduct of finite simple groups of size at least k. So Theorem 3.1 implies
Gn. k. .G" =G. But G* C H since G/H is a finite group of size n. So G = H.

Part (b). Since K is abelian, ker 7 contains the derived subgroup of G’ of G,
which is all of G by Theorem 3.2. O

As previously discussed, part (b) provides a correct proof of a claim originally
from [45]. So it is slightly amusing that the proof relies on Theorem 3.3, which was
conjectured in [45].

4. MAPS TO COMPACT SORTS

We start this section with some motivation. Let G be a pseudofinite first-order
structure expanding a group, and suppose 7: G — K is a definable compactifi-
cation, with K a compact Lie group. Then we know from Theorem 2.4 that the
connected component of K is a compact connected abelian Lie group, and thus
isomorphic to a finite-dimensional torus T(n) = (R/Z)". Therefore if U C T(n) is
some open neighborhood of the identity, then the preimage 7°!(U) is essentially a
Bohr neighborhood in G in the sense of additive combinatorics [54]. Now, although
71(U) can be approximated by definable sets, it is not itself definable. So there is
some work required to transfer statements about 71(U) to statements about Bohr
neighborhoods in finite groups. In [11], this was done by first approximating 71 (U)
by definable “approximate Bohr neighborhoods”, and then using Theorem 2.5 to
recover genuine Bohr neighborhoods. While effective, this process was somewhat
cumbersome and inflexible.

In this section we take a different approach, which uses Theorem 2.5 at the
onset in order to realize the triple (G, K,7) as an ultraproduct of finite groups
equipped with a homomorphism to K. This will ultimately be formalized in the
setting of continuous logic. So for clarity, we will distinguish between “classical”
and “continuous” first-order logic throughout this section.

Definition 4.1. Let £ be a first-order language in either classical or continuous
logic, and let T" be an arbitrary L-theory. Given a a tuple x of variables, we let
SE(T) denote the space of complete L-types in variables = consistent with T (i.e.,
the Stone space of the Boolean algebra of L-formulas in free variables z modulo
equivalence in T').

We emphasize that in the previous definition, T" is not assumed to be complete.
So, for example, S5() is the space of all complete L-types realized in some L-
structure.

4.1. Definable maps on ultraproducts in classical logic. Given a topological
space X, recall that a subspace A C X is a retract of X if there is a retraction
from X to A, i.e., a continuous function from X to A whose restriction to A is the
identity. Note that if A is a retract of X, then any continuous function from A
to some other space C can be extended to a continuous function from X to C' by
composing with a retraction from X to A. We will use the following topological
result (see [30, §26.IT Corollary 2]).
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Fact 4.2. Suppose X is a separable metrizable space with a basis of clopen sets.
Then any closed subset of X is a retract of X.

We apply the previous fact as follows.

Lemma 4.3. Let L be a countable language in classical logic, and suppose Ty C T
are L-theories. Then S%(T) is a retract of S5(Ty). Thus any continuous function
from SE(T) to a topological space C can be extended to a continuous function from
Sf (To) to C.

Proof. Since L is countable, S%(Tp) satisfies the assumptions of Fact 4.2. Clearly
SE(T) is a closed subset of S5 (Tp). O

Proposition 4.4. Let L be a countable language in classical logic, and let M =
[I, M; be an ultraproduct of a family {M; : i € I} of L-structures. Suppose C' is
a compact Hausdorff space and f: M* — C is ()-definable. Then for each i € I,
there is an O-definable function f;: MF — C such that f = limy f;.

Proof. We can view f as a continuous function from S%(7T') to C where T = Th(M).
By Lemma 4.3 (with Ty = (}), f extends to a continuous function f’: S5() — C.
For each i € I, define f;: M¥ — C so that for a € M?*, f;(a) = f'(tps(a)). It is
then straightforward to check that f = limy, f;. O

Remark 4.5.

(1) Tt is an elementary exercise to show that if X is a Hausdorff space for which
every closed subset is a retract, then X has a basis of clopen sets (i.e., X is zero-
dimensional). Thus Fact 4.2 provides a characterization of zero-dimensionality
for separable metrizable spaces in terms of retracts.

(2) A Hausdorff space is called ultraparacompact if any open cover can be re-
fined by a partition into clopen sets (examples include Stone spaces and zero-
dimensional separable metrizable spaces). Given an ultraparacompact space X,
Fact 4.2 can be adapted to say that any closed completely metrizable subset
of X is a retract of X. This follows from a result of Ellis [14], which says that
if X is ultraparacompact and A C X is closed, then any continuous function
from A to a completely metrizable space Y extends to a continuous function
from X to Y. Note that this result directly yields Lemma 4.3 when C is com-
pletely metrizable, and without assuming £ is countable. Consequently, we
obtain a variation of Proposition 4.4 where L is of arbitrary cardinality and
C' is compact, Hausdorff, and (completely) metrizable. However, in this case,
C is second-countable and thus any definable function from an L-structure to
C is (-definable with respect to a countable sublanguage of £ expanded by
countably many constants. Therefore this variation of Proposition 4.4 already
follows from the proof for countable languages.

4.2. Definable maps on ultraproducts in continuous logic. Next we wish
to obtain a version of Proposition 4.4 for metric structures. We assume familiarity
with the basics of continuous logic. See [4] for an introduction. Since type spaces in
continuous logic are no longer totally disconnected, we will need to take a different
approach than the classical case (in light of Remark 4.5(1)).

Recall that a metrizable topological space C' is called an absolute neighborhood
retract if for any embedding of C' as a closed subspace of some metrizable space Y,
there is an open set U C Y containing C such that C is a retract of U.
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Proposition 4.6. Let L be a language in continuous logic, and let M = [],, M; be
an ultraproduct of a family {M; : i € I} of L-structures. Suppose C is a compact
absolute neighborhood retract and f: M® — C is O-definable. Then for each i € I,
there is an O-definable function f;: MF — C such that f = limy f;.

Proof. Since C' is compact and metrizable, we can embed it as a closed subset of
[0,1]“. View f as a continuous function from S%(T') to [0,1]%, where T = Th(M).
By the Tietze Extension Theorem, we can extend f to a continuous function
' SE(@) — [0,1]“. For i € I, define f/: M¥ — [0,1]“ so that for a € MZ,
fl(a) = f'(tp(a)). Then f = limy, f! (as in the proof of Proposition 4.4).

At this point, we do not necessarily know that a given f/ maps to C. However,
by assumption there is an open set U C [0,1]“ containing C and a retraction

r: U — C. Let X C I be the set of ¢ € I such that f] maps to U.

Claim. X is in U.

Proof. We view an element w € [0,1]¥ as a sequence (wy)r<w- Since C' is compact
and contained in the open set U, we can find finitely many points w!,...,w™ € C,
integers ni,..., Ny, < w, and real numbers €1, ..., €y,,6 > 0 such that:

(1) for any w € C there is t < m such that |wy — w}| < € for all k < ny, and
(2) for any w € [0,1]% and t < m, if |wy, — wi| < & + 6 for all k < ny then w € U.
For each k < w, define f¥: S£() — [0,1] to be the k" coordinate map of f’.

Then each f* is a definable £-predicate in the sense of [4, Section 9] (see Proposition
8.10 and Theorem 9.9 there). Consider the definable £-predicate

¥(z) = minmax(| fi(z) - wil = ).

Since f maps to C, we have sup, ¢y« ¥(a) = 0 by (1). Therefore, the set Y C I of
i € I such that sup,e e ¥(a) < 6 is in U. By (2), we have Y C X. Aclaim

For i ¢ X, replace f] with an arbitrary (-definable map from MY to U (e.g., a
constant map). So now f/ maps to U for all 4 € I, and since X € U we still have
f = limy, f!. For each i € I, set f; = ro f/. Then each f; is an (-definable map
from M? to C. Moreover, for any a € M?® and representative (a;);cs, we have

fla) =r(f(a)) = r(limy f{(a;)) = limy r(f(a;)) = limy fi(a:),
as desired. O

In personal communication with the first author, James Hanson has proposed
an example showing that the conclusion of the previous result can fail if one does
not assume C is an absolute neighborhood retract.

4.3. Formalizing the logic. Let £ be a first-order language in either classical or
continuous logic. We define £ to be a two-sorted* continuous language in sorts Sy
and Sy consisting of the following symbols:

* the language L relativized to the sort S (if £ is a language in classical logic,
we use trivial moduli of uniform continuity for all symbols in £);

x a function symbol f from S; to Sy of some arity and modulus of uniform
continuity (which we suppress in the notation).

4See page 9 of [43] and/or the end of Section 1.1 in [55] for discussion of multi-sorted languages.
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We will write £ y-structures as triples (M, X, f) where M is an L-structure and X
is the universe of the sort S5. Note that in this case X has no further structure
other than its metric and the map f from M.

For the rest of this subsection, let C' be a compact metric space with metric d.

Definition 4.7. An E?-structure is an L p-structure (M, C, f) in which the second
sort Sp is interpreted as C.

Remark 4.8. By restricting to the case that C' is a metric space, the above notion
fits properly into [4], which is by now the most widely accepted form of “continuous
logic”. That being said, other formalisms of continuous logic exist throughout the
literature. For example, when L is classical, E?—structures are a special case of the
objects studied by the third author and Chavarria in [8] (where C is allowed to be
any compact Hausdorff space).

Remark 4.9. Suppose (M;,C, f;)ier is a collection of L(f—structures, and let U
be an ultrafilter on I. Then the ultraproduct [],,(M;, C, f;) is canonically isomor-
phic to an E?—structure in the following way. First, we have a well-defined map
limg, fi: [[; Mi — C such that (limg f;)((xi)u) = limy fi(z;). So this yields an
,C?—structure (I'Ty M;, C,limy, f;). Now let [],, fi denote the map from [],, M; to
CY sending (z;)y to (fi(z;))u. Then we have

1M, C. fi) = (TTyy Mi, €Y Ty £i) = (g Mi, C, iy fi),

where here we are using the fact that, since C' is compact, the map limy, : C¥ — C
is an isomorphism of metric structures (see the Appendix of [15]). Altogether, we
can view an ultraproduct of L'?—structures as an L?—structure.

Remark 4.10. Let M be an L-structure and suppose f: M® — C'is an ()-definable
function. We will make a choice of language L; as above, which will allow us to
define (non-canonical) expansions of other L-structures to E?—structures, perhaps
under some additional assumptions.

Case 1. L is classical. In this case we assume L is countable. Let L; be as
defined above, with f having trivial modulus of uniform continuity and arity given
by x. Now view f as a map from S5(Th(M)) to C. Use Lemma 4.3 to choose
a continuous extension f’': S£()) — C. Then given any L-structure N, we can
expand NN to an E?—structure by interpreting f as f’[S5(Th(N)).?

Case 2. L is continuous. In this case, we assume C' is an absolute neighborhood
retract. Let p be a metric on [0,1]* compatible with the product topology. View
C' as topologically embedded in [0,1]*. Fix an open set U C [0,1]¥ containing C
and a retraction 7: U — C. View f as a map from S%(Th(M)) to C. Use Tietze
Extension to choose a continuous extension f’: S%((})) — [0,1]«.

We now define a function A: RT™ — R*, which will be used as a modulus of
uniform continuity for f as a symbol in £;. Fix € > 0. First choose § > 0 such
that if z,y € U and p(x,y) < 6 then d(r(z),r(y)) < e. Then choose A(e) > 0
such that if p,q € S5() and d.(p,q) < A(e) then p(f'(p), f'(q)) < 8. Altogether,
we have that for any p,q € S5(0), if dz(p,q) < A(e) and f'(p), f'(q) € U then
d(r(f'(p)),r(f'(q))) < e. Let L; be defined as above, using A as a modulus of
uniform continuity for f.

5Here we use the symbol [ to denote function restriction.
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Finally, we say that an L-structure N is f-coherent if f'[S5(Th(N)) maps to
U. By the above construction, any f-coherent L-structure N can be expanded to
an E?—structure (N, C, f) by interpreting f as 7o (f'[S5(Th(N))).

For the final result of this section, let £ and C' be as above. In the case that L is
classical, assume also that £ is countable. In the case that £ is continuous, assume
also that C' is an absolute neighborhood retract.

Corollary 4.11. Let M = [[,, M; be an ultraproduct of a family {M; : i € I} of
L-structures. Suppose f: M* — C is (-definable, and let Ly be as constructed in
Remark 4.10. Then for each i € I, there is an expansion (M;,C, f;) of M; to an
ﬁ?—structure so that (M, C, f) = [1,(M;,C, f;). Moreover, each f; is 0-definable
as a map on the L-structure M;.

Proof. For each i € I, construct an (-definable map f;: M¥ — C as in the proof
of Proposition 4.4 in the classical case, or Proposition 4.6 in the continuous case,
while working in the context of Remark 4.10. Then by construction (and Remark
4.10), each (M;, C, f;) is a well-defined Lf]?—structure, and we have f = limy, f;. So
(M., C, f) =TI,(M;,C, ;) (as explained in Remark 4.9). O

4.4. Homomorphisms to compact Lie groups. We now prove the main results
of this section. Throughout this subsection, we let £ be a classical or continuous
language expanding the language of groups. Recall that an ultrafilter & on a set I
is countably incomplete if it contains a countable collection of sets whose common
intersection is empty (for example, any nonprincipal ultrafilter on a countable set
is countably incomplete).

Theorem 4.12. Suppose G = [[,, G; is an ultraproduct of a family {G; : i € I}
of L-structures expanding amenable groups, and assume U is countably incomplete.
Let 7: G — K be a definable homomorphism where K is a compact Lie group.
Then there are homomorphisms 1;: G; — K, for i € I, such that T = limy, 7;.

Proof. Since K is second countable, f is definable in some countable sublanguage
of £ expanded by countably many constants (as in Remark 4.5(2)). So without
loss of generality, we may assume L is countable and f is (-definable. Note that
the conclusion of the theorem does not depend on the choice of metric on K. So
we may assume the metric satisfies the statement of Theorem 2.5. We also recall
that K is an absolute neighborhood retract (see [19, Corollary A.9]). Let L, be
the continuous language defined in Remark 4.10, after starting with 7: G — K
as the initial definable function. By Corollary 4.11, we can expand each G; to an
LE structure (G;, K, /) so that (G, K, 7) = [[,(Gi, K, 7}).

Consider the L -sentence ¢ = sup,, d(7(zy),7(x)7(y)). Then )¢ = 0. Let
ex > 0 be as in Theorem 2.5. Given n > 0, let I,, = {i € I : %% < ¢,} where
€, = min{%, ex}. Then I,, € U for all n > 0. Moreover, for each n > 0 and i € I,,,
7/: G; — K is an €,-approximate homorphism, and so by Theorem 2.5 there is a
homomorphism 7, ;: G; — K such that d(7/(x), ni(z)) < 2€, < % for all x € G;.
We also define 79 ;: G; = K to be the trivial homomorphism for each i € I.

Now, by assumption on U, we may fix a countable sequence (A,)52 of sets in
U such that (), g A, = 0 for any infinite S C Z7%. For each i € I, let n; > 1 be
maximal such that i € A4,,,. Define k; to be the maximal k € {1,...,n;} such that
i € Iy, if such a k exists, and k; = 0 otherwise. Finally, set 7; = 7, ;. We will show
T = limy 7;.
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Fix a € G and choose a representative (a;);c7. To prove 7(a) = limy, 7;(a;), we
fix n > 0 and show that the set

X, = {i € I : d(7(a), 7i(a;)) < 2}

isinU. Let Y, = {i € I :d(r(a),7/(a;)) < £}. Then Y, € U, and so Z, =
A, NI,NY, € U. We prove Z,, C X, hence X,, e Y. Fixi € Z,. Theni € A,
so n; > n. Since ¢ € I, it follows that k; > n > 0. Therefore d(7{(a;),7i(a;)) =
d(t{(ai), T, i(a;)) < 1% < 2. Also, d(7(a),7{(a;)) < % since i € Y,. By the triangle
inequality, we have i € X,,, as desired. O
In the previous proof we lose definability of 7; when applying Theorem 2.5. In
general, we may also lose uniform continuity. However, in applications to additive
and multiplicative combinatorics it is typical to work in the case that G is a classical
structure, or a continuous structure with a discrete metric. In these cases, we
recover the analogue of Corollary 4.11 (but without definability) as follows.
Suppose G = [];, G; is an ultraproduct of a family {G; : i € I} of L-structures
expanding amenable groups, and assume U is countably incomplete. Assume fur-
ther that if £ is continuous then each G; is given the discrete metric. Let 7: G — K
be a definable homomorphism where K is a compact Lie group. Define the lan-
guage L, as in the proof of the previous theorem, using a trivial modulus of uniform
continuity for 7. Recall from the discussion before Remark 4.10 that we may view
ultraproducts of £X-structures as £LX-structures in a canonical way.

Corollary 4.13. Let G be an ultraproduct of L-structures expanding amenable
groups satisfying the assumptions above, and let T: G — K be a definable homomor-
phism to a compact Lie group K. Then each G; can be expanded to an 55 -structure
(Gi, K, 7;), with 7; a homomorphism, so that (G, K,7) =[[,,(Gi, K, ;).

The previous results are phrased for groups equal to ultraproducts. So now let
C be some class of L-structures expanding amenable groups with discrete metrics.
An L-structure G is pseudo-C if for every L-sentence 1 and € > 0, there is some
H € C such that |[¢¢ — ¢H| < e. Note that any pseudo-C L-structure G has a
discrete metric, and so for any definable map f from G to a compact metric space
C, we have a canonical L(f—structure (G, f,C) using the trivial modulus of uniform
continuity for f.

Corollary 4.14. Let C be as described above. Suppose G is a pseudo-C L-structure,
and 7: G = K s a definable homomorphism to a compact Lie group K. Then the
LE -structure (G, K,T) is elementarily equivalent to an ultraproduct [],,(G;, K, ;)
of LE _structures where each G; is in C and each 7; is a homomorphism.

Proof. By assumption, G = [],, G; for some sequence (G;);er of structures in C and
ultrafilter & on I. This is proved for continuous logic in [15, Lemma 2.4]. In the
proof, one sets I = Pgn(Th(G)) X ZT and then lets U be any ultrafilter containing
the sets {(z,0) € I : s Cx, k < {} for all (s,k) € I. In particular, we may assume
U is countably incomplete (even regular; see [23, Exercise 38.5]).

Now, by the Keisler-Shelah Theorem [4, Theorem 5.7], there is a set J and
an ultrafilter V on J such that G¥ = ([],,G;)V. In order to write the latter
structure as a single ultraproduct, we define G, ; = G; for (i,j) € I x J. Then
a routine exercise shows that ([, G;)Y is isomorphic to H := [],5y, Gij. So
we have an isomorphism F: GY — H. Let 7V: GY — K denote the ultralimit
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map limy 7. Then another routine exercise shows that 7Y is definable (over G).
Therefore 0 = 7V o F-! is a definable homomorphism from H to K and, moreover, F'
induces an £X-structure isomorphism from (GY, K, 7V) to (H, K, ). Note also that
(G,K,7)and (GY, K,7Y) are elementarily equivalent as L& -structures. Altogether,
(G,K, 1) and (H, K, o) are elementarily equivalent. Finally, apply Corollary 4.13
to (H, K, o), noting that & ® V is also countably incomplete. O

5. UNITARY BOHR NEIGHBORHOODS AND AMENABLE GROUPS

Throughout this section, we will use the following standard notation for product
sets in groups. Given a group G and A, B C G, let AB = {ab:a € A, b € B}.
The sets A™ for n > 1 are then defined inductively as A! = A and A™t! = A" A.
Finally, A = {a! : a € A} and, for n < 0, A" = (A1)™.

5.1. Preliminaries on Bohr neighborhoods. We recall the following notation
used in [11] for Bohr neighborhoods obtained from maps to arbitrary metric groups.

Definition 5.1. Let K be a metric group. Given a group G and a real number
§ > 0, a (§, K)-Bohr neighborhood in G is a set of the form 7!(U) where
7: G — K is a homomorphism and U is the open identity neighborhood in K of
radius 6.

Bohr neighborhoods are often used in additive combinatorics as approximations
to subgroups. We note some basic properties along these lines.

Remark 5.2. Let K be a metric group. Suppose B is a (4, K )-Bohr neighborhood
in a group G, witnessed by 7: G — K. Then B = B!, 1 € B, and B is “normal”
in the sense that gBg! = B for any ¢ € G. Moreover, B? is contained in the
(26, K)-Bohr neighborhood defined from 7.

One usually sees Bohr neighborhoods defined in the setting where K is compact.
We will focus mainly on the case of unitary groups and torus groups. Let U(n)
denote the unitary group of degree n with metric induced by the standard matrix
operator norm on GL(n) (this is also called the “spectral norm”). Let T(n) denote
the maximal torus in U(n) consisting of all diagonal matrices.

Remark 5.3. The metric on U(n) restricts to T(n) as the product of the complex
distance metric on S (in C). This is slightly different than sources such as [9,
11, 17], which use the arclength metric on S*. So in particular, a (8, T(n))-Bohr
neighborhood here corresponds to a “(¢’, n)-Bohr neighborhood” in [9, 11], where
8" depends uniformly on & to account for the change in metric on S*.

By definition, any (d, T(n))-Bohr neighborhood is also a (§, U(n))-Bohr neigh-
borhood. For torsion groups or abelian groups, one obtains the following converse
statements.

Proposition 5.4. Let B be a (6, U(n))-Bohr neighborhood in a group G.

(a) If G is abelian then B is a (6, T(n))-Bohr neighborhood.
(b) If G is a torsion group then there is a normal subgroup H < G of index O, (1)
such that BN H is a (§, T(n))-Bohr neighborhood in H.

Proof. Fix a homomorphism 7: G — U(n) witnessing that B is a (§, U(n))-Bohr
neighborhood.
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Part (a). Assume G is abelian. Then the image of 7 is an abelian subgroup of
U(n), and hence contained in some conjugate of T(n) (see [36, Theorem 2]). So
after replacing 7 by a conjugate, we may assume 7 maps to T(n).

Part (b). Assume G is a torsion group. By Fact 2.8, there is a normal abelian
subgroup A < 7(G) of index d < O,(1) in 7(G). As in part (a), we may assume
A < T(n). Let H=7'(A). Then H is a normal subgroup of G of index d. Let
70: H — T(n) be the restriction of 7 to H. Then BN H = 73'(U), where U is the
open identity neighborhood of radius ¢ in T(n). a

Next we show that Bohr neighborhoods are “large”. For finite groups, a lower
bound on the cardinality of a Bohr neighborhood can be obtained from an averaging
argument. See [17, Lemma 4.1] or [54, Lemma 4.20], both of which deal with abelian
groups; the proof is rewritten for arbitrary finite groups in [11, Proposition 4.5].
The same method would work to bound the measure of a Bohr neighborhood in an
amenable group. Instead we will give here a short elementary proof valid for any
group, where “large” is formulated using genericity. Given a group G, we say that
A C G is n-generic (in G) if G can be covered by n left translates of A. Note
that if G is finite this implies |A| > |G|/n. More generally, if G is amenable then
this implies p(A) > 1/n for any left-invariant measure p on G.

Lemma 5.5. Let K be a group and fir U C K. Suppose there is a subset V C K
such that VYV C U and V is n-generic in K for some n > 1. Then for any group
G and any homomorphism 7: G — K, the set 71(U) is n-generic in G.

Proof. Fix 7: G — K and let B = 7}(U). Fix a finite set E C K of size n such

that K = EV. Let Ey be the set of a € E such that 7(G) NaV # ). For each

a € Ey, fix some v, € V such that av, € 7(G), and fix some g, € G such that

T(ga) = av,. Set F ={g, : a € Ey}. Then |F| < n, and we show that G = F'B.
Fix x € G. Choose a € E such that 7(x) € aV. Then a € Ey, and we have

7(2) € avav,'V = 7(ga)v'V € 7(ga) V'V C 7(ga)U.
Therefore 7(g;lz) € U, i.e., glz € B, i.e., z € g,B C FB. O

In the context of the previous proposition, if K is a topological group and U
is an identity neighborhood, then one can always find some identity neighborhood
V satisfying V-'V C U. If K is also compact, then such a V is always n-generic
for some n > 1. This can be made quantitative in metric groups using covering
numbers. In particular, given a compact metric group K, let Ck . be the (<e¢)-
covering number for K, i.e., the minimum size of an (<¢)-net for K. Let U, denote
the open identity neighborhood in K of radius e. Then a subset E C K is an
(<e)-net for K if and only if K = EU.. Therefore Ck . is the least integer n
such that U, is n-generic in K. Moreover, by the triangle inequality we have
UE‘IU6 C Us.. Putting these remarks in the context of Lemma 5.5, we obtain the
following conclusion.

Corollary 5.6. Let K be a compact metric group. Then for any group G, any
(8, K')-Bohr neighborhood in G is C s /2-generic in G.

The following bound on covering numbers in unitary groups is proved in [51].

Fact 5.7. Cy(n),e < (co/e)"2 for some absolute constant ¢y > 0.
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Corollary 5.8. Let G be a group. Then any (8, U(n))-Bohr set in G is (c/5)" -
generic in G for some absolute constant ¢ > 0.

For the rest of this section, ¢ denotes the constant in the previous
corollary. (So ¢ = 2¢y where ¢ is from Fact 5.7.)

5.2. Bogolyubov’s lemma for amenable groups. We now come to the main
result of this section.

Theorem 5.9. Fiz o > 0 and a function e¢: RT xZT — R*. Let G be an amenable
group with a left-invariant measure p. Suppose A C G is such that u(A) > a. Then
there is a (8,U(n))-Bohr neighborhood B C G, with 6',n < O,.(1), such that:

(i) BC(AAT)?,

(i) AAA™ contains a translate of B, and
(i73) p(B\AA™Y) < e(6,n)u(B).

Remark 5.10. The main model-theoretic ingredient in Theorem 5.9 is a variation
of the second author’s stabilizer theorem [21] proved by Montenegro, Onshuus, and
Simon [35]. The original version from [21] would apply if we made the stronger
assumption of bi-invariance of p. The variation from [35] formulates certain as-
sumptions under which left-invariance suffices to obtain conditions (¢) and (#é¢) (in
the full generality of “S1-ideals”). Assuming bi-invariance, the authors of [35] also
obtain further aspects that would yield (i¢). In our case we will be able to obtain
(#4) due to the fact that we are working with a particularly nice S1-ideal, namely
the null sets of a probability measure.

Proof of Theorem 5.9. Suppose not. Then we obtain a sequence (G5, As, fts)s>1
such that for all s > 1, G, is an amenable group with a left-invariant measure u,
As C G5 with ps(As) > a, and there is no (J, U(n))-Bohr neighborhood B in G
satisfying (i), (ii), and (i4i) with §*,n < s. Let U be a nonprincipal ultrafilter
on Z*. Set G = [],, G5 with the full internal language. Let A = [[,, As and let
u = limy, ps. By standard arguments, p is definable over () with respect to a suitable
countable sublanguage. So going forward we may work in a countable language £
(which still contains the group language and a predicate for A).

By construction, u(A4) > o > 0. Now suppose G > @ is sufficiently saturated.
Given a definable set X C @, we let X denote X(é) Let g be the canonical
()-definable extension of u to a Keisler measure over G. The next claim condenses
the part of the proof requiring the stabilizer theorem of [35]. We assume familiarity
with the relevant notions. In our setting, the structures G and G play the role of
G and M in [35] (respectively). Thus the type space S (M) in [35] is for us S1(G),
i.e., the Stone space of complete types over the Boolean algebra of G-definable
subsets of G.

Claim 1. There is a G-type-definable bounded-index normal subgroup I" < G such
that I' C (AA™1)2, AAA™ contains a coset of I', and I'\AA™! is contained in Z for
some G-definable set Z with u(Z) = 0.

Proof. We use wide to mean p-wide. Since g is a G-invariant Keisler measure on
G, the ideal of non-wide definable subsets of G is G-invariant and S1 on G (see the
discussion at the start of [35, Section 2.1]). Since A is G-definable and wide, there
is a wide type p € S1(G) containing A. Let St(p) ={g € G:gpnpis wide}, and
set T' = St(p)2. By [35, Theorem 2.12] (using X = G to satisfy assumption (B1)),
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I is a wide G-type-definable connected subgroup of G. Moreover, I = (pp!)? and
I'\St(p) is contained in a small union of non-wide G-definable sets. Since i(G) is
finite, it follows that I" has bounded index in G. Then, as I' is type-definable over
G and connected, it follows that I' is normal in G.

Note that I' = (pp )2 C (AA™1)2. Also, since St(p) C ppt C AAL, we have
F\AA 1 C I'\St(p). Since T\AA! is type-definable over G, we conclude that
F\AA s contained in a non-wide (i.e., -null) G-definable subset of G. Tt remains
to show that AAA-! contains a coset of . First, since A is wide and definable, and
I" has bounded index, there must be some coset ¢gI' such that An gl is wide. We
show gI' C AAA!. Fix a € . Then alg?ANT is a wide subset of . By our
previous conclusion for F\/TZ‘H it follows that a! g'lg AT must intersect AA™L. So
a‘lg‘lgﬂ AAL £, ie., ga € AAAL, elaim

Let ' < G and Z C G be as in Claim 1. Then é/F is a compact group under the
logic topology (see [44]). One can then use Peter-Weyl to replace I' by a subgroup
of G satisfying the same conclusions of the Claim, but with G/F a compact Lie
group (e.g., this follows from the proof of [11, Lemma 2.9] together with the fact
that every coset of I is type—deﬁnable over G).

Let K = G/I‘ and let 7: G — K be the quotient homomorphism. Note that 7 is
definable over G, and 7 := T|¢ is a definable compactification of G.

Claim 2. There is some v > 0 and some g € G satisfying the following properties.

(i) For any = € G, if d(7(x),1) < 7 then z € (AA )2 N ((AA 1)U Z).

(i1) For any z € G, if d(7(z),7(g)) <~y then x € AAA™.
Proof. To ease notation, set D = (AA1)?2 N ((AAY) U Z and E = AAAY. By
Claim 1, we have I' C D and ol C E for some a € G. Given v >0, set B, =
{9 € G:dF(g),1) <~}. ThenT = ,~0 By and, since 7 is definable, each B,
is type-definable. By compactness, there is some v > 0 such that B, C D and
aB, C E. In other words, for any = € G if d(7(x),1) < 7 then z € D and if
d(7(z),7(a)) < 7 then = € E. By the triangle inequality and density of 7(G) in
K, we can shrink « and obtain the same conclusion but with a replaced by some
g € G. The claim now follows. elaim

Fix v > 0 and g € G as in Claim 2. Since K is a compact Lie group, we may
assume it is a closed subgroup of U(n) for some n, and hence view 7 as a definable
homomorphism from G to U(n). By Corollary 4.13, there are homomorphisms
7ot Gy — U(n) for each s > 1 so that (G,U(n),7) = [[,(Gs, U(n),7s) as £3™)-
structures. Choose a representative (gs)s>1 for g, and let Z = [[,, Zs where each
Zs C Gs. Set 6 = /2 and let I be the set of s > 1 satisfying the following
properties:

(1) For any z € G, if d(s(z),1) < § then z € (4, 4:1)% N ((AsA}) UYy).
(2) For any z € G, if d(74(z),7s(gs)) < § then x € A;AZAL

(3) ps(Zs) < €(6,m)(c/0)™

Then I € U by the Claim and Lo$’s Theorem, and since § < v and u(Z) = 0.

Since U is nonprincipal, we may choose some s € I such that 6',n < s. Let
B = {z € G, : d(74(x),1) < 6}. Then B is a (4, U(n))-Bohr neighborhood in
Gs. By (1), we have B C (A,A)? and B\A A7 C Z,. By (2) and translation
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invariance of d, we have g, B C A;A;A;'. Finally, by (3) and Corollary 5.8, we have
1a(B\AAY) < pu(Zs) < (6,0)(c/0)™ < €(6,n)us(B).
Altogether, this contradicts the choice of (G, Ag, ps). O

Remark 5.11. We point out that since Theorem 5.9 is formulated with an ar-
bitrary function €, conditions (i) and (i7) can be obtained directly from (ziz). In
particular, fix o > 0 and e: RT x ZT — RT. Without loss of generality, assume
a < 1/2. Define €*: RT x Z* — RT so that

€*(6,n) = min{e(5/2,n), a}(5/2c)"™ .

Now let G be an amenable group with a left-invariant measure u, and fix A C G
with p(A) > «. Suppose we have a (6, U(n))-Bohr set By C G with u(Bg\AA™) <
€*(6,n). Let B be the (§/2,U(n))-Bohr set in G defined using the same homomor-
phism to U(n) that yields Bg. So B2 C By. We claim that B satisfies conditions
(1), (i), and (44i) with respect to €. For (iii), note that

W(B\AAY) < ju(BO\AA™Y) < €(6,1m) < e(6/2,1)(6/20)" < e(6/2,m)u(B).
Conditions (i) and (i7) can be obtained from the following general statement.
Suppose U,V C G are such that 1 € U = U™ and U? C V. Fix some W C G.
(1) If wW(VAW) < $u(U) then U C WW™L
(2) If U is m-generic and u(V\W) < 2, then AW-! contains a left translate of U.

Setting U = B (so m < (¢/20)"" in (2)), V = By, and W = AA™!, these statements
yield (7) and (i7), respectively. We leave the proofs of (1) and (2) to the reader (for
(2), the argument is similar to final part of the proof of Claim 1 in Theorem 5.9).

Next we derive some corollaries of Theorem 5.9. By a representation of a group
G, we mean a homomorphism from G to GL,,(C) for some n, called the dimension
of the representation. A wunitary representation is a representation mapping to
U(n). As an aside, we note the result of Dixmier [13] that any uniformly bounded
representation of an amenable group can be conjugated to a unitary representation.

Corollary 5.12. For any o, € > 0 there is an integer d > 1 such that the following
holds. Let G be an amenable group with a left-invariant measure p. Suppose A C G
is such that p(A) > «, and assume G has no nontrivial unitary representations of
dimension less than d. Then G = AAA™ and u(AA™1) > 1 —e.

The previous corollary connects to quasirandom finite groups, which are de-
fined by Gowers in [16] using graph-theoretic quasirandomness. Roughly speaking,
Gowers shows that a finite group is quasirandom if and only if its nontrivial rep-
resentations have large dimension (see [16, Theorem 4.5] for a precise statement).
It is also shown that if G is a finite group with no nontrivial representations of
dimension less than d, and if A, B,C C G each have size larger than |G|/d"/?, then
G = ABC.% So Corollary 5.12 can be viewed as a non-quantitative extension of
this result to arbitrary amenable groups, but only with triple products of the form
AAA'. (Though note that in the context of the corollary, if we also have B C G
with p(B) > € then any left translate of B intersects AA™, and thus G = BAA™.)

We can also consider (necessarily infinite) groups with no nontrivial unitary rep-
resentations of any finite dimension, in which case we have the following conclusion.

6See [37, Corollary 1] for an explanation of how this statement follows from results in [16].
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Corollary 5.13. Let G be an amenable group with a left-invariant measure p, and
assume that G has no nontrivial finite-dimensional unitary representations. Then
for any A C G, if u(A) >0 then G = AAA™ and p(AA™) = 1.

The previous corollary applies to any infinite simple amenable group, since such
groups have no nontrivial finite-dimensional representations by the Tits alternative
for linear groups (in characteristic 0; see [56, Theorem 1]). Examples of such groups
include Hall’s universal group [18] or a finitary alternating group on an infinite set
(both of which are locally finite, hence amenable). The existence of infinite finitely-
generated simple amenable groups was proved by Juschenko and Monod [25].

As a final corollary, we note that as is usually the case for results of this kind, if
one restricts to groups of some fixed finite exponent, then Bohr neighborhoods can
be replaced by subgroups (see Corollary 5.15 for a precise statement). The simplest
way to obtain this is to adjust the proof of Theorem 5.9 to reflect the fact that any
compact Hausdorff torsion group is profinite [22, Theorem 4.5]. This removes the
need to work with Bohr neighborhoods, approximate homomorphisms, Kazhdan’s
theorem, or continuous logic. Indeed, Corollary 5.15 is a relatively straightforward
consequence of the stabilizer theorems of [21, 35] (and the aforementioned fact from
[22]). In light of these remarks, we will give an alternate proof which is the same in
spirit, but argues directly from Theorem 5.9 as stated, together with the following
fact (well-known for (J, T(n))-Bohr neighborhoods).

Fact 5.14. Fiz an integer r > 1, and let 7y, be the complex distance between e27'/"

and 1. Suppose G is a group of exponent r and B is a (6, U(n))-Bohr neighborhood
in G, with 6 <~,. Then B is a normal subgroup of G.

Proof. Let 7: G — U(n) be a homomorphism such that B = 771(U), where U is the
open identity neighborhood in U(n) of radius §. Then 7(G) is a subgroup of U(n)
of exponent r. We claim that 7(G) N U = {1}, which then will yield B = kerr.
To establish the claim, it suffices to fix some nontrivial z € U(n) with 2" = 1,
and show d(x,1) > 4. Since z is (unitarily) diagonalizable, there are y € U(n) and
z € T(n) such that z = yzy™*. By invariance of the metric, we have d(x, 1) = d(z,1).
Moreover, 2" = y'z"y = 1. So each diagonal entry in z is a complex r*" root of
unity. Thus d(z,1) > v, > 0. O

Corollary 5.15. Fiz o > 0, » > 1, and a function e¢: ZT — RT. Let G be an
amenable group of exponent r, and suppose u is a left-invariant measure on G.
Suppose A C G is such that u(A) > «. Then there is a normal subgroup H < G
of index m < Oy (1) such that H C (AA™Y)2, AAA™ contains a coset of H, and
p(H\AA™) < e(m)pu(H).

Proof. Let v, be as in Fact 5.14. Define ¢*: R™ x Z* — R™ so that
€*(6,n) = min{e(m)/m : m < (¢/min{4, 7,,})"2}.

Applying Theorem 5.9 with a and €*, we obtain a (J, U(n))-Bohr neighborhood B
in G, with §1,n < Oy (1), such that B C (AA1)2% AAA™! contains a translate
of B, and u(B\AA™') < €*(6,n). Let 6, = min{d,~,}, and note that we still have
5. < Og,re(1). Let H be the (d,, U(n))-Bohr neighborhood in G defined using the
same homomorphism to U(n) that yields B. Then H is a normal subgroup of G by
Fact 5.14. Clearly H C B, so H C (AA™1)? and AAA™ contains a coset of H. Let



COMPACTIFICATIONS OF PSEUDOFINITE AND PSEUDO-AMENABLE GROUPS 21

m be the index of H. Then m < (¢/8,)" < Oqre(1). Moreover,
WH\AA™) < p(B\AA™) < € (6,1) < e(m)u(H). O

In [41], Palacin proves a version of the previous result in which G is finite, A is
also “product-free”, and e is constant.”

Remark 5.16. Recall that a group G is amenable if and only if it admits a (left)
Fglner net. In this case, such nets can be used to define the upper and lower
Banach density of subsets of G. In much of the literature from combinatorial
number theory, results on amenable groups like those above are often phrased in
terms of Banach density. So we note that a translation to this setting can be
obtained using the general result that if G is amenable and A C G, then the upper
(resp., lower) Banach density of A is the supremum (resp., infimum) of p(A) over
all left-invariant measures p. Moreover, for a given A the supremum and infimum
are both attained (but in general using different measures). See [20, Section 2] for
details. Via this translation, one can see the relationship between the results of
this section and body of work from combinatorial number theory concerning the
structure of a product set AB, where A, B are subsets of an amenable group (often
countable) with positive upper Banach density (see, e.g., [3, 5]). These results are
then orthogonal to ours since they focus on products of two distinct sets, but are
not uniform in the parameters. (Note that an ultraproduct of amenable groups
need not be amenable; see also [40].)

5.3. Remarks on the topological case. It could be interesting to extend the
results above to the topological setting. We give below a step in this direction.
Up to this point the groups G considered in this section were discrete; we now
consider locally compact groups. Define a non-commutative Bohr neighborhood in
a locally compact group G to be the pullback of an open identity neighborhood in
a compact group C' under a continuous homomorphism from G to C. In particular
this definition-while it reads the same as the discrete case (Definition 5.1)-now
assumes the homomorphism mentioned there is continuous. Note also that for the
purposes of the result below, it is easy to see using Peter-Weyl that C' above can
be equivalently taken to be a unitary group U(n) for some n.

We assume here a set theory background including some large cardinals, so that
all projective sets are universally measurable. See, for example, [27, Chapter V].
With a little attention one can no doubt make do with measurability of analytic sets,
which is provable in ZF. But to avoid technical difficulties we assume projective
determinacy.

Recall that a locally compact topological group G is amenable if and only if it
admits a left-invariant finitely additive probability measure on its Haar-measurable
subsets (see [42] for general background on amenablility).

Proposition 5.17. Assume projective determinacy. Let G be a separable locally
compact amenable group with Haar measure algebra H. Let p: H — [0, 1] be a left-
invariant finitely additive probability measure. Suppose X € H is such that X = X
and p(X) > 0. Then X* contains a non-commutative Bohr neighborhood.

Proof. Since all projective sets are universally measurable, and in particular Haar
measurable, any definable set in (G, -, X') is Haar measurable, hence in the domain

"The actual statement in [41] asserts |[H\AA"!| < €|G|, which is trivial since the index of H
depends on ¢; however the proof strategy easily allows for € to be a function of the index of H.
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of p. Let (G*,-, X*) be an Nj-saturated elementary extension. We obtain a A-
definable subgroup I' contained in (X*)?, using Massicot-Wagner [34]. (We note
in passing that adding expectation quantifiers, i.e., making the measure definable,
remains within the projective set hierarchy, so that p may be taken definable as
a measure; but this is not needed in [34].) Now T is the kernel of a definable
homomorphism 7: G* — C where C is a compact Hausdorff group. Thus the
pre-image of an open set is \/-definable. By saturation, we have an open identity
neighborhood U in C such that (7%)1(U) C (X*)*. Let 7 be the restriction of 7* to
G. Then 7 pulls back an open set to a set in the X-algebra of definable sets, so that
it is a measurable map. It follows that the homomorphism 7 is actually continuous;
see [28] where this statement is attributed to Banach, and a more general statement
is proved. Moreover, 71(U) C X*. Indeed, if z € G with 7(z) € U, then x € (X*)%;
but G < G*, so z € X*. Thus 7}(U) is a non-commutative Bohr neighborhood
contained in X4, (]

Remark 5.18. In place of amenability of GG, we could assume the existence of
a left-invariant finitely additive measure on Haar-measurable sets, which is not
necessarily finite but satisfies 1(X) > 0 and u(X?3) < co. In this case, the proof
recovers the softer “Lie model” part of the beautiful results of Carolino [7] and
Machado [32] (but for Borel sets, possibly of Haar measure zero, not necessarily
open or closed).

Remark 5.19. A uniform strengthening of Proposition 5.17 along the lines of
Theorem 5.9 should be attainable under suitable development of the tools used
above. For example, note that Kazhdan’s theorem (Theorem 2.5) holds in the
topological setting. We also point out that in the discrete case, so when G is
a countable amenable group, Proposition 5.17 follows from the main result of [3]
(proved first for Z in [5]). In particular, Theorem 3 of [3] implies that X? contains a
“piecewise Bohr” set, and thus X* contains a noncommutative Bohr neighborhood
by an elementary covering argument similar to (1) and (2) in Remark 5.11.
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