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Abstract
Forecasting the relevant characteristics of central space weather
events such as coronal mass ejections and solar flares is of utmost
interest due to their potential near-Earth impact on our technologi-
cal infrastructure. A key solar feature that is successfully utilized
for predicting these solar events is magnetic polarity inversion
lines (MPILs). Derived from magnetic field rasters, MPILs represent
the shear layers between two opposing (i.e., positive and negative)
polarity regions, and the complexity of these separating lines is
shown to be highly relevant precursors for these solar events. In
this paper, we present our data ecosystem for detecting and serving
metadata for MPILs, along with important spatial, temporal and
spatial-temporal search capabilities. The MPILs are detected using
our detection framework and are served through our public APIs.
Our APIs provide active region-based, spatial, and temporal search
capabilities. TheMPIL metadata consists of a series of binary rasters
and metadata parameters. The rasters show the polarity inversion
lines, regions of polarity inversion, the unsigned negative and posi-
tive polarity regions (both positive and negative) and convex hull
of polarity inversion lines, while metadata features include physi-
cal and shape-based image parameters. We organize the metadata
series as spatial and temporal time series derived from active region
trajectories. This data resource is heterogeneous in nature and is de-
signed to be easily extensible. MPIL-derived features are currently
used in various deployed operational systems. We envision that
our near-real time detection module and API service will be used
as the backbone for operational space weather forecasting tools.
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1 Introduction
Extreme space weather events caused by interaction of the Earth
with emissions from the Sun can potentially impact our technolog-
ical infrastructure, both on the Earth’s surface and its surrounding
orbit. Robust prediction of these space weather events is vital to
many stakeholders in various branches of governments and across
many sectors of commercial enterprises. The shape and complexity
of magnetic polarity inversion lines (MPIL) have long been consid-
ered a strong precursor of these central space weather events such
as solar flares and coronal mass ejections. MPILs are essentially
shear layers that separate sufficiently intense positive and negative
magnetic polarity regions. The complexity of MPILs and related
features in a particular solar region is an indicator of energy build-
ups among opposing magnetic regions. The recent findings from
simulation-based and observational studies show that topological
features of MPILs from a solar active region are strongly associated
with the flare and eruption productivity [6][11]; therefore, provid-
ing large-scale MPIL data and metadata that are integrated with
existing resources is of great importance both for enabling data-
driven heliophysics research and for operational space weather
forecasting. That said, current MPIL-related datasets are practically
scattered, come from non-standardized (and often publicly unavail-
able) detection modules and various raw magnetogram data, and
are created for task-specific instances [7]. Given the limited acces-
sibility, we believe it is important to provide a data service capable
of generating integrated, discoverable, and accessible MPIL data
with proper information on data lineage, parametric configurations
and relevant metadata.

The few publicly availableMPIL datasets, due to the fact that they
are used in analytical studies, are stored in flat files and raster for-
mat under standard file system directories. However, the nature of
the MPIL data is spatial and temporal, where these separating lines
continuously change their shape-based characteristics over time.
Operational users (such as space weather forecasting researchers)
need to locate and identify spatio-temporal characteristics within
the MPIL data. To do this, spatial and temporal query support as
well as timely generation and access to the data are necessary.
In this paper, we present an end-to-end data service to provide
this support, consisting of two main features: (1) A data genera-
tion framework that downloads and processes magnetogram data
to create properly annotated MPIL data and (2) A public-facing
application programming interface (API) for querying and retriev-
ing information from the generated near-real time and historical
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datasets. The data generation framework is built upon an extended
version of MPIL generation algorithm presented in [5]. The histor-
ical and near-real time datasets are generated mainly using HMI
Active Region Patch (HARP) data series [3], which are produced
by the Solar Dynamics Observatory’s Helioseismic and Magnetic
Imager (SDO/HMI) instrument. HARP data series, available in de-
finitive and near-real-time versions, are essentially spatio-temporal
trajectories of solar active regions that show the evolving physical
characteristics of various magnetic field observations. Using our
generation framework, we create MPIL-related metadata for solar
active regions and integrate them to widely used HARP identifiers.
The created data is then served using the public API. Users can pass
URL-based parameters to request the MPIL rasters and metadata
by active region identifiers or within specific temporal or spatio-
temporal windows. This interface increases the accessibility of the
dataset to researchers and other third parties. The web service
is currently available at https://dmlab.cs.gsu.edu/mpil-api/ and is
under active development.

The rest of the paper is organized in the following manner. Sec-
tion 2 discusses relevant research and applications related to this
work. Sections 3 and 4 describe the architecture of the service and
its utility to provide temporal, spatio-temporal, and active region-
based information to clients. Section 5 presents conclusions and
introduces the next steps for future development using this service.

2 Related Work
Various methods have been proposed recently for detecting MPILs
from solar magnetograms in order to provide insights into their
properties and their potential application in predicting solar flares.
Some methods focus on pixel-level analysis, while others employ
segmentation and optimization procedures. For instance, Toriumi
and Takasao[11] used the horizontal gradient of the magnetic field
to detect and analyze the properties of MPILs in numerical sim-
ulations of solar active regions. Vasantharaju et al.[12] studied
the magnetic properties of solar flares by analyzing PIL observa-
tions and investigating their relationship with flare productivity.
Sharykin et al.[10] examined the energy release in the lower solar
atmosphere near the PIL during a flare event. Kim et al.[8] proposed
a new mechanism for solar eruptions based on preflare eruptions
occurring before major solar flares.

To leverage the properties of PILs for solar flare prediction, ma-
chine learning models have been applied. Wang et al.[13] utilized
features of MPILs extracted from HMI vector magnetograms and
employed a random forest model for classifying solar active regions
into flaring and non-flaring categories. Sadykov and Kosovichev[9]
derived multiple MPIL-related physical parameters from line-of-
sightmagnetograms and employed a Support VectorMachine (SVM)
for flare forecasting. These studies demonstrate the potential of
MPIL detection and analysis in enhancing our understanding of
solar activity and its effects on the near-Earth environment.

There are existing protocols for retrieving Earth-based geospatial
data such as Web Map Services [2]. However, most existing PIL
detection tools and datasets are not stored in formats that can
be easily integrated with these services. The data is not readily
available for widespread use in data-intensive forecasting studies
or operational modules, limiting their accessibility and hindering
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Figure 1: A general overview of MPIL data generation and
public API

progress in this field and operational space weather forecasting. To
address this gap, we present an extensible ecosystem that will serve
as critical solar metadata cyberinfrastructure for operational space
weather forecasting and support heliophysics research.

3 Structure
A general overview of our MPIL data service is illustrated in Fig. 1.
The input magnetogram data series are downloaded and stored as
flat files. Then the magnetogram files are fed to our MPIL genera-
tion framework to create MPIL rasters with physical, spatial, and
shape-based features. These features eventually form multivariate
time series data for each active region trajectory. In addition we
generate various identifying metadata information. The resulting
data products are stored in a spatially extended database and then
are served via MPIL API module. We present the structure of the
MPIL data products and related database and public API in Fig. 2.

The MPIL API serves as a public interface for clients to access
the MPIL datasets. The front-end was developed using the Node.js
framework. Client requests are sent via RESTful queries for spatial,
temporal, and region-based information. Relevant metadata is then
retrieved from a PostgreSQL database with PostGIS extension and
returned to the requester in JSON format. Rasters are stored outside
the database and accessed from links provided in the returned meta-
data. The service exists inside a Docker container for portability
and ease of deployment.

Our service currently provides access to MPILs from both de-
finitive and near-real time HARP series and covers active region
trajectories starting from May 2010. The MPIL data is created with
the extended version of our MPIL detection framework [1]. The
flat files and rasters generated from the MPIL detection framework
are further processed with custom scripts to gather data lineage
and configuration metadata. The data lineage metadata includes
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Figure 2: Structure of the MPIL data products and the archi-
tecture of its accompanying public API
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information about the HARP data series (e.g., data series identi-
fiers, projections for magnetogram rasters, type of the longitudinal
magnetogram, etc.). The configuration metadata consists of infor-
mation about the code version and repository links used to generate
MPILs as well as the parametric settings used (such as the mag-
netic field strength threshold or size filters). Additional information
about widely used solar active region identifiers (HARP identifiers –
HARPNUM for both definitive and near-real time series and NOAA
active region numbers) are also integrated to provide access. We
use spatio-temporal co-occurrence-based integration to identify
corresponding active region identifiers[4]. The MPIL features and
metadata values are then ingested into a MPIL database instance,
which is currently served in PostgreSQL. The MPIL raster files are
copied to a separate public repository and the relative URLs for the
rasters are also stored in the database.

4 Features
MPIL Rasters and Features: We briefly described our generation
procedure in Section 3. In addition to the original magnetogram
cutout raster, each active region patch is associated with six binary
masks showing positive and negative polarity regions, unsigned
polarity regions, the region of polarity inversion (RoPI), a thinned
MPIL, and the convex hull of the MPIL. These masks were used
during the MPIL detection framework to generate a rich collection
of metadata for each active region. Some of the MPIL features gen-
erated include coordinate-based shape of the active region patch,
the convexity, eigenvalues, fractal dimensions, and magnetic field
strength covered by regions of polarity inversion, as well as addi-
tional details about the binary masks such as their size and number
of connected line components. These values are all recorded with a
timestamp for use in active region trajectory analysis. We provide
an example set of raster data products in Fig. 3.

Query Capabilities: The information stored in MPIL database
can be interacted with via the front-end interface through three
main types of queries: active-region-based, temporal, and spatio-
temporal. Active region-based queries assume that the user already
knows the identity of a particular area and wish to retrieve all
relevant data regarding the active region. A benefit provided by
the API is that multiple well known active region identifiers can be
correlated to the same raster andmetadata resources. For example, if
a HARP number and a NOAA Active Region (NOAA AR) identified
region are related, requesting data from either format will contain
the same results.

The temporal and spatio-temporal queries can be used when the
time frame and location are the relevant search parameters. For
temporal window queries, clients provide the start and end time in
the standard YYYY-MM-DD-HH:MM:SS format. Spatio-temporal
queries also include the bounding box coordinates defined by the
lower-left and upper-right latitude and longitude values in Helio-
graphic coordinates. Both queries allow clients to take advantage
of convenience features provided by the API. The geometric aspect
of active region data is stored as spatial objects using the PostGIS
extension, and the spatial and spatio-temporal queries from the API
are performed using spatial overlap operations to determine which
active regions intersect with the bounding box. Combined with the
date-range matching provided by traditional relational database

structure, clients can easily obtain active region trajectory informa-
tion without having to build additional custom infrastructure.

All queries are passed to an active Node.js instance as HTTP GET
requests. The query type and parameters undergo initial verification
to ensure they are in the correct format. If correct, the data is sent
to the appropriate stored procedure in the Postgres database and
the query is performed. Upon receiving the results, the Node.js
instance converts the SQL data into JSON format and returns the
information to the client.

For error handling and notification purposes, query responses
begin with request status and current version of the API. All suc-
cessful queries include configuration metadata about how the raster
data was originally captured and processed to provide for outside
reproduction of results. Then the records are returned as a series
of objects grouped by an internal active trajectory region identi-
fier (in addition to any other relevant active region identifier). The
overall time range and bounding box for the series are listed first.
Following that, an array of raster data records is sent. Public URLs
for all binary mask rasters are presented along with the raster type
and timestamp. Finally, the MPIL features described in Section 4
are listed in one JSON string.

5 Conclusion
In this paper we have demonstrated our MPIL data service, which
consists of data generation, processing, storage, and serving tools.
The data service provides access to a rich metadata source for
use in heliophysics and space weather forecasting. The integrated
dataset serves as a critical infrastructure that can be used by various
forecasting methods. The public API demonstrated in this work
provides an effective access mechanism for researchers to query
and analyze these datasets. Given that various aspects of MPILs are
used in a wide range of predictive analytics studies, we envision that
our API will further facilitate the development of machine learning-
based prediction tools for space weather forecasting. In the future,
we plan to include and integrate other historical magnetogram data
sources such as the cutouts from SOHO/MDI (the predecessor of
SDO/HMI). We also plan to implement visual support and analytical
search functions for metadata features.
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