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Abstract Extreme winds associated with tropical cyclones (TCs) can cause significant loss of life and
economic damage globally, highlighting the need for accurate, high‐resolution modeling and forecasting for
wind. However, due to their coarse horizontal resolution, most global climate and weather models suffer from
chronic underprediction of TC wind speeds, limiting their use for impact analysis and energy modeling. In this
study, we introduce a cascading deep learning framework designed to downscale high‐resolution TC wind fields
given low‐resolution data. Our approach maps 85 TC events from ERA5 data (0.25° resolution) to high‐
resolution (0.05° resolution) observations at 6‐hr intervals. The initial component is a debiasing neural network
designed to model accurate wind speed observations using ERA5 data. The second component employs a
generative super‐resolution strategy based on a conditional denoising diffusion probabilistic model (DDPM) to
enhance the spatial resolution and to produce ensemble estimates. The model is able to accurately model
intensity and produce realistic radial profiles and fine‐scale spatial structures of wind fields, with a percentage
mean bias of −3.74% compared to the high‐resolution observations. Our downscaling framework enables the
prediction of high‐resolution wind fields using widely available low‐resolution and intensity wind data,
allowing for the modeling of past events and the assessment of future TC risks.

Plain Language Summary Extreme winds associated with tropical cyclones (TCs) can cause
significant loss of life and economic damage globally, highlighting the need for accurate, high‐resolution
modeling and forecasting for wind. Traditional global climate models and weather forecasting models often lack
the horizontal resolution needed to accurately model these extreme winds. We introduce a two‐part deep
learning method that enhances the quality of wind speed predictions from coarse data. The first model corrects
inaccuracies in initial low‐resolution data from 85 TC events. The second part uses an advanced generative deep
learning model to refine these corrections, producing high‐resolution wind field images. This process allows us
to generate more detailed and accurate maps of TC wind speeds, capturing finer spatial details that are crucial for
effective impact analysis and energy modeling. Our downscaling framework enables the prediction of high‐
resolution wind fields using widely available low‐resolution and intensity wind data, allowing for the
reconstruction of past events, the assessment of future TC risks, and improved understanding of historical TC
impacts even in the absence of satellite data.

1. Introduction
Tropical cyclones (TCs) are among the most devastating natural phenomena, characterized by extreme winds
speeds and significant loss of life and economic damage globally. Despite advances in weather prediction and
climate modeling, accurately modeling TC intensity remains challenging due to TCs' significant and short‐
duration deviations from the mean atmospheric state and the complex dynamics within their inner and outer
cores (Bloemendaal et al., 2019; Walsh et al., 2007). Many climate models, atmospheric reanalysis products, and
long‐range weather forecasting models use coarse resolutions ranging from 0.25 to 1°, which are insufficient for
modeling the inner‐core dynamics and physics of TCs. As a result, underestimation of TC intensity and lack of
realistic structural features is ubiquitous in climate and weather data, particularly for the most intense events
(Bloemendaal et al., 2019; Gori et al., 2023; Walsh et al., 2007).

Recent advances in deep learning‐based weather models, such as Aurora (Bodnar et al., 2024), Pangu‐Weather
(Bi et al., 2023; Bouallègue et al., 2024), and GraphCast (Lam et al., 2023), offer significant benefits over
traditional numerical weather prediction models, including faster computation, greater adaptability, scalability,
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and often improved predictive accuracy (Mukkavilli et al., 2023). However, these models still face several
challenges, particularly in forecasting extreme weather events. AI‐based models tend to struggle with accurately
predicting these events over short time scales due to their dependence on large datasets, limited scale awareness,
coarse spatial resolution, and the lack of fine‐tuning after general training. Additionally, they can suffer from
blurring effects caused by averaging, forecast roll‐out limitations (Bodnar et al., 2024), and the high computa-
tional costs and time required for training (Zhu et al., 2024).

Despite these challenges, AI‐based models show great potential for improving the prediction of extreme events
when deployed under specific climate or weather regimes, offering a more computationally efficient alternative to
physics‐based approaches. For instance, the Pangu‐Weather model outperformed the European Center for
Medium‐Range Weather Forecasts (ECMWF) in tracking TC trajectories for 88 TC events in the year of 2018 (Bi
et al., 2023). However, despite its superior track prediction, Pangu‐Weather's 25‐km horizontal resolution re-
mains inadequate for modeling TCs physics, and the model systematically under‐predicts TC maximum intensity
and intensity changes (Bonavita, 2024; Bouallègue et al., 2024; Selz & Craig, 2023). Similar models such as
Fourcastnet and NeuralGCM have also shown substantial underestimation of TC intensity and intensification
rates (Kochkov et al., 2024; Pathak et al., 2022). Increasing the resolution of these models may address these
issues, but imposes substantial computational burdens. Alternatively, the data used to train these models can be
adjusted either prior to input (preprocessing) or following prediction (postprocessing) to more accurately reflect
observed extreme events. Diffusion models, in particular, have shown great potential to predict a broad range of
frequencies and extremes for turbulence (Gao et al., 2023; Oommen et al., 2024) and for precipitation down‐
scaling (Asperti et al., 2023).

The emergence of super‐resolution techniques in machine learning, such as convolutional neural networks (Oktay
et al., 2018), generative adversarial networks (GANs) (Goodfellow et al., 2014) and diffusion models (Ho
et al., 2020) have demonstrated significant promise in enhancing spatial resolution beyond traditional interpo-
lation methods. These methods hold great potential for applications beyond canonical computer vision appli-
cations, and their applications to downscaling extreme weather events have started to emerge (Lai et al., 2024;
Rampal et al., 2024; Wang et al., 2021). For instance, Price and Rasp (2022) employed a conditional GAN to
generate high‐resolution, bias‐corrected precipitation forecasts from coarse global forecasts, outperforming
interpolation baselines methods, and nearing the performance of operational regional high‐resolution models
across various probabilistic metrics. Vosper et al. (2023) evaluated conditional super‐resolution GANs and CNN
models applied to TC precipitation fields, also revealing substantial improvements in capturing realistic spatial
structures and power spectra over traditional interpolation methods. Additionally, a diffusion model's recent
application to wind speed super‐resolution over central Europe further validated its effectiveness in improving the
spatial resolution of weather data (Merizzi et al., 2024).

In this paper, we propose a cascading deep learning framework designed to downscale high resolution TC wind
fields from low‐resolution climate and weather data. Our methodology leverages data from 85 TC events captured
by both ERA5 reanalysis (low‐resolution) and a high‐resolution assimilated wind field product (HWIND). The
framework comprises two primary components: a debiasing neural network (NN) to model TC wind fields and a
super‐resolution DDPM for spatial resolution enhancement and probabilistic ensemble generation (Figure 1).

2. Methodology
2.1. Data

The dataset comprises high‐resolution observational target data (0.05° resolution) and low‐resolution (0.25°)
input data (Figure 1) of 85 TC events in the North Hemisphere that occurred from 2003 to 2014, see below. To
ensure robust model evaluation, the test, training, and evaluation sets are divided such that there is no overlap
between TC events, thereby limiting sampling bias resulting from correlated timesteps being split between the
different sets (Lockwood, Loridan, et al., 2024). Finally, the dataset is split into 60% for training, 10% for
validation and 30% test so that the intensity distribution of each set has the same range (Fig S1 in Supporting
Information S1).
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2.1.1. Low Resolution Input Data

The input data for the ML model consists of ERA5 data on a regular latitude‐longitude grid with a resolution of
0.25° at hourly intervals (Hersbach et al., 2023). The dataset is a state‐of‐the‐art reconstruction of the past climate
using an Earth System Model coupled with a data assimilation from a multitude of sources. From ERA5 we use
the U and V components of the wind at 10 m, surface pressure, and the horizontal spatial gradients of all the
aforementioned variables. Additionally, a binary land mask is included to distinguish between land and water
surfaces.

2.1.2. High Resolution Target Data

Verification of TC surface winds is inherently difficult due to the poor temporal and spatial sampling of these
events. The HWind‐based dataset (Powell et al., 1998) provides valuable data at small and intermediate scales by
assimilating aircraft measurements, surface measurements, and remotely sensed satellite data into a common
model used in (Chavas et al., 2015, 2016). HWind data have approximate horizontal resolutions of 6 km at 6‐hr
time steps, and is known to be one of the most comprehensive independent surface wind comparison dataset
available (Adams et al., 2005). There are some limitations to using the HWind dataset. HWind does not provide an
instantaneous snapshot of a TC; rather, it assimilates data over a time window of three to 6 hr (Powell et al., 1998).
This can introduce uncertainties in representing the exact structure of the TC at any given moment. Furthermore,
our dataset is restricted to events in the North Atlantic basin, covering only the years from 2003 to 2013, which
limits the temporal and spatial scope of the analysis.

To assess the accuracy of the HWIND data, the maximum wind speed at each timestep in the HWind dataset is
compared to the International Best Track Archive for Climate Stewardship (IBTrACS) data for the 85 events used
here. The maximum wind speed in HWind for these events matches IBTrACS data very well, with a correlation
coefficient of 0.95, a mean squared error (MSE) of 20.99, and an error of only 5.92% (Figure S2 in Supporting
Information S1). As shown in Figure S2 in Supporting Information S1, there are noticeable discrepancies between
HWind and IBTrACS, particularly in the representation of both weak and strong TCs. These differences can
introduce biases during model training and evaluation, especially in the extremes of the TC intensity spectrum.

Figure 1. Overview of the (a) NN and (b) super‐resolution model. The inputs to the NN corrector include the ERA surface
pressure, U10 and V10 winds, spatial gradients in the former and a binary land mask.
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2.2. Deep Learning Models

The proposed framework utilizes a two‐step machine learning approach to map the low‐resolution ERA5 data
onto the high‐resolution HWIND target data. The first component is a multi‐layer perceptron debiasing neural
network model that emulates high‐intensity wind field observations using ERA5 data as the input. The second
component employs a generative super‐resolution denoising diffusion probabilistic model (DDPM) to enhance
spatial resolution and produce ensemble estimates. By separating these steps, the DDPM can focus more
effectively on the task of super‐resolution, limiting the difference between the maps that can complicate the super‐
resolution process (Vosper et al., 2023). All models were trained on an 80 GB NVIDIA A100 Tensor Core GPU.

3. Neural Network Model
The neural network structure consists of an input layer, two hidden layers with ReLU activation functions, and a
dropout layer. The final layer is a ReLU activation function. The input to the NN model are the ERA5 variables,
whilst the target variable is HWIND wind speeds data interpolated to the same resolution of the ERA5 data using
spline interpolation.

The model was optimized using various hyperparameters on the evaluation dataset. Specifically, dropout rates (5
values spanning homogeneously values between 0 and 0.1) were tested to prevent overfitting by randomly setting
a fraction of input units to zero during training. L2 regularization (5 values spanning homogeneously 0 to 0.05)
was applied to penalize large weights, helping to avoid overfitting. The number of epochs tested ranged from 400
to 4,000, defining how many times the learning algorithm works through the entire training dataset. Learning rates
(5 values tested between 10−3 and 10−5) controlled how much the model's weights were adjusted in response to
the estimated error each time the model weights were updated. The ”best” model was chosen based on the
minimum mean squared error on the evaluation dataset.

4. Super‐Resolution Model
The second component of the framework involves super‐resolution modeling to enhance the spatial resolution
from a coarse 0.25° grid to a finer 0.05° grid (a five times increase). We utilizes the U‐NET IMAGEN denoising
diffusion probabilistic (DDPM) model of Saharia et al. (2022), modified for conditional super‐resolution. We use
the corrected low resolution ERA5 data as the input and the HWIND data as the target data of the DDPM model.
Given that the model is probabilistic, we produce a 40‐member ensemble of the DDPM model output.

The DDPM model, as described by Ho et al. (2020), is a diffusion probabilistic model that operates as a
parameterized Markov chain. This chain is trained using variational inference to produce samples matching the
data after a finite period (Ho et al., 2020). For practical purposes, small amounts of Gaussian noise are added
during diffusion, and the sampling chain transitions are set to conditional Gaussians, allowing for a simple neural
network parameterization.

The mathematical formulation of the diffusion model involves a forward process and a reverse process. The
forward process gradually adds Gaussian noise to the data:

q(xt|xt−1) = N(xt; αtxt−1, (1 − αt) I) (1)

where xt is the noisy image data at time step t, and αt is a parameter controlling the noise level. I represents the
identity matrix, indicating that the Gaussian noise added during the diffusion process is isotropic.

The reverse process aims to denoise the data:

pθ (xt−1|xt) = N(xt−1; μθ (xt, t),σθ (xt, t)) (2)

where μθ and σθ are neural network parameterizations that predict the mean and variance of the denoised data.

The DDPM model is trained to minimize the following objective:

Ex,ϵ∼N(0,I),t [wt‖x − μθ (αtx + σtϵ, t)‖2] (3)
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where wt is a weighting function (which adjusts the importance of each timestep during training), x is the original
data, ϵ is Gaussian noise, and αt and σt are functions of t influencing the sample quality.

We use a classifier‐free guidance, which enhances sample quality by balancing conditional and unconditional
predictions during sampling. This technique adjusts the noise prediction as follows:

ϵ̃θ (xt, c) = wϵθ (xt,c) + (1 − w)ϵθ (xt) (4)

where ϵ̃θ is the guided noise prediction, c is the conditioning input, and w is the guidance weight. We modify the
model using various configurations to identify the optimal setup that achieves the lowest Kullback‐Leibler
Divergence of the ensemble on the evaluation dataset. Our testing includes a comprehensive range of hyper-
parameters and structural adjustments. Specifically, we experiment with different numbers of epochs, learning
rates and diffusion timesteps. These extensive tests allow us to fine‐tune the model for improved performance and
accuracy.

5. Results
The results are organized into two subsections: the evaluation of the Neural Network (NN) debiasing model
(Section 5.1) and the evaluation of the ensemble of super‐resolution Denoising Diffusion Probabilistic Models
(DDPM) model (Section 5.2).

5.1. Neural Network Model

To assess the performance of the NN corrector model, we compare the model predictions with HWIND obser-
vations on the test data (Figure 2). The NN model (blue points) significantly enhances the predicted wind in-
tensities of the NN model compared to the raw ERA5 dataset (red points). The improvement is quantified by a
reduction in Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and an increase in the correlation
coefficient. Specifically, the NN corrector model achieved an MSE of 10.9 m2s−2 and a correlation coefficient of
0.92 with respect to the target HWIND observations. These metrics indicate a substantial improvement compared
to the raw ERA5 dataset, which has an MSE of 20.65 m2s−2 and a correlation coefficient of 0.84 when compared
to HWIND observations.

The distribution of the NN model predictions closely matches the distribution of the HWIND observations
(Figure 2(b)) indicating good agreement between the two. To statistically validate this agreement, we performed a
two‐sample Kolmogorov–Smirnov (K–S) test. The K‐S test results suggest that the predictions from the NN
model and the HWIND observations are from the same distribution, reinforcing the reliability of the NN corrector
model.

Figure 2. (a) Scatter plot and (b) Q‐Q plot for the test data at each gridpoint, comparing NN predictions to HWIND observations (blue points). Also shown are
comparisons of ERA5 wind data to HWIND observations (red) ‐ not the systematic under‐prediction of high intensity windspeed in ERA5 data.
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Additionally, we analyze the model predictions visually (Figure 3). The NN model produces wind intensities that
are more realistic and closer to the HWIND observations compared to the raw ERA5 data. The NN corrector
model effectively captures the spatial patterns and intensities of the wind fields, demonstrating a clear
improvement over the ERA5 dataset. In summary, the NN model significantly improves the accuracy of wind
speed predictions compared to the raw ERA5 data. The model achieves lower MSE values and a higher corre-
lation coefficient, indicating a closer match to the HWIND observations. The Q‐Q plot and K‐S test further
confirm the model's accuracy, and the visual analysis shows that the NN model produces realistic and spatially
accurate wind fields.

To better understand how the model predicts TC intensity despite the coarse resolution of ERA5, we conducted an
importance analysis using the Integrated Gradients method. The results, presented in Fig. S3 in Supporting In-
formation S1, highlight the most significant features driving the model's intensity predictions. Notably, surface
pressure emerged as the most important feature, followed by U Wind and V Wind Gradient Y. These findings
suggest that surface pressure fields, even at coarse resolution, provide valuable information about the storm's
intensity. Additionally, wind components and their gradients contribute substantially to the model's predictions,
indicating that the broader wind structure around the cyclone helps capture critical dynamics related to intensity.
This analysis demonstrates that while ERA5 may not fully resolve the inner core of TCs, key features in its fields
are still indicative of intensity and are leveraged effectively by the model.

5.2. Super‐Resolution DDPM

The performance of the super‐resolution model DDPM in capturing the intricate details of TCs is illustrated in
Figure 4. This figure shows randomly selected timesteps for test events, highlighting the model's ability to reveal
details in the TC structures, including very fine asymmetries in the structure of TCs. Compared to a bilinear

Figure 3. Comparison of wind speeds for five tropical cyclones in the North Atlantic for five randomly selected time steps and storms from the test data. The top row
shows observed wind speeds; the middle row shows corrected wind speeds predicted by the NN model; and the bottom row shows raw ERA5 data.
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interpolation of low‐resolution ERA data, Figure 4, the DDPM more accurately captures the inner, most intense
structures of the TCs. However, the model ensemble is shown to sometimes overestimate (e.g., Hurricane
Frances) or underestimate (e.g., Hurricanes Irene and Bill) the wind speed magnitudes, as shown in Figure 4. Our
DDPM framework may overestimate or underestimate wind speeds due to the stochastic nature of the denoising
process. While DDPMs are designed to capture complex patterns in the data, their probabilistic structure can
introduce variability in the predictions. This randomness, coupled with the inherent uncertainty in TC dynamics
and limited input data for certain events, may contribute to these discrepancies.

To quantitatively evaluate the NN‐DDPM model's performance, we analyzed the overall wind speed metrics and
compared them with HWIND data. The maximum wind speed observed in the HWIND dataset is 72.54 m/s,
whereas the model predictions peak at 69.32 m/s (Table 1). Similarly, the overall mean wind speed for HWIND is
14.96 m/s, while the model predictions slightly underestimate this with a mean value of 14.40 m/s. The mean bias,

calculated as the difference between predicted and observed mean wind
speeds, is −0.56 m/s, indicating a consistent underestimation in the pre-
dictions by the NN‐DDPM model. The percentage mean bias is −3.74%,
reflecting the relative difference in mean wind speeds as a percentage of the
observed HWIND mean. These metrics suggest that while the predictions are
relatively accurate, there is a systematic slight underestimation of wind
speeds in our model.

We also analyze the radially averaged wind speeds, comparing HWIND
observations with the DDPM model, as shown in Figure 5, along with a
bilinear interpolation of the ERA5 data as a common downscaling benchmark
(Vosper et al., 2023). For major TC category 3–5 events, the ensemble DDPM
wind speeds at the radius of maximum wind are slightly higher than the

Figure 4. Wind speeds of five tropical cyclones in the North Atlantic for five randomly chosen time steps and storms from the test data. The top row shows observed
wind speeds; the middle row shows a randomly chosen NN‐DDPM model ensemble; and the bottom row shows bilinear interpolated ERA data.

Table 1
Comparison of Overall Wind Speed Metrics and Bias for HWIND
Observations and NN‐DDPM Model Predictions

Metric Value

Overall Max Wind Speed (HWIND) 72.54 m/s

Overall Mean Wind Speed (HWIND) 14.96 m/s

Overall Max Wind Speed (Predictions) 69.32 m/s

Overall Mean Wind Speed (Predictions) 14.40 m/s

Overall Bias −0.56 m/s

Percentage Mean Bias −3.74%
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HWIND observations on average (Figure 5b). Outside these regions, the DDPM ensemble accurately captures the
profiles of HWIND observations. The DDPM model effectively captures significant changes in wind speed over
short distances, particularly the substantial increase in wind speed from the center of the storm to the radius of
maximum wind. These results suggest that the super‐resolution model produces realistic radial profiles and fine‐
scale spatial structure of wind fields.

We next explore the azimuthal asymmetry of the predictions to complement the azimuthal‐mean performance,
providing a more detailed understanding of the model's ability to capture asymmetric structures in hurricane
intensity (Figure 6). Category 3+ hurricanes exhibit higher RMSE values and lower correlation compared to their
lower intensity counterparts in Category 1–2.

Finally, we assess the capability of our framework to model the evolution of TC maximum intensity over time and
rate of change, which are important to hazard modeling (Lockwood, Lin, et al., 2024). Figure 7 illustrates the
timeseries of TC intensity change for six randomly selected events. The framework not only captures the overall
temporal evolution of TC intensity and its changes but also accurately represents the large fluctuations in
intensification and de‐intensification rates over time.

6. Discussion
In this study, we developed a cascading Neural Network (NN) and Denoising Diffusion Probabilistic Model
(DDPM) super‐resolution generative framework to unbias and model high intensity TC wind speeds at fine
resolutions, using low resolution data as inputs. Our findings contribute to the growing body of evidence that deep
learning methods hold significant promise in weather and climate science, particularly in downscaling applica-
tions. The models developed here produce high‐resolution TC wind predictions could be invaluable for fore-
casting and hazard assessments.

The NN‐DDPM super‐resolution model demonstrates a strong ability to enhance the resolution and accuracy of
wind speed predictions for TCs. While the model shows a slight underestimation in wind speed predictions, its
ability to model high intensity wind fields and fine‐scale structures is noteworthy. Overall, these developments
have the potential to significantly improve weather and climate model outputs, and for global TC risk quanti-
fication. Accurate modeling of these variations is essential for disaster preparedness, energy modeling and impact
modeling.

Despite these advances, several areas for improvement and further research remain. One such area is the
incorporation of additional inputs to enhance predictions, such as the influence of vertical wind shear, upper
atmospheric dynamics, and wind field asymmetries on TC wind fields, yet these variables are less readily

Figure 5. Radially averaged wind speeds as a function of distance for TCs (a) category 1–2 and (b) between Category 3 or above for the NN‐DDPM ensemble and range.
Green lines show a bilinear downscaled interpolation of ERA5 data.
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available in observations. A key limitation of machine learning (ML) models in this context is their non‐
stationarity (Lai et al., 2024): the tendency for ML models to produce significant errors when applied to data
distributions that differ from those they were trained on. Climate change, characterized by changing mean states
and variability, may limit the application of these ML models in this context. In particular, previous studies have
shown that the accuracy of machine learning models applied to TC hazards significantly diminishes when these
models are used outside their training data (Lockwood, Loridan, et al., 2024).

Figure 6. Ensemble‐averaged comparison of NN‐DDPM predictions and HWIND data for hurricane intensity. Subplots
(a) and (b) show RMSE and correlation for Category 1–2 hurricanes, while (c) and (d) display the same for Category 3+.

Figure 7. Time series plot of maximum wind speed for six randomly chosen events as above comparing the NN‐DDPM ensemble mean and range (orange), HWIND
observations (blue) and bilinear downscaled interpolation of ERA5 data (green).

JGR: Machine Learning and Computation 10.1029/2024JH000375

LOCKWOOD ET AL. 9 of 11

 29935210, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000375 by Test, W
iley O

nline Library on [30/06/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



The emergence of physics‐informed neural networks (PINNs) offers a potential solution (Beucler et al., 2021; Lai
et al., 2024; Rampal et al., 2024) or the inclusion of climate‐invariant variables offer potential solutions to this
extrapolation and generalization issue (Beucler et al., 2024). Those physics‐informed strategies integrate first‐
principle equations, such as momentum or continuity equations, or non‐dimensionalization into the training
process, and have shown promise in modeling planetary‐scale geophysical flows, including TCs (Eusebi
et al., 2024). Future research should explore the extent to which incorporating physical constraints impacts model
predictions in changing climates.

We selected the DDPM framework because it offers significant advantages in capturing complex, probabilistic
patterns in atmospheric data, which are essential for accurate downscaling. Unlike traditional neural networks,
which may struggle with the diversity of weather phenomena, or GANs, which can suffer from mode collapse,
DDPMs generate detailed, realistic high‐resolution wind fields by iteratively refining low‐resolution inputs. This
makes them particularly well‐suited for weather downscaling, where small‐scale variability and extremes plays a
critical role in accurate forecasting, despite occasional over/underestimations.

Other generative models, such as Wasserstein Generative Adversarial Networks (WGANs), have shown promise
in modeling weather and TC hazards (Vosper et al., 2023). This study focused on DDPMs due to their proba-
bilistic ensemble capabilities and their stability during training, which is often a challenge with GAN‐based
approaches (Mardani et al., 2024). Additionally, DDPMs are particularly well‐suited for capturing small‐scale
variability in weather data, making them ideal for high‐resolution wind field reconstruction. Future research
should evaluate the performance of other super‐resolution models, such as GANs and conditional CNNs, in this
context. Future work will also explore the application of this method for estimating high‐resolution TC windfields
using Global Climate Model (GCM) data as inputs. This would require high‐resolution dynamical model sim-
ulations to develop and validate the model, which may pose limitations.

Our framework has demonstrated the ability to reconstruct high‐resolution wind fields from past events and to
forecast future wind fields, particularly during periods without satellite observations. This capability is essential
for improving the accuracy of TC modeling and risk management, especially in correcting wind intensity un-
derestimations from low‐resolution models such as CMIP6, Pangu‐Weather, and GraphCast or subseasonal to
seasonal forecasts (S2S in Supporting Information S1). By enhancing the detail and accuracy of TC wind field
predictions, our approach provides a valuable tool for better understanding and mitigating TC‐related risks.

Data Availability Statement
The code used in this study can be accessed via the following Zenodo repository (Lockwood, Gori, & Gen-
tine, 2024). HWIND data can be found open‐access from RMS (RMS, 2024), whilst ERA5 can be found at
Hersbach et al. (2023).
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