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Solar Flares: One of the key space weather
phenomena characterized by sudden and intense
emissions of radiation from the Sun; pose significant
risks to space- and ground-based infrastructures.

Our flare forecasting models leverage deep learning
for higher predictive performance.

Reliability and Transparency: Post hoc explanation
methods (attribution methods) can be used to assess
the reliability of predictions for operational settings.

Research Questions: Can we trust the explanations
in terms of their consistency? How similar are the
explanations generated from different post hoc
explanation methods?

Background & Motivation

We evaluate the consistency among local explanations for magnetograms (test partitions in [2]) within ±45 degrees of flux-
weighted longitude (LONFWT) . An example of explanation generated for input in Fig. 1 is shown in Fig. 2 using all four methods.

Data & Model

Explanation Method: There are two main types of explanation methods: perturbation-based and gradient- based. The former
method is computationally inefficient and can lead to inconsistent explanations due to creation of Out-of-Distribution data.

• We used four gradient-based methods to generate local explanations: (i) Guided Grad-CAM (GGCAM) [4], (ii) Integrated
Gradients (IG) [5], (iii) DeepLIFT SHAP (SHAP) [6], and (iv) Guided Backpropagation (GBP) [7].

Explanation Evaluation Metrics: Our objective is to assess the consistency among the local explanations provided by these four
attribution methods. We introduce three indices for evaluating the consistency across explanations: (i) root mean squared error
(RMSE), (ii) cosine similarity (cosSim), and (iii) intersection over union (IOU).

• RMSE measures the average discrepancy between explanations; lower values indicate closer agreement.

• cosSim assesses directional similarity between explanations represented as vectors, independent of magnitude.

• IOU evaluates the overlap between explanations, to assess spatial alignment.

Methodology
Non-Aligned Explanations: Different post-hoc
methods (e.g., IG, SHAP, GBP, GGCAM) generate
explanations that often do not align, creating
uncertainty about which explanation to trust for
critical tasks like solar flare prediction.

Human Evaluation Limitations: While human
evaluation is accurate, it's impractical for large
datasets, and inconsistencies between explanations
remain a challenge for decision-making

Ensemble of Explanations: To resolve this, we
propose using an ensemble of explanations
generated by multiple methods, combining them
through the Hadamard product to highlight common
regions and improve decision-making.

For improved reliability, we integrate the
explanations, and the ensemble explanation map
Eensemble can be computed as:

Eensemble ​ = E1⊙ E2⊙…….⊙ EN

where E1, E2, …., EN are the explanation maps from 
different methods.

• For noise removal, we are also exploring image
processing techniques (e.g., blurring).

Discussion

Due to inconsistencies among explanations from
different methods, selecting a single reliable
explanation is challenging. The ensemble approach
provides a way to address this by focusing on
common features across methods.

Future efforts could refine the ensemble method,
exploring adaptive weighting or noise reduction
techniques to improve explanation consistency and
decision-making.

Conclusion & Future Work

Data: The dataset is preprocessed from the HMI
SHARP series [1] as mentioned in [2], which utilize
line-of-sight (LoS) magnetograms and corresponding
bitmaps to filter the high activity regions and
generate grayscale images. Fig. 1 shows an example
of preprocessed dataset instance.

Fig. 1. (a) Raw HMI magnetogram (Size: 688 × 448 px) of AR patch
HARP 7115 (NOAA AR 12673) from 2017-09-06, 06:00 UTC, (b) Bitmap
highlighting the high-activity region (white pixels with size: 520 × 440
px), (c) Processed 512×512 image used for model training.

• We sample the hourly instances of LoS
magnetograms, covering solar-cycle 24, and
labeled them using a 24-hour prediction window
to predict ≥ M-class flares.

Model:  We use transfer learning and extend the pre-
trained MobileNet [3] model.

• To accommodate 1-channel input magnetograms,
we add an additional convolutional layer at the
beginning of the network that uses a 3×3 kernel,
as mentioned in [2].

Experimental Evaluation
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Fig. 2. First Row: Explanation maps generated from aforementioned four attribution methods for input
image in Fig 1. (c) which corresponds to an X-class flare. Second Row: Explanations overlaid on input.

Fig. 3. Heatmap showing the average pairwise similarity between the local explanations generated from
four attribution methods using three metrics: (a) IOU, (b) CosSim, and (c) RMSE.

Upon evaluating the similarity among the
explanations using different metrics, we
observed the following as shown in Fig. 3:

• IOU: Suggests a strong spatial
alignment between explanations from
IG, SHAP, and GBP, compared to
GGCAM.

• RMSE: Indicates near-perfect
consistency with minimal discrepancy
across all explanations.

• CosSim: Reveals significant directional
disagreement between GBP and
GGCAM explanations.

These metrics offer distinct insights into
the similarity and alignment of the
explanations.

• The inconsistencies observed in the
GGCAM explanations may stem from
the lower spatial resolution inherent in
Grad-CAM [4].




