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Abstract

Accurately predicting terrestrial ecosystem responses to climate change is crucial for addressing global challenges. This relies

on mechanistic modelling of ecosystem processes through Land Surface Models (LSMs). Despite their importance, LSMs face

significant uncertainties due to poorly constrained parameters, especially in carbon cycle predictions. This paper reviews the

progress made in using data assimilation (DA) for LSM parameter optimisation, focusing on carbon-water-vegetation inter-
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actions, as well as discussing the technical challenges faced by the community. These challenges include identifying sensitive

model parameters and their prior distributions, characterising errors due to observation biases and model-data inconsistencies,

developing observation operators to interface between the model and the observations, tackling spatial and temporal hetero-

geneity as well as dealing with large and multiple datasets, and including the spin-up and historical period in the assimilation

window. We then outline how machine learning (ML) can help address these issues, proposing different avenues for future work

that integrate ML and DA to reduce uncertainties in LSMs. We conclude by highlighting future priorities, including the need

for international collaborations, to fully leverage the wealth of available Earth observation datasets, harness machine learning

advances, and enhance the predictive capabilities of LSMs.
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‭Key points (max 140 characters each)‬
‭●‬ ‭Data assimilation has been shown to be a powerful tool for reducing land surface model‬

‭parametric uncertainty.‬
‭●‬ ‭Machine learning can facilitate parameter estimation by enhancing computational‬

‭efficiency and replacing poorly represented processes.‬
‭●‬ ‭Collaboration is key to advancing land surface model calibration and data assimilation,‬

‭promoting knowledge exchange and standard methods.‬

‭Abstract (max 250 words)‬
‭Accurately‬ ‭predicting‬ ‭terrestrial‬ ‭ecosystem‬ ‭responses‬ ‭to‬ ‭climate‬ ‭change‬ ‭is‬ ‭crucial‬ ‭for‬
‭addressing‬ ‭global‬ ‭challenges.‬ ‭This‬ ‭relies‬ ‭on‬ ‭mechanistic‬ ‭modelling‬ ‭of‬ ‭ecosystem‬ ‭processes‬
‭through‬ ‭Land‬ ‭Surface‬ ‭Models‬ ‭(LSMs).‬ ‭Despite‬ ‭their‬ ‭importance,‬ ‭LSMs‬ ‭face‬ ‭significant‬
‭uncertainties‬‭due‬‭to‬‭poorly‬‭constrained‬‭parameters,‬‭especially‬‭in‬‭carbon‬‭cycle‬‭predictions.‬‭This‬
‭paper‬ ‭reviews‬ ‭the‬ ‭progress‬ ‭made‬ ‭in‬ ‭using‬ ‭data‬ ‭assimilation‬ ‭(DA)‬ ‭for‬ ‭LSM‬ ‭parameter‬
‭optimisation,‬ ‭focusing‬ ‭on‬ ‭carbon-water-vegetation‬ ‭interactions,‬ ‭as‬ ‭well‬ ‭as‬ ‭discussing‬ ‭the‬
‭technical‬ ‭challenges‬ ‭faced‬ ‭by‬ ‭the‬ ‭community.‬ ‭These‬ ‭challenges‬ ‭include‬ ‭identifying‬ ‭sensitive‬
‭model‬ ‭parameters‬ ‭and‬ ‭their‬ ‭prior‬ ‭distributions,‬‭characterising‬‭errors‬‭due‬‭to‬‭observation‬‭biases‬
‭and‬ ‭model-data‬ ‭inconsistencies,‬ ‭developing‬ ‭observation‬ ‭operators‬ ‭to‬ ‭interface‬ ‭between‬ ‭the‬
‭model‬‭and‬‭the‬‭observations,‬‭tackling‬‭spatial‬‭and‬‭temporal‬‭heterogeneity‬‭as‬‭well‬‭as‬‭dealing‬‭with‬
‭large‬ ‭and‬ ‭multiple‬ ‭datasets,‬ ‭and‬ ‭including‬ ‭the‬ ‭spin-up‬ ‭and‬‭historical‬‭period‬‭in‬‭the‬‭assimilation‬
‭window.‬‭We‬‭then‬‭outline‬‭how‬‭machine‬‭learning‬‭(ML)‬‭can‬‭help‬‭address‬‭these‬‭issues,‬‭proposing‬
‭different‬‭avenues‬‭for‬‭future‬‭work‬‭that‬‭integrate‬‭ML‬‭and‬‭DA‬‭to‬‭reduce‬‭uncertainties‬‭in‬‭LSMs.‬‭We‬
‭conclude‬ ‭by‬ ‭highlighting‬ ‭future‬ ‭priorities,‬ ‭including‬ ‭the‬ ‭need‬ ‭for‬‭international‬‭collaborations,‬‭to‬
‭fully‬ ‭leverage‬ ‭the‬ ‭wealth‬ ‭of‬ ‭available‬ ‭Earth‬ ‭observation‬ ‭datasets,‬ ‭harness‬ ‭machine‬ ‭learning‬
‭advances, and enhance the predictive capabilities of LSMs.‬

‭Plain language summary (max 200 words)‬

‭Improving‬ ‭the‬ ‭accuracy‬ ‭of‬ ‭land‬ ‭surface‬ ‭models‬ ‭(LSMs)‬ ‭is‬ ‭crucial‬ ‭for‬ ‭reducing‬‭uncertainties‬‭in‬
‭climate‬‭change‬‭projections.‬‭Parameter‬‭data‬‭assimilation,‬‭which‬‭fine-tunes‬‭model‬‭parameters‬‭to‬
‭better‬‭match‬‭observed‬‭data,‬‭is‬‭key‬‭to‬‭enhancing‬‭LSM‬‭performance.‬‭However,‬‭the‬‭complexity‬‭of‬
‭LSMs‬ ‭poses‬ ‭challenges‬ ‭for‬ ‭global‬ ‭optimisation.‬ ‭Advances‬ ‭in‬ ‭computational‬ ‭power,‬ ‭novel‬
‭datasets,‬‭and‬‭machine‬‭learning‬‭(ML)‬‭offer‬‭promising‬‭solutions‬‭to‬‭improve‬‭these‬‭models.‬‭ML‬‭can‬
‭streamline‬ ‭the‬ ‭data‬ ‭assimilation‬ ‭process,‬ ‭handling‬ ‭large‬ ‭datasets‬ ‭and‬ ‭reducing‬‭computational‬
‭demands.‬ ‭This‬ ‭article‬ ‭discusses‬ ‭the‬ ‭progress‬ ‭made‬ ‭in‬ ‭LSM‬ ‭parameter‬ ‭estimation‬ ‭and‬ ‭the‬
‭challenges‬ ‭faced‬ ‭by‬ ‭the‬ ‭community.‬ ‭We‬‭then‬‭discuss‬‭how‬‭machine‬‭learning‬‭can‬‭help‬‭address‬
‭these‬ ‭challenges‬ ‭and‬ ‭outline‬ ‭future‬ ‭priorities.‬ ‭International‬‭collaboration,‬‭fostered‬‭by‬‭initiatives‬
‭like‬‭the‬‭Analysis,‬‭Integration‬‭and‬‭Modeling‬‭of‬‭the‬‭Earth‬‭System‬‭Land‬‭Data‬‭Assimilation‬‭Working‬
‭Group‬ ‭and‬ ‭the‬ ‭International‬ ‭Land‬ ‭Model‬ ‭Forum,‬ ‭is‬ ‭essential‬ ‭for‬ ‭accelerating‬ ‭progress,‬
‭facilitating‬ ‭knowledge‬ ‭exchange,‬ ‭and‬ ‭developing‬ ‭standardised‬ ‭methods‬ ‭for‬ ‭more‬ ‭accurate‬
‭climate modelling.‬
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‭1. Introduction and premise‬
‭Our‬‭world‬‭faces‬‭unprecedented‬‭climate‬‭change,‬‭water‬‭scarcity,‬‭and‬‭food‬‭security‬‭challenges.‬‭To‬
‭tackle‬ ‭these‬ ‭issues‬ ‭effectively,‬ ‭we‬ ‭need‬ ‭to‬ ‭predict‬ ‭the‬ ‭responses‬ ‭of‬ ‭terrestrial‬ ‭ecosystem‬
‭dynamics‬ ‭to‬ ‭future‬ ‭global‬ ‭change.‬ ‭This‬ ‭strongly‬ ‭relies‬ ‭on‬ ‭our‬ ‭ability‬ ‭to‬ ‭accurately‬ ‭model‬ ‭the‬
‭underlying‬ ‭processes‬ ‭at‬ ‭the‬ ‭global‬ ‭scale.‬ ‭Such‬ ‭global-scale,‬ ‭mechanistic‬ ‭or‬ ‭process-based‬
‭models‬ ‭of‬‭the‬‭terrestrial‬‭biosphere,‬‭often‬‭embedded‬‭in‬‭Earth‬‭system‬‭models‬‭(wherein‬‭they‬‭are‬
‭called‬ ‭Land‬ ‭Surface‬ ‭Models‬ ‭–‬ ‭LSMs;‬ ‭Blyth‬ ‭et‬ ‭al.,‬ ‭2021)‬‭,‬ ‭mathematically‬ ‭represent‬ ‭complex‬
‭interacting‬ ‭ecosystem‬‭vegetation,‬‭carbon,‬‭water‬‭and‬‭energy‬‭cycling‬‭processes‬‭over‬‭half-hourly‬
‭to‬ ‭centennial‬ ‭time‬ ‭scales.‬ ‭Thus,‬ ‭for‬ ‭a‬ ‭given‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭or‬ ‭anthropogenic‬ ‭emissions‬
‭scenario‬‭(including‬‭emissions‬‭from‬‭land‬‭use‬‭change),‬‭LSMs‬‭are‬‭used‬‭to‬‭predict‬‭the‬‭response‬‭of‬
‭terrestrial‬ ‭ecosystems‬ ‭to‬ ‭climate‬ ‭change,‬ ‭rising‬ ‭CO‬‭2‬ ‭and‬ ‭land‬ ‭use‬ ‭change,‬ ‭and‬ ‭the‬ ‭resultant‬
‭feedbacks‬‭to‬‭climate.‬‭LSMs‬‭are‬‭also‬‭indispensable‬‭tools‬‭in‬‭assessing‬‭climate‬‭change‬‭mitigation‬
‭strategies,‬ ‭for‬ ‭example,‬ ‭to‬ ‭assess‬ ‭how‬ ‭effective‬ ‭nature-based‬ ‭solutions‬ ‭such‬ ‭as‬ ‭reforestation‬
‭will be in curbing rising CO‬‭2‬ ‭emissions.‬

‭R‬‭epresenting‬ ‭all‬ ‭the‬ ‭requisite‬ ‭processes‬ ‭corresponding‬ ‭to‬ ‭interacting‬ ‭vegetation,‬
‭biogeochemistry,‬‭water‬‭and‬‭energy‬‭cycles‬‭mechanistically‬‭(and‬‭accurately)‬‭in‬‭LSMs‬‭over‬‭a‬‭wide‬
‭range‬ ‭of‬ ‭timescales,‬ ‭from‬ ‭sub-daily‬ ‭flux‬ ‭exchanges‬ ‭with‬ ‭the‬ ‭atmosphere‬ ‭to‬ ‭decadal-century‬
‭timescales‬ ‭representative‬ ‭of‬ ‭changes‬ ‭in‬ ‭biomass‬ ‭and‬ ‭soil‬ ‭carbon‬ ‭pools‬ ‭required‬ ‭for‬
‭carbon-climate‬ ‭feedbacks,‬ ‭is‬ ‭critical‬ ‭for‬ ‭robust‬ ‭and‬ ‭reliable‬ ‭projections‬ ‭(Watson-Parris,‬ ‭2021)‬‭.‬
‭However,‬‭LSMs‬‭are‬‭highly‬‭complex‬‭and‬‭subject‬‭to‬‭large‬‭uncertainties,‬‭both‬‭in‬‭terms‬‭of‬‭missing‬
‭processes,‬ ‭inadequate‬ ‭representation‬ ‭of‬ ‭processes,‬ ‭and‬ ‭poorly‬ ‭constrained‬ ‭parameters.‬
‭Furthermore,‬‭when‬‭trying‬‭to‬‭address‬‭model‬‭structural‬‭uncertainty,‬‭implementing‬‭new‬‭processes‬
‭tends‬ ‭to‬ ‭introduce‬ ‭additional‬ ‭parameters‬ ‭and,‬ ‭therefore,‬ ‭more‬ ‭parameter‬ ‭uncertainty.‬ ‭As‬ ‭a‬
‭result,‬ ‭LSMs‬ ‭often‬ ‭diverge‬ ‭significantly‬ ‭in‬ ‭their‬ ‭representation‬ ‭of‬ ‭many‬ ‭terrestrial‬ ‭processes‬
‭(Gier‬ ‭et‬ ‭al.,‬ ‭2024;‬ ‭Green‬ ‭et‬ ‭al.,‬ ‭2024;‬ ‭Varney‬ ‭et‬ ‭al.,‬ ‭2024)‬‭.‬ ‭Consequently,‬ ‭their‬ ‭predictions‬‭of‬
‭important‬ ‭ecosystem‬ ‭responses‬ ‭under‬ ‭future‬ ‭climate‬ ‭change‬ ‭scenarios‬ ‭often‬ ‭vary‬ ‭widely.‬ ‭For‬
‭example,‬ ‭LSMs‬ ‭disagree‬ ‭on‬ ‭the‬‭magnitude‬‭of‬‭the‬‭land‬‭carbon‬‭sink‬‭(Koven‬‭et‬‭al.,‬‭2022;‬‭Shi‬‭et‬
‭al.,‬‭2024)‬‭,‬‭and‬‭the‬‭potential‬‭constraints‬‭on‬‭CO‬‭2‬ ‭fertilisation‬‭due‬‭to‬‭water‬‭(Green‬‭et‬‭al.,‬‭2019)‬‭and‬
‭nutrient‬ ‭(Davies-Barnard et al., 2022)‬‭limitations.‬

‭Parametric‬‭uncertainty‬‭is‬‭one‬‭of‬‭the‬‭largest‬‭sources‬‭of‬‭uncertainty‬‭in‬‭all‬‭types‬‭of‬‭land‬‭models‬‭(‬
‭simple,‬ ‭intermediate‬ ‭and‬ ‭full‬ ‭complexity‬ ‭models),‬ ‭particularly‬ ‭for‬‭predictions‬‭of‬‭carbon‬‭cycling,‬
‭vegetation‬ ‭dynamics‬ ‭and‬ ‭climate-carbon‬ ‭cycle‬ ‭feedbacks‬ ‭(Booth‬ ‭et‬ ‭al.,‬ ‭2012;‬ ‭Dietze,‬ ‭2017;‬
‭Fisher‬ ‭et‬ ‭al.,‬ ‭2019;‬ ‭Smallman‬ ‭et‬ ‭al.,‬ ‭2021)‬‭.‬‭Indeed,‬‭it‬‭has‬‭been‬‭shown‬‭for‬‭one‬‭LSM‬‭that‬‭even‬
‭perturbing‬ ‭a‬ ‭single‬ ‭carbon‬‭flux‬‭related‬‭parameter‬‭within‬‭its‬‭range‬‭of‬‭uncertainty‬‭can‬‭result‬‭in‬‭a‬
‭projection‬ ‭spread‬ ‭in‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭by‬ ‭2100‬ ‭that‬ ‭is‬ ‭larger‬ ‭than‬ ‭running‬ ‭the‬ ‭model‬ ‭under‬
‭different‬ ‭emissions‬ ‭scenarios‬‭(Booth‬‭et‬‭al.,‬‭2012)‬‭.‬‭We‬‭urgently‬‭need‬‭to‬‭reduce‬‭this‬‭uncertainty‬
‭to‬ ‭ensure‬ ‭we‬ ‭can‬ ‭utilise‬ ‭the‬ ‭full‬ ‭potential‬ ‭of‬ ‭LSMs—parameter‬ ‭optimisation‬ ‭is‬ ‭one‬ ‭way‬ ‭to‬
‭achieve this.‬

‭Many‬ ‭processes‬ ‭in‬ ‭LSMs‬ ‭(as‬ ‭well‬ ‭as‬ ‭processes‬ ‭in‬ ‭ecosystem‬ ‭models,‬ ‭see‬ ‭Table‬ ‭A1‬ ‭for‬ ‭all‬
‭process-based‬‭models‬‭mentioned‬‭in‬‭the‬‭paper)‬‭are‬‭controlled‬‭by‬‭parameters‬‭that‬‭represent‬‭the‬
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‭functioning‬ ‭of‬ ‭individual‬ ‭elements‬ ‭of‬ ‭the‬ ‭system.‬ ‭While‬ ‭some‬ ‭of‬ ‭these‬ ‭parameters‬ ‭can‬ ‭be‬
‭directly‬ ‭observed‬ ‭(e.g.‬ ‭photosynthetic‬ ‭capacity,‬ ‭wood‬ ‭density,‬ ‭rooting‬ ‭depth,‬ ‭hydraulic‬ ‭and‬
‭thermal‬ ‭properties‬ ‭of‬ ‭snow‬ ‭and‬ ‭soil,‬ ‭bark‬ ‭thickness,‬ ‭tissue‬ ‭nutrient‬ ‭stoichiometry),‬ ‭many‬
‭parameters‬ ‭either‬ ‭cannot‬ ‭be‬ ‭easily‬ ‭measured‬ ‭(e.g.,‬ ‭rooting‬ ‭depth)‬ ‭or‬ ‭are‬ ‭essentially‬ ‭only‬
‭“effective”‬ ‭parameters‬ ‭in‬ ‭that‬‭they‬‭have‬‭no‬‭physical‬‭meaning.‬‭Even‬‭those‬‭parameters‬‭that‬‭can‬
‭be‬‭directly‬‭measured‬‭can‬‭often‬‭only‬‭be‬‭observed‬‭at‬‭scales‬‭that‬‭differ‬‭from‬‭the‬‭grid‬‭resolution‬‭of‬
‭most‬ ‭global-scale‬ ‭LSM‬ ‭simulations‬ ‭(typically‬ ‭0.5‬ ‭degrees‬ ‭or‬ ‭greater).‬ ‭As‬ ‭a‬ ‭result,‬ ‭LSM‬
‭predictions‬ ‭–‬ ‭particularly‬ ‭for‬ ‭vegetation‬ ‭and‬ ‭carbon‬ ‭cycle‬ ‭related‬ ‭processes‬ ‭–‬ ‭can‬ ‭be‬ ‭highly‬
‭sensitive‬‭to‬‭parameter‬‭choices‬‭(in‬‭addition‬‭to‬‭model‬‭parameterisation‬‭or‬‭structural‬‭uncertainties)‬
‭(Booth‬‭et‬‭al.,‬‭2012;‬‭Buotte‬‭et‬‭al.,‬‭2021;‬‭Exbrayat‬‭et‬‭al.,‬‭2014;‬‭Fisher‬‭et‬‭al.,‬‭2019;‬‭Oberpriller‬‭et‬
‭al., 2022; Smallman et al., 2021; Zaehle, Friedlingstein, et al., 2010)‬‭.‬

‭Historically,‬ ‭LSM‬ ‭parameters‬ ‭have‬ ‭simply‬ ‭been‬ ‭manually‬ ‭tuned‬ ‭(adjusted‬ ‭by‬ ‭hand‬‭to‬‭produce‬
‭more‬ ‭realistic‬ ‭model‬ ‭behaviour‬ ‭or‬ ‭to‬ ‭better‬ ‭fit‬ ‭a‬ ‭given‬ ‭important‬ ‭model‬ ‭variable‬ ‭to‬ ‭a‬ ‭given‬
‭dataset).‬ ‭Manual‬ ‭tuning‬ ‭of‬‭LSM‬‭parameters‬‭was‬‭often‬‭the‬‭only‬‭option‬‭given‬‭the‬‭required‬‭rapid‬
‭pace‬ ‭of‬ ‭LSM‬ ‭development,‬ ‭the‬ ‭lack‬ ‭of‬ ‭available‬‭data‬‭at‬‭the‬‭correct‬‭scales‬‭for‬‭LSM‬‭parameter‬
‭optimisation,‬ ‭or‬ ‭the‬ ‭computational‬ ‭demand‬ ‭of‬ ‭optimising‬ ‭the‬ ‭large‬ ‭number‬ ‭of‬ ‭parameters‬
‭(typically‬ ‭>200)‬ ‭in‬ ‭LSMs‬ ‭with‬ ‭many‬ ‭complex,‬ ‭interacting‬ ‭processes.‬ ‭However,‬ ‭in‬ ‭the‬ ‭last‬ ‭two‬
‭decades,‬ ‭the‬ ‭hurdles‬ ‭associated‬ ‭with‬ ‭performing‬ ‭rigorous‬ ‭LSM‬ ‭parameter‬ ‭optimisation‬ ‭(as‬
‭opposed‬ ‭to‬ ‭tuning)‬ ‭have‬ ‭diminished‬ ‭to‬ ‭the‬ ‭point‬ ‭that‬ ‭it‬ ‭has‬ ‭become‬ ‭feasible:‬ ‭many‬ ‭datasets‬
‭have‬ ‭become‬ ‭available‬ ‭at‬ ‭LSM-relevant‬ ‭scales,‬ ‭and‬ ‭the‬ ‭computational‬ ‭cost‬ ‭of‬ ‭running‬ ‭LSMs‬
‭has‬ ‭decreased‬ ‭(although‬ ‭it‬ ‭remains‬ ‭a‬ ‭challenge‬ ‭–‬ ‭see‬ ‭Sect.‬ ‭3).‬ ‭LSM‬ ‭groups‬ ‭have‬ ‭therefore‬
‭started‬ ‭to‬ ‭optimise‬ ‭a‬ ‭selection‬ ‭of‬ ‭parameters‬ ‭using‬ ‭statistically‬ ‭robust‬ ‭data‬ ‭assimilation‬ ‭(DA)‬
‭methods.‬

‭DA‬ ‭methods‬ ‭are‬ ‭powerful‬ ‭as‬ ‭they‬ ‭allow‬ ‭observational‬ ‭data‬ ‭to‬ ‭be‬ ‭combined‬ ‭with‬ ‭numerical‬
‭methods‬‭to‬‭optimise‬‭estimates‬‭of‬‭chosen‬‭variables‬‭at‬‭the‬‭time‬‭of‬‭observations,‬‭either‬‭to‬‭update‬
‭the‬ ‭state‬ ‭(state‬ ‭estimation)‬ ‭or‬ ‭to‬ ‭optimise‬ ‭internal‬ ‭parameters‬ ‭(parameter‬ ‭estimation)‬ ‭while‬
‭accounting‬‭for‬‭uncertainties‬‭in‬‭both‬‭the‬‭model‬‭and‬‭the‬‭data‬‭(Rayner‬‭et‬‭al.,‬‭2019)‬‭.‬‭However,‬‭the‬
‭distinct‬ ‭requirements‬ ‭of‬ ‭LSMs‬ ‭compared‬ ‭to‬ ‭the‬ ‭atmospheric‬ ‭and‬ ‭ocean‬‭components‬‭of‬‭ESMs‬
‭result‬ ‭in‬ ‭subtle‬ ‭but‬ ‭important‬ ‭differences‬ ‭in‬ ‭how‬ ‭DA‬ ‭techniques‬ ‭are‬ ‭applied.‬‭The‬‭atmospheric‬
‭and‬ ‭ocean‬ ‭components‬ ‭of‬ ‭ESMs‬ ‭rely‬ ‭on‬ ‭fluid‬ ‭dynamic‬ ‭models,‬ ‭where‬ ‭the‬ ‭underlying‬
‭fundamental‬ ‭laws‬ ‭are‬ ‭relatively‬‭well‬‭understood,‬‭even‬‭if‬‭complex‬‭to‬‭simulate,‬‭and‬‭many‬‭of‬‭the‬
‭model‬‭parameters‬‭are‬‭known‬‭physical‬‭quantities‬‭that‬‭can‬‭be‬‭observed.‬‭Therefore,‬‭DA‬‭activities‬
‭using‬ ‭atmospheric‬ ‭or‬ ‭ocean‬ ‭components‬ ‭of‬ ‭ESMs‬ ‭have‬ ‭thus‬ ‭far‬ ‭been‬ ‭heavily‬ ‭focused‬ ‭on‬
‭numerical‬ ‭weather‬ ‭forecasting‬ ‭(NWP)‬ ‭and‬ ‭reanalysis‬ ‭applications,‬ ‭for‬ ‭which‬ ‭estimating‬ ‭and‬
‭correcting‬‭the‬‭optimal‬‭model‬‭state‬‭at‬‭each‬‭time‬‭step‬‭is‬‭the‬‭primary‬‭goal‬‭(de‬‭Rosnay‬‭et‬‭al.,‬‭2022;‬
‭Hersbach‬ ‭et‬ ‭al.,‬ ‭2018;‬ ‭Zuo‬ ‭et‬ ‭al.,‬ ‭2019)‬‭.‬ ‭In‬ ‭LSMs,‬ ‭however,‬ ‭parametric‬ ‭and‬ ‭structural‬
‭uncertainties‬ ‭dominate‬ ‭their‬ ‭spread‬ ‭(Bonan‬ ‭&‬ ‭Doney,‬ ‭2018;‬ ‭Draper,‬ ‭2021;‬ ‭Luo‬ ‭et‬ ‭al.,‬ ‭2015)‬‭.‬
‭LSM‬ ‭parameters‬ ‭are‬ ‭often‬ ‭linked‬ ‭to‬ ‭biological‬ ‭processes‬ ‭and‬ ‭organismal‬ ‭traits‬ ‭and‬ ‭are‬
‭dependent‬ ‭on‬ ‭plant‬ ‭functional‬ ‭type‬ ‭(PFT).‬ ‭Therefore,‬‭these‬‭parameters‬ ‭have‬‭a‬‭wide‬‭range‬‭of‬
‭possible‬‭values‬‭where‬‭they‬‭have‬‭been‬‭measured‬‭(in‬‭addition‬‭to‬‭a‬‭lack‬‭of‬‭data‬‭on‬‭parameters‬‭for‬
‭some‬ ‭PFTs‬ ‭and‬ ‭the‬ ‭role‬ ‭of‬ ‭“effective”‬ ‭parameters‬ ‭as‬ ‭discussed‬ ‭above).‬ ‭Characterising‬ ‭and‬
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‭simplifying‬ ‭the‬ ‭diversity‬ ‭of‬ ‭life‬ ‭into‬ ‭relatively‬ ‭few‬ ‭parameters‬ ‭is‬‭thus‬‭a‬‭challenge‬‭faced‬‭in‬‭LSM‬
‭development that is less of an issue for atmospheric and ocean modeling.‬

‭Early‬ ‭efforts‬ ‭in‬ ‭global‬ ‭model‬ ‭calibration‬ ‭in‬ ‭the‬ ‭1990s‬ ‭and‬ ‭2000s‬ ‭focused‬ ‭on‬ ‭optimising‬
‭vegetation‬‭and‬‭carbon‬‭cycle‬‭parameters‬‭of‬‭simplified‬‭or‬‭intermediate‬‭complexity‬‭land,‬‭carbon,‬‭or‬
‭ecosystem‬ ‭models.‬ ‭These‬ ‭studies,‬ ‭such‬ ‭as‬ ‭Knorr‬ ‭&‬ ‭Heimann’s‬ ‭(1995)‬ ‭work‬ ‭optimising‬
‭parameters‬ ‭of‬ ‭the‬ ‭Simple‬ ‭Diagnostic‬‭Biosphere‬‭Model‬‭(SDBM)‬‭using‬‭site‬‭CO‬‭2‬ ‭measurements,‬
‭laid‬ ‭the‬ ‭groundwork‬ ‭for‬ ‭DA-focused‬ ‭land‬ ‭model‬ ‭parameter‬ ‭optimisation.‬ ‭Knorr‬ ‭&‬ ‭Heimann’s‬
‭(1995)‬ ‭study‬ ‭was‬ ‭followed‬‭by‬‭further‬‭studies‬‭constrain‬‭carbon‬‭flux‬‭related‬‭processes‬‭in‬‭simple‬
‭and‬‭intermediate‬‭complexity‬‭ecosystem‬‭models‬‭like‬‭BETHY‬‭(Rayner‬‭et‬‭al.,‬‭2005;‬‭Scholze‬‭et‬‭al.,‬
‭2007)‬‭,‬‭using‬‭frameworks‬‭referred‬‭to‬‭carbon‬‭cycle‬‭data‬‭assimilation‬‭systems‬‭(CCDASs)‬‭.‬‭Parallel‬
‭to‬ ‭this,‬ ‭there‬‭was‬‭significant‬‭progress‬‭in‬‭using‬‭local‬‭eddy-covariance‬‭flux‬‭tower‬‭measurements‬
‭to‬ ‭optimise‬ ‭parameters‬ ‭related‬ ‭to‬ ‭photosynthesis,‬ ‭respiration,‬ ‭and‬ ‭energy‬ ‭flux‬ ‭in‬ ‭ecosystem‬
‭models‬ ‭at‬ ‭the‬ ‭site‬ ‭level‬ ‭(e.g.,‬ ‭Moore‬ ‭et‬ ‭al.,‬ ‭2008;‬ ‭Sacks‬ ‭et‬ ‭al.,‬ ‭2006;‬‭Y.-P.‬‭Wang‬‭et‬‭al.,‬‭2001;‬
‭Williams‬ ‭et‬ ‭al.,‬ ‭2005)‬‭.‬‭Two‬‭key‬‭intercomparison‬‭projects,‬‭OptIC‬‭and‬‭REFLEX,‬‭played‬‭a‬‭pivotal‬
‭role‬ ‭in‬ ‭assessing‬ ‭various‬ ‭data‬ ‭assimilation‬ ‭techniques‬ ‭for‬ ‭parameter‬ ‭estimation‬‭in‬‭simple‬‭and‬
‭intermediate‬‭complexity‬‭land,‬‭carbon‬‭cycle‬‭or‬‭ecosystem‬‭models‬‭(Fox‬‭et‬‭al.,‬‭2009;‬‭Trudinger‬‭et‬
‭al., 2007)‬‭.‬

‭Parameter‬ ‭optimisation‬ ‭of‬ ‭computational‬ ‭expensive‬ ‭land‬ ‭models‬ ‭using‬ ‭DA‬ ‭started‬ ‭in‬ ‭the‬ ‭late‬
‭2000s‬ ‭(Medvigy‬ ‭et‬ ‭al.,‬‭2009;‬‭Rayner,‬‭2010;‬‭Santaren‬‭et‬‭al.,‬‭2007)‬‭.‬‭These‬‭studies‬‭used‬‭similar‬
‭data‬ ‭(‬‭in‬ ‭situ‬ ‭fluxes‬ ‭and‬ ‭biomass)‬ ‭and‬ ‭similar‬ ‭experimental‬ ‭configurations‬ ‭(site‬ ‭scale‬
‭optimisations)‬ ‭as‬ ‭past‬ ‭studies‬ ‭with‬ ‭simple‬ ‭and‬ ‭intermediate‬ ‭complexity‬ ‭models‬ ‭but‬ ‭often‬ ‭with‬
‭different‬ ‭DA‬ ‭methods‬ ‭due‬ ‭to‬ ‭the‬ ‭increase‬ ‭in‬ ‭computational‬ ‭expense‬ ‭of‬ ‭running‬ ‭much‬ ‭more‬
‭complex‬ ‭models‬ ‭(Sect.‬ ‭2).‬ ‭Building‬ ‭on‬‭the‬‭formative‬‭DA‬‭work‬‭with‬‭the‬‭SDBM‬‭(Kaminski‬‭et‬‭al.,‬
‭2002)‬ ‭and‬ ‭BETHY‬ ‭models‬ ‭(Rayner‬ ‭et‬ ‭al.,‬ ‭2005)‬‭,‬ ‭other‬ ‭LSM‬ ‭groups‬ ‭also‬ ‭started‬ ‭using‬ ‭global‬
‭networks‬‭of‬‭in‬‭situ‬‭atmospheric‬‭CO‬‭2‬ ‭mole‬‭concentration‬‭data‬‭for‬‭constraining‬‭regional‬‭to‬‭global‬
‭scale‬ ‭surface‬ ‭net‬ ‭CO‬‭2‬ ‭exchange‬ ‭(Kaminski‬ ‭et‬‭al.,‬‭2013;‬‭Peylin‬‭et‬‭al.,‬‭2016;‬‭Schürmann‬‭et‬‭al.,‬
‭2016)‬‭.‬‭Testing‬‭of‬‭DA‬‭configuration‬‭at‬‭site‬‭scale‬‭(data‬‭type,‬‭sampling‬‭interval,‬‭record‬‭length,‬‭and‬
‭combinations‬‭of‬‭data‬‭-‬‭e.g.,‬‭carbon‬‭fluxes‬‭and‬‭stocks‬‭or‬‭carbon‬‭fluxes)‬‭continued‬‭with‬‭all‬‭types‬
‭of‬‭land‬‭models‬‭(Bastrikov‬‭et‬‭al.,‬‭2018;‬‭Bloom‬‭et‬‭al.,‬‭2016;‬‭Bloom‬‭&‬‭Williams,‬‭2015;‬‭Braswell‬‭et‬
‭al.,‬ ‭2005;‬ ‭Dietze‬ ‭et‬ ‭al.,‬ ‭2014;‬ ‭Keenan‬ ‭et‬ ‭al.,‬ ‭2013;‬ ‭Medvigy‬ ‭et‬ ‭al.,‬ ‭2009;‬ ‭Moore‬ ‭et‬ ‭al.,‬ ‭2008;‬
‭Ricciuto‬‭et‬‭al.,‬‭2008,‬‭2011;‬‭Santaren‬‭et‬‭al.,‬‭2014;‬‭Thum‬‭et‬‭al.,‬‭2017;‬‭Weng‬‭et‬‭al.,‬‭2011;‬‭Weng‬‭&‬
‭Luo,‬ ‭2011;‬ ‭Wutzler‬ ‭&‬ ‭Carvalhais,‬ ‭2014;‬ ‭Xu‬ ‭et‬ ‭al.,‬‭2006)‬‭.‬‭One‬‭example‬‭was‬‭the‬‭emergence‬‭of‬
‭“multi-site”‬ ‭experiments‬‭–‬‭parameter‬‭estimation‬‭studies‬‭in‬‭which‬‭data‬‭from‬‭multiple‬‭sites‬‭(often‬
‭grouped‬ ‭by‬ ‭PFT)‬ ‭were‬ ‭included‬ ‭simultaneously‬ ‭in‬ ‭the‬ ‭assimilation,‬ ‭with‬ ‭the‬ ‭retrieved‬
‭parameters‬ ‭then‬‭compared‬‭to‬‭those‬‭from‬‭assimilations‬‭with‬‭only‬‭individual‬‭site‬‭data‬‭(see‬‭Sect.‬
‭3.4‬ ‭for‬ ‭further‬ ‭discussion).‬ ‭These‬ ‭were‬ ‭initially‬ ‭performed‬ ‭against‬ ‭data‬ ‭from‬ ‭the‬ ‭global‬
‭FLUXNET‬‭network‬‭for‬‭a‬‭range‬‭of‬‭intermediate‬‭and‬‭full‬‭complexity‬‭LSMs,‬‭including‬‭many‬‭LSMs‬
‭used‬ ‭within‬ ‭ESMs‬ ‭(e.g.,‬ ‭Carvalhais‬ ‭et‬ ‭al.,‬ ‭2008,‬ ‭2010;‬ ‭Groenendijk‬ ‭et‬ ‭al.,‬ ‭2011;‬ ‭Kato‬ ‭et‬ ‭al.,‬
‭2013;‬ ‭Knorr‬ ‭et‬ ‭al.,‬ ‭2010;‬ ‭Wu‬ ‭et‬ ‭al.,‬ ‭2018;‬ ‭Xiao‬ ‭et‬ ‭al.,‬ ‭2014,‬ ‭ORCHIDEE:‬‭Kuppel‬‭et‬‭al.,‬‭2012,‬
‭2014;‬ ‭JULES:‬ ‭Alton,‬ ‭2013;‬ ‭Raoult‬ ‭et‬ ‭al.,‬ ‭2016;‬ ‭Noah:‬ ‭Chaney‬ ‭et‬ ‭al.,‬ ‭2016;‬ ‭CLM:‬ ‭Post‬ ‭et‬ ‭al.,‬
‭2017)‬‭.‬ ‭With‬ ‭the‬ ‭advent‬ ‭of‬‭satellite‬‭products,‬‭remote‬‭sensing‬‭indicators‬‭of‬‭vegetation‬‭dynamics‬
‭(phenology‬‭and‬‭photosynthetic‬‭uptake)‬‭began‬‭to‬‭be‬‭employed‬‭to‬‭constrain‬‭model‬‭parameters‬‭at‬
‭various‬ ‭spatial‬ ‭scales,‬ ‭including‬ ‭reflectance‬ ‭(Shiklomanov‬ ‭et‬ ‭al.,‬ ‭2021)‬‭;‬ ‭vegetation‬ ‭indices‬
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‭(Migliavacca‬‭et‬‭al.,‬‭2009‬‭;‬‭NDVI‬‭–‬‭MacBean‬‭et‬‭al.,‬‭2015)‬‭,‬‭FAPAR‬‭(Bacour‬‭et‬‭al.,‬‭2015;‬‭Forkel‬‭et‬
‭al.,‬‭2014,‬‭2019;‬‭Kaminski‬‭et‬‭al.,‬‭2012;‬‭Knorr‬‭et‬‭al.,‬‭2010;‬‭Stöckli‬‭et‬‭al.,‬‭2008;‬‭Zobitz‬‭et‬‭al.,‬‭2014)‬‭,‬
‭solar-induced‬ ‭fluorescence‬ ‭(SIF;‬ ‭(Bacour‬ ‭et‬ ‭al.,‬ ‭2019;‬ ‭Forkel‬ ‭et‬ ‭al.,‬ ‭2019;‬ ‭Knorr‬ ‭et‬ ‭al.,‬ ‭2024;‬
‭MacBean‬ ‭et‬ ‭al.,‬ ‭2018;‬ ‭Norton‬ ‭et‬‭al.,‬‭2018,‬‭2019;‬‭J.‬‭Wang‬‭et‬‭al.,‬‭2021)‬‭,‬‭aboveground‬‭biomass‬
‭and‬ ‭burned‬ ‭area‬ ‭(Forkel‬ ‭et‬ ‭al.,‬ ‭2019)‬‭.‬ ‭Over‬ ‭the‬ ‭past‬ ‭decade,‬ ‭parameter‬ ‭estimation‬ ‭has‬
‭advanced‬‭to‬‭constrain‬‭the‬‭terrestrial‬‭carbon,‬‭water,‬‭and‬‭energy‬‭cycles‬‭simultaneously,‬‭driven‬‭by‬
‭new‬ ‭remote‬ ‭sensing‬ ‭data‬ ‭on‬ ‭total‬ ‭column-integrated‬ ‭CO‬‭2‬ ‭fluxes‬ ‭(XCO‬‭2‬‭),‬ ‭satellite-derived‬
‭vegetation‬ ‭optical‬ ‭depth,‬ ‭soil‬ ‭moisture,‬ ‭snow‬ ‭cover,‬ ‭and‬‭river‬‭flow‬‭measurements,‬‭which‬‭have‬
‭been‬ ‭successfully‬ ‭integrated,‬ ‭for‬ ‭example,‬ ‭into‬ ‭BETHY‬ ‭(Scholze‬ ‭et‬ ‭al.,‬ ‭2016)‬‭,‬ ‭the‬ ‭new‬
‭community‬ ‭D&B‬ ‭model‬ ‭developed‬ ‭by‬ ‭the‬ ‭European‬ ‭Space‬ ‭Agency‬ ‭(ESA)’s‬ ‭Carbon‬ ‭Cluster‬
‭(Knorr‬ ‭et‬ ‭al.,‬ ‭2024)‬‭;‬ ‭JULES‬ ‭(Pinnington‬ ‭et‬ ‭al.,‬ ‭2018,‬ ‭2021)‬‭,‬ ‭and‬ ‭ORCHIDEE‬ ‭(Raoult‬ ‭et‬ ‭al.,‬
‭2021)‬‭.‬ ‭Further‬ ‭details‬ ‭on‬ ‭the‬ ‭history‬ ‭of‬ ‭parameter‬ ‭optimisation‬ ‭in‬ ‭all‬‭types‬‭of‬‭land‬‭models‬‭are‬
‭provided‬ ‭in‬ ‭Rayner‬ ‭(2010)‬‭,‬ ‭Kaminski‬ ‭et‬‭al.‬‭(2013)‬‭,‬‭Scholze‬‭et‬‭al.‬‭(2017)‬‭,‬‭Rayner‬‭et‬‭al.‬‭(2019)‬‭,‬
‭Baatz et al. (2021)‬‭, and‬‭MacBean, Bacour, et al. (2022)‬‭.‬

‭While‬‭substantial‬‭progress‬‭in‬‭complex‬‭LSM‬‭parameter‬‭optimisation‬‭has‬‭been‬‭made‬‭(particularly‬
‭for‬ ‭constraining‬ ‭parameters‬ ‭of‬ ‭short‬ ‭timescale‬ ‭vegetation‬ ‭dynamics‬ ‭and‬ ‭carbon‬ ‭fluxes,‬ ‭as‬
‭described‬ ‭above),‬ ‭a‬ ‭number‬ ‭of‬ ‭challenges‬ ‭hindering‬ ‭objective‬ ‭calibration‬ ‭of‬ ‭the‬ ‭full‬
‭high-dimensional‬ ‭LSM‬ ‭parameter‬ ‭space‬ ‭remain.‬ ‭Despite‬ ‭advances‬ ‭in‬ ‭the‬ ‭use‬ ‭of‬ ‭analytical‬
‭techniques‬ ‭to‬ ‭dramatically‬ ‭reduce‬ ‭the‬ ‭time‬ ‭for‬ ‭LSM‬ ‭simulations‬ ‭(Luo‬ ‭et‬ ‭al.,‬ ‭2022;‬ ‭Sun‬ ‭et‬ ‭al.,‬
‭2023)‬‭,‬‭these‬‭highly‬‭complex‬‭models‬‭still‬‭have‬‭computational‬‭requirements‬‭–‬‭even‬‭for‬‭one‬‭global‬
‭scale‬‭simulation‬‭–‬‭that‬‭are‬‭too‬‭high‬‭for‬‭efficient‬‭multi-site‬‭to‬‭global‬‭DA‬‭experiments.‬‭This‬‭is‬‭true‬
‭even‬ ‭for‬ ‭“offline”‬ ‭simulations‬ ‭(i.e.,‬ ‭LSM‬ ‭simulations‬ ‭forced‬ ‭with‬ ‭climate‬ ‭reanalysis‬ ‭data,‬ ‭as‬
‭opposed‬‭to‬‭“online”‬‭cases‬‭when‬‭LSMs‬‭are‬‭run‬‭within‬‭the‬‭whole‬‭ESM).‬ ‭High‬‭dimensionality‬‭and‬
‭computational‬ ‭cost‬ ‭make‬‭it‬‭difficult‬‭to‬‭calibrate‬‭LSMs‬‭using‬‭conventional‬‭statistical‬‭approaches‬
‭like‬‭Markov‬‭Chain‬‭Monte‬‭Carlo.‬‭Methods‬‭used‬‭with‬‭simpler‬‭models‬‭often‬‭fail‬‭with‬‭LSMs‬‭due‬‭to‬
‭their‬ ‭complexity.‬ ‭These‬ ‭challenges‬ ‭have‬ ‭also‬ ‭meant‬ ‭that‬ ‭LSMs‬ ‭currently‬ ‭struggle‬ ‭to‬ ‭fully‬
‭leverage‬ ‭the‬ ‭large‬ ‭amount‬ ‭of‬ ‭data‬ ‭from‬ ‭ground‬ ‭networks‬ ‭and‬ ‭Earth‬ ‭observation‬ ‭platforms‬‭for‬
‭calibration.‬

‭As‬ ‭an‬ ‭LSM‬ ‭community,‬ ‭thus‬ ‭far,‬ ‭we‬ ‭have‬ ‭no‬ ‭overall‬ ‭strategy‬ ‭for‬ ‭how‬ ‭to‬ ‭proceed‬ ‭towards‬ ‭a‬
‭system‬ ‭that‬ ‭allows‬ ‭for‬ ‭objective‬ ‭parameter‬ ‭estimation.‬‭However,‬‭this‬‭field‬‭is‬‭rapidly‬‭expanding‬
‭and‬ ‭we‬ ‭are‬‭in‬‭a‬‭unique‬‭position‬‭to‬‭learn‬‭from‬‭each‬‭other,‬‭especially‬‭in‬‭relation‬‭to‬‭the‬‭technical‬
‭challenges‬ ‭we‬ ‭face‬ ‭with‬ ‭computational‬ ‭expensive‬ ‭LSM‬ ‭parameter‬ ‭DA.‬ ‭Efforts‬ ‭to‬‭build‬‭a‬‭Land‬
‭Data‬‭Assimilation‬‭Community‬‭(‬‭https://land-da-community.github.io/‬‭)‬‭by‬‭the‬‭Analysis,‬‭Integration‬
‭and‬‭Modeling‬‭of‬‭the‬‭Earth‬‭System‬‭(AIMES)‬‭Land‬‭Data‬‭Assimilation‬‭Working‬‭Group‬‭(MacBean,‬
‭Liddy,‬ ‭et‬ ‭al.,‬ ‭2022)‬ ‭and‬ ‭the‬ ‭International‬ ‭Land‬ ‭Model‬ ‭Forum‬ ‭(ILMF‬ ‭–‬
‭https://hydro-jules.org/international-land-modeling-forum-ilmf‬‭)‬ ‭have‬ ‭precipitated‬ ‭this‬ ‭sharing‬ ‭of‬
‭knowledge‬ ‭through‬ ‭online‬ ‭workshops‬ ‭and‬ ‭town‬ ‭halls.‬ ‭Capitalising‬ ‭on‬ ‭this‬ ‭momentum‬ ‭is‬ ‭vital‬
‭given‬ ‭the‬ ‭importance‬ ‭of‬ ‭this‬ ‭problem.‬ ‭The‬ ‭rapid‬ ‭advancements‬ ‭in‬ ‭machine‬ ‭learning‬‭(ML)‬‭and‬
‭the‬ ‭increasing‬ ‭availability‬ ‭of‬ ‭global‬‭earth‬‭observations‬‭and‬‭networks‬‭of‬‭in‬‭situ‬‭data‬‭create‬‭new‬
‭opportunities for advancing land/earth system modelling with the help of DA.‬

‭In‬‭this‬‭paper,‬‭we‬‭summarise‬‭the‬‭current‬‭state‬‭of‬‭parameter‬‭estimation‬‭in‬‭land‬‭surface‬‭modelling,‬
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‭starting‬ ‭with‬ ‭DA‬ ‭methods,‬ ‭before‬ ‭outlining‬ ‭the‬ ‭different‬ ‭challenges‬ ‭and‬ ‭opportunities‬ ‭our‬
‭community‬‭faces.‬‭We‬‭then‬‭highlight‬‭how‬‭some‬‭of‬‭these‬‭challenges‬‭can‬‭be‬‭potentially‬‭addressed‬
‭by‬ ‭capitalising‬ ‭on‬ ‭emerging‬ ‭ML‬ ‭techniques‬ ‭and‬ ‭increasing‬ ‭computational‬ ‭capabilities.‬ ‭Finally,‬
‭we‬‭propose‬‭future‬‭priorities‬‭for‬‭advancing‬‭the‬‭field‬‭given‬‭the‬‭urgent‬‭need‬‭for‬‭more‬‭accurate‬‭and‬
‭precise‬ ‭LSM‬ ‭projections.‬ ‭We‬ ‭focus‬ ‭on‬ ‭the‬ ‭techniques‬ ‭and‬ ‭challenges‬ ‭related‬ ‭to‬ ‭optimising‬
‭carbon-vegetation-water‬‭interactions‬‭in‬‭full‬‭complexity‬‭LSMs‬‭but‬‭also‬‭discuss‬‭parameter‬‭DA‬‭and‬
‭ML methods applied to intermediate complexity land, carbon cycle and ecosystem models.‬

‭This‬ ‭paper‬ ‭complements‬ ‭Kumar‬ ‭et‬ ‭al.‬ ‭(2022)‬ ‭which‬ ‭addresses‬ ‭land‬ ‭surface‬ ‭model‬ ‭data‬
‭assimilation‬ ‭in‬ ‭the‬ ‭context‬ ‭of‬ ‭state‬ ‭estimation,‬ ‭with‬ ‭a‬ ‭focus‬ ‭on‬ ‭vegetation‬ ‭and‬ ‭hydrology‬
‭processes.‬‭A‬‭water‬‭cycle-focused‬‭perspective,‬‭tackling‬‭both‬‭state‬‭and‬‭parameter‬‭estimation,‬‭is‬
‭offered by‬‭De Lannoy et al. (2022)‬‭.‬

‭2.‬ ‭Data‬ ‭assimilation‬ ‭methods‬ ‭for‬ ‭parameter‬
‭estimation in land surface models‬

‭LSMs‬ ‭have‬ ‭many‬ ‭parameters‬ ‭that‬ ‭need‬ ‭to‬ ‭be‬ ‭calibrated‬ ‭to‬ ‭accurately‬ ‭reflect‬ ‭the‬ ‭real‬ ‭world‬
‭(ideally‬ ‭based‬ ‭on‬ ‭observations)‬ ‭and‬ ‭to‬ ‭increase‬ ‭confidence‬ ‭in‬ ‭their‬ ‭future‬ ‭projections.‬ ‭Expert‬
‭knowledge‬‭and‬‭empirical‬‭measurements‬‭of‬‭some‬‭LSM‬‭parameters‬‭provide‬‭approximate‬‭values‬
‭or‬ ‭their‬ ‭respective‬ ‭ranges.‬ ‭However,‬ ‭due‬ ‭to‬ ‭uncertainties‬ ‭in‬ ‭observations‬ ‭and‬‭processes,‬‭and‬
‭the‬ ‭conceptual‬ ‭nature‬ ‭of‬‭most‬‭parameters,‬‭the‬‭exact‬‭values‬‭of‬‭LSM‬‭parameters‬‭are‬‭inherently‬
‭difficult‬ ‭to‬ ‭determine.‬ ‭Instead,‬ ‭we‬ ‭make‬ ‭use‬ ‭of‬ ‭the‬ ‭abundance‬‭of‬‭observational‬‭data‬‭indirectly‬
‭related‬ ‭to‬ ‭the‬ ‭parameters‬ ‭via‬ ‭the‬ ‭processes‬ ‭they‬ ‭are‬ ‭related‬ ‭to,‬ ‭and‬ ‭thus‬ ‭the‬ ‭problem‬ ‭of‬
‭parameter‬ ‭estimation‬ ‭in‬ ‭LSMs‬ ‭becomes‬ ‭the‬ ‭solution‬ ‭to‬ ‭the‬ ‭inverse‬ ‭problem‬ ‭(Tarantola,‬‭1987,‬
‭2005)‬‭:‬ ‭find‬‭the‬‭parameter‬‭set‬‭𝝧‬‭given‬‭the‬‭observations‬‭y‬‭such‬‭that‬‭y‬‭≅‬‭G(‬‭𝝧‬‭)‬‭.‬‭In‬‭the‬‭context‬‭of‬
‭parameter‬ ‭estimation,‬ ‭G‬ ‭includes‬ ‭a‬‭mapping‬‭from‬‭parameters‬‭to‬‭states‬‭and‬‭propagates‬‭states‬
‭through‬ ‭time‬ ‭via‬ ‭a‬ ‭forward‬ ‭model‬ ‭as‬ ‭well‬ ‭as‬ ‭an‬ ‭observation‬ ‭operator‬ ‭(Kaminski‬ ‭&‬ ‭Mathieu,‬
‭2017)‬‭that maps states to observation space.‬

‭Typically,‬‭a‬‭unique‬‭solution‬‭to‬‭the‬‭exact‬‭inverse‬‭problem‬‭does‬‭not‬‭exist‬‭and‬‭often‬‭the‬‭logical‬‭step‬
‭is‬ ‭to‬ ‭cast‬ ‭the‬ ‭approximate‬ ‭inverse‬ ‭problem‬ ‭into‬ ‭a‬ ‭loss‬ ‭minimisation‬ ‭effort‬ ‭that‬ ‭locates‬ ‭the‬
‭argument‬ ‭of‬ ‭a‬ ‭cost‬ ‭function‬ ‭that‬ ‭minimises‬ ‭the‬ ‭discrepancy‬ ‭between‬ ‭y‬ ‭and‬ ‭G(‬‭𝝧‬‭)‬‭.‬ ‭However,‬
‭many‬ ‭techniques‬ ‭of‬ ‭this‬ ‭type‬ ‭only‬ ‭provide‬ ‭point‬ ‭estimates‬ ‭(i.e.,‬ ‭a‬‭single‬‭solution),‬‭which‬‭have‬
‭significant‬ ‭limitations‬ ‭when‬ ‭applied‬ ‭to‬‭LSM‬‭calibration.‬‭LSMs‬‭are‬‭inherently‬‭complex,‬‭involving‬
‭many‬ ‭interacting‬ ‭processes,‬ ‭uncertain‬ ‭observations,‬ ‭and‬ ‭non-linear‬ ‭relationships.‬ ‭By‬‭focusing‬
‭only‬ ‭on‬ ‭the‬‭best-fit‬‭parameters,‬‭point‬‭estimates‬‭ignore‬‭the‬‭range‬‭of‬‭plausible‬‭values‬‭that‬‭could‬
‭explain‬ ‭the‬ ‭data‬ ‭equally‬ ‭well.‬ ‭This‬ ‭can‬ ‭lead‬ ‭to‬ ‭overconfident‬ ‭predictions,‬ ‭underestimating‬ ‭the‬
‭variability‬ ‭and‬ ‭uncertainty‬ ‭in‬ ‭model‬ ‭outcomes,‬ ‭which‬ ‭is‬ ‭crucial‬ ‭for‬ ‭understanding‬ ‭the‬ ‭full‬
‭spectrum‬ ‭of‬ ‭possible‬ ‭future‬ ‭climate‬ ‭scenarios.‬ ‭Instead,‬ ‭we‬ ‭want‬ ‭to‬ ‭be‬ ‭able‬ ‭to‬ ‭account‬ ‭for‬
‭uncertainties‬‭in‬‭the‬‭model,‬‭data,‬‭and‬‭parameters,‬‭and‬‭reduce‬‭the‬‭uncertainty‬‭in‬‭the‬‭parameters‬
‭by creating observationally-constrained posterior distributions.‬
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‭Hence,‬ ‭an‬ ‭approach‬ ‭more‬ ‭desirable‬ ‭for‬ ‭its‬ ‭ability‬ ‭to‬ ‭quantify‬ ‭the‬ ‭uncertainty‬ ‭in‬ ‭the‬ ‭estimated‬
‭parameters‬‭and‬‭its‬‭inherent‬‭natural‬‭regularisation,‬‭is‬‭the‬‭Bayesian‬‭approach.‬‭Bayesian‬‭methods‬
‭include‬‭information‬‭on‬‭the‬‭prior‬‭distribution‬‭of‬‭the‬‭parameters‬‭p(‬‭𝝧‬‭)‬‭to‬‭define‬‭an‬‭entire‬‭posterior‬
‭distribution:‬

‭p(‬‭𝝧‬‭|‬‭y‬‭) ∝ p(‬‭y‬‭|‬‭𝝧‬‭)p(‬‭𝝧‬‭)‬ ‭(1)‬
‭where‬‭𝝧‬‭is‬‭regarded‬‭as‬‭a‬‭random‬‭variable‬‭as‬‭opposed‬‭to‬‭a‬‭fixed‬‭value‬‭to‬‭be‬‭estimated.‬‭In‬‭this‬
‭case,‬ ‭the‬ ‭maximum‬ ‭a‬ ‭posteriori‬ ‭(MAP)‬ ‭estimate‬ ‭-‬ ‭the‬ ‭argument‬ ‭that‬ ‭maximises‬ ‭the‬ ‭posterior‬
‭distribution‬ ‭(i.e.,‬ ‭its‬ ‭mode)‬ ‭-‬ ‭provides‬ ‭a‬ ‭point‬ ‭estimate‬ ‭for‬ ‭𝝧‬ ‭and‬ ‭is‬ ‭equivalent‬ ‭to‬ ‭a‬ ‭loss‬
‭minimisation‬ ‭estimate‬ ‭regularised‬ ‭with‬ ‭prior‬ ‭parameter‬ ‭information‬ ‭under‬ ‭Gaussian‬
‭assumptions.‬ ‭Under‬ ‭such‬ ‭assumptions,‬ ‭maximising‬ ‭the‬ ‭posterior‬ ‭distribution‬ ‭corresponds‬ ‭to‬
‭minimising the so-called variational cost function:‬

‭J(‬‭𝝧‬‭) = ½[ (G(‬‭𝝧‬‭) −‬‭y‬‭)‬‭T‬‭R‬‭−1‬‭(G(‬‭𝝧‬‭)‬‭−‬‭y‬‭) + (‬‭𝝧‬‭−‬‭𝝧‬‭b‬‭)‬‭T‬‭B‬‭−1‬ ‭(‬‭𝝧‬‭−‬‭𝝧‬‭b‬‭)],‬ ‭(2)‬
‭where‬ ‭R‬ ‭and‬ ‭B‬ ‭are‬ ‭the‬ ‭model/data‬ ‭and‬‭prior‬‭error‬‭covariance‬‭matrix,‬‭respectively,‬‭and‬‭𝝧‬‭b‬ ‭are‬
‭the prior parameter values.‬

‭With‬ ‭the‬ ‭emergence‬ ‭of‬ ‭novel‬ ‭ground‬ ‭and‬ ‭satellite‬ ‭observation‬ ‭sets‬ ‭came‬ ‭the‬ ‭advent‬ ‭and‬
‭development‬ ‭of‬ ‭techniques‬ ‭to‬ ‭implement‬‭them‬‭in‬‭a‬‭field‬‭of‬‭mathematics‬‭originally‬‭coined‬‭Data‬
‭Assimilation‬‭(DA)‬‭(Talagrand‬‭&‬‭Courtier,‬‭1987)‬‭.‬‭Along‬‭with‬‭the‬‭differences‬‭in‬‭the‬‭aforementioned‬
‭approaches‬ ‭to‬ ‭solving‬ ‭the‬ ‭inverse‬ ‭problem,‬ ‭these‬ ‭methods‬ ‭also‬ ‭differ‬ ‭in‬ ‭the‬ ‭nature‬ ‭of‬ ‭the‬
‭temporal‬ ‭assimilation‬ ‭of‬ ‭the‬ ‭available‬ ‭observations.‬ ‭DA‬ ‭methods‬ ‭that‬ ‭assimilate‬ ‭all‬ ‭available‬
‭observations‬ ‭over‬ ‭a‬ ‭given‬ ‭time‬ ‭window‬ ‭are‬ ‭known‬ ‭as‬ ‭batch‬ ‭(or‬ ‭offline/smoothers)‬‭techniques‬
‭whereas‬‭those‬‭that‬‭incorporate‬‭the‬‭observations‬‭at‬‭the‬‭time‬‭they‬‭become‬‭available‬‭are‬‭referred‬
‭to‬ ‭as‬ ‭sequential‬ ‭(or‬ ‭online/filters).‬ ‭There‬ ‭is‬ ‭some‬ ‭confusion‬ ‭in‬ ‭the‬ ‭community‬ ‭regarding‬ ‭the‬
‭terminology‬ ‭used‬‭when‬‭describing‬‭DA‬‭methods,‬‭for‬‭example,‬‭the‬‭false‬‭dichotomies‬‭sometimes‬
‭used‬ ‭between‬ ‭“variational‬ ‭and‬ ‭sequential”‬ ‭and‬ ‭“optimisation-based‬ ‭versus‬ ‭Bayesian”‬ ‭-‬ ‭these‬
‭dichotomies‬ ‭have‬ ‭been‬ ‭marred‬ ‭over‬ ‭time‬ ‭with‬ ‭hybridisation‬ ‭and‬ ‭the‬‭continual‬‭development‬‭of‬
‭the‬ ‭techniques.‬ ‭Rayner‬ ‭et‬ ‭al.‬ ‭(2019)‬ ‭have‬ ‭made‬ ‭a‬ ‭significant‬ ‭effort‬ ‭to‬ ‭harmonise‬‭the‬‭notation‬
‭and clarify overlapping terminology within the community.‬

‭Although‬ ‭DA‬ ‭is‬ ‭primarily‬ ‭used‬ ‭in‬ ‭numerical‬ ‭weather‬ ‭forecasting‬ ‭to‬ ‭correct‬ ‭the‬ ‭model‬ ‭state,‬‭in‬
‭LSMs,‬ ‭DA‬ ‭is‬ ‭often‬ ‭employed‬ ‭to‬ ‭reduce‬ ‭parametric‬ ‭uncertainty,‬ ‭a‬ ‭process‬ ‭referred‬ ‭to‬ ‭as‬
‭parameter‬ ‭data‬ ‭assimilation‬ ‭(PDA).‬ ‭Techniques‬ ‭used‬ ‭in‬ ‭numerical‬‭weather‬‭forecasting‬‭can‬‭be‬
‭adapted‬ ‭for‬ ‭parameter‬ ‭estimation‬ ‭in‬ ‭LSMs.‬ ‭One‬ ‭of‬ ‭the‬ ‭key‬ ‭methods‬ ‭is‬ ‭4DVar,‬‭which‬‭involves‬
‭minimising‬ ‭Eq.‬ ‭2‬ ‭(‬‭called‬ ‭4DVar‬ ‭to‬ ‭contrast‬ ‭with‬ ‭3DVar,‬ ‭where‬ ‭the‬ ‭observations‬ ‭are‬ ‭instead‬
‭compared‬‭to‬‭a‬‭single‬‭model‬‭output‬‭at‬‭a‬‭time).‬‭The‬‭next‬‭part‬‭of‬‭this‬‭section‬‭looks‬‭a‬‭little‬‭deeper‬
‭into‬‭methods‬‭used‬‭to‬‭reduce‬‭this‬‭cost‬‭function,‬‭as‬‭well‬‭as‬‭outlining‬‭alternative‬‭DA‬‭methods‬‭that‬
‭extract the full posterior distribution.‬

‭Methods for reducing cost functions:‬
‭Methods‬‭commonly‬‭used‬‭to‬‭minimise‬‭the‬‭cost‬‭(e.g.,‬‭Eq.‬‭2)‬‭require‬‭numerical‬‭optimisation‬‭due‬‭to‬
‭their‬ ‭complex‬ ‭structure‬ ‭and‬‭these‬‭can‬‭usually‬‭be‬‭grouped‬‭into‬‭local‬‭gradient-descent‬‭or‬‭global‬
‭random‬ ‭search‬‭techniques.‬‭Although‬‭more‬‭computationally‬‭efficient,‬‭gradient-descent‬‭methods‬
‭require‬ ‭the‬ ‭gradient‬ ‭of‬ ‭the‬ ‭cost‬ ‭function‬ ‭(either‬ ‭exact,‬ ‭which‬ ‭requires‬ ‭differentiating‬ ‭the‬‭entire‬
‭LSM‬ ‭-‬ ‭see‬ ‭Sect.‬ ‭3.7,‬ ‭or‬ ‭approximated‬ ‭when‬ ‭exact‬ ‭is‬ ‭not‬ ‭possible‬ ‭or‬ ‭desirable)‬ ‭and‬ ‭they‬ ‭can‬
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‭result‬‭in‬‭the‬‭location‬‭of‬‭a‬‭local‬‭minimum.‬‭A‬‭common‬‭gradient-based‬‭minimisation‬‭method‬‭used‬
‭in‬ ‭LSM‬ ‭parameter‬ ‭estimation‬ ‭is‬ ‭the‬ ‭quasi-Newton‬ ‭algorithm‬ ‭L-BFGS-B‬ ‭(limited‬ ‭memory‬
‭Broyden–Fletcher–Goldfarb–Shanno‬‭algorithm‬‭with‬‭bound‬‭constraints‬‭-‬‭Byrd‬‭et‬‭al.,‬‭1995)‬‭.‬‭This‬
‭approach‬‭can‬‭leverage‬‭exact‬‭gradients‬‭derived‬‭from‬‭either‬‭the‬‭tangent‬‭linear‬‭(forward‬‭sensitivity‬
‭propagation)‬‭or‬‭adjoint‬‭(backward‬‭sensitivity‬‭propagation)‬‭of‬‭the‬‭model.‬‭These‬‭gradients‬‭can‬‭be‬
‭obtained‬ ‭by‬‭hand‬‭or‬‭using‬‭automatic‬‭differentiation‬‭software‬‭(Gelbrecht‬‭et‬‭al.,‬‭2023;‬‭Griewank,‬
‭1997)‬‭.‬ ‭While‬ ‭L-BFGS-B‬ ‭is‬ ‭powerful‬ ‭when‬ ‭exact‬ ‭gradients‬ ‭are‬ ‭available,‬ ‭practical‬
‭challenges—such‬ ‭as‬ ‭the‬ ‭complexity‬ ‭and‬ ‭computational‬ ‭burden‬ ‭of‬ ‭maintaining‬ ‭the‬ ‭tangent‬
‭linear/adjoint‬ ‭(see‬ ‭Sect.‬ ‭3.7)—often‬ ‭necessitate‬ ‭alternatives.‬ ‭To‬ ‭address‬ ‭this,‬ ‭approximate‬
‭gradient‬ ‭methods‬ ‭can‬ ‭be‬ ‭employed.‬ ‭One‬ ‭approach‬ ‭is‬ ‭to‬ ‭estimate‬ ‭gradients‬ ‭using‬ ‭finite‬
‭difference,‬ ‭calculating‬ ‭the‬ ‭change‬ ‭in‬ ‭model‬ ‭output‬ ‭relative‬ ‭to‬ ‭changes‬ ‭in‬ ‭parameters.‬ ‭This‬
‭method‬ ‭is‬ ‭especially‬ ‭useful‬ ‭for‬ ‭parameters‬ ‭related‬ ‭to‬ ‭threshold‬ ‭functions,‬ ‭such‬ ‭as‬ ‭those‬
‭controlling‬‭phenology‬ ‭However,‬‭the‬‭choice‬‭of‬‭perturbation‬‭size‬‭to‬‭be‬‭applied‬‭to‬‭each‬‭parameter‬
‭individually‬‭is‬‭crucial,‬‭as‬‭inappropriate‬‭values‬‭can‬‭lead‬‭to‬‭inaccuracies.‬‭In‬‭cases‬‭where‬‭gradient‬
‭information‬ ‭is‬ ‭difficult‬ ‭to‬ ‭obtain‬ ‭or‬ ‭unreliable,‬ ‭derivative-free‬ ‭methods‬ ‭offer‬ ‭a‬ ‭solution.‬ ‭The‬
‭Nelder-Mead‬ ‭simplex‬ ‭algorithm‬ ‭(Nelder‬ ‭&‬ ‭Mead,‬ ‭1965)‬‭,‬ ‭for‬ ‭instance,‬ ‭iteratively‬ ‭adjusts‬ ‭a‬
‭simplex‬ ‭(geometric‬ ‭shape)‬ ‭in‬ ‭parameter‬ ‭space‬ ‭to‬ ‭converge‬ ‭towards‬ ‭the‬ ‭minimum‬ ‭of‬ ‭a‬ ‭cost‬
‭function‬‭,‬ ‭eliminating‬ ‭the‬ ‭need‬ ‭for‬ ‭direct‬ ‭gradient‬ ‭calculations.‬ ‭Additionally,‬ ‭more‬ ‭advanced‬
‭approaches,‬ ‭such‬ ‭as‬ ‭the‬ ‭ensemble-based‬ ‭4DVar‬ ‭(4DEnVar)‬ ‭algorithm‬ ‭proposed‬ ‭by‬ ‭Liu‬ ‭et‬ ‭al.‬
‭(2008)‬‭use‬‭an‬‭ensemble‬‭of‬‭model‬‭trajectories‬‭to‬‭approximate‬‭gradient‬‭information‬‭via‬‭a‬‭control‬
‭variable transform.‬

‭Alternatively,‬‭global‬‭search‬‭methods‬‭can‬‭be‬‭used‬‭to‬‭minimise‬‭the‬‭cost‬‭function.‬‭These‬‭methods‬
‭use‬ ‭techniques‬ ‭that‬ ‭try‬ ‭to‬ ‭scan‬ ‭the‬ ‭entire‬ ‭parameter‬ ‭space‬‭in‬‭some‬‭defined‬‭way‬‭to‬‭avoid‬‭this‬
‭pitfall‬‭but‬‭often‬‭require‬‭heavy‬‭computational‬‭power‬‭to‬‭do‬‭so.‬‭These‬‭global‬‭search‬‭methods‬‭can‬
‭be‬ ‭cateogrised‬ ‭as‬ ‭Monte‬‭Carlo‬‭(MC),‬‭since‬‭they‬‭are‬‭methods‬‭that‬‭make‬‭use‬‭of‬‭repeated‬‭trials‬
‭(or‬‭sampling)‬‭generated‬‭using‬‭random‬‭numbers‬‭(Owen,‬‭2013)‬‭.‬‭An‬‭example‬‭of‬‭such‬‭a‬‭method‬‭is‬
‭the‬‭genetic‬‭algorithm‬‭(Goldberg‬‭&‬‭Holland,‬‭1988;‬‭Haupt‬‭&‬‭Haupt,‬‭2004)‬‭,‬‭which‬‭is‬‭based‬‭on‬‭the‬
‭laws of natural selection and belongs to the class of evolutionary algorithms.‬

‭Although‬ ‭these‬ ‭gradient-descent‬ ‭and‬ ‭global‬ ‭search‬ ‭methods‬ ‭are‬ ‭very‬ ‭efficient‬ ‭in‬ ‭finding‬ ‭an‬
‭optimal‬ ‭point-estimate‬ ‭of‬‭the‬‭parameters‬‭that‬‭minimise‬‭the‬‭given‬‭cost‬‭function,‬‭usually‬‭they‬‭do‬
‭not‬ ‭directly‬ ‭offer‬ ‭information‬ ‭about‬ ‭the‬ ‭posterior‬ ‭error‬ ‭statistics.‬ ‭Nevertheless,‬ ‭it‬‭is‬‭possible‬‭to‬
‭exploit‬ ‭information‬‭about‬‭the‬‭curvature‬‭of‬‭the‬‭cost‬‭function‬‭(via‬‭the‬‭Hessian)‬‭at‬‭the‬‭optimum‬‭to‬
‭obtain‬‭such‬‭information,‬‭but‬‭this‬‭is‬‭typically‬‭more‬‭complicated‬‭than‬‭deriving‬‭gradient‬‭information‬
‭and more costly in the case of global search.‬

‭Methods to extract the full posterior distribution:‬
‭In‬‭contrast‬‭to‬‭methods‬‭that‬‭obtain‬‭point-estimates‬‭for‬‭the‬‭parameters,‬‭other‬‭approaches‬‭aim‬‭to‬
‭extract‬ ‭useful‬ ‭information‬ ‭from‬ ‭the‬ ‭full‬ ‭posterior‬ ‭distribution‬ ‭P(‬‭𝝧‬‭|‬‭y‬‭),‬ ‭usually‬ ‭at‬ ‭a‬ ‭much‬ ‭higher‬
‭computational‬ ‭expense‬ ‭and‬ ‭tend‬ ‭to‬ ‭be‬ ‭applied‬ ‭to‬ ‭computationally‬ ‭inexpensive‬ ‭LSMs,‬ ‭carbon‬
‭cycle,‬ ‭and‬ ‭ecosystem‬ ‭models.‬ ‭Similarly‬ ‭to‬ ‭global‬ ‭search‬ ‭algorithms‬ ‭for‬ ‭objective‬ ‭function‬
‭optimisation,‬‭as‬‭opposed‬‭to‬‭gradient-descent‬‭methods,‬‭these‬‭techniques‬‭are‬‭often‬‭Monte‬‭Carlo‬
‭in nature and hence also derivative-free (black-box).‬
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‭Techniques‬‭include‬‭importance‬‭sampling‬‭(Kloek‬‭&‬‭Van‬‭Dijk,‬‭1978)‬‭,‬‭a‬‭relatively‬‭simple‬‭approach‬
‭that‬‭samples‬‭random‬‭values‬‭from‬‭the‬‭prior‬‭and‬‭accumulates‬‭accepted‬‭parameterisations‬‭based‬
‭on‬ ‭importance‬ ‭weights‬ ‭and‬ ‭aims‬ ‭to‬ ‭estimate‬ ‭expectations‬‭of‬‭interest‬‭such‬‭as‬‭mean,‬‭variance,‬
‭etc.‬ ‭This‬ ‭approach‬ ‭can‬‭run‬‭into‬‭limitations‬‭when‬‭the‬‭problem‬‭becomes‬‭more‬‭complicated‬‭(e.g.‬
‭dimensionality‬‭increases‬‭or‬‭target‬‭distribution‬‭gets‬‭more‬‭complex),‬‭as‬‭demonstrated‬‭by‬‭Ziehn‬‭et‬
‭al.‬ ‭(2012)‬‭.‬ ‭When‬ ‭the‬ ‭computational‬ ‭budget‬ ‭permits,‬ ‭Markov‬ ‭Chain‬ ‭Monte‬ ‭Carlo‬ ‭(MCMC;‬
‭Hastings,‬‭1970)‬‭algorithms‬‭have‬‭emerged‬‭as‬‭the‬‭gold‬‭standard‬‭for‬‭quantifying‬‭uncertainty‬‭in‬‭the‬
‭solution‬‭of‬‭Bayesian‬‭inverse‬‭problems.‬‭This‬‭class‬‭of‬‭iterative‬‭algorithms‬‭seeks‬‭to‬‭draw‬‭samples‬
‭from‬‭the‬‭posterior‬‭distribution‬‭P(‬‭𝝧‬‭|‬‭y‬‭),‬‭which‬‭can‬‭in‬‭turn‬‭be‬‭used‬‭to‬‭estimate‬‭posterior‬‭statistics‬‭of‬
‭interest.‬ ‭The‬ ‭cost‬ ‭of‬ ‭such‬ ‭comprehensive‬ ‭uncertainty‬ ‭quantification‬ ‭is‬ ‭that‬ ‭standard‬ ‭MCMC‬
‭algorithms‬ ‭often‬ ‭require‬ ‭a‬ ‭large‬ ‭number‬ ‭(>‬ ‭10‬‭4‬‭–10‬‭7‬‭)‬ ‭of‬ ‭iterations‬ ‭that‬ ‭build‬ ‭on‬ ‭previously‬
‭accepted‬ ‭values‬ ‭and‬ ‭so‬ ‭must‬ ‭be‬ ‭performed‬ ‭serially‬ ‭(i.e.,‬ ‭not‬ ‭taking‬ ‭advantage‬ ‭of‬ ‭parallel‬
‭high-performance‬‭computing).‬‭This‬‭essentially‬‭means‬‭that‬‭the‬‭full‬‭LSM‬‭must‬‭be‬‭run‬‭using‬‭a‬‭new‬
‭parameter‬ ‭vector‬ ‭during‬ ‭each‬ ‭iteration,‬ ‭and‬ ‭while‬ ‭it‬ ‭is‬ ‭possible‬ ‭to‬ ‭run‬ ‭different‬
‭information-sharing‬ ‭chains‬ ‭in‬ ‭parallel‬ ‭to‬ ‭accelerate‬ ‭sampling‬ ‭around‬ ‭a‬ ‭global‬ ‭optimum‬‭(Vrugt,‬
‭2016)‬‭, within chain iterative model evaluations still precludes parallelisation.‬

‭Particle‬ ‭filters‬ ‭provide‬ ‭an‬ ‭alternative‬ ‭to‬ ‭MCMC‬ ‭for‬ ‭sampling‬ ‭from‬ ‭the‬ ‭posterior‬ ‭distribution,‬
‭particularly‬ ‭in‬ ‭time-evolving‬ ‭systems.‬ ‭They‬ ‭represent‬ ‭the‬ ‭posterior‬ ‭using‬ ‭a‬ ‭set‬ ‭of‬ ‭particles,‬
‭updating‬ ‭them‬ ‭with‬‭each‬‭new‬‭data‬‭point.‬‭While‬‭computationally‬‭intensive‬‭and‬‭prone‬‭to‬‭particle‬
‭degeneracy,‬ ‭particle‬ ‭filters‬ ‭are‬ ‭useful‬ ‭for‬ ‭real-time‬ ‭tracking‬ ‭of‬ ‭system‬ ‭states‬ ‭and‬ ‭time-varying‬
‭parameters.‬ ‭However,‬ ‭many‬ ‭of‬ ‭the‬ ‭parameters‬ ‭in‬ ‭land‬ ‭surface‬‭models‬‭are‬‭linked‬‭to‬‭biological‬
‭processes‬ ‭and‬ ‭thus‬ ‭are‬ ‭subject‬ ‭to‬ ‭change‬ ‭over‬ ‭time‬ ‭due‬ ‭to‬‭acclimation,‬‭phenotypic‬‭plasticity,‬
‭adaptation‬ ‭and‬ ‭evolution.‬ ‭While‬ ‭some‬ ‭attempts‬ ‭have‬ ‭been‬ ‭made‬ ‭to‬ ‭explore‬ ‭the‬ ‭seasonal‬
‭variability‬ ‭in‬ ‭parameters‬ ‭(Rowland‬ ‭et‬ ‭al.,‬ ‭2014;‬ ‭Verbeeck‬ ‭et‬ ‭al.,‬ ‭2011)‬‭,‬ ‭the‬ ‭majority‬ ‭of‬ ‭the‬
‭literature‬‭in‬‭land‬‭model‬‭parameter‬‭estimation‬‭so‬‭far‬‭operates‬‭on‬‭the‬‭assumption‬‭that‬‭parameters‬
‭are‬ ‭fixed‬ ‭in‬ ‭time.‬ ‭As‬ ‭such,‬ ‭particle‬ ‭filters‬ ‭are‬ ‭rarely‬ ‭used‬‭in‬‭PDA‬‭(Speich‬‭et‬‭al.,‬‭2021)‬‭(unless‬
‭part of joint state-parameter DA, for example,‬‭Zhang et al., 2017)‬‭.‬

‭Applications in LSMs‬‭:‬
‭Due‬ ‭to‬ ‭the‬ ‭high‬ ‭number‬ ‭of‬ ‭required‬ ‭model‬ ‭evaluations,‬ ‭MCMC‬ ‭methods‬ ‭have‬ ‭primarily‬ ‭been‬
‭applied‬ ‭to‬ ‭computationally‬ ‭inexpensive‬ ‭land,‬ ‭carbon‬ ‭cycle,‬ ‭and‬ ‭ecosystem‬ ‭models,‬ ‭or‬ ‭to‬
‭calibrate‬ ‭isolated‬ ‭processes‬ ‭such‬ ‭as‬ ‭fitting‬ ‭parameters‬ ‭of‬ ‭a‬ ‭two-pool‬ ‭model‬ ‭of‬ ‭substrate‬
‭dependence‬ ‭in‬ ‭plant‬ ‭respiration‬ ‭(Jones‬ ‭et‬ ‭al.,‬ ‭2024)‬ ‭or‬ ‭parameters‬ ‭of‬ ‭the‬ ‭wetlands‬ ‭CH4‬
‭emissions‬ ‭module‬ ‭in‬ ‭the‬ ‭second‬ ‭generation‬ ‭dynamic‬ ‭global‬ ‭vegetation‬ ‭model‬ ‭LPJ-GUESS‬
‭(Kallingal‬ ‭et‬ ‭al.,‬ ‭2024)‬‭.‬‭For‬‭example,‬‭MCMC‬‭methods‬‭have‬‭been‬‭used‬‭to‬‭estimate‬‭parameters‬
‭of‬‭the‬‭Simplified‬‭PnET‬‭(SIPNET)‬‭ecosystem‬‭model‬‭(Fer‬‭et‬‭al.,‬‭2018;‬‭M.‬‭Liu‬‭et‬‭al.,‬‭2015;‬‭Sacks‬
‭et‬ ‭al.,‬ ‭2006)‬‭,‬ ‭TECOS‬ ‭(Xu‬ ‭et‬ ‭al.,‬ ‭2006)‬‭,‬ ‭FöBAAR‬ ‭forest‬ ‭carbon‬ ‭cycle‬ ‭model‬ ‭(Keenan‬ ‭et‬ ‭al.,‬
‭2012)‬‭,‬ ‭BETHY‬ ‭(Knorr‬ ‭&‬ ‭Kattge,‬ ‭2005)‬ ‭and‬ ‭the‬ ‭DALEC‬ ‭suite‬ ‭of‬ ‭intermediate‬ ‭complexity‬
‭ecosystem‬ ‭models‬ ‭(Famiglietti‬ ‭et‬‭al.,‬‭2021;‬‭Keenan‬‭et‬‭al.,‬‭2011;‬‭D.‬‭Lu‬‭et‬‭al.,‬‭2017)‬‭.‬‭DALEC‬‭is‬
‭also‬‭at‬‭the‬‭heart‬‭of‬‭the‬‭cutting-edge‬‭CARbon‬‭DAta‬‭MOdel‬‭fraMework‬‭(CARDAMOM)‬‭where‬‭the‬
‭full‬ ‭potential‬ ‭of‬ ‭MCMC-based‬ ‭carbon‬ ‭parameter‬ ‭estimation‬ ‭is‬ ‭performed‬ ‭(Bloom‬ ‭et‬ ‭al.,‬ ‭2016;‬
‭Exbrayat, Smallman, et al., 2018; Smallman et al., 2021)‬‭.‬
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‭While‬‭computationally‬‭expensive‬‭LSMs‬‭build‬‭on‬‭this‬‭foundation,‬‭their‬‭complexity‬‭and‬‭parameter‬
‭volume‬‭have‬‭made‬‭MCMC‬‭methods‬‭computationally‬‭prohibitive.‬‭Consequently,‬‭4DVar‬‭has‬‭been‬
‭the‬‭preferred‬‭approach‬‭for‬‭these‬‭models.‬‭When‬‭the‬‭tangent‬‭linear‬‭or‬‭adjoint‬‭models‬‭have‬‭been‬
‭available‬ ‭(e.g.,‬ ‭Bacour‬‭et‬‭al.,‬‭2015;‬‭Knorr‬‭et‬‭al.,‬‭2024;‬‭Kuppel‬‭et‬‭al.,‬‭2012;‬‭Raoult‬‭et‬‭al.,‬‭2016;‬
‭Schürmann‬ ‭et‬ ‭al.,‬ ‭2016)‬‭,‬ ‭these‬ ‭have‬ ‭been‬ ‭directly‬ ‭used‬ ‭to‬ ‭minimise‬ ‭the‬ ‭cost‬ ‭function‬ ‭and‬
‭calculate‬ ‭the‬ ‭Hessian.‬ ‭Alternatively,‬ ‭the‬ ‭Nelder-Mead‬ ‭simplex‬ ‭algorithm‬ ‭(Pinnington‬ ‭et‬ ‭al.,‬
‭2018)‬‭,‬‭finite‬‭differences‬‭(Bacour‬‭et‬‭al.,‬‭2019;‬‭Bastrikov‬‭et‬‭al.,‬‭2018;‬‭MacBean‬‭et‬‭al.,‬‭2015)‬‭and‬
‭4DEnVar‬ ‭(Pinnington‬ ‭et‬ ‭al.,‬ ‭2020)‬‭have‬‭all‬‭been‬‭used‬‭to‬‭circumvent‬‭the‬‭need‬‭of‬‭such‬‭models.‬
‭While‬ ‭some‬ ‭Monte‬ ‭Carlo‬ ‭approaches‬ ‭have‬ ‭been‬ ‭used‬ ‭to‬ ‭calibrate‬ ‭complex‬ ‭LSM‬
‭parameters—either‬‭for‬‭global‬‭search‬‭methods‬‭to‬‭minimise‬‭the‬‭cost‬‭function‬‭or‬‭to‬‭extract‬‭the‬‭full‬
‭posterior‬ ‭distribution—these‬ ‭are‬ ‭typically‬ ‭applied‬ ‭at‬ ‭the‬ ‭site‬ ‭scale‬ ‭and‬ ‭fall‬ ‭short‬ ‭of‬ ‭full‬ ‭global‬
‭calibrations.‬‭Examples‬‭include‬‭the‬‭adaptive‬‭population‬‭importance‬‭sampler‬‭used‬‭to‬‭calibrate‬‭the‬
‭JSBACH‬ ‭model‬ ‭(Mäkelä‬ ‭et‬ ‭al.,‬ ‭2019)‬‭,‬ ‭the‬ ‭genetic‬ ‭algorithm‬ ‭used‬ ‭to‬ ‭calibrate‬ ‭ORCHIDEE‬
‭(Bastrikov‬ ‭et‬ ‭al.,‬ ‭2018)‬‭,‬ ‭and‬ ‭multichain‬ ‭MCMC‬ ‭method‬ ‭DiffeRential‬ ‭Evolution‬ ‭Adaptive‬
‭Metropolis‬‭(DREAM(zs))‬‭(Vrugt‬‭et‬‭al.,‬‭2009)‬‭used‬‭with‬‭CLM‬‭(Post‬‭et‬‭al.,‬‭2017)‬‭and‬‭LPJ-GUESS‬
‭(Bagnara et al., 2019)‬‭.‬

‭3. Challenges‬

‭3.1 Selecting parameters and their prior distributions‬
‭A‬ ‭big‬ ‭challenge‬ ‭in‬ ‭parameter‬ ‭estimation‬ ‭studies‬ ‭is‬ ‭defining‬ ‭the‬ ‭experiment,‬ ‭starting‬ ‭with‬
‭selecting‬ ‭the‬ ‭parameters‬ ‭to‬ ‭be‬ ‭constrained‬ ‭and‬ ‭the‬ ‭prior‬ ‭distributions‬ ‭over‬ ‭which‬ ‭they‬ ‭are‬
‭allowed‬ ‭to‬ ‭vary.‬ ‭A‬ ‭common‬ ‭first‬ ‭step‬ ‭is‬ ‭to‬ ‭select‬ ‭from‬ ‭the‬ ‭(potentially‬ ‭quite‬ ‭large)‬ ‭number‬ ‭of‬
‭model‬ ‭parameters,‬ ‭a‬ ‭subset‬ ‭that‬ ‭is‬ ‭deemed‬‭the‬‭most‬‭influential‬‭in‬‭some‬‭sense.‬‭The‬‭excluded‬
‭parameters‬ ‭are‬ ‭then‬ ‭fixed‬ ‭at‬ ‭their‬ ‭nominal‬ ‭values,‬ ‭yielding‬ ‭a‬ ‭parameter‬ ‭space‬ ‭of‬ ‭reduced‬
‭dimension.‬ ‭This‬ ‭challenge‬ ‭is‬ ‭amplified‬ ‭by‬ ‭large‬ ‭numbers‬ ‭of‬ ‭interconnected‬ ‭parameters‬
‭influencing‬ ‭different‬‭parts‬‭of‬‭the‬‭model‬‭as‬‭parameters‬‭with‬‭strong‬‭enough‬‭covariances‬‭need‬‭to‬
‭be‬ ‭considered‬ ‭jointly.‬ ‭Furthermore,‬ ‭the‬ ‭strong‬ ‭co-variations‬ ‭between‬ ‭parameters‬ ‭and‬ ‭forcing‬
‭and‬‭boundary‬‭conditions‬‭further‬‭complicate‬‭the‬‭parameter‬‭selection‬‭process.‬‭It‬‭is‬‭vital‬‭to‬‭identify‬
‭the‬‭key‬‭internal‬‭parameters‬‭that‬‭have‬‭the‬‭most‬‭impact‬‭on‬‭a‬‭given‬‭model‬‭output‬‭because‬‭i)‬‭PDA‬
‭techniques‬‭are‬‭computationally‬‭demanding,‬‭scaling‬‭with‬‭the‬‭number‬‭of‬‭parameters‬‭used‬‭in‬‭the‬
‭optimisation,‬ ‭and‬ ‭ii)‬ ‭due‬ ‭to‬ ‭the‬ ‭high‬ ‭degree‬ ‭of‬ ‭equifinality‬ ‭in‬ ‭most‬ ‭parameter‬ ‭spaces‬ ‭(i.e.,‬
‭different‬‭parameter‬‭vectors‬‭giving‬‭the‬‭same‬‭fit‬‭to‬‭the‬‭observed‬‭data),‬‭attempting‬‭to‬‭estimate‬‭an‬
‭excessive‬ ‭number‬ ‭of‬ ‭parameters‬ ‭can‬ ‭lead‬ ‭to‬ ‭overfitting‬ ‭and‬ ‭a‬ ‭severe‬ ‭degradation‬ ‭in‬ ‭model‬
‭performance‬ ‭when‬ ‭the‬ ‭model‬ ‭is‬ ‭run‬ ‭in‬ ‭predictive‬ ‭mode.‬ ‭In‬ ‭other‬ ‭words,‬ ‭increasing‬ ‭model‬
‭complexity‬ ‭for‬ ‭improved‬ ‭prediction‬ ‭is‬ ‭only‬ ‭justified‬ ‭when‬ ‭there‬ ‭are‬ ‭adequate‬ ‭observational‬
‭constraints‬ ‭to‬ ‭its‬ ‭parameters‬ ‭(Famiglietti‬ ‭et‬ ‭al.,‬ ‭2021)‬‭.‬ ‭Note‬ ‭that‬ ‭identifying‬ ‭key‬ ‭internal‬
‭parameters‬‭is‬‭not‬‭a‬‭solution‬‭in‬‭itself‬‭to‬‭the‬‭equifinality‬‭issue‬‭-‬‭it‬‭is‬‭still‬‭possible‬‭to‬‭have‬‭only‬‭two‬
‭key parameters and end up at equifinality.‬
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‭Which‬‭model‬‭output‬‭and‬‭metric‬‭is‬‭tested‬‭fundamentally‬‭affects‬‭the‬‭crucial‬‭parameter‬‭selection‬‭if‬
‭relying‬‭primarily‬‭on‬‭sensitivity‬‭analysis.‬‭Furthermore,‬‭parameter‬‭sensitivity‬‭is‬‭often‬‭a‬‭function‬‭of‬
‭the‬ ‭parameter‬ ‭prior‬ ‭distributions,‬ ‭about‬ ‭which‬ ‭for‬ ‭many‬ ‭parameters‬ ‭we‬ ‭may‬ ‭have‬ ‭poor‬
‭knowledge.‬ ‭Indeed,‬ ‭a‬ ‭key‬‭distinction‬‭between‬‭a‬‭traditional‬‭sensitivity‬‭analysis,‬‭which‬‭may‬‭vary‬
‭all‬ ‭parameters‬ ‭by‬ ‭the‬ ‭same‬ ‭arbitrary‬ ‭amount‬ ‭(e.g.‬ ‭+/-‬ ‭10%),‬ ‭and‬ ‭an‬ ‭uncertainty‬ ‭partitioning‬
‭analysis‬ ‭is‬ ‭whether‬ ‭the‬ ‭prior‬ ‭distributions‬ ‭accurately‬ ‭represent‬ ‭our‬ ‭knowledge‬ ‭about‬ ‭model‬
‭parameters‬ ‭prior‬ ‭to‬‭calibration‬‭(direct‬‭data‬‭constraints,‬‭formal‬‭expert‬‭elicitation,‬‭etc.)‬‭(Dietze‬‭et‬
‭al., 2014; LeBauer et al., 2013; Raczka et al., 2018)‬‭.‬

‭The‬ ‭most‬ ‭common‬ ‭parameter‬ ‭sensitivity‬ ‭experiment‬ ‭is‬ ‭a‬ ‭one-factor-at-a-time‬ ‭parameter‬
‭perturbation‬ ‭experiment.‬ ‭However,‬ ‭this‬ ‭does‬ ‭not‬ ‭account‬ ‭for‬ ‭covariance‬ ‭between‬‭parameters,‬
‭which‬ ‭can‬ ‭vary‬ ‭along‬ ‭ecological‬ ‭tradeoffs‬ ‭and‬ ‭are‬ ‭known‬ ‭to‬ ‭strongly‬ ‭impact‬ ‭LSM‬ ‭outputs‬
‭(Prihodko‬ ‭et‬ ‭al.,‬ ‭2008)‬‭.‬ ‭One‬ ‭solution‬ ‭to‬ ‭combat‬ ‭this‬ ‭is‬ ‭to‬ ‭use‬‭spatial‬‭pattern‬‭correlations‬‭as‬‭a‬
‭metric‬‭for‬‭parameter‬‭selection‬‭to‬‭ensure‬‭that‬‭the‬‭parameters‬‭selected‬‭are‬‭not‬‭highly‬‭correlated‬
‭(Dagon‬‭et‬‭al.,‬‭2020)‬‭.‬‭More‬‭sophisticated‬‭methods‬‭include‬‭using‬‭the‬‭adjoint‬‭model‬‭to‬‭determine‬
‭local‬ ‭sensitivities‬ ‭and‬ ‭global‬ ‭sensitivity‬ ‭methods‬ ‭such‬ ‭as‬ ‭Morris‬ ‭(Morris,‬ ‭1991)‬ ‭and‬ ‭the‬
‭variance-based‬‭Sobol‬‭(Saltelli‬‭et‬‭al.,‬‭2008;‬‭Sobol′,‬‭2001)‬‭and‬‭Fourier‬‭amplitude‬‭sensitivity‬‭tests‬
‭(FAST;‬‭Cukier‬‭et‬‭al.,‬‭1973)‬‭.‬‭These‬‭methods‬‭have‬‭been‬‭applied‬‭to‬‭wide‬‭range‬‭of‬‭LSMs‬‭including‬
‭CABLE‬ ‭(Lu‬ ‭et‬ ‭al.,‬ ‭2013)‬‭,‬ ‭CLASSIC‬ ‭(Deepak‬ ‭et‬ ‭al.,‬ ‭2024)‬‭,‬ ‭CLM4.5(FATES)‬ ‭(Massoud‬ ‭et‬ ‭al.,‬
‭2019)‬‭,‬ ‭JULES‬ ‭(Pianosi‬ ‭et‬ ‭al.,‬ ‭2017)‬‭,‬ ‭Noah-MP‬ ‭(Wang‬ ‭et‬ ‭al.,‬ ‭2023)‬ ‭and‬ ‭ORCHIDEE‬
‭(Dantec-Nédélec‬ ‭et‬ ‭al.,‬ ‭2017;‬ ‭Novick‬ ‭et‬ ‭al.,‬ ‭2022)‬‭.‬ ‭However,‬ ‭these‬ ‭methods‬ ‭can‬ ‭be‬ ‭hard‬ ‭to‬
‭implement‬‭(see‬‭Sect.‬‭3.7‬‭for‬‭the‬‭discussion‬‭about‬‭adjoint‬‭models)‬‭or‬‭require‬‭a‬‭large‬‭number‬‭of‬
‭model‬‭runs‬‭(e.g.,‬‭O(10,000)‬‭for‬‭Sobol).‬‭Nevertheless,‬‭once‬‭the‬‭adjoint‬‭or‬‭ensemble‬‭exists,‬‭it‬‭is‬
‭relatively easy to test the sensitivity of different model outputs.‬

‭In‬ ‭complex‬ ‭LSMs,‬ ‭even‬ ‭after‬ ‭selecting‬ ‭the‬ ‭most‬ ‭influential‬ ‭parameters,‬ ‭the‬ ‭large‬ ‭number‬ ‭of‬
‭vegetation‬ ‭(e.g.,‬ ‭15‬ ‭plant‬ ‭functional‬ ‭types‬ ‭in‬ ‭ORCHIDEE)‬ ‭and‬ ‭soil‬ ‭texture‬ ‭classes‬ ‭(e.g.,‬ ‭13‬
‭USDA‬ ‭textural‬ ‭classes)‬ ‭used‬ ‭to‬ ‭represent‬ ‭the‬ ‭diversity‬ ‭of‬ ‭terrestrial‬ ‭ecosystems‬ ‭quickly‬
‭increases‬ ‭the‬ ‭dimensionality‬ ‭of‬ ‭global‬ ‭calibrations,‬ ‭as‬ ‭each‬ ‭parameter‬ ‭can‬ ‭be‬ ‭varied‬
‭independently.‬‭One‬‭way‬‭to‬‭tackle‬‭this‬‭issue‬‭is‬‭to‬‭assume‬‭that‬‭the‬‭parameter‬‭differences‬‭among‬
‭different‬ ‭groups‬ ‭vary‬ ‭proportionally‬ ‭and,‬‭therefore,‬‭optimise‬‭a‬‭parameter‬‭scaling‬‭factor‬‭instead‬
‭of‬ ‭targeting‬ ‭each‬ ‭parameter‬ ‭per‬ ‭group‬ ‭(Fer‬ ‭et‬ ‭al.,‬ ‭2018;‬ ‭McNeall‬ ‭et‬ ‭al.,‬ ‭2024)‬‭.‬ ‭However,‬ ‭for‬
‭some‬ ‭plant‬ ‭traits,‬ ‭the‬ ‭"within‬ ‭functional‬ ‭type"‬ ‭uncertainty‬ ‭can‬ ‭be‬ ‭as‬ ‭large‬ ‭as‬ ‭the‬ ‭"across‬
‭functional‬ ‭type"‬ ‭uncertainty‬ ‭(e.g.,‬ ‭Trugman‬ ‭et‬ ‭al.,‬‭2020)‬‭,‬‭possibly‬‭due‬‭to‬‭the‬‭traits‬‭being‬‭either‬
‭weakly‬ ‭constrained‬ ‭by‬ ‭available‬ ‭data‬ ‭or‬ ‭genuinely‬ ‭plastic‬ ‭traits‬‭that‬‭vary‬‭spatially.‬‭In‬‭the‬‭latter‬
‭case,‬ ‭this‬ ‭variability‬ ‭suggests‬ ‭that‬ ‭localising‬ ‭parameters‬ ‭rather‬ ‭than‬ ‭using‬ ‭PFT-specific‬
‭parameterisations‬ ‭may‬ ‭be‬ ‭more‬ ‭appropriate.‬ ‭As‬ ‭such,‬ ‭methods‬ ‭that‬ ‭allow‬ ‭for‬ ‭independent‬
‭tuning‬ ‭of‬ ‭parameters‬ ‭within‬ ‭each‬ ‭PFT,‬ ‭or‬ ‭even‬ ‭localisation‬ ‭of‬ ‭parameters,‬‭may‬‭be‬‭necessary.‬
‭Scaling‬‭factors‬‭can‬‭also‬‭be‬‭used‬‭to‬‭target‬‭processes‬‭without‬‭needing‬‭to‬‭deeply‬‭explore‬‭detailed‬
‭parameterisations‬ ‭(e.g.,‬ ‭Raoult‬ ‭et‬ ‭al.,‬ ‭2021)‬ ‭used‬ ‭a‬ ‭factor‬ ‭to‬ ‭scale‬ ‭the‬ ‭bare‬‭soil‬‭resistance‬‭to‬
‭evapotranspiration parameterisation in ORCHIDEE).‬

‭Selecting‬‭parameters‬‭is‬‭only‬‭one‬‭part‬‭of‬‭the‬‭problem‬‭-‬‭choosing‬‭the‬‭prior‬‭distributions‬‭is‬‭equally‬
‭important.‬ ‭In‬ ‭the‬ ‭existing‬‭LSM‬‭calibration‬‭literature,‬‭it‬‭is‬‭very‬‭common‬‭to‬‭assume‬‭uniform‬‭prior‬
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‭distributions,‬ ‭either‬ ‭explicitly‬ ‭within‬ ‭Bayesian‬ ‭calibrations‬ ‭or‬ ‭implicitly‬ ‭when‬ ‭selecting‬ ‭uniform‬
‭range‬ ‭restrictions‬ ‭within‬ ‭parameter‬ ‭estimation‬ ‭using‬ ‭a‬ ‭naive‬ ‭objective‬ ‭function‬ ‭(unlike,‬ ‭for‬
‭example,‬‭classic‬‭variational‬‭DA‬‭techniques‬‭such‬‭as‬‭4DVar‬‭which‬‭use‬‭an‬‭explicit‬‭Gaussian‬‭prior).‬
‭In‬‭these‬‭cases,‬‭uniform‬‭ranges‬‭are‬‭often‬‭based‬‭on‬‭informal‬‭“expert‬‭judgment”‬‭or‬‭ad‬‭hoc‬‭trial‬‭and‬
‭error.‬‭In‬‭some‬‭cases,‬‭parameter‬‭uncertainty‬‭ranges‬‭can‬‭be‬‭obtained‬‭from‬‭in‬‭situ‬‭measurements,‬
‭such‬‭as‬‭the‬‭TRY‬‭database‬‭(Kattge‬‭et‬‭al.,‬‭2020)‬‭.‬‭Alternatively,‬‭the‬‭range‬‭can‬‭be‬‭set‬‭based‬‭on‬‭the‬
‭operational‬ ‭value‬ ‭of‬ ‭the‬ ‭parameter‬ ‭(e.g.,‬‭±20%)‬ ‭-‬‭although‬‭this‬‭should‬‭only‬‭be‬‭done‬‭as‬‭a‬‭last‬
‭resort.‬‭When‬‭selecting‬‭ranges,‬‭extra‬‭considerations‬‭are‬‭needed‬‭to‬‭ensure‬‭that‬‭the‬‭ranges‬‭make‬
‭physical‬ ‭sense‬ ‭(e.g.,‬ ‭not‬ ‭sampling‬‭negative‬‭values‬‭if‬‭the‬‭parameter‬‭needs‬‭to‬‭be‬‭positive),‬‭that‬
‭parameter‬ ‭dependencies‬‭are‬‭maintained‬‭(e.g.,‬‭two‬‭parameters‬‭whose‬‭ratio‬‭should‬‭not‬‭surpass‬
‭a‬‭given‬‭threshold,‬‭or‬‭multiple‬‭parameters‬‭that‬‭must‬‭sum‬‭to‬‭one)‬‭and‬‭that‬‭plausible‬‭relationships‬
‭are retained (e.g., longevity of wood should be longer than that of foliage).‬

‭While‬ ‭uniform‬ ‭distributions‬ ‭are‬ ‭frequently‬ ‭chosen‬ ‭due‬ ‭to‬ ‭the‬ ‭lack‬ ‭of‬ ‭a‬ ‭more‬ ‭specific‬ ‭prior‬
‭distribution,‬‭and‬‭often‬‭to‬‭ensure‬‭the‬‭range‬‭is‬‭broad‬‭enough‬‭to‬‭cover‬‭edge‬‭cases,‬‭this‬‭approach‬
‭has‬ ‭significant‬ ‭drawbacks.‬ ‭Uniform‬ ‭priors‬ ‭rarely‬ ‭represent‬ ‭our‬ ‭actual‬ ‭prior‬ ‭knowledge‬ ‭of‬ ‭a‬
‭system,‬‭as‬‭they‬‭imply‬‭that‬‭all‬‭values‬‭within‬‭a‬‭range‬‭are‬‭equally‬‭likely,‬‭but‬‭values‬‭even‬‭a‬‭little‬‭bit‬
‭outside‬ ‭that‬ ‭range‬ ‭are‬ ‭impossible.‬ ‭In‬ ‭practice,‬ ‭parameter‬ ‭values‬ ‭in‬ ‭certain‬‭parts‬‭of‬‭parameter‬
‭space‬ ‭are‬ ‭often‬ ‭known‬ ‭a‬ ‭priori‬ ‭to‬ ‭be‬ ‭more‬ ‭plausible‬ ‭than‬ ‭others.‬ ‭An‬ ‭alternative‬ ‭to‬ ‭assuming‬
‭uniform‬ ‭prior‬ ‭distributions‬ ‭is‬ ‭to‬ ‭select‬ ‭from‬ ‭any‬ ‭of‬ ‭a‬ ‭plethora‬ ‭of‬ ‭other‬ ‭distributions,‬ ‭with‬ ‭such‬
‭choices‬ ‭usually‬ ‭driven‬ ‭by‬ ‭a‬ ‭combination‬ ‭of‬ ‭structural‬ ‭constraints‬ ‭(e.g.,‬ ‭using‬ ‭zero-bound‬
‭distributions‬ ‭for‬ ‭non-negative‬ ‭parameters),‬ ‭formal‬ ‭syntheses‬ ‭and‬ ‭meta-analyses‬ ‭of‬ ‭trait‬ ‭data,‬
‭and‬ ‭structured‬ ‭expert-elicitation‬ ‭exercises‬ ‭(Dietze,‬ ‭2017;‬ ‭Dietze‬ ‭et‬ ‭al.,‬ ‭2014;‬ ‭LeBauer‬ ‭et‬ ‭al.,‬
‭2013)‬‭.‬ ‭However,‬ ‭selecting‬ ‭an‬ ‭inappropriate‬ ‭distribution‬ ‭can‬ ‭be‬ ‭as‬ ‭problematic‬ ‭as‬ ‭using‬ ‭a‬
‭uniform‬‭distribution,‬‭especially‬‭given‬‭that‬‭the‬‭true‬‭prior‬‭distribution‬‭is‬‭often‬‭not‬‭well‬‭known‬‭at‬‭the‬
‭start‬ ‭of‬ ‭the‬ ‭calibration‬ ‭process.‬ ‭This‬ ‭highlights‬ ‭the‬ ‭importance‬ ‭of‬ ‭conducting‬ ‭formal‬ ‭prior‬
‭predictive checks to validate assumptions before proceeding.‬

‭Priors‬‭constructed‬‭from‬‭trait‬‭data,‬‭where‬‭available,‬‭can‬‭often‬‭be‬‭quite‬‭well‬‭constrained,‬‭acting‬‭as‬
‭a‬ ‭form‬ ‭of‬ ‭data‬‭fusion‬‭(i.e.‬‭combining‬‭multiple‬‭constraints)‬‭and‬‭helping‬‭to‬‭constrain‬‭subsequent‬
‭calibrations‬‭to‬‭biologically-plausible‬‭parts‬‭of‬‭parameters‬‭space.‬‭Indeed,‬‭accounting‬‭for‬‭prior‬‭trait‬
‭knowledge‬‭can‬‭lead‬‭to‬‭very‬‭different‬‭conclusions‬‭about‬‭what‬‭parameters‬‭need‬‭to‬‭be‬‭included‬‭in‬
‭a‬ ‭calibration,‬ ‭as‬ ‭there‬ ‭are‬ ‭cases‬ ‭where‬ ‭very‬ ‭sensitive‬ ‭parameters‬ ‭may‬ ‭be‬ ‭well‬ ‭constrained‬‭a‬
‭priori‬‭(e.g.,‬ ‭the‬‭parameter‬‭controlling‬‭the‬‭maximum‬‭rate‬‭of‬‭carboxylation‬‭-‬‭Vcmax)‬‭while‬‭in‬‭other‬
‭cases‬‭much‬‭less‬‭sensitive,‬‭but‬‭unconstrained,‬‭parameters‬‭may‬‭plausibly‬‭span‬‭multiple‬‭orders‬‭of‬
‭magnitude‬ ‭and‬ ‭thus‬ ‭contribute‬ ‭more‬ ‭to‬ ‭overall‬ ‭model‬ ‭predictive‬ ‭uncertainty‬ ‭(Dietze,‬ ‭2017;‬
‭LeBauer et al., 2013)‬‭.‬

‭Informative‬ ‭non-uniform‬ ‭priors‬ ‭do‬ ‭not‬ ‭have‬ ‭to‬ ‭assume‬ ‭parameter‬ ‭independence;‬ ‭multivariate‬
‭priors‬ ‭can‬ ‭be‬ ‭constructed‬ ‭to‬ ‭capture‬ ‭known‬ ‭correlation‬ ‭structures‬ ‭and‬ ‭trait‬ ‭trade-offs,‬ ‭both‬
‭within-‬‭and‬‭across-PFTs‬‭(Shiklomanov‬‭et‬‭al.,‬‭2018)‬‭.‬‭However,‬‭quantifying‬‭these‬‭correlations‬‭can‬
‭be‬‭a‬‭challenge,‬‭and‬‭so‬‭error‬‭covariances‬‭are‬‭often‬‭omitted‬‭in‬‭PDA,‬‭neglecting‬‭natural‬‭parameter‬
‭relationships. This simplification can result in an ill-posed inversion problem.‬
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‭Finally,‬‭adopting‬‭informative‬‭non-uniform‬‭priors‬‭makes‬‭it‬‭easier‬‭to‬‭take‬‭advantage‬‭of‬‭the‬‭iterative‬
‭nature‬‭of‬‭Bayesian‬‭inference,‬‭where‬‭the‬‭posteriors‬‭from‬‭one‬‭round‬‭of‬‭model‬‭calibration‬‭can‬‭be‬
‭used‬ ‭as‬ ‭priors‬ ‭in‬ ‭the‬ ‭next‬ ‭round‬ ‭without‬ ‭requiring‬ ‭the‬ ‭recalibration‬ ‭of‬ ‭models‬ ‭to‬ ‭earlier‬ ‭data‬
‭constraints.‬ ‭Not‬ ‭only‬ ‭does‬ ‭this‬ ‭greatly‬ ‭simplify‬‭the‬‭updating‬‭of‬‭model‬‭calibrations‬‭as‬‭new‬‭data‬
‭becomes available, but it offers considerable computational advantages.‬

‭It‬‭is‬‭important‬‭to‬‭stress‬‭that‬‭no‬‭matter‬‭the‬‭method‬‭used‬‭for‬‭parameter‬‭estimation,‬‭solutions‬‭only‬
‭exist‬ ‭in‬ ‭the‬ ‭parameter‬ ‭space‬ ‭defined‬ ‭by‬ ‭the‬ ‭parameter‬ ‭selection‬ ‭and‬ ‭authorised‬ ‭prior‬ ‭ranges‬
‭(Williamson‬ ‭et‬ ‭al.,‬ ‭2013)‬‭.‬ ‭Changing‬ ‭the‬ ‭number‬ ‭of‬ ‭parameters,‬ ‭their‬‭prior‬‭distributions,‬‭and/or‬
‭the‬‭model‬‭process‬‭representation‬‭will‬‭require‬‭new‬‭calibrations‬‭since‬‭the‬‭solution‬‭may‬‭differ‬‭due‬
‭to new parameter interactions and the equifinality of solutions.‬

‭3.2 Characterisation of model and data/observation errors‬
‭The‬ ‭state-of-the-art‬ ‭way‬ ‭to‬ ‭account‬ ‭for‬ ‭model‬ ‭and‬ ‭observation‬ ‭errors‬ ‭is‬ ‭through‬ ‭a‬ ‭Bayesian‬
‭framework.‬ ‭However,‬ ‭properly‬ ‭characterising‬ ‭these‬ ‭errors‬ ‭(especially‬ ‭data‬ ‭bias)‬ ‭can‬ ‭be‬ ‭a‬
‭challenge‬ ‭and‬ ‭potential‬ ‭model-data‬ ‭biases‬ ‭are‬ ‭not‬ ‭always‬‭properly‬‭treated‬‭with‬‭this‬‭formalism‬
‭(Cameron‬‭et‬‭al.,‬‭2022;‬‭MacBean‬‭et‬‭al.,‬‭2016)‬‭.‬‭Model‬‭discrepancy,‬‭or‬‭model‬‭process‬‭error,‬‭refers‬
‭to‬ ‭the‬ ‭inherent‬ ‭inability‬ ‭of‬ ‭a‬ ‭model‬ ‭to‬ ‭replicate‬ ‭observations‬‭(Wu‬‭et‬‭al.,‬‭2023)‬‭,‬‭stemming‬‭from‬
‭factors‬‭such‬‭as‬‭missing‬‭processes,‬‭choice‬‭of‬‭process‬‭representation,‬‭ecosystem‬‭heterogeneity,‬
‭stochastic‬ ‭processes‬ ‭(e.g.,‬ ‭dispersal,‬ ‭recruitment,‬ ‭mortality,‬ ‭disturbance),‬ ‭biases‬ ‭in‬ ‭the‬ ‭model‬
‭forcing‬ ‭data,‬ ‭uncertainties‬ ‭in‬ ‭the‬ ‭initial‬ ‭model‬ ‭state,‬ ‭and‬ ‭the‬ ‭resolution‬ ‭of‬ ‭numerical‬ ‭solvers.‬
‭Observation‬ ‭error‬ ‭encompasses‬ ‭sampling‬ ‭variability,‬ ‭instrument‬ ‭inaccuracies,‬ ‭and‬ ‭any‬ ‭errors‬
‭involved‬ ‭in‬ ‭deriving‬ ‭the‬ ‭data‬ ‭products‬ ‭making‬ ‭up‬ ‭the‬ ‭observations.‬ ‭Furthermore,‬ ‭observation‬
‭error‬ ‭also‬ ‭usually‬ ‭includes‬ ‭a‬ ‭modelling‬ ‭step‬ ‭from‬ ‭the‬ ‭raw‬ ‭data‬ ‭measurement‬ ‭to‬ ‭any‬ ‭given‬
‭physical‬ ‭quantity‬ ‭(see‬ ‭Sect.‬ ‭3.3).‬ ‭Due‬ ‭to‬ ‭the‬ ‭difficulty‬ ‭in‬ ‭separating‬ ‭model‬ ‭and‬ ‭observation‬
‭errors,‬ ‭they‬ ‭have‬ ‭often‬ ‭been‬ ‭combined‬ ‭in‬ ‭past‬‭studies.‬‭In‬‭fact,‬‭the‬‭mathematical‬‭formalisation‬
‭commonly‬‭used‬‭in‬‭PDA‬‭assumes‬‭that‬‭observation‬‭errors‬‭include‬‭model‬‭errors,‬‭thereby‬‭treating‬
‭model discrepancy as part of the observational error.‬

‭Although‬ ‭common,‬ ‭combining‬ ‭model‬ ‭error‬ ‭with‬ ‭data‬ ‭error‬ ‭can‬ ‭lead‬ ‭to‬ ‭an‬ ‭overestimation‬ ‭of‬
‭predictive‬‭uncertainty‬‭(van‬‭Oijen,‬‭2017)‬‭.‬‭Another‬‭approach‬‭to‬‭deal‬‭with‬‭model‬‭error‬‭is‬‭to‬‭ignore‬
‭it‬‭(i.e.‬‭assume‬‭the‬‭model‬‭structure‬‭is‬‭correct),‬‭however,‬‭this‬‭means‬‭only‬‭the‬‭input‬‭uncertainty‬‭is‬
‭propagated.‬ ‭A‬ ‭final‬ ‭approach‬ ‭is‬ ‭to‬ ‭treat‬ ‭model‬ ‭uncertainty‬ ‭as‬ ‭a‬ ‭separate‬ ‭parameter‬ ‭needing‬
‭calibration.‬‭If‬‭a‬‭prior‬‭for‬‭the‬‭model‬‭error‬‭uncertainties‬‭can‬‭be‬‭specified‬‭explicitly,‬‭model‬‭and‬‭data‬
‭error‬‭terms‬‭can‬‭theoretically‬‭be‬‭fitted‬‭separately.‬‭However,‬‭in‬‭practice,‬‭specifying‬‭an‬‭informative‬
‭prior‬ ‭on‬‭the‬‭model‬‭error‬‭term‬‭is‬‭challenging‬‭due‬‭to‬‭incomplete‬‭theoretical‬‭understanding‬‭of‬‭the‬
‭underpinning‬‭processes‬‭(Brynjarsdóttir‬‭&‬‭OʼHagan,‬‭2014)‬‭.‬‭Fortunately,‬‭it‬‭is‬‭often‬‭much‬‭easier‬‭to‬
‭specify‬ ‭an‬ ‭informative‬ ‭prior‬ ‭on‬ ‭the‬ ‭observation‬ ‭error,‬ ‭as‬ ‭these‬ ‭are‬ ‭frequently‬‭reported‬‭in‬‭data‬
‭products‬ ‭or‬ ‭estimable‬ ‭via‬ ‭sampling‬ ‭theory,‬ ‭and‬ ‭this‬ ‭is‬ ‭often‬ ‭useful‬ ‭to‬ ‭allow‬ ‭model‬ ‭error‬ ‭to‬‭be‬
‭separately identifiable.‬

‭There‬ ‭are‬ ‭a‬ ‭number‬ ‭of‬ ‭arguments‬ ‭for‬ ‭keeping‬ ‭process‬ ‭and‬ ‭observation‬ ‭error‬ ‭distinct.‬ ‭Model‬
‭process‬ ‭error‬ ‭propagates‬ ‭in‬ ‭space‬ ‭and‬ ‭time‬ ‭when‬‭making‬‭predictions,‬‭while‬‭observation‬‭error‬
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‭does‬‭not.‬‭Additionally,‬‭addressing‬‭a‬‭large‬‭process‬‭error‬‭requires‬‭improving‬‭the‬‭model‬‭structure,‬
‭while‬ ‭addressing‬ ‭a‬ ‭large‬ ‭observation‬ ‭error‬ ‭calls‬ ‭for‬ ‭improving‬ ‭data‬ ‭quality.‬ ‭Furthermore,‬
‭calibrating‬ ‭models‬ ‭using‬ ‭cost‬ ‭functions‬ ‭that‬ ‭rely‬ ‭solely‬‭on‬‭fixed‬‭a‬‭priori‬‭observation‬‭errors‬‭can‬
‭distort‬‭parameter‬‭uncertainty‬‭estimates‬‭as‬‭well‬‭as‬‭the‬‭relative‬‭weight‬‭assigned‬‭to‬‭different‬‭data‬
‭constraints,‬ ‭as‬ ‭there’s‬ ‭often‬ ‭no‬ ‭inherent‬ ‭reason‬ ‭to‬ ‭assume‬ ‭that‬ ‭model‬ ‭skill‬ ‭at‬ ‭predicting‬ ‭a‬
‭variable‬ ‭is‬ ‭proportional‬ ‭to‬ ‭the‬ ‭accuracy‬ ‭of‬ ‭its‬ ‭measurement.‬ ‭Indeed,‬ ‭it‬ ‭is‬ ‭easy‬ ‭to‬ ‭point‬ ‭to‬
‭examples‬‭where‬‭the‬‭uncertainty‬‭in‬‭our‬‭ability‬‭to‬‭model‬‭something‬‭differs‬‭in‬‭rank‬‭order‬‭from‬‭our‬
‭ability‬ ‭to‬ ‭measure‬ ‭that‬ ‭same‬ ‭thing‬ ‭(e.g.,‬ ‭at‬ ‭local‬ ‭scale,‬ ‭model‬ ‭predictions‬ ‭of‬ ‭net‬ ‭ecosystem‬
‭exchange‬ ‭(NEE)‬ ‭are‬ ‭more‬ ‭uncertain‬ ‭than‬ ‭gross‬ ‭primary‬ ‭productivity‬ ‭(GPP:‬ ‭the‬ ‭flux‬ ‭of‬‭carbon‬
‭absorbed‬ ‭into‬ ‭the‬ ‭land‬ ‭surface‬ ‭due‬ ‭to‬ ‭photosynthesis‬‭),‬ ‭but‬ ‭observations‬ ‭of‬ ‭GPP‬ ‭are‬ ‭more‬
‭uncertain than NEE).‬

‭Quantifying‬ ‭both‬ ‭observation‬ ‭and‬ ‭model‬ ‭process‬ ‭error‬ ‭correlations,‬ ‭such‬ ‭as‬ ‭autocorrelated‬
‭measurement‬ ‭error,‬ ‭presents‬ ‭an‬ ‭additional‬ ‭challenge.‬ ‭These‬ ‭correlations‬ ‭yield‬ ‭non-diagonal‬
‭covariance‬ ‭structures,‬ ‭which‬ ‭are‬ ‭rarely‬ ‭well‬ ‭understood‬ ‭and‬ ‭are‬ ‭often‬ ‭ignored.‬ ‭Nevertheless,‬
‭accounting‬ ‭for‬ ‭these‬ ‭correlated‬ ‭errors‬ ‭has‬ ‭been‬ ‭shown‬ ‭to‬ ‭improve‬ ‭data‬ ‭assimilation‬ ‭results‬
‭(Waller‬‭et‬‭al.,‬‭2016)‬‭,‬‭for‬‭example,‬‭by‬‭increasing‬‭the‬‭information‬‭content‬‭of‬‭observations‬‭(Stewart‬
‭et‬ ‭al.,‬ ‭2008)‬‭.‬ ‭S‬‭ince‬ ‭observation‬ ‭error‬ ‭correlations‬ ‭are‬ ‭more‬ ‭prevalent‬ ‭in‬ ‭dense‬ ‭observation‬
‭networks‬‭(Bannister‬‭et‬‭al.,‬‭2020)‬‭,‬‭strategies‬‭to‬‭mitigate‬‭not‬‭modelling‬‭them‬‭include‬‭observation‬
‭thinning‬ ‭(reducing‬ ‭the‬ ‭number‬ ‭of‬ ‭observations‬ ‭assimilated‬ ‭in‬ ‭data-rich‬ ‭regions)‬ ‭and‬
‭super-obbing‬ ‭(combining‬ ‭many‬ ‭observations‬ ‭into‬ ‭one‬ ‭(Lorenc,‬ ‭1981)‬‭).‬ ‭Another‬ ‭common‬
‭approach‬ ‭to‬ ‭inflate‬ ‭variances‬ ‭is‬ ‭to‬ ‭reduce‬ ‭the‬ ‭weight‬ ‭of‬ ‭observations‬ ‭in‬ ‭data‬ ‭assimilation‬
‭(Chevallier,‬ ‭2007;‬ ‭Kuppel‬ ‭et‬ ‭al.,‬ ‭2013)‬‭.‬ ‭However,‬ ‭all‬ ‭these‬ ‭approaches‬ ‭are‬ ‭subjective‬ ‭and‬
‭potentially reject meaningful information‬‭(Cameron et al., 2022)‬‭.‬

‭Finally,‬‭addressing‬‭systematic‬‭errors‬‭in‬‭models‬‭and‬‭data‬‭is‬‭becoming‬‭increasingly‬‭crucial‬‭as‬‭the‬
‭volume‬ ‭of‬ ‭data‬ ‭grows.‬ ‭With‬ ‭larger‬ ‭datasets,‬ ‭random‬ ‭errors‬ ‭tend‬ ‭to‬ ‭average‬ ‭out,‬ ‭leaving‬
‭systematic‬‭errors‬‭to‬‭dominate.‬‭These‬‭errors‬‭have‬‭long‬‭been‬‭recognised‬‭by‬‭the‬‭LSM‬‭calibration‬
‭community,‬ ‭such‬ ‭as‬ ‭when‬ ‭a‬ ‭model's‬ ‭ability‬ ‭to‬ ‭predict‬ ‭one‬ ‭variable‬ ‭worsens‬ ‭after‬ ‭assimilating‬
‭data‬‭for‬‭another.‬‭However,‬‭the‬‭underlying‬‭causes‬‭and‬‭potential‬‭solutions‬‭have‬‭not‬‭been‬‭widely‬
‭appreciated.‬ ‭Since‬ ‭all‬ ‭models‬ ‭are‬ ‭approximations,‬ ‭systematic‬ ‭errors‬ ‭in‬ ‭both‬ ‭models‬ ‭and‬‭data‬
‭require‬ ‭greater‬ ‭attention.‬ ‭To‬ ‭combat‬ ‭these‬ ‭biases,‬ ‭various‬ ‭approaches‬ ‭are‬ ‭emerging,‬‭ranging‬
‭from‬ ‭incorporating‬ ‭simple‬ ‭linear‬ ‭bias‬ ‭correction‬ ‭factors‬ ‭in‬ ‭the‬ ‭cost‬ ‭function‬ ‭(Cameron‬ ‭et‬ ‭al.,‬
‭2022;‬ ‭Fer‬ ‭et‬ ‭al.,‬ ‭2018)‬ ‭to‬ ‭more‬ ‭complex‬ ‭and‬ ‭flexible‬ ‭statistical‬ ‭models‬ ‭of‬ ‭bias,‬ ‭applied‬‭either‬
‭within‬‭the‬‭assimilation‬‭process‬‭or‬‭post-hoc‬‭(Kennedy‬‭&‬‭O’Hagan,‬‭2001;‬‭Oberpriller‬‭et‬‭al.,‬‭2021)‬‭.‬
‭Additionally,‬ ‭hybrid‬ ‭models‬ ‭that‬ ‭integrate‬ ‭machine‬ ‭learning‬ ‭with‬ ‭process-based‬ ‭models‬ ‭are‬
‭being explored as a means to address these challenges (see Sect. 4.2).‬

‭Ultimately,‬ ‭interconnected‬ ‭efforts,‬ ‭such‬ ‭as‬ ‭the‬‭characterisation‬‭of‬‭data‬‭errors‬‭together‬‭with‬‭the‬
‭data‬ ‭providers,‬ ‭post-PDA‬ ‭analysis‬ ‭of‬ ‭remaining‬ ‭model-data‬ ‭discrepancies,‬ ‭multi-model‬ ‭PDA‬
‭protocols‬ ‭that‬ ‭highlight‬ ‭relative‬ ‭model‬ ‭structural‬ ‭errors,‬ ‭and‬ ‭novel‬ ‭PDA‬ ‭algorithms‬ ‭are‬ ‭all‬
‭valuable in providing ways forward for discerning errors in data from those in model structure.‬

‭14‬‭/74‬

‭1‬

‭2‬

‭3‬

‭4‬

‭5‬

‭6‬

‭7‬

‭8‬

‭9‬

‭10‬

‭11‬

‭12‬

‭13‬

‭14‬

‭15‬

‭16‬

‭17‬

‭18‬

‭19‬

‭20‬

‭21‬

‭22‬

‭23‬

‭24‬

‭25‬

‭26‬

‭27‬

‭28‬

‭29‬

‭30‬

‭31‬

‭32‬

‭33‬

‭34‬

‭35‬

‭36‬

‭37‬

‭38‬

‭39‬

‭40‬

‭41‬

‭42‬

https://paperpile.com/c/qGqbia/eloh
https://paperpile.com/c/qGqbia/8zh8
https://paperpile.com/c/qGqbia/8zh8
https://paperpile.com/c/qGqbia/p8Do
https://paperpile.com/c/qGqbia/FzUB
https://paperpile.com/c/qGqbia/gcJA+maqL
https://paperpile.com/c/qGqbia/HjMP
https://paperpile.com/c/qGqbia/HjMP+BcqI
https://paperpile.com/c/qGqbia/HjMP+BcqI
https://paperpile.com/c/qGqbia/N183+2TLr


‭3.3 Developing observation operators‬
‭The‬ ‭term‬ ‭“observation‬ ‭operator”‬ ‭refers‬ ‭to‬ ‭any‬ ‭transformation‬ ‭of‬‭the‬‭modelled‬‭quantity‬‭used‬‭to‬
‭allow‬ ‭comparison‬ ‭against‬ ‭observations‬ ‭(Kaminski‬ ‭&‬ ‭Mathieu,‬ ‭2017)‬‭.‬ ‭Note‬ ‭that‬ ‭what‬ ‭are‬‭often‬
‭called‬‭observations‬‭are‬‭themselves‬‭complex‬‭transformations‬‭of‬‭raw‬‭data‬‭measurements‬‭used‬‭to‬
‭estimate‬ ‭physical‬ ‭quantities‬ ‭comparable‬ ‭to‬ ‭the‬ ‭LSM‬ ‭output.‬‭For‬‭example,‬‭radiances‬‭observed‬
‭by‬ ‭a‬ ‭satellite‬ ‭at‬ ‭the‬ ‭top‬ ‭of‬ ‭the‬ ‭atmosphere‬ ‭can‬ ‭be‬ ‭translated‬ ‭into‬‭any‬‭number‬‭of‬‭land‬‭surface‬
‭data‬‭products,‬‭such‬‭as‬‭leaf‬‭area‬‭index.‬‭This‬‭processing‬‭can‬‭also‬‭be‬‭seen‬‭as‬‭a‬‭complex‬‭model,‬
‭such‬ ‭as‬ ‭the‬ ‭inversion‬ ‭of‬ ‭a‬ ‭radiative‬ ‭transfer‬ ‭scheme.‬ ‭Furthermore,‬ ‭these‬ ‭data‬ ‭are‬ ‭usually‬
‭prepared in such a way that they are available on the model grid.‬

‭In‬‭some‬‭cases,‬‭it‬‭is‬‭possible‬‭to‬‭assume‬‭a‬‭one-to-one‬‭relationship‬‭between‬‭the‬‭model‬‭output‬‭and‬
‭assimilated‬ ‭data,‬ ‭in‬ ‭which‬ ‭case‬ ‭the‬ ‭observation‬ ‭operator‬‭is‬‭the‬‭identity‬‭matrix.‬‭However,‬‭in‬‭all‬
‭other‬‭cases,‬‭an‬‭observation‬‭operator‬‭is‬‭required‬‭for‬‭DA,‬‭and‬‭the‬‭choice‬‭of‬‭observation‬‭operator‬
‭can‬ ‭significantly‬ ‭impact‬ ‭the‬ ‭results‬ ‭(Cooper‬ ‭et‬ ‭al.,‬ ‭2019)‬‭.‬ ‭A‬ ‭common‬ ‭use‬ ‭of‬ ‭an‬ ‭observation‬
‭operator‬ ‭is‬ ‭to‬ ‭bridge‬ ‭the‬ ‭spatial‬ ‭scale‬‭between‬‭model‬‭and‬‭observations,‬‭either‬‭by‬‭aggregating‬
‭the‬ ‭gridded‬ ‭observations‬ ‭to‬ ‭the‬‭resolution‬‭of‬‭the‬‭model‬‭or‬‭vice-versa‬‭(Pinnington‬‭et‬‭al.,‬‭2021)‬‭.‬
‭More‬ ‭complex‬ ‭examples‬ ‭of‬ ‭spatial‬ ‭scaling‬ ‭operators‬ ‭utilise‬ ‭a‬ ‭weighted‬ ‭averaging‬ ‭process‬ ‭to‬
‭match‬ ‭a‬ ‭more‬ ‭detailed‬ ‭description‬ ‭of‬ ‭the‬ ‭observation,‬ ‭such‬ ‭as‬ ‭modelling‬ ‭the‬ ‭point‬ ‭spread‬
‭function‬‭of‬‭satellite‬‭data,‬‭or‬‭the‬‭footprint‬‭of‬‭an‬‭eddy-covariance‬‭flux‬‭measurement.‬‭For‬‭example,‬
‭Vergopolan‬ ‭et‬ ‭al.‬ ‭(2020)‬ ‭introduced‬ ‭a‬ ‭cluster-based‬ ‭observation‬ ‭operator‬ ‭that‬ ‭maps‬ ‭the‬
‭Gaussian‬ ‭footprint‬ ‭of‬ ‭satellite‬ ‭observations‬ ‭to‬‭the‬‭sub-grid‬‭scale‬‭of‬‭high-resolution‬‭LSMs.‬‭This‬
‭enables‬‭efficiently‬‭assimilating‬‭coarse‬‭soil‬‭moisture‬‭observations‬‭while‬‭bridging‬‭the‬‭spatial‬‭scale‬
‭mismatch‬ ‭with‬ ‭fine-scale‬ ‭LSMs‬ ‭and‬ ‭ground‬ ‭observations‬ ‭(Vergopolan‬ ‭et‬ ‭al.,‬ ‭2021)‬‭.‬ ‭In‬ ‭an‬
‭application‬ ‭with‬ ‭flux‬ ‭tower‬ ‭data,‬ ‭Pinnington‬ ‭et‬ ‭al.‬ ‭(2017)‬ ‭partitioned‬ ‭the‬ ‭fluxes‬ ‭to‬ ‭observe‬
‭different‬‭parts‬‭of‬‭the‬‭forest‬‭and‬‭run‬‭separate‬‭assimilation‬‭experiments‬‭for‬‭logged‬‭and‬‭unlogged‬
‭forest stands.‬

‭In‬‭another‬‭example,‬ ‭atmospheric‬‭transport‬‭is‬‭used‬‭to‬‭map‬‭surface‬‭fluxes‬‭of‬‭gas‬‭species,‬‭such‬
‭as‬ ‭CO‬‭2‬‭,‬ ‭into‬ ‭atmospheric‬ ‭concentrations‬ ‭of‬ ‭that‬ ‭species‬ ‭at‬ ‭sampling‬ ‭points.‬ ‭In‬ ‭this‬‭way,‬‭flask‬
‭measurements‬ ‭of‬ ‭CO‬‭2‬ ‭have‬ ‭been‬ ‭used‬ ‭to‬ ‭constrain‬ ‭parameters‬ ‭in‬ ‭models‬ ‭of‬ ‭the‬ ‭terrestrial‬
‭biosphere‬ ‭(Bacour‬‭et‬‭al.,‬‭2023;‬‭Kaminski‬‭et‬‭al.,‬‭2002,‬‭2012;‬‭Knorr‬‭&‬‭Heimann,‬‭1995;‬‭Peylin‬‭et‬
‭al.,‬ ‭2016;‬ ‭Rayner‬ ‭et‬ ‭al.,‬ ‭2005,‬ ‭2011;‬ ‭Scholze‬ ‭et‬ ‭al.,‬ ‭2007)‬ ‭and‬‭to‬‭evaluate‬‭simulated‬‭net‬‭CO‬‭2‬

‭fluxes‬ ‭after‬ ‭optimising‬ ‭against‬ ‭eddy-covariance‬ ‭data‬ ‭(Kuppel‬ ‭et‬ ‭al.,‬ ‭2014)‬‭.‬ ‭For‬ ‭non-reactive‬
‭species,‬‭it‬‭is‬‭sufficient‬‭to‬‭have‬‭data‬‭on‬‭winds‬‭to‬‭drive‬‭the‬‭observation‬‭operator,‬‭but‬‭for‬‭reactive‬
‭species‬ ‭such‬ ‭as‬ ‭CH‬‭4‬‭,‬ ‭the‬ ‭process‬ ‭is‬ ‭more‬ ‭complex‬ ‭as‬ ‭atmospheric‬ ‭chemistry‬ ‭needs‬ ‭to‬ ‭be‬
‭included.‬

‭Observation‬ ‭operators‬ ‭are‬ ‭also‬ ‭used‬ ‭to‬ ‭predict‬ ‭observed‬ ‭quantities‬ ‭that‬ ‭are‬ ‭not‬ ‭directly‬
‭computed‬‭by‬‭the‬‭model‬‭itself.‬‭A‬‭recent‬‭example‬‭is‬‭the‬‭assimilation‬‭of‬‭SIF‬‭data,‬‭which‬‭is‬‭typically‬
‭assumed‬ ‭to‬ ‭be‬ ‭a‬ ‭proxy‬ ‭for‬ ‭GPP.‬ ‭Examples‬ ‭of‬‭SIF‬‭observation‬‭operators‬‭include‬‭simple‬‭linear‬
‭relationships‬ ‭with‬ ‭GPP‬ ‭(Bloom‬ ‭et‬ ‭al.,‬ ‭2020;‬ ‭MacBean‬ ‭et‬ ‭al.,‬ ‭2018)‬ ‭through‬ ‭to‬ ‭more‬ ‭complex‬
‭operators‬ ‭based‬ ‭on‬ ‭the‬ ‭underlying‬ ‭photochemistry‬ ‭and‬ ‭radiative‬ ‭transfer‬ ‭in‬‭the‬‭canopy,‬‭either‬
‭using‬ ‭empirical‬ ‭simplifications‬ ‭of‬ ‭those‬ ‭processes‬ ‭(Bacour‬ ‭et‬ ‭al.,‬ ‭2019)‬ ‭or‬ ‭using‬ ‭fully‬
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‭mechanistic‬‭models‬‭for‬‭the‬‭operator‬‭(Norton‬‭et‬‭al.,‬‭2019)‬‭.‬‭Another‬‭example‬‭is‬‭vegetation‬‭optical‬
‭depth‬‭which‬‭has‬‭been‬‭used‬‭to‬‭constrain‬‭above-ground‬‭biomass‬‭and‬‭leaf‬‭area‬‭index‬‭(Scholze‬‭et‬
‭al., 2019)‬‭.‬

‭Scholze‬‭et‬‭al.‬‭(2016,‬‭2019)‬‭also‬‭developed‬‭observation‬‭operators‬‭to‬‭map‬‭surface‬‭soil‬‭moisture‬
‭(SSM)‬‭retrievals‬‭to‬‭simulated‬‭volumetric‬‭soil‬‭moisture‬‭of‬‭the‬‭surface‬‭layer‬‭of‬‭BETHY,‬‭which‬‭were‬
‭also‬ ‭used‬ ‭by‬ ‭Wu‬ ‭et‬ ‭al.‬ ‭(2018,‬ ‭2020,‬ ‭2024)‬‭.‬ ‭SSM‬ ‭is‬ ‭subject‬ ‭to‬ ‭large‬ ‭biases,‬ ‭which‬ ‭therefore‬
‭necessitates‬‭this‬‭type‬‭of‬‭transformation.‬‭Numerous‬‭models‬‭employ‬‭methods‬‭to‬‭map‬‭SSM‬‭to‬‭the‬
‭climatology‬ ‭of‬ ‭their‬ ‭model,‬ ‭for‬ ‭example‬ ‭through‬ ‭cumulative‬ ‭density‬ ‭function‬ ‭(CDF)‬ ‭matching.‬
‭Another‬ ‭approach‬ ‭is‬ ‭to‬ ‭focus‬ ‭solely‬ ‭on‬ ‭dynamics‬ ‭(e.g.,‬ ‭dry‬ ‭downs,‬ ‭Raoult‬ ‭et‬ ‭al.,‬ ‭2021)‬‭.‬ ‭The‬
‭dynamics‬ ‭approach‬ ‭is‬ ‭often‬ ‭used‬ ‭when‬ ‭assimilating‬ ‭vegetation‬ ‭indices,‬ ‭FAPAR‬ ‭or‬ ‭leaf‬ ‭area‬
‭index‬‭(LAI)‬‭—‬‭retrievals‬‭are‬‭normalised‬‭to‬‭estimate‬‭the‬‭seasonality‬‭of‬‭phenology‬‭instead‬‭of‬‭the‬
‭absolute‬ ‭values‬ ‭(MacBean‬ ‭et‬ ‭al.,‬ ‭2015)‬‭.‬ ‭The‬ ‭optimisation‬ ‭then‬ ‭focuses‬ ‭on‬ ‭a‬ ‭reduced‬ ‭set‬ ‭of‬
‭phenology-related‬‭parameters,‬‭rather‬‭than‬‭including‬‭those‬‭related‬‭to‬‭photosynthesis‬‭(Bacour‬‭et‬
‭al., 2015)‬‭.‬

‭Forward‬‭modelling‬‭of‬‭remote‬‭sensing‬‭data‬‭—‬‭i.e.,‬‭the‬‭process‬‭of‬‭simulating‬‭remote‬‭sensing‬‭data‬
‭directly‬‭from‬‭the‬‭LSM‬‭outputs‬‭rather‬‭than‬‭assimilating‬‭processed‬‭satellite‬‭products‬‭—‬‭like‬‭in‬‭the‬
‭example‬‭of‬‭SIF,‬‭is‬‭the‬‭opposite‬‭approach‬‭to‬‭the‬‭assimilation‬‭of‬‭high-level‬‭satellite‬‭products‬‭such‬
‭as‬ ‭LAI‬ ‭or‬ ‭GPP.‬ ‭A‬ ‭key‬ ‭argument‬ ‭for‬ ‭taking‬ ‭this‬ ‭approach‬ ‭is‬ ‭that‬ ‭assumptions‬ ‭in‬ ‭the‬ ‭retrieval‬
‭process‬ ‭used‬ ‭in‬ ‭these‬ ‭products‬ ‭are‬ ‭likely‬ ‭inconsistent‬ ‭with‬ ‭the‬ ‭assumptions‬‭embedded‬‭in‬‭the‬
‭land‬‭surface‬‭model‬‭they‬‭are‬‭being‬‭assimilated‬‭into.‬‭A‬‭clear‬‭example‬‭of‬‭this‬‭is‬‭the‬‭use‬‭of‬‭satellite‬
‭GPP‬ ‭products‬ ‭which‬ ‭typically‬ ‭employ‬ ‭a‬ ‭production‬ ‭efficiency‬ ‭approach‬ ‭(e.g.‬ ‭the‬ ‭MODIS‬‭GPP‬
‭product,‬ ‭Running‬ ‭et‬ ‭al.,‬ ‭2021)‬ ‭whereas‬ ‭land‬ ‭surface‬ ‭models‬ ‭often‬ ‭use‬ ‭limiting-rate‬ ‭enzyme‬
‭kinetic‬ ‭schemes‬ ‭derived‬ ‭from‬ ‭those‬ ‭of‬ ‭Farquhar‬ ‭et‬ ‭al.‬ ‭(1980)‬ ‭and‬ ‭Collatz‬ ‭et‬ ‭al.‬ ‭(1992)‬‭.‬
‭Furthermore,‬ ‭satellite-derived‬ ‭GPP‬ ‭estimates‬ ‭typically‬ ‭use‬ ‭environmental‬ ‭drivers‬ ‭such‬ ‭as‬
‭downwelling‬ ‭shortwave‬ ‭radiation‬ ‭which‬ ‭will‬ ‭almost‬‭certainly‬‭differ‬‭from‬‭those‬‭used‬‭to‬‭drive‬‭the‬
‭land‬ ‭surface‬ ‭model‬ ‭they‬ ‭are‬ ‭being‬ ‭assimilated‬ ‭into.‬ ‭Finally,‬ ‭there‬ ‭are‬ ‭often‬ ‭substantial‬
‭differences‬‭between‬‭the‬‭satelitte-derived‬‭estimates‬‭(e.g.‬‭of‬‭GPP‬‭or‬‭LAI)‬‭where‬‭the‬‭assimilation‬
‭of‬ ‭any‬ ‭one‬ ‭product‬ ‭is‬ ‭likely‬ ‭biased‬ ‭with‬ ‭respect‬ ‭to‬ ‭the‬ ‭‘truth’‬ ‭(which‬ ‭is‬ ‭the‬ ‭primary‬‭reason‬‭for‬
‭using‬‭the‬‭seasonal‬‭dynamics‬‭rather‬‭than‬‭the‬‭actual‬‭values‬‭of‬‭time‬‭series‬‭data,‬‭as‬‭discussed‬‭in‬
‭the‬ ‭previous‬ ‭paragraph)‬‭.‬ ‭Consequently,‬ ‭discrepancies‬ ‭between‬ ‭these‬ ‭high-level‬ ‭observations‬
‭and‬‭the‬‭values‬‭of‬‭the‬‭same‬‭variables‬‭predicted‬‭by‬‭a‬‭LSM‬‭may‬‭differ‬‭due‬‭to‬‭these‬‭factors‬‭and‬‭be‬
‭non-trivial to characterise.‬

‭It‬‭is‬‭appealing,‬‭therefore,‬‭to‬‭assimilate‬‭low-level‬‭products‬‭like‬‭SIF‬‭or‬‭canopy‬‭reflectance‬‭(Quaife‬
‭et‬‭al.,‬‭2008)‬‭.‬‭For‬‭canopy‬‭reflectance,‬‭this‬‭typically‬‭requires‬‭the‬‭use‬‭of‬‭radiative‬‭transfer‬‭models‬
‭and‬ ‭is‬ ‭analogous‬ ‭to‬ ‭so-called‬ ‭“radiance‬ ‭assimilation”‬ ‭which‬ ‭is‬ ‭used‬ ‭extensively‬ ‭in‬ ‭numerical‬
‭weather‬ ‭prediction.‬ ‭In‬ ‭that‬ ‭way,‬ ‭any‬‭systematic‬‭error‬‭between‬‭the‬‭model‬‭and‬‭the‬‭observations‬
‭can‬ ‭be‬ ‭attributed‬‭to‬‭the‬‭land‬‭model‬‭(including‬‭the‬‭radiative‬‭transfer‬‭model)‬‭itself.‬‭For‬‭example,‬
‭Shiklomanov‬ ‭et‬ ‭al.‬ ‭(2021)‬ ‭modified‬ ‭the‬ ‭existing‬ ‭canopy‬ ‭radiative‬ ‭transfer‬ ‭model‬ ‭in‬ ‭the‬
‭Ecosystem‬‭Demography‬‭v2‬‭model‬‭(ED2)‬‭to‬‭predict‬‭full‬‭hyperspectral‬‭waveforms,‬ ‭instead‬‭of‬‭just‬
‭aggregate‬‭visible,‬‭near-infrared,‬‭and‬‭thermal‬‭bands,‬‭and‬‭then‬‭used‬‭this‬‭observation‬‭operator‬‭to‬
‭calibrate‬‭ED2‬‭against‬‭airborne‬‭AVIRIS‬‭imaging‬‭spectroscopy‬‭across‬‭the‬‭eastern‬‭temperate‬‭US.‬
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‭Meunier‬‭et‬‭al.‬‭(2022)‬‭later‬‭used‬‭this‬‭observation‬‭operator‬‭in‬‭the‬‭development‬‭of‬‭a‬‭novel‬‭tropical‬
‭liana‬‭PFT.‬ ‭However,‬‭low-level‬‭satellite‬‭products‬‭often‬‭exhibit‬‭variability‬‭across‬‭domains‬‭that‬‭are‬
‭not‬ ‭inherently‬ ‭resolved‬ ‭by‬ ‭the‬ ‭land‬ ‭model,‬ ‭leading‬ ‭to‬ ‭some‬ ‭level‬ ‭of‬ ‭compromise‬ ‭between‬ ‭i)‬
‭adding‬ ‭complexity‬ ‭to‬ ‭the‬ ‭land‬ ‭model,‬ ‭ii)‬ ‭having‬ ‭an‬‭observation‬‭operator‬‭that‬‭is‬‭not‬‭completely‬
‭consistent‬ ‭with‬ ‭the‬ ‭underlying‬ ‭model‬ ‭or,‬ ‭iii)‬ ‭accepting‬ ‭that‬ ‭some‬ ‭of‬ ‭the‬ ‭variability‬ ‭in‬ ‭the‬
‭observations‬ ‭themselves‬ ‭will‬ ‭not‬ ‭be‬ ‭resolved.‬ ‭In‬‭the‬‭examples‬‭of‬‭SIF‬‭and‬‭canopy‬‭reflectance,‬
‭both‬‭vary‬‭with‬‭the‬‭relative‬‭geometry‬‭of‬‭the‬‭sun‬‭and‬‭sensor‬‭-‬‭correctly‬‭capturing‬‭that‬‭directional‬
‭variability‬‭using‬‭an‬‭observation‬‭operator‬‭that‬‭is‬‭physically‬‭consistent‬‭with‬‭the‬‭description‬‭of‬‭the‬
‭radiative‬‭transfer‬‭regime‬‭implemented‬‭in‬‭global‬‭land‬‭surface‬‭models‬‭(which‬‭typically‬‭only‬‭predict‬
‭total‬ ‭fluxes,‬ ‭i.e.‬ ‭integrated‬ ‭across‬ ‭the‬ ‭viewing‬ ‭hemisphere)‬ ‭is‬ ‭not‬ ‭currently‬ ‭possible.‬
‭Nevertheless,‬‭the‬‭selection‬‭and‬‭processing‬‭of‬‭observation‬‭data‬‭can‬‭help‬‭mitigate‬‭some‬‭of‬‭these‬
‭issues.‬ ‭For‬ ‭example,‬ ‭space-time‬ ‭binning‬ ‭of‬ ‭space-borne‬ ‭SIF‬‭data‬‭across‬‭multiple‬‭observation‬
‭geometries‬ ‭can‬ ‭limit‬ ‭the‬ ‭impact‬ ‭of‬ ‭directional‬ ‭effects‬ ‭and‬ ‭potentially‬ ‭increase‬ ‭the‬ ‭consistency‬
‭between model assumptions and the observed variables.‬

‭As‬ ‭observation‬ ‭operators‬ ‭become‬ ‭more‬ ‭complex,‬ ‭especially‬ ‭in‬ ‭the‬ ‭case‬ ‭of‬ ‭radiative‬ ‭transfer‬
‭calculations,‬ ‭they‬ ‭also‬ ‭become‬ ‭more‬ ‭computationally‬ ‭expensive.‬ ‭This‬ ‭is‬ ‭a‬ ‭clear‬ ‭example‬ ‭of‬
‭where‬‭machine‬‭learning‬‭may‬‭offer‬‭a‬‭unique‬‭opportunity‬‭within‬‭DA‬‭applications,‬‭as‬‭discussed‬‭in‬
‭Sect. 4.3.‬

‭3.4 Tackling spatial and temporal heterogeneity‬
‭The‬ ‭large‬ ‭variability‬ ‭in‬ ‭the‬ ‭surface‬ ‭properties‬ ‭of‬ ‭terrestrial‬ ‭ecosystems,‬ ‭arising‬ ‭from‬ ‭diverse‬
‭climates,‬ ‭soil‬ ‭properties,‬ ‭and‬ ‭variations‬ ‭in‬ ‭plant‬ ‭and‬ ‭soil‬ ‭species‬ ‭composition,‬ ‭plasticity,‬ ‭and‬
‭evolution,‬ ‭is‬ ‭an‬ ‭additional‬ ‭challenge‬ ‭in‬ ‭LSM‬ ‭parameter‬ ‭estimation.‬‭Calibration‬‭of‬‭the‬‭model‬‭at‬
‭one‬ ‭location‬ ‭may‬ ‭not‬ ‭be‬ ‭applicable‬ ‭at‬ ‭another.‬ ‭Moreover,‬ ‭most‬‭LSMs‬‭are‬‭too‬‭computationally‬
‭demanding‬ ‭to‬ ‭support‬ ‭calibration‬ ‭across‬ ‭large‬ ‭spatial‬ ‭domains.‬ ‭As‬ ‭such,‬ ‭it‬ ‭is‬ ‭important‬ ‭to‬
‭develop‬‭strategies‬‭to‬‭ensure‬‭results‬‭offer‬‭a‬‭good‬‭compromise‬‭across‬‭different‬‭locations,‬‭as‬‭well‬
‭as perform rigorous evaluation checks against data not used in the calibration.‬

‭A‬‭common‬‭approach‬‭to‬‭tackle‬‭this‬‭spatial‬‭heterogeneity‬‭is‬‭to‬‭perform‬‭“multi-site”‬‭optimisations,‬
‭grouping‬‭sites‬‭and‬‭performing‬‭a‬‭single‬‭optimisation‬‭over‬‭this‬‭group‬‭to‬‭obtain‬‭a‬‭more‬‭generic‬‭set‬
‭of‬ ‭parameters.‬ ‭The‬ ‭multi-site‬ ‭approach‬ ‭has‬ ‭been‬ ‭shown‬ ‭to‬ ‭be‬ ‭very‬ ‭effective,‬ ‭at‬ ‭times‬
‭out-performing‬ ‭site-specific‬ ‭optimisations‬ ‭(Kuppel‬ ‭et‬ ‭al.,‬ ‭2012;‬ ‭Raoult‬ ‭et‬ ‭al.,‬ ‭2016)‬‭.‬ ‭Another‬
‭approach‬‭is‬‭to‬‭average‬‭the‬‭results‬‭of‬‭single-site‬‭optimisations.‬‭While‬‭usually‬‭less‬‭effective‬‭than‬
‭multi-site‬‭optimisations,‬‭this‬‭is‬‭often‬‭a‬‭more‬‭practical‬‭solution‬‭and‬‭can‬‭still‬‭result‬‭in‬‭an‬‭improved‬
‭parameter‬ ‭set.‬ ‭For‬ ‭example,‬ ‭Olivera-Guerra‬ ‭et‬ ‭al.‬ ‭(2024)‬ ‭found‬ ‭that‬ ‭the‬ ‭median‬ ‭values‬ ‭of‬
‭optimised parameters improved simulated land-surface temperature performance.‬

‭Both‬ ‭these‬ ‭approaches‬ ‭can‬ ‭be‬‭thought‬‭of‬‭as‬‭end-members‬‭(all‬‭sites‬‭the‬‭same‬‭versus‬‭all‬‭sites‬
‭different)‬ ‭in‬ ‭a‬ ‭continuum‬ ‭representing‬ ‭the‬‭statistical‬‭independence‬‭of‬‭calibrations‬‭across‬‭sites.‬
‭While‬ ‭only‬‭just‬‭beginning‬‭to‬‭be‬‭utilised‬‭to‬‭calibrate‬‭ecosystem‬‭models‬‭(Dokoohaki‬‭et‬‭al.,‬‭2022;‬
‭Fer,‬ ‭Shiklomanov,‬ ‭et‬‭al.,‬‭2021)‬‭,‬‭hierarchical‬‭models‬‭have‬‭a‬‭long‬‭history‬‭of‬‭use‬‭in‬‭ecology‬‭as‬‭a‬
‭way‬ ‭of‬ ‭capturing‬ ‭this‬ ‭continuum,‬ ‭allowing‬ ‭parameters‬ ‭to‬ ‭vary‬ ‭across‬‭space‬‭and‬‭through‬‭time,‬
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‭but‬ ‭constraining‬ ‭that‬ ‭variability‬ ‭with‬ ‭multivariate‬ ‭statistical‬‭models‬‭that‬‭describe‬‭that‬‭variability.‬
‭Since‬ ‭the‬ ‭across-site‬ ‭and‬ ‭within-site‬ ‭calibrations‬ ‭are‬ ‭fit‬ ‭simultaneously,‬ ‭this‬ ‭would‬ ‭allow‬ ‭LSM‬
‭models‬‭to‬‭“borrow‬‭strength”‬‭across‬‭sites‬‭(e.g.,‬‭reducing‬‭equifinality‬‭as‬‭described‬‭above)‬‭without‬
‭forcing‬ ‭parameters‬ ‭to‬ ‭be‬ ‭the‬ ‭same‬ ‭everywhere.‬ ‭Hierarchical‬ ‭models‬ ‭also‬ ‭provide‬ ‭a‬ ‭formal‬
‭framework‬ ‭for‬ ‭accounting‬ ‭for‬ ‭the‬ ‭fact‬ ‭that‬ ‭out-of-sample‬ ‭predictions‬ ‭are‬ ‭more‬ ‭uncertain‬
‭(because‬ ‭their‬ ‭parameter‬ ‭vectors‬ ‭need‬ ‭to‬ ‭be‬ ‭predicted)‬ ‭than‬ ‭in-sample‬ ‭predictions‬ ‭at‬ ‭sites‬
‭where‬‭parameter‬‭vectors‬‭are‬‭known.‬‭To‬‭date,‬‭existing‬‭hierarchical‬‭ecosystem‬‭model‬‭calibrations‬
‭have‬‭assumed‬‭a‬‭simple‬‭“random‬‭effects”‬‭structure‬‭(i.e.‬‭different‬‭sites‬‭are‬‭drawn‬‭from‬‭the‬‭same‬
‭across-site‬ ‭distribution),‬ ‭but‬ ‭there‬ ‭are‬ ‭important‬ ‭opportunities‬ ‭to‬ ‭explore‬ ‭hierarchical‬ ‭models‬
‭with‬ ‭across-site‬ ‭spatiotemporal‬ ‭covariances‬ ‭(i.e.,‬ ‭sites‬‭closer‬‭together‬‭should‬‭be‬‭more‬‭similar)‬
‭and across-site covariates (i.e., parameters that explain, and help predict, parameter variability).‬

‭A‬‭further‬‭alternative‬‭is‬‭the‬‭use‬‭of‬‭intermediate‬‭complexity‬‭models‬‭(e.g.,‬‭DALEC),‬‭which,‬‭due‬‭to‬
‭their‬ ‭reduced‬ ‭computational‬ ‭complexity,‬ ‭can‬ ‭retrieve‬ ‭parameters‬ ‭at‬ ‭the‬ ‭pixel‬ ‭scale‬ ‭utilising‬
‭spatially‬ ‭continuous‬ ‭information‬ ‭from‬ ‭Earth‬ ‭Observation‬ ‭(EO)‬ ‭data‬ ‭and‬ ‭thus‬ ‭derive‬ ‭unique‬
‭information‬‭about‬‭the‬‭spatial‬‭variability‬‭of‬‭key‬‭underlying‬‭parameters,‬‭such‬‭as‬‭tissue‬‭residence‬
‭times‬ ‭(Bloom‬ ‭et‬ ‭al.,‬ ‭2016)‬ ‭and‬ ‭the‬ ‭impact‬ ‭of‬ ‭fire‬ ‭(Exbrayat,‬ ‭Smallman,‬ ‭et‬ ‭al.,‬ ‭2018)‬‭.‬ ‭The‬
‭parameters‬‭and‬‭emergent‬‭ecosystem‬‭properties‬‭estimated‬‭from‬‭these‬‭models‬‭provide‬‭valuable‬
‭insights‬‭into‬‭the‬‭spatial‬‭variability‬‭and‬‭magnitude‬‭of‬‭parameters.‬‭This‬‭can‬‭reduce‬‭the‬‭parameter‬
‭space‬‭that‬‭needs‬‭to‬‭be‬‭searched‬‭when‬‭calibrating‬‭larger‬‭models.‬‭Furthermore,‬‭these‬‭optimised‬
‭parameters‬ ‭can‬ ‭be‬ ‭inserted‬ ‭into‬ ‭more‬ ‭complex‬ ‭models,‬ ‭enhancing‬ ‭their‬ ‭performance‬ ‭and‬
‭helping to better understand their internal dynamics‬‭(Caen et al., 2022)‬‭.‬

‭Similarly,‬‭the‬‭interannual‬‭variability‬‭of‬‭atmospheric‬‭conditions‬‭means‬‭we‬‭also‬‭need‬‭to‬‭be‬‭careful‬
‭which‬ ‭period‬ ‭is‬ ‭used‬ ‭for‬ ‭the‬ ‭assimilation.‬ ‭Ideally,‬ ‭we‬ ‭want‬ ‭to‬ ‭calibrate‬ ‭over‬ ‭multiple‬ ‭years‬ ‭to‬
‭capture‬‭both‬‭the‬‭seasonal‬‭cycle‬‭and‬‭this‬‭interannual‬‭variability,‬‭while‬‭still‬‭retaining‬‭a‬‭number‬‭of‬
‭years‬ ‭for‬ ‭evaluation‬ ‭(although‬ ‭using‬ ‭different‬ ‭sites‬ ‭for‬ ‭calibration‬ ‭and‬ ‭evaluation‬ ‭can‬ ‭help‬ ‭to‬
‭relax‬ ‭this‬ ‭latter‬ ‭requirement).‬ ‭However,‬ ‭in‬ ‭practice,‬ ‭we‬ ‭are‬ ‭often‬ ‭limited‬ ‭by‬ ‭short‬ ‭time‬ ‭series‬
‭(e.g.,‬ ‭only‬ ‭a‬ ‭few‬ ‭years‬ ‭for‬ ‭some‬ ‭in‬‭situ‬‭experiments‬‭and‬‭recently‬‭launched‬‭satellite‬‭missions),‬
‭data‬ ‭gaps,‬ ‭and‬ ‭the‬ ‭availability‬ ‭of‬ ‭meteorological‬‭forcing‬‭for‬‭corresponding‬‭periods,‬‭particularly‬
‭for‬‭in situ‬‭datasets.‬

‭3.5 Dealing with large and multiple observational datasets‬
‭Although‬ ‭EO‬ ‭instruments‬ ‭can‬ ‭provide‬ ‭global‬ ‭gridded‬ ‭datasets‬ ‭with‬ ‭which‬ ‭to‬ ‭calibrate‬ ‭the‬
‭models,‬ ‭fully‬ ‭exploiting‬ ‭these‬ ‭opportunities‬ ‭is‬ ‭challenging.‬ ‭Running‬ ‭experiments‬ ‭at‬ ‭the‬ ‭same‬
‭resolution‬‭as‬‭the‬‭satellite‬‭products‬‭(e.g.,‬‭500m‬‭MODIS‬‭resolution;‬‭Justice‬‭et‬‭al.,‬‭2002)‬‭requires‬
‭a‬ ‭lot‬ ‭of‬ ‭computational‬ ‭power‬ ‭and‬ ‭time,‬ ‭and‬ ‭we‬ ‭do‬ ‭not‬ ‭always‬ ‭have‬ ‭access‬ ‭to‬ ‭matching‬
‭meteorological‬ ‭forcing‬ ‭data.‬ ‭The‬ ‭resolution‬ ‭of‬ ‭products‬ ‭to‬ ‭be‬ ‭assimilated‬ ‭may‬ ‭also‬ ‭not‬ ‭be‬
‭meaningful‬ ‭for‬ ‭the‬ ‭objectives‬‭of‬‭the‬‭experiment.‬‭Additionally,‬‭when‬‭assimilating‬‭more‬‭than‬‭one‬
‭remote‬‭sensing‬‭data‬‭constraint,‬‭we‬‭must‬‭address‬‭multiple‬‭competing‬‭resolutions.‬‭This‬‭requires‬
‭decisions‬ ‭about‬ ‭scaling‬ ‭(see‬ ‭Sect.‬ ‭3.3),‬ ‭determining‬ ‭which‬ ‭products‬ ‭are‬ ‭to‬ ‭be‬ ‭upscaled‬
‭(aggregated)‬ ‭versus‬ ‭downscaled‬ ‭(interpolated).‬ ‭Generally,‬ ‭satellite‬ ‭products‬ ‭are‬ ‭scaled‬ ‭to‬
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‭match‬‭the‬‭chosen‬‭model‬‭grid,‬‭usually‬‭dictated‬‭by‬‭the‬‭resolution‬‭of‬‭the‬‭forcing‬‭data,‬‭although‬‭this‬
‭scaling can result in an over-generalisation or loss of information.‬

‭Furthermore,‬ ‭the‬ ‭quality‬ ‭of‬ ‭EO‬ ‭data‬ ‭can‬ ‭differ‬ ‭hugely‬ ‭across‬ ‭different‬ ‭regions‬ ‭since‬ ‭they‬ ‭are‬
‭impacted‬‭by‬‭atmospheric‬‭conditions‬‭(e.g.,‬‭cloud‬‭cover)‬‭and‬‭topography,‬‭as‬‭well‬‭as‬‭the‬‭different‬
‭data‬ ‭processing‬ ‭algorithms‬ ‭and‬ ‭calibration/validation‬ ‭strategies‬ ‭used‬ ‭to‬ ‭develop‬ ‭the‬ ‭different‬
‭products.‬ ‭This‬ ‭can‬ ‭lead‬ ‭to‬ ‭regional‬ ‭and‬ ‭biome‬ ‭biases‬ ‭in‬ ‭the‬ ‭products‬ ‭that‬ ‭are‬ ‭very‬ ‭hard‬ ‭to‬
‭circumvent‬ ‭due‬ ‭to‬ ‭measurement‬ ‭limitations,‬ ‭potentially‬ ‭generating‬ ‭structural‬ ‭model‬ ‭biases.‬
‭Therefore,‬ ‭for‬ ‭many‬ ‭LSMs,‬ ‭it‬ ‭is‬ ‭common‬ ‭to‬ ‭select‬ ‭representative‬ ‭pixels‬ ‭for‬ ‭optimisation‬‭(e.g.,‬
‭MacBean‬ ‭et‬ ‭al.,‬ ‭2015)‬‭,‬ ‭although‬ ‭defining‬ ‭what‬ ‭is‬ ‭representative‬ ‭is‬ ‭a‬ ‭challenge‬ ‭in‬ ‭itself.‬‭Once‬
‭selected,‬‭the‬‭representative‬‭pixel‬‭approach‬‭helps‬‭to‬‭i)‬‭reduce‬‭the‬‭dimensionality‬‭of‬‭the‬‭problem,‬
‭allowing‬ ‭for‬ ‭efficient‬ ‭and‬ ‭multi-data-stream‬ ‭calibrations,‬ ‭ii)‬ ‭focus‬ ‭on‬ ‭points‬ ‭with‬ ‭close‬ ‭to‬
‭homogenous‬ ‭coverage‬ ‭to‬ ‭be‬ ‭able‬ ‭to‬ ‭calibrate‬ ‭class-specific‬ ‭parameters‬ ‭(e.g.,‬‭plant‬‭functional‬
‭types),‬‭and‬‭iii)‬‭define‬‭a‬‭different‬‭evaluation‬‭set‬‭of‬‭pixels‬‭with‬‭which‬‭to‬‭assess‬‭the‬‭optimisations,‬
‭especially‬ ‭sites‬ ‭with‬ ‭additional‬ ‭ground‬ ‭data.‬ ‭After‬ ‭selecting‬ ‭representative‬ ‭pixels,‬ ‭multi-pixel‬
‭optimisations‬ ‭are‬ ‭performed‬‭(as‬‭described‬‭in‬‭Sect.‬‭3.4),‬‭focusing‬‭on‬‭estimating‬‭parameters‬‭for‬
‭different‬ ‭ecosystem/edaphic‬ ‭conditions‬ ‭by‬ ‭spanning‬ ‭the‬ ‭various‬ ‭model‬ ‭plant‬ ‭functional‬ ‭types‬
‭and soil textures all over the globe.‬

‭Another‬‭way‬‭to‬‭include‬‭more‬‭constraints‬‭to‬‭an‬‭optimisation‬‭is‬‭by‬‭calibrating‬‭against‬‭multiple‬‭data‬
‭streams.‬ ‭There‬ ‭is‬ ‭now‬ ‭an‬ ‭unprecedented‬ ‭wealth‬ ‭of‬ ‭in‬ ‭situ‬ ‭and‬ ‭EO‬ ‭data‬ ‭available,‬ ‭with‬ ‭even‬
‭more‬‭satellite‬‭missions‬‭and‬‭in‬‭situ‬‭field‬‭measurement‬‭sites‬‭being‬‭planned‬‭(Balsamo‬‭et‬‭al.,‬‭2018;‬
‭Ustin‬‭&‬‭Middleton,‬‭2021)‬‭.‬‭Different‬‭data‬‭streams‬‭offer‬‭information‬‭over‬‭different‬‭footprints‬‭and‬‭at‬
‭different‬ ‭spatial‬ ‭and‬ ‭temporal‬ ‭resolutions‬ ‭offering‬ ‭unique‬ ‭opportunities‬ ‭to‬ ‭constrain‬ ‭different‬
‭processes‬ ‭in‬ ‭the‬ ‭models.‬ ‭As‬ ‭LSMs‬ ‭become‬ ‭more‬ ‭complex‬ ‭through‬ ‭increased‬ ‭process‬
‭representation‬ ‭and‬ ‭greater‬ ‭interconnectedness‬ ‭between‬ ‭the‬ ‭different‬ ‭terrestrial‬ ‭cycles‬ ‭(e.g.,‬
‭water,‬ ‭energy,‬ ‭carbon,‬ ‭nitrogen),‬ ‭multi-data‬ ‭stream‬ ‭optimisations‬ ‭are‬ ‭becoming‬ ‭paramount‬ ‭to‬
‭provide‬‭adequate‬‭constraints‬‭since‬‭parameters‬‭are‬‭likely‬‭to‬‭impact‬‭different‬‭parts‬‭of‬‭the‬‭model.‬
‭By‬ ‭selecting‬ ‭only‬ ‭one‬ ‭specific‬ ‭data‬ ‭stream‬ ‭in‬ ‭an‬ ‭optimisation,‬ ‭we‬ ‭risk‬ ‭degrading‬ ‭the‬ ‭model’s‬
‭overall‬‭predictive‬‭capacity‬‭if‬‭some‬‭of‬‭the‬‭optimised‬‭parameters‬‭are‬‭loosely‬‭constrained‬‭(Bacour‬
‭et al., 2015, 2023)‬‭.‬

‭There‬ ‭are‬ ‭two‬ ‭possible‬ ‭approaches‬ ‭when‬ ‭assimilating‬ ‭multiple‬ ‭data‬ ‭streams.‬ ‭We‬ ‭can‬ ‭either‬
‭calibrate‬ ‭against‬ ‭each‬ ‭data‬ ‭stream‬ ‭in‬ ‭turn,‬ ‭often‬ ‭referred‬ ‭to‬ ‭as‬ ‭“stepwise”‬ ‭assimilation,‬ ‭or‬
‭include‬ ‭all‬ ‭data‬ ‭streams‬ ‭in‬ ‭one‬ ‭single‬ ‭optimisation,‬ ‭known‬ ‭as‬ ‭“simultaneous”‬ ‭assimilation.‬
‭Although‬ ‭mathematically‬ ‭equivalent‬ ‭when‬ ‭the‬ ‭posterior‬ ‭parameter‬ ‭uncertainties‬ ‭are‬ ‭properly‬
‭estimated‬ ‭and‬ ‭propagated‬ ‭in‬ ‭the‬ ‭stepwise‬ ‭case‬ ‭(MacBean‬ ‭et‬ ‭al.,‬ ‭2016;‬ ‭Peylin‬ ‭et‬ ‭al.,‬ ‭2016)‬‭,‬
‭simultaneous‬ ‭assimilation‬ ‭is‬ ‭often‬ ‭preferable,‬ ‭since‬ ‭it‬ ‭ensures‬ ‭consistency‬ ‭(Kaminski‬ ‭et‬ ‭al.,‬
‭2012)‬ ‭and‬ ‭avoids‬ ‭issues‬ ‭linked‬ ‭to‬ ‭accurately‬ ‭propagating‬ ‭the‬ ‭information‬ ‭gained‬ ‭about‬ ‭the‬
‭parameter‬ ‭values‬ ‭from‬ ‭one‬ ‭step‬ ‭to‬ ‭the‬ ‭next.‬ ‭However,‬ ‭simultaneous‬ ‭optimisations‬ ‭may‬ ‭not‬
‭always‬ ‭be‬ ‭practical,‬ ‭especially‬ ‭when‬ ‭running‬ ‭a‬ ‭computationally‬ ‭demanding‬ ‭LSM‬ ‭experiment,‬
‭which‬ ‭is‬ ‭why‬ ‭the‬ ‭stepwise‬ ‭approach‬ ‭is‬ ‭often‬‭the‬‭pragmatic‬‭choice.‬‭In‬‭particular,‬‭there‬‭may‬‭be‬
‭technical‬ ‭difficulties‬ ‭associated‬ ‭with‬ ‭the‬‭different‬‭number‬‭of‬‭observations‬‭for‬‭each‬‭data‬‭stream‬
‭and‬‭the‬‭characterisation‬‭of‬‭error‬‭correlations‬‭between‬‭them‬‭(Bacour‬‭et‬‭al.,‬‭2023)‬‭.‬‭Nevertheless,‬
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‭it‬ ‭must‬ ‭be‬ ‭stressed‬ ‭that‬ ‭issues‬‭with‬‭unbalanced‬‭data‬‭streams‬‭are‬‭not‬‭solely‬‭due‬‭to‬‭imbalance‬
‭but‬ ‭stem‬ ‭from‬ ‭the‬ ‭model's‬ ‭inability‬ ‭to‬ ‭accommodate‬ ‭both‬ ‭data‬ ‭sources‬‭when‬‭structural‬‭errors‬
‭exist‬ ‭in‬ ‭either‬ ‭the‬ ‭model‬ ‭or‬ ‭the‬ ‭data‬‭(Oberpriller‬‭et‬‭al.,‬‭2021)‬‭.‬‭In‬‭fact,‬‭properly‬‭quantifying‬‭and‬
‭accounting‬‭for‬‭the‬‭uncertainty‬‭in‬‭the‬‭model‬‭structural‬‭error‬‭and‬‭data‬‭bias‬‭leads‬‭to‬‭better‬‭results‬
‭than‬ ‭using‬ ‭ad-hoc‬ ‭methods‬ ‭such‬‭as‬‭reweighting‬‭different‬‭data‬‭streams‬‭(Cameron‬‭et‬‭al.,‬‭2022)‬
‭(see Sect. 3.2).‬

‭3.6‬ ‭Including‬ ‭the‬ ‭spin-up‬ ‭and‬ ‭transient‬ ‭historical‬ ‭period‬ ‭in‬ ‭the‬
‭assimilation to better constrain land carbon sink projections‬
‭Many‬ ‭LSM‬ ‭simulations‬ ‭include‬ ‭both‬ ‭a‬ ‭spin-up‬ ‭phase‬ ‭that‬ ‭brings‬ ‭the‬ ‭prognostic‬ ‭variables‬
‭including‬ ‭vegetation‬ ‭state,‬ ‭soil‬‭carbon‬‭pools,‬‭and‬‭soil‬‭moisture‬‭content‬‭into‬‭equilibrium‬‭prior‬‭to‬
‭the‬‭industrial‬‭revolution‬‭(c.‬‭1750).‬‭This‬‭is‬‭followed‬‭by‬‭a‬‭transient‬‭historical‬‭simulation‬‭where‬‭the‬
‭model‬ ‭is‬ ‭driven‬ ‭by‬ ‭changing‬ ‭climate‬ ‭forcing,‬ ‭rising‬ ‭CO‬‭2‬ ‭levels,‬ ‭nitrogen‬ ‭deposition,‬ ‭and‬
‭prescribed‬ ‭land‬‭management‬‭and‬‭land‬‭cover‬‭change‬‭since‬‭the‬‭equilibrium‬‭time‬‭point‬‭up‬‭to‬‭the‬
‭present‬‭day.‬‭Even‬‭with‬‭transient‬‭forcings,‬‭this‬‭historical‬‭period‬‭is‬‭likely‬‭not‬‭accurately‬‭simulated,‬
‭in‬‭part‬‭due‬‭to‬‭the‬‭lack‬‭of‬‭accurate‬‭historical‬‭climate‬‭and‬‭land‬‭use‬‭forcing‬‭data,‬‭in‬‭part‬‭because‬
‭“slow”‬ ‭carbon‬ ‭cycling‬ ‭parameters‬ ‭(e.g.‬ ‭carbon‬ ‭allocation‬ ‭or‬ ‭turnover‬ ‭rates)‬ ‭that‬ ‭control‬ ‭the‬
‭magnitude‬ ‭of‬ ‭the‬ ‭equilibrium‬ ‭carbon‬ ‭stock‬ ‭are‬ ‭poorly‬ ‭constrained,‬ ‭and‬ ‭in‬ ‭part‬ ‭because‬ ‭the‬
‭effects‬‭of‬‭key‬‭global‬‭change‬‭drivers‬‭on‬‭carbon‬‭storage‬‭(including‬‭recovery‬‭from‬‭disturbance)‬‭are‬
‭often‬ ‭missing‬ ‭or‬ ‭not‬ ‭reliably‬ ‭represented‬ ‭in‬ ‭models.‬ ‭The‬ ‭result‬ ‭is‬ ‭a‬ ‭large‬ ‭spread‬ ‭in‬ ‭the‬
‭magnitude‬ ‭and‬ ‭dynamics‬ ‭of‬ ‭various‬ ‭carbon‬ ‭pools‬ ‭and‬ ‭fluxes‬ ‭which‬ ‭underpin‬ ‭the‬ ‭current‬ ‭and‬
‭future projections of the land carbon sink‬‭(Arora et al., 2020; Friedlingstein et al., 2023)‬‭.‬

‭To‬ ‭obtain‬ ‭reliable‬ ‭estimates‬ ‭of‬ ‭the‬‭current‬‭or‬‭future‬‭land‬‭carbon‬‭sink‬‭and‬‭trend‬‭in‬‭atmospheric‬
‭CO‬‭2‬ ‭we‬ ‭need‬ ‭accurate‬ ‭simulations‬ ‭of‬ ‭global‬ ‭carbon‬‭stock‬‭trajectories‬‭(i.e.,‬‭changes‬‭in‬‭carbon‬
‭stocks).‬ ‭The‬ ‭trend‬ ‭in‬ ‭carbon‬ ‭stocks‬ ‭depends‬‭on‬‭the‬‭magnitude‬‭of‬‭carbon‬‭stocks‬‭post‬‭spin-up,‬
‭which‬ ‭in‬ ‭turn‬ ‭is‬ ‭strongly‬ ‭controlled‬ ‭by‬ ‭soil‬‭carbon‬‭pool‬‭turnover‬‭rates‬‭(Exbrayat,‬‭Bloom,‬‭et‬‭al.,‬
‭2018)‬‭(in‬‭addition‬‭to‬‭other‬‭parameters‬‭involved‬‭in‬‭soil‬‭carbon‬‭decomposition‬‭that‬‭moderate‬‭that‬
‭turnover‬‭rate).‬‭This‬‭is‬‭because‬‭for‬‭the‬‭CENTURY‬‭type‬‭model‬‭(Parton‬‭et‬‭al.,‬‭1987)‬‭used‬‭in‬‭many‬
‭LSMs,‬ ‭heterotrophic‬ ‭respiration‬ ‭is‬ ‭partly‬ ‭dependent‬ ‭on‬ ‭the‬ ‭size‬ ‭of‬ ‭carbon‬ ‭stocks.‬ ‭Global‬
‭sensitivity‬ ‭analyses‬ ‭(Sect.‬ ‭3.1)‬ ‭of‬ ‭soil‬ ‭carbon‬ ‭cycle‬ ‭models‬ ‭performed‬ ‭for‬ ‭multiple‬ ‭different‬
‭biomes‬ ‭worldwide‬ ‭have‬ ‭rarely‬ ‭been‬ ‭performed‬ ‭(though‬ ‭see‬ ‭Huang‬ ‭et‬ ‭al.,‬ ‭2018)‬ ‭due‬ ‭to‬ ‭the‬
‭computational‬ ‭expense‬ ‭of‬ ‭running‬ ‭long-timescale‬ ‭simulations‬ ‭needed‬ ‭to‬ ‭model‬ ‭carbon‬ ‭stock‬
‭trajectories.‬‭For‬‭the‬‭same‬‭reason,‬‭relatively‬‭few‬‭past‬‭parameter‬‭DA‬‭studies‬‭with‬‭computationally‬
‭expensive‬ ‭LSMs‬ ‭at‬ ‭multi-site‬ ‭or‬ ‭global‬ ‭scale‬ ‭have‬ ‭included‬ ‭these‬ ‭slow-acting‬ ‭carbon‬ ‭cycle‬
‭parameters‬ ‭in‬ ‭their‬ ‭assimilation‬ ‭experiments.‬ ‭However,‬ ‭we‬ ‭know‬ ‭from‬ ‭past‬ ‭DA‬ ‭studies‬ ‭that‬
‭optimising‬‭“fast”‬‭carbon‬‭cycle‬‭flux‬‭related‬‭parameters‬‭related‬‭to‬‭photosynthesis,‬‭phenology,‬‭and‬
‭ecosystem‬ ‭respiration‬ ‭has‬ ‭limited‬ ‭impact‬‭on‬‭regional‬‭to‬‭global‬‭scale‬‭carbon‬‭stocks‬‭(MacBean,‬
‭Bacour,‬‭et‬‭al.,‬‭2022)‬‭,‬‭as‬‭expected,‬‭while‬‭“slow”‬‭carbon‬‭cycle‬‭process‬‭parameters‬‭(such‬‭as‬‭those‬
‭related‬‭to‬‭carbon‬‭allocation‬‭to‬‭different‬‭biomass‬‭pools,‬‭or‬‭biomass‬‭and‬‭soil‬‭carbon‬‭pool‬‭turnover‬
‭times) are important for constraining long-term carbon stock trajectories‬‭(Thum et al., 2017)‬‭.‬
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‭To‬ ‭optimise‬ ‭the‬ ‭“slow”‬ ‭acting‬ ‭carbon‬ ‭cycle‬ ‭parameters‬ ‭involved‬ ‭in‬ ‭carbon‬ ‭allocation,‬‭biomass‬
‭turnover‬ ‭and‬ ‭soil‬ ‭carbon‬ ‭cycling,‬ ‭LSM‬ ‭assimilation‬ ‭experiments‬ ‭would‬ ‭need‬ ‭to‬ ‭include‬ ‭the‬
‭spin-up‬ ‭and‬ ‭transient‬ ‭runs‬ ‭in‬ ‭the‬ ‭assimilation,‬ ‭which‬ ‭would‬ ‭be‬ ‭prohibitively‬ ‭costly‬ ‭given‬ ‭the‬
‭computational‬‭cost‬‭of‬ ‭LSM‬‭runs.‬‭Therefore,‬‭neither‬‭the‬‭spin-up‬‭or‬‭transient‬‭period‬‭(prior‬‭to‬‭the‬
‭assimilation‬‭window)‬‭are‬‭usually‬‭included‬‭in‬‭LSM‬‭assimilations‬‭(Peylin‬‭et‬‭al.,‬‭2016;‬‭Raoult‬‭et‬‭al.,‬
‭2016;‬‭Schürmann‬‭et‬‭al.,‬‭2016)‬‭.‬‭This‬‭presents‬‭challenges‬‭for‬‭obtaining‬‭accurate‬‭model‬‭estimates‬
‭of‬ ‭carbon‬ ‭fluxes‬‭and‬‭stocks‬‭because‬‭an‬‭incorrect‬‭initial‬‭carbon‬‭stock‬‭will‬‭likely‬‭result‬‭in‬‭biased‬
‭parameter‬ ‭retrievals‬‭that‬‭are‬‭accounting‬‭for‬‭the‬‭model‬‭errors‬‭contributing‬‭to‬‭the‬‭incorrect‬‭initial‬
‭carbon‬‭stock.‬‭Note‬‭this‬‭is‬‭not‬‭the‬‭case‬‭for‬‭carbon‬‭cycle‬‭and‬‭ecosystem‬‭models‬‭that‬‭have‬‭much‬
‭faster‬‭run‬‭times‬‭and‬‭who‬‭have‬‭therefore‬‭been‬‭able‬‭to‬‭include‬‭biomass‬‭and‬‭soil‬‭carbon‬‭turnover‬
‭rates‬ ‭and‬ ‭other‬ ‭related‬ ‭“slow”‬ ‭carbon‬ ‭cycling‬ ‭parameters‬ ‭in‬ ‭their‬ ‭optimisations‬ ‭(e.g.,‬
‭CARDAMOM-DALEC –‬‭Bloom et al., 2016)‬‭.‬

‭To‬ ‭make‬ ‭up‬ ‭for‬ ‭incorrect‬ ‭carbon‬ ‭pool‬ ‭magnitudes‬ ‭and‬ ‭the‬ ‭fact‬ ‭that‬ ‭including‬ ‭spin-up‬ ‭and‬
‭transient‬ ‭in‬ ‭the‬ ‭assimilation‬ ‭is‬ ‭not‬ ‭yet‬ ‭feasible,‬ ‭most‬ ‭past‬ ‭carbon‬ ‭cycle‬‭parameter‬‭DA‬‭studies‬
‭have‬ ‭included‬ ‭scalars‬ ‭on‬ ‭the‬ ‭initial‬ ‭C‬ ‭pools‬ ‭in‬ ‭the‬ ‭optimisation,‬ ‭resulting‬ ‭in‬ ‭an‬‭improved‬‭fit‬‭to‬
‭NEE‬ ‭and‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭data‬ ‭(e.g.,‬ ‭𝜂,‬ ‭Carvalhais‬ ‭et‬ ‭al.‬ ‭(2008,‬ ‭2010)‬‭;‬ ‭K‬‭soilC‬ ‭in‬ ‭ORCHIDEE‬
‭PDA‬ ‭studies,‬ ‭e.g.,‬ ‭Peylin‬ ‭et‬ ‭al.‬ ‭(2016)‬‭;‬ ‭f‬‭slow‬ ‭in‬ ‭CCDAS‬ ‭studies,‬ ‭Castro-Morales‬ ‭et‬ ‭al.‬ ‭(2019;‬
‭Schürmann‬ ‭et‬‭al.,‬‭(2016)‬‭).‬‭These‬‭scalars‬‭alter‬‭the‬‭initial‬‭carbon‬‭pool‬‭size‬‭to‬‭account‬‭for‬‭model‬
‭and‬‭forcing‬‭errors‬‭mentioned‬‭above‬‭that‬‭contribute‬‭to‬‭incorrect‬‭soil‬‭carbon‬‭stock‬‭sizes.‬‭Studies‬
‭differ‬ ‭in‬ ‭how‬ ‭many‬ ‭such‬ ‭scalars‬‭to‬‭include,‬‭both‬‭in‬‭terms‬‭of‬‭which‬‭carbon‬‭pools‬‭to‬‭relax‬‭(all‬‭C‬
‭pools‬‭as‬‭in‬‭Santaren‬‭et‬‭al.‬‭(2007)‬‭versus‬‭slow‬‭and/or‬‭passive‬‭as‬‭in‬‭Peylin‬‭et‬‭al.‬‭(2016)‬‭,‬‭whether‬
‭to‬‭scale‬‭aboveground‬‭biomass‬‭or‬‭not‬‭(Carvalhais‬‭et‬‭al.,‬‭2010)‬‭,‬‭and‬‭to‬‭how‬‭many‬‭to‬‭use‬‭spatially‬
‭in‬ ‭global‬ ‭simulations‬ ‭(1‬ ‭in‬ ‭CCDAS,‬ ‭Castro-Morales‬ ‭et‬ ‭al.‬ ‭(2019),‬ ‭Schürmann‬ ‭et‬ ‭al.‬ ‭(2016)‬‭,‬
‭versus‬ ‭30‬ ‭regional‬ ‭factors‬ ‭used‬ ‭in‬ ‭ORCHIDEE‬ ‭studies,‬ ‭Bacour‬ ‭et‬ ‭al.‬ ‭(2023),‬ ‭Peylin‬ ‭et‬ ‭al.‬
‭(2016)‬‭).‬‭Other‬‭options‬‭for‬‭avoiding‬‭spin-up‬‭include‬‭directly‬‭initialising‬‭models‬‭with‬‭carbon‬‭stock‬
‭observations,‬ ‭and‬ ‭including‬ ‭parameter‬ ‭calibration‬ ‭within‬ ‭iterative‬ ‭state‬ ‭DA‬ ‭approaches.‬
‭However,‬ ‭in‬ ‭all‬ ‭of‬ ‭these‬ ‭cases,‬ ‭calibrating‬ ‭the‬ ‭“right”‬ ‭model‬ ‭parameters‬ ‭to‬ ‭the‬ ‭“wrong”‬‭model‬
‭pools‬ ‭is‬ ‭going‬ ‭to‬ ‭produce‬ ‭poor‬ ‭fits,‬ ‭complex‬ ‭sets‬ ‭of‬ ‭compensating‬ ‭errors,‬ ‭and‬ ‭potentially‬
‭incorrect hypothesis testing around alternative model structures.‬

‭Adjusting‬ ‭initial‬ ‭carbon‬ ‭stocks‬ ‭without‬ ‭optimising‬ ‭the‬ ‭“slow”‬ ‭carbon‬ ‭cycle‬‭parameters‬‭to‬‭which‬
‭the‬ ‭equilibrium‬ ‭carbon‬ ‭stock‬ ‭magnitude‬ ‭is‬ ‭sensitive‬‭is‬‭only‬‭useful‬‭if‬‭the‬‭purpose‬‭of‬‭the‬‭carbon‬
‭cycle‬ ‭assimilation‬ ‭experiment‬ ‭is‬ ‭to‬ ‭update‬ ‭model‬ ‭estimates‬ ‭of‬ ‭current‬ ‭carbon‬ ‭budgets.‬ ‭If‬ ‭the‬
‭desired‬‭goal‬‭is‬‭an‬‭accurate‬‭prediction‬‭of‬‭future‬‭carbon‬‭stock‬‭trajectories‬‭–‬‭for‬‭predicting‬‭carbon‬
‭mitigation‬ ‭potentials‬ ‭or‬ ‭carbon-climate‬ ‭feedbacks‬ ‭under‬ ‭different‬ ‭scenarios‬ ‭of‬ ‭climate‬ ‭and‬
‭disturbance‬‭trajectories‬‭–‬‭then‬‭simply‬‭adjusting‬‭initial‬‭carbon‬‭stocks‬‭is‬‭insufficient.‬‭In‬‭longer‬‭runs‬
‭(up‬ ‭to‬ ‭2100‬ ‭or‬ ‭2300)‬ ‭those‬ ‭“slow”‬ ‭carbon‬ ‭cycling‬ ‭parameters‬ ‭that‬ ‭resulted‬ ‭in‬ ‭the‬ ‭original‬
‭incorrect‬ ‭carbon‬ ‭stock‬ ‭magnitude‬‭will‬‭start‬‭to‬‭push‬‭the‬‭model‬‭back‬‭to‬‭that‬‭original‬‭(inaccurate)‬
‭equilibrium,‬ ‭resulting‬‭in‬‭an‬‭artificial‬‭trend‬‭in‬‭the‬‭modelled‬‭carbon‬‭pools‬‭(and‬‭resultant‬‭biases‬‭in‬
‭carbon‬‭fluxes‬‭and‬‭land‬‭carbon‬‭sink‬‭estimates).‬‭Thus,‬‭for‬‭long‬‭term‬‭projections‬‭of‬‭carbon-climate‬
‭feedbacks,‬‭all‬‭parameters‬‭that‬‭are‬‭important‬‭for‬‭carbon‬‭pool‬‭trajectories‬‭need‬‭to‬‭be‬‭included‬‭in‬
‭the‬‭assimilations.‬‭This‬‭means‬‭that‬‭longer‬‭time‬‭windows‬‭(lasting‬‭several‬‭hundreds‬‭to‬‭thousands‬
‭of‬‭years)‬‭governing‬‭the‬‭periods‬‭over‬‭which‬‭these‬‭“slower”‬‭carbon‬‭cycle‬‭parameters‬‭operate‬‭will‬

‭21‬‭/74‬

‭1‬

‭2‬

‭3‬

‭4‬

‭5‬

‭6‬

‭7‬

‭8‬

‭9‬

‭10‬

‭11‬

‭12‬

‭13‬

‭14‬

‭15‬

‭16‬

‭17‬

‭18‬

‭19‬

‭20‬

‭21‬

‭22‬

‭23‬

‭24‬

‭25‬

‭26‬

‭27‬

‭28‬

‭29‬

‭30‬

‭31‬

‭32‬

‭33‬

‭34‬

‭35‬

‭36‬

‭37‬

‭38‬

‭39‬

‭40‬

‭41‬

‭42‬

‭43‬

‭44‬

https://paperpile.com/c/qGqbia/8ZJe+16nh+Xpob
https://paperpile.com/c/qGqbia/8ZJe+16nh+Xpob
https://paperpile.com/c/qGqbia/96Hx
https://paperpile.com/c/qGqbia/RiBg+zzLY
https://paperpile.com/c/qGqbia/8ZJe
https://paperpile.com/c/qGqbia/Xpob+mju9
https://paperpile.com/c/qGqbia/Xpob+mju9
https://paperpile.com/c/qGqbia/WLQb
https://paperpile.com/c/qGqbia/8ZJe
https://paperpile.com/c/qGqbia/zzLY
https://paperpile.com/c/qGqbia/Xpob+mju9
https://paperpile.com/c/qGqbia/8ZJe+3omn
https://paperpile.com/c/qGqbia/8ZJe+3omn


‭need‬‭to‬‭be‬‭included‬‭in‬‭the‬‭assimilation‬‭experiments‬‭(Raiho‬‭et‬‭al.,‬‭2021;‬‭Thum‬‭et‬‭al.,‬‭2017)‬‭.‬‭This‬
‭will‬ ‭materially‬ ‭increase‬ ‭the‬ ‭computational‬ ‭cost‬ ‭of‬ ‭an‬ ‭experiment‬ ‭enough‬ ‭to‬ ‭be‬ ‭prohibitive‬ ‭for‬
‭computationally‬ ‭expensive‬ ‭LSMs‬ ‭with‬‭current‬‭simulation‬‭protocols‬‭and‬‭assimilation‬‭algorithms.‬
‭Methods‬ ‭for‬ ‭increasing‬ ‭the‬ ‭simulation‬ ‭speed‬ ‭(e.g.,‬ ‭model‬ ‭emulation‬ ‭-‬ ‭see‬ ‭Sect.‬ ‭4.2)‬ ‭will‬
‭potentially‬ ‭solve‬ ‭the‬ ‭issue‬ ‭of‬ ‭prohibitive‬ ‭computational‬ ‭cost‬ ‭for‬ ‭these‬ ‭longer-term‬ ‭assimilation‬
‭experiments.‬ ‭One‬ ‭opportunity‬ ‭for‬ ‭accelerating‬ ‭the‬ ‭spin-up‬‭is‬‭by‬‭adopting‬‭the‬‭matrix‬‭approach,‬
‭where‬‭carbon‬‭balance‬‭equations‬‭are‬‭expressed‬‭as‬‭a‬‭single‬‭matrix‬‭equation‬‭without‬‭altering‬‭any‬
‭processes‬ ‭of‬ ‭the‬ ‭original‬ ‭model,‬ ‭which‬ ‭has‬ ‭now‬ ‭been‬ ‭applied‬ ‭to‬ ‭multiple‬ ‭LSMs‬ ‭and‬ ‭used‬ ‭for‬
‭both‬ ‭parameter‬ ‭sensitivity‬ ‭analyses‬ ‭and‬ ‭data‬ ‭assimilation‬ ‭(Hararuk‬ ‭et‬ ‭al.,‬ ‭2014;‬ ‭Huang‬‭et‬‭al.,‬
‭2018;‬‭Luo‬‭et‬‭al.,‬‭2022;‬‭Tao‬‭et‬‭al.,‬‭2020,‬‭2024)‬‭.‬‭Intermediate‬‭complexity‬‭ecosystem‬‭models‬‭may‬
‭be‬ ‭able‬ ‭to‬ ‭assist‬ ‭by‬ ‭providing‬ ‭much‬‭constrained‬‭priors‬‭of‬‭soil‬‭carbon‬‭pool‬‭turnover‬‭times‬‭(and‬
‭other‬‭parameters‬‭to‬‭which‬‭equilibrium/initial‬‭carbon‬‭stock‬‭magnitude‬‭are‬‭sensitive)‬‭(Bloom‬‭et‬‭al.,‬
‭2016)‬‭.‬

‭This‬ ‭problem‬ ‭is‬ ‭specific‬ ‭to‬ ‭long-term,‬ ‭slowly‬ ‭changing‬ ‭carbon‬‭(and‬‭other‬‭nutrient‬‭like‬‭nitrogen‬
‭and‬ ‭phosphorus)‬ ‭stocks:‬ ‭e.g.,‬ ‭for‬ ‭water‬ ‭storage‬ ‭(e.g.,‬ ‭soil‬ ‭moisture),‬ ‭usually‬ ‭only‬‭a‬‭few‬‭years‬
‭are‬ ‭required‬ ‭either‬ ‭for‬ ‭spin-up‬ ‭or‬ ‭to‬ ‭adjust‬ ‭to‬ ‭a‬ ‭given‬ ‭perturbation.‬ ‭Therefore,‬ ‭for‬
‭hydrology-focused‬ ‭simulations‬‭both‬‭the‬‭spin-up‬‭and‬‭historical‬‭period‬‭spanning‬‭the‬‭perturbation‬
‭from‬‭equilibrium‬‭can‬‭be‬‭included‬‭in‬‭the‬‭experiment.‬‭In‬‭fact,‬‭by‬‭including‬‭this‬‭shorter‬‭spinup,‬‭the‬
‭assimilation‬ ‭also‬ ‭gives‬ ‭an‬ ‭estimate‬ ‭of‬ ‭the‬ ‭initial‬ ‭state‬ ‭(e.g.,‬ ‭soil‬ ‭moisture,‬ ‭Pinnington‬ ‭et‬ ‭al.,‬
‭(2021)‬‭;‬ ‭snow‬ ‭albedo,‬ ‭Raoult‬ ‭et‬ ‭al.‬ ‭(2023)‬‭).‬ ‭While‬ ‭carbon‬ ‭cycling‬ ‭is‬ ‭interlinked‬ ‭with‬‭water‬‭and‬
‭energy‬ ‭cycles,‬ ‭long-term‬ ‭carbon‬ ‭stock‬ ‭trajectories‬ ‭are‬ ‭insensitive‬ ‭to‬ ‭short-term‬ ‭fluctuations‬ ‭in‬
‭soil moisture.‬

‭In‬ ‭addition‬ ‭to‬ ‭longer‬ ‭assimilation‬ ‭time‬ ‭windows,‬ ‭assimilating‬ ‭measurements‬ ‭of‬ ‭aboveground‬
‭biomass‬‭or‬‭soil‬‭C‬‭stocks‬‭in‬‭conjunction‬‭with‬‭carbon‬‭fluxes‬‭provides‬‭a‬‭useful‬‭additional‬‭constraint‬
‭on‬ ‭carbon‬ ‭pools‬ ‭magnitude‬ ‭and‬ ‭trajectory‬ ‭(Thum‬ ‭et‬ ‭al.,‬ ‭2017)‬‭.‬ ‭However,‬ ‭data‬ ‭on‬ ‭soil‬ ‭carbon‬
‭stocks‬ ‭are‬ ‭relatively‬ ‭scarce‬ ‭compared‬ ‭to‬ ‭carbon‬ ‭fluxes,‬ ‭highly‬ ‭uncertain,‬ ‭and‬ ‭often‬ ‭difficult‬‭to‬
‭link‬ ‭to‬ ‭the‬ ‭conceptual‬ ‭carbon‬ ‭pools‬ ‭in‬ ‭many‬ ‭CENTURY-type‬ ‭models‬ ‭(Parton‬ ‭et‬ ‭al.‬ ‭(1987‬‭),‬
‭though‬ ‭this‬‭is‬‭changing,‬‭Abramoff‬‭et‬‭al.‬‭(2018)‬‭).‬‭Additionally,‬‭these‬‭datasets‬‭often‬‭contain‬‭only‬
‭one‬ ‭or‬ ‭a‬ ‭few‬ ‭time‬ ‭points.‬ ‭While‬ ‭assimilating‬‭some‬‭information‬‭on‬‭carbon‬‭stocks‬‭is‬‭better‬‭than‬
‭not‬ ‭having‬ ‭any‬ ‭data,‬ ‭constraining‬ ‭long-term‬ ‭changes‬ ‭in‬ ‭C‬ ‭stocks‬ ‭will‬ ‭require‬ ‭multiple‬
‭observations‬ ‭of‬ ‭both‬ ‭above-‬‭and‬‭belowground‬‭C‬‭stocks‬‭over‬‭time‬‭(Raiho‬‭et‬‭al.,‬‭2021)‬‭(or‬‭data‬
‭representing‬‭rates‬‭of‬‭carbon‬‭cycling)‬‭in‬‭addition‬‭to‬‭nighttime‬‭and‬‭soil‬‭respiration‬‭data‬‭that‬‭so‬‭far‬
‭have‬ ‭typically‬ ‭not‬ ‭been‬ ‭utilised‬ ‭in‬ ‭LSM‬ ‭DA‬ ‭studies.‬ ‭Just‬ ‭how‬ ‭long‬ ‭a‬ ‭time‬ ‭series‬ ‭we‬ ‭need‬ ‭to‬
‭include‬ ‭to‬ ‭accurately‬ ‭estimate‬ ‭slow‬ ‭carbon‬ ‭cycle‬ ‭parameters‬ ‭will‬ ‭likely‬ ‭depend‬ ‭upon‬ ‭which‬
‭parameters‬ ‭are‬ ‭important‬ ‭for‬ ‭estimating‬‭future‬‭carbon‬‭stock‬‭trajectories‬‭over‬‭the‬‭timescales‬‭of‬
‭interest‬ ‭and‬ ‭the‬ ‭uncertainties‬‭associated‬‭with‬‭observations.‬‭More‬‭parameter‬‭sensitivity‬‭studies‬
‭are‬‭needed‬‭to‬‭assess‬‭which‬‭slow‬‭carbon‬‭cycling‬‭parameters‬‭control‬‭carbon‬‭stock‬‭trajectories‬‭at‬
‭different‬ ‭temporal‬ ‭scales‬ ‭(Raczka‬ ‭et‬ ‭al.,‬ ‭2018)‬‭.‬ ‭Ideally,‬ ‭these‬ ‭sensitivity‬ ‭studies‬ ‭should‬ ‭be‬
‭performed‬ ‭with‬ ‭different‬ ‭scenarios‬ ‭of‬ ‭global‬ ‭change‬ ‭drivers,‬ ‭as‬ ‭changing‬ ‭inputs‬ ‭may‬‭alter‬‭the‬
‭relative‬ ‭importance‬ ‭of‬ ‭slow‬ ‭carbon‬ ‭cycling‬ ‭parameters.‬ ‭The‬ ‭community‬ ‭can‬ ‭learn‬ ‭from‬ ‭the‬
‭calibration‬ ‭and‬ ‭validation‬ ‭activities‬ ‭of‬ ‭soil‬ ‭biogeochemical‬ ‭models‬ ‭being‬ ‭approved‬ ‭for‬ ‭use‬ ‭in‬
‭voluntary carbon markets‬‭(Mathers et al., 2023)‬‭.‬
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‭3.7 Choice and implementation of minimisation algorithms‬

‭To‬ ‭perform‬ ‭optimisations‬ ‭effectively,‬ ‭careful‬ ‭consideration‬ ‭must‬ ‭be‬ ‭given‬ ‭to‬ ‭the‬ ‭choice‬ ‭of‬
‭algorithm‬ ‭and‬ ‭its‬ ‭implementation.‬ ‭As‬ ‭discussed‬ ‭in‬ ‭Sect.‬ ‭2,‬ ‭various‬ ‭algorithms‬ ‭are‬ ‭available,‬
‭each‬‭with‬‭distinct‬‭characteristics,‬‭such‬‭as‬‭local‬‭versus‬‭global‬‭optimisation,‬‭each‬‭having‬‭different‬
‭computational‬ ‭demands.‬ ‭Additionally,‬ ‭every‬ ‭algorithm‬ ‭comes‬ ‭with‬ ‭a‬ ‭variety‬ ‭of‬ ‭configurable‬
‭options.‬‭For‬‭instance,‬‭a‬‭Genetic‬‭Algorithm‬‭implementation‬‭by‬‭(Scrucca,‬‭2013)‬‭offers‬‭a‬‭range‬‭of‬
‭functions‬ ‭for‬ ‭parent‬ ‭selection‬ ‭(6‬ ‭options),‬ ‭crossover‬ ‭(5‬ ‭options),‬ ‭and‬ ‭mutation‬ ‭(3‬ ‭options),‬
‭resulting‬ ‭in‬ ‭90‬ ‭possible‬ ‭combinations.‬ ‭Users‬ ‭can‬ ‭also‬ ‭adjust‬ ‭crossover‬ ‭and‬ ‭mutation‬
‭probabilities.‬‭The‬‭success‬‭of‬‭the‬‭optimisation‬‭process‬‭greatly‬‭depends‬‭on‬‭how‬‭the‬‭optimisation‬
‭is‬ ‭implemented,‬ ‭which‬ ‭may‬ ‭vary‬ ‭on‬ ‭a‬ ‭case-by-case‬ ‭basis.‬ ‭Systematically‬ ‭testing‬ ‭all‬ ‭possible‬
‭combinations‬‭is‬‭unfeasible‬‭due‬‭to‬‭the‬‭large‬‭computational‬‭demand‬‭of‬‭an‬‭LSM.‬‭A‬‭more‬‭efficient‬
‭approach‬ ‭is‬ ‭to‬ ‭use‬ ‭an‬ ‭emulator‬ ‭(see‬ ‭Sect.‬ ‭4.1)‬ ‭rather‬ ‭than‬ ‭an‬ ‭LSM‬ ‭to‬ ‭find‬ ‭an‬ ‭optimal‬
‭experimental‬‭design‬‭(Dagon‬‭et‬‭al.,‬‭2020)‬‭;‬‭once‬‭the‬‭design‬‭has‬‭been‬‭identified,‬‭the‬‭optimisation‬
‭can be carried out using the LSM.‬

‭Furthermore,‬ ‭for‬ ‭gradient-based‬ ‭methods,‬ ‭implementing‬ ‭and‬ ‭maintaining‬ ‭the‬ ‭tangent‬‭linear‬‭or‬
‭adjoint‬‭model‬‭is‬‭a‬‭huge‬‭challenge‬‭in‬‭LSM‬‭DA.‬‭For‬‭complex‬‭LSMs,‬‭which‬‭are‬‭historically‬‭coded‬
‭in‬ ‭Fortran,‬ ‭the‬ ‭tangent‬ ‭linear‬ ‭and‬ ‭adjoint‬ ‭models‬ ‭can‬‭take‬‭years‬‭to‬‭develop,‬‭even‬‭when‬‭using‬
‭automatic‬ ‭differentiation‬ ‭software,‬ ‭since‬ ‭the‬ ‭code‬ ‭first‬ ‭needs‬ ‭to‬ ‭be‬ ‭cleaned‬ ‭and‬ ‭structural‬
‭adjustments‬ ‭need‬ ‭to‬ ‭be‬ ‭made‬ ‭to‬ ‭ensure‬ ‭the‬ ‭code‬ ‭is‬ ‭differentiable‬ ‭without‬ ‭changing‬ ‭the‬
‭fundamental‬ ‭physics.‬ ‭For‬ ‭example,‬ ‭this‬ ‭may‬ ‭require‬ ‭replacing‬ ‭look-up‬ ‭tables‬ ‭with‬ ‭their‬
‭continuous‬ ‭formulations‬ ‭and‬ ‭reformulating‬ ‭minimum‬ ‭and‬ ‭maximum‬ ‭calculations‬ ‭to‬ ‭allow‬ ‭a‬
‭smooth‬ ‭transition‬ ‭at‬ ‭the‬‭edge‬‭(Schürmann‬‭et‬‭al.,‬‭2016)‬‭.‬‭The‬‭years‬‭taken‬‭to‬‭derive‬‭the‬‭tangent‬
‭linear/adjoint‬ ‭models‬ ‭mean‬ ‭they‬ ‭quickly‬ ‭become‬ ‭outdated,‬ ‭especially‬ ‭with‬ ‭big‬ ‭community‬
‭models‬ ‭like‬‭JULES‬‭and‬‭ORCHIDEE,‬‭where‬‭new‬‭processes‬‭are‬‭added‬‭approximately‬‭every‬‭six‬
‭months.‬ ‭For‬ ‭JULES,‬ ‭the‬ ‭adjoint‬ ‭was‬ ‭developed‬ ‭for‬ ‭v2.2‬ ‭of‬ ‭the‬ ‭model‬ ‭(Raoult‬ ‭et‬ ‭al.,‬ ‭2016)‬‭,‬
‭whereas‬ ‭JULES‬ ‭is‬ ‭currently‬ ‭at‬ ‭v7.3‬ ‭at‬ ‭the‬ ‭time‬ ‭of‬ ‭writing.‬ ‭Similarly,‬ ‭while‬ ‭the‬ ‭tangent‬ ‭linear‬
‭exists‬‭for‬‭ORCHIDEE,‬‭it‬‭exists‬‭for‬‭an‬‭old‬‭version‬‭of‬‭the‬‭model‬‭(AR5)‬‭that‬‭predates‬‭the‬‭addition‬
‭of‬ ‭a‬ ‭multi-layered‬ ‭soil‬ ‭hydrology‬ ‭scheme‬ ‭and‬ ‭nitrogen‬ ‭cycle.‬ ‭To‬ ‭address‬ ‭this‬ ‭issue,‬ ‭the‬
‭ORCHIDEE‬ ‭DA‬ ‭team‬ ‭has‬ ‭been‬ ‭developing‬ ‭a‬ ‭tool‬ ‭to‬ ‭do‬ ‭the‬ ‭required‬ ‭preprocessing‬ ‭of‬ ‭any‬
‭version‬ ‭of‬ ‭ORCHIDEE‬ ‭so‬ ‭the‬ ‭tangent‬ ‭linear‬ ‭version‬ ‭of‬ ‭the‬ ‭model‬‭can‬‭be‬‭easily‬‭derived‬‭using‬
‭Transformation‬ ‭of‬ ‭Algorithms‬ ‭in‬ ‭Fortran‬ ‭(Giering,‬ ‭2010)‬‭.‬ ‭On‬ ‭the‬ ‭other‬ ‭hand,‬ ‭BETHY’s‬ ‭lower‬
‭complexity‬ ‭has‬ ‭allowed‬ ‭it‬ ‭to‬ ‭be‬ ‭kept‬ ‭compliant‬ ‭with‬ ‭automatic‬ ‭differentiation‬ ‭software‬ ‭for‬
‭decades,‬‭which‬‭provided‬‭efficient‬‭derivative‬‭code‬‭of‬‭the‬‭up-to-date‬‭version‬‭of‬‭the‬‭model.‬‭This‬‭is‬
‭also‬ ‭the‬ ‭case‬ ‭for‬ ‭its‬‭successor‬‭D&B‬‭(Knorr‬‭et‬‭al.,‬‭2024)‬‭,‬‭which‬‭is‬‭the‬‭model‬‭component‬‭of‬‭the‬
‭European‬ ‭Space‬ ‭Agency‬ ‭supported‬ ‭TCASS‬ ‭system,‬ ‭and‬ ‭for‬ ‭the‬ ‭Nanjing‬ ‭University‬ ‭Carbon‬
‭Assimilation‬ ‭System‬ ‭(NUCAS,‬ ‭Zhu‬ ‭et‬ ‭al.,‬ ‭2023)‬‭.‬ ‭Alternatively,‬ ‭models‬ ‭written‬ ‭directly‬ ‭in‬ ‭an‬
‭auto-differentiable‬ ‭language‬‭(Julia‬‭or‬‭python-JAX;‬‭see‬‭Sect.‬‭5.4)‬‭alleviate‬‭this‬‭issue‬‭(Gelbrecht‬
‭et‬ ‭al.,‬ ‭2023;‬ ‭C.‬ ‭Shen‬ ‭et‬ ‭al.,‬ ‭2023)‬‭.‬ ‭Although‬ ‭these‬ ‭languages‬ ‭have‬ ‭slower‬ ‭computational‬
‭performance‬ ‭than‬ ‭Fortran,‬ ‭these‬ ‭new‬ ‭languages‬ ‭often‬ ‭also‬ ‭facilitate‬ ‭the‬ ‭use‬ ‭of‬ ‭graphic‬
‭processing units (GPU), e.g., through packages like pyTorch‬‭(Paszke et al., 2019)‬‭.‬
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‭As‬‭discussed‬‭in‬‭Sect.‬‭2,‬‭in‬‭the‬‭absence‬‭of‬‭the‬‭tangent‬‭linear‬‭or‬‭adjoint‬‭model,‬‭one‬‭can‬‭use‬‭finite‬
‭differences.‬ ‭However,‬ ‭this‬ ‭necessitates‬ ‭the‬ ‭selection‬ ‭of‬ ‭an‬ ‭appropriate‬ ‭step‬ ‭size‬ ‭for‬‭accuracy‬
‭and‬‭convergence‬‭speed,‬‭which‬‭will‬‭differ‬‭based‬‭on‬‭the‬‭sensitivities‬‭of‬‭the‬‭parameter‬‭estimated.‬
‭Other‬ ‭methods‬ ‭to‬‭bypass‬‭the‬‭need‬‭for‬‭tangent‬‭linear‬‭and‬‭adjoint‬‭models‬‭include‬‭LAVENDAR's‬
‭ensemble‬‭4DVar‬‭approach‬‭(Pinnington‬‭et‬‭al.,‬‭2020)‬ ‭or‬‭the‬‭use‬‭of‬‭emulators,‬‭which‬‭can‬‭be‬‭used‬
‭to‬ ‭either‬ ‭avoid‬ ‭gradient-based‬ ‭approaches‬ ‭in‬ ‭favour‬ ‭of‬ ‭Monte‬ ‭Carlo‬ ‭ones,‬ ‭make‬ ‭numerical‬
‭approximations‬ ‭of‬ ‭gradients‬ ‭viable,‬ ‭or‬ ‭both‬ ‭(e.g.,‬ ‭Hamiltonian‬ ‭MCMC).‬ ‭However,‬ ‭these‬
‭algorithms‬‭also‬‭come‬‭with‬‭a‬‭number‬‭of‬‭hyperparameters‬‭that‬‭need‬‭to‬‭be‬‭selected‬‭including‬‭the‬
‭number of ensembles and convergence criteria.‬

‭4.‬ ‭Opportunities‬ ‭through‬ ‭machine‬ ‭learning‬ ‭for‬
‭parameter estimation‬
‭Despite‬ ‭the‬ ‭challenges‬‭and‬‭knowledge‬‭gaps‬‭discussed‬‭above,‬‭our‬‭community‬‭has‬‭never‬‭been‬
‭in‬‭a‬‭better‬‭position‬‭to‬‭calibrate‬‭land‬‭surface‬‭models‬‭and‬‭rigorously‬‭diagnose‬‭their‬‭uncertainties.‬
‭We‬ ‭now‬ ‭have‬ ‭access‬ ‭to‬ ‭large‬ ‭observational‬ ‭datasets‬ ‭at‬ ‭high‬ ‭spatio-temporal‬ ‭resolutions‬ ‭and‬
‭increased‬‭computational‬‭capacity‬‭and‬‭efficiency.‬‭These‬‭factors,‬‭combined‬‭with‬‭recent‬‭advances‬
‭in machine learning (ML), potentially allow us to make significant progress in model calibration.‬

‭The‬ ‭recent‬ ‭surge‬ ‭in‬ ‭ML‬ ‭has‬ ‭been‬ ‭evident‬ ‭in‬ ‭every‬ ‭aspect‬ ‭of‬ ‭society‬ ‭with‬ ‭the‬ ‭most‬ ‭relevant‬
‭examples‬‭coming‬‭from‬‭numerical‬‭weather‬‭prediction‬‭(Lam‬‭et‬‭al.,‬‭2023)‬‭or‬‭remote‬‭sensing‬‭(Lary‬
‭et‬‭al.,‬‭2016)‬‭.‬‭These‬‭examples‬‭can‬‭help‬‭us‬‭identify‬‭ways‬‭in‬‭which‬‭ML‬‭can‬‭assist‬‭with‬‭land‬‭PDA.‬
‭In‬‭this‬‭section,‬‭we‬‭specifically‬‭focus‬‭on‬‭how‬‭ML‬‭can‬‭help‬‭us‬‭address‬‭the‬‭current‬‭challenges‬‭and‬
‭limitations‬‭in‬‭land‬‭PDA‬‭outlined‬‭above,‬‭as‬‭well‬‭as‬‭areas‬‭where‬‭ML‬‭has‬‭the‬‭potential‬‭to‬‭improve‬
‭the‬‭DA‬‭workflow‬‭(Fig.‬‭1).‬‭With‬‭the‬‭large‬‭number‬‭of‬‭studies‬‭currently‬‭being‬‭published‬‭in‬‭the‬‭field‬
‭of‬‭machine‬‭learning,‬‭we‬‭only‬‭provide‬‭a‬‭short‬‭overview‬‭of‬‭the‬‭relevant‬‭literature.‬‭In‬‭the‬‭context‬‭of‬
‭ML‬ ‭for‬‭PDA,‬‭we‬‭can‬‭broadly‬‭group‬‭the‬‭existing‬‭studies‬‭and‬‭applications‬‭into‬‭four‬‭categories:‬‭i)‬
‭the‬ ‭use‬ ‭of‬ ‭ML‬ ‭to‬ ‭emulate‬ ‭the‬ ‭relationship‬ ‭between‬ ‭LSM‬ ‭parameters‬ ‭and‬ ‭its‬ ‭outputs‬ ‭or‬
‭performance‬‭(Sect.‬‭4.1),‬‭ii)‬‭the‬‭creation‬‭of‬‭‘hybrid‬‭models’‬‭in‬‭which‬‭ML‬‭replaces‬‭or‬‭complements‬
‭a‬ ‭component‬ ‭of‬ ‭a‬ ‭larger‬ ‭LSM‬ ‭(Sect.‬ ‭4.2),‬ ‭iii)‬ ‭the‬ ‭use‬ ‭of‬ ‭ML‬ ‭to‬ ‭improve‬ ‭or‬ ‭pre-process‬
‭observation‬‭datasets‬‭prior‬‭to‬‭their‬‭use‬‭in‬‭PDA‬‭(Sect.‬‭4.3),‬‭and‬‭iv)‬‭the‬‭use‬‭of‬‭ML‬‭to‬‭optimise‬‭the‬
‭parameter estimation process itself (Sect. 4.4).‬
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‭Figure 1‬‭: Examples of where ML can facilitate each part of the land surface model PDA workflow‬

‭4.1 Parameter perturbation emulators‬
‭The‬ ‭computational‬ ‭cost‬ ‭of‬ ‭high-complexity‬ ‭LSMs‬ ‭hinders‬ ‭the‬ ‭use‬‭of‬‭the‬‭more‬‭computationally‬
‭demanding‬‭PDA‬‭techniques‬‭such‬‭as‬‭MCMC.‬‭However,‬‭machine‬‭learning‬‭methods‬‭can‬‭mitigate‬
‭a‬ ‭portion‬ ‭of‬ ‭these‬ ‭computational‬ ‭burdens.‬ ‭By‬ ‭building‬ ‭a‬ ‭statistical‬ ‭relationship‬ ‭between‬ ‭input‬
‭parameter‬ ‭settings‬ ‭and‬ ‭the‬ ‭LSM‬ ‭output‬ ‭or‬ ‭an‬ ‭aggregate‬ ‭of‬ ‭the‬‭LSM‬‭output‬‭(for‬‭instance‬‭over‬
‭time‬ ‭or‬ ‭space),‬ ‭the‬ ‭LSM‬ ‭output‬ ‭can‬ ‭be‬ ‭estimated‬ ‭for‬ ‭a‬ ‭new‬ ‭set‬ ‭of‬ ‭input‬ ‭parameters.‬ ‭The‬
‭statistical‬ ‭relationship‬ ‭serves‬ ‭as‬ ‭a‬ ‭computationally‬ ‭efficient‬ ‭surrogate‬ ‭model‬‭for‬‭the‬‭expensive‬
‭LSM‬ ‭and‬ ‭is‬ ‭most‬ ‭frequently‬ ‭called‬ ‭an‬ ‭emulator‬ ‭(although‬ ‭this‬ ‭term‬ ‭is‬ ‭not‬ ‭exclusive‬ ‭to‬ ‭this‬
‭application),‬‭while‬‭surrogate,‬‭meta-model,‬‭or‬‭reduced-order‬‭model‬‭are‬‭also‬‭used‬‭to‬‭refer‬‭to‬‭this‬
‭tool.‬ ‭Indeed,‬ ‭emulators‬ ‭already‬ ‭have‬ ‭a‬ ‭rich‬ ‭history‬ ‭in‬ ‭climate‬ ‭sciences‬ ‭(Knutti‬ ‭et‬ ‭al.,‬ ‭2003;‬
‭Sanderson et al., 2008; Watson-Parris, 2021)‬‭.‬

‭Parameter Sampling Strategies‬
‭The‬ ‭training‬‭of‬‭an‬‭emulator‬‭requires‬‭an‬‭ensemble‬‭of‬‭LSM‬‭simulations‬‭with‬‭perturbations‬‭to‬‭the‬
‭input‬‭parameters‬‭often‬‭called‬‭a‬‭perturbed‬‭parameter‬‭ensemble‬‭(PPE,‬‭see‬‭McNeall‬‭et‬‭al.‬‭(2024)‬
‭and‬‭Kennedy‬‭et‬‭al.‬‭(2024)‬‭for‬‭PPEs‬‭constructed‬‭for‬‭JULES‬‭and‬‭CLM,‬‭respectively).‬‭The‬‭design‬
‭of‬ ‭the‬ ‭initial‬ ‭PPE‬ ‭depends‬ ‭on‬ ‭the‬ ‭intended‬ ‭use;‬ ‭for‬ ‭uncertainty‬ ‭quantification,‬ ‭it‬ ‭is‬ ‭often‬
‭preferable‬ ‭to‬ ‭sparsely‬ ‭sample‬ ‭the‬ ‭entire‬ ‭parameter‬ ‭space‬ ‭using‬ ‭Latin‬ ‭hypercube‬ ‭sampling‬
‭(McKay‬‭et‬‭al.,‬‭1979)‬‭.‬‭However,‬‭for‬‭calibration‬‭applications,‬‭it‬‭can‬‭be‬‭more‬‭cost‬‭effective‬‭to‬‭use‬‭a‬
‭non-random‬‭and‬‭targeted‬‭sampling‬‭strategy,‬‭such‬‭as‬‭active‬‭learning‬‭which‬‭tries‬‭to‬‭optimise‬‭the‬
‭selection‬‭of‬‭the‬‭next‬‭sample‬‭(e.g.,‬‭Zhao‬‭&‬‭Kowalski,‬‭2022)‬‭.‬‭Alternatively,‬‭an‬‭Ensemble‬‭Kalman‬
‭Filter‬ ‭approach‬ ‭(Evensen,‬ ‭2003)‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭place‬ ‭the‬ ‭initial‬ ‭design‬ ‭points‬ ‭in‬ ‭regions‬ ‭of‬
‭significant‬ ‭posterior‬ ‭mass‬ ‭to‬‭optimise‬‭the‬‭calibration‬‭process‬‭(e.g.,‬‭(Cleary‬‭et‬‭al.,‬‭2021)‬‭.‬‭When‬
‭building‬‭emulators‬‭for‬‭model‬‭calibration‬‭it‬‭can‬‭be‬‭particularly‬‭effective‬‭to‬‭treat‬‭this‬‭as‬‭an‬‭iterative‬
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‭design‬ ‭process,‬ ‭whereby‬ ‭an‬ ‭initial‬ ‭set‬ ‭of‬ ‭parameter‬ ‭vectors‬ ‭(e.g.,‬ ‭Latin‬‭hypercube)‬‭is‬‭used‬‭to‬
‭generate‬‭a‬‭rough‬‭idea‬‭of‬‭where‬‭in‬‭parameter‬‭space‬‭the‬‭optimum‬‭lies,‬‭then‬‭additional‬‭parameter‬
‭vectors‬ ‭are‬ ‭sampled‬ ‭from‬ ‭this‬ ‭region,‬ ‭refining‬ ‭the‬ ‭emulator‬ ‭in‬ ‭a‬ ‭way‬‭conceptually‬‭similar‬‭to‬‭a‬
‭nested‬‭grid‬‭in‬‭parameter‬‭space‬‭(Fer‬‭et‬‭al.,‬‭2018)‬‭.‬‭How‬‭to‬‭optimally‬‭propose‬‭points‬‭in‬‭parameter‬
‭space remains an important research question.‬

‭Emulation Methods‬
‭There‬ ‭are‬ ‭many‬ ‭ML‬ ‭methods‬ ‭appropriate‬ ‭for‬ ‭emulating‬ ‭the‬ ‭LSM‬ ‭response‬ ‭to‬ ‭parameter‬
‭modifications.‬‭When‬‭it‬‭comes‬‭to‬‭the‬‭calibration‬‭problem‬‭specifically,‬‭an‬‭alternative‬‭to‬‭emulating‬
‭the‬‭LSM‬‭output‬‭is‬‭to‬‭directly‬‭emulate‬‭the‬‭cost‬‭function‬‭itself‬‭(i.e.,‬‭the‬‭response‬‭surface‬‭of‬‭model‬
‭error‬ ‭as‬ ‭a‬ ‭function‬ ‭of‬ ‭parameter‬ ‭value)‬ ‭which‬ ‭is‬ ‭much‬ ‭lower‬ ‭dimensional‬ ‭and‬ ‭often‬ ‭much‬
‭smoother‬ ‭that‬ ‭the‬‭model‬‭output‬‭itself‬‭(Cheng‬‭et‬‭al.,‬‭2023,‬‭2024;‬‭Dagon‬‭et‬‭al.,‬‭2020;‬‭Fer‬‭et‬‭al.,‬
‭2018; Fer, Shiklomanov, et al., 2021)‬‭.‬

‭Gaussian‬ ‭processes‬ ‭are‬ ‭commonly‬ ‭applied‬ ‭as‬ ‭they‬ ‭are‬ ‭well-suited‬ ‭to‬ ‭interpolate‬ ‭non-linear‬
‭surfaces‬‭in‬‭data-scarce‬‭settings‬‭and‬‭moreover‬‭provide‬‭a‬‭measure‬‭of‬‭prediction‬‭uncertainty‬‭that‬
‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭quantify‬ ‭the‬ ‭emulator‬ ‭uncertainty.‬ ‭However,‬ ‭since‬ ‭the‬ ‭computational‬ ‭cost‬ ‭of‬
‭Gaussian‬ ‭processes‬ ‭dramatically‬ ‭increases‬ ‭with‬ ‭the‬‭size‬‭of‬‭the‬‭dataset,‬‭they‬‭are‬‭less‬‭feasible‬
‭for‬ ‭larger‬ ‭datasets.‬ ‭One‬ ‭option‬‭is‬‭to‬‭develop‬‭sparse‬‭Gaussian‬‭processes,‬‭as‬‭demonstrated‬‭by‬
‭Baker‬‭et‬‭al.‬‭(2022)‬‭.‬‭Running‬‭JULES‬‭at‬‭a‬‭1km‬‭resolution‬‭over‬‭Great‬‭Britain,‬‭they‬‭exploit‬‭the‬‭fact‬
‭that‬ ‭LSMs‬ ‭typically‬ ‭do‬ ‭not‬ ‭exchange‬ ‭information‬ ‭laterally‬ ‭between‬ ‭grid‬ ‭cells‬ ‭(river‬ ‭routing‬ ‭is‬
‭generally‬‭done‬‭as‬‭a‬‭separate‬‭step)‬‭to‬‭select‬‭a‬‭subset‬‭of‬‭coordinates‬‭representative‬‭of‬‭different‬
‭parameter settings and forcing data regimes.‬

‭Another‬ ‭popular‬ ‭method‬ ‭for‬ ‭emulating‬ ‭LSMs‬ ‭are‬ ‭neural‬ ‭networks‬ ‭(NNs),‬ ‭as‬ ‭they‬ ‭are‬
‭straightforward‬ ‭and‬ ‭fast‬ ‭to‬ ‭implement‬ ‭(Hatfield‬ ‭et‬ ‭al.,‬ ‭2021)‬‭,‬ ‭with‬ ‭fast‬ ‭evaluation‬ ‭speeds‬ ‭and‬
‭good‬‭predictive‬‭skill‬‭within‬‭the‬‭bounds‬‭of‬‭the‬‭training‬‭data.‬‭However,‬‭NNs‬‭are‬‭sensitive‬‭to‬‭biases‬
‭in‬ ‭the‬ ‭selection‬ ‭of‬ ‭the‬ ‭training‬ ‭data‬ ‭as‬ ‭well‬ ‭as‬ ‭the‬ ‭tuning‬ ‭of‬ ‭the‬ ‭algorithm‬ ‭hyperparameters,‬
‭which‬‭means‬‭that‬‭they‬‭generally‬‭cannot‬‭extrapolate‬‭to‬‭scenarios‬‭beyond‬‭the‬‭training‬‭data‬‭or‬‭be‬
‭transferred‬‭to‬‭new‬‭datasets‬‭without‬‭performance‬‭degradation‬‭(Shwartz-Ziv‬‭&‬‭Armon,‬‭2022)‬‭.‬‭(D.‬
‭Lu‬‭&‬‭Ricciuto,‬‭2019)‬‭used‬‭singular‬‭value‬‭decomposition‬‭with‬‭Bayesian‬‭optimisation‬‭to‬‭create‬‭a‬
‭reduced‬ ‭number‬ ‭of‬ ‭surrogate‬ ‭models‬ ‭for‬ ‭carbon‬ ‭modelling‬ ‭parameter‬ ‭perturbation.‬ ‭Their‬
‭approach‬ ‭showed‬ ‭minimal‬ ‭accuracy‬ ‭loss,‬ ‭making‬ ‭it‬ ‭effective‬ ‭for‬ ‭extensive‬ ‭parameter‬ ‭space‬
‭exploration‬ ‭and‬ ‭uncertainty‬ ‭quantification.‬ ‭Other‬ ‭examples‬ ‭of‬ ‭NNs‬ ‭used‬ ‭to‬ ‭emulate‬ ‭LSMs‬
‭include,‬ ‭Dagon‬ ‭et‬ ‭al.‬ ‭(2020)‬‭,‬ ‭where‬ ‭a‬ ‭series‬ ‭of‬ ‭artificial‬ ‭feed-forward‬ ‭NNs‬ ‭were‬ ‭trained‬ ‭to‬
‭emulate‬ ‭CLM5‬ ‭output‬ ‭given‬ ‭important‬ ‭biophysical‬ ‭parameter‬ ‭values‬ ‭and‬ ‭Meyer‬ ‭et‬ ‭al.‬ ‭(2022)‬‭,‬
‭where‬‭an‬‭NN‬‭was‬‭trained‬‭to‬‭emulate‬‭the‬‭ensemble‬‭mean‬‭of‬‭several‬‭urban‬‭LSMs‬ ‭combining‬‭the‬
‭strengths‬ ‭of‬ ‭the‬ ‭different‬ ‭into‬‭one‬‭ML‬‭model.‬‭While‬‭artificial‬‭NNs‬‭do‬‭not‬‭provide‬‭a‬‭probabilistic‬
‭prediction,‬‭new‬‭methods‬‭are‬‭emerging‬‭such‬‭as‬‭neural‬‭processes‬‭(e.g.,‬‭(Garnelo‬‭et‬‭al.,‬‭2018)‬‭or‬
‭randomised‬ ‭prior‬ ‭networks‬ ‭(Bhouri‬ ‭et‬ ‭al.,‬ ‭2023)‬‭.‬ ‭Regression‬ ‭trees‬ ‭can‬ ‭also‬ ‭be‬ ‭extended‬ ‭to‬
‭include‬‭probabilistic‬‭prediction‬‭such‬‭as‬‭with‬‭NGBoost‬‭(‬‭Duan‬‭et‬‭al.,‬‭2020)‬‭or‬‭XGBoost‬‭(Donnerer,‬
‭2024),‬‭as‬‭used‬‭for‬‭example‬‭to‬‭emulate‬‭ELM-FATES‬‭(Li‬‭et‬‭al.,‬‭2023)‬‭.‬‭XGBoost‬‭has‬‭been‬‭shown‬
‭to‬‭generally‬‭outperform‬‭NNs‬‭while‬‭requiring‬‭little‬‭parameter‬‭tuning‬‭and‬‭is‬‭able‬‭to‬‭achieve‬‭robust‬
‭performance‬ ‭even‬ ‭when‬ ‭extrapolating‬ ‭to‬ ‭scenarios‬ ‭beyond‬ ‭the‬‭training‬‭data‬‭(Grinsztajn‬‭et‬‭al.,‬
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‭2022;‬ ‭Shwartz-Ziv‬ ‭&‬ ‭Armon,‬ ‭2022)‬‭.‬ ‭A‬ ‭disadvantage‬ ‭of‬ ‭tree-based‬ ‭methods‬ ‭is‬ ‭their‬ ‭slower‬
‭evaluation‬‭speeds‬‭and‬‭the‬‭fact‬‭that‬‭they‬‭are‬‭not‬‭differentiable,‬‭which‬‭can‬‭limit‬‭their‬‭usability‬‭for‬
‭certain‬ ‭applications‬ ‭(e.g.,‬‭coupled‬‭DA,‬‭Hatfield‬‭et‬‭al.,‬‭2021)‬‭.‬‭Long-Short‬‭Term‬‭Memory‬‭(LSTM)‬
‭methods,‬ ‭which‬ ‭for‬ ‭example‬ ‭have‬ ‭been‬ ‭applied‬ ‭to‬ ‭ECLand‬ ‭(Boussetta‬ ‭et‬ ‭al.,‬ ‭2021)‬‭,‬ ‭include‬
‭memory‬ ‭mechanisms‬ ‭by‬ ‭leveraging‬ ‭long-term‬ ‭dependencies‬ ‭in‬ ‭the‬ ‭training‬ ‭data‬ ‭time‬ ‭series,‬
‭allowing‬ ‭them‬ ‭to‬ ‭effectively‬ ‭emulate‬ ‭model‬ ‭processes‬ ‭across‬ ‭different‬ ‭time‬ ‭scales‬ ‭without‬
‭performance‬‭loss‬‭at‬‭longer‬‭lead‬‭times‬‭(as‬‭is‬‭the‬‭case‬‭for‬‭XGBoost‬‭for‬‭example,‬‭(Wesselkamp‬‭et‬
‭al.,‬ ‭2024)‬‭.‬ ‭This‬ ‭makes‬ ‭them‬ ‭particularly‬ ‭suited‬ ‭for‬ ‭the‬ ‭emulation‬ ‭of‬ ‭large-scale‬ ‭forecasting‬
‭systems‬ ‭that‬ ‭encompass‬ ‭physical‬ ‭processes‬ ‭acting‬ ‭at‬ ‭different‬ ‭time‬ ‭scales‬ ‭(e.g.,‬ ‭Datta‬ ‭&‬
‭Faroughi, 2023; Guo et al., 2021; Wesselkamp et al., 2024)‬‭.‬

‭Computational Cost Reduction‬
‭Once‬ ‭an‬ ‭emulator‬‭is‬‭trained‬‭it‬‭becomes‬‭computationally‬‭feasible‬‭to‬‭apply‬‭PDA‬‭techniques‬‭that‬
‭require‬‭a‬‭large‬‭number‬‭of‬‭samples‬‭from‬‭a‬‭prior‬‭parameter‬‭distribution,‬‭e.g.,‬‭MCMC.‬ ‭Fer‬‭et‬‭al.,‬
‭(2018)‬‭showed‬‭how‬‭emulators‬‭sped‬‭up‬‭an‬‭MCMC‬‭optimisation‬‭for‬‭the‬‭relatively‬‭simple‬‭SIPNET‬
‭model‬ ‭by‬ ‭over‬ ‭two‬ ‭orders‬ ‭of‬ ‭magnitude‬ ‭(>100x).‬ ‭Further‬ ‭applying‬ ‭their‬ ‭method‬ ‭to‬ ‭the‬ ‭more‬
‭complex‬‭Ecosystem‬‭Demography‬‭model‬‭v2‬‭(ED2),‬‭whose‬‭complexity‬‭precluded‬‭it‬‭from‬‭a‬‭direct‬
‭application‬ ‭of‬ ‭the‬ ‭MCMC‬ ‭methodology‬ ‭for‬‭parameter‬‭tuning,‬‭they‬‭found‬‭that‬‭emulators‬‭helped‬
‭achieve‬‭a‬‭>20,000x‬‭increase‬‭in‬‭speed‬‭(27‬‭hr‬‭versus‬‭a‬‭predicted‬‭74‬‭years‬‭by‬‭traditional‬‭MCMC).‬
‭Similarly,‬ ‭Sawada‬ ‭(2020)‬ ‭and‬ ‭Cleary‬ ‭et‬ ‭al.‬ ‭(2021)‬ ‭both‬ ‭used‬ ‭emulators‬ ‭to‬ ‭perform‬ ‭Bayesian‬
‭inversion‬ ‭using‬ ‭the‬ ‭otherwise‬ ‭costly‬ ‭MCMC‬ ‭approach‬ ‭to‬ ‭sample‬ ‭the‬ ‭approximate‬ ‭posterior‬
‭parameter‬ ‭distribution‬ ‭after‬‭calibration.‬‭Torres-Rojas‬‭et‬‭al.‬‭(2022)‬‭combine‬‭surrogate‬‭modelling‬
‭with‬‭a‬‭multi-objective‬‭Pareto‬‭efficiency‬‭analysis‬‭to‬‭infer‬‭LSM's‬‭optimal‬‭subgrid‬‭parameters‬‭at‬‭1%‬
‭of‬ ‭the‬ ‭computational‬ ‭cost.‬ ‭The‬ ‭emulators‬ ‭were‬ ‭trained‬ ‭on‬ ‭forward‬ ‭model‬‭runs‬‭used‬‭to‬‭initially‬
‭calibrate‬ ‭the‬ ‭model‬ ‭using‬ ‭Ensemble‬ ‭Kalman‬ ‭sampling‬‭-‬‭a‬‭derivative-free‬‭optimisation‬‭method.‬
‭Coining‬‭the‬‭method‬‭“Calibrate,‬‭emulate,‬‭sample”,‬‭Cleary‬‭et‬‭al.‬‭(2021)‬‭showed‬‭how‬‭the‬‭method‬
‭could‬ ‭be‬ ‭successfully‬ ‭applied‬ ‭to‬ ‭models‬ ‭of‬ ‭different‬ ‭complexity,‬ ‭while‬ ‭other‬ ‭groups‬ ‭have‬ ‭also‬
‭demonstrated‬‭the‬‭suitability‬‭of‬‭ensemble‬‭approaches‬‭for‬‭parameter‬‭selection‬‭(e.g.,‬‭Couvreux‬‭et‬
‭al., 2021)‬‭.‬

‭History Matching‬
‭Emulators‬ ‭are‬ ‭commonly‬ ‭used‬ ‭in‬ ‭the‬ ‭field‬ ‭of‬ ‭uncertainty‬ ‭quantification,‬ ‭and‬ ‭one‬ ‭key‬ ‭method‬
‭from‬‭this‬‭field‬‭that‬‭is‬‭gaining‬‭traction‬‭in‬‭land‬‭surface‬‭modelling‬‭is‬‭the‬‭so-called‬‭history‬‭matching‬
‭(HM)‬‭method‬‭(Hourdin‬‭et‬‭al.,‬‭2023)‬‭.‬‭This‬‭method‬‭is‬‭not‬‭about‬‭finding‬‭the‬‭most‬‭likely‬‭parameter‬
‭values,‬ ‭but‬ ‭rather‬ ‭ruling‬ ‭out‬‭implausible‬‭ones‬‭based‬‭on‬‭some‬‭given‬‭metrics‬‭(Williamson‬‭et‬‭al.,‬
‭2013)‬‭.‬ ‭Using‬ ‭emulators‬ ‭to‬ ‭facilitate‬ ‭computation,‬ ‭HM‬ ‭is‬ ‭commonly‬ ‭applied‬ ‭using‬ ‭successive‬
‭iterations‬ ‭(also‬ ‭known‬ ‭as‬ ‭iterative‬ ‭refocusing)‬ ‭to‬ ‭reduce‬ ‭parameter‬ ‭space‬‭and‬‭retain‬‭the‬‭least‬
‭implausible‬‭parameters.‬‭Like‬‭the‬‭cost‬‭function‬‭used‬‭in‬‭variational‬‭DA,‬‭the‬‭implausibility‬‭takes‬‭the‬
‭observation‬ ‭and‬ ‭model‬ ‭structure‬ ‭errors‬ ‭into‬ ‭account.‬ ‭While‬ ‭these‬ ‭errors‬ ‭are‬ ‭still‬ ‭hard‬ ‭to‬
‭determine‬‭(Peatier‬‭et‬‭al.,‬‭2023)‬‭,‬‭it‬‭is‬‭arguably‬‭less‬‭dangerous‬‭to‬‭get‬‭them‬‭wrong‬‭here‬‭than‬‭in‬‭the‬
‭DA‬‭case‬‭-‬‭if‬‭the‬‭errors‬‭are‬‭overestimated,‬‭HM‬‭gives‬‭a‬‭clear‬‭diagnostic‬‭of‬‭this‬‭being‬‭the‬‭case,‬‭for‬
‭example,‬‭by‬‭ruling‬‭out‬‭little‬‭to‬‭no‬‭parameter‬‭space.‬‭If‬‭the‬‭errors‬‭are‬‭underestimated,‬‭HM‬‭will‬‭rule‬
‭everything‬ ‭out,‬ ‭suggesting‬ ‭the‬ ‭errors‬ ‭have‬ ‭been‬ ‭misspecified,‬ ‭whereas,‬ ‭in‬ ‭other‬ ‭optimisation‬
‭approaches,‬‭we‬‭would‬‭still‬‭get‬‭a‬‭solution‬‭even‬‭if‬‭one‬‭does‬‭not‬‭exist.‬‭HM‬‭also‬‭allows‬‭the‬‭user‬‭to‬
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‭test‬ ‭many‬ ‭different‬ ‭metrics‬ ‭to‬ ‭see‬ ‭if‬ ‭parameters‬ ‭can‬ ‭capture‬ ‭specific‬ ‭features,‬ ‭similar‬ ‭to‬
‭multi-objective‬ ‭optimisations,‬ ‭giving‬ ‭a‬ ‭clear‬ ‭diagnosis‬ ‭of‬ ‭model‬ ‭structure‬ ‭error.‬ ‭HM‬ ‭has‬
‭successfully‬ ‭been‬ ‭tested‬ ‭with‬ ‭some‬ ‭of‬ ‭the‬ ‭major‬ ‭high-complexity‬ ‭LSMs:‬ ‭CLM‬ ‭(Dagon‬ ‭et‬ ‭al.,‬
‭2020)‬‭,‬‭JULES‬‭(Baker‬‭et‬‭al.,‬‭2022;‬‭McNeall‬‭et‬‭al.,‬‭2024)‬‭,‬‭and‬‭ORCHIDEE‬‭(Raoult,‬‭Beylat,‬‭et‬‭al.,‬
‭2024)‬‭,‬ ‭for‬ ‭example.‬ ‭These‬ ‭studies‬ ‭highlight‬ ‭how‬ ‭HM‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭identify‬ ‭sensitive‬
‭parameters,‬ ‭redefine‬ ‭ranges‬ ‭of‬ ‭variation‬ ‭and‬ ‭identify‬ ‭non-Gaussian‬ ‭relationships‬ ‭between‬
‭parameters.‬‭This‬‭information‬‭could‬‭potentially‬‭be‬‭used‬‭to‬‭determine‬‭the‬‭prior‬‭error‬‭covariances‬
‭(i.e.,‬ ‭to‬ ‭set‬ ‭up‬ ‭the‬ ‭background‬ ‭error‬ ‭covariance‬‭matrix‬‭in‬‭variational‬‭DA)‬‭or‬‭provide‬‭ecological‬
‭constraints to an optimisation.‬

‭4.2 Hybrid modelling‬
‭ML‬ ‭can‬ ‭also‬ ‭be‬ ‭used‬ ‭in‬‭a‬‭hybrid‬‭modelling‬‭approach‬‭to‬‭substitute‬‭components‬‭of‬‭the‬‭physical‬
‭model‬‭with‬‭an‬‭ML‬‭approximation‬‭(Eyring‬‭et‬‭al.,‬‭2024)‬‭.‬‭The‬‭appeal‬‭of‬‭the‬‭hybrid‬‭approach‬‭is‬‭that‬
‭it‬‭can‬‭address‬‭known‬‭model‬‭inadequacies‬‭and‬‭computational‬‭bottlenecks‬‭in‬‭a‬‭targeted‬‭manner‬
‭while‬ ‭retaining‬ ‭the‬‭use‬‭of‬‭physical‬‭process‬‭knowledge‬‭and‬‭constraints‬‭where‬‭they‬‭are‬‭reliable.‬
‭For‬ ‭example,‬ ‭the‬ ‭hybrid‬ ‭approach‬ ‭can‬ ‭mitigate‬ ‭model‬ ‭structural‬ ‭errors,‬ ‭by‬ ‭replacing‬ ‭model‬
‭processes‬ ‭that‬ ‭are‬ ‭missing‬ ‭or‬ ‭poorly‬ ‭understood‬ ‭with‬ ‭data-driven‬ ‭substitutes,‬ ‭assuming‬
‭adequate‬ ‭data‬ ‭exists‬ ‭(Arsenault‬ ‭et‬ ‭al.,‬ ‭2018;‬ ‭Reichstein‬ ‭et‬ ‭al.,‬ ‭2019)‬‭.‬ ‭At‬ ‭the‬ ‭same‬ ‭time,‬ ‭the‬
‭hybrid‬ ‭approach‬ ‭can‬ ‭add‬ ‭physical‬ ‭constraints‬ ‭to‬ ‭the‬ ‭ML‬ ‭model‬ ‭components,‬‭thus‬‭maintaining‬
‭physical‬‭consistency‬‭and‬‭interpretability‬‭(e.g.,‬‭Beucler‬‭et‬‭al.,‬‭2021;‬‭Kraft‬‭et‬‭al.,‬‭2022;‬‭Reichstein‬
‭et‬‭al.,‬‭2019)‬‭.‬‭ML‬‭and‬‭process‬‭models‬‭can‬‭be‬‭combined‬‭in‬‭a‬‭number‬‭of‬‭different‬‭ways,‬‭including‬
‭i)‬ ‭substituting‬ ‭a‬ ‭specific‬ ‭model‬ ‭parameterisation‬ ‭with‬ ‭an‬ ‭ML‬ ‭approximation,‬ ‭ii)‬‭deriving‬‭spatial‬
‭parameterisations‬ ‭that‬ ‭better‬ ‭capture‬ ‭observed‬ ‭physical‬ ‭behaviour,‬ ‭iii)‬ ‭training‬ ‭on‬ ‭model-data‬
‭residuals‬ ‭to‬ ‭predict‬ ‭process-model‬ ‭biases‬ ‭and‬ ‭characterise‬ ‭structural‬ ‭errors,‬ ‭and‬ ‭iv)‬ ‭replace‬
‭computationally‬‭costly‬‭parts‬‭of‬‭the‬‭model.‬ ‭Hybrid‬‭modelling‬‭has‬‭been‬‭implemented‬‭successfully‬
‭in‬‭a‬‭number‬‭of‬‭LSM‬‭applications,‬‭including‬‭for‬‭streamflow‬‭(Yang‬‭et‬‭al.,‬‭2019)‬‭,‬‭evapotranspiration‬
‭(W.‬‭L.‬‭Zhao‬‭et‬‭al.,‬‭2019)‬‭,‬‭subsurface‬‭flow‬‭(N.‬‭Wang‬‭et‬‭al.,‬‭2020)‬‭,‬‭rainfall-runoff‬‭modelling‬‭(Xie‬‭et‬
‭al.,‬‭2021)‬‭,‬‭as‬‭well‬‭as‬‭more‬‭generally‬‭for‬‭the‬‭prediction‬‭of‬‭sea‬‭surface‬‭temperatures‬‭(de‬‭Bézenac‬
‭et‬ ‭al.,‬ ‭2019)‬‭,‬ ‭atmospheric‬ ‭convection‬ ‭(Gentine‬ ‭et‬ ‭al.,‬ ‭2018)‬‭,‬ ‭and‬ ‭high‬ ‭impact‬ ‭weather‬ ‭events‬
‭(McGovern‬ ‭et‬ ‭al.,‬ ‭2017)‬‭.‬ ‭As‬ ‭with‬ ‭all‬ ‭parameter‬ ‭estimation‬ ‭methods,‬ ‭hybrid‬ ‭modelling‬‭can‬‭be‬
‭subject‬‭to‬‭parameters‬‭compensating‬‭for‬‭model‬‭structural‬‭errors‬‭or‬‭errors‬‭in‬‭parameters‬‭outside‬
‭the‬‭calibration‬‭set‬‭(see‬‭also‬‭Sect.‬‭4.2).‬‭This‬‭can‬‭be‬‭counteracted‬‭through‬‭the‬‭use‬‭of‬‭multivariate‬
‭independent observation constraints in the calibration.‬

‭Substitution of Uncertain or Missing Parameterisations and Processes‬
‭In‬ ‭the‬ ‭context‬ ‭of‬ ‭land‬ ‭DA,‬ ‭hybrid‬ ‭modelling‬ ‭has‬ ‭been‬ ‭used‬ ‭to‬ ‭improve‬ ‭the‬ ‭representation‬ ‭of‬
‭complex‬‭processes,‬‭such‬‭as‬‭the‬‭representation‬‭of‬‭human‬‭processes‬‭and‬‭their‬‭impact,‬‭which‬‭are‬
‭often‬ ‭not‬ ‭represented‬ ‭in‬ ‭their‬ ‭full‬ ‭complexity‬ ‭or‬ ‭missing‬ ‭completely‬ ‭in‬ ‭traditional‬ ‭LSMs.‬ ‭ML‬
‭approaches‬‭trained‬‭in‬‭an‬‭aggregate‬‭manner‬‭(e.g.,‬‭one‬‭NN‬‭trained‬‭on‬‭all‬‭locations)‬‭and‬‭using‬‭a‬
‭combination‬ ‭of‬ ‭observations‬ ‭and‬ ‭process-model‬ ‭outputs‬ ‭can‬ ‭effectively‬ ‭account‬ ‭for‬ ‭human‬
‭processes‬ ‭by‬ ‭mapping‬ ‭observations‬ ‭into‬ ‭the‬‭model‬‭climatology‬‭(thus‬‭removing‬‭global‬‭biases).‬
‭At‬ ‭the‬ ‭same‬ ‭time,‬ ‭they‬ ‭can‬ ‭retain‬ ‭the‬ ‭independent‬ ‭information‬ ‭on‬ ‭human‬ ‭processes‬ ‭that‬ ‭is‬
‭inherent‬‭in‬‭the‬‭observations‬‭but‬‭typically‬‭removed‬‭in‬‭traditional‬‭bias‬‭correction‬‭approaches‬‭(e.g.,‬
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‭Kumar‬‭et‬‭al.,‬‭2012)‬‭.‬‭Kolassa‬‭et‬‭al.‬‭(2017)‬‭used‬‭an‬‭artificial‬‭NN‬‭observation‬‭operator‬‭trained‬‭on‬
‭brightness‬‭temperature‬‭observations‬‭from‬‭the‬‭Soil‬‭Moisture‬‭Active‬‭Passive‬‭(SMAP)‬‭mission‬‭and‬
‭GEOS‬ ‭land‬ ‭model‬ ‭outputs‬‭to‬‭assimilate‬‭soil‬‭moisture‬‭information,‬‭which‬‭introduced‬‭the‬‭impact‬
‭of‬ ‭irrigation‬ ‭and‬ ‭tile‬ ‭drainage‬ ‭in‬ ‭a‬ ‭model‬ ‭that‬ ‭does‬ ‭not‬ ‭normally‬ ‭represent‬ ‭these‬ ‭processes.‬
‭Assem‬ ‭et‬ ‭al.‬ ‭(2017)‬ ‭developed‬ ‭a‬ ‭Deep‬ ‭Convolutional‬ ‭NN,‬ ‭trained‬ ‭on‬ ‭historic‬ ‭water‬ ‭flow‬ ‭and‬
‭water‬ ‭level‬ ‭observations,‬ ‭to‬ ‭predict‬ ‭water‬‭flow‬‭in‬‭urban‬‭areas‬‭from‬‭runoff‬‭estimates‬‭generated‬
‭by‬ ‭a‬ ‭physical‬ ‭LSM.‬ ‭Hybrid‬ ‭modelling‬ ‭can‬ ‭also‬ ‭be‬ ‭used‬ ‭in‬ ‭cases‬ ‭when‬‭the‬‭naturally‬‭occurring‬
‭physical‬ ‭processes‬ ‭are‬ ‭poorly‬ ‭understood.‬ ‭For‬ ‭example,‬ ‭Arsenault‬‭et‬‭al.‬‭(2018)‬‭used‬‭an‬‭ANN‬
‭with‬ ‭a‬ ‭combination‬ ‭of‬ ‭remote‬ ‭sensing‬ ‭observations‬ ‭and‬ ‭model‬ ‭predicted‬ ‭states‬ ‭to‬ ‭generate‬
‭improved estimates of snow depth within the Land Information System.‬

‭Improved Spatial Parameterisations‬
‭Hybrid‬ ‭modelling‬ ‭techniques‬ ‭have‬ ‭also‬ ‭been‬ ‭used‬ ‭successfully‬ ‭to‬ ‭generate‬ ‭model‬
‭parameterisations‬ ‭that‬ ‭better‬ ‭capture‬ ‭the‬ ‭parameter‬ ‭spatial‬ ‭distribution‬‭and‬‭thus‬‭the‬‭observed‬
‭physical‬‭behaviour‬‭(Tao‬‭et‬‭al.,‬‭2020,‬‭2024)‬‭.‬‭Process-model‬‭parameterisations‬‭can‬‭be‬‭limited‬‭by‬
‭observation‬ ‭sparsity,‬ ‭which‬ ‭can‬ ‭lead‬ ‭to‬ ‭ad‬ ‭hoc‬ ‭decisions‬ ‭when‬ ‭assigning‬ ‭parameter‬ ‭values‬
‭globally.‬ ‭Similarly,‬ ‭many‬ ‭global‬ ‭LSMs‬ ‭significantly‬ ‭simplify‬ ‭biogeochemical‬ ‭and‬ ‭physical‬
‭mechanisms‬‭into‬‭empirical‬‭parametric‬‭functions.‬‭Hybrid‬‭modelling‬‭can‬‭address‬‭these‬‭issues‬‭by‬
‭mapping‬ ‭environmental‬ ‭variables‬ ‭into‬ ‭model‬ ‭parameters‬ ‭or‬ ‭using‬ ‭high-resolution,‬ ‭high-fidelity‬
‭model‬ ‭simulations‬ ‭to‬‭derive‬‭new‬‭parameterisations‬‭for‬‭coarse-resolution‬‭models‬‭(e.g.,‬‭Gentine‬
‭et‬‭al.,‬‭2018)‬‭.‬‭Bao‬‭et‬‭al.‬‭(2023)‬‭replaced‬‭the‬‭traditional‬‭PFT-based‬‭parameterisation‬‭of‬‭a‬‭light‬‭use‬
‭efficiency‬‭model‬‭with‬‭an‬‭ecosystem-property-based‬‭parameterisation‬‭derived‬‭from‬‭a‬‭multi-layer‬
‭perceptron‬‭NN‬‭to‬‭better‬‭capture‬‭the‬‭spatial‬‭variability‬‭of‬‭GPP‬‭within‬‭PFTs.‬‭Several‬‭studies‬‭have‬
‭used‬‭a‬‭hybrid‬‭ML‬‭approach‬‭to‬‭improve‬‭the‬‭representation‬‭of‬‭evapotranspiration‬‭in‬‭LSMs,‬‭either‬
‭by‬ ‭directly‬ ‭estimating‬ ‭evapotranspiration‬ ‭(Zhao‬ ‭et‬ ‭al.,‬ ‭2019)‬ ‭from‬ ‭observations‬ ‭or‬ ‭by‬ ‭inferring‬
‭related‬‭prognostic‬‭variables,‬‭such‬‭as‬‭the‬‭stomatal‬‭and‬‭aerodynamic‬‭resistances‬‭(ElGhawi‬‭et‬‭al.,‬
‭2023)‬‭,‬ ‭or‬ ‭transpiration‬‭stress‬‭(Koppa‬‭et‬‭al.,‬‭2022)‬‭.‬‭In‬‭each‬‭case,‬‭the‬‭hybrid‬‭model‬‭was‬‭able‬‭to‬
‭learn unknown latent processes and thus outperform traditional physics-based schemes.‬

‭Model Error Identification/Characterisation‬
‭Additionally,‬‭hybrid‬‭modelling‬‭implementations‬‭can‬‭serve‬‭as‬‭effective‬‭diagnostic‬‭tools‬‭to‬‭identify‬
‭model‬ ‭errors.‬ ‭For‬ ‭an‬ ‭independently‬ ‭evaluated‬ ‭ML‬ ‭approximation,‬ ‭systematic‬ ‭differences‬
‭between‬ ‭predictions‬ ‭from‬ ‭a‬ ‭physical‬ ‭model‬ ‭component‬ ‭and‬ ‭its‬ ‭ML‬ ‭counterpart‬ ‭can‬ ‭provide‬
‭insights‬ ‭into‬ ‭missing‬ ‭or‬ ‭flawed‬ ‭model‬ ‭process‬ ‭representations‬ ‭as‬ ‭well‬ ‭as‬ ‭identify‬ ‭inadequate‬
‭model‬ ‭parameters‬ ‭(e.g.,‬ ‭McGovern‬ ‭et‬ ‭al.,‬ ‭2017)‬‭,‬ ‭especially‬ ‭when‬ ‭the‬ ‭ML‬ ‭model‬ ‭is‬ ‭not‬ ‭only‬
‭trained‬ ‭to‬ ‭represent‬ ‭the‬‭model‬‭outputs‬‭but‬‭uses‬‭other‬‭observational‬‭constraints‬‭in‬‭the‬‭learning‬
‭phase.‬ ‭For‬ ‭example,‬ ‭Finn‬ ‭et‬ ‭al.‬ ‭(2023)‬ ‭and‬ ‭Gregory‬ ‭et‬ ‭al.‬ ‭(2023)‬ ‭used‬ ‭an‬ ‭ML‬ ‭trained‬ ‭on‬
‭model-data‬ ‭residuals‬ ‭to‬ ‭predict‬ ‭model‬‭biases‬‭and‬‭characterise‬‭structural‬‭errors,‬‭while‬‭Gregory‬
‭et‬ ‭al.‬ ‭(2024)‬ ‭extended‬ ‭this‬ ‭approach‬ ‭to‬ ‭implement‬ ‭an‬ ‭online‬ ‭bias‬ ‭correction‬ ‭within‬ ‭a‬ ‭DA‬
‭framework.‬ ‭Similarly,‬ ‭Farchi‬ ‭et‬ ‭al.‬ ‭(2021,‬ ‭2023)‬ ‭integrated‬ ‭a‬ ‭deep-learning‬ ‭step‬ ‭into‬ ‭a‬ ‭DA‬
‭framework‬ ‭to‬ ‭create‬ ‭a‬‭hybrid‬‭model‬‭that‬‭dynamically‬‭learns‬‭and‬‭corrects‬‭model‬‭errors‬‭at‬‭each‬
‭DA time step.‬
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‭Computational Cost Reduction‬
‭Finally,‬ ‭hybrid‬ ‭modelling‬‭can‬‭be‬‭used‬‭to‬‭replace‬‭computationally‬‭costly‬‭parts‬‭of‬‭the‬‭model.‬‭For‬
‭example,‬ ‭emulating‬ ‭the‬ ‭spinup,‬ ‭which‬ ‭can‬ ‭account‬ ‭for‬ ‭up‬ ‭to‬ ‭98%‬ ‭of‬ ‭computational‬ ‭time‬ ‭in‬
‭complex‬ ‭LSMs,‬ ‭would‬ ‭greatly‬ ‭alleviate‬ ‭challenges‬ ‭linked‬ ‭to‬ ‭this‬ ‭bottleneck‬ ‭(see‬ ‭Sect.‬ ‭3.6).‬ ‭A‬
‭successful‬‭undertaking‬‭by‬‭Sun‬‭et‬‭al.‬‭(2023)‬‭showed‬‭how‬‭bagging‬‭decision‬‭trees‬‭(an‬‭ensemble‬
‭ML‬‭method‬‭based‬‭on‬‭(Breiman,‬‭1996)‬‭could‬‭be‬‭used‬‭to‬‭emulate‬‭the‬‭spin-up‬‭of‬‭the‬‭ORCHIDEE‬
‭LSM.‬ ‭Koppa‬ ‭et‬ ‭al.‬ ‭(2022)‬ ‭developed‬ ‭a‬ ‭deep‬ ‭learning-based‬ ‭hybrid‬ ‭model‬ ‭combining‬ ‭a‬
‭process-based‬ ‭land‬ ‭surface‬ ‭model‬ ‭with‬ ‭remotely-sensed‬ ‭observations‬ ‭to‬ ‭estimate‬ ‭global‬
‭evaporation.‬ ‭They‬ ‭showed‬ ‭how‬ ‭hybrid‬ ‭models‬ ‭can‬ ‭significantly‬ ‭improve‬ ‭predictive‬ ‭accuracy‬
‭while reducing the computational cost.‬

‭Data Requirements‬
‭Hybrid‬‭modelling‬‭has‬‭the‬‭potential‬‭to‬‭be‬‭very‬‭powerful,‬‭but‬‭it‬‭is‬‭also‬‭susceptible‬‭to‬‭issues‬‭linked‬
‭to‬ ‭equifinality‬ ‭(Kraft‬ ‭et‬ ‭al.,‬ ‭2022;‬ ‭Sawada,‬ ‭2020)‬‭.‬ ‭We‬ ‭note‬ ‭that‬ ‭any‬ ‭ML‬ ‭approaches‬ ‭need‬
‭substantial‬ ‭data‬ ‭to‬ ‭perform‬ ‭well‬ ‭and‬ ‭thus‬ ‭the‬ ‭ML‬ ‭components‬ ‭in‬ ‭the‬ ‭hybrid‬ ‭part‬ ‭need‬ ‭to‬ ‭be‬
‭targeting‬ ‭processes‬ ‭for‬ ‭which‬ ‭data‬ ‭is‬ ‭plentiful.‬ ‭ML‬ ‭approaches‬ ‭often‬ ‭have‬ ‭a‬ ‭large‬ ‭number‬ ‭of‬
‭parameters‬‭in‬‭their‬‭training‬‭which‬‭gives‬‭them‬‭a‬‭larger‬‭degree‬‭of‬‭flexibility‬‭that‬‭can‬‭compensate‬
‭for errors in physical models,‬‭but can also lead to‬‭overfitting.‬

‭4.3 Observation Processing‬
‭There‬ ‭are‬ ‭many‬ ‭examples‬ ‭of‬ ‭using‬ ‭ML‬ ‭to‬ ‭improve‬ ‭or‬ ‭pre-process‬ ‭the‬ ‭observational‬ ‭datasets‬
‭that‬ ‭can‬ ‭be‬ ‭assimilated‬ ‭into‬ ‭LSMs,‬ ‭especially‬ ‭from‬‭the‬‭field‬‭of‬‭remote‬‭sensing.‬‭Many‬‭of‬‭these‬
‭novel‬ ‭datasets‬ ‭have‬ ‭yet‬ ‭to‬ ‭be‬ ‭exploited‬ ‭in‬ ‭the‬ ‭LSM‬ ‭parameter‬ ‭estimation‬ ‭studies,‬ ‭presenting‬
‭exciting new opportunities.‬

‭Observation Operators‬
‭One‬ ‭such‬ ‭application‬ ‭is‬ ‭the‬ ‭use‬ ‭of‬ ‭ML-generated‬ ‭observation‬ ‭operators‬ ‭to‬ ‭translate‬
‭satellite-observed‬ ‭radiances‬ ‭into‬ ‭model‬ ‭states‬ ‭or‬ ‭parameters‬ ‭(see‬ ‭challenges‬ ‭raised‬ ‭in‬ ‭Sect.‬
‭3.3).‬‭The‬‭use‬‭of‬‭ML‬‭techniques‬‭in‬‭this‬‭context‬‭has‬‭several‬‭advantages:‬‭i)‬‭ML-based‬‭observation‬
‭operators‬ ‭are‬ ‭relatively‬ ‭simple‬ ‭to‬ ‭implement‬ ‭compared‬‭to‬‭physically-based‬‭approaches,‬‭which‬
‭often‬‭involve‬‭the‬‭inversion‬‭of‬‭radiative‬‭transfer‬‭models,‬‭ii)‬‭they‬‭are‬‭able‬‭to‬‭easily‬‭accommodate‬
‭the‬ ‭simultaneous‬ ‭assimilation‬ ‭of‬ ‭multiple‬ ‭observation‬ ‭types,‬ ‭iii)‬ ‭they‬ ‭can‬ ‭inherently‬ ‭correct‬
‭climatological‬‭biases‬‭between‬‭model‬‭and‬‭observations,‬‭and‬‭iv)‬‭they‬‭facilitate‬‭the‬‭assimilation‬‭of‬
‭radiance‬ ‭observations‬ ‭rather‬ ‭than‬ ‭retrieval‬ ‭products,‬ ‭thus‬ ‭reducing‬ ‭errors‬ ‭stemming‬ ‭from‬
‭possible‬ ‭inconsistencies‬ ‭between‬ ‭retrieval‬ ‭algorithm‬ ‭assumptions‬ ‭and‬ ‭models.‬ ‭Due‬ ‭to‬ ‭these‬
‭advantages,‬ ‭ML-based‬ ‭observation‬ ‭operators‬ ‭have‬ ‭been‬ ‭applied‬ ‭in‬ ‭several‬ ‭land‬ ‭data‬
‭assimilation‬ ‭studies,‬ ‭including‬ ‭for‬ ‭soil‬ ‭moisture‬ ‭(Kolassa‬ ‭et‬‭al.,‬‭2017;‬‭Rodríguez-Fernández‬‭et‬
‭al.,‬‭2019)‬‭,‬‭leaf‬‭area‬‭index‬‭(Durbha‬‭et‬‭al.,‬‭2007)‬‭,‬‭snow‬‭water‬‭equivalent‬‭(Kwon‬‭et‬‭al.,‬‭2019)‬‭,‬‭and‬
‭as a combined forward model for soil moisture and LAI‬‭(Shan et al., 2022)‬‭.‬

‭Retrieval Algorithms‬
‭Similarly,‬ ‭ML‬ ‭approaches‬ ‭have‬ ‭been‬ ‭used‬‭to‬‭develop‬‭data-driven‬‭retrieval‬‭algorithms‬‭in‬‭cases‬
‭where‬‭physical‬‭retrieval‬‭algorithms‬‭are‬‭very‬‭complex.‬‭For‬‭example,‬‭Chen‬‭et‬‭al.‬‭(2022),‬‭Gentine‬
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‭&‬‭Alemohammad‬‭(2018),‬‭Shen‬‭et‬‭al.‬‭(2022)‬‭and‬‭Zhang‬‭et‬‭al.‬‭(2018)‬‭each‬‭used‬‭ML‬‭to‬‭estimate‬
‭SIF‬‭from‬‭MODIS‬‭radiances,‬‭OCO-2,‬‭and‬‭TROPOMI‬‭observations,‬‭respectively.‬‭Alemohammad‬
‭et‬ ‭al.‬ ‭(2017)‬ ‭developed‬ ‭an‬ ‭ML‬ ‭approach‬ ‭to‬ ‭retrieve‬ ‭global,‬ ‭monthly‬ ‭GPP‬ ‭estimates‬ ‭from‬
‭GOME-2 SIF observations only.‬

‭Gap-Filling‬
‭ML‬ ‭approaches‬ ‭can‬ ‭also‬ ‭be‬ ‭used‬ ‭to‬ ‭improve‬ ‭observation‬ ‭datasets‬ ‭by‬ ‭making‬ ‭them‬ ‭more‬
‭suitable‬ ‭for‬ ‭data‬ ‭assimilation‬ ‭applications.‬ ‭One‬ ‭approach‬ ‭is‬ ‭to‬ ‭use‬ ‭ML‬ ‭to‬ ‭generate‬ ‭gap-filled‬
‭observations‬ ‭or‬ ‭generate‬ ‭higher‬ ‭temporal‬ ‭resolution‬ ‭datasets.‬ ‭For‬ ‭example,‬‭Yatheendradas‬‭&‬
‭Kumar‬ ‭(2022)‬‭used‬‭an‬‭ML‬‭approach‬‭to‬‭create‬‭a‬‭gap-filled,‬‭high-resolution‬‭dataset‬‭of‬‭observed‬
‭snow‬ ‭cover‬ ‭fraction‬ ‭and‬ ‭Fang‬ ‭et‬ ‭al.‬ ‭(2019)‬ ‭used‬ ‭a‬ ‭deep‬ ‭learning‬ ‭Long‬ ‭Short-Term‬ ‭Memory‬
‭framework‬‭to‬‭predict‬‭daily‬‭“SMAP‬‭Level-3‬‭like”‬‭soil‬‭moisture‬‭estimates‬‭from‬‭atmospheric‬‭forcing‬
‭data‬‭and‬‭static‬‭physiographic‬‭attributes.‬‭Vekuri‬‭et‬‭al.‬‭(2023)‬‭used‬‭extreme‬‭graident‬‭boosting‬‭to‬
‭gap-fill‬ ‭eddy‬ ‭covariance‬ ‭data‬ ‭reducing‬ ‭the‬ ‭northern‬ ‭biases‬ ‭in‬ ‭the‬ ‭data‬‭found‬‭after‬‭using‬‭more‬
‭traditional‬‭gap-filling‬‭methods.‬‭Nevertheless,‬‭one‬‭must‬‭exert‬‭caution‬‭when‬‭using‬‭gap-filled‬‭data‬
‭(or‬ ‭other‬ ‭model-derived‬ ‭data,‬ ‭such‬ ‭as‬ ‭retrieval‬ ‭products)‬ ‭for‬ ‭parameter‬‭estimation,‬‭since‬‭they‬
‭are‬ ‭dependent‬ ‭on‬ ‭the‬ ‭assumptions‬ ‭of‬ ‭the‬ ‭selected‬ ‭gap-filling‬ ‭method.‬ ‭Furthermore,‬ ‭gap-filled‬
‭data can artificially inflate sample size, which leads to falsely precise parameter estimates.‬

‭Upscaling‬
‭Another‬ ‭approach‬ ‭is‬ ‭to‬ ‭use‬ ‭ML‬ ‭to‬ ‭map‬ ‭local‬ ‭observations‬ ‭to‬ ‭the‬ ‭global‬ ‭scale‬ ‭to‬ ‭mitigate‬
‭representativeness‬ ‭issues‬ ‭that‬ ‭can‬ ‭arise‬ ‭from‬ ‭the‬ ‭assimilation‬ ‭of‬ ‭local‬ ‭observations.‬ ‭For‬
‭example,‬‭studies‬‭by‬‭Beer‬‭et‬‭al.‬‭(2010),‬‭Joiner‬‭et‬‭al.‬‭(2018),‬‭Jung‬‭et‬‭al.‬‭(2011)‬‭and‬‭Tramontana‬
‭et‬‭al.‬‭(2016)‬‭all‬‭have‬‭used‬‭ML‬‭approaches‬‭in‬‭combination‬‭with‬‭remote‬‭sensing‬‭observations‬‭to‬
‭generate‬ ‭global‬ ‭estimates‬ ‭of‬ ‭carbon‬ ‭and‬ ‭energy‬ ‭fluxes‬ ‭from‬ ‭local‬ ‭flux-tower‬ ‭observations.‬
‭V‬‭ergopolan‬ ‭et‬ ‭al.‬ ‭(2021)‬ ‭used‬ ‭a‬ ‭high-resolution‬ ‭LSM‬ ‭and‬ ‭an‬ ‭ML‬ ‭Bayesian‬ ‭merging‬ ‭scheme‬
‭trained‬ ‭on‬ ‭in-situ‬ ‭soil‬ ‭moisture‬ ‭data‬ ‭to‬ ‭learn‬ ‭LSM‬ ‭and‬ ‭SMAP‬ ‭satellite‬ ‭biases‬ ‭and‬ ‭obtain‬‭30m‬
‭satellite-based‬ ‭soil‬‭moisture‬‭estimates‬‭over‬‭the‬‭contiguous‬‭United‬‭States.‬‭One‬‭caveat‬‭to‬‭using‬
‭ML‬ ‭to‬ ‭upscale‬ ‭point‬ ‭observations‬ ‭is‬ ‭that‬ ‭large‬ ‭discrepancies‬ ‭can‬ ‭exist‬ ‭between‬ ‭different‬‭data‬
‭products‬ ‭based‬ ‭on‬ ‭the‬ ‭same‬ ‭observations,‬ ‭highlighting‬ ‭the‬ ‭need‬ ‭for‬ ‭thorough‬ ‭evaluation‬ ‭and‬
‭uncertainty assessment of ML-based products.‬

‭Derived Quantities‬
‭Finally,‬ ‭ML‬ ‭can‬ ‭be‬ ‭used‬‭to‬‭improve‬‭the‬‭algorithms‬‭used‬‭to‬‭generate‬‭observation‬‭datasets.‬‭For‬
‭example,‬‭Tramontana‬‭et‬‭al.‬‭(2020)‬‭used‬‭a‬‭combined‬‭neural‬‭network‬‭approach‬‭that‬‭accounts‬‭for‬
‭the‬‭influence‬‭of‬‭soil‬‭property‬‭and‬‭micrometeorological‬‭drivers‬‭to‬‭generate‬‭improved‬‭estimates‬‭of‬
‭the‬‭partitioning‬‭of‬‭observed‬‭NEE‬‭into‬‭GPP‬‭and‬‭ecosystem‬‭respiration‬‭(RECO),‬‭while‬‭Zeng‬‭et‬‭al.‬
‭(2022)‬ ‭used‬ ‭an‬ ‭ML‬ ‭approach‬ ‭to‬ ‭separate‬ ‭the‬ ‭natural‬ ‭and‬ ‭anthropogenic‬ ‭contributions‬ ‭to‬
‭satellite-estimated evapotranspiration.‬

‭4.4 Optimisation process‬
‭Since‬‭optimisation‬‭is‬‭a‬‭key‬‭component‬‭to‬‭both‬‭ML‬‭and‬‭DA,‬‭there‬‭are‬‭many‬‭algorithms‬‭common‬
‭to‬‭both‬‭fields‬‭including‬‭gradient-based‬‭and‬‭evolutionary‬‭algorithms‬‭(Sect.‬‭2).‬‭Indeed,‬‭the‬‭strong‬
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‭mathematical‬ ‭similarities‬ ‭between‬‭ML‬‭and‬‭DA‬‭mean‬‭that‬‭both‬‭fields‬‭can‬‭learn‬‭from‬‭each‬‭other‬
‭and‬ ‭share‬ ‭methodologies‬ ‭(Geer,‬ ‭2021)‬‭.‬ ‭ML‬ ‭approaches‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭improve‬ ‭optimisation‬
‭algorithms‬ ‭themselves‬ ‭by‬ ‭helping‬ ‭speed‬ ‭up‬ ‭the‬ ‭search‬ ‭process‬ ‭and‬ ‭improve‬ ‭the‬ ‭quality‬ ‭of‬
‭solutions‬‭(Song‬‭et‬‭al.,‬‭2019)‬‭.‬‭Furthermore,‬‭ML‬‭can‬‭be‬‭used‬‭to‬‭automatically‬‭choose‬‭the‬‭setting‬
‭of‬ ‭adjustable‬ ‭parameters‬ ‭found‬ ‭in‬ ‭some‬ ‭optimisation‬ ‭algorithms.‬ ‭For‬ ‭example,‬ ‭clustering‬
‭methods‬ ‭can‬ ‭be‬‭used‬‭to‬‭set‬‭the‬‭population‬‭size,‬‭crossover‬‭probability‬‭and‬‭mutation‬‭probability‬
‭parameters‬ ‭in‬ ‭genetic‬ ‭algorithms‬ ‭(Zhang‬ ‭et‬ ‭al.,‬ ‭2007)‬ ‭and‬ ‭maintain‬ ‭population‬ ‭diversity.‬
‭Tree-based‬‭random‬‭forest‬‭models‬‭have‬‭been‬‭used‬‭to‬‭dynamically‬‭construct,‬‭search,‬‭and‬‭prune‬
‭the‬ ‭parameter‬ ‭space‬ ‭to‬ ‭efficiently‬ ‭optimise‬ ‭ML‬ ‭structure‬ ‭and‬ ‭hyperparameters‬ ‭(Akiba‬ ‭et‬ ‭al.,‬
‭2019)‬‭.‬‭ML‬‭techniques‬‭can‬‭also‬‭be‬‭used‬‭to‬‭choose‬‭the‬‭best-performing‬‭algorithm‬‭for‬‭a‬‭particular‬
‭optimisation‬ ‭problem‬ ‭(Kerschke‬ ‭et‬ ‭al.,‬ ‭2019)‬‭.‬ ‭While‬ ‭the‬ ‭emerging‬ ‭ML‬‭methods‬‭are‬‭promising,‬
‭they‬‭are‬‭very‬‭novel‬‭and‬‭-‬‭to‬‭the‬‭best‬‭of‬‭our‬‭knowledge‬‭-‬‭have‬‭not‬‭yet‬‭been‬‭applied‬‭to‬‭optimising‬
‭the parameter estimation algorithm hyperparameters themselves.‬

‭Finally,‬ ‭a‬ ‭novel‬ ‭and‬ ‭emerging‬ ‭use‬ ‭of‬‭ML‬‭is‬‭the‬‭use‬‭of‬‭large‬‭language‬‭models‬‭(e.g.‬‭ChatGPT).‬
‭Modern‬ ‭open-source‬ ‭coding‬ ‭languages‬ ‭like‬ ‭Julia‬ ‭and‬ ‭Python‬ ‭through‬ ‭the‬ ‭Google‬ ‭JAX‬ ‭library‬
‭(Bradbury‬‭et‬‭al.,‬‭2018)‬‭can‬‭be‬‭automatically‬‭differentiated‬‭to‬‭generate‬‭the‬‭tangent‬‭linear‬‭model‬
‭(see‬ ‭Sect.‬ ‭2).‬ ‭Many‬ ‭high-complexity‬‭LSMs‬‭are‬‭written‬‭in‬‭Fortran‬‭code;‬‭large‬‭language‬‭models‬
‭can‬ ‭help‬ ‭translate‬ ‭Fortran‬ ‭code‬ ‭to‬ ‭more‬‭modern‬‭languages‬‭(Zhou‬‭et‬‭al.,‬‭2024)‬‭,‬‭facilitating‬‭the‬
‭derivative‬ ‭of‬ ‭such‬ ‭models.‬ ‭Alternatively,‬ ‭we‬ ‭can‬ ‭use‬ ‭neural‬ ‭networks‬ ‭to‬ ‭emulate‬ ‭the‬ ‭tangent‬
‭linear‬ ‭and‬ ‭adjoint‬ ‭models‬ ‭since‬ ‭neural‬ ‭networks‬ ‭can‬ ‭be‬ ‭differentiated‬ ‭trivially‬ ‭(Hatfield‬ ‭et‬ ‭al.,‬
‭2021)‬‭.‬

‭Table 1: Summary of challenges outlined in Sect. 3 and their ML opportunities‬

‭PDA challenge‬ ‭ML opportunity‬

‭Selecting parameters and their prior distributions (Sect. 3.1)‬

‭-‬ ‭Identifying which model parameters to‬
‭optimise is challenging, due to high‬
‭dimensionality and strong parameter‬
‭covariances.‬

‭-‬ ‭Choosing prior distributions for parameters‬
‭is crucial yet difficult, requiring detailed‬
‭structural insights and data.‬

‭-‬ ‭Emulators can reduce the computational‬
‭demand of running models with many‬
‭different parameter settings needed for‬
‭sensitivity analyses (Sect. 4.1).‬

‭-‬ ‭Emulators can be used to facilitate‬
‭uncertainty quantification, for example,‬
‭through history matching (Sect. 4.1).‬

‭Characterisation of model and data/observation errors (Sect. 3.2)‬

‭-‬ ‭Model errors are difficult to quantify due to‬
‭uncertainties in process representation,‬
‭missing processes, and the challenge of‬
‭specifying an informative prior.‬

‭-‬ ‭Quantifying data errors is tricky because of‬
‭sampling variability, instrument‬
‭inaccuracies, and complex error‬
‭correlations that are often ignored.‬

‭-‬ ‭Hybrid modelling can be used to replace‬
‭model processes that are missing or‬
‭poorly understood, helping to diagnose‬
‭model structural errors (Sect. 4.2).‬

‭-‬ ‭ML methods can be used to generate‬
‭improved estimates of derived quantities,‬
‭thus reducing observation errors (Sect.‬
‭4.3).‬
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‭Developing observation operators (Sect. 3.3)‬

‭-‬ ‭Matching model outputs to observations‬
‭require transformations that can introduce‬
‭biases.‬

‭-‬ ‭ML-generated observation operators can‬
‭be used to directly translate‬
‭satellite-observed radiances into model‬
‭states or parameters (Sect.‬‭4.3).‬

‭Tackling spatial and temporal heterogeneity (Sect. 3.4)‬

‭-‬ ‭Variability in surface properties, driven by‬
‭diverse climates, soils, and ecosystems,‬
‭complicates parameter estimation across‬
‭locations.‬

‭-‬ ‭High computational demands make it‬
‭difficult to calibrate LSMs across large‬
‭spatial domains.‬

‭-‬ ‭Temporal variability and short data series‬
‭hinder the capture of both seasonal cycles‬
‭and long-term trends.‬

‭-‬ ‭Hybrid modelling can be used to improve‬
‭spatial parameterisations (Sect. 4.2).‬

‭-‬ ‭Emulators can help reduce the‬
‭computational demand of running the‬
‭model over large domains (Sect. 4.1).‬

‭-‬ ‭Long Short-Term Memory‬
‭encoder-decoder networks consider‬
‭long-term dependencies and therefore‬
‭may help capture seasonal and‬
‭interannual trends (Sect. 4.1).‬

‭Dealing with large and multiple observational datasets (Sect. 3.5)‬

‭-‬ ‭Scaling satellite products to match model‬
‭grids can lead to information loss.‬

‭-‬ ‭Products may be subject to regional‬
‭biases due to varying data quality and‬
‭processing methods.‬

‭-‬ ‭Assimilating multiple data streams in‬
‭model calibrations presents challenges in‬
‭consistency, error characterisation, and‬
‭balancing different data sources.‬

‭-‬ ‭ML methods can be used to upscale‬
‭sparse observational data (e.g., flux‬
‭tower observations) or map satellite‬
‭observations to a model grid (Sect. 4.3).‬

‭-‬ ‭ML can be applied to improve the‬
‭algorithms used to produce observational‬
‭datasets (Sect. 4.3).‬

‭-‬ ‭ML-based observation operators are able‬
‭to easily accommodate multiple‬
‭observation types and adjust their‬
‭respective impacts in the assimilation‬
‭(Sect. 4.3).‬

‭Including the historical period in the assimilation window (Sect. 3.6)‬

‭-‬ ‭Spin-up and transient parts of model runs‬
‭can be computationally demanding.‬

‭-‬ ‭Hybrid modelling can be used to replace‬
‭computationally costly parts of the model‬
‭(Sect. 4.2).‬

‭Choice and implementation of minimisation algorithms (Sect. 3.7)‬

‭-‬ ‭Algorithms‬ ‭requiring‬ ‭a‬ ‭large‬ ‭number‬ ‭of‬
‭model‬‭runs‬‭are‬‭computationally‬‭costly‬‭and‬
‭therefore rarely applied to complex LSMs.‬

‭-‬ ‭For‬ ‭different‬ ‭algorithms,‬ ‭there‬ ‭can‬ ‭be‬ ‭a‬
‭large‬ ‭number‬ ‭of‬‭configuration‬‭options‬‭and‬
‭tuneable hyperparameters.‬

‭-‬ ‭ML can enhance computational‬
‭efficiency, enabling the use of algorithms‬
‭that require numerous model runs (Sect.‬
‭4.1).‬

‭-‬ ‭ML can help find the best configurations‬
‭and hyperparameters to use when‬
‭optimising (Sect. 4.4).‬
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‭-‬ ‭Maintaining‬ ‭tangent‬ ‭linear/adjoint‬ ‭models‬
‭for‬‭gradient-based‬‭optimisation‬‭in‬‭complex‬
‭LSMs is challenging.‬

‭-‬ ‭Large language models can be used to‬
‭translate LSMs to modern coding‬
‭languages that are easier to differentiate‬
‭and can better exploit GPU. Alternatively,‬
‭we can emulate the LSM using NNs,‬
‭which are easily differentiable (Sect. 4.4).‬

‭5. Future priorities‬
‭Moving‬ ‭beyond‬ ‭the‬ ‭ML‬ ‭avenues‬ ‭outlined‬ ‭in‬ ‭the‬ ‭previous‬ ‭section‬ ‭and‬ ‭summarised‬ ‭in‬ ‭Table‬‭1,‬
‭here,‬‭we‬‭discuss‬‭the‬‭opportunities‬‭and‬‭future‬‭priorities‬‭where‬‭land‬‭PDA‬‭promises‬‭to‬‭have‬‭some‬
‭large‬ ‭impacts,‬ ‭building‬ ‭on‬ ‭recent‬ ‭successes.‬ ‭We‬ ‭argue‬ ‭that‬ ‭more‬ ‭funding‬ ‭for‬ ‭technical‬ ‭DA‬
‭studies and software engineering support would significantly aid this work.‬

‭5.1 Testing novel datasets and experimental configurations‬
‭In‬ ‭addition‬ ‭to‬ ‭the‬ ‭traditional‬ ‭datasets‬ ‭used‬ ‭to‬ ‭optimise‬ ‭LSM‬ ‭parameters,‬ ‭our‬ ‭data-rich‬ ‭world‬
‭offers‬‭access‬‭to‬‭a‬‭wide‬‭array‬‭of‬‭data‬‭streams‬‭enabling‬‭new‬‭and‬‭exciting‬‭constraints‬‭on‬‭multiple‬
‭different‬‭processes‬‭in‬‭LSMs‬‭(as‬‭have‬‭been‬‭used‬‭for‬‭parameter‬‭DA‬‭in‬‭smaller‬‭scale‬‭ecosystem‬
‭and ecology models). These include (to name a few):‬

‭●‬ ‭Manipulation‬ ‭experiments:‬ ‭For‬ ‭example,‬ ‭elevated‬ ‭CO‬‭2‬ ‭experiments‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬
‭constrain‬‭the‬‭fertilisation‬‭effect‬‭at‬‭nitrogen-limited‬‭sites‬‭(‬‭Thomas‬‭et‬‭al.,‬‭2017‬‭;‬‭Jiang‬‭et‬‭al.,‬
‭2020; Mahmud et al., 2018; Raoult, Edouard-Rambaut, et al., 2024)‬‭.‬

‭●‬ ‭Data‬‭about‬‭soil‬‭carbon‬‭stocks:‬‭Data‬‭from‬‭the‬‭International‬‭Soil‬‭Carbon‬‭Network‬‭(Harden‬
‭et‬‭al.,‬‭2018;‬‭Nave‬‭et‬‭al.,‬‭2016)‬‭and‬‭the‬‭global‬‭soil‬‭respiration‬‭database‬‭(Jian‬‭et‬‭al.,‬‭2021)‬
‭can‬ ‭provide‬ ‭valuable‬‭insights.‬‭Similarly,‬‭soil‬‭radiocarbon‬‭measurements‬‭(Lawrence‬‭et‬‭al.,‬
‭2020)‬‭can‬‭help‬‭constrain‬‭rates‬‭of‬‭soil‬‭carbon‬‭cycling‬‭(Shi‬‭et‬‭al.,‬‭2020)‬‭and‬‭ca‬‭rbon‬‭isotope‬
‭concentrations‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭improve‬ ‭simulated‬ ‭soil‬ ‭organic‬ ‭matter‬ ‭decomposition‬
‭(Mäkelä et al., 2022)‬‭.‬

‭●‬ ‭Tree‬ ‭ring‬ ‭data:‬ ‭Annual‬ ‭biomass‬ ‭increments‬ ‭derived‬ ‭from‬ ‭tree‬‭ring‬‭widths‬‭can‬‭help‬‭infer‬
‭carbon‬ ‭accumulation‬ ‭(Babst‬ ‭et‬ ‭al.,‬ ‭2014;‬ ‭Jeong‬ ‭et‬ ‭al.,‬‭2021)‬‭.‬‭Similarly,‬‭tree‬‭ring‬‭isotopic‬
‭data‬ ‭(carbon‬ ‭and‬ ‭oxygen)‬ ‭can‬ ‭act‬ ‭as‬ ‭constraints‬ ‭for‬ ‭leaf‬ ‭physiology‬ ‭and‬ ‭growth‬
‭(Barichivich et al., 2021)‬‭.‬

‭●‬ ‭Other‬ ‭aboveground‬ ‭biomass‬ ‭products:‬ ‭Products‬ ‭from‬ ‭the‬ ‭ESA‬ ‭BIOMASS‬ ‭mission‬
‭(Quegan‬ ‭et‬ ‭al.,‬ ‭2019)‬ ‭help‬ ‭constrain‬ ‭carbon‬ ‭allocation‬ ‭and‬ ‭woody‬ ‭biomass‬ ‭turnover‬
‭parameters‬ ‭(Smallman‬ ‭et‬ ‭al.,‬ ‭2021)‬‭.‬ ‭Similarly,‬ ‭land-use‬ ‭and‬ ‭land-cover‬ ‭products‬ ‭(e.g.,‬
‭MapBiomas‬ ‭Collection‬ ‭3.1,‬ ‭based‬ ‭on‬ ‭Landsat)‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭create‬ ‭regrowth‬ ‭curves‬
‭(Heinrich‬‭et‬‭al.,‬‭2021,‬‭2023)‬‭,‬‭which‬‭together‬‭with‬‭forest‬‭inventory‬‭data,‬‭can‬‭help‬‭constrain‬
‭disturbance processes.‬

‭●‬ ‭Additional‬ ‭remote‬ ‭sensing‬ ‭datasets:‬ ‭New‬ ‭datasets,‬ ‭such‬ ‭as‬ ‭full-waveform‬ ‭lidar‬ ‭data‬
‭from‬‭the‬‭GEDI‬‭(Global‬‭Ecosystem‬‭Dynamics‬‭Investigation)‬‭mission‬‭(Dubayah‬‭et‬‭al.,‬‭2020)‬‭,‬
‭can‬‭help‬‭constrain‬‭canopy‬‭structural‬‭parameters,‬‭including‬‭canopy‬‭height‬‭(Potapov‬‭et‬‭al.,‬
‭2021)‬‭.‬ ‭Similarly,‬ ‭improved‬ ‭observations‬ ‭of‬ ‭land‬ ‭surface‬ ‭temperature‬ ‭and‬ ‭total‬
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‭surface/groundwater‬ ‭content‬ ‭from‬ ‭GRACE‬ ‭instruments‬ ‭also‬ ‭can‬ ‭offer‬ ‭additional‬
‭constraints on the energy and water cycles.‬

‭●‬ ‭Trace‬ ‭gas‬ ‭flux‬ ‭measurements:‬ ‭Carbonyl‬ ‭sulfide‬ ‭measurements‬ ‭(Whelan‬ ‭et‬ ‭al.,‬ ‭2018)‬
‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭constrain‬ ‭GPP‬ ‭and‬‭stomatal‬‭conductance‬‭(Abadie‬‭et‬‭al.,‬‭2023)‬‭.‬‭There‬‭is‬
‭also‬ ‭a‬ ‭growing‬ ‭number‬ ‭of‬ ‭nitrous‬ ‭oxide‬ ‭flux‬ ‭measurements‬ ‭(Nicolini‬ ‭et‬ ‭al.,‬‭2013)‬‭,‬‭which‬
‭can‬‭be‬‭used‬‭to‬‭calibrate‬‭LSMs‬‭that‬‭include‬‭nitrogen‬‭cycles.‬‭Methane‬‭flux‬‭measurements,‬
‭such‬ ‭as‬ ‭those‬ ‭over‬ ‭peatlands‬ ‭(‬‭(Salmon‬ ‭et‬ ‭al.,‬‭2022)‬‭,‬‭can‬‭also‬‭be‬‭utilised‬‭to‬‭improve‬‭the‬
‭representation of methane production processes.‬

‭By‬ ‭combining‬ ‭these‬ ‭data‬ ‭and‬ ‭implementing‬ ‭novel‬ ‭DA‬ ‭approaches‬‭described‬‭in‬‭this‬‭paper,‬‭we‬
‭can‬ ‭aspire‬ ‭to‬ ‭assess‬ ‭how‬ ‭this‬ ‭information‬ ‭influences‬ ‭both‬ ‭short-term‬ ‭and‬ ‭long-term‬ ‭forecasts‬
‭and‬ ‭reduces‬ ‭model‬ ‭discrepancies.‬ ‭The‬ ‭focus‬ ‭should‬ ‭be‬ ‭on‬ ‭refining‬ ‭core‬ ‭processes‬ ‭driving‬
‭ecosystem-scale‬‭carbon‬‭and‬‭water‬‭fluxes‬‭and‬‭testing‬‭their‬‭responses‬‭to‬‭global‬‭change,‬‭beyond‬
‭just fitting historical data.‬

‭As‬ ‭with‬ ‭all‬ ‭past‬ ‭carbon‬ ‭cycle‬ ‭DA‬ ‭studies,‬ ‭before‬ ‭novel‬ ‭datasets‬ ‭can‬ ‭be‬‭reliably‬‭used‬‭in‬‭a‬‭DA‬
‭experiment,‬‭it‬‭will‬‭take‬‭time‬‭to‬‭test‬‭the‬‭best‬‭approaches‬‭for‬‭how‬‭to‬‭best‬‭use‬‭these‬‭data‬‭streams‬
‭within‬ ‭a‬ ‭DA‬ ‭experimental‬ ‭framework.‬ ‭It‬ ‭should‬ ‭be‬ ‭standard‬ ‭practice‬ ‭to‬ ‭run‬ ‭synthetic‬ ‭DA‬
‭experiments‬ ‭to‬ ‭test‬ ‭which‬ ‭observational‬ ‭characteristics‬ ‭(temporal‬ ‭sampling‬ ‭interval,‬ ‭record‬
‭length,‬ ‭observation‬ ‭uncertainty,‬ ‭choice‬ ‭of‬ ‭minimisation‬ ‭algorithm‬ ‭and‬ ‭its‬ ‭configuration,‬ ‭etc.‬ ‭–‬
‭Sect.‬‭3.7)‬‭are‬‭required‬‭to‬‭retrieve‬‭the‬‭correct‬‭parameter‬‭values‬‭with‬‭the‬‭strong‬‭assumption‬‭that‬
‭there‬ ‭is‬ ‭no‬ ‭modelling‬ ‭bias.‬ ‭Synthetic‬ ‭experiments,‬ ‭also‬ ‭known‬ ‭as‬ ‭“twin”‬ ‭experiments,‬ ‭use‬
‭“pseudo‬ ‭data”‬ ‭that‬ ‭have‬ ‭been‬ ‭output‬ ‭from‬ ‭the‬ ‭model‬ ‭and‬ ‭modified‬ ‭according‬ ‭to‬ ‭known‬
‭observational‬ ‭characteristics‬ ‭(see‬ ‭REFLEX‬ ‭and‬‭Optic‬‭experiments;‬‭Trudinger‬‭et‬‭al.,‬‭2007;‬‭Fox‬
‭et‬ ‭al.,‬ ‭2009).‬ ‭As‬ ‭these‬ ‭data‬ ‭are‬ ‭model‬ ‭outputs,‬ ‭the‬ ‭“true”‬ ‭value‬ ‭of‬ ‭the‬ ‭parameters‬ ‭is‬ ‭known.‬
‭Synthetic‬ ‭DA‬ ‭experiments‬ ‭can‬ ‭also‬ ‭be‬ ‭used‬ ‭prior‬ ‭to‬ ‭data‬ ‭collection,‬ ‭where‬ ‭they‬ ‭can‬ ‭help‬
‭optimise‬ ‭sampling‬ ‭over‬ ‭space,‬ ‭time,‬ ‭and‬ ‭sampling‬ ‭design.‬ ‭Indeed,‬ ‭calibration‬ ‭has‬ ‭yet‬ ‭to‬ ‭be‬
‭adequately‬ ‭integrated‬ ‭into‬ ‭the‬ ‭broader‬ ‭literature‬ ‭on‬ ‭model-driven‬‭observing‬‭system‬‭simulation‬
‭experiments.‬‭To‬‭improve‬‭this,‬‭advocating‬‭for‬‭standardised‬‭community‬‭benchmark‬‭protocols‬‭and‬
‭datasets‬ ‭could‬ ‭address‬ ‭different‬ ‭challenges,‬ ‭such‬ ‭as‬ ‭assessing‬ ‭resistance‬ ‭to‬ ‭noise‬ ‭and‬
‭evaluating‬ ‭forcing‬ ‭variability.‬ ‭Results‬ ‭from‬ ‭such‬ ‭community-driven‬ ‭experimental‬ ‭setups‬ ‭could‬
‭reveal‬ ‭common‬ ‭challenges‬ ‭and‬ ‭development‬ ‭opportunities,‬ ‭enhancing‬ ‭the‬ ‭robustness‬ ‭and‬
‭effectiveness of DA methods across the field (see Sect. 5.4).‬

‭Additional‬‭tests‬‭of‬‭DA‬‭experimental‬‭configuration‬‭that‬‭are‬‭rarely‬‭performed‬‭(or‬‭rarely‬‭reported‬‭in‬
‭the‬ ‭literature)‬ ‭should‬ ‭include‬‭testing‬‭i)‬‭how‬‭parameters‬‭retrieved‬‭at‬‭individual‬‭sites‬‭compare‬‭to‬
‭parameters‬ ‭retrieved‬ ‭when‬ ‭including‬ ‭multiple‬ ‭sites‬ ‭in‬ ‭the‬ ‭assimilation‬ ‭(Kuppel‬ ‭et‬ ‭al.,‬ ‭2012;‬
‭Raoult‬‭et‬‭al.,‬‭2016)‬‭or‬‭using‬‭hierarchical‬‭approaches‬‭(Fer,‬‭Shiklomanov,‬‭et‬‭al.,‬‭2021;‬‭Tian‬‭et‬‭al.,‬
‭2020)‬‭(see‬‭Sect.‬‭3.4),‬‭ii)‬‭the‬‭utility‬‭of‬‭PFT‬‭dependent‬‭parameters‬‭versus‬‭alternative‬‭approaches‬
‭for‬ ‭grouping‬ ‭parameters‬ ‭(e.g.,‬‭regionally‬‭dependent‬‭PFTs‬‭-‬‭e.g.‬‭Dahlin‬‭et‬‭al.,‬‭2017‬‭;‬‭Bao‬‭et‬‭al.,‬
‭2023)‬‭,‬ ‭iii)‬ ‭how‬ ‭retrieved‬ ‭parameters‬ ‭vary‬ ‭with‬ ‭the‬ ‭forcing‬ ‭dataset‬ ‭used‬ ‭in‬ ‭the‬ ‭simulations,‬ ‭iv)‬
‭how‬‭retrieved‬‭values‬‭depend‬‭on‬‭which‬‭parameters‬‭and/or‬‭PFTs‬‭are‬‭optimised‬‭or‬‭which‬‭terms‬‭to‬
‭include‬‭in‬‭the‬‭cost‬‭function,‬‭and‬‭v)‬‭how‬‭retrieved‬‭parameters‬‭vary‬‭in‬‭space‬‭and‬‭time‬‭within‬‭PFTs‬
‭and‬ ‭what‬ ‭this‬ ‭tells‬ ‭us‬ ‭about‬ ‭missing‬ ‭processes,‬ ‭among‬ ‭other‬ ‭factors.‬ ‭A‬ ‭critical‬ ‭test‬ ‭of‬ ‭any‬
‭parameterisation‬‭process‬‭is‬‭that‬‭the‬‭newly‬‭trained‬‭model‬‭must‬‭have‬‭improved‬‭predictive‬‭skill‬‭for‬
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‭independent‬ ‭data.‬ ‭For‬ ‭example,‬ ‭Famiglietti‬ ‭et‬ ‭al.‬ ‭(2021)‬ ‭demonstrated‬ ‭that‬ ‭different‬ ‭data‬
‭combinations‬ ‭impact‬ ‭the‬ ‭resultant‬ ‭predictive‬ ‭skill‬ ‭and‬ ‭that‬ ‭the‬ ‭amount‬ ‭of‬ ‭data‬ ‭used‬ ‭in‬ ‭model‬
‭calibration‬ ‭must‬ ‭be‬ ‭commensurate‬ ‭with‬ ‭the‬ ‭complexity‬ ‭of‬ ‭the‬ ‭model.‬ ‭Such‬‭technical‬‭tests‬‭are‬
‭required‬ ‭each‬ ‭time‬ ‭a‬ ‭new‬ ‭process‬ ‭is‬ ‭optimised‬ ‭or‬ ‭a‬ ‭novel‬‭dataset‬‭is‬‭used‬‭in‬‭the‬‭assimilation.‬
‭Building‬ ‭DA‬ ‭frameworks‬ ‭to‬ ‭include‬ ‭this‬‭technical‬‭testing‬‭will‬‭give‬‭confidence‬‭in‬‭using‬‭retrieved‬
‭parameter values in operational versions of the models.‬

‭5.2‬ ‭Moving‬ ‭towards‬ ‭land‬ ‭surface–atmospheric‬ ‭transport‬ ‭and‬ ‭full‬
‭Earth system model coupling in data assimilation‬
‭Atmospheric‬ ‭CO‬‭2‬ ‭mole‬ ‭fraction‬ ‭measurements‬ ‭collected‬ ‭at‬ ‭tall‬ ‭towers‬ ‭around‬ ‭the‬ ‭world‬ ‭have‬
‭proven‬‭valuable‬‭in‬‭improving‬‭NEE‬‭predictions‬‭at‬‭regional‬‭to‬‭global‬‭scales‬‭within‬‭a‬‭carbon‬‭cycle‬
‭DA‬ ‭framework‬ ‭(Bacour‬ ‭et‬ ‭al.,‬ ‭2023;‬ ‭Castro-Morales‬ ‭et‬ ‭al.,‬ ‭2019;‬ ‭Kaminski‬ ‭et‬‭al.,‬‭2002,‬‭2012,‬
‭2013;‬ ‭Knorr‬ ‭&‬ ‭Heimann,‬ ‭1995;‬ ‭Koffi‬ ‭et‬ ‭al.,‬ ‭2012;‬ ‭Peylin‬ ‭et‬ ‭al.,‬ ‭2016;‬ ‭Rayner‬ ‭et‬ ‭al.,‬ ‭2005;‬
‭Scholze‬ ‭et‬ ‭al.,‬ ‭2007,‬ ‭2016;‬ ‭Schürmann‬ ‭et‬ ‭al.,‬ ‭2016)‬‭.‬ ‭While‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭data‬ ‭provide‬ ‭a‬
‭direct‬ ‭constraint‬ ‭on‬ ‭net‬ ‭surface‬ ‭CO‬‭2‬ ‭exchange,‬ ‭reliable‬ ‭representation‬ ‭of‬ ‭terrestrial‬ ‭carbon‬
‭sources‬ ‭and‬ ‭sinks‬ ‭ideally‬ ‭requires‬ ‭accurate‬ ‭simulations‬ ‭of‬ ‭the‬ ‭gross‬ ‭carbon‬ ‭fluxes.‬ ‭However,‬
‭while‬‭global‬‭scale‬‭estimates‬‭of‬‭GPP‬‭are‬‭available‬‭for‬‭model‬‭evaluation‬‭or‬‭assimilation‬‭purposes‬
‭(Joiner‬‭et‬‭al.,‬‭2018;‬‭Nelson‬‭et‬‭al.,‬‭2024)‬‭the‬‭currently‬‭available‬‭RECO‬‭products‬‭are‬‭still‬‭subject‬
‭to‬ ‭large‬ ‭uncertainties.‬ ‭For‬ ‭instance,‬ ‭empirically‬ ‭upscaled‬ ‭RECO‬ ‭from‬ ‭eddy‬ ‭covariance‬
‭measurements‬ ‭provided‬ ‭by‬ ‭FLUXCOM‬ ‭are‬ ‭inconsistent‬ ‭with‬ ‭inversion-based‬ ‭products‬ ‭in‬ ‭the‬
‭tropics,‬ ‭possibly‬ ‭due‬ ‭to‬ ‭low‬ ‭sampling‬ ‭density‬‭in‬‭the‬‭region‬‭(Jung‬‭et‬‭al.,‬‭2020)‬‭.‬‭In‬‭situ‬‭data‬‭are‬
‭sparse‬ ‭and‬ ‭site‬ ‭history‬ ‭does‬ ‭not‬ ‭reflect‬ ‭larger-scale‬ ‭disturbance‬ ‭adequately.‬ ‭One‬ ‭benefit‬ ‭of‬
‭assimilating‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭concentration‬ ‭data‬ ‭is‬ ‭that‬ ‭it‬‭is‬‭one‬‭of‬‭the‬‭only‬‭datasets‬‭that‬‭can‬
‭provide‬‭a‬‭large‬‭spatial‬‭scale‬‭constraint‬‭(albeit‬‭indirect)‬‭on‬‭RECO‬‭because‬‭it‬‭is‬‭heavily‬‭influenced‬
‭by‬ ‭soil‬ ‭carbon‬ ‭stocks;‬ ‭thus,‬ ‭assimilating‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭data‬ ‭presents‬ ‭an‬ ‭opportunity‬ ‭to‬
‭improve‬ ‭the‬ ‭representation‬ ‭of‬ ‭both‬ ‭soil‬ ‭carbon‬ ‭flux‬ ‭and‬ ‭stock‬ ‭trajectories‬ ‭in‬ ‭LSMs,‬ ‭which‬ ‭is‬
‭crucial for future predictions regarding the carbon sink capacity of terrestrial ecosystems.‬

‭However,‬ ‭the‬ ‭assimilation‬ ‭of‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭data‬ ‭requires‬ ‭coupling‬ ‭LSMs‬ ‭with‬ ‭atmospheric‬
‭transport‬ ‭models‬ ‭in‬ ‭order‬ ‭to‬ ‭scale‬ ‭the‬ ‭simulated‬ ‭land‬ ‭surface‬ ‭fluxes‬ ‭to‬ ‭atmospheric‬ ‭CO‬‭2‬

‭concentrations‬ ‭at‬ ‭specified‬ ‭vertical‬ ‭levels‬ ‭(for‬ ‭station‬ ‭data)‬ ‭or‬‭integrated‬‭over‬‭the‬‭atmospheric‬
‭column‬‭(for‬‭space-borne‬‭data).‬‭The‬‭observational‬‭constraints‬‭of‬‭atmospheric‬‭CO‬‭2‬ ‭data‬‭on‬‭LSM‬
‭parameters‬ ‭is‬ ‭also‬ ‭more‬ ‭"diffuse''‬ ‭than‬ ‭when‬ ‭assimilating‬ ‭surface‬‭observations.‬‭This‬‭is‬‭due‬‭to‬
‭the‬‭inclusion‬‭of‬‭additional‬‭modelling‬‭errors‬‭associated‬‭with‬‭the‬‭atmospheric‬‭model‬‭itself‬‭(physics‬
‭and‬ ‭spatial/vertical‬ ‭discretisation)‬ ‭and‬ ‭with‬ ‭the‬ ‭other‬ ‭CO‬‭2‬ ‭fluxes‬ ‭required‬ ‭as‬ ‭inputs‬ ‭(mainly‬
‭ocean‬‭fluxes,‬‭fossil‬‭fuel‬‭emissions,‬‭and‬‭biomass‬‭burning).‬‭The‬‭coupling‬‭also‬‭presents‬‭technical‬
‭and‬ ‭computational‬ ‭challenges.‬ ‭Compared‬ ‭to‬ ‭LSMs,‬ ‭the‬ ‭derivation‬ ‭of‬ ‭the‬ ‭tangent‬ ‭linear‬ ‭and‬
‭adjoint‬ ‭models‬‭of‬‭atmospheric‬‭transport‬‭models‬‭is‬‭more‬‭straightforward‬‭(Kaminski‬‭et‬‭al.,‬‭1999;‬
‭Meirink‬ ‭et‬ ‭al.,‬ ‭2008;‬ ‭Rödenbeck‬ ‭et‬ ‭al.,‬ ‭2003)‬‭,‬ ‭but‬ ‭their‬ ‭implementation‬ ‭increases‬ ‭the‬
‭computational‬ ‭load.‬ ‭One‬ ‭approach‬ ‭to‬ ‭overcome‬ ‭this‬ ‭issue‬ ‭is‬ ‭to‬ ‭use‬ ‭pre-calculated‬ ‭transport‬
‭fields‬ ‭of‬ ‭the‬ ‭sensitivity‬ ‭of‬ ‭mean‬‭atmospheric‬‭concentrations‬‭at‬‭selected‬‭stations‬‭to‬‭the‬‭surface‬
‭net‬‭CO‬‭2‬ ‭flux‬‭(see‬‭Peylin‬‭et‬‭al.‬‭(2016)‬‭;‬‭or‬‭Bacour‬‭et‬‭al.‬‭(2023)‬‭for‬‭further‬‭details).‬‭However,‬‭this‬
‭method‬ ‭has‬ ‭limited‬ ‭spatial‬ ‭and‬ ‭temporal‬ ‭coverage‬ ‭due‬ ‭to‬ ‭the‬ ‭finite‬ ‭time‬ ‭period‬ ‭of‬ ‭the‬
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‭precalculated‬ ‭sensitivities‬‭(estimating‬‭these‬‭sensitivities‬‭is‬‭also‬‭technically‬‭and‬‭computationally‬
‭expensive).‬ ‭Assimilation‬ ‭of‬ ‭space-borne‬ ‭retrievals‬ ‭of‬ ‭XCO‬‭2‬ ‭(column-averaged‬ ‭carbon‬‭dioxide)‬
‭with‬ ‭global‬ ‭coverage‬ ‭and‬ ‭pre-computed‬ ‭transport‬ ‭in‬‭SDBM‬‭and‬‭BETHY‬‭was‬‭demonstrated‬‭by‬
‭Kaminski‬ ‭et‬ ‭al.‬ ‭(2010)‬ ‭and‬ ‭Kaminski‬ ‭&‬ ‭Mathieu‬ ‭(2017)‬‭.‬ ‭Recent‬ ‭advances‬ ‭in‬ ‭the‬ ‭utilisation‬ ‭of‬
‭graphics‬ ‭accelerators‬ ‭(Chevallier‬ ‭et‬ ‭al.,‬ ‭2023)‬ ‭offer‬ ‭hope‬ ‭for‬ ‭a‬ ‭significant‬ ‭reduction‬ ‭in‬
‭computational‬ ‭times‬ ‭and‬ ‭the‬ ‭development‬ ‭of‬ ‭full‬ ‭coupling‬ ‭between‬ ‭LSMs‬ ‭and‬ ‭atmospheric‬
‭transport models in the near future.‬

‭While‬ ‭coupling‬‭to‬‭an‬‭atmospheric‬‭transport‬‭model‬‭at‬‭least‬‭permits‬‭the‬‭use‬‭of‬‭atmospheric‬‭CO‬‭2‬

‭data‬ ‭in‬ ‭parameter‬ ‭DA‬ ‭experiments,‬ ‭the‬‭ultimate‬‭goal‬‭for‬‭LSM‬‭parameter‬‭calibration‬‭is‬‭within‬‭a‬
‭fully‬ ‭coupled‬ ‭ESM.‬ ‭This‬ ‭would‬ ‭allow‬ ‭representation‬ ‭of‬ ‭carbon-climate‬ ‭and‬ ‭land-atmosphere‬
‭feedbacks‬ ‭within‬ ‭the‬ ‭optimisations.‬ ‭To‬ ‭date,‬ ‭there‬ ‭has‬ ‭been‬ ‭limited‬ ‭assessment‬ ‭of‬ ‭whether‬
‭posterior‬ ‭parameter‬ ‭values‬ ‭from‬ ‭offline‬‭DA‬‭experiments‬‭compare‬‭to‬‭retrieved‬‭values‬‭from‬‭fully‬
‭coupled‬ ‭runs‬ ‭(nor‬ ‭how‬ ‭retrieved‬ ‭values‬ ‭vary‬ ‭when‬ ‭different‬ ‭offline‬ ‭climate‬ ‭reanalysis‬ ‭forcing‬
‭products‬‭are‬‭used).‬‭To‬‭achieve‬‭this‬‭goal,‬‭LSM‬‭DA‬‭groups‬‭should‬‭learn‬‭from‬‭advances‬‭made‬‭in‬
‭the‬ ‭NWP‬ ‭community‬ ‭(de‬ ‭Rosnay‬ ‭et‬ ‭al.,‬ ‭2022)‬‭.‬ ‭As‬ ‭discussed‬ ‭at‬ ‭length‬ ‭in‬ ‭this‬ ‭review,‬ ‭while‬
‭computational‬‭cost‬‭has‬‭so‬‭far‬‭been‬‭a‬‭prohibiting‬‭factor‬‭in‬‭achieving‬‭full‬‭ESM‬‭coupling,‬‭new‬‭ML‬
‭techniques‬ ‭for‬ ‭model‬ ‭emulation‬ ‭(Sect.‬ ‭4.1)‬ ‭(Watson-Parris‬ ‭et‬ ‭al.,‬ ‭2021)‬ ‭and‬ ‭automatic‬
‭differentiation‬‭of‬‭model‬‭code‬‭(Gelbrecht‬‭et‬‭al.,‬‭2023)‬‭should‬‭help‬‭considerably‬‭in‬‭alleviating‬‭this‬
‭problem (see Sect. 3.7 for remaining challenges).‬

‭5.3‬ ‭Identifying‬ ‭and‬ ‭improving‬ ‭structural‬ ‭errors‬ ‭and‬ ‭model‬
‭representation‬
‭The‬ ‭best‬ ‭estimates‬ ‭of‬ ‭different‬‭parameters‬‭are‬‭very‬‭dependent‬‭on‬‭the‬‭experimental‬‭setup‬‭and‬
‭so‬ ‭few‬ ‭of‬ ‭the‬ ‭optimised‬ ‭parameter‬ ‭values‬‭are‬‭actually‬‭used‬‭in‬‭the‬‭operational‬‭version‬‭of‬‭each‬
‭LSM—although‬ ‭this‬ ‭is‬ ‭something‬ ‭to‬ ‭strive‬ ‭for‬ ‭in‬ ‭future‬ ‭efforts.‬ ‭Indeed,‬ ‭even‬ ‭when‬ ‭calibrated‬
‭parameters‬ ‭have‬ ‭been‬ ‭shown‬ ‭to‬ ‭improve‬ ‭model‬ ‭performance,‬ ‭getting‬ ‭them‬ ‭to‬ ‭be‬ ‭the‬ ‭new‬
‭defaults‬ ‭in‬ ‭coupled‬ ‭models‬ ‭is‬ ‭non-trivial‬ ‭(Kyker-Snowman‬ ‭et‬ ‭al.,‬ ‭2022)‬‭.‬ ‭Instead,‬ ‭the‬ ‭main‬
‭strength‬‭of‬‭parameter‬‭estimation‬‭for‬‭LSMs‬‭and,‬‭therefore,‬‭its‬‭main‬‭purpose‬‭thus‬‭far,‬‭has‬‭been‬‭to‬
‭identify‬ ‭structural‬ ‭errors.‬ ‭If‬ ‭we‬ ‭cannot‬ ‭match‬ ‭observations‬ ‭within‬ ‭the‬ ‭bounds‬ ‭of‬ ‭their‬ ‭known‬
‭uncertainties‬ ‭by‬ ‭simply‬ ‭changing‬ ‭the‬ ‭parameter‬ ‭values,‬ ‭this‬ ‭suggests‬‭that‬‭a‬‭process‬‭is‬‭poorly‬
‭represented‬ ‭or‬ ‭missing‬ ‭from‬ ‭the‬ ‭model.‬ ‭This‬ ‭critical‬ ‭information‬‭is‬‭then‬‭fed‬‭back‬‭to‬‭the‬‭model‬
‭developers‬ ‭to‬ ‭ensure‬ ‭changes‬ ‭are‬ ‭made‬ ‭to‬ ‭the‬ ‭model,‬ ‭before‬ ‭restarting‬ ‭the‬ ‭cycle‬ ‭of‬ ‭model‬
‭calibration.‬ ‭Although‬ ‭this‬ ‭exchange‬ ‭is‬ ‭key‬ ‭in‬ ‭developing‬ ‭any‬ ‭LSM,‬ ‭it‬ ‭is‬ ‭rarely‬ ‭published.‬
‭Nevertheless,‬ ‭a‬ ‭few‬ ‭documented‬ ‭examples‬‭from‬‭the‬‭ORCHIDEE‬‭land‬‭surface‬‭model‬‭workflow‬
‭exist.‬‭MacBean‬‭et‬‭al.‬‭(2015)‬‭demonstrated‬‭that‬‭temperate‬‭broadleaved‬‭temperature‬‭thresholds‬
‭for‬ ‭senescence‬ ‭in‬ ‭the‬ ‭ORCHIDEE‬ ‭LSM‬ ‭were‬ ‭too‬ ‭low.‬ ‭The‬ ‭newly‬ ‭optimised‬ ‭parameters‬ ‭have‬
‭since‬ ‭been‬ ‭included‬ ‭in‬ ‭ORCHIDEE‬ ‭trunk‬ ‭versions.‬ ‭Salmon‬ ‭et‬ ‭al.‬ ‭(2022)‬ ‭found‬ ‭that‬ ‭when‬
‭constraining‬ ‭parameters‬ ‭of‬ ‭the‬ ‭ORCHIDEE‬ ‭LSM‬ ‭against‬ ‭methane‬ ‭emissions‬ ‭in‬ ‭northern‬
‭peatlands,‬‭the‬‭process‬‭providing‬‭enough‬‭active‬‭carbon‬‭for‬‭methanogenesis‬‭was‬‭missing.‬‭Raoult‬
‭et‬‭al.‬‭(2023)‬‭found‬‭by‬‭assimilating‬‭MODIS‬‭snow‬‭albedo‬‭over‬‭Greenland‬‭that‬‭a‬‭three-layered‬‭ice‬
‭sheet‬ ‭model‬ ‭was‬ ‭insufficient‬ ‭to‬ ‭simulate‬ ‭accurately‬ ‭both‬ ‭the‬ ‭snow‬ ‭albedo‬ ‭and‬ ‭runoff‬ ‭rates,‬
‭leading to further discretisation of the model.‬
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‭However,‬‭careful‬‭consideration‬‭is‬‭needed‬‭to‬‭avoid‬‭equating‬‭the‬‭status‬‭quo‬‭of‬‭making‬‭changes‬‭to‬
‭models—often‬ ‭involving‬ ‭increased‬ ‭complexity—with‬ ‭progress‬ ‭in‬ ‭model‬ ‭development.‬ ‭While‬
‭identifying‬ ‭and‬ ‭addressing‬ ‭structural‬ ‭errors‬ ‭is‬ ‭crucial,‬ ‭introducing‬ ‭new‬ ‭processes‬ ‭or‬ ‭refining‬
‭existing‬ ‭ones‬ ‭can‬ ‭sometimes‬ ‭lead‬ ‭to‬ ‭models‬ ‭that‬ ‭are‬ ‭more‬ ‭complex‬ ‭without‬ ‭necessarily‬
‭improving‬ ‭their‬ ‭predictive‬ ‭power.‬ ‭It‬ ‭is‬ ‭important‬ ‭to‬ ‭strike‬ ‭a‬ ‭balance‬‭between‬‭enhancing‬‭model‬
‭accuracy‬ ‭and‬ ‭maintaining‬ ‭model‬ ‭parsimony.‬ ‭Overly‬ ‭complex‬ ‭models‬ ‭can‬ ‭become‬ ‭difficult‬ ‭to‬
‭validate‬ ‭and‬ ‭manage,‬ ‭potentially‬ ‭obscuring‬ ‭rather‬ ‭than‬ ‭clarifying‬ ‭underlying‬ ‭processes.‬
‭Therefore,‬‭the‬‭goal‬‭should‬‭be‬‭to‬‭make‬‭thoughtful‬‭adjustments‬‭that‬‭improve‬‭model‬‭performance‬
‭while‬‭ensuring‬‭that‬‭the‬‭added‬‭complexity‬‭is‬‭justified‬‭by‬‭significant‬‭improvements‬‭in‬‭accuracy‬‭or‬
‭functionality.‬ ‭This‬ ‭approach‬ ‭ensures‬ ‭that‬ ‭models‬ ‭remain‬ ‭robust‬ ‭and‬ ‭efficient‬ ‭and‬ ‭that‬ ‭any‬
‭modifications contribute meaningfully to their overall effectiveness.‬

‭As‬ ‭parameter‬ ‭estimation‬ ‭methods‬ ‭and‬ ‭systems‬ ‭become‬ ‭more‬ ‭developed,‬ ‭we‬ ‭can‬ ‭run‬ ‭more‬
‭experiments‬ ‭to‬ ‭quantify‬ ‭and‬ ‭reduce‬ ‭uncertainty‬ ‭due‬ ‭to‬ ‭poorly‬ ‭constrained‬ ‭parameters‬ ‭using‬
‭different‬‭driving‬‭datasets‬‭and‬‭versions‬‭of‬‭the‬‭model‬‭that‬‭account‬‭for‬‭different‬‭representations‬‭of‬
‭processes.‬ ‭In‬ ‭the‬ ‭wider‬‭climate‬‭science‬‭literature,‬‭there‬‭exist‬‭promising‬‭approaches‬‭to‬‭provide‬
‭objective‬ ‭assessments‬ ‭of‬ ‭structural‬ ‭and‬ ‭parametric‬ ‭components‬ ‭of‬‭model‬‭error‬‭(Peatier‬‭et‬‭al.,‬
‭2023)‬‭.‬ ‭Moreover,‬ ‭the‬ ‭proposed‬ ‭move‬ ‭to‬ ‭more‬ ‭modular‬‭LSMs‬‭(Fisher‬‭&‬‭Koven,‬‭2020)‬‭will‬‭also‬
‭allow‬‭for‬‭different‬‭processes‬‭in‬‭the‬‭model‬‭to‬‭be‬‭isolated‬‭and‬‭calibrated‬‭sequentially,‬‭reducing‬‭the‬
‭scale‬ ‭of‬ ‭parameter‬ ‭subspaces‬ ‭to‬ ‭be‬ ‭calibrated‬ ‭and‬ ‭enabling‬ ‭better‬ ‭testing‬ ‭of‬ ‭alternative‬
‭hypotheses‬ ‭(e.g.,‬ ‭different‬ ‭stomatal‬ ‭optimisation‬ ‭theories)‬ ‭and‬ ‭facilitate‬ ‭collaboration‬ ‭across‬
‭different modelling groups.‬

‭5.4‬ ‭International‬ ‭collaboration:‬ ‭intercomparison‬ ‭studies‬ ‭and‬
‭shared toolboxes‬
‭Efforts‬ ‭by‬ ‭AIMES‬ ‭and‬ ‭ILMF‬ ‭to‬ ‭build‬ ‭a‬ ‭Land‬ ‭Data‬ ‭Assimilation‬ ‭Community‬ ‭have‬ ‭significantly‬
‭advanced‬ ‭knowledge‬ ‭sharing‬ ‭through‬ ‭online‬ ‭workshops‬ ‭and‬ ‭town‬ ‭halls,‬ ‭highlighting‬ ‭the‬
‭importance‬ ‭of‬ ‭continued‬ ‭collaboration.‬ ‭The‬ ‭goal‬ ‭is‬ ‭to‬ ‭facilitate‬ ‭cross-group‬ ‭interaction‬ ‭for‬ ‭DA‬
‭methods‬ ‭training,‬ ‭knowledge‬ ‭exchange‬ ‭on‬ ‭technical‬ ‭DA‬ ‭developments‬ ‭and‬ ‭calibrated‬ ‭model‬
‭intercomparison‬ ‭projects.‬ ‭The‬ ‭learning‬ ‭curve‬ ‭associated‬ ‭with‬ ‭learning‬ ‭DA‬ ‭for‬ ‭land‬ ‭surface‬
‭modelling‬ ‭is‬ ‭steep.‬ ‭This‬ ‭is‬ ‭exacerbated‬ ‭by‬ ‭the‬ ‭lack‬ ‭of‬ ‭community-wide‬ ‭educational‬ ‭materials‬
‭(although‬‭some‬‭resources‬‭exist,‬‭see‬‭https://land-da-community.github.io/training/‬‭for‬‭a‬‭selective‬
‭list,‬ ‭last‬ ‭accessed‬ ‭27th‬ ‭August‬ ‭2024)‬‭.‬ ‭Understanding‬‭of‬‭DA‬‭methods‬‭is‬‭also‬‭hampered‬‭by‬‭the‬
‭fact‬ ‭that‬ ‭technical‬ ‭studies‬ ‭testing‬ ‭different‬ ‭DA‬ ‭configurations‬ ‭are‬ ‭generally‬ ‭buried‬ ‭in‬
‭supplementary‬‭materials‬‭or‬‭not‬‭published‬‭at‬‭all.‬‭Parameter‬‭DA‬‭system‬‭intercomparison‬‭studies‬
‭would‬‭help‬‭to‬‭determine‬‭how‬‭much‬‭parameter‬‭uncertainty‬‭is‬‭contributing‬‭to‬‭the‬‭spread‬‭in‬‭model‬
‭projections.‬ ‭This‬ ‭would‬ ‭signal‬ ‭to‬ ‭the‬ ‭wider‬ ‭LSM‬ ‭community‬ ‭that‬ ‭parameter‬ ‭uncertainty‬
‭quantification‬ ‭and‬ ‭reduction‬ ‭are‬ ‭needed‬ ‭to‬ ‭improve‬ ‭future‬ ‭projections‬ ‭of‬ ‭carbon-climate‬
‭feedbacks‬ ‭and‬ ‭land-atmosphere‬ ‭interactions.‬ ‭One‬ ‭desirable‬ ‭outcome‬ ‭may‬ ‭be‬ ‭to‬ ‭create‬ ‭and‬
‭share‬ ‭statistical‬ ‭toolboxes‬ ‭utilising‬ ‭community‬ ‭cyberinfrastructure,‬ ‭for‬ ‭example,‬ ‭following‬ ‭the‬
‭pioneering‬ ‭example‬ ‭of‬ ‭PEcAn‬ ‭(Predictive‬ ‭Ecosystem‬ ‭Analyzer;‬ ‭Fer,‬ ‭Gardella,‬ ‭et‬ ‭al.,‬ ‭2021;‬
‭LeBauer‬ ‭et‬ ‭al.,‬ ‭2013)‬‭,‬ ‭which‬ ‭offers‬ ‭a‬ ‭complete‬ ‭end-to-end‬ ‭informatic‬ ‭structure,‬ ‭as‬ ‭well‬ ‭as‬
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‭open-source‬ ‭land‬ ‭surface‬ ‭model‬ ‭benchmarking‬ ‭tools‬ ‭(iLAMB:‬‭Collier‬‭et‬‭al.,‬‭2018;‬‭Seiler‬‭et‬‭al.,‬
‭2022)‬‭.‬‭While‬‭LSMs‬‭with‬‭established‬‭DA‬‭systems‬‭may‬‭not‬‭switch‬‭to‬‭a‬‭community‬‭toolbox,‬‭such‬
‭shared‬‭toolboxes‬‭will‬‭facilitate‬‭knowledge‬‭sharing,‬‭intercomparison‬‭studies‬‭and‬‭training‬‭of‬‭early‬
‭career‬ ‭researchers.‬ ‭Simultaneously,‬ ‭if‬ ‭LSMs‬ ‭with‬ ‭established‬ ‭DA‬‭systems‬‭made‬‭more‬‭of‬‭their‬
‭tools‬ ‭available‬ ‭within‬ ‭established‬ ‭community‬ ‭toolboxes,‬ ‭it‬ ‭would‬ ‭help‬ ‭reduce‬ ‭redundant‬
‭research‬ ‭efforts‬ ‭and‬‭make‬‭the‬‭adoption‬‭of‬‭such‬‭tools‬‭easier.‬‭This‬‭is‬‭one‬‭of‬‭the‬‭big‬‭lessons‬‭we‬
‭can‬ ‭learn‬ ‭as‬ ‭a‬ ‭community‬ ‭from‬ ‭the‬ ‭recent‬ ‭boom‬ ‭in‬ ‭ML.‬ ‭In‬‭addition‬‭to‬‭the‬‭improved‬‭hardware‬
‭(e.g.,‬‭GPUs),‬‭new‬‭algorithms‬‭and‬‭huge‬‭datasets,‬‭one‬‭of‬‭the‬‭reasons‬‭ML‬‭has‬‭been‬‭so‬‭successful‬
‭is‬ ‭because‬ ‭the‬ ‭research‬ ‭has‬ ‭been‬ ‭done‬ ‭with‬ ‭a‬ ‭collaborative‬ ‭spirit‬ ‭and‬ ‭developed‬ ‭using‬
‭open-source frameworks (e.g., TensorFlow, PyTorch, JAX).‬

‭5.5‬ ‭Propagation‬ ‭of‬ ‭error‬ ‭reductions‬ ‭to‬ ‭constrain‬ ‭climate‬
‭predictions‬
‭Many‬‭studies‬‭have‬‭successfully‬‭constrained‬‭parameter‬‭uncertainty‬‭in‬‭LSMs,‬‭leading‬‭to‬‭reduced‬
‭uncertainty‬ ‭in‬ ‭contemporary‬ ‭land-atmosphere‬ ‭carbon‬ ‭fluxes.‬ ‭However,‬ ‭this‬ ‭reduction‬ ‭in‬
‭uncertainty‬ ‭has‬ ‭not‬ ‭been‬ ‭fully‬ ‭propagated‬ ‭to‬ ‭constrain‬ ‭future‬ ‭projections.‬ ‭There‬ ‭is‬ ‭a‬ ‭clear‬
‭opportunity‬‭to‬‭take‬‭this‬‭extra‬‭step‬‭to‬‭enable‬‭observationally‬‭constrained‬‭probabilistic‬‭statements‬
‭to‬ ‭be‬ ‭made‬ ‭about‬ ‭the‬ ‭future‬ ‭of‬ ‭the‬ ‭land‬‭biosphere.‬ ‭Such‬‭efforts‬‭are‬‭already‬‭commonplace‬‭in‬
‭ensembles‬ ‭of‬ ‭reduced‬ ‭complexity‬ ‭models‬ ‭(Sanderson,‬ ‭2020;‬ ‭Smith‬ ‭et‬ ‭al.,‬ ‭2024)‬‭,‬‭where‬‭large‬
‭ensembles‬‭of‬‭future‬‭projections‬‭are‬‭computationally‬‭trivial,‬‭but‬‭the‬‭difficulty‬‭of‬‭spinning‬‭up‬‭slow‬
‭carbon‬ ‭pool‬ ‭processes‬ ‭and‬ ‭ocean‬ ‭circulation‬ ‭in‬ ‭ESMs‬ ‭remains‬ ‭a‬ ‭challenge‬ ‭for‬ ‭probabilistic‬
‭coupled‬ ‭projections‬ ‭with‬ ‭ESMs‬ ‭(without‬ ‭flux‬ ‭corrections,‬ ‭(Irvine‬ ‭et‬ ‭al.,‬ ‭2013)‬‭.‬ ‭However,‬ ‭w‬‭ith‬
‭increased‬ ‭computational‬ ‭power,‬ ‭we‬ ‭are‬ ‭acquiring‬ ‭the‬ ‭capability‬ ‭to‬ ‭run‬ ‭LSMs‬ ‭as‬ ‭ensembles‬
‭rather‬‭than‬‭relying‬‭on‬‭a‬‭single‬‭realisation,‬‭thereby‬‭enabling‬‭us‬‭to‬‭better‬‭capture‬‭the‬‭uncertainty‬
‭of model predictions‬‭(Arora et al., 2023)‬‭.‬

‭By‬‭sampling‬‭from‬‭the‬‭posterior‬‭distributions‬‭after‬‭a‬‭PDA‬‭experiment,‬‭we‬‭can‬‭generate‬‭ensemble‬
‭simulations‬ ‭which‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭explore‬ ‭future‬ ‭scenarios‬ ‭and‬ ‭idealised‬ ‭experiments‬ ‭(e.g.‬
‭1%/yr‬‭CO‬‭2‬ ‭concentration‬‭increase)‬‭and‬‭quantify‬‭constrained‬‭distributions‬‭of‬‭carbon-climate-CO‬‭2‬

‭feedbacks.‬‭For‬‭example,‬‭by‬‭weighting‬‭the‬‭probability‬‭of‬‭each‬‭of‬‭the‬‭ensemble‬‭members,‬‭we‬‭can‬
‭create‬ ‭probability‬ ‭density‬ ‭functions‬ ‭of‬ ‭future‬ ‭land‬ ‭carbon‬ ‭storage‬ ‭for‬ ‭different‬ ‭locations,‬ ‭thus‬
‭narrowing‬ ‭the‬ ‭associated‬ ‭uncertainty‬‭of‬‭the‬‭future‬‭land‬‭sink‬‭and‬‭subsequently‬‭leading‬‭to‬‭more‬
‭accurate‬ ‭calculations‬‭of‬‭carbon‬‭budget‬‭estimates.‬‭Although‬‭this‬‭can‬‭easily‬‭be‬‭done‬‭for‬‭simpler‬
‭models‬ ‭where‬ ‭MCMC‬ ‭can‬ ‭be‬ ‭applied,‬ ‭for‬ ‭computational‬ ‭demanding‬ ‭models,‬ ‭there‬ ‭are‬ ‭two‬
‭critical‬‭yet‬‭distinct‬‭questions‬‭in‬‭this‬‭area‬‭that‬‭need‬‭addressing.‬‭The‬‭first‬‭is‬‭how‬‭to‬‭generate‬‭joint‬
‭posterior‬ ‭distributions‬ ‭for‬ ‭large‬ ‭models,‬ ‭which‬ ‭likely‬ ‭requires‬ ‭the‬ ‭use‬ ‭of‬ ‭emulators‬ ‭(see‬ ‭Sect.‬
‭4.1).‬ ‭The‬ ‭second‬ ‭is‬ ‭how‬ ‭to‬ ‭intelligently‬ ‭select‬ ‭parameter‬ ‭vectors‬ ‭from‬ ‭those‬ ‭distributions.‬
‭Currently,‬ ‭simple‬ ‭models‬ ‭might‬ ‭propagate‬ ‭uncertainty‬ ‭by‬‭using‬‭100-1000‬‭ensemble‬‭members,‬
‭but‬ ‭protocols‬ ‭like‬ ‭that‬ ‭used‬ ‭in‬ ‭the‬ ‭Coupled‬ ‭Model‬ ‭Intercomparison‬ ‭Project‬‭(CMIP)‬‭are‬‭not‬‭yet‬
‭adopting‬ ‭such‬ ‭large‬ ‭ensembles,‬ ‭again‬ ‭due‬ ‭to‬ ‭computational‬ ‭expense‬‭and‬‭constraints‬‭on‬‭data‬
‭storage.‬‭As‬‭a‬‭climate‬‭community,‬‭we‬‭should‬‭be‬‭striving‬‭to‬‭move‬‭towards‬‭using‬‭data-constrained‬
‭ensemble‬ ‭simulations‬ ‭in‬ ‭CMIP‬ ‭or‬ ‭the‬ ‭TRENDY‬ ‭model‬ ‭intercomparison‬ ‭project‬ ‭(Sitch‬ ‭et‬ ‭al.,‬
‭2024)‬‭to‬‭quantify‬‭uncertainties‬‭in‬‭model‬‭predictions‬‭reported‬‭in‬‭the‬‭Intergovernmental‬‭Panel‬‭on‬
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‭Climate‬ ‭Change‬‭(IPCC)‬‭8‬‭th‬ ‭Assessment‬‭Report‬‭,‬‭the‬‭annual‬‭Global‬ ‭Carbon‬‭Budget‬‭(GCB)‬‭and‬
‭other‬ ‭emerging‬ ‭frameworks‬ ‭quantifying‬ ‭land‬ ‭carbon‬ ‭trajectories.‬ ‭Therefore,‬ ‭we‬ ‭must‬ ‭develop‬
‭methods‬ ‭to‬ ‭maximise‬ ‭the‬ ‭propagation‬ ‭and‬ ‭partitioning‬ ‭of‬ ‭uncertainty‬ ‭with‬ ‭a‬ ‭limited‬‭number‬‭of‬
‭ensemble‬‭runs.‬‭Constraining‬‭parameter‬‭uncertainty‬‭via‬‭improved‬‭DA‬‭and‬‭ML‬‭techniques‬‭should‬
‭also‬ ‭help‬ ‭to‬ ‭reduce‬ ‭inter-model‬ ‭spread‬ ‭in‬ ‭CMIP‬‭and‬‭TRENDY,‬‭as‬‭model‬‭differences‬‭are‬‭likely‬
‭partly attributable to variations in parameter values between models.‬

‭Other‬ ‭international‬ ‭frameworks‬ ‭that‬ ‭oversee‬ ‭policies‬ ‭and‬ ‭socioeconomic‬ ‭management‬ ‭of‬
‭terrestrial‬‭carbon‬‭stocks‬‭–‬‭such‬‭as‬‭the‬‭voluntary‬‭carbon‬‭market‬‭and‬‭national‬‭emissions‬‭reporting‬
‭for‬‭Nationally‬‭Determined‬‭Contributions‬‭under‬‭the‬‭Paris‬‭Agreement‬‭–‬‭already‬‭require‬‭estimates‬
‭of‬‭model‬‭uncertainty;‬‭however,‬‭so‬‭far‬‭the‬‭models‬‭used‬‭in‬‭voluntary‬‭carbon‬‭market‬‭offset‬‭project‬
‭verification‬‭tend‬‭to‬‭be‬‭of‬‭simple‬‭to‬‭intermediate‬‭complexity,‬‭and‬‭not‬‭full‬‭complexity‬‭LSMs.‬‭Better‬
‭estimating‬ ‭uncertainty‬ ‭in‬ ‭LSMs‬ ‭via‬ ‭methods‬ ‭such‬ ‭as‬ ‭parameter‬ ‭DA‬ ‭should‬ ‭therefore‬‭facilitate‬
‭their use in a wider range of policy and carbon management initiatives.‬

‭6. Summary and conclusion‬
‭Improving‬‭the‬‭accuracy‬‭of‬‭land‬‭surface‬‭models‬‭(LSMs)‬‭is‬‭of‬‭vital‬‭importance‬‭since‬‭land‬‭surface‬
‭feedbacks‬ ‭on‬ ‭climate‬ ‭change‬ ‭represent‬ ‭one‬ ‭of‬ ‭the‬ ‭largest‬ ‭sources‬ ‭of‬ ‭uncertainty‬ ‭in‬ ‭climate‬
‭change‬ ‭projections.‬ ‭Parameter‬ ‭data‬ ‭assimilation‬ ‭is‬ ‭critical‬ ‭for‬‭enhancing‬‭the‬‭performance‬‭and‬
‭reliability‬ ‭of‬ ‭these‬ ‭LSMs.‬ ‭This‬ ‭process‬ ‭involves‬ ‭determining‬ ‭the‬ ‭best‬ ‭estimates‬ ‭of‬ ‭model‬
‭parameters,‬ ‭and‬ ‭their‬ ‭uncertainties,‬ ‭that‬ ‭best‬ ‭align‬ ‭the‬ ‭model‬ ‭outputs‬ ‭with‬ ‭observed‬ ‭data.‬
‭Effective‬ ‭parameter‬ ‭estimation‬ ‭helps‬ ‭in‬ ‭capturing‬ ‭the‬ ‭complex‬ ‭dynamics‬ ‭of‬ ‭land-atmosphere‬
‭interactions‬‭and‬‭improves‬‭the‬‭model's‬‭ability‬‭to‬‭simulate‬‭real-world‬‭phenomena.‬‭However,‬‭LSMs‬
‭used‬ ‭to‬ ‭predict‬ ‭future‬ ‭climate‬ ‭scenarios‬ ‭(e.g.,‬ ‭when‬ ‭coupled‬ ‭to‬ ‭Earth‬ ‭System‬ ‭Models)‬ ‭are‬
‭complex‬ ‭in‬ ‭nature‬ ‭leading‬ ‭to‬ ‭many‬ ‭challenges‬ ‭when‬ ‭performing‬ ‭global‬ ‭scale‬ ‭optimisations.‬
‭Nevertheless,‬‭advances‬‭in‬‭computational‬‭capability,‬‭novel‬‭datasets‬‭and‬‭emerging‬‭technologies‬
‭offer promising avenues for improving parameter accuracy and model calibration.‬

‭Machine‬‭learning‬‭(ML)‬‭clearly‬‭has‬‭a‬‭pivotal‬‭part‬‭to‬‭play‬‭in‬‭the‬‭future‬‭of‬‭land‬‭surface‬‭model‬‭data‬
‭assimilation,‬ ‭helping‬ ‭to‬‭streamline‬‭the‬‭assimilation‬‭process,‬‭manage‬‭large‬‭datasets‬‭and‬‭speed‬
‭up‬‭otherwise‬‭computationally‬‭demanding‬‭processes.‬‭International‬‭collaboration‬‭is‬‭crucial‬‭in‬‭this‬
‭endeavour,‬‭as‬‭shared‬‭knowledge‬‭and‬‭resources‬‭can‬‭significantly‬‭accelerate‬‭the‬ ‭advancement‬
‭of‬ ‭LSM‬ ‭calibration‬‭and‬‭data‬‭assimilation.‬‭Efforts‬‭to‬‭build‬‭a‬‭Land‬‭Data‬‭Assimilation‬‭Community,‬
‭such‬‭as‬‭those‬‭by‬‭the‬‭AIMES‬‭Land‬‭Data‬‭Assimilation‬‭Working‬‭Group‬‭and‬‭the‬‭International‬‭Land‬
‭Model‬ ‭Forum,‬ ‭have‬ ‭already‬ ‭made‬ ‭substantial‬ ‭progress‬ ‭in‬ ‭facilitating‬ ‭cross-group‬ ‭interactions.‬
‭These‬ ‭collaborative‬ ‭platforms‬ ‭are‬ ‭essential‬ ‭for‬ ‭training,‬ ‭knowledge‬ ‭exchange,‬ ‭and‬ ‭the‬
‭development of standardised methodologies, ultimately leading to more accurate LSMs.‬
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‭Appendix‬
‭The‬ ‭process-based‬ ‭models‬‭mentioned‬‭through‬‭the‬‭paper‬‭are‬‭listed‬‭in‬‭Table‬‭A1.‬‭This‬‭list‬‭cover‬
‭wide‬ ‭spectrum‬ ‭of‬ ‭land‬ ‭models‬ ‭ranging‬ ‭in‬ ‭complexity‬ ‭and‬ ‭computational‬ ‭demand,‬ ‭including‬
‭LSMs‬ ‭that‬‭simulate‬‭interactions‬‭between‬‭carbon,‬‭water,‬‭and‬‭energy‬‭cycles,‬‭often‬‭incorporating‬
‭other‬ ‭biogeochemical‬ ‭cycles‬ ‭(e.g.,‬ ‭nitrogen‬ ‭cycling)‬ ‭and‬ ‭dynamic‬ ‭vegetation‬ ‭processes;‬
‭stand-alone‬ ‭DGVMs‬ ‭that‬ ‭have‬ ‭more‬ ‭complex‬ ‭representation‬ ‭of‬ ‭vegetation‬ ‭demography‬
‭(so-called‬ ‭vegetation‬ ‭demographic‬ ‭models,‬ ‭VDMs)‬ ‭but‬ ‭may‬ ‭not‬ ‭fully‬ ‭represent‬ ‭energy‬ ‭and‬
‭hydrology‬ ‭components;‬ ‭and‬ ‭ecosystem‬ ‭models‬ ‭that‬ ‭primarily‬ ‭represent‬ ‭carbon‬ ‭cycling‬ ‭and‬
‭simple‬‭representations‬‭of‬‭vegetation‬‭and‬‭hydrology‬‭processes‬‭but‬‭may‬‭lack‬‭the‬‭full‬‭mechanistic‬
‭representation‬‭of‬‭energy‬‭and‬‭hydrological‬‭processes‬‭or‬‭vegetation‬‭dynamics‬‭seen‬‭in‬‭LSMs‬‭and‬
‭VDMs.‬

‭Table A1‬‭. References for the process-based models‬‭mentioned in this article.‬

‭Acronym‬ ‭Full name‬ ‭Model reference‬

‭BETHY‬ ‭Biosphere Energy Transfer Hydrology‬ ‭Knorr (2000)‬

‭CABLE‬ ‭Community Atmosphere Biosphere‬
‭Land Exchange‬

‭Kowalczyk et al., (2006)‬

‭CARDAMOM‬ ‭CARbon DAta MOdel fraMework‬ ‭Bloom‬ ‭et‬ ‭al.‬ ‭(2016);‬ ‭Smallman‬ ‭et‬
‭al. (2021)‬

‭CLASSIC‬ ‭Canadian Land Surface Scheme‬
‭Including Biogeochemical Cycles‬

‭Melton et al. (2020)‬

‭CLM‬ ‭Community Land Model‬ ‭Lawrence et al. (2019)‬

‭D&B‬ ‭DALEC & BETHY‬ ‭Knorr et al. (2024)‬

‭DALEC‬ ‭Data Assimilation Linked Ecosystem‬
‭Carbon‬

‭Williams et al. (2005)‬

‭ED‬ ‭Ecosystem Demography‬ ‭Ma‬ ‭et‬ ‭al.‬ ‭(2022);‬ ‭Moorcroft‬ ‭et‬ ‭al.‬
‭(2001)‬

‭ECLand‬ ‭European Centre for Medium-range‬
‭Weather Forecasts Land model‬
‭(based on CHTESSEL: Carbon-Hydrology‬
‭Tiled Scheme for Surface Exchanges over‬
‭Land)‬

‭Boussetta et al. (2021)‬
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‭FATES‬ ‭Functionally Assembled Terrestrial‬
‭Ecosystem Simulator‬

‭Fisher‬ ‭et‬ ‭al.‬ ‭(2015);‬ ‭Koven‬ ‭et‬ ‭al.‬
‭(2020)‬

‭FöBAAR‬ ‭Forest Biomass, Assimilation, Allocation‬
‭and Respiration‬

‭Keenan et al. (2012)‬

‭JULES‬ ‭Joint UK Land Environment Simulator‬ ‭Best‬ ‭et‬ ‭al.‬ ‭(2011);‬ ‭Clark‬ ‭et‬ ‭al.‬
‭(2011)‬

‭JSBACH‬ ‭Jena Scheme for Biosphera-‬
‭Atmosphere Coupling in Hamburg‬

‭Mauritsen‬‭et‬‭al‬‭(2019);‬‭Reick‬‭et‬‭al.‬
‭(2021)‬

‭LPJ-GUESS‬ ‭Lund-Potsdam-Jena General‬
‭Ecosystem Simulator‬

‭Smith (2007)‬

‭Noah‬ ‭-‬ ‭Ek et al. (2003)‬

‭ORCHIDEE‬ ‭Organising Carbon and Hydrology In‬
‭Dynamic Ecosystems‬

‭Krinner‬ ‭et‬ ‭al.‬ ‭(2005);‬ ‭Vuichard‬ ‭et‬
‭al.‬ ‭(2019);‬ ‭Zaehle,‬ ‭Friend,‬ ‭et‬ ‭al.‬
‭(2010)‬

‭SDBM‬ ‭Simple Diagnostic Biosphere Model‬ ‭Knorr & Heimann (1995)‬

‭SIPNET‬ ‭Simplified Photosynthesis and‬
‭Evapotranspiration‬

‭Braswell et al. (2005)‬

‭TECOS‬ ‭terrestrial ecosystem‬ ‭Xu et al., (2006)‬
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‭Key points (max 140 characters each)‬
‭●‬ ‭Data assimilation has been shown to be a powerful tool for reducing land surface model‬

‭parametric uncertainty.‬
‭●‬ ‭Machine learning can facilitate parameter estimation by enhancing computational‬

‭efficiency and replacing poorly represented processes.‬
‭●‬ ‭Collaboration is key to advancing land surface model calibration and data assimilation,‬

‭promoting knowledge exchange and standard methods.‬

‭Abstract (max 250 words)‬
‭Accurately‬ ‭predicting‬ ‭terrestrial‬ ‭ecosystem‬ ‭responses‬ ‭to‬ ‭climate‬ ‭change‬ ‭is‬ ‭crucial‬ ‭for‬
‭addressing‬ ‭global‬ ‭challenges.‬ ‭This‬ ‭relies‬ ‭on‬ ‭mechanistic‬ ‭modelling‬ ‭of‬ ‭ecosystem‬ ‭processes‬
‭through‬ ‭Land‬ ‭Surface‬ ‭Models‬ ‭(LSMs).‬ ‭Despite‬ ‭their‬ ‭importance,‬ ‭LSMs‬ ‭face‬ ‭significant‬
‭uncertainties‬‭due‬‭to‬‭poorly‬‭constrained‬‭parameters,‬‭especially‬‭in‬‭carbon‬‭cycle‬‭predictions.‬‭This‬
‭paper‬ ‭reviews‬ ‭the‬ ‭progress‬ ‭made‬ ‭in‬ ‭using‬ ‭data‬ ‭assimilation‬ ‭(DA)‬ ‭for‬ ‭LSM‬ ‭parameter‬
‭optimisation,‬ ‭focusing‬ ‭on‬ ‭carbon-water-vegetation‬ ‭interactions,‬ ‭as‬ ‭well‬ ‭as‬ ‭discussing‬ ‭the‬
‭technical‬ ‭challenges‬ ‭faced‬ ‭by‬ ‭the‬ ‭community.‬ ‭These‬ ‭challenges‬ ‭include‬ ‭identifying‬ ‭sensitive‬
‭model‬ ‭parameters‬ ‭and‬ ‭their‬ ‭prior‬ ‭distributions,‬‭characterising‬‭errors‬‭due‬‭to‬‭observation‬‭biases‬
‭and‬ ‭model-data‬ ‭inconsistencies,‬ ‭developing‬ ‭observation‬ ‭operators‬ ‭to‬ ‭interface‬ ‭between‬ ‭the‬
‭model‬‭and‬‭the‬‭observations,‬‭tackling‬‭spatial‬‭and‬‭temporal‬‭heterogeneity‬‭as‬‭well‬‭as‬‭dealing‬‭with‬
‭large‬ ‭and‬ ‭multiple‬ ‭datasets,‬ ‭and‬ ‭including‬ ‭the‬ ‭spin-up‬ ‭and‬‭historical‬‭period‬‭in‬‭the‬‭assimilation‬
‭window.‬‭We‬‭then‬‭outline‬‭how‬‭machine‬‭learning‬‭(ML)‬‭can‬‭help‬‭address‬‭these‬‭issues,‬‭proposing‬
‭different‬‭avenues‬‭for‬‭future‬‭work‬‭that‬‭integrate‬‭ML‬‭and‬‭DA‬‭to‬‭reduce‬‭uncertainties‬‭in‬‭LSMs.‬‭We‬
‭conclude‬ ‭by‬ ‭highlighting‬ ‭future‬ ‭priorities,‬ ‭including‬ ‭the‬ ‭need‬ ‭for‬‭international‬‭collaborations,‬‭to‬
‭fully‬ ‭leverage‬ ‭the‬ ‭wealth‬ ‭of‬ ‭available‬ ‭Earth‬ ‭observation‬ ‭datasets,‬ ‭harness‬ ‭machine‬ ‭learning‬
‭advances, and enhance the predictive capabilities of LSMs.‬

‭Plain language summary (max 200 words)‬

‭Improving‬ ‭the‬ ‭accuracy‬ ‭of‬ ‭land‬ ‭surface‬ ‭models‬ ‭(LSMs)‬ ‭is‬ ‭crucial‬ ‭for‬ ‭reducing‬‭uncertainties‬‭in‬
‭climate‬‭change‬‭projections.‬‭Parameter‬‭data‬‭assimilation,‬‭which‬‭fine-tunes‬‭model‬‭parameters‬‭to‬
‭better‬‭match‬‭observed‬‭data,‬‭is‬‭key‬‭to‬‭enhancing‬‭LSM‬‭performance.‬‭However,‬‭the‬‭complexity‬‭of‬
‭LSMs‬ ‭poses‬ ‭challenges‬ ‭for‬ ‭global‬ ‭optimisation.‬ ‭Advances‬ ‭in‬ ‭computational‬ ‭power,‬ ‭novel‬
‭datasets,‬‭and‬‭machine‬‭learning‬‭(ML)‬‭offer‬‭promising‬‭solutions‬‭to‬‭improve‬‭these‬‭models.‬‭ML‬‭can‬
‭streamline‬ ‭the‬ ‭data‬ ‭assimilation‬ ‭process,‬ ‭handling‬ ‭large‬ ‭datasets‬ ‭and‬ ‭reducing‬‭computational‬
‭demands.‬ ‭This‬ ‭article‬ ‭discusses‬ ‭the‬ ‭progress‬ ‭made‬ ‭in‬ ‭LSM‬ ‭parameter‬ ‭estimation‬ ‭and‬ ‭the‬
‭challenges‬ ‭faced‬ ‭by‬ ‭the‬ ‭community.‬ ‭We‬‭then‬‭discuss‬‭how‬‭machine‬‭learning‬‭can‬‭help‬‭address‬
‭these‬ ‭challenges‬ ‭and‬ ‭outline‬ ‭future‬ ‭priorities.‬ ‭International‬‭collaboration,‬‭fostered‬‭by‬‭initiatives‬
‭like‬‭the‬‭Analysis,‬‭Integration‬‭and‬‭Modeling‬‭of‬‭the‬‭Earth‬‭System‬‭Land‬‭Data‬‭Assimilation‬‭Working‬
‭Group‬ ‭and‬ ‭the‬ ‭International‬ ‭Land‬ ‭Model‬ ‭Forum,‬ ‭is‬ ‭essential‬ ‭for‬ ‭accelerating‬ ‭progress,‬
‭facilitating‬ ‭knowledge‬ ‭exchange,‬ ‭and‬ ‭developing‬ ‭standardised‬ ‭methods‬ ‭for‬ ‭more‬ ‭accurate‬
‭climate modelling.‬
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‭1. Introduction and premise‬
‭Our‬‭world‬‭faces‬‭unprecedented‬‭climate‬‭change,‬‭water‬‭scarcity,‬‭and‬‭food‬‭security‬‭challenges.‬‭To‬
‭tackle‬ ‭these‬ ‭issues‬ ‭effectively,‬ ‭we‬ ‭need‬ ‭to‬ ‭predict‬ ‭the‬ ‭responses‬ ‭of‬ ‭terrestrial‬ ‭ecosystem‬
‭dynamics‬ ‭to‬ ‭future‬ ‭global‬ ‭change.‬ ‭This‬ ‭strongly‬ ‭relies‬ ‭on‬ ‭our‬ ‭ability‬ ‭to‬ ‭accurately‬ ‭model‬ ‭the‬
‭underlying‬ ‭processes‬ ‭at‬ ‭the‬ ‭global‬ ‭scale.‬ ‭Such‬ ‭global-scale,‬ ‭mechanistic‬ ‭or‬ ‭process-based‬
‭models‬ ‭of‬‭the‬‭terrestrial‬‭biosphere,‬‭often‬‭embedded‬‭in‬‭Earth‬‭system‬‭models‬‭(wherein‬‭they‬‭are‬
‭called‬ ‭Land‬ ‭Surface‬ ‭Models‬ ‭–‬ ‭LSMs;‬ ‭Blyth‬ ‭et‬ ‭al.,‬ ‭2021)‬‭,‬ ‭mathematically‬ ‭represent‬ ‭complex‬
‭interacting‬ ‭ecosystem‬‭vegetation,‬‭carbon,‬‭water‬‭and‬‭energy‬‭cycling‬‭processes‬‭over‬‭half-hourly‬
‭to‬ ‭centennial‬ ‭time‬ ‭scales.‬ ‭Thus,‬ ‭for‬ ‭a‬ ‭given‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭or‬ ‭anthropogenic‬ ‭emissions‬
‭scenario‬‭(including‬‭emissions‬‭from‬‭land‬‭use‬‭change),‬‭LSMs‬‭are‬‭used‬‭to‬‭predict‬‭the‬‭response‬‭of‬
‭terrestrial‬ ‭ecosystems‬ ‭to‬ ‭climate‬ ‭change,‬ ‭rising‬ ‭CO‬‭2‬ ‭and‬ ‭land‬ ‭use‬ ‭change,‬ ‭and‬ ‭the‬ ‭resultant‬
‭feedbacks‬‭to‬‭climate.‬‭LSMs‬‭are‬‭also‬‭indispensable‬‭tools‬‭in‬‭assessing‬‭climate‬‭change‬‭mitigation‬
‭strategies,‬ ‭for‬ ‭example,‬ ‭to‬ ‭assess‬ ‭how‬ ‭effective‬ ‭nature-based‬ ‭solutions‬ ‭such‬ ‭as‬ ‭reforestation‬
‭will be in curbing rising CO‬‭2‬ ‭emissions.‬

‭R‬‭epresenting‬ ‭all‬ ‭the‬ ‭requisite‬ ‭processes‬ ‭corresponding‬ ‭to‬ ‭interacting‬ ‭vegetation,‬
‭biogeochemistry,‬‭water‬‭and‬‭energy‬‭cycles‬‭mechanistically‬‭(and‬‭accurately)‬‭in‬‭LSMs‬‭over‬‭a‬‭wide‬
‭range‬ ‭of‬ ‭timescales,‬ ‭from‬ ‭sub-daily‬ ‭flux‬ ‭exchanges‬ ‭with‬ ‭the‬ ‭atmosphere‬ ‭to‬ ‭decadal-century‬
‭timescales‬ ‭representative‬ ‭of‬ ‭changes‬ ‭in‬ ‭biomass‬ ‭and‬ ‭soil‬ ‭carbon‬ ‭pools‬ ‭required‬ ‭for‬
‭carbon-climate‬ ‭feedbacks,‬ ‭is‬ ‭critical‬ ‭for‬ ‭robust‬ ‭and‬ ‭reliable‬ ‭projections‬ ‭(Watson-Parris,‬ ‭2021)‬‭.‬
‭However,‬‭LSMs‬‭are‬‭highly‬‭complex‬‭and‬‭subject‬‭to‬‭large‬‭uncertainties,‬‭both‬‭in‬‭terms‬‭of‬‭missing‬
‭processes,‬ ‭inadequate‬ ‭representation‬ ‭of‬ ‭processes,‬ ‭and‬ ‭poorly‬ ‭constrained‬ ‭parameters.‬
‭Furthermore,‬‭when‬‭trying‬‭to‬‭address‬‭model‬‭structural‬‭uncertainty,‬‭implementing‬‭new‬‭processes‬
‭tends‬ ‭to‬ ‭introduce‬ ‭additional‬ ‭parameters‬ ‭and,‬ ‭therefore,‬ ‭more‬ ‭parameter‬ ‭uncertainty.‬ ‭As‬ ‭a‬
‭result,‬ ‭LSMs‬ ‭often‬ ‭diverge‬ ‭significantly‬ ‭in‬ ‭their‬ ‭representation‬ ‭of‬ ‭many‬ ‭terrestrial‬ ‭processes‬
‭(Gier‬ ‭et‬ ‭al.,‬ ‭2024;‬ ‭Green‬ ‭et‬ ‭al.,‬ ‭2024;‬ ‭Varney‬ ‭et‬ ‭al.,‬ ‭2024)‬‭.‬ ‭Consequently,‬ ‭their‬ ‭predictions‬‭of‬
‭important‬ ‭ecosystem‬ ‭responses‬ ‭under‬ ‭future‬ ‭climate‬ ‭change‬ ‭scenarios‬ ‭often‬ ‭vary‬ ‭widely.‬ ‭For‬
‭example,‬ ‭LSMs‬ ‭disagree‬ ‭on‬ ‭the‬‭magnitude‬‭of‬‭the‬‭land‬‭carbon‬‭sink‬‭(Koven‬‭et‬‭al.,‬‭2022;‬‭Shi‬‭et‬
‭al.,‬‭2024)‬‭,‬‭and‬‭the‬‭potential‬‭constraints‬‭on‬‭CO‬‭2‬ ‭fertilisation‬‭due‬‭to‬‭water‬‭(Green‬‭et‬‭al.,‬‭2019)‬‭and‬
‭nutrient‬ ‭(Davies-Barnard et al., 2022)‬‭limitations.‬

‭Parametric‬‭uncertainty‬‭is‬‭one‬‭of‬‭the‬‭largest‬‭sources‬‭of‬‭uncertainty‬‭in‬‭all‬‭types‬‭of‬‭land‬‭models‬‭(‬
‭simple,‬ ‭intermediate‬ ‭and‬ ‭full‬ ‭complexity‬ ‭models),‬ ‭particularly‬ ‭for‬‭predictions‬‭of‬‭carbon‬‭cycling,‬
‭vegetation‬ ‭dynamics‬ ‭and‬ ‭climate-carbon‬ ‭cycle‬ ‭feedbacks‬ ‭(Booth‬ ‭et‬ ‭al.,‬ ‭2012;‬ ‭Dietze,‬ ‭2017;‬
‭Fisher‬ ‭et‬ ‭al.,‬ ‭2019;‬ ‭Smallman‬ ‭et‬ ‭al.,‬ ‭2021)‬‭.‬‭Indeed,‬‭it‬‭has‬‭been‬‭shown‬‭for‬‭one‬‭LSM‬‭that‬‭even‬
‭perturbing‬ ‭a‬ ‭single‬ ‭carbon‬‭flux‬‭related‬‭parameter‬‭within‬‭its‬‭range‬‭of‬‭uncertainty‬‭can‬‭result‬‭in‬‭a‬
‭projection‬ ‭spread‬ ‭in‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭by‬ ‭2100‬ ‭that‬ ‭is‬ ‭larger‬ ‭than‬ ‭running‬ ‭the‬ ‭model‬ ‭under‬
‭different‬ ‭emissions‬ ‭scenarios‬‭(Booth‬‭et‬‭al.,‬‭2012)‬‭.‬‭We‬‭urgently‬‭need‬‭to‬‭reduce‬‭this‬‭uncertainty‬
‭to‬ ‭ensure‬ ‭we‬ ‭can‬ ‭utilise‬ ‭the‬ ‭full‬ ‭potential‬ ‭of‬ ‭LSMs—parameter‬ ‭optimisation‬ ‭is‬ ‭one‬ ‭way‬ ‭to‬
‭achieve this.‬

‭Many‬ ‭processes‬ ‭in‬ ‭LSMs‬ ‭(as‬ ‭well‬ ‭as‬ ‭processes‬ ‭in‬ ‭ecosystem‬ ‭models,‬ ‭see‬ ‭Table‬ ‭A1‬ ‭for‬ ‭all‬
‭process-based‬‭models‬‭mentioned‬‭in‬‭the‬‭paper)‬‭are‬‭controlled‬‭by‬‭parameters‬‭that‬‭represent‬‭the‬
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‭functioning‬ ‭of‬ ‭individual‬ ‭elements‬ ‭of‬ ‭the‬ ‭system.‬ ‭While‬ ‭some‬ ‭of‬ ‭these‬ ‭parameters‬ ‭can‬ ‭be‬
‭directly‬ ‭observed‬ ‭(e.g.‬ ‭photosynthetic‬ ‭capacity,‬ ‭wood‬ ‭density,‬ ‭rooting‬ ‭depth,‬ ‭hydraulic‬ ‭and‬
‭thermal‬ ‭properties‬ ‭of‬ ‭snow‬ ‭and‬ ‭soil,‬ ‭bark‬ ‭thickness,‬ ‭tissue‬ ‭nutrient‬ ‭stoichiometry),‬ ‭many‬
‭parameters‬ ‭either‬ ‭cannot‬ ‭be‬ ‭easily‬ ‭measured‬ ‭(e.g.,‬ ‭rooting‬ ‭depth)‬ ‭or‬ ‭are‬ ‭essentially‬ ‭only‬
‭“effective”‬ ‭parameters‬ ‭in‬ ‭that‬‭they‬‭have‬‭no‬‭physical‬‭meaning.‬‭Even‬‭those‬‭parameters‬‭that‬‭can‬
‭be‬‭directly‬‭measured‬‭can‬‭often‬‭only‬‭be‬‭observed‬‭at‬‭scales‬‭that‬‭differ‬‭from‬‭the‬‭grid‬‭resolution‬‭of‬
‭most‬ ‭global-scale‬ ‭LSM‬ ‭simulations‬ ‭(typically‬ ‭0.5‬ ‭degrees‬ ‭or‬ ‭greater).‬ ‭As‬ ‭a‬ ‭result,‬ ‭LSM‬
‭predictions‬ ‭–‬ ‭particularly‬ ‭for‬ ‭vegetation‬ ‭and‬ ‭carbon‬ ‭cycle‬ ‭related‬ ‭processes‬ ‭–‬ ‭can‬ ‭be‬ ‭highly‬
‭sensitive‬‭to‬‭parameter‬‭choices‬‭(in‬‭addition‬‭to‬‭model‬‭parameterisation‬‭or‬‭structural‬‭uncertainties)‬
‭(Booth‬‭et‬‭al.,‬‭2012;‬‭Buotte‬‭et‬‭al.,‬‭2021;‬‭Exbrayat‬‭et‬‭al.,‬‭2014;‬‭Fisher‬‭et‬‭al.,‬‭2019;‬‭Oberpriller‬‭et‬
‭al., 2022; Smallman et al., 2021; Zaehle, Friedlingstein, et al., 2010)‬‭.‬

‭Historically,‬ ‭LSM‬ ‭parameters‬ ‭have‬ ‭simply‬ ‭been‬ ‭manually‬ ‭tuned‬ ‭(adjusted‬ ‭by‬ ‭hand‬‭to‬‭produce‬
‭more‬ ‭realistic‬ ‭model‬ ‭behaviour‬ ‭or‬ ‭to‬ ‭better‬ ‭fit‬ ‭a‬ ‭given‬ ‭important‬ ‭model‬ ‭variable‬ ‭to‬ ‭a‬ ‭given‬
‭dataset).‬ ‭Manual‬ ‭tuning‬ ‭of‬‭LSM‬‭parameters‬‭was‬‭often‬‭the‬‭only‬‭option‬‭given‬‭the‬‭required‬‭rapid‬
‭pace‬ ‭of‬ ‭LSM‬ ‭development,‬ ‭the‬ ‭lack‬ ‭of‬ ‭available‬‭data‬‭at‬‭the‬‭correct‬‭scales‬‭for‬‭LSM‬‭parameter‬
‭optimisation,‬ ‭or‬ ‭the‬ ‭computational‬ ‭demand‬ ‭of‬ ‭optimising‬ ‭the‬ ‭large‬ ‭number‬ ‭of‬ ‭parameters‬
‭(typically‬ ‭>200)‬ ‭in‬ ‭LSMs‬ ‭with‬ ‭many‬ ‭complex,‬ ‭interacting‬ ‭processes.‬ ‭However,‬ ‭in‬ ‭the‬ ‭last‬ ‭two‬
‭decades,‬ ‭the‬ ‭hurdles‬ ‭associated‬ ‭with‬ ‭performing‬ ‭rigorous‬ ‭LSM‬ ‭parameter‬ ‭optimisation‬ ‭(as‬
‭opposed‬ ‭to‬ ‭tuning)‬ ‭have‬ ‭diminished‬ ‭to‬ ‭the‬ ‭point‬ ‭that‬ ‭it‬ ‭has‬ ‭become‬ ‭feasible:‬ ‭many‬ ‭datasets‬
‭have‬ ‭become‬ ‭available‬ ‭at‬ ‭LSM-relevant‬ ‭scales,‬ ‭and‬ ‭the‬ ‭computational‬ ‭cost‬ ‭of‬ ‭running‬ ‭LSMs‬
‭has‬ ‭decreased‬ ‭(although‬ ‭it‬ ‭remains‬ ‭a‬ ‭challenge‬ ‭–‬ ‭see‬ ‭Sect.‬ ‭3).‬ ‭LSM‬ ‭groups‬ ‭have‬ ‭therefore‬
‭started‬ ‭to‬ ‭optimise‬ ‭a‬ ‭selection‬ ‭of‬ ‭parameters‬ ‭using‬ ‭statistically‬ ‭robust‬ ‭data‬ ‭assimilation‬ ‭(DA)‬
‭methods.‬

‭DA‬ ‭methods‬ ‭are‬ ‭powerful‬ ‭as‬ ‭they‬ ‭allow‬ ‭observational‬ ‭data‬ ‭to‬ ‭be‬ ‭combined‬ ‭with‬ ‭numerical‬
‭methods‬‭to‬‭optimise‬‭estimates‬‭of‬‭chosen‬‭variables‬‭at‬‭the‬‭time‬‭of‬‭observations,‬‭either‬‭to‬‭update‬
‭the‬ ‭state‬ ‭(state‬ ‭estimation)‬ ‭or‬ ‭to‬ ‭optimise‬ ‭internal‬ ‭parameters‬ ‭(parameter‬ ‭estimation)‬ ‭while‬
‭accounting‬‭for‬‭uncertainties‬‭in‬‭both‬‭the‬‭model‬‭and‬‭the‬‭data‬‭(Rayner‬‭et‬‭al.,‬‭2019)‬‭.‬‭However,‬‭the‬
‭distinct‬ ‭requirements‬ ‭of‬ ‭LSMs‬ ‭compared‬ ‭to‬ ‭the‬ ‭atmospheric‬ ‭and‬ ‭ocean‬‭components‬‭of‬‭ESMs‬
‭result‬ ‭in‬ ‭subtle‬ ‭but‬ ‭important‬ ‭differences‬ ‭in‬ ‭how‬ ‭DA‬ ‭techniques‬ ‭are‬ ‭applied.‬‭The‬‭atmospheric‬
‭and‬ ‭ocean‬ ‭components‬ ‭of‬ ‭ESMs‬ ‭rely‬ ‭on‬ ‭fluid‬ ‭dynamic‬ ‭models,‬ ‭where‬ ‭the‬ ‭underlying‬
‭fundamental‬ ‭laws‬ ‭are‬ ‭relatively‬‭well‬‭understood,‬‭even‬‭if‬‭complex‬‭to‬‭simulate,‬‭and‬‭many‬‭of‬‭the‬
‭model‬‭parameters‬‭are‬‭known‬‭physical‬‭quantities‬‭that‬‭can‬‭be‬‭observed.‬‭Therefore,‬‭DA‬‭activities‬
‭using‬ ‭atmospheric‬ ‭or‬ ‭ocean‬ ‭components‬ ‭of‬ ‭ESMs‬ ‭have‬ ‭thus‬ ‭far‬ ‭been‬ ‭heavily‬ ‭focused‬ ‭on‬
‭numerical‬ ‭weather‬ ‭forecasting‬ ‭(NWP)‬ ‭and‬ ‭reanalysis‬ ‭applications,‬ ‭for‬ ‭which‬ ‭estimating‬ ‭and‬
‭correcting‬‭the‬‭optimal‬‭model‬‭state‬‭at‬‭each‬‭time‬‭step‬‭is‬‭the‬‭primary‬‭goal‬‭(de‬‭Rosnay‬‭et‬‭al.,‬‭2022;‬
‭Hersbach‬ ‭et‬ ‭al.,‬ ‭2018;‬ ‭Zuo‬ ‭et‬ ‭al.,‬ ‭2019)‬‭.‬ ‭In‬ ‭LSMs,‬ ‭however,‬ ‭parametric‬ ‭and‬ ‭structural‬
‭uncertainties‬ ‭dominate‬ ‭their‬ ‭spread‬ ‭(Bonan‬ ‭&‬ ‭Doney,‬ ‭2018;‬ ‭Draper,‬ ‭2021;‬ ‭Luo‬ ‭et‬ ‭al.,‬ ‭2015)‬‭.‬
‭LSM‬ ‭parameters‬ ‭are‬ ‭often‬ ‭linked‬ ‭to‬ ‭biological‬ ‭processes‬ ‭and‬ ‭organismal‬ ‭traits‬ ‭and‬ ‭are‬
‭dependent‬ ‭on‬ ‭plant‬ ‭functional‬ ‭type‬ ‭(PFT).‬ ‭Therefore,‬‭these‬‭parameters‬ ‭have‬‭a‬‭wide‬‭range‬‭of‬
‭possible‬‭values‬‭where‬‭they‬‭have‬‭been‬‭measured‬‭(in‬‭addition‬‭to‬‭a‬‭lack‬‭of‬‭data‬‭on‬‭parameters‬‭for‬
‭some‬ ‭PFTs‬ ‭and‬ ‭the‬ ‭role‬ ‭of‬ ‭“effective”‬ ‭parameters‬ ‭as‬ ‭discussed‬ ‭above).‬ ‭Characterising‬ ‭and‬
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‭simplifying‬ ‭the‬ ‭diversity‬ ‭of‬ ‭life‬ ‭into‬ ‭relatively‬ ‭few‬ ‭parameters‬ ‭is‬‭thus‬‭a‬‭challenge‬‭faced‬‭in‬‭LSM‬
‭development that is less of an issue for atmospheric and ocean modeling.‬

‭Early‬ ‭efforts‬ ‭in‬ ‭global‬ ‭model‬ ‭calibration‬ ‭in‬ ‭the‬ ‭1990s‬ ‭and‬ ‭2000s‬ ‭focused‬ ‭on‬ ‭optimising‬
‭vegetation‬‭and‬‭carbon‬‭cycle‬‭parameters‬‭of‬‭simplified‬‭or‬‭intermediate‬‭complexity‬‭land,‬‭carbon,‬‭or‬
‭ecosystem‬ ‭models.‬ ‭These‬ ‭studies,‬ ‭such‬ ‭as‬ ‭Knorr‬ ‭&‬ ‭Heimann’s‬ ‭(1995)‬ ‭work‬ ‭optimising‬
‭parameters‬ ‭of‬ ‭the‬ ‭Simple‬ ‭Diagnostic‬‭Biosphere‬‭Model‬‭(SDBM)‬‭using‬‭site‬‭CO‬‭2‬ ‭measurements,‬
‭laid‬ ‭the‬ ‭groundwork‬ ‭for‬ ‭DA-focused‬ ‭land‬ ‭model‬ ‭parameter‬ ‭optimisation.‬ ‭Knorr‬ ‭&‬ ‭Heimann’s‬
‭(1995)‬ ‭study‬ ‭was‬ ‭followed‬‭by‬‭further‬‭studies‬‭constrain‬‭carbon‬‭flux‬‭related‬‭processes‬‭in‬‭simple‬
‭and‬‭intermediate‬‭complexity‬‭ecosystem‬‭models‬‭like‬‭BETHY‬‭(Rayner‬‭et‬‭al.,‬‭2005;‬‭Scholze‬‭et‬‭al.,‬
‭2007)‬‭,‬‭using‬‭frameworks‬‭referred‬‭to‬‭carbon‬‭cycle‬‭data‬‭assimilation‬‭systems‬‭(CCDASs)‬‭.‬‭Parallel‬
‭to‬ ‭this,‬ ‭there‬‭was‬‭significant‬‭progress‬‭in‬‭using‬‭local‬‭eddy-covariance‬‭flux‬‭tower‬‭measurements‬
‭to‬ ‭optimise‬ ‭parameters‬ ‭related‬ ‭to‬ ‭photosynthesis,‬ ‭respiration,‬ ‭and‬ ‭energy‬ ‭flux‬ ‭in‬ ‭ecosystem‬
‭models‬ ‭at‬ ‭the‬ ‭site‬ ‭level‬ ‭(e.g.,‬ ‭Moore‬ ‭et‬ ‭al.,‬ ‭2008;‬ ‭Sacks‬ ‭et‬ ‭al.,‬ ‭2006;‬‭Y.-P.‬‭Wang‬‭et‬‭al.,‬‭2001;‬
‭Williams‬ ‭et‬ ‭al.,‬ ‭2005)‬‭.‬‭Two‬‭key‬‭intercomparison‬‭projects,‬‭OptIC‬‭and‬‭REFLEX,‬‭played‬‭a‬‭pivotal‬
‭role‬ ‭in‬ ‭assessing‬ ‭various‬ ‭data‬ ‭assimilation‬ ‭techniques‬ ‭for‬ ‭parameter‬ ‭estimation‬‭in‬‭simple‬‭and‬
‭intermediate‬‭complexity‬‭land,‬‭carbon‬‭cycle‬‭or‬‭ecosystem‬‭models‬‭(Fox‬‭et‬‭al.,‬‭2009;‬‭Trudinger‬‭et‬
‭al., 2007)‬‭.‬

‭Parameter‬ ‭optimisation‬ ‭of‬ ‭computational‬ ‭expensive‬ ‭land‬ ‭models‬ ‭using‬ ‭DA‬ ‭started‬ ‭in‬ ‭the‬ ‭late‬
‭2000s‬ ‭(Medvigy‬ ‭et‬ ‭al.,‬‭2009;‬‭Rayner,‬‭2010;‬‭Santaren‬‭et‬‭al.,‬‭2007)‬‭.‬‭These‬‭studies‬‭used‬‭similar‬
‭data‬ ‭(‬‭in‬ ‭situ‬ ‭fluxes‬ ‭and‬ ‭biomass)‬ ‭and‬ ‭similar‬ ‭experimental‬ ‭configurations‬ ‭(site‬ ‭scale‬
‭optimisations)‬ ‭as‬ ‭past‬ ‭studies‬ ‭with‬ ‭simple‬ ‭and‬ ‭intermediate‬ ‭complexity‬ ‭models‬ ‭but‬ ‭often‬ ‭with‬
‭different‬ ‭DA‬ ‭methods‬ ‭due‬ ‭to‬ ‭the‬ ‭increase‬ ‭in‬ ‭computational‬ ‭expense‬ ‭of‬ ‭running‬ ‭much‬ ‭more‬
‭complex‬ ‭models‬ ‭(Sect.‬ ‭2).‬ ‭Building‬ ‭on‬‭the‬‭formative‬‭DA‬‭work‬‭with‬‭the‬‭SDBM‬‭(Kaminski‬‭et‬‭al.,‬
‭2002)‬ ‭and‬ ‭BETHY‬ ‭models‬ ‭(Rayner‬ ‭et‬ ‭al.,‬ ‭2005)‬‭,‬ ‭other‬ ‭LSM‬ ‭groups‬ ‭also‬ ‭started‬ ‭using‬ ‭global‬
‭networks‬‭of‬‭in‬‭situ‬‭atmospheric‬‭CO‬‭2‬ ‭mole‬‭concentration‬‭data‬‭for‬‭constraining‬‭regional‬‭to‬‭global‬
‭scale‬ ‭surface‬ ‭net‬ ‭CO‬‭2‬ ‭exchange‬ ‭(Kaminski‬ ‭et‬‭al.,‬‭2013;‬‭Peylin‬‭et‬‭al.,‬‭2016;‬‭Schürmann‬‭et‬‭al.,‬
‭2016)‬‭.‬‭Testing‬‭of‬‭DA‬‭configuration‬‭at‬‭site‬‭scale‬‭(data‬‭type,‬‭sampling‬‭interval,‬‭record‬‭length,‬‭and‬
‭combinations‬‭of‬‭data‬‭-‬‭e.g.,‬‭carbon‬‭fluxes‬‭and‬‭stocks‬‭or‬‭carbon‬‭fluxes)‬‭continued‬‭with‬‭all‬‭types‬
‭of‬‭land‬‭models‬‭(Bastrikov‬‭et‬‭al.,‬‭2018;‬‭Bloom‬‭et‬‭al.,‬‭2016;‬‭Bloom‬‭&‬‭Williams,‬‭2015;‬‭Braswell‬‭et‬
‭al.,‬ ‭2005;‬ ‭Dietze‬ ‭et‬ ‭al.,‬ ‭2014;‬ ‭Keenan‬ ‭et‬ ‭al.,‬ ‭2013;‬ ‭Medvigy‬ ‭et‬ ‭al.,‬ ‭2009;‬ ‭Moore‬ ‭et‬ ‭al.,‬ ‭2008;‬
‭Ricciuto‬‭et‬‭al.,‬‭2008,‬‭2011;‬‭Santaren‬‭et‬‭al.,‬‭2014;‬‭Thum‬‭et‬‭al.,‬‭2017;‬‭Weng‬‭et‬‭al.,‬‭2011;‬‭Weng‬‭&‬
‭Luo,‬ ‭2011;‬ ‭Wutzler‬ ‭&‬ ‭Carvalhais,‬ ‭2014;‬ ‭Xu‬ ‭et‬ ‭al.,‬‭2006)‬‭.‬‭One‬‭example‬‭was‬‭the‬‭emergence‬‭of‬
‭“multi-site”‬ ‭experiments‬‭–‬‭parameter‬‭estimation‬‭studies‬‭in‬‭which‬‭data‬‭from‬‭multiple‬‭sites‬‭(often‬
‭grouped‬ ‭by‬ ‭PFT)‬ ‭were‬ ‭included‬ ‭simultaneously‬ ‭in‬ ‭the‬ ‭assimilation,‬ ‭with‬ ‭the‬ ‭retrieved‬
‭parameters‬ ‭then‬‭compared‬‭to‬‭those‬‭from‬‭assimilations‬‭with‬‭only‬‭individual‬‭site‬‭data‬‭(see‬‭Sect.‬
‭3.4‬ ‭for‬ ‭further‬ ‭discussion).‬ ‭These‬ ‭were‬ ‭initially‬ ‭performed‬ ‭against‬ ‭data‬ ‭from‬ ‭the‬ ‭global‬
‭FLUXNET‬‭network‬‭for‬‭a‬‭range‬‭of‬‭intermediate‬‭and‬‭full‬‭complexity‬‭LSMs,‬‭including‬‭many‬‭LSMs‬
‭used‬ ‭within‬ ‭ESMs‬ ‭(e.g.,‬ ‭Carvalhais‬ ‭et‬ ‭al.,‬ ‭2008,‬ ‭2010;‬ ‭Groenendijk‬ ‭et‬ ‭al.,‬ ‭2011;‬ ‭Kato‬ ‭et‬ ‭al.,‬
‭2013;‬ ‭Knorr‬ ‭et‬ ‭al.,‬ ‭2010;‬ ‭Wu‬ ‭et‬ ‭al.,‬ ‭2018;‬ ‭Xiao‬ ‭et‬ ‭al.,‬ ‭2014,‬ ‭ORCHIDEE:‬‭Kuppel‬‭et‬‭al.,‬‭2012,‬
‭2014;‬ ‭JULES:‬ ‭Alton,‬ ‭2013;‬ ‭Raoult‬ ‭et‬ ‭al.,‬ ‭2016;‬ ‭Noah:‬ ‭Chaney‬ ‭et‬ ‭al.,‬ ‭2016;‬ ‭CLM:‬ ‭Post‬ ‭et‬ ‭al.,‬
‭2017)‬‭.‬ ‭With‬ ‭the‬ ‭advent‬ ‭of‬‭satellite‬‭products,‬‭remote‬‭sensing‬‭indicators‬‭of‬‭vegetation‬‭dynamics‬
‭(phenology‬‭and‬‭photosynthetic‬‭uptake)‬‭began‬‭to‬‭be‬‭employed‬‭to‬‭constrain‬‭model‬‭parameters‬‭at‬
‭various‬ ‭spatial‬ ‭scales,‬ ‭including‬ ‭reflectance‬ ‭(Shiklomanov‬ ‭et‬ ‭al.,‬ ‭2021)‬‭;‬ ‭vegetation‬ ‭indices‬
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‭(Migliavacca‬‭et‬‭al.,‬‭2009‬‭;‬‭NDVI‬‭–‬‭MacBean‬‭et‬‭al.,‬‭2015)‬‭,‬‭FAPAR‬‭(Bacour‬‭et‬‭al.,‬‭2015;‬‭Forkel‬‭et‬
‭al.,‬‭2014,‬‭2019;‬‭Kaminski‬‭et‬‭al.,‬‭2012;‬‭Knorr‬‭et‬‭al.,‬‭2010;‬‭Stöckli‬‭et‬‭al.,‬‭2008;‬‭Zobitz‬‭et‬‭al.,‬‭2014)‬‭,‬
‭solar-induced‬ ‭fluorescence‬ ‭(SIF;‬ ‭(Bacour‬ ‭et‬ ‭al.,‬ ‭2019;‬ ‭Forkel‬ ‭et‬ ‭al.,‬ ‭2019;‬ ‭Knorr‬ ‭et‬ ‭al.,‬ ‭2024;‬
‭MacBean‬ ‭et‬ ‭al.,‬ ‭2018;‬ ‭Norton‬ ‭et‬‭al.,‬‭2018,‬‭2019;‬‭J.‬‭Wang‬‭et‬‭al.,‬‭2021)‬‭,‬‭aboveground‬‭biomass‬
‭and‬ ‭burned‬ ‭area‬ ‭(Forkel‬ ‭et‬ ‭al.,‬ ‭2019)‬‭.‬ ‭Over‬ ‭the‬ ‭past‬ ‭decade,‬ ‭parameter‬ ‭estimation‬ ‭has‬
‭advanced‬‭to‬‭constrain‬‭the‬‭terrestrial‬‭carbon,‬‭water,‬‭and‬‭energy‬‭cycles‬‭simultaneously,‬‭driven‬‭by‬
‭new‬ ‭remote‬ ‭sensing‬ ‭data‬ ‭on‬ ‭total‬ ‭column-integrated‬ ‭CO‬‭2‬ ‭fluxes‬ ‭(XCO‬‭2‬‭),‬ ‭satellite-derived‬
‭vegetation‬ ‭optical‬ ‭depth,‬ ‭soil‬ ‭moisture,‬ ‭snow‬ ‭cover,‬ ‭and‬‭river‬‭flow‬‭measurements,‬‭which‬‭have‬
‭been‬ ‭successfully‬ ‭integrated,‬ ‭for‬ ‭example,‬ ‭into‬ ‭BETHY‬ ‭(Scholze‬ ‭et‬ ‭al.,‬ ‭2016)‬‭,‬ ‭the‬ ‭new‬
‭community‬ ‭D&B‬ ‭model‬ ‭developed‬ ‭by‬ ‭the‬ ‭European‬ ‭Space‬ ‭Agency‬ ‭(ESA)’s‬ ‭Carbon‬ ‭Cluster‬
‭(Knorr‬ ‭et‬ ‭al.,‬ ‭2024)‬‭;‬ ‭JULES‬ ‭(Pinnington‬ ‭et‬ ‭al.,‬ ‭2018,‬ ‭2021)‬‭,‬ ‭and‬ ‭ORCHIDEE‬ ‭(Raoult‬ ‭et‬ ‭al.,‬
‭2021)‬‭.‬ ‭Further‬ ‭details‬ ‭on‬ ‭the‬ ‭history‬ ‭of‬ ‭parameter‬ ‭optimisation‬ ‭in‬ ‭all‬‭types‬‭of‬‭land‬‭models‬‭are‬
‭provided‬ ‭in‬ ‭Rayner‬ ‭(2010)‬‭,‬ ‭Kaminski‬ ‭et‬‭al.‬‭(2013)‬‭,‬‭Scholze‬‭et‬‭al.‬‭(2017)‬‭,‬‭Rayner‬‭et‬‭al.‬‭(2019)‬‭,‬
‭Baatz et al. (2021)‬‭, and‬‭MacBean, Bacour, et al. (2022)‬‭.‬

‭While‬‭substantial‬‭progress‬‭in‬‭complex‬‭LSM‬‭parameter‬‭optimisation‬‭has‬‭been‬‭made‬‭(particularly‬
‭for‬ ‭constraining‬ ‭parameters‬ ‭of‬ ‭short‬ ‭timescale‬ ‭vegetation‬ ‭dynamics‬ ‭and‬ ‭carbon‬ ‭fluxes,‬ ‭as‬
‭described‬ ‭above),‬ ‭a‬ ‭number‬ ‭of‬ ‭challenges‬ ‭hindering‬ ‭objective‬ ‭calibration‬ ‭of‬ ‭the‬ ‭full‬
‭high-dimensional‬ ‭LSM‬ ‭parameter‬ ‭space‬ ‭remain.‬ ‭Despite‬ ‭advances‬ ‭in‬ ‭the‬ ‭use‬ ‭of‬ ‭analytical‬
‭techniques‬ ‭to‬ ‭dramatically‬ ‭reduce‬ ‭the‬ ‭time‬ ‭for‬ ‭LSM‬ ‭simulations‬ ‭(Luo‬ ‭et‬ ‭al.,‬ ‭2022;‬ ‭Sun‬ ‭et‬ ‭al.,‬
‭2023)‬‭,‬‭these‬‭highly‬‭complex‬‭models‬‭still‬‭have‬‭computational‬‭requirements‬‭–‬‭even‬‭for‬‭one‬‭global‬
‭scale‬‭simulation‬‭–‬‭that‬‭are‬‭too‬‭high‬‭for‬‭efficient‬‭multi-site‬‭to‬‭global‬‭DA‬‭experiments.‬‭This‬‭is‬‭true‬
‭even‬ ‭for‬ ‭“offline”‬ ‭simulations‬ ‭(i.e.,‬ ‭LSM‬ ‭simulations‬ ‭forced‬ ‭with‬ ‭climate‬ ‭reanalysis‬ ‭data,‬ ‭as‬
‭opposed‬‭to‬‭“online”‬‭cases‬‭when‬‭LSMs‬‭are‬‭run‬‭within‬‭the‬‭whole‬‭ESM).‬ ‭High‬‭dimensionality‬‭and‬
‭computational‬ ‭cost‬ ‭make‬‭it‬‭difficult‬‭to‬‭calibrate‬‭LSMs‬‭using‬‭conventional‬‭statistical‬‭approaches‬
‭like‬‭Markov‬‭Chain‬‭Monte‬‭Carlo.‬‭Methods‬‭used‬‭with‬‭simpler‬‭models‬‭often‬‭fail‬‭with‬‭LSMs‬‭due‬‭to‬
‭their‬ ‭complexity.‬ ‭These‬ ‭challenges‬ ‭have‬ ‭also‬ ‭meant‬ ‭that‬ ‭LSMs‬ ‭currently‬ ‭struggle‬ ‭to‬ ‭fully‬
‭leverage‬ ‭the‬ ‭large‬ ‭amount‬ ‭of‬ ‭data‬ ‭from‬ ‭ground‬ ‭networks‬ ‭and‬ ‭Earth‬ ‭observation‬ ‭platforms‬‭for‬
‭calibration.‬

‭As‬ ‭an‬ ‭LSM‬ ‭community,‬ ‭thus‬ ‭far,‬ ‭we‬ ‭have‬ ‭no‬ ‭overall‬ ‭strategy‬ ‭for‬ ‭how‬ ‭to‬ ‭proceed‬ ‭towards‬ ‭a‬
‭system‬ ‭that‬ ‭allows‬ ‭for‬ ‭objective‬ ‭parameter‬ ‭estimation.‬‭However,‬‭this‬‭field‬‭is‬‭rapidly‬‭expanding‬
‭and‬ ‭we‬ ‭are‬‭in‬‭a‬‭unique‬‭position‬‭to‬‭learn‬‭from‬‭each‬‭other,‬‭especially‬‭in‬‭relation‬‭to‬‭the‬‭technical‬
‭challenges‬ ‭we‬ ‭face‬ ‭with‬ ‭computational‬ ‭expensive‬ ‭LSM‬ ‭parameter‬ ‭DA.‬ ‭Efforts‬ ‭to‬‭build‬‭a‬‭Land‬
‭Data‬‭Assimilation‬‭Community‬‭(‬‭https://land-da-community.github.io/‬‭)‬‭by‬‭the‬‭Analysis,‬‭Integration‬
‭and‬‭Modeling‬‭of‬‭the‬‭Earth‬‭System‬‭(AIMES)‬‭Land‬‭Data‬‭Assimilation‬‭Working‬‭Group‬‭(MacBean,‬
‭Liddy,‬ ‭et‬ ‭al.,‬ ‭2022)‬ ‭and‬ ‭the‬ ‭International‬ ‭Land‬ ‭Model‬ ‭Forum‬ ‭(ILMF‬ ‭–‬
‭https://hydro-jules.org/international-land-modeling-forum-ilmf‬‭)‬ ‭have‬ ‭precipitated‬ ‭this‬ ‭sharing‬ ‭of‬
‭knowledge‬ ‭through‬ ‭online‬ ‭workshops‬ ‭and‬ ‭town‬ ‭halls.‬ ‭Capitalising‬ ‭on‬ ‭this‬ ‭momentum‬ ‭is‬ ‭vital‬
‭given‬ ‭the‬ ‭importance‬ ‭of‬ ‭this‬ ‭problem.‬ ‭The‬ ‭rapid‬ ‭advancements‬ ‭in‬ ‭machine‬ ‭learning‬‭(ML)‬‭and‬
‭the‬ ‭increasing‬ ‭availability‬ ‭of‬ ‭global‬‭earth‬‭observations‬‭and‬‭networks‬‭of‬‭in‬‭situ‬‭data‬‭create‬‭new‬
‭opportunities for advancing land/earth system modelling with the help of DA.‬

‭In‬‭this‬‭paper,‬‭we‬‭summarise‬‭the‬‭current‬‭state‬‭of‬‭parameter‬‭estimation‬‭in‬‭land‬‭surface‬‭modelling,‬
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‭starting‬ ‭with‬ ‭DA‬ ‭methods,‬ ‭before‬ ‭outlining‬ ‭the‬ ‭different‬ ‭challenges‬ ‭and‬ ‭opportunities‬ ‭our‬
‭community‬‭faces.‬‭We‬‭then‬‭highlight‬‭how‬‭some‬‭of‬‭these‬‭challenges‬‭can‬‭be‬‭potentially‬‭addressed‬
‭by‬ ‭capitalising‬ ‭on‬ ‭emerging‬ ‭ML‬ ‭techniques‬ ‭and‬ ‭increasing‬ ‭computational‬ ‭capabilities.‬ ‭Finally,‬
‭we‬‭propose‬‭future‬‭priorities‬‭for‬‭advancing‬‭the‬‭field‬‭given‬‭the‬‭urgent‬‭need‬‭for‬‭more‬‭accurate‬‭and‬
‭precise‬ ‭LSM‬ ‭projections.‬ ‭We‬ ‭focus‬ ‭on‬ ‭the‬ ‭techniques‬ ‭and‬ ‭challenges‬ ‭related‬ ‭to‬ ‭optimising‬
‭carbon-vegetation-water‬‭interactions‬‭in‬‭full‬‭complexity‬‭LSMs‬‭but‬‭also‬‭discuss‬‭parameter‬‭DA‬‭and‬
‭ML methods applied to intermediate complexity land, carbon cycle and ecosystem models.‬

‭This‬ ‭paper‬ ‭complements‬ ‭Kumar‬ ‭et‬ ‭al.‬ ‭(2022)‬ ‭which‬ ‭addresses‬ ‭land‬ ‭surface‬ ‭model‬ ‭data‬
‭assimilation‬ ‭in‬ ‭the‬ ‭context‬ ‭of‬ ‭state‬ ‭estimation,‬ ‭with‬ ‭a‬ ‭focus‬ ‭on‬ ‭vegetation‬ ‭and‬ ‭hydrology‬
‭processes.‬‭A‬‭water‬‭cycle-focused‬‭perspective,‬‭tackling‬‭both‬‭state‬‭and‬‭parameter‬‭estimation,‬‭is‬
‭offered by‬‭De Lannoy et al. (2022)‬‭.‬

‭2.‬ ‭Data‬ ‭assimilation‬ ‭methods‬ ‭for‬ ‭parameter‬
‭estimation in land surface models‬

‭LSMs‬ ‭have‬ ‭many‬ ‭parameters‬ ‭that‬ ‭need‬ ‭to‬ ‭be‬ ‭calibrated‬ ‭to‬ ‭accurately‬ ‭reflect‬ ‭the‬ ‭real‬ ‭world‬
‭(ideally‬ ‭based‬ ‭on‬ ‭observations)‬ ‭and‬ ‭to‬ ‭increase‬ ‭confidence‬ ‭in‬ ‭their‬ ‭future‬ ‭projections.‬ ‭Expert‬
‭knowledge‬‭and‬‭empirical‬‭measurements‬‭of‬‭some‬‭LSM‬‭parameters‬‭provide‬‭approximate‬‭values‬
‭or‬ ‭their‬ ‭respective‬ ‭ranges.‬ ‭However,‬ ‭due‬ ‭to‬ ‭uncertainties‬ ‭in‬ ‭observations‬ ‭and‬‭processes,‬‭and‬
‭the‬ ‭conceptual‬ ‭nature‬ ‭of‬‭most‬‭parameters,‬‭the‬‭exact‬‭values‬‭of‬‭LSM‬‭parameters‬‭are‬‭inherently‬
‭difficult‬ ‭to‬ ‭determine.‬ ‭Instead,‬ ‭we‬ ‭make‬ ‭use‬ ‭of‬ ‭the‬ ‭abundance‬‭of‬‭observational‬‭data‬‭indirectly‬
‭related‬ ‭to‬ ‭the‬ ‭parameters‬ ‭via‬ ‭the‬ ‭processes‬ ‭they‬ ‭are‬ ‭related‬ ‭to,‬ ‭and‬ ‭thus‬ ‭the‬ ‭problem‬ ‭of‬
‭parameter‬ ‭estimation‬ ‭in‬ ‭LSMs‬ ‭becomes‬ ‭the‬ ‭solution‬ ‭to‬ ‭the‬ ‭inverse‬ ‭problem‬ ‭(Tarantola,‬‭1987,‬
‭2005)‬‭:‬ ‭find‬‭the‬‭parameter‬‭set‬‭𝝧‬‭given‬‭the‬‭observations‬‭y‬‭such‬‭that‬‭y‬‭≅‬‭G(‬‭𝝧‬‭)‬‭.‬‭In‬‭the‬‭context‬‭of‬
‭parameter‬ ‭estimation,‬ ‭G‬ ‭includes‬ ‭a‬‭mapping‬‭from‬‭parameters‬‭to‬‭states‬‭and‬‭propagates‬‭states‬
‭through‬ ‭time‬ ‭via‬ ‭a‬ ‭forward‬ ‭model‬ ‭as‬ ‭well‬ ‭as‬ ‭an‬ ‭observation‬ ‭operator‬ ‭(Kaminski‬ ‭&‬ ‭Mathieu,‬
‭2017)‬‭that maps states to observation space.‬

‭Typically,‬‭a‬‭unique‬‭solution‬‭to‬‭the‬‭exact‬‭inverse‬‭problem‬‭does‬‭not‬‭exist‬‭and‬‭often‬‭the‬‭logical‬‭step‬
‭is‬ ‭to‬ ‭cast‬ ‭the‬ ‭approximate‬ ‭inverse‬ ‭problem‬ ‭into‬ ‭a‬ ‭loss‬ ‭minimisation‬ ‭effort‬ ‭that‬ ‭locates‬ ‭the‬
‭argument‬ ‭of‬ ‭a‬ ‭cost‬ ‭function‬ ‭that‬ ‭minimises‬ ‭the‬ ‭discrepancy‬ ‭between‬ ‭y‬ ‭and‬ ‭G(‬‭𝝧‬‭)‬‭.‬ ‭However,‬
‭many‬ ‭techniques‬ ‭of‬ ‭this‬ ‭type‬ ‭only‬ ‭provide‬ ‭point‬ ‭estimates‬ ‭(i.e.,‬ ‭a‬‭single‬‭solution),‬‭which‬‭have‬
‭significant‬ ‭limitations‬ ‭when‬ ‭applied‬ ‭to‬‭LSM‬‭calibration.‬‭LSMs‬‭are‬‭inherently‬‭complex,‬‭involving‬
‭many‬ ‭interacting‬ ‭processes,‬ ‭uncertain‬ ‭observations,‬ ‭and‬ ‭non-linear‬ ‭relationships.‬ ‭By‬‭focusing‬
‭only‬ ‭on‬ ‭the‬‭best-fit‬‭parameters,‬‭point‬‭estimates‬‭ignore‬‭the‬‭range‬‭of‬‭plausible‬‭values‬‭that‬‭could‬
‭explain‬ ‭the‬ ‭data‬ ‭equally‬ ‭well.‬ ‭This‬ ‭can‬ ‭lead‬ ‭to‬ ‭overconfident‬ ‭predictions,‬ ‭underestimating‬ ‭the‬
‭variability‬ ‭and‬ ‭uncertainty‬ ‭in‬ ‭model‬ ‭outcomes,‬ ‭which‬ ‭is‬ ‭crucial‬ ‭for‬ ‭understanding‬ ‭the‬ ‭full‬
‭spectrum‬ ‭of‬ ‭possible‬ ‭future‬ ‭climate‬ ‭scenarios.‬ ‭Instead,‬ ‭we‬ ‭want‬ ‭to‬ ‭be‬ ‭able‬ ‭to‬ ‭account‬ ‭for‬
‭uncertainties‬‭in‬‭the‬‭model,‬‭data,‬‭and‬‭parameters,‬‭and‬‭reduce‬‭the‬‭uncertainty‬‭in‬‭the‬‭parameters‬
‭by creating observationally-constrained posterior distributions.‬
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‭Hence,‬ ‭an‬ ‭approach‬ ‭more‬ ‭desirable‬ ‭for‬ ‭its‬ ‭ability‬ ‭to‬ ‭quantify‬ ‭the‬ ‭uncertainty‬ ‭in‬ ‭the‬ ‭estimated‬
‭parameters‬‭and‬‭its‬‭inherent‬‭natural‬‭regularisation,‬‭is‬‭the‬‭Bayesian‬‭approach.‬‭Bayesian‬‭methods‬
‭include‬‭information‬‭on‬‭the‬‭prior‬‭distribution‬‭of‬‭the‬‭parameters‬‭p(‬‭𝝧‬‭)‬‭to‬‭define‬‭an‬‭entire‬‭posterior‬
‭distribution:‬

‭p(‬‭𝝧‬‭|‬‭y‬‭) ∝ p(‬‭y‬‭|‬‭𝝧‬‭)p(‬‭𝝧‬‭)‬ ‭(1)‬
‭where‬‭𝝧‬‭is‬‭regarded‬‭as‬‭a‬‭random‬‭variable‬‭as‬‭opposed‬‭to‬‭a‬‭fixed‬‭value‬‭to‬‭be‬‭estimated.‬‭In‬‭this‬
‭case,‬ ‭the‬ ‭maximum‬ ‭a‬ ‭posteriori‬ ‭(MAP)‬ ‭estimate‬ ‭-‬ ‭the‬ ‭argument‬ ‭that‬ ‭maximises‬ ‭the‬ ‭posterior‬
‭distribution‬ ‭(i.e.,‬ ‭its‬ ‭mode)‬ ‭-‬ ‭provides‬ ‭a‬ ‭point‬ ‭estimate‬ ‭for‬ ‭𝝧‬ ‭and‬ ‭is‬ ‭equivalent‬ ‭to‬ ‭a‬ ‭loss‬
‭minimisation‬ ‭estimate‬ ‭regularised‬ ‭with‬ ‭prior‬ ‭parameter‬ ‭information‬ ‭under‬ ‭Gaussian‬
‭assumptions.‬ ‭Under‬ ‭such‬ ‭assumptions,‬ ‭maximising‬ ‭the‬ ‭posterior‬ ‭distribution‬ ‭corresponds‬ ‭to‬
‭minimising the so-called variational cost function:‬

‭J(‬‭𝝧‬‭) = ½[ (G(‬‭𝝧‬‭) −‬‭y‬‭)‬‭T‬‭R‬‭−1‬‭(G(‬‭𝝧‬‭)‬‭−‬‭y‬‭) + (‬‭𝝧‬‭−‬‭𝝧‬‭b‬‭)‬‭T‬‭B‬‭−1‬ ‭(‬‭𝝧‬‭−‬‭𝝧‬‭b‬‭)],‬ ‭(2)‬
‭where‬ ‭R‬ ‭and‬ ‭B‬ ‭are‬ ‭the‬ ‭model/data‬ ‭and‬‭prior‬‭error‬‭covariance‬‭matrix,‬‭respectively,‬‭and‬‭𝝧‬‭b‬ ‭are‬
‭the prior parameter values.‬

‭With‬ ‭the‬ ‭emergence‬ ‭of‬ ‭novel‬ ‭ground‬ ‭and‬ ‭satellite‬ ‭observation‬ ‭sets‬ ‭came‬ ‭the‬ ‭advent‬ ‭and‬
‭development‬ ‭of‬ ‭techniques‬ ‭to‬ ‭implement‬‭them‬‭in‬‭a‬‭field‬‭of‬‭mathematics‬‭originally‬‭coined‬‭Data‬
‭Assimilation‬‭(DA)‬‭(Talagrand‬‭&‬‭Courtier,‬‭1987)‬‭.‬‭Along‬‭with‬‭the‬‭differences‬‭in‬‭the‬‭aforementioned‬
‭approaches‬ ‭to‬ ‭solving‬ ‭the‬ ‭inverse‬ ‭problem,‬ ‭these‬ ‭methods‬ ‭also‬ ‭differ‬ ‭in‬ ‭the‬ ‭nature‬ ‭of‬ ‭the‬
‭temporal‬ ‭assimilation‬ ‭of‬ ‭the‬ ‭available‬ ‭observations.‬ ‭DA‬ ‭methods‬ ‭that‬ ‭assimilate‬ ‭all‬ ‭available‬
‭observations‬ ‭over‬ ‭a‬ ‭given‬ ‭time‬ ‭window‬ ‭are‬ ‭known‬ ‭as‬ ‭batch‬ ‭(or‬ ‭offline/smoothers)‬‭techniques‬
‭whereas‬‭those‬‭that‬‭incorporate‬‭the‬‭observations‬‭at‬‭the‬‭time‬‭they‬‭become‬‭available‬‭are‬‭referred‬
‭to‬ ‭as‬ ‭sequential‬ ‭(or‬ ‭online/filters).‬ ‭There‬ ‭is‬ ‭some‬ ‭confusion‬ ‭in‬ ‭the‬ ‭community‬ ‭regarding‬ ‭the‬
‭terminology‬ ‭used‬‭when‬‭describing‬‭DA‬‭methods,‬‭for‬‭example,‬‭the‬‭false‬‭dichotomies‬‭sometimes‬
‭used‬ ‭between‬ ‭“variational‬ ‭and‬ ‭sequential”‬ ‭and‬ ‭“optimisation-based‬ ‭versus‬ ‭Bayesian”‬ ‭-‬ ‭these‬
‭dichotomies‬ ‭have‬ ‭been‬ ‭marred‬ ‭over‬ ‭time‬ ‭with‬ ‭hybridisation‬ ‭and‬ ‭the‬‭continual‬‭development‬‭of‬
‭the‬ ‭techniques.‬ ‭Rayner‬ ‭et‬ ‭al.‬ ‭(2019)‬ ‭have‬ ‭made‬ ‭a‬ ‭significant‬ ‭effort‬ ‭to‬ ‭harmonise‬‭the‬‭notation‬
‭and clarify overlapping terminology within the community.‬

‭Although‬ ‭DA‬ ‭is‬ ‭primarily‬ ‭used‬ ‭in‬ ‭numerical‬ ‭weather‬ ‭forecasting‬ ‭to‬ ‭correct‬ ‭the‬ ‭model‬ ‭state,‬‭in‬
‭LSMs,‬ ‭DA‬ ‭is‬ ‭often‬ ‭employed‬ ‭to‬ ‭reduce‬ ‭parametric‬ ‭uncertainty,‬ ‭a‬ ‭process‬ ‭referred‬ ‭to‬ ‭as‬
‭parameter‬ ‭data‬ ‭assimilation‬ ‭(PDA).‬ ‭Techniques‬ ‭used‬ ‭in‬ ‭numerical‬‭weather‬‭forecasting‬‭can‬‭be‬
‭adapted‬ ‭for‬ ‭parameter‬ ‭estimation‬ ‭in‬ ‭LSMs.‬ ‭One‬ ‭of‬ ‭the‬ ‭key‬ ‭methods‬ ‭is‬ ‭4DVar,‬‭which‬‭involves‬
‭minimising‬ ‭Eq.‬ ‭2‬ ‭(‬‭called‬ ‭4DVar‬ ‭to‬ ‭contrast‬ ‭with‬ ‭3DVar,‬ ‭where‬ ‭the‬ ‭observations‬ ‭are‬ ‭instead‬
‭compared‬‭to‬‭a‬‭single‬‭model‬‭output‬‭at‬‭a‬‭time).‬‭The‬‭next‬‭part‬‭of‬‭this‬‭section‬‭looks‬‭a‬‭little‬‭deeper‬
‭into‬‭methods‬‭used‬‭to‬‭reduce‬‭this‬‭cost‬‭function,‬‭as‬‭well‬‭as‬‭outlining‬‭alternative‬‭DA‬‭methods‬‭that‬
‭extract the full posterior distribution.‬

‭Methods for reducing cost functions:‬
‭Methods‬‭commonly‬‭used‬‭to‬‭minimise‬‭the‬‭cost‬‭(e.g.,‬‭Eq.‬‭2)‬‭require‬‭numerical‬‭optimisation‬‭due‬‭to‬
‭their‬ ‭complex‬ ‭structure‬ ‭and‬‭these‬‭can‬‭usually‬‭be‬‭grouped‬‭into‬‭local‬‭gradient-descent‬‭or‬‭global‬
‭random‬ ‭search‬‭techniques.‬‭Although‬‭more‬‭computationally‬‭efficient,‬‭gradient-descent‬‭methods‬
‭require‬ ‭the‬ ‭gradient‬ ‭of‬ ‭the‬ ‭cost‬ ‭function‬ ‭(either‬ ‭exact,‬ ‭which‬ ‭requires‬ ‭differentiating‬ ‭the‬‭entire‬
‭LSM‬ ‭-‬ ‭see‬ ‭Sect.‬ ‭3.7,‬ ‭or‬ ‭approximated‬ ‭when‬ ‭exact‬ ‭is‬ ‭not‬ ‭possible‬ ‭or‬ ‭desirable)‬ ‭and‬ ‭they‬ ‭can‬
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‭result‬‭in‬‭the‬‭location‬‭of‬‭a‬‭local‬‭minimum.‬‭A‬‭common‬‭gradient-based‬‭minimisation‬‭method‬‭used‬
‭in‬ ‭LSM‬ ‭parameter‬ ‭estimation‬ ‭is‬ ‭the‬ ‭quasi-Newton‬ ‭algorithm‬ ‭L-BFGS-B‬ ‭(limited‬ ‭memory‬
‭Broyden–Fletcher–Goldfarb–Shanno‬‭algorithm‬‭with‬‭bound‬‭constraints‬‭-‬‭Byrd‬‭et‬‭al.,‬‭1995)‬‭.‬‭This‬
‭approach‬‭can‬‭leverage‬‭exact‬‭gradients‬‭derived‬‭from‬‭either‬‭the‬‭tangent‬‭linear‬‭(forward‬‭sensitivity‬
‭propagation)‬‭or‬‭adjoint‬‭(backward‬‭sensitivity‬‭propagation)‬‭of‬‭the‬‭model.‬‭These‬‭gradients‬‭can‬‭be‬
‭obtained‬ ‭by‬‭hand‬‭or‬‭using‬‭automatic‬‭differentiation‬‭software‬‭(Gelbrecht‬‭et‬‭al.,‬‭2023;‬‭Griewank,‬
‭1997)‬‭.‬ ‭While‬ ‭L-BFGS-B‬ ‭is‬ ‭powerful‬ ‭when‬ ‭exact‬ ‭gradients‬ ‭are‬ ‭available,‬ ‭practical‬
‭challenges—such‬ ‭as‬ ‭the‬ ‭complexity‬ ‭and‬ ‭computational‬ ‭burden‬ ‭of‬ ‭maintaining‬ ‭the‬ ‭tangent‬
‭linear/adjoint‬ ‭(see‬ ‭Sect.‬ ‭3.7)—often‬ ‭necessitate‬ ‭alternatives.‬ ‭To‬ ‭address‬ ‭this,‬ ‭approximate‬
‭gradient‬ ‭methods‬ ‭can‬ ‭be‬ ‭employed.‬ ‭One‬ ‭approach‬ ‭is‬ ‭to‬ ‭estimate‬ ‭gradients‬ ‭using‬ ‭finite‬
‭difference,‬ ‭calculating‬ ‭the‬ ‭change‬ ‭in‬ ‭model‬ ‭output‬ ‭relative‬ ‭to‬ ‭changes‬ ‭in‬ ‭parameters.‬ ‭This‬
‭method‬ ‭is‬ ‭especially‬ ‭useful‬ ‭for‬ ‭parameters‬ ‭related‬ ‭to‬ ‭threshold‬ ‭functions,‬ ‭such‬ ‭as‬ ‭those‬
‭controlling‬‭phenology‬ ‭However,‬‭the‬‭choice‬‭of‬‭perturbation‬‭size‬‭to‬‭be‬‭applied‬‭to‬‭each‬‭parameter‬
‭individually‬‭is‬‭crucial,‬‭as‬‭inappropriate‬‭values‬‭can‬‭lead‬‭to‬‭inaccuracies.‬‭In‬‭cases‬‭where‬‭gradient‬
‭information‬ ‭is‬ ‭difficult‬ ‭to‬ ‭obtain‬ ‭or‬ ‭unreliable,‬ ‭derivative-free‬ ‭methods‬ ‭offer‬ ‭a‬ ‭solution.‬ ‭The‬
‭Nelder-Mead‬ ‭simplex‬ ‭algorithm‬ ‭(Nelder‬ ‭&‬ ‭Mead,‬ ‭1965)‬‭,‬ ‭for‬ ‭instance,‬ ‭iteratively‬ ‭adjusts‬ ‭a‬
‭simplex‬ ‭(geometric‬ ‭shape)‬ ‭in‬ ‭parameter‬ ‭space‬ ‭to‬ ‭converge‬ ‭towards‬ ‭the‬ ‭minimum‬ ‭of‬ ‭a‬ ‭cost‬
‭function‬‭,‬ ‭eliminating‬ ‭the‬ ‭need‬ ‭for‬ ‭direct‬ ‭gradient‬ ‭calculations.‬ ‭Additionally,‬ ‭more‬ ‭advanced‬
‭approaches,‬ ‭such‬ ‭as‬ ‭the‬ ‭ensemble-based‬ ‭4DVar‬ ‭(4DEnVar)‬ ‭algorithm‬ ‭proposed‬ ‭by‬ ‭Liu‬ ‭et‬ ‭al.‬
‭(2008)‬‭use‬‭an‬‭ensemble‬‭of‬‭model‬‭trajectories‬‭to‬‭approximate‬‭gradient‬‭information‬‭via‬‭a‬‭control‬
‭variable transform.‬

‭Alternatively,‬‭global‬‭search‬‭methods‬‭can‬‭be‬‭used‬‭to‬‭minimise‬‭the‬‭cost‬‭function.‬‭These‬‭methods‬
‭use‬ ‭techniques‬ ‭that‬ ‭try‬ ‭to‬ ‭scan‬ ‭the‬ ‭entire‬ ‭parameter‬ ‭space‬‭in‬‭some‬‭defined‬‭way‬‭to‬‭avoid‬‭this‬
‭pitfall‬‭but‬‭often‬‭require‬‭heavy‬‭computational‬‭power‬‭to‬‭do‬‭so.‬‭These‬‭global‬‭search‬‭methods‬‭can‬
‭be‬ ‭cateogrised‬ ‭as‬ ‭Monte‬‭Carlo‬‭(MC),‬‭since‬‭they‬‭are‬‭methods‬‭that‬‭make‬‭use‬‭of‬‭repeated‬‭trials‬
‭(or‬‭sampling)‬‭generated‬‭using‬‭random‬‭numbers‬‭(Owen,‬‭2013)‬‭.‬‭An‬‭example‬‭of‬‭such‬‭a‬‭method‬‭is‬
‭the‬‭genetic‬‭algorithm‬‭(Goldberg‬‭&‬‭Holland,‬‭1988;‬‭Haupt‬‭&‬‭Haupt,‬‭2004)‬‭,‬‭which‬‭is‬‭based‬‭on‬‭the‬
‭laws of natural selection and belongs to the class of evolutionary algorithms.‬

‭Although‬ ‭these‬ ‭gradient-descent‬ ‭and‬ ‭global‬ ‭search‬ ‭methods‬ ‭are‬ ‭very‬ ‭efficient‬ ‭in‬ ‭finding‬ ‭an‬
‭optimal‬ ‭point-estimate‬ ‭of‬‭the‬‭parameters‬‭that‬‭minimise‬‭the‬‭given‬‭cost‬‭function,‬‭usually‬‭they‬‭do‬
‭not‬ ‭directly‬ ‭offer‬ ‭information‬ ‭about‬ ‭the‬ ‭posterior‬ ‭error‬ ‭statistics.‬ ‭Nevertheless,‬ ‭it‬‭is‬‭possible‬‭to‬
‭exploit‬ ‭information‬‭about‬‭the‬‭curvature‬‭of‬‭the‬‭cost‬‭function‬‭(via‬‭the‬‭Hessian)‬‭at‬‭the‬‭optimum‬‭to‬
‭obtain‬‭such‬‭information,‬‭but‬‭this‬‭is‬‭typically‬‭more‬‭complicated‬‭than‬‭deriving‬‭gradient‬‭information‬
‭and more costly in the case of global search.‬

‭Methods to extract the full posterior distribution:‬
‭In‬‭contrast‬‭to‬‭methods‬‭that‬‭obtain‬‭point-estimates‬‭for‬‭the‬‭parameters,‬‭other‬‭approaches‬‭aim‬‭to‬
‭extract‬ ‭useful‬ ‭information‬ ‭from‬ ‭the‬ ‭full‬ ‭posterior‬ ‭distribution‬ ‭P(‬‭𝝧‬‭|‬‭y‬‭),‬ ‭usually‬ ‭at‬ ‭a‬ ‭much‬ ‭higher‬
‭computational‬ ‭expense‬ ‭and‬ ‭tend‬ ‭to‬ ‭be‬ ‭applied‬ ‭to‬ ‭computationally‬ ‭inexpensive‬ ‭LSMs,‬ ‭carbon‬
‭cycle,‬ ‭and‬ ‭ecosystem‬ ‭models.‬ ‭Similarly‬ ‭to‬ ‭global‬ ‭search‬ ‭algorithms‬ ‭for‬ ‭objective‬ ‭function‬
‭optimisation,‬‭as‬‭opposed‬‭to‬‭gradient-descent‬‭methods,‬‭these‬‭techniques‬‭are‬‭often‬‭Monte‬‭Carlo‬
‭in nature and hence also derivative-free (black-box).‬
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‭Techniques‬‭include‬‭importance‬‭sampling‬‭(Kloek‬‭&‬‭Van‬‭Dijk,‬‭1978)‬‭,‬‭a‬‭relatively‬‭simple‬‭approach‬
‭that‬‭samples‬‭random‬‭values‬‭from‬‭the‬‭prior‬‭and‬‭accumulates‬‭accepted‬‭parameterisations‬‭based‬
‭on‬ ‭importance‬ ‭weights‬ ‭and‬ ‭aims‬ ‭to‬ ‭estimate‬ ‭expectations‬‭of‬‭interest‬‭such‬‭as‬‭mean,‬‭variance,‬
‭etc.‬ ‭This‬ ‭approach‬ ‭can‬‭run‬‭into‬‭limitations‬‭when‬‭the‬‭problem‬‭becomes‬‭more‬‭complicated‬‭(e.g.‬
‭dimensionality‬‭increases‬‭or‬‭target‬‭distribution‬‭gets‬‭more‬‭complex),‬‭as‬‭demonstrated‬‭by‬‭Ziehn‬‭et‬
‭al.‬ ‭(2012)‬‭.‬ ‭When‬ ‭the‬ ‭computational‬ ‭budget‬ ‭permits,‬ ‭Markov‬ ‭Chain‬ ‭Monte‬ ‭Carlo‬ ‭(MCMC;‬
‭Hastings,‬‭1970)‬‭algorithms‬‭have‬‭emerged‬‭as‬‭the‬‭gold‬‭standard‬‭for‬‭quantifying‬‭uncertainty‬‭in‬‭the‬
‭solution‬‭of‬‭Bayesian‬‭inverse‬‭problems.‬‭This‬‭class‬‭of‬‭iterative‬‭algorithms‬‭seeks‬‭to‬‭draw‬‭samples‬
‭from‬‭the‬‭posterior‬‭distribution‬‭P(‬‭𝝧‬‭|‬‭y‬‭),‬‭which‬‭can‬‭in‬‭turn‬‭be‬‭used‬‭to‬‭estimate‬‭posterior‬‭statistics‬‭of‬
‭interest.‬ ‭The‬ ‭cost‬ ‭of‬ ‭such‬ ‭comprehensive‬ ‭uncertainty‬ ‭quantification‬ ‭is‬ ‭that‬ ‭standard‬ ‭MCMC‬
‭algorithms‬ ‭often‬ ‭require‬ ‭a‬ ‭large‬ ‭number‬ ‭(>‬ ‭10‬‭4‬‭–10‬‭7‬‭)‬ ‭of‬ ‭iterations‬ ‭that‬ ‭build‬ ‭on‬ ‭previously‬
‭accepted‬ ‭values‬ ‭and‬ ‭so‬ ‭must‬ ‭be‬ ‭performed‬ ‭serially‬ ‭(i.e.,‬ ‭not‬ ‭taking‬ ‭advantage‬ ‭of‬ ‭parallel‬
‭high-performance‬‭computing).‬‭This‬‭essentially‬‭means‬‭that‬‭the‬‭full‬‭LSM‬‭must‬‭be‬‭run‬‭using‬‭a‬‭new‬
‭parameter‬ ‭vector‬ ‭during‬ ‭each‬ ‭iteration,‬ ‭and‬ ‭while‬ ‭it‬ ‭is‬ ‭possible‬ ‭to‬ ‭run‬ ‭different‬
‭information-sharing‬ ‭chains‬ ‭in‬ ‭parallel‬ ‭to‬ ‭accelerate‬ ‭sampling‬ ‭around‬ ‭a‬ ‭global‬ ‭optimum‬‭(Vrugt,‬
‭2016)‬‭, within chain iterative model evaluations still precludes parallelisation.‬

‭Particle‬ ‭filters‬ ‭provide‬ ‭an‬ ‭alternative‬ ‭to‬ ‭MCMC‬ ‭for‬ ‭sampling‬ ‭from‬ ‭the‬ ‭posterior‬ ‭distribution,‬
‭particularly‬ ‭in‬ ‭time-evolving‬ ‭systems.‬ ‭They‬ ‭represent‬ ‭the‬ ‭posterior‬ ‭using‬ ‭a‬ ‭set‬ ‭of‬ ‭particles,‬
‭updating‬ ‭them‬ ‭with‬‭each‬‭new‬‭data‬‭point.‬‭While‬‭computationally‬‭intensive‬‭and‬‭prone‬‭to‬‭particle‬
‭degeneracy,‬ ‭particle‬ ‭filters‬ ‭are‬ ‭useful‬ ‭for‬ ‭real-time‬ ‭tracking‬ ‭of‬ ‭system‬ ‭states‬ ‭and‬ ‭time-varying‬
‭parameters.‬ ‭However,‬ ‭many‬ ‭of‬ ‭the‬ ‭parameters‬ ‭in‬ ‭land‬ ‭surface‬‭models‬‭are‬‭linked‬‭to‬‭biological‬
‭processes‬ ‭and‬ ‭thus‬ ‭are‬ ‭subject‬ ‭to‬ ‭change‬ ‭over‬ ‭time‬ ‭due‬ ‭to‬‭acclimation,‬‭phenotypic‬‭plasticity,‬
‭adaptation‬ ‭and‬ ‭evolution.‬ ‭While‬ ‭some‬ ‭attempts‬ ‭have‬ ‭been‬ ‭made‬ ‭to‬ ‭explore‬ ‭the‬ ‭seasonal‬
‭variability‬ ‭in‬ ‭parameters‬ ‭(Rowland‬ ‭et‬ ‭al.,‬ ‭2014;‬ ‭Verbeeck‬ ‭et‬ ‭al.,‬ ‭2011)‬‭,‬ ‭the‬ ‭majority‬ ‭of‬ ‭the‬
‭literature‬‭in‬‭land‬‭model‬‭parameter‬‭estimation‬‭so‬‭far‬‭operates‬‭on‬‭the‬‭assumption‬‭that‬‭parameters‬
‭are‬ ‭fixed‬ ‭in‬ ‭time.‬ ‭As‬ ‭such,‬ ‭particle‬ ‭filters‬ ‭are‬ ‭rarely‬ ‭used‬‭in‬‭PDA‬‭(Speich‬‭et‬‭al.,‬‭2021)‬‭(unless‬
‭part of joint state-parameter DA, for example,‬‭Zhang et al., 2017)‬‭.‬

‭Applications in LSMs‬‭:‬
‭Due‬ ‭to‬ ‭the‬ ‭high‬ ‭number‬ ‭of‬ ‭required‬ ‭model‬ ‭evaluations,‬ ‭MCMC‬ ‭methods‬ ‭have‬ ‭primarily‬ ‭been‬
‭applied‬ ‭to‬ ‭computationally‬ ‭inexpensive‬ ‭land,‬ ‭carbon‬ ‭cycle,‬ ‭and‬ ‭ecosystem‬ ‭models,‬ ‭or‬ ‭to‬
‭calibrate‬ ‭isolated‬ ‭processes‬ ‭such‬ ‭as‬ ‭fitting‬ ‭parameters‬ ‭of‬ ‭a‬ ‭two-pool‬ ‭model‬ ‭of‬ ‭substrate‬
‭dependence‬ ‭in‬ ‭plant‬ ‭respiration‬ ‭(Jones‬ ‭et‬ ‭al.,‬ ‭2024)‬ ‭or‬ ‭parameters‬ ‭of‬ ‭the‬ ‭wetlands‬ ‭CH4‬
‭emissions‬ ‭module‬ ‭in‬ ‭the‬ ‭second‬ ‭generation‬ ‭dynamic‬ ‭global‬ ‭vegetation‬ ‭model‬ ‭LPJ-GUESS‬
‭(Kallingal‬ ‭et‬ ‭al.,‬ ‭2024)‬‭.‬‭For‬‭example,‬‭MCMC‬‭methods‬‭have‬‭been‬‭used‬‭to‬‭estimate‬‭parameters‬
‭of‬‭the‬‭Simplified‬‭PnET‬‭(SIPNET)‬‭ecosystem‬‭model‬‭(Fer‬‭et‬‭al.,‬‭2018;‬‭M.‬‭Liu‬‭et‬‭al.,‬‭2015;‬‭Sacks‬
‭et‬ ‭al.,‬ ‭2006)‬‭,‬ ‭TECOS‬ ‭(Xu‬ ‭et‬ ‭al.,‬ ‭2006)‬‭,‬ ‭FöBAAR‬ ‭forest‬ ‭carbon‬ ‭cycle‬ ‭model‬ ‭(Keenan‬ ‭et‬ ‭al.,‬
‭2012)‬‭,‬ ‭BETHY‬ ‭(Knorr‬ ‭&‬ ‭Kattge,‬ ‭2005)‬ ‭and‬ ‭the‬ ‭DALEC‬ ‭suite‬ ‭of‬ ‭intermediate‬ ‭complexity‬
‭ecosystem‬ ‭models‬ ‭(Famiglietti‬ ‭et‬‭al.,‬‭2021;‬‭Keenan‬‭et‬‭al.,‬‭2011;‬‭D.‬‭Lu‬‭et‬‭al.,‬‭2017)‬‭.‬‭DALEC‬‭is‬
‭also‬‭at‬‭the‬‭heart‬‭of‬‭the‬‭cutting-edge‬‭CARbon‬‭DAta‬‭MOdel‬‭fraMework‬‭(CARDAMOM)‬‭where‬‭the‬
‭full‬ ‭potential‬ ‭of‬ ‭MCMC-based‬ ‭carbon‬ ‭parameter‬ ‭estimation‬ ‭is‬ ‭performed‬ ‭(Bloom‬ ‭et‬ ‭al.,‬ ‭2016;‬
‭Exbrayat, Smallman, et al., 2018; Smallman et al., 2021)‬‭.‬
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‭While‬‭computationally‬‭expensive‬‭LSMs‬‭build‬‭on‬‭this‬‭foundation,‬‭their‬‭complexity‬‭and‬‭parameter‬
‭volume‬‭have‬‭made‬‭MCMC‬‭methods‬‭computationally‬‭prohibitive.‬‭Consequently,‬‭4DVar‬‭has‬‭been‬
‭the‬‭preferred‬‭approach‬‭for‬‭these‬‭models.‬‭When‬‭the‬‭tangent‬‭linear‬‭or‬‭adjoint‬‭models‬‭have‬‭been‬
‭available‬ ‭(e.g.,‬ ‭Bacour‬‭et‬‭al.,‬‭2015;‬‭Knorr‬‭et‬‭al.,‬‭2024;‬‭Kuppel‬‭et‬‭al.,‬‭2012;‬‭Raoult‬‭et‬‭al.,‬‭2016;‬
‭Schürmann‬ ‭et‬ ‭al.,‬ ‭2016)‬‭,‬ ‭these‬ ‭have‬ ‭been‬ ‭directly‬ ‭used‬ ‭to‬ ‭minimise‬ ‭the‬ ‭cost‬ ‭function‬ ‭and‬
‭calculate‬ ‭the‬ ‭Hessian.‬ ‭Alternatively,‬ ‭the‬ ‭Nelder-Mead‬ ‭simplex‬ ‭algorithm‬ ‭(Pinnington‬ ‭et‬ ‭al.,‬
‭2018)‬‭,‬‭finite‬‭differences‬‭(Bacour‬‭et‬‭al.,‬‭2019;‬‭Bastrikov‬‭et‬‭al.,‬‭2018;‬‭MacBean‬‭et‬‭al.,‬‭2015)‬‭and‬
‭4DEnVar‬ ‭(Pinnington‬ ‭et‬ ‭al.,‬ ‭2020)‬‭have‬‭all‬‭been‬‭used‬‭to‬‭circumvent‬‭the‬‭need‬‭of‬‭such‬‭models.‬
‭While‬ ‭some‬ ‭Monte‬ ‭Carlo‬ ‭approaches‬ ‭have‬ ‭been‬ ‭used‬ ‭to‬ ‭calibrate‬ ‭complex‬ ‭LSM‬
‭parameters—either‬‭for‬‭global‬‭search‬‭methods‬‭to‬‭minimise‬‭the‬‭cost‬‭function‬‭or‬‭to‬‭extract‬‭the‬‭full‬
‭posterior‬ ‭distribution—these‬ ‭are‬ ‭typically‬ ‭applied‬ ‭at‬ ‭the‬ ‭site‬ ‭scale‬ ‭and‬ ‭fall‬ ‭short‬ ‭of‬ ‭full‬ ‭global‬
‭calibrations.‬‭Examples‬‭include‬‭the‬‭adaptive‬‭population‬‭importance‬‭sampler‬‭used‬‭to‬‭calibrate‬‭the‬
‭JSBACH‬ ‭model‬ ‭(Mäkelä‬ ‭et‬ ‭al.,‬ ‭2019)‬‭,‬ ‭the‬ ‭genetic‬ ‭algorithm‬ ‭used‬ ‭to‬ ‭calibrate‬ ‭ORCHIDEE‬
‭(Bastrikov‬ ‭et‬ ‭al.,‬ ‭2018)‬‭,‬ ‭and‬ ‭multichain‬ ‭MCMC‬ ‭method‬ ‭DiffeRential‬ ‭Evolution‬ ‭Adaptive‬
‭Metropolis‬‭(DREAM(zs))‬‭(Vrugt‬‭et‬‭al.,‬‭2009)‬‭used‬‭with‬‭CLM‬‭(Post‬‭et‬‭al.,‬‭2017)‬‭and‬‭LPJ-GUESS‬
‭(Bagnara et al., 2019)‬‭.‬

‭3. Challenges‬

‭3.1 Selecting parameters and their prior distributions‬
‭A‬ ‭big‬ ‭challenge‬ ‭in‬ ‭parameter‬ ‭estimation‬ ‭studies‬ ‭is‬ ‭defining‬ ‭the‬ ‭experiment,‬ ‭starting‬ ‭with‬
‭selecting‬ ‭the‬ ‭parameters‬ ‭to‬ ‭be‬ ‭constrained‬ ‭and‬ ‭the‬ ‭prior‬ ‭distributions‬ ‭over‬ ‭which‬ ‭they‬ ‭are‬
‭allowed‬ ‭to‬ ‭vary.‬ ‭A‬ ‭common‬ ‭first‬ ‭step‬ ‭is‬ ‭to‬ ‭select‬ ‭from‬ ‭the‬ ‭(potentially‬ ‭quite‬ ‭large)‬ ‭number‬ ‭of‬
‭model‬ ‭parameters,‬ ‭a‬ ‭subset‬ ‭that‬ ‭is‬ ‭deemed‬‭the‬‭most‬‭influential‬‭in‬‭some‬‭sense.‬‭The‬‭excluded‬
‭parameters‬ ‭are‬ ‭then‬ ‭fixed‬ ‭at‬ ‭their‬ ‭nominal‬ ‭values,‬ ‭yielding‬ ‭a‬ ‭parameter‬ ‭space‬ ‭of‬ ‭reduced‬
‭dimension.‬ ‭This‬ ‭challenge‬ ‭is‬ ‭amplified‬ ‭by‬ ‭large‬ ‭numbers‬ ‭of‬ ‭interconnected‬ ‭parameters‬
‭influencing‬ ‭different‬‭parts‬‭of‬‭the‬‭model‬‭as‬‭parameters‬‭with‬‭strong‬‭enough‬‭covariances‬‭need‬‭to‬
‭be‬ ‭considered‬ ‭jointly.‬ ‭Furthermore,‬ ‭the‬ ‭strong‬ ‭co-variations‬ ‭between‬ ‭parameters‬ ‭and‬ ‭forcing‬
‭and‬‭boundary‬‭conditions‬‭further‬‭complicate‬‭the‬‭parameter‬‭selection‬‭process.‬‭It‬‭is‬‭vital‬‭to‬‭identify‬
‭the‬‭key‬‭internal‬‭parameters‬‭that‬‭have‬‭the‬‭most‬‭impact‬‭on‬‭a‬‭given‬‭model‬‭output‬‭because‬‭i)‬‭PDA‬
‭techniques‬‭are‬‭computationally‬‭demanding,‬‭scaling‬‭with‬‭the‬‭number‬‭of‬‭parameters‬‭used‬‭in‬‭the‬
‭optimisation,‬ ‭and‬ ‭ii)‬ ‭due‬ ‭to‬ ‭the‬ ‭high‬ ‭degree‬ ‭of‬ ‭equifinality‬ ‭in‬ ‭most‬ ‭parameter‬ ‭spaces‬ ‭(i.e.,‬
‭different‬‭parameter‬‭vectors‬‭giving‬‭the‬‭same‬‭fit‬‭to‬‭the‬‭observed‬‭data),‬‭attempting‬‭to‬‭estimate‬‭an‬
‭excessive‬ ‭number‬ ‭of‬ ‭parameters‬ ‭can‬ ‭lead‬ ‭to‬ ‭overfitting‬ ‭and‬ ‭a‬ ‭severe‬ ‭degradation‬ ‭in‬ ‭model‬
‭performance‬ ‭when‬ ‭the‬ ‭model‬ ‭is‬ ‭run‬ ‭in‬ ‭predictive‬ ‭mode.‬ ‭In‬ ‭other‬ ‭words,‬ ‭increasing‬ ‭model‬
‭complexity‬ ‭for‬ ‭improved‬ ‭prediction‬ ‭is‬ ‭only‬ ‭justified‬ ‭when‬ ‭there‬ ‭are‬ ‭adequate‬ ‭observational‬
‭constraints‬ ‭to‬ ‭its‬ ‭parameters‬ ‭(Famiglietti‬ ‭et‬ ‭al.,‬ ‭2021)‬‭.‬ ‭Note‬ ‭that‬ ‭identifying‬ ‭key‬ ‭internal‬
‭parameters‬‭is‬‭not‬‭a‬‭solution‬‭in‬‭itself‬‭to‬‭the‬‭equifinality‬‭issue‬‭-‬‭it‬‭is‬‭still‬‭possible‬‭to‬‭have‬‭only‬‭two‬
‭key parameters and end up at equifinality.‬
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‭Which‬‭model‬‭output‬‭and‬‭metric‬‭is‬‭tested‬‭fundamentally‬‭affects‬‭the‬‭crucial‬‭parameter‬‭selection‬‭if‬
‭relying‬‭primarily‬‭on‬‭sensitivity‬‭analysis.‬‭Furthermore,‬‭parameter‬‭sensitivity‬‭is‬‭often‬‭a‬‭function‬‭of‬
‭the‬ ‭parameter‬ ‭prior‬ ‭distributions,‬ ‭about‬ ‭which‬ ‭for‬ ‭many‬ ‭parameters‬ ‭we‬ ‭may‬ ‭have‬ ‭poor‬
‭knowledge.‬ ‭Indeed,‬ ‭a‬ ‭key‬‭distinction‬‭between‬‭a‬‭traditional‬‭sensitivity‬‭analysis,‬‭which‬‭may‬‭vary‬
‭all‬ ‭parameters‬ ‭by‬ ‭the‬ ‭same‬ ‭arbitrary‬ ‭amount‬ ‭(e.g.‬ ‭+/-‬ ‭10%),‬ ‭and‬ ‭an‬ ‭uncertainty‬ ‭partitioning‬
‭analysis‬ ‭is‬ ‭whether‬ ‭the‬ ‭prior‬ ‭distributions‬ ‭accurately‬ ‭represent‬ ‭our‬ ‭knowledge‬ ‭about‬ ‭model‬
‭parameters‬ ‭prior‬ ‭to‬‭calibration‬‭(direct‬‭data‬‭constraints,‬‭formal‬‭expert‬‭elicitation,‬‭etc.)‬‭(Dietze‬‭et‬
‭al., 2014; LeBauer et al., 2013; Raczka et al., 2018)‬‭.‬

‭The‬ ‭most‬ ‭common‬ ‭parameter‬ ‭sensitivity‬ ‭experiment‬ ‭is‬ ‭a‬ ‭one-factor-at-a-time‬ ‭parameter‬
‭perturbation‬ ‭experiment.‬ ‭However,‬ ‭this‬ ‭does‬ ‭not‬ ‭account‬ ‭for‬ ‭covariance‬ ‭between‬‭parameters,‬
‭which‬ ‭can‬ ‭vary‬ ‭along‬ ‭ecological‬ ‭tradeoffs‬ ‭and‬ ‭are‬ ‭known‬ ‭to‬ ‭strongly‬ ‭impact‬ ‭LSM‬ ‭outputs‬
‭(Prihodko‬ ‭et‬ ‭al.,‬ ‭2008)‬‭.‬ ‭One‬ ‭solution‬ ‭to‬ ‭combat‬ ‭this‬ ‭is‬ ‭to‬ ‭use‬‭spatial‬‭pattern‬‭correlations‬‭as‬‭a‬
‭metric‬‭for‬‭parameter‬‭selection‬‭to‬‭ensure‬‭that‬‭the‬‭parameters‬‭selected‬‭are‬‭not‬‭highly‬‭correlated‬
‭(Dagon‬‭et‬‭al.,‬‭2020)‬‭.‬‭More‬‭sophisticated‬‭methods‬‭include‬‭using‬‭the‬‭adjoint‬‭model‬‭to‬‭determine‬
‭local‬ ‭sensitivities‬ ‭and‬ ‭global‬ ‭sensitivity‬ ‭methods‬ ‭such‬ ‭as‬ ‭Morris‬ ‭(Morris,‬ ‭1991)‬ ‭and‬ ‭the‬
‭variance-based‬‭Sobol‬‭(Saltelli‬‭et‬‭al.,‬‭2008;‬‭Sobol′,‬‭2001)‬‭and‬‭Fourier‬‭amplitude‬‭sensitivity‬‭tests‬
‭(FAST;‬‭Cukier‬‭et‬‭al.,‬‭1973)‬‭.‬‭These‬‭methods‬‭have‬‭been‬‭applied‬‭to‬‭wide‬‭range‬‭of‬‭LSMs‬‭including‬
‭CABLE‬ ‭(Lu‬ ‭et‬ ‭al.,‬ ‭2013)‬‭,‬ ‭CLASSIC‬ ‭(Deepak‬ ‭et‬ ‭al.,‬ ‭2024)‬‭,‬ ‭CLM4.5(FATES)‬ ‭(Massoud‬ ‭et‬ ‭al.,‬
‭2019)‬‭,‬ ‭JULES‬ ‭(Pianosi‬ ‭et‬ ‭al.,‬ ‭2017)‬‭,‬ ‭Noah-MP‬ ‭(Wang‬ ‭et‬ ‭al.,‬ ‭2023)‬ ‭and‬ ‭ORCHIDEE‬
‭(Dantec-Nédélec‬ ‭et‬ ‭al.,‬ ‭2017;‬ ‭Novick‬ ‭et‬ ‭al.,‬ ‭2022)‬‭.‬ ‭However,‬ ‭these‬ ‭methods‬ ‭can‬ ‭be‬ ‭hard‬ ‭to‬
‭implement‬‭(see‬‭Sect.‬‭3.7‬‭for‬‭the‬‭discussion‬‭about‬‭adjoint‬‭models)‬‭or‬‭require‬‭a‬‭large‬‭number‬‭of‬
‭model‬‭runs‬‭(e.g.,‬‭O(10,000)‬‭for‬‭Sobol).‬‭Nevertheless,‬‭once‬‭the‬‭adjoint‬‭or‬‭ensemble‬‭exists,‬‭it‬‭is‬
‭relatively easy to test the sensitivity of different model outputs.‬

‭In‬ ‭complex‬ ‭LSMs,‬ ‭even‬ ‭after‬ ‭selecting‬ ‭the‬ ‭most‬ ‭influential‬ ‭parameters,‬ ‭the‬ ‭large‬ ‭number‬ ‭of‬
‭vegetation‬ ‭(e.g.,‬ ‭15‬ ‭plant‬ ‭functional‬ ‭types‬ ‭in‬ ‭ORCHIDEE)‬ ‭and‬ ‭soil‬ ‭texture‬ ‭classes‬ ‭(e.g.,‬ ‭13‬
‭USDA‬ ‭textural‬ ‭classes)‬ ‭used‬ ‭to‬ ‭represent‬ ‭the‬ ‭diversity‬ ‭of‬ ‭terrestrial‬ ‭ecosystems‬ ‭quickly‬
‭increases‬ ‭the‬ ‭dimensionality‬ ‭of‬ ‭global‬ ‭calibrations,‬ ‭as‬ ‭each‬ ‭parameter‬ ‭can‬ ‭be‬ ‭varied‬
‭independently.‬‭One‬‭way‬‭to‬‭tackle‬‭this‬‭issue‬‭is‬‭to‬‭assume‬‭that‬‭the‬‭parameter‬‭differences‬‭among‬
‭different‬ ‭groups‬ ‭vary‬ ‭proportionally‬ ‭and,‬‭therefore,‬‭optimise‬‭a‬‭parameter‬‭scaling‬‭factor‬‭instead‬
‭of‬ ‭targeting‬ ‭each‬ ‭parameter‬ ‭per‬ ‭group‬ ‭(Fer‬ ‭et‬ ‭al.,‬ ‭2018;‬ ‭McNeall‬ ‭et‬ ‭al.,‬ ‭2024)‬‭.‬ ‭However,‬ ‭for‬
‭some‬ ‭plant‬ ‭traits,‬ ‭the‬ ‭"within‬ ‭functional‬ ‭type"‬ ‭uncertainty‬ ‭can‬ ‭be‬ ‭as‬ ‭large‬ ‭as‬ ‭the‬ ‭"across‬
‭functional‬ ‭type"‬ ‭uncertainty‬ ‭(e.g.,‬ ‭Trugman‬ ‭et‬ ‭al.,‬‭2020)‬‭,‬‭possibly‬‭due‬‭to‬‭the‬‭traits‬‭being‬‭either‬
‭weakly‬ ‭constrained‬ ‭by‬ ‭available‬ ‭data‬ ‭or‬ ‭genuinely‬ ‭plastic‬ ‭traits‬‭that‬‭vary‬‭spatially.‬‭In‬‭the‬‭latter‬
‭case,‬ ‭this‬ ‭variability‬ ‭suggests‬ ‭that‬ ‭localising‬ ‭parameters‬ ‭rather‬ ‭than‬ ‭using‬ ‭PFT-specific‬
‭parameterisations‬ ‭may‬ ‭be‬ ‭more‬ ‭appropriate.‬ ‭As‬ ‭such,‬ ‭methods‬ ‭that‬ ‭allow‬ ‭for‬ ‭independent‬
‭tuning‬ ‭of‬ ‭parameters‬ ‭within‬ ‭each‬ ‭PFT,‬ ‭or‬ ‭even‬ ‭localisation‬ ‭of‬ ‭parameters,‬‭may‬‭be‬‭necessary.‬
‭Scaling‬‭factors‬‭can‬‭also‬‭be‬‭used‬‭to‬‭target‬‭processes‬‭without‬‭needing‬‭to‬‭deeply‬‭explore‬‭detailed‬
‭parameterisations‬ ‭(e.g.,‬ ‭Raoult‬ ‭et‬ ‭al.,‬ ‭2021)‬ ‭used‬ ‭a‬ ‭factor‬ ‭to‬ ‭scale‬ ‭the‬ ‭bare‬‭soil‬‭resistance‬‭to‬
‭evapotranspiration parameterisation in ORCHIDEE).‬

‭Selecting‬‭parameters‬‭is‬‭only‬‭one‬‭part‬‭of‬‭the‬‭problem‬‭-‬‭choosing‬‭the‬‭prior‬‭distributions‬‭is‬‭equally‬
‭important.‬ ‭In‬ ‭the‬ ‭existing‬‭LSM‬‭calibration‬‭literature,‬‭it‬‭is‬‭very‬‭common‬‭to‬‭assume‬‭uniform‬‭prior‬
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‭distributions,‬ ‭either‬ ‭explicitly‬ ‭within‬ ‭Bayesian‬ ‭calibrations‬ ‭or‬ ‭implicitly‬ ‭when‬ ‭selecting‬ ‭uniform‬
‭range‬ ‭restrictions‬ ‭within‬ ‭parameter‬ ‭estimation‬ ‭using‬ ‭a‬ ‭naive‬ ‭objective‬ ‭function‬ ‭(unlike,‬ ‭for‬
‭example,‬‭classic‬‭variational‬‭DA‬‭techniques‬‭such‬‭as‬‭4DVar‬‭which‬‭use‬‭an‬‭explicit‬‭Gaussian‬‭prior).‬
‭In‬‭these‬‭cases,‬‭uniform‬‭ranges‬‭are‬‭often‬‭based‬‭on‬‭informal‬‭“expert‬‭judgment”‬‭or‬‭ad‬‭hoc‬‭trial‬‭and‬
‭error.‬‭In‬‭some‬‭cases,‬‭parameter‬‭uncertainty‬‭ranges‬‭can‬‭be‬‭obtained‬‭from‬‭in‬‭situ‬‭measurements,‬
‭such‬‭as‬‭the‬‭TRY‬‭database‬‭(Kattge‬‭et‬‭al.,‬‭2020)‬‭.‬‭Alternatively,‬‭the‬‭range‬‭can‬‭be‬‭set‬‭based‬‭on‬‭the‬
‭operational‬ ‭value‬ ‭of‬ ‭the‬ ‭parameter‬ ‭(e.g.,‬‭±20%)‬ ‭-‬‭although‬‭this‬‭should‬‭only‬‭be‬‭done‬‭as‬‭a‬‭last‬
‭resort.‬‭When‬‭selecting‬‭ranges,‬‭extra‬‭considerations‬‭are‬‭needed‬‭to‬‭ensure‬‭that‬‭the‬‭ranges‬‭make‬
‭physical‬ ‭sense‬ ‭(e.g.,‬ ‭not‬ ‭sampling‬‭negative‬‭values‬‭if‬‭the‬‭parameter‬‭needs‬‭to‬‭be‬‭positive),‬‭that‬
‭parameter‬ ‭dependencies‬‭are‬‭maintained‬‭(e.g.,‬‭two‬‭parameters‬‭whose‬‭ratio‬‭should‬‭not‬‭surpass‬
‭a‬‭given‬‭threshold,‬‭or‬‭multiple‬‭parameters‬‭that‬‭must‬‭sum‬‭to‬‭one)‬‭and‬‭that‬‭plausible‬‭relationships‬
‭are retained (e.g., longevity of wood should be longer than that of foliage).‬

‭While‬ ‭uniform‬ ‭distributions‬ ‭are‬ ‭frequently‬ ‭chosen‬ ‭due‬ ‭to‬ ‭the‬ ‭lack‬ ‭of‬ ‭a‬ ‭more‬ ‭specific‬ ‭prior‬
‭distribution,‬‭and‬‭often‬‭to‬‭ensure‬‭the‬‭range‬‭is‬‭broad‬‭enough‬‭to‬‭cover‬‭edge‬‭cases,‬‭this‬‭approach‬
‭has‬ ‭significant‬ ‭drawbacks.‬ ‭Uniform‬ ‭priors‬ ‭rarely‬ ‭represent‬ ‭our‬ ‭actual‬ ‭prior‬ ‭knowledge‬ ‭of‬ ‭a‬
‭system,‬‭as‬‭they‬‭imply‬‭that‬‭all‬‭values‬‭within‬‭a‬‭range‬‭are‬‭equally‬‭likely,‬‭but‬‭values‬‭even‬‭a‬‭little‬‭bit‬
‭outside‬ ‭that‬ ‭range‬ ‭are‬ ‭impossible.‬ ‭In‬ ‭practice,‬ ‭parameter‬ ‭values‬ ‭in‬ ‭certain‬‭parts‬‭of‬‭parameter‬
‭space‬ ‭are‬ ‭often‬ ‭known‬ ‭a‬ ‭priori‬ ‭to‬ ‭be‬ ‭more‬ ‭plausible‬ ‭than‬ ‭others.‬ ‭An‬ ‭alternative‬ ‭to‬ ‭assuming‬
‭uniform‬ ‭prior‬ ‭distributions‬ ‭is‬ ‭to‬ ‭select‬ ‭from‬ ‭any‬ ‭of‬ ‭a‬ ‭plethora‬ ‭of‬ ‭other‬ ‭distributions,‬ ‭with‬ ‭such‬
‭choices‬ ‭usually‬ ‭driven‬ ‭by‬ ‭a‬ ‭combination‬ ‭of‬ ‭structural‬ ‭constraints‬ ‭(e.g.,‬ ‭using‬ ‭zero-bound‬
‭distributions‬ ‭for‬ ‭non-negative‬ ‭parameters),‬ ‭formal‬ ‭syntheses‬ ‭and‬ ‭meta-analyses‬ ‭of‬ ‭trait‬ ‭data,‬
‭and‬ ‭structured‬ ‭expert-elicitation‬ ‭exercises‬ ‭(Dietze,‬ ‭2017;‬ ‭Dietze‬ ‭et‬ ‭al.,‬ ‭2014;‬ ‭LeBauer‬ ‭et‬ ‭al.,‬
‭2013)‬‭.‬ ‭However,‬ ‭selecting‬ ‭an‬ ‭inappropriate‬ ‭distribution‬ ‭can‬ ‭be‬ ‭as‬ ‭problematic‬ ‭as‬ ‭using‬ ‭a‬
‭uniform‬‭distribution,‬‭especially‬‭given‬‭that‬‭the‬‭true‬‭prior‬‭distribution‬‭is‬‭often‬‭not‬‭well‬‭known‬‭at‬‭the‬
‭start‬ ‭of‬ ‭the‬ ‭calibration‬ ‭process.‬ ‭This‬ ‭highlights‬ ‭the‬ ‭importance‬ ‭of‬ ‭conducting‬ ‭formal‬ ‭prior‬
‭predictive checks to validate assumptions before proceeding.‬

‭Priors‬‭constructed‬‭from‬‭trait‬‭data,‬‭where‬‭available,‬‭can‬‭often‬‭be‬‭quite‬‭well‬‭constrained,‬‭acting‬‭as‬
‭a‬ ‭form‬ ‭of‬ ‭data‬‭fusion‬‭(i.e.‬‭combining‬‭multiple‬‭constraints)‬‭and‬‭helping‬‭to‬‭constrain‬‭subsequent‬
‭calibrations‬‭to‬‭biologically-plausible‬‭parts‬‭of‬‭parameters‬‭space.‬‭Indeed,‬‭accounting‬‭for‬‭prior‬‭trait‬
‭knowledge‬‭can‬‭lead‬‭to‬‭very‬‭different‬‭conclusions‬‭about‬‭what‬‭parameters‬‭need‬‭to‬‭be‬‭included‬‭in‬
‭a‬ ‭calibration,‬ ‭as‬ ‭there‬ ‭are‬ ‭cases‬ ‭where‬ ‭very‬ ‭sensitive‬ ‭parameters‬ ‭may‬ ‭be‬ ‭well‬ ‭constrained‬‭a‬
‭priori‬‭(e.g.,‬ ‭the‬‭parameter‬‭controlling‬‭the‬‭maximum‬‭rate‬‭of‬‭carboxylation‬‭-‬‭Vcmax)‬‭while‬‭in‬‭other‬
‭cases‬‭much‬‭less‬‭sensitive,‬‭but‬‭unconstrained,‬‭parameters‬‭may‬‭plausibly‬‭span‬‭multiple‬‭orders‬‭of‬
‭magnitude‬ ‭and‬ ‭thus‬ ‭contribute‬ ‭more‬ ‭to‬ ‭overall‬ ‭model‬ ‭predictive‬ ‭uncertainty‬ ‭(Dietze,‬ ‭2017;‬
‭LeBauer et al., 2013)‬‭.‬

‭Informative‬ ‭non-uniform‬ ‭priors‬ ‭do‬ ‭not‬ ‭have‬ ‭to‬ ‭assume‬ ‭parameter‬ ‭independence;‬ ‭multivariate‬
‭priors‬ ‭can‬ ‭be‬ ‭constructed‬ ‭to‬ ‭capture‬ ‭known‬ ‭correlation‬ ‭structures‬ ‭and‬ ‭trait‬ ‭trade-offs,‬ ‭both‬
‭within-‬‭and‬‭across-PFTs‬‭(Shiklomanov‬‭et‬‭al.,‬‭2018)‬‭.‬‭However,‬‭quantifying‬‭these‬‭correlations‬‭can‬
‭be‬‭a‬‭challenge,‬‭and‬‭so‬‭error‬‭covariances‬‭are‬‭often‬‭omitted‬‭in‬‭PDA,‬‭neglecting‬‭natural‬‭parameter‬
‭relationships. This simplification can result in an ill-posed inversion problem.‬
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‭Finally,‬‭adopting‬‭informative‬‭non-uniform‬‭priors‬‭makes‬‭it‬‭easier‬‭to‬‭take‬‭advantage‬‭of‬‭the‬‭iterative‬
‭nature‬‭of‬‭Bayesian‬‭inference,‬‭where‬‭the‬‭posteriors‬‭from‬‭one‬‭round‬‭of‬‭model‬‭calibration‬‭can‬‭be‬
‭used‬ ‭as‬ ‭priors‬ ‭in‬ ‭the‬ ‭next‬ ‭round‬ ‭without‬ ‭requiring‬ ‭the‬ ‭recalibration‬ ‭of‬ ‭models‬ ‭to‬ ‭earlier‬ ‭data‬
‭constraints.‬ ‭Not‬ ‭only‬ ‭does‬ ‭this‬ ‭greatly‬ ‭simplify‬‭the‬‭updating‬‭of‬‭model‬‭calibrations‬‭as‬‭new‬‭data‬
‭becomes available, but it offers considerable computational advantages.‬

‭It‬‭is‬‭important‬‭to‬‭stress‬‭that‬‭no‬‭matter‬‭the‬‭method‬‭used‬‭for‬‭parameter‬‭estimation,‬‭solutions‬‭only‬
‭exist‬ ‭in‬ ‭the‬ ‭parameter‬ ‭space‬ ‭defined‬ ‭by‬ ‭the‬ ‭parameter‬ ‭selection‬ ‭and‬ ‭authorised‬ ‭prior‬ ‭ranges‬
‭(Williamson‬ ‭et‬ ‭al.,‬ ‭2013)‬‭.‬ ‭Changing‬ ‭the‬ ‭number‬ ‭of‬ ‭parameters,‬ ‭their‬‭prior‬‭distributions,‬‭and/or‬
‭the‬‭model‬‭process‬‭representation‬‭will‬‭require‬‭new‬‭calibrations‬‭since‬‭the‬‭solution‬‭may‬‭differ‬‭due‬
‭to new parameter interactions and the equifinality of solutions.‬

‭3.2 Characterisation of model and data/observation errors‬
‭The‬ ‭state-of-the-art‬ ‭way‬ ‭to‬ ‭account‬ ‭for‬ ‭model‬ ‭and‬ ‭observation‬ ‭errors‬ ‭is‬ ‭through‬ ‭a‬ ‭Bayesian‬
‭framework.‬ ‭However,‬ ‭properly‬ ‭characterising‬ ‭these‬ ‭errors‬ ‭(especially‬ ‭data‬ ‭bias)‬ ‭can‬ ‭be‬ ‭a‬
‭challenge‬ ‭and‬ ‭potential‬ ‭model-data‬ ‭biases‬ ‭are‬ ‭not‬ ‭always‬‭properly‬‭treated‬‭with‬‭this‬‭formalism‬
‭(Cameron‬‭et‬‭al.,‬‭2022;‬‭MacBean‬‭et‬‭al.,‬‭2016)‬‭.‬‭Model‬‭discrepancy,‬‭or‬‭model‬‭process‬‭error,‬‭refers‬
‭to‬ ‭the‬ ‭inherent‬ ‭inability‬ ‭of‬ ‭a‬ ‭model‬ ‭to‬ ‭replicate‬ ‭observations‬‭(Wu‬‭et‬‭al.,‬‭2023)‬‭,‬‭stemming‬‭from‬
‭factors‬‭such‬‭as‬‭missing‬‭processes,‬‭choice‬‭of‬‭process‬‭representation,‬‭ecosystem‬‭heterogeneity,‬
‭stochastic‬ ‭processes‬ ‭(e.g.,‬ ‭dispersal,‬ ‭recruitment,‬ ‭mortality,‬ ‭disturbance),‬ ‭biases‬ ‭in‬ ‭the‬ ‭model‬
‭forcing‬ ‭data,‬ ‭uncertainties‬ ‭in‬ ‭the‬ ‭initial‬ ‭model‬ ‭state,‬ ‭and‬ ‭the‬ ‭resolution‬ ‭of‬ ‭numerical‬ ‭solvers.‬
‭Observation‬ ‭error‬ ‭encompasses‬ ‭sampling‬ ‭variability,‬ ‭instrument‬ ‭inaccuracies,‬ ‭and‬ ‭any‬ ‭errors‬
‭involved‬ ‭in‬ ‭deriving‬ ‭the‬ ‭data‬ ‭products‬ ‭making‬ ‭up‬ ‭the‬ ‭observations.‬ ‭Furthermore,‬ ‭observation‬
‭error‬ ‭also‬ ‭usually‬ ‭includes‬ ‭a‬ ‭modelling‬ ‭step‬ ‭from‬ ‭the‬ ‭raw‬ ‭data‬ ‭measurement‬ ‭to‬ ‭any‬ ‭given‬
‭physical‬ ‭quantity‬ ‭(see‬ ‭Sect.‬ ‭3.3).‬ ‭Due‬ ‭to‬ ‭the‬ ‭difficulty‬ ‭in‬ ‭separating‬ ‭model‬ ‭and‬ ‭observation‬
‭errors,‬ ‭they‬ ‭have‬ ‭often‬ ‭been‬ ‭combined‬ ‭in‬ ‭past‬‭studies.‬‭In‬‭fact,‬‭the‬‭mathematical‬‭formalisation‬
‭commonly‬‭used‬‭in‬‭PDA‬‭assumes‬‭that‬‭observation‬‭errors‬‭include‬‭model‬‭errors,‬‭thereby‬‭treating‬
‭model discrepancy as part of the observational error.‬

‭Although‬ ‭common,‬ ‭combining‬ ‭model‬ ‭error‬ ‭with‬ ‭data‬ ‭error‬ ‭can‬ ‭lead‬ ‭to‬ ‭an‬ ‭overestimation‬ ‭of‬
‭predictive‬‭uncertainty‬‭(van‬‭Oijen,‬‭2017)‬‭.‬‭Another‬‭approach‬‭to‬‭deal‬‭with‬‭model‬‭error‬‭is‬‭to‬‭ignore‬
‭it‬‭(i.e.‬‭assume‬‭the‬‭model‬‭structure‬‭is‬‭correct),‬‭however,‬‭this‬‭means‬‭only‬‭the‬‭input‬‭uncertainty‬‭is‬
‭propagated.‬ ‭A‬ ‭final‬ ‭approach‬ ‭is‬ ‭to‬ ‭treat‬ ‭model‬ ‭uncertainty‬ ‭as‬ ‭a‬ ‭separate‬ ‭parameter‬ ‭needing‬
‭calibration.‬‭If‬‭a‬‭prior‬‭for‬‭the‬‭model‬‭error‬‭uncertainties‬‭can‬‭be‬‭specified‬‭explicitly,‬‭model‬‭and‬‭data‬
‭error‬‭terms‬‭can‬‭theoretically‬‭be‬‭fitted‬‭separately.‬‭However,‬‭in‬‭practice,‬‭specifying‬‭an‬‭informative‬
‭prior‬ ‭on‬‭the‬‭model‬‭error‬‭term‬‭is‬‭challenging‬‭due‬‭to‬‭incomplete‬‭theoretical‬‭understanding‬‭of‬‭the‬
‭underpinning‬‭processes‬‭(Brynjarsdóttir‬‭&‬‭OʼHagan,‬‭2014)‬‭.‬‭Fortunately,‬‭it‬‭is‬‭often‬‭much‬‭easier‬‭to‬
‭specify‬ ‭an‬ ‭informative‬ ‭prior‬ ‭on‬ ‭the‬ ‭observation‬ ‭error,‬ ‭as‬ ‭these‬ ‭are‬ ‭frequently‬‭reported‬‭in‬‭data‬
‭products‬ ‭or‬ ‭estimable‬ ‭via‬ ‭sampling‬ ‭theory,‬ ‭and‬ ‭this‬ ‭is‬ ‭often‬ ‭useful‬ ‭to‬ ‭allow‬ ‭model‬ ‭error‬ ‭to‬‭be‬
‭separately identifiable.‬

‭There‬ ‭are‬ ‭a‬ ‭number‬ ‭of‬ ‭arguments‬ ‭for‬ ‭keeping‬ ‭process‬ ‭and‬ ‭observation‬ ‭error‬ ‭distinct.‬ ‭Model‬
‭process‬ ‭error‬ ‭propagates‬ ‭in‬ ‭space‬ ‭and‬ ‭time‬ ‭when‬‭making‬‭predictions,‬‭while‬‭observation‬‭error‬
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‭does‬‭not.‬‭Additionally,‬‭addressing‬‭a‬‭large‬‭process‬‭error‬‭requires‬‭improving‬‭the‬‭model‬‭structure,‬
‭while‬ ‭addressing‬ ‭a‬ ‭large‬ ‭observation‬ ‭error‬ ‭calls‬ ‭for‬ ‭improving‬ ‭data‬ ‭quality.‬ ‭Furthermore,‬
‭calibrating‬ ‭models‬ ‭using‬ ‭cost‬ ‭functions‬ ‭that‬ ‭rely‬ ‭solely‬‭on‬‭fixed‬‭a‬‭priori‬‭observation‬‭errors‬‭can‬
‭distort‬‭parameter‬‭uncertainty‬‭estimates‬‭as‬‭well‬‭as‬‭the‬‭relative‬‭weight‬‭assigned‬‭to‬‭different‬‭data‬
‭constraints,‬ ‭as‬ ‭there’s‬ ‭often‬ ‭no‬ ‭inherent‬ ‭reason‬ ‭to‬ ‭assume‬ ‭that‬ ‭model‬ ‭skill‬ ‭at‬ ‭predicting‬ ‭a‬
‭variable‬ ‭is‬ ‭proportional‬ ‭to‬ ‭the‬ ‭accuracy‬ ‭of‬ ‭its‬ ‭measurement.‬ ‭Indeed,‬ ‭it‬ ‭is‬ ‭easy‬ ‭to‬ ‭point‬ ‭to‬
‭examples‬‭where‬‭the‬‭uncertainty‬‭in‬‭our‬‭ability‬‭to‬‭model‬‭something‬‭differs‬‭in‬‭rank‬‭order‬‭from‬‭our‬
‭ability‬ ‭to‬ ‭measure‬ ‭that‬ ‭same‬ ‭thing‬ ‭(e.g.,‬ ‭at‬ ‭local‬ ‭scale,‬ ‭model‬ ‭predictions‬ ‭of‬ ‭net‬ ‭ecosystem‬
‭exchange‬ ‭(NEE)‬ ‭are‬ ‭more‬ ‭uncertain‬ ‭than‬ ‭gross‬ ‭primary‬ ‭productivity‬ ‭(GPP:‬ ‭the‬ ‭flux‬ ‭of‬‭carbon‬
‭absorbed‬ ‭into‬ ‭the‬ ‭land‬ ‭surface‬ ‭due‬ ‭to‬ ‭photosynthesis‬‭),‬ ‭but‬ ‭observations‬ ‭of‬ ‭GPP‬ ‭are‬ ‭more‬
‭uncertain than NEE).‬

‭Quantifying‬ ‭both‬ ‭observation‬ ‭and‬ ‭model‬ ‭process‬ ‭error‬ ‭correlations,‬ ‭such‬ ‭as‬ ‭autocorrelated‬
‭measurement‬ ‭error,‬ ‭presents‬ ‭an‬ ‭additional‬ ‭challenge.‬ ‭These‬ ‭correlations‬ ‭yield‬ ‭non-diagonal‬
‭covariance‬ ‭structures,‬ ‭which‬ ‭are‬ ‭rarely‬ ‭well‬ ‭understood‬ ‭and‬ ‭are‬ ‭often‬ ‭ignored.‬ ‭Nevertheless,‬
‭accounting‬ ‭for‬ ‭these‬ ‭correlated‬ ‭errors‬ ‭has‬ ‭been‬ ‭shown‬ ‭to‬ ‭improve‬ ‭data‬ ‭assimilation‬ ‭results‬
‭(Waller‬‭et‬‭al.,‬‭2016)‬‭,‬‭for‬‭example,‬‭by‬‭increasing‬‭the‬‭information‬‭content‬‭of‬‭observations‬‭(Stewart‬
‭et‬ ‭al.,‬ ‭2008)‬‭.‬ ‭S‬‭ince‬ ‭observation‬ ‭error‬ ‭correlations‬ ‭are‬ ‭more‬ ‭prevalent‬ ‭in‬ ‭dense‬ ‭observation‬
‭networks‬‭(Bannister‬‭et‬‭al.,‬‭2020)‬‭,‬‭strategies‬‭to‬‭mitigate‬‭not‬‭modelling‬‭them‬‭include‬‭observation‬
‭thinning‬ ‭(reducing‬ ‭the‬ ‭number‬ ‭of‬ ‭observations‬ ‭assimilated‬ ‭in‬ ‭data-rich‬ ‭regions)‬ ‭and‬
‭super-obbing‬ ‭(combining‬ ‭many‬ ‭observations‬ ‭into‬ ‭one‬ ‭(Lorenc,‬ ‭1981)‬‭).‬ ‭Another‬ ‭common‬
‭approach‬ ‭to‬ ‭inflate‬ ‭variances‬ ‭is‬ ‭to‬ ‭reduce‬ ‭the‬ ‭weight‬ ‭of‬ ‭observations‬ ‭in‬ ‭data‬ ‭assimilation‬
‭(Chevallier,‬ ‭2007;‬ ‭Kuppel‬ ‭et‬ ‭al.,‬ ‭2013)‬‭.‬ ‭However,‬ ‭all‬ ‭these‬ ‭approaches‬ ‭are‬ ‭subjective‬ ‭and‬
‭potentially reject meaningful information‬‭(Cameron et al., 2022)‬‭.‬

‭Finally,‬‭addressing‬‭systematic‬‭errors‬‭in‬‭models‬‭and‬‭data‬‭is‬‭becoming‬‭increasingly‬‭crucial‬‭as‬‭the‬
‭volume‬ ‭of‬ ‭data‬ ‭grows.‬ ‭With‬ ‭larger‬ ‭datasets,‬ ‭random‬ ‭errors‬ ‭tend‬ ‭to‬ ‭average‬ ‭out,‬ ‭leaving‬
‭systematic‬‭errors‬‭to‬‭dominate.‬‭These‬‭errors‬‭have‬‭long‬‭been‬‭recognised‬‭by‬‭the‬‭LSM‬‭calibration‬
‭community,‬ ‭such‬ ‭as‬ ‭when‬ ‭a‬ ‭model's‬ ‭ability‬ ‭to‬ ‭predict‬ ‭one‬ ‭variable‬ ‭worsens‬ ‭after‬ ‭assimilating‬
‭data‬‭for‬‭another.‬‭However,‬‭the‬‭underlying‬‭causes‬‭and‬‭potential‬‭solutions‬‭have‬‭not‬‭been‬‭widely‬
‭appreciated.‬ ‭Since‬ ‭all‬ ‭models‬ ‭are‬ ‭approximations,‬ ‭systematic‬ ‭errors‬ ‭in‬ ‭both‬ ‭models‬ ‭and‬‭data‬
‭require‬ ‭greater‬ ‭attention.‬ ‭To‬ ‭combat‬ ‭these‬ ‭biases,‬ ‭various‬ ‭approaches‬ ‭are‬ ‭emerging,‬‭ranging‬
‭from‬ ‭incorporating‬ ‭simple‬ ‭linear‬ ‭bias‬ ‭correction‬ ‭factors‬ ‭in‬ ‭the‬ ‭cost‬ ‭function‬ ‭(Cameron‬ ‭et‬ ‭al.,‬
‭2022;‬ ‭Fer‬ ‭et‬ ‭al.,‬ ‭2018)‬ ‭to‬ ‭more‬ ‭complex‬ ‭and‬ ‭flexible‬ ‭statistical‬ ‭models‬ ‭of‬ ‭bias,‬ ‭applied‬‭either‬
‭within‬‭the‬‭assimilation‬‭process‬‭or‬‭post-hoc‬‭(Kennedy‬‭&‬‭O’Hagan,‬‭2001;‬‭Oberpriller‬‭et‬‭al.,‬‭2021)‬‭.‬
‭Additionally,‬ ‭hybrid‬ ‭models‬ ‭that‬ ‭integrate‬ ‭machine‬ ‭learning‬ ‭with‬ ‭process-based‬ ‭models‬ ‭are‬
‭being explored as a means to address these challenges (see Sect. 4.2).‬

‭Ultimately,‬ ‭interconnected‬ ‭efforts,‬ ‭such‬ ‭as‬ ‭the‬‭characterisation‬‭of‬‭data‬‭errors‬‭together‬‭with‬‭the‬
‭data‬ ‭providers,‬ ‭post-PDA‬ ‭analysis‬ ‭of‬ ‭remaining‬ ‭model-data‬ ‭discrepancies,‬ ‭multi-model‬ ‭PDA‬
‭protocols‬ ‭that‬ ‭highlight‬ ‭relative‬ ‭model‬ ‭structural‬ ‭errors,‬ ‭and‬ ‭novel‬ ‭PDA‬ ‭algorithms‬ ‭are‬ ‭all‬
‭valuable in providing ways forward for discerning errors in data from those in model structure.‬

‭14‬‭/74‬

‭1‬

‭2‬

‭3‬

‭4‬

‭5‬

‭6‬

‭7‬

‭8‬

‭9‬

‭10‬

‭11‬

‭12‬

‭13‬

‭14‬

‭15‬

‭16‬

‭17‬

‭18‬

‭19‬

‭20‬

‭21‬

‭22‬

‭23‬

‭24‬

‭25‬

‭26‬

‭27‬

‭28‬

‭29‬

‭30‬

‭31‬

‭32‬

‭33‬

‭34‬

‭35‬

‭36‬

‭37‬

‭38‬

‭39‬

‭40‬

‭41‬

‭42‬

https://paperpile.com/c/qGqbia/eloh
https://paperpile.com/c/qGqbia/8zh8
https://paperpile.com/c/qGqbia/8zh8
https://paperpile.com/c/qGqbia/p8Do
https://paperpile.com/c/qGqbia/FzUB
https://paperpile.com/c/qGqbia/gcJA+maqL
https://paperpile.com/c/qGqbia/HjMP
https://paperpile.com/c/qGqbia/HjMP+BcqI
https://paperpile.com/c/qGqbia/HjMP+BcqI
https://paperpile.com/c/qGqbia/N183+2TLr


‭3.3 Developing observation operators‬
‭The‬ ‭term‬ ‭“observation‬ ‭operator”‬ ‭refers‬ ‭to‬ ‭any‬ ‭transformation‬ ‭of‬‭the‬‭modelled‬‭quantity‬‭used‬‭to‬
‭allow‬ ‭comparison‬ ‭against‬ ‭observations‬ ‭(Kaminski‬ ‭&‬ ‭Mathieu,‬ ‭2017)‬‭.‬ ‭Note‬ ‭that‬ ‭what‬ ‭are‬‭often‬
‭called‬‭observations‬‭are‬‭themselves‬‭complex‬‭transformations‬‭of‬‭raw‬‭data‬‭measurements‬‭used‬‭to‬
‭estimate‬ ‭physical‬ ‭quantities‬ ‭comparable‬ ‭to‬ ‭the‬ ‭LSM‬ ‭output.‬‭For‬‭example,‬‭radiances‬‭observed‬
‭by‬ ‭a‬ ‭satellite‬ ‭at‬ ‭the‬ ‭top‬ ‭of‬ ‭the‬ ‭atmosphere‬ ‭can‬ ‭be‬ ‭translated‬ ‭into‬‭any‬‭number‬‭of‬‭land‬‭surface‬
‭data‬‭products,‬‭such‬‭as‬‭leaf‬‭area‬‭index.‬‭This‬‭processing‬‭can‬‭also‬‭be‬‭seen‬‭as‬‭a‬‭complex‬‭model,‬
‭such‬ ‭as‬ ‭the‬ ‭inversion‬ ‭of‬ ‭a‬ ‭radiative‬ ‭transfer‬ ‭scheme.‬ ‭Furthermore,‬ ‭these‬ ‭data‬ ‭are‬ ‭usually‬
‭prepared in such a way that they are available on the model grid.‬

‭In‬‭some‬‭cases,‬‭it‬‭is‬‭possible‬‭to‬‭assume‬‭a‬‭one-to-one‬‭relationship‬‭between‬‭the‬‭model‬‭output‬‭and‬
‭assimilated‬ ‭data,‬ ‭in‬ ‭which‬ ‭case‬ ‭the‬ ‭observation‬ ‭operator‬‭is‬‭the‬‭identity‬‭matrix.‬‭However,‬‭in‬‭all‬
‭other‬‭cases,‬‭an‬‭observation‬‭operator‬‭is‬‭required‬‭for‬‭DA,‬‭and‬‭the‬‭choice‬‭of‬‭observation‬‭operator‬
‭can‬ ‭significantly‬ ‭impact‬ ‭the‬ ‭results‬ ‭(Cooper‬ ‭et‬ ‭al.,‬ ‭2019)‬‭.‬ ‭A‬ ‭common‬ ‭use‬ ‭of‬ ‭an‬ ‭observation‬
‭operator‬ ‭is‬ ‭to‬ ‭bridge‬ ‭the‬ ‭spatial‬ ‭scale‬‭between‬‭model‬‭and‬‭observations,‬‭either‬‭by‬‭aggregating‬
‭the‬ ‭gridded‬ ‭observations‬ ‭to‬ ‭the‬‭resolution‬‭of‬‭the‬‭model‬‭or‬‭vice-versa‬‭(Pinnington‬‭et‬‭al.,‬‭2021)‬‭.‬
‭More‬ ‭complex‬ ‭examples‬ ‭of‬ ‭spatial‬ ‭scaling‬ ‭operators‬ ‭utilise‬ ‭a‬ ‭weighted‬ ‭averaging‬ ‭process‬ ‭to‬
‭match‬ ‭a‬ ‭more‬ ‭detailed‬ ‭description‬ ‭of‬ ‭the‬ ‭observation,‬ ‭such‬ ‭as‬ ‭modelling‬ ‭the‬ ‭point‬ ‭spread‬
‭function‬‭of‬‭satellite‬‭data,‬‭or‬‭the‬‭footprint‬‭of‬‭an‬‭eddy-covariance‬‭flux‬‭measurement.‬‭For‬‭example,‬
‭Vergopolan‬ ‭et‬ ‭al.‬ ‭(2020)‬ ‭introduced‬ ‭a‬ ‭cluster-based‬ ‭observation‬ ‭operator‬ ‭that‬ ‭maps‬ ‭the‬
‭Gaussian‬ ‭footprint‬ ‭of‬ ‭satellite‬ ‭observations‬ ‭to‬‭the‬‭sub-grid‬‭scale‬‭of‬‭high-resolution‬‭LSMs.‬‭This‬
‭enables‬‭efficiently‬‭assimilating‬‭coarse‬‭soil‬‭moisture‬‭observations‬‭while‬‭bridging‬‭the‬‭spatial‬‭scale‬
‭mismatch‬ ‭with‬ ‭fine-scale‬ ‭LSMs‬ ‭and‬ ‭ground‬ ‭observations‬ ‭(Vergopolan‬ ‭et‬ ‭al.,‬ ‭2021)‬‭.‬ ‭In‬ ‭an‬
‭application‬ ‭with‬ ‭flux‬ ‭tower‬ ‭data,‬ ‭Pinnington‬ ‭et‬ ‭al.‬ ‭(2017)‬ ‭partitioned‬ ‭the‬ ‭fluxes‬ ‭to‬ ‭observe‬
‭different‬‭parts‬‭of‬‭the‬‭forest‬‭and‬‭run‬‭separate‬‭assimilation‬‭experiments‬‭for‬‭logged‬‭and‬‭unlogged‬
‭forest stands.‬

‭In‬‭another‬‭example,‬ ‭atmospheric‬‭transport‬‭is‬‭used‬‭to‬‭map‬‭surface‬‭fluxes‬‭of‬‭gas‬‭species,‬‭such‬
‭as‬ ‭CO‬‭2‬‭,‬ ‭into‬ ‭atmospheric‬ ‭concentrations‬ ‭of‬ ‭that‬ ‭species‬ ‭at‬ ‭sampling‬ ‭points.‬ ‭In‬ ‭this‬‭way,‬‭flask‬
‭measurements‬ ‭of‬ ‭CO‬‭2‬ ‭have‬ ‭been‬ ‭used‬ ‭to‬ ‭constrain‬ ‭parameters‬ ‭in‬ ‭models‬ ‭of‬ ‭the‬ ‭terrestrial‬
‭biosphere‬ ‭(Bacour‬‭et‬‭al.,‬‭2023;‬‭Kaminski‬‭et‬‭al.,‬‭2002,‬‭2012;‬‭Knorr‬‭&‬‭Heimann,‬‭1995;‬‭Peylin‬‭et‬
‭al.,‬ ‭2016;‬ ‭Rayner‬ ‭et‬ ‭al.,‬ ‭2005,‬ ‭2011;‬ ‭Scholze‬ ‭et‬ ‭al.,‬ ‭2007)‬ ‭and‬‭to‬‭evaluate‬‭simulated‬‭net‬‭CO‬‭2‬

‭fluxes‬ ‭after‬ ‭optimising‬ ‭against‬ ‭eddy-covariance‬ ‭data‬ ‭(Kuppel‬ ‭et‬ ‭al.,‬ ‭2014)‬‭.‬ ‭For‬ ‭non-reactive‬
‭species,‬‭it‬‭is‬‭sufficient‬‭to‬‭have‬‭data‬‭on‬‭winds‬‭to‬‭drive‬‭the‬‭observation‬‭operator,‬‭but‬‭for‬‭reactive‬
‭species‬ ‭such‬ ‭as‬ ‭CH‬‭4‬‭,‬ ‭the‬ ‭process‬ ‭is‬ ‭more‬ ‭complex‬ ‭as‬ ‭atmospheric‬ ‭chemistry‬ ‭needs‬ ‭to‬ ‭be‬
‭included.‬

‭Observation‬ ‭operators‬ ‭are‬ ‭also‬ ‭used‬ ‭to‬ ‭predict‬ ‭observed‬ ‭quantities‬ ‭that‬ ‭are‬ ‭not‬ ‭directly‬
‭computed‬‭by‬‭the‬‭model‬‭itself.‬‭A‬‭recent‬‭example‬‭is‬‭the‬‭assimilation‬‭of‬‭SIF‬‭data,‬‭which‬‭is‬‭typically‬
‭assumed‬ ‭to‬ ‭be‬ ‭a‬ ‭proxy‬ ‭for‬ ‭GPP.‬ ‭Examples‬ ‭of‬‭SIF‬‭observation‬‭operators‬‭include‬‭simple‬‭linear‬
‭relationships‬ ‭with‬ ‭GPP‬ ‭(Bloom‬ ‭et‬ ‭al.,‬ ‭2020;‬ ‭MacBean‬ ‭et‬ ‭al.,‬ ‭2018)‬ ‭through‬ ‭to‬ ‭more‬ ‭complex‬
‭operators‬ ‭based‬ ‭on‬ ‭the‬ ‭underlying‬ ‭photochemistry‬ ‭and‬ ‭radiative‬ ‭transfer‬ ‭in‬‭the‬‭canopy,‬‭either‬
‭using‬ ‭empirical‬ ‭simplifications‬ ‭of‬ ‭those‬ ‭processes‬ ‭(Bacour‬ ‭et‬ ‭al.,‬ ‭2019)‬ ‭or‬ ‭using‬ ‭fully‬
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‭mechanistic‬‭models‬‭for‬‭the‬‭operator‬‭(Norton‬‭et‬‭al.,‬‭2019)‬‭.‬‭Another‬‭example‬‭is‬‭vegetation‬‭optical‬
‭depth‬‭which‬‭has‬‭been‬‭used‬‭to‬‭constrain‬‭above-ground‬‭biomass‬‭and‬‭leaf‬‭area‬‭index‬‭(Scholze‬‭et‬
‭al., 2019)‬‭.‬

‭Scholze‬‭et‬‭al.‬‭(2016,‬‭2019)‬‭also‬‭developed‬‭observation‬‭operators‬‭to‬‭map‬‭surface‬‭soil‬‭moisture‬
‭(SSM)‬‭retrievals‬‭to‬‭simulated‬‭volumetric‬‭soil‬‭moisture‬‭of‬‭the‬‭surface‬‭layer‬‭of‬‭BETHY,‬‭which‬‭were‬
‭also‬ ‭used‬ ‭by‬ ‭Wu‬ ‭et‬ ‭al.‬ ‭(2018,‬ ‭2020,‬ ‭2024)‬‭.‬ ‭SSM‬ ‭is‬ ‭subject‬ ‭to‬ ‭large‬ ‭biases,‬ ‭which‬ ‭therefore‬
‭necessitates‬‭this‬‭type‬‭of‬‭transformation.‬‭Numerous‬‭models‬‭employ‬‭methods‬‭to‬‭map‬‭SSM‬‭to‬‭the‬
‭climatology‬ ‭of‬ ‭their‬ ‭model,‬ ‭for‬ ‭example‬ ‭through‬ ‭cumulative‬ ‭density‬ ‭function‬ ‭(CDF)‬ ‭matching.‬
‭Another‬ ‭approach‬ ‭is‬ ‭to‬ ‭focus‬ ‭solely‬ ‭on‬ ‭dynamics‬ ‭(e.g.,‬ ‭dry‬ ‭downs,‬ ‭Raoult‬ ‭et‬ ‭al.,‬ ‭2021)‬‭.‬ ‭The‬
‭dynamics‬ ‭approach‬ ‭is‬ ‭often‬ ‭used‬ ‭when‬ ‭assimilating‬ ‭vegetation‬ ‭indices,‬ ‭FAPAR‬ ‭or‬ ‭leaf‬ ‭area‬
‭index‬‭(LAI)‬‭—‬‭retrievals‬‭are‬‭normalised‬‭to‬‭estimate‬‭the‬‭seasonality‬‭of‬‭phenology‬‭instead‬‭of‬‭the‬
‭absolute‬ ‭values‬ ‭(MacBean‬ ‭et‬ ‭al.,‬ ‭2015)‬‭.‬ ‭The‬ ‭optimisation‬ ‭then‬ ‭focuses‬ ‭on‬ ‭a‬ ‭reduced‬ ‭set‬ ‭of‬
‭phenology-related‬‭parameters,‬‭rather‬‭than‬‭including‬‭those‬‭related‬‭to‬‭photosynthesis‬‭(Bacour‬‭et‬
‭al., 2015)‬‭.‬

‭Forward‬‭modelling‬‭of‬‭remote‬‭sensing‬‭data‬‭—‬‭i.e.,‬‭the‬‭process‬‭of‬‭simulating‬‭remote‬‭sensing‬‭data‬
‭directly‬‭from‬‭the‬‭LSM‬‭outputs‬‭rather‬‭than‬‭assimilating‬‭processed‬‭satellite‬‭products‬‭—‬‭like‬‭in‬‭the‬
‭example‬‭of‬‭SIF,‬‭is‬‭the‬‭opposite‬‭approach‬‭to‬‭the‬‭assimilation‬‭of‬‭high-level‬‭satellite‬‭products‬‭such‬
‭as‬ ‭LAI‬ ‭or‬ ‭GPP.‬ ‭A‬ ‭key‬ ‭argument‬ ‭for‬ ‭taking‬ ‭this‬ ‭approach‬ ‭is‬ ‭that‬ ‭assumptions‬ ‭in‬ ‭the‬ ‭retrieval‬
‭process‬ ‭used‬ ‭in‬ ‭these‬ ‭products‬ ‭are‬ ‭likely‬ ‭inconsistent‬ ‭with‬ ‭the‬ ‭assumptions‬‭embedded‬‭in‬‭the‬
‭land‬‭surface‬‭model‬‭they‬‭are‬‭being‬‭assimilated‬‭into.‬‭A‬‭clear‬‭example‬‭of‬‭this‬‭is‬‭the‬‭use‬‭of‬‭satellite‬
‭GPP‬ ‭products‬ ‭which‬ ‭typically‬ ‭employ‬ ‭a‬ ‭production‬ ‭efficiency‬ ‭approach‬ ‭(e.g.‬ ‭the‬ ‭MODIS‬‭GPP‬
‭product,‬ ‭Running‬ ‭et‬ ‭al.,‬ ‭2021)‬ ‭whereas‬ ‭land‬ ‭surface‬ ‭models‬ ‭often‬ ‭use‬ ‭limiting-rate‬ ‭enzyme‬
‭kinetic‬ ‭schemes‬ ‭derived‬ ‭from‬ ‭those‬ ‭of‬ ‭Farquhar‬ ‭et‬ ‭al.‬ ‭(1980)‬ ‭and‬ ‭Collatz‬ ‭et‬ ‭al.‬ ‭(1992)‬‭.‬
‭Furthermore,‬ ‭satellite-derived‬ ‭GPP‬ ‭estimates‬ ‭typically‬ ‭use‬ ‭environmental‬ ‭drivers‬ ‭such‬ ‭as‬
‭downwelling‬ ‭shortwave‬ ‭radiation‬ ‭which‬ ‭will‬ ‭almost‬‭certainly‬‭differ‬‭from‬‭those‬‭used‬‭to‬‭drive‬‭the‬
‭land‬ ‭surface‬ ‭model‬ ‭they‬ ‭are‬ ‭being‬ ‭assimilated‬ ‭into.‬ ‭Finally,‬ ‭there‬ ‭are‬ ‭often‬ ‭substantial‬
‭differences‬‭between‬‭the‬‭satelitte-derived‬‭estimates‬‭(e.g.‬‭of‬‭GPP‬‭or‬‭LAI)‬‭where‬‭the‬‭assimilation‬
‭of‬ ‭any‬ ‭one‬ ‭product‬ ‭is‬ ‭likely‬ ‭biased‬ ‭with‬ ‭respect‬ ‭to‬ ‭the‬ ‭‘truth’‬ ‭(which‬ ‭is‬ ‭the‬ ‭primary‬‭reason‬‭for‬
‭using‬‭the‬‭seasonal‬‭dynamics‬‭rather‬‭than‬‭the‬‭actual‬‭values‬‭of‬‭time‬‭series‬‭data,‬‭as‬‭discussed‬‭in‬
‭the‬ ‭previous‬ ‭paragraph)‬‭.‬ ‭Consequently,‬ ‭discrepancies‬ ‭between‬ ‭these‬ ‭high-level‬ ‭observations‬
‭and‬‭the‬‭values‬‭of‬‭the‬‭same‬‭variables‬‭predicted‬‭by‬‭a‬‭LSM‬‭may‬‭differ‬‭due‬‭to‬‭these‬‭factors‬‭and‬‭be‬
‭non-trivial to characterise.‬

‭It‬‭is‬‭appealing,‬‭therefore,‬‭to‬‭assimilate‬‭low-level‬‭products‬‭like‬‭SIF‬‭or‬‭canopy‬‭reflectance‬‭(Quaife‬
‭et‬‭al.,‬‭2008)‬‭.‬‭For‬‭canopy‬‭reflectance,‬‭this‬‭typically‬‭requires‬‭the‬‭use‬‭of‬‭radiative‬‭transfer‬‭models‬
‭and‬ ‭is‬ ‭analogous‬ ‭to‬ ‭so-called‬ ‭“radiance‬ ‭assimilation”‬ ‭which‬ ‭is‬ ‭used‬ ‭extensively‬ ‭in‬ ‭numerical‬
‭weather‬ ‭prediction.‬ ‭In‬ ‭that‬ ‭way,‬ ‭any‬‭systematic‬‭error‬‭between‬‭the‬‭model‬‭and‬‭the‬‭observations‬
‭can‬ ‭be‬ ‭attributed‬‭to‬‭the‬‭land‬‭model‬‭(including‬‭the‬‭radiative‬‭transfer‬‭model)‬‭itself.‬‭For‬‭example,‬
‭Shiklomanov‬ ‭et‬ ‭al.‬ ‭(2021)‬ ‭modified‬ ‭the‬ ‭existing‬ ‭canopy‬ ‭radiative‬ ‭transfer‬ ‭model‬ ‭in‬ ‭the‬
‭Ecosystem‬‭Demography‬‭v2‬‭model‬‭(ED2)‬‭to‬‭predict‬‭full‬‭hyperspectral‬‭waveforms,‬ ‭instead‬‭of‬‭just‬
‭aggregate‬‭visible,‬‭near-infrared,‬‭and‬‭thermal‬‭bands,‬‭and‬‭then‬‭used‬‭this‬‭observation‬‭operator‬‭to‬
‭calibrate‬‭ED2‬‭against‬‭airborne‬‭AVIRIS‬‭imaging‬‭spectroscopy‬‭across‬‭the‬‭eastern‬‭temperate‬‭US.‬
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‭Meunier‬‭et‬‭al.‬‭(2022)‬‭later‬‭used‬‭this‬‭observation‬‭operator‬‭in‬‭the‬‭development‬‭of‬‭a‬‭novel‬‭tropical‬
‭liana‬‭PFT.‬ ‭However,‬‭low-level‬‭satellite‬‭products‬‭often‬‭exhibit‬‭variability‬‭across‬‭domains‬‭that‬‭are‬
‭not‬ ‭inherently‬ ‭resolved‬ ‭by‬ ‭the‬ ‭land‬ ‭model,‬ ‭leading‬ ‭to‬ ‭some‬ ‭level‬ ‭of‬ ‭compromise‬ ‭between‬ ‭i)‬
‭adding‬ ‭complexity‬ ‭to‬ ‭the‬ ‭land‬ ‭model,‬ ‭ii)‬ ‭having‬ ‭an‬‭observation‬‭operator‬‭that‬‭is‬‭not‬‭completely‬
‭consistent‬ ‭with‬ ‭the‬ ‭underlying‬ ‭model‬ ‭or,‬ ‭iii)‬ ‭accepting‬ ‭that‬ ‭some‬ ‭of‬ ‭the‬ ‭variability‬ ‭in‬ ‭the‬
‭observations‬ ‭themselves‬ ‭will‬ ‭not‬ ‭be‬ ‭resolved.‬ ‭In‬‭the‬‭examples‬‭of‬‭SIF‬‭and‬‭canopy‬‭reflectance,‬
‭both‬‭vary‬‭with‬‭the‬‭relative‬‭geometry‬‭of‬‭the‬‭sun‬‭and‬‭sensor‬‭-‬‭correctly‬‭capturing‬‭that‬‭directional‬
‭variability‬‭using‬‭an‬‭observation‬‭operator‬‭that‬‭is‬‭physically‬‭consistent‬‭with‬‭the‬‭description‬‭of‬‭the‬
‭radiative‬‭transfer‬‭regime‬‭implemented‬‭in‬‭global‬‭land‬‭surface‬‭models‬‭(which‬‭typically‬‭only‬‭predict‬
‭total‬ ‭fluxes,‬ ‭i.e.‬ ‭integrated‬ ‭across‬ ‭the‬ ‭viewing‬ ‭hemisphere)‬ ‭is‬ ‭not‬ ‭currently‬ ‭possible.‬
‭Nevertheless,‬‭the‬‭selection‬‭and‬‭processing‬‭of‬‭observation‬‭data‬‭can‬‭help‬‭mitigate‬‭some‬‭of‬‭these‬
‭issues.‬ ‭For‬ ‭example,‬ ‭space-time‬ ‭binning‬ ‭of‬ ‭space-borne‬ ‭SIF‬‭data‬‭across‬‭multiple‬‭observation‬
‭geometries‬ ‭can‬ ‭limit‬ ‭the‬ ‭impact‬ ‭of‬ ‭directional‬ ‭effects‬ ‭and‬ ‭potentially‬ ‭increase‬ ‭the‬ ‭consistency‬
‭between model assumptions and the observed variables.‬

‭As‬ ‭observation‬ ‭operators‬ ‭become‬ ‭more‬ ‭complex,‬ ‭especially‬ ‭in‬ ‭the‬ ‭case‬ ‭of‬ ‭radiative‬ ‭transfer‬
‭calculations,‬ ‭they‬ ‭also‬ ‭become‬ ‭more‬ ‭computationally‬ ‭expensive.‬ ‭This‬ ‭is‬ ‭a‬ ‭clear‬ ‭example‬ ‭of‬
‭where‬‭machine‬‭learning‬‭may‬‭offer‬‭a‬‭unique‬‭opportunity‬‭within‬‭DA‬‭applications,‬‭as‬‭discussed‬‭in‬
‭Sect. 4.3.‬

‭3.4 Tackling spatial and temporal heterogeneity‬
‭The‬ ‭large‬ ‭variability‬ ‭in‬ ‭the‬ ‭surface‬ ‭properties‬ ‭of‬ ‭terrestrial‬ ‭ecosystems,‬ ‭arising‬ ‭from‬ ‭diverse‬
‭climates,‬ ‭soil‬ ‭properties,‬ ‭and‬ ‭variations‬ ‭in‬ ‭plant‬ ‭and‬ ‭soil‬ ‭species‬ ‭composition,‬ ‭plasticity,‬ ‭and‬
‭evolution,‬ ‭is‬ ‭an‬ ‭additional‬ ‭challenge‬ ‭in‬ ‭LSM‬ ‭parameter‬ ‭estimation.‬‭Calibration‬‭of‬‭the‬‭model‬‭at‬
‭one‬ ‭location‬ ‭may‬ ‭not‬ ‭be‬ ‭applicable‬ ‭at‬ ‭another.‬ ‭Moreover,‬ ‭most‬‭LSMs‬‭are‬‭too‬‭computationally‬
‭demanding‬ ‭to‬ ‭support‬ ‭calibration‬ ‭across‬ ‭large‬ ‭spatial‬ ‭domains.‬ ‭As‬ ‭such,‬ ‭it‬ ‭is‬ ‭important‬ ‭to‬
‭develop‬‭strategies‬‭to‬‭ensure‬‭results‬‭offer‬‭a‬‭good‬‭compromise‬‭across‬‭different‬‭locations,‬‭as‬‭well‬
‭as perform rigorous evaluation checks against data not used in the calibration.‬

‭A‬‭common‬‭approach‬‭to‬‭tackle‬‭this‬‭spatial‬‭heterogeneity‬‭is‬‭to‬‭perform‬‭“multi-site”‬‭optimisations,‬
‭grouping‬‭sites‬‭and‬‭performing‬‭a‬‭single‬‭optimisation‬‭over‬‭this‬‭group‬‭to‬‭obtain‬‭a‬‭more‬‭generic‬‭set‬
‭of‬ ‭parameters.‬ ‭The‬ ‭multi-site‬ ‭approach‬ ‭has‬ ‭been‬ ‭shown‬ ‭to‬ ‭be‬ ‭very‬ ‭effective,‬ ‭at‬ ‭times‬
‭out-performing‬ ‭site-specific‬ ‭optimisations‬ ‭(Kuppel‬ ‭et‬ ‭al.,‬ ‭2012;‬ ‭Raoult‬ ‭et‬ ‭al.,‬ ‭2016)‬‭.‬ ‭Another‬
‭approach‬‭is‬‭to‬‭average‬‭the‬‭results‬‭of‬‭single-site‬‭optimisations.‬‭While‬‭usually‬‭less‬‭effective‬‭than‬
‭multi-site‬‭optimisations,‬‭this‬‭is‬‭often‬‭a‬‭more‬‭practical‬‭solution‬‭and‬‭can‬‭still‬‭result‬‭in‬‭an‬‭improved‬
‭parameter‬ ‭set.‬ ‭For‬ ‭example,‬ ‭Olivera-Guerra‬ ‭et‬ ‭al.‬ ‭(2024)‬ ‭found‬ ‭that‬ ‭the‬ ‭median‬ ‭values‬ ‭of‬
‭optimised parameters improved simulated land-surface temperature performance.‬

‭Both‬ ‭these‬ ‭approaches‬ ‭can‬ ‭be‬‭thought‬‭of‬‭as‬‭end-members‬‭(all‬‭sites‬‭the‬‭same‬‭versus‬‭all‬‭sites‬
‭different)‬ ‭in‬ ‭a‬ ‭continuum‬ ‭representing‬ ‭the‬‭statistical‬‭independence‬‭of‬‭calibrations‬‭across‬‭sites.‬
‭While‬ ‭only‬‭just‬‭beginning‬‭to‬‭be‬‭utilised‬‭to‬‭calibrate‬‭ecosystem‬‭models‬‭(Dokoohaki‬‭et‬‭al.,‬‭2022;‬
‭Fer,‬ ‭Shiklomanov,‬ ‭et‬‭al.,‬‭2021)‬‭,‬‭hierarchical‬‭models‬‭have‬‭a‬‭long‬‭history‬‭of‬‭use‬‭in‬‭ecology‬‭as‬‭a‬
‭way‬ ‭of‬ ‭capturing‬ ‭this‬ ‭continuum,‬ ‭allowing‬ ‭parameters‬ ‭to‬ ‭vary‬ ‭across‬‭space‬‭and‬‭through‬‭time,‬
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‭but‬ ‭constraining‬ ‭that‬ ‭variability‬ ‭with‬ ‭multivariate‬ ‭statistical‬‭models‬‭that‬‭describe‬‭that‬‭variability.‬
‭Since‬ ‭the‬ ‭across-site‬ ‭and‬ ‭within-site‬ ‭calibrations‬ ‭are‬ ‭fit‬ ‭simultaneously,‬ ‭this‬ ‭would‬ ‭allow‬ ‭LSM‬
‭models‬‭to‬‭“borrow‬‭strength”‬‭across‬‭sites‬‭(e.g.,‬‭reducing‬‭equifinality‬‭as‬‭described‬‭above)‬‭without‬
‭forcing‬ ‭parameters‬ ‭to‬ ‭be‬ ‭the‬ ‭same‬ ‭everywhere.‬ ‭Hierarchical‬ ‭models‬ ‭also‬ ‭provide‬ ‭a‬ ‭formal‬
‭framework‬ ‭for‬ ‭accounting‬ ‭for‬ ‭the‬ ‭fact‬ ‭that‬ ‭out-of-sample‬ ‭predictions‬ ‭are‬ ‭more‬ ‭uncertain‬
‭(because‬ ‭their‬ ‭parameter‬ ‭vectors‬ ‭need‬ ‭to‬ ‭be‬ ‭predicted)‬ ‭than‬ ‭in-sample‬ ‭predictions‬ ‭at‬ ‭sites‬
‭where‬‭parameter‬‭vectors‬‭are‬‭known.‬‭To‬‭date,‬‭existing‬‭hierarchical‬‭ecosystem‬‭model‬‭calibrations‬
‭have‬‭assumed‬‭a‬‭simple‬‭“random‬‭effects”‬‭structure‬‭(i.e.‬‭different‬‭sites‬‭are‬‭drawn‬‭from‬‭the‬‭same‬
‭across-site‬ ‭distribution),‬ ‭but‬ ‭there‬ ‭are‬ ‭important‬ ‭opportunities‬ ‭to‬ ‭explore‬ ‭hierarchical‬ ‭models‬
‭with‬ ‭across-site‬ ‭spatiotemporal‬ ‭covariances‬ ‭(i.e.,‬ ‭sites‬‭closer‬‭together‬‭should‬‭be‬‭more‬‭similar)‬
‭and across-site covariates (i.e., parameters that explain, and help predict, parameter variability).‬

‭A‬‭further‬‭alternative‬‭is‬‭the‬‭use‬‭of‬‭intermediate‬‭complexity‬‭models‬‭(e.g.,‬‭DALEC),‬‭which,‬‭due‬‭to‬
‭their‬ ‭reduced‬ ‭computational‬ ‭complexity,‬ ‭can‬ ‭retrieve‬ ‭parameters‬ ‭at‬ ‭the‬ ‭pixel‬ ‭scale‬ ‭utilising‬
‭spatially‬ ‭continuous‬ ‭information‬ ‭from‬ ‭Earth‬ ‭Observation‬ ‭(EO)‬ ‭data‬ ‭and‬ ‭thus‬ ‭derive‬ ‭unique‬
‭information‬‭about‬‭the‬‭spatial‬‭variability‬‭of‬‭key‬‭underlying‬‭parameters,‬‭such‬‭as‬‭tissue‬‭residence‬
‭times‬ ‭(Bloom‬ ‭et‬ ‭al.,‬ ‭2016)‬ ‭and‬ ‭the‬ ‭impact‬ ‭of‬ ‭fire‬ ‭(Exbrayat,‬ ‭Smallman,‬ ‭et‬ ‭al.,‬ ‭2018)‬‭.‬ ‭The‬
‭parameters‬‭and‬‭emergent‬‭ecosystem‬‭properties‬‭estimated‬‭from‬‭these‬‭models‬‭provide‬‭valuable‬
‭insights‬‭into‬‭the‬‭spatial‬‭variability‬‭and‬‭magnitude‬‭of‬‭parameters.‬‭This‬‭can‬‭reduce‬‭the‬‭parameter‬
‭space‬‭that‬‭needs‬‭to‬‭be‬‭searched‬‭when‬‭calibrating‬‭larger‬‭models.‬‭Furthermore,‬‭these‬‭optimised‬
‭parameters‬ ‭can‬ ‭be‬ ‭inserted‬ ‭into‬ ‭more‬ ‭complex‬ ‭models,‬ ‭enhancing‬ ‭their‬ ‭performance‬ ‭and‬
‭helping to better understand their internal dynamics‬‭(Caen et al., 2022)‬‭.‬

‭Similarly,‬‭the‬‭interannual‬‭variability‬‭of‬‭atmospheric‬‭conditions‬‭means‬‭we‬‭also‬‭need‬‭to‬‭be‬‭careful‬
‭which‬ ‭period‬ ‭is‬ ‭used‬ ‭for‬ ‭the‬ ‭assimilation.‬ ‭Ideally,‬ ‭we‬ ‭want‬ ‭to‬ ‭calibrate‬ ‭over‬ ‭multiple‬ ‭years‬ ‭to‬
‭capture‬‭both‬‭the‬‭seasonal‬‭cycle‬‭and‬‭this‬‭interannual‬‭variability,‬‭while‬‭still‬‭retaining‬‭a‬‭number‬‭of‬
‭years‬ ‭for‬ ‭evaluation‬ ‭(although‬ ‭using‬ ‭different‬ ‭sites‬ ‭for‬ ‭calibration‬ ‭and‬ ‭evaluation‬ ‭can‬ ‭help‬ ‭to‬
‭relax‬ ‭this‬ ‭latter‬ ‭requirement).‬ ‭However,‬ ‭in‬ ‭practice,‬ ‭we‬ ‭are‬ ‭often‬ ‭limited‬ ‭by‬ ‭short‬ ‭time‬ ‭series‬
‭(e.g.,‬ ‭only‬ ‭a‬ ‭few‬ ‭years‬ ‭for‬ ‭some‬ ‭in‬‭situ‬‭experiments‬‭and‬‭recently‬‭launched‬‭satellite‬‭missions),‬
‭data‬ ‭gaps,‬ ‭and‬ ‭the‬ ‭availability‬ ‭of‬ ‭meteorological‬‭forcing‬‭for‬‭corresponding‬‭periods,‬‭particularly‬
‭for‬‭in situ‬‭datasets.‬

‭3.5 Dealing with large and multiple observational datasets‬
‭Although‬ ‭EO‬ ‭instruments‬ ‭can‬ ‭provide‬ ‭global‬ ‭gridded‬ ‭datasets‬ ‭with‬ ‭which‬ ‭to‬ ‭calibrate‬ ‭the‬
‭models,‬ ‭fully‬ ‭exploiting‬ ‭these‬ ‭opportunities‬ ‭is‬ ‭challenging.‬ ‭Running‬ ‭experiments‬ ‭at‬ ‭the‬ ‭same‬
‭resolution‬‭as‬‭the‬‭satellite‬‭products‬‭(e.g.,‬‭500m‬‭MODIS‬‭resolution;‬‭Justice‬‭et‬‭al.,‬‭2002)‬‭requires‬
‭a‬ ‭lot‬ ‭of‬ ‭computational‬ ‭power‬ ‭and‬ ‭time,‬ ‭and‬ ‭we‬ ‭do‬ ‭not‬ ‭always‬ ‭have‬ ‭access‬ ‭to‬ ‭matching‬
‭meteorological‬ ‭forcing‬ ‭data.‬ ‭The‬ ‭resolution‬ ‭of‬ ‭products‬ ‭to‬ ‭be‬ ‭assimilated‬ ‭may‬ ‭also‬ ‭not‬ ‭be‬
‭meaningful‬ ‭for‬ ‭the‬ ‭objectives‬‭of‬‭the‬‭experiment.‬‭Additionally,‬‭when‬‭assimilating‬‭more‬‭than‬‭one‬
‭remote‬‭sensing‬‭data‬‭constraint,‬‭we‬‭must‬‭address‬‭multiple‬‭competing‬‭resolutions.‬‭This‬‭requires‬
‭decisions‬ ‭about‬ ‭scaling‬ ‭(see‬ ‭Sect.‬ ‭3.3),‬ ‭determining‬ ‭which‬ ‭products‬ ‭are‬ ‭to‬ ‭be‬ ‭upscaled‬
‭(aggregated)‬ ‭versus‬ ‭downscaled‬ ‭(interpolated).‬ ‭Generally,‬ ‭satellite‬ ‭products‬ ‭are‬ ‭scaled‬ ‭to‬
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‭match‬‭the‬‭chosen‬‭model‬‭grid,‬‭usually‬‭dictated‬‭by‬‭the‬‭resolution‬‭of‬‭the‬‭forcing‬‭data,‬‭although‬‭this‬
‭scaling can result in an over-generalisation or loss of information.‬

‭Furthermore,‬ ‭the‬ ‭quality‬ ‭of‬ ‭EO‬ ‭data‬ ‭can‬ ‭differ‬ ‭hugely‬ ‭across‬ ‭different‬ ‭regions‬ ‭since‬ ‭they‬ ‭are‬
‭impacted‬‭by‬‭atmospheric‬‭conditions‬‭(e.g.,‬‭cloud‬‭cover)‬‭and‬‭topography,‬‭as‬‭well‬‭as‬‭the‬‭different‬
‭data‬ ‭processing‬ ‭algorithms‬ ‭and‬ ‭calibration/validation‬ ‭strategies‬ ‭used‬ ‭to‬ ‭develop‬ ‭the‬ ‭different‬
‭products.‬ ‭This‬ ‭can‬ ‭lead‬ ‭to‬ ‭regional‬ ‭and‬ ‭biome‬ ‭biases‬ ‭in‬ ‭the‬ ‭products‬ ‭that‬ ‭are‬ ‭very‬ ‭hard‬ ‭to‬
‭circumvent‬ ‭due‬ ‭to‬ ‭measurement‬ ‭limitations,‬ ‭potentially‬ ‭generating‬ ‭structural‬ ‭model‬ ‭biases.‬
‭Therefore,‬ ‭for‬ ‭many‬ ‭LSMs,‬ ‭it‬ ‭is‬ ‭common‬ ‭to‬ ‭select‬ ‭representative‬ ‭pixels‬ ‭for‬ ‭optimisation‬‭(e.g.,‬
‭MacBean‬ ‭et‬ ‭al.,‬ ‭2015)‬‭,‬ ‭although‬ ‭defining‬ ‭what‬ ‭is‬ ‭representative‬ ‭is‬ ‭a‬ ‭challenge‬ ‭in‬ ‭itself.‬‭Once‬
‭selected,‬‭the‬‭representative‬‭pixel‬‭approach‬‭helps‬‭to‬‭i)‬‭reduce‬‭the‬‭dimensionality‬‭of‬‭the‬‭problem,‬
‭allowing‬ ‭for‬ ‭efficient‬ ‭and‬ ‭multi-data-stream‬ ‭calibrations,‬ ‭ii)‬ ‭focus‬ ‭on‬ ‭points‬ ‭with‬ ‭close‬ ‭to‬
‭homogenous‬ ‭coverage‬ ‭to‬ ‭be‬ ‭able‬ ‭to‬ ‭calibrate‬ ‭class-specific‬ ‭parameters‬ ‭(e.g.,‬‭plant‬‭functional‬
‭types),‬‭and‬‭iii)‬‭define‬‭a‬‭different‬‭evaluation‬‭set‬‭of‬‭pixels‬‭with‬‭which‬‭to‬‭assess‬‭the‬‭optimisations,‬
‭especially‬ ‭sites‬ ‭with‬ ‭additional‬ ‭ground‬ ‭data.‬ ‭After‬ ‭selecting‬ ‭representative‬ ‭pixels,‬ ‭multi-pixel‬
‭optimisations‬ ‭are‬ ‭performed‬‭(as‬‭described‬‭in‬‭Sect.‬‭3.4),‬‭focusing‬‭on‬‭estimating‬‭parameters‬‭for‬
‭different‬ ‭ecosystem/edaphic‬ ‭conditions‬ ‭by‬ ‭spanning‬ ‭the‬ ‭various‬ ‭model‬ ‭plant‬ ‭functional‬ ‭types‬
‭and soil textures all over the globe.‬

‭Another‬‭way‬‭to‬‭include‬‭more‬‭constraints‬‭to‬‭an‬‭optimisation‬‭is‬‭by‬‭calibrating‬‭against‬‭multiple‬‭data‬
‭streams.‬ ‭There‬ ‭is‬ ‭now‬ ‭an‬ ‭unprecedented‬ ‭wealth‬ ‭of‬ ‭in‬ ‭situ‬ ‭and‬ ‭EO‬ ‭data‬ ‭available,‬ ‭with‬ ‭even‬
‭more‬‭satellite‬‭missions‬‭and‬‭in‬‭situ‬‭field‬‭measurement‬‭sites‬‭being‬‭planned‬‭(Balsamo‬‭et‬‭al.,‬‭2018;‬
‭Ustin‬‭&‬‭Middleton,‬‭2021)‬‭.‬‭Different‬‭data‬‭streams‬‭offer‬‭information‬‭over‬‭different‬‭footprints‬‭and‬‭at‬
‭different‬ ‭spatial‬ ‭and‬ ‭temporal‬ ‭resolutions‬ ‭offering‬ ‭unique‬ ‭opportunities‬ ‭to‬ ‭constrain‬ ‭different‬
‭processes‬ ‭in‬ ‭the‬ ‭models.‬ ‭As‬ ‭LSMs‬ ‭become‬ ‭more‬ ‭complex‬ ‭through‬ ‭increased‬ ‭process‬
‭representation‬ ‭and‬ ‭greater‬ ‭interconnectedness‬ ‭between‬ ‭the‬ ‭different‬ ‭terrestrial‬ ‭cycles‬ ‭(e.g.,‬
‭water,‬ ‭energy,‬ ‭carbon,‬ ‭nitrogen),‬ ‭multi-data‬ ‭stream‬ ‭optimisations‬ ‭are‬ ‭becoming‬ ‭paramount‬ ‭to‬
‭provide‬‭adequate‬‭constraints‬‭since‬‭parameters‬‭are‬‭likely‬‭to‬‭impact‬‭different‬‭parts‬‭of‬‭the‬‭model.‬
‭By‬ ‭selecting‬ ‭only‬ ‭one‬ ‭specific‬ ‭data‬ ‭stream‬ ‭in‬ ‭an‬ ‭optimisation,‬ ‭we‬ ‭risk‬ ‭degrading‬ ‭the‬ ‭model’s‬
‭overall‬‭predictive‬‭capacity‬‭if‬‭some‬‭of‬‭the‬‭optimised‬‭parameters‬‭are‬‭loosely‬‭constrained‬‭(Bacour‬
‭et al., 2015, 2023)‬‭.‬

‭There‬ ‭are‬ ‭two‬ ‭possible‬ ‭approaches‬ ‭when‬ ‭assimilating‬ ‭multiple‬ ‭data‬ ‭streams.‬ ‭We‬ ‭can‬ ‭either‬
‭calibrate‬ ‭against‬ ‭each‬ ‭data‬ ‭stream‬ ‭in‬ ‭turn,‬ ‭often‬ ‭referred‬ ‭to‬ ‭as‬ ‭“stepwise”‬ ‭assimilation,‬ ‭or‬
‭include‬ ‭all‬ ‭data‬ ‭streams‬ ‭in‬ ‭one‬ ‭single‬ ‭optimisation,‬ ‭known‬ ‭as‬ ‭“simultaneous”‬ ‭assimilation.‬
‭Although‬ ‭mathematically‬ ‭equivalent‬ ‭when‬ ‭the‬ ‭posterior‬ ‭parameter‬ ‭uncertainties‬ ‭are‬ ‭properly‬
‭estimated‬ ‭and‬ ‭propagated‬ ‭in‬ ‭the‬ ‭stepwise‬ ‭case‬ ‭(MacBean‬ ‭et‬ ‭al.,‬ ‭2016;‬ ‭Peylin‬ ‭et‬ ‭al.,‬ ‭2016)‬‭,‬
‭simultaneous‬ ‭assimilation‬ ‭is‬ ‭often‬ ‭preferable,‬ ‭since‬ ‭it‬ ‭ensures‬ ‭consistency‬ ‭(Kaminski‬ ‭et‬ ‭al.,‬
‭2012)‬ ‭and‬ ‭avoids‬ ‭issues‬ ‭linked‬ ‭to‬ ‭accurately‬ ‭propagating‬ ‭the‬ ‭information‬ ‭gained‬ ‭about‬ ‭the‬
‭parameter‬ ‭values‬ ‭from‬ ‭one‬ ‭step‬ ‭to‬ ‭the‬ ‭next.‬ ‭However,‬ ‭simultaneous‬ ‭optimisations‬ ‭may‬ ‭not‬
‭always‬ ‭be‬ ‭practical,‬ ‭especially‬ ‭when‬ ‭running‬ ‭a‬ ‭computationally‬ ‭demanding‬ ‭LSM‬ ‭experiment,‬
‭which‬ ‭is‬ ‭why‬ ‭the‬ ‭stepwise‬ ‭approach‬ ‭is‬ ‭often‬‭the‬‭pragmatic‬‭choice.‬‭In‬‭particular,‬‭there‬‭may‬‭be‬
‭technical‬ ‭difficulties‬ ‭associated‬ ‭with‬ ‭the‬‭different‬‭number‬‭of‬‭observations‬‭for‬‭each‬‭data‬‭stream‬
‭and‬‭the‬‭characterisation‬‭of‬‭error‬‭correlations‬‭between‬‭them‬‭(Bacour‬‭et‬‭al.,‬‭2023)‬‭.‬‭Nevertheless,‬
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‭it‬ ‭must‬ ‭be‬ ‭stressed‬ ‭that‬ ‭issues‬‭with‬‭unbalanced‬‭data‬‭streams‬‭are‬‭not‬‭solely‬‭due‬‭to‬‭imbalance‬
‭but‬ ‭stem‬ ‭from‬ ‭the‬ ‭model's‬ ‭inability‬ ‭to‬ ‭accommodate‬ ‭both‬ ‭data‬ ‭sources‬‭when‬‭structural‬‭errors‬
‭exist‬ ‭in‬ ‭either‬ ‭the‬ ‭model‬ ‭or‬ ‭the‬ ‭data‬‭(Oberpriller‬‭et‬‭al.,‬‭2021)‬‭.‬‭In‬‭fact,‬‭properly‬‭quantifying‬‭and‬
‭accounting‬‭for‬‭the‬‭uncertainty‬‭in‬‭the‬‭model‬‭structural‬‭error‬‭and‬‭data‬‭bias‬‭leads‬‭to‬‭better‬‭results‬
‭than‬ ‭using‬ ‭ad-hoc‬ ‭methods‬ ‭such‬‭as‬‭reweighting‬‭different‬‭data‬‭streams‬‭(Cameron‬‭et‬‭al.,‬‭2022)‬
‭(see Sect. 3.2).‬

‭3.6‬ ‭Including‬ ‭the‬ ‭spin-up‬ ‭and‬ ‭transient‬ ‭historical‬ ‭period‬ ‭in‬ ‭the‬
‭assimilation to better constrain land carbon sink projections‬
‭Many‬ ‭LSM‬ ‭simulations‬ ‭include‬ ‭both‬ ‭a‬ ‭spin-up‬ ‭phase‬ ‭that‬ ‭brings‬ ‭the‬ ‭prognostic‬ ‭variables‬
‭including‬ ‭vegetation‬ ‭state,‬ ‭soil‬‭carbon‬‭pools,‬‭and‬‭soil‬‭moisture‬‭content‬‭into‬‭equilibrium‬‭prior‬‭to‬
‭the‬‭industrial‬‭revolution‬‭(c.‬‭1750).‬‭This‬‭is‬‭followed‬‭by‬‭a‬‭transient‬‭historical‬‭simulation‬‭where‬‭the‬
‭model‬ ‭is‬ ‭driven‬ ‭by‬ ‭changing‬ ‭climate‬ ‭forcing,‬ ‭rising‬ ‭CO‬‭2‬ ‭levels,‬ ‭nitrogen‬ ‭deposition,‬ ‭and‬
‭prescribed‬ ‭land‬‭management‬‭and‬‭land‬‭cover‬‭change‬‭since‬‭the‬‭equilibrium‬‭time‬‭point‬‭up‬‭to‬‭the‬
‭present‬‭day.‬‭Even‬‭with‬‭transient‬‭forcings,‬‭this‬‭historical‬‭period‬‭is‬‭likely‬‭not‬‭accurately‬‭simulated,‬
‭in‬‭part‬‭due‬‭to‬‭the‬‭lack‬‭of‬‭accurate‬‭historical‬‭climate‬‭and‬‭land‬‭use‬‭forcing‬‭data,‬‭in‬‭part‬‭because‬
‭“slow”‬ ‭carbon‬ ‭cycling‬ ‭parameters‬ ‭(e.g.‬ ‭carbon‬ ‭allocation‬ ‭or‬ ‭turnover‬ ‭rates)‬ ‭that‬ ‭control‬ ‭the‬
‭magnitude‬ ‭of‬ ‭the‬ ‭equilibrium‬ ‭carbon‬ ‭stock‬ ‭are‬ ‭poorly‬ ‭constrained,‬ ‭and‬ ‭in‬ ‭part‬ ‭because‬ ‭the‬
‭effects‬‭of‬‭key‬‭global‬‭change‬‭drivers‬‭on‬‭carbon‬‭storage‬‭(including‬‭recovery‬‭from‬‭disturbance)‬‭are‬
‭often‬ ‭missing‬ ‭or‬ ‭not‬ ‭reliably‬ ‭represented‬ ‭in‬ ‭models.‬ ‭The‬ ‭result‬ ‭is‬ ‭a‬ ‭large‬ ‭spread‬ ‭in‬ ‭the‬
‭magnitude‬ ‭and‬ ‭dynamics‬ ‭of‬ ‭various‬ ‭carbon‬ ‭pools‬ ‭and‬ ‭fluxes‬ ‭which‬ ‭underpin‬ ‭the‬ ‭current‬ ‭and‬
‭future projections of the land carbon sink‬‭(Arora et al., 2020; Friedlingstein et al., 2023)‬‭.‬

‭To‬ ‭obtain‬ ‭reliable‬ ‭estimates‬ ‭of‬ ‭the‬‭current‬‭or‬‭future‬‭land‬‭carbon‬‭sink‬‭and‬‭trend‬‭in‬‭atmospheric‬
‭CO‬‭2‬ ‭we‬ ‭need‬ ‭accurate‬ ‭simulations‬ ‭of‬ ‭global‬ ‭carbon‬‭stock‬‭trajectories‬‭(i.e.,‬‭changes‬‭in‬‭carbon‬
‭stocks).‬ ‭The‬ ‭trend‬ ‭in‬ ‭carbon‬ ‭stocks‬ ‭depends‬‭on‬‭the‬‭magnitude‬‭of‬‭carbon‬‭stocks‬‭post‬‭spin-up,‬
‭which‬ ‭in‬ ‭turn‬ ‭is‬ ‭strongly‬ ‭controlled‬ ‭by‬ ‭soil‬‭carbon‬‭pool‬‭turnover‬‭rates‬‭(Exbrayat,‬‭Bloom,‬‭et‬‭al.,‬
‭2018)‬‭(in‬‭addition‬‭to‬‭other‬‭parameters‬‭involved‬‭in‬‭soil‬‭carbon‬‭decomposition‬‭that‬‭moderate‬‭that‬
‭turnover‬‭rate).‬‭This‬‭is‬‭because‬‭for‬‭the‬‭CENTURY‬‭type‬‭model‬‭(Parton‬‭et‬‭al.,‬‭1987)‬‭used‬‭in‬‭many‬
‭LSMs,‬ ‭heterotrophic‬ ‭respiration‬ ‭is‬ ‭partly‬ ‭dependent‬ ‭on‬ ‭the‬ ‭size‬ ‭of‬ ‭carbon‬ ‭stocks.‬ ‭Global‬
‭sensitivity‬ ‭analyses‬ ‭(Sect.‬ ‭3.1)‬ ‭of‬ ‭soil‬ ‭carbon‬ ‭cycle‬ ‭models‬ ‭performed‬ ‭for‬ ‭multiple‬ ‭different‬
‭biomes‬ ‭worldwide‬ ‭have‬ ‭rarely‬ ‭been‬ ‭performed‬ ‭(though‬ ‭see‬ ‭Huang‬ ‭et‬ ‭al.,‬ ‭2018)‬ ‭due‬ ‭to‬ ‭the‬
‭computational‬ ‭expense‬ ‭of‬ ‭running‬ ‭long-timescale‬ ‭simulations‬ ‭needed‬ ‭to‬ ‭model‬ ‭carbon‬ ‭stock‬
‭trajectories.‬‭For‬‭the‬‭same‬‭reason,‬‭relatively‬‭few‬‭past‬‭parameter‬‭DA‬‭studies‬‭with‬‭computationally‬
‭expensive‬ ‭LSMs‬ ‭at‬ ‭multi-site‬ ‭or‬ ‭global‬ ‭scale‬ ‭have‬ ‭included‬ ‭these‬ ‭slow-acting‬ ‭carbon‬ ‭cycle‬
‭parameters‬ ‭in‬ ‭their‬ ‭assimilation‬ ‭experiments.‬ ‭However,‬ ‭we‬ ‭know‬ ‭from‬ ‭past‬ ‭DA‬ ‭studies‬ ‭that‬
‭optimising‬‭“fast”‬‭carbon‬‭cycle‬‭flux‬‭related‬‭parameters‬‭related‬‭to‬‭photosynthesis,‬‭phenology,‬‭and‬
‭ecosystem‬ ‭respiration‬ ‭has‬ ‭limited‬ ‭impact‬‭on‬‭regional‬‭to‬‭global‬‭scale‬‭carbon‬‭stocks‬‭(MacBean,‬
‭Bacour,‬‭et‬‭al.,‬‭2022)‬‭,‬‭as‬‭expected,‬‭while‬‭“slow”‬‭carbon‬‭cycle‬‭process‬‭parameters‬‭(such‬‭as‬‭those‬
‭related‬‭to‬‭carbon‬‭allocation‬‭to‬‭different‬‭biomass‬‭pools,‬‭or‬‭biomass‬‭and‬‭soil‬‭carbon‬‭pool‬‭turnover‬
‭times) are important for constraining long-term carbon stock trajectories‬‭(Thum et al., 2017)‬‭.‬
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‭To‬ ‭optimise‬ ‭the‬ ‭“slow”‬ ‭acting‬ ‭carbon‬ ‭cycle‬ ‭parameters‬ ‭involved‬ ‭in‬ ‭carbon‬ ‭allocation,‬‭biomass‬
‭turnover‬ ‭and‬ ‭soil‬ ‭carbon‬ ‭cycling,‬ ‭LSM‬ ‭assimilation‬ ‭experiments‬ ‭would‬ ‭need‬ ‭to‬ ‭include‬ ‭the‬
‭spin-up‬ ‭and‬ ‭transient‬ ‭runs‬ ‭in‬ ‭the‬ ‭assimilation,‬ ‭which‬ ‭would‬ ‭be‬ ‭prohibitively‬ ‭costly‬ ‭given‬ ‭the‬
‭computational‬‭cost‬‭of‬ ‭LSM‬‭runs.‬‭Therefore,‬‭neither‬‭the‬‭spin-up‬‭or‬‭transient‬‭period‬‭(prior‬‭to‬‭the‬
‭assimilation‬‭window)‬‭are‬‭usually‬‭included‬‭in‬‭LSM‬‭assimilations‬‭(Peylin‬‭et‬‭al.,‬‭2016;‬‭Raoult‬‭et‬‭al.,‬
‭2016;‬‭Schürmann‬‭et‬‭al.,‬‭2016)‬‭.‬‭This‬‭presents‬‭challenges‬‭for‬‭obtaining‬‭accurate‬‭model‬‭estimates‬
‭of‬ ‭carbon‬ ‭fluxes‬‭and‬‭stocks‬‭because‬‭an‬‭incorrect‬‭initial‬‭carbon‬‭stock‬‭will‬‭likely‬‭result‬‭in‬‭biased‬
‭parameter‬ ‭retrievals‬‭that‬‭are‬‭accounting‬‭for‬‭the‬‭model‬‭errors‬‭contributing‬‭to‬‭the‬‭incorrect‬‭initial‬
‭carbon‬‭stock.‬‭Note‬‭this‬‭is‬‭not‬‭the‬‭case‬‭for‬‭carbon‬‭cycle‬‭and‬‭ecosystem‬‭models‬‭that‬‭have‬‭much‬
‭faster‬‭run‬‭times‬‭and‬‭who‬‭have‬‭therefore‬‭been‬‭able‬‭to‬‭include‬‭biomass‬‭and‬‭soil‬‭carbon‬‭turnover‬
‭rates‬ ‭and‬ ‭other‬ ‭related‬ ‭“slow”‬ ‭carbon‬ ‭cycling‬ ‭parameters‬ ‭in‬ ‭their‬ ‭optimisations‬ ‭(e.g.,‬
‭CARDAMOM-DALEC –‬‭Bloom et al., 2016)‬‭.‬

‭To‬ ‭make‬ ‭up‬ ‭for‬ ‭incorrect‬ ‭carbon‬ ‭pool‬ ‭magnitudes‬ ‭and‬ ‭the‬ ‭fact‬ ‭that‬ ‭including‬ ‭spin-up‬ ‭and‬
‭transient‬ ‭in‬ ‭the‬ ‭assimilation‬ ‭is‬ ‭not‬ ‭yet‬ ‭feasible,‬ ‭most‬ ‭past‬ ‭carbon‬ ‭cycle‬‭parameter‬‭DA‬‭studies‬
‭have‬ ‭included‬ ‭scalars‬ ‭on‬ ‭the‬ ‭initial‬ ‭C‬ ‭pools‬ ‭in‬ ‭the‬ ‭optimisation,‬ ‭resulting‬ ‭in‬ ‭an‬‭improved‬‭fit‬‭to‬
‭NEE‬ ‭and‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭data‬ ‭(e.g.,‬ ‭𝜂,‬ ‭Carvalhais‬ ‭et‬ ‭al.‬ ‭(2008,‬ ‭2010)‬‭;‬ ‭K‬‭soilC‬ ‭in‬ ‭ORCHIDEE‬
‭PDA‬ ‭studies,‬ ‭e.g.,‬ ‭Peylin‬ ‭et‬ ‭al.‬ ‭(2016)‬‭;‬ ‭f‬‭slow‬ ‭in‬ ‭CCDAS‬ ‭studies,‬ ‭Castro-Morales‬ ‭et‬ ‭al.‬ ‭(2019;‬
‭Schürmann‬ ‭et‬‭al.,‬‭(2016)‬‭).‬‭These‬‭scalars‬‭alter‬‭the‬‭initial‬‭carbon‬‭pool‬‭size‬‭to‬‭account‬‭for‬‭model‬
‭and‬‭forcing‬‭errors‬‭mentioned‬‭above‬‭that‬‭contribute‬‭to‬‭incorrect‬‭soil‬‭carbon‬‭stock‬‭sizes.‬‭Studies‬
‭differ‬ ‭in‬ ‭how‬ ‭many‬ ‭such‬ ‭scalars‬‭to‬‭include,‬‭both‬‭in‬‭terms‬‭of‬‭which‬‭carbon‬‭pools‬‭to‬‭relax‬‭(all‬‭C‬
‭pools‬‭as‬‭in‬‭Santaren‬‭et‬‭al.‬‭(2007)‬‭versus‬‭slow‬‭and/or‬‭passive‬‭as‬‭in‬‭Peylin‬‭et‬‭al.‬‭(2016)‬‭,‬‭whether‬
‭to‬‭scale‬‭aboveground‬‭biomass‬‭or‬‭not‬‭(Carvalhais‬‭et‬‭al.,‬‭2010)‬‭,‬‭and‬‭to‬‭how‬‭many‬‭to‬‭use‬‭spatially‬
‭in‬ ‭global‬ ‭simulations‬ ‭(1‬ ‭in‬ ‭CCDAS,‬ ‭Castro-Morales‬ ‭et‬ ‭al.‬ ‭(2019),‬ ‭Schürmann‬ ‭et‬ ‭al.‬ ‭(2016)‬‭,‬
‭versus‬ ‭30‬ ‭regional‬ ‭factors‬ ‭used‬ ‭in‬ ‭ORCHIDEE‬ ‭studies,‬ ‭Bacour‬ ‭et‬ ‭al.‬ ‭(2023),‬ ‭Peylin‬ ‭et‬ ‭al.‬
‭(2016)‬‭).‬‭Other‬‭options‬‭for‬‭avoiding‬‭spin-up‬‭include‬‭directly‬‭initialising‬‭models‬‭with‬‭carbon‬‭stock‬
‭observations,‬ ‭and‬ ‭including‬ ‭parameter‬ ‭calibration‬ ‭within‬ ‭iterative‬ ‭state‬ ‭DA‬ ‭approaches.‬
‭However,‬ ‭in‬ ‭all‬ ‭of‬ ‭these‬ ‭cases,‬ ‭calibrating‬ ‭the‬ ‭“right”‬ ‭model‬ ‭parameters‬ ‭to‬ ‭the‬ ‭“wrong”‬‭model‬
‭pools‬ ‭is‬ ‭going‬ ‭to‬ ‭produce‬ ‭poor‬ ‭fits,‬ ‭complex‬ ‭sets‬ ‭of‬ ‭compensating‬ ‭errors,‬ ‭and‬ ‭potentially‬
‭incorrect hypothesis testing around alternative model structures.‬

‭Adjusting‬ ‭initial‬ ‭carbon‬ ‭stocks‬ ‭without‬ ‭optimising‬ ‭the‬ ‭“slow”‬ ‭carbon‬ ‭cycle‬‭parameters‬‭to‬‭which‬
‭the‬ ‭equilibrium‬ ‭carbon‬ ‭stock‬ ‭magnitude‬ ‭is‬ ‭sensitive‬‭is‬‭only‬‭useful‬‭if‬‭the‬‭purpose‬‭of‬‭the‬‭carbon‬
‭cycle‬ ‭assimilation‬ ‭experiment‬ ‭is‬ ‭to‬ ‭update‬ ‭model‬ ‭estimates‬ ‭of‬ ‭current‬ ‭carbon‬ ‭budgets.‬ ‭If‬ ‭the‬
‭desired‬‭goal‬‭is‬‭an‬‭accurate‬‭prediction‬‭of‬‭future‬‭carbon‬‭stock‬‭trajectories‬‭–‬‭for‬‭predicting‬‭carbon‬
‭mitigation‬ ‭potentials‬ ‭or‬ ‭carbon-climate‬ ‭feedbacks‬ ‭under‬ ‭different‬ ‭scenarios‬ ‭of‬ ‭climate‬ ‭and‬
‭disturbance‬‭trajectories‬‭–‬‭then‬‭simply‬‭adjusting‬‭initial‬‭carbon‬‭stocks‬‭is‬‭insufficient.‬‭In‬‭longer‬‭runs‬
‭(up‬ ‭to‬ ‭2100‬ ‭or‬ ‭2300)‬ ‭those‬ ‭“slow”‬ ‭carbon‬ ‭cycling‬ ‭parameters‬ ‭that‬ ‭resulted‬ ‭in‬ ‭the‬ ‭original‬
‭incorrect‬ ‭carbon‬ ‭stock‬ ‭magnitude‬‭will‬‭start‬‭to‬‭push‬‭the‬‭model‬‭back‬‭to‬‭that‬‭original‬‭(inaccurate)‬
‭equilibrium,‬ ‭resulting‬‭in‬‭an‬‭artificial‬‭trend‬‭in‬‭the‬‭modelled‬‭carbon‬‭pools‬‭(and‬‭resultant‬‭biases‬‭in‬
‭carbon‬‭fluxes‬‭and‬‭land‬‭carbon‬‭sink‬‭estimates).‬‭Thus,‬‭for‬‭long‬‭term‬‭projections‬‭of‬‭carbon-climate‬
‭feedbacks,‬‭all‬‭parameters‬‭that‬‭are‬‭important‬‭for‬‭carbon‬‭pool‬‭trajectories‬‭need‬‭to‬‭be‬‭included‬‭in‬
‭the‬‭assimilations.‬‭This‬‭means‬‭that‬‭longer‬‭time‬‭windows‬‭(lasting‬‭several‬‭hundreds‬‭to‬‭thousands‬
‭of‬‭years)‬‭governing‬‭the‬‭periods‬‭over‬‭which‬‭these‬‭“slower”‬‭carbon‬‭cycle‬‭parameters‬‭operate‬‭will‬
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‭need‬‭to‬‭be‬‭included‬‭in‬‭the‬‭assimilation‬‭experiments‬‭(Raiho‬‭et‬‭al.,‬‭2021;‬‭Thum‬‭et‬‭al.,‬‭2017)‬‭.‬‭This‬
‭will‬ ‭materially‬ ‭increase‬ ‭the‬ ‭computational‬ ‭cost‬ ‭of‬ ‭an‬ ‭experiment‬ ‭enough‬ ‭to‬ ‭be‬ ‭prohibitive‬ ‭for‬
‭computationally‬ ‭expensive‬ ‭LSMs‬ ‭with‬‭current‬‭simulation‬‭protocols‬‭and‬‭assimilation‬‭algorithms.‬
‭Methods‬ ‭for‬ ‭increasing‬ ‭the‬ ‭simulation‬ ‭speed‬ ‭(e.g.,‬ ‭model‬ ‭emulation‬ ‭-‬ ‭see‬ ‭Sect.‬ ‭4.2)‬ ‭will‬
‭potentially‬ ‭solve‬ ‭the‬ ‭issue‬ ‭of‬ ‭prohibitive‬ ‭computational‬ ‭cost‬ ‭for‬ ‭these‬ ‭longer-term‬ ‭assimilation‬
‭experiments.‬ ‭One‬ ‭opportunity‬ ‭for‬ ‭accelerating‬ ‭the‬ ‭spin-up‬‭is‬‭by‬‭adopting‬‭the‬‭matrix‬‭approach,‬
‭where‬‭carbon‬‭balance‬‭equations‬‭are‬‭expressed‬‭as‬‭a‬‭single‬‭matrix‬‭equation‬‭without‬‭altering‬‭any‬
‭processes‬ ‭of‬ ‭the‬ ‭original‬ ‭model,‬ ‭which‬ ‭has‬ ‭now‬ ‭been‬ ‭applied‬ ‭to‬ ‭multiple‬ ‭LSMs‬ ‭and‬ ‭used‬ ‭for‬
‭both‬ ‭parameter‬ ‭sensitivity‬ ‭analyses‬ ‭and‬ ‭data‬ ‭assimilation‬ ‭(Hararuk‬ ‭et‬ ‭al.,‬ ‭2014;‬ ‭Huang‬‭et‬‭al.,‬
‭2018;‬‭Luo‬‭et‬‭al.,‬‭2022;‬‭Tao‬‭et‬‭al.,‬‭2020,‬‭2024)‬‭.‬‭Intermediate‬‭complexity‬‭ecosystem‬‭models‬‭may‬
‭be‬ ‭able‬ ‭to‬ ‭assist‬ ‭by‬ ‭providing‬ ‭much‬‭constrained‬‭priors‬‭of‬‭soil‬‭carbon‬‭pool‬‭turnover‬‭times‬‭(and‬
‭other‬‭parameters‬‭to‬‭which‬‭equilibrium/initial‬‭carbon‬‭stock‬‭magnitude‬‭are‬‭sensitive)‬‭(Bloom‬‭et‬‭al.,‬
‭2016)‬‭.‬

‭This‬ ‭problem‬ ‭is‬ ‭specific‬ ‭to‬ ‭long-term,‬ ‭slowly‬ ‭changing‬ ‭carbon‬‭(and‬‭other‬‭nutrient‬‭like‬‭nitrogen‬
‭and‬ ‭phosphorus)‬ ‭stocks:‬ ‭e.g.,‬ ‭for‬ ‭water‬ ‭storage‬ ‭(e.g.,‬ ‭soil‬ ‭moisture),‬ ‭usually‬ ‭only‬‭a‬‭few‬‭years‬
‭are‬ ‭required‬ ‭either‬ ‭for‬ ‭spin-up‬ ‭or‬ ‭to‬ ‭adjust‬ ‭to‬ ‭a‬ ‭given‬ ‭perturbation.‬ ‭Therefore,‬ ‭for‬
‭hydrology-focused‬ ‭simulations‬‭both‬‭the‬‭spin-up‬‭and‬‭historical‬‭period‬‭spanning‬‭the‬‭perturbation‬
‭from‬‭equilibrium‬‭can‬‭be‬‭included‬‭in‬‭the‬‭experiment.‬‭In‬‭fact,‬‭by‬‭including‬‭this‬‭shorter‬‭spinup,‬‭the‬
‭assimilation‬ ‭also‬ ‭gives‬ ‭an‬ ‭estimate‬ ‭of‬ ‭the‬ ‭initial‬ ‭state‬ ‭(e.g.,‬ ‭soil‬ ‭moisture,‬ ‭Pinnington‬ ‭et‬ ‭al.,‬
‭(2021)‬‭;‬ ‭snow‬ ‭albedo,‬ ‭Raoult‬ ‭et‬ ‭al.‬ ‭(2023)‬‭).‬ ‭While‬ ‭carbon‬ ‭cycling‬ ‭is‬ ‭interlinked‬ ‭with‬‭water‬‭and‬
‭energy‬ ‭cycles,‬ ‭long-term‬ ‭carbon‬ ‭stock‬ ‭trajectories‬ ‭are‬ ‭insensitive‬ ‭to‬ ‭short-term‬ ‭fluctuations‬ ‭in‬
‭soil moisture.‬

‭In‬ ‭addition‬ ‭to‬ ‭longer‬ ‭assimilation‬ ‭time‬ ‭windows,‬ ‭assimilating‬ ‭measurements‬ ‭of‬ ‭aboveground‬
‭biomass‬‭or‬‭soil‬‭C‬‭stocks‬‭in‬‭conjunction‬‭with‬‭carbon‬‭fluxes‬‭provides‬‭a‬‭useful‬‭additional‬‭constraint‬
‭on‬ ‭carbon‬ ‭pools‬ ‭magnitude‬ ‭and‬ ‭trajectory‬ ‭(Thum‬ ‭et‬ ‭al.,‬ ‭2017)‬‭.‬ ‭However,‬ ‭data‬ ‭on‬ ‭soil‬ ‭carbon‬
‭stocks‬ ‭are‬ ‭relatively‬ ‭scarce‬ ‭compared‬ ‭to‬ ‭carbon‬ ‭fluxes,‬ ‭highly‬ ‭uncertain,‬ ‭and‬ ‭often‬ ‭difficult‬‭to‬
‭link‬ ‭to‬ ‭the‬ ‭conceptual‬ ‭carbon‬ ‭pools‬ ‭in‬ ‭many‬ ‭CENTURY-type‬ ‭models‬ ‭(Parton‬ ‭et‬ ‭al.‬ ‭(1987‬‭),‬
‭though‬ ‭this‬‭is‬‭changing,‬‭Abramoff‬‭et‬‭al.‬‭(2018)‬‭).‬‭Additionally,‬‭these‬‭datasets‬‭often‬‭contain‬‭only‬
‭one‬ ‭or‬ ‭a‬ ‭few‬ ‭time‬ ‭points.‬ ‭While‬ ‭assimilating‬‭some‬‭information‬‭on‬‭carbon‬‭stocks‬‭is‬‭better‬‭than‬
‭not‬ ‭having‬ ‭any‬ ‭data,‬ ‭constraining‬ ‭long-term‬ ‭changes‬ ‭in‬ ‭C‬ ‭stocks‬ ‭will‬ ‭require‬ ‭multiple‬
‭observations‬ ‭of‬ ‭both‬ ‭above-‬‭and‬‭belowground‬‭C‬‭stocks‬‭over‬‭time‬‭(Raiho‬‭et‬‭al.,‬‭2021)‬‭(or‬‭data‬
‭representing‬‭rates‬‭of‬‭carbon‬‭cycling)‬‭in‬‭addition‬‭to‬‭nighttime‬‭and‬‭soil‬‭respiration‬‭data‬‭that‬‭so‬‭far‬
‭have‬ ‭typically‬ ‭not‬ ‭been‬ ‭utilised‬ ‭in‬ ‭LSM‬ ‭DA‬ ‭studies.‬ ‭Just‬ ‭how‬ ‭long‬ ‭a‬ ‭time‬ ‭series‬ ‭we‬ ‭need‬ ‭to‬
‭include‬ ‭to‬ ‭accurately‬ ‭estimate‬ ‭slow‬ ‭carbon‬ ‭cycle‬ ‭parameters‬ ‭will‬ ‭likely‬ ‭depend‬ ‭upon‬ ‭which‬
‭parameters‬ ‭are‬ ‭important‬ ‭for‬ ‭estimating‬‭future‬‭carbon‬‭stock‬‭trajectories‬‭over‬‭the‬‭timescales‬‭of‬
‭interest‬ ‭and‬ ‭the‬ ‭uncertainties‬‭associated‬‭with‬‭observations.‬‭More‬‭parameter‬‭sensitivity‬‭studies‬
‭are‬‭needed‬‭to‬‭assess‬‭which‬‭slow‬‭carbon‬‭cycling‬‭parameters‬‭control‬‭carbon‬‭stock‬‭trajectories‬‭at‬
‭different‬ ‭temporal‬ ‭scales‬ ‭(Raczka‬ ‭et‬ ‭al.,‬ ‭2018)‬‭.‬ ‭Ideally,‬ ‭these‬ ‭sensitivity‬ ‭studies‬ ‭should‬ ‭be‬
‭performed‬ ‭with‬ ‭different‬ ‭scenarios‬ ‭of‬ ‭global‬ ‭change‬ ‭drivers,‬ ‭as‬ ‭changing‬ ‭inputs‬ ‭may‬‭alter‬‭the‬
‭relative‬ ‭importance‬ ‭of‬ ‭slow‬ ‭carbon‬ ‭cycling‬ ‭parameters.‬ ‭The‬ ‭community‬ ‭can‬ ‭learn‬ ‭from‬ ‭the‬
‭calibration‬ ‭and‬ ‭validation‬ ‭activities‬ ‭of‬ ‭soil‬ ‭biogeochemical‬ ‭models‬ ‭being‬ ‭approved‬ ‭for‬ ‭use‬ ‭in‬
‭voluntary carbon markets‬‭(Mathers et al., 2023)‬‭.‬
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‭3.7 Choice and implementation of minimisation algorithms‬

‭To‬ ‭perform‬ ‭optimisations‬ ‭effectively,‬ ‭careful‬ ‭consideration‬ ‭must‬ ‭be‬ ‭given‬ ‭to‬ ‭the‬ ‭choice‬ ‭of‬
‭algorithm‬ ‭and‬ ‭its‬ ‭implementation.‬ ‭As‬ ‭discussed‬ ‭in‬ ‭Sect.‬ ‭2,‬ ‭various‬ ‭algorithms‬ ‭are‬ ‭available,‬
‭each‬‭with‬‭distinct‬‭characteristics,‬‭such‬‭as‬‭local‬‭versus‬‭global‬‭optimisation,‬‭each‬‭having‬‭different‬
‭computational‬ ‭demands.‬ ‭Additionally,‬ ‭every‬ ‭algorithm‬ ‭comes‬ ‭with‬ ‭a‬ ‭variety‬ ‭of‬ ‭configurable‬
‭options.‬‭For‬‭instance,‬‭a‬‭Genetic‬‭Algorithm‬‭implementation‬‭by‬‭(Scrucca,‬‭2013)‬‭offers‬‭a‬‭range‬‭of‬
‭functions‬ ‭for‬ ‭parent‬ ‭selection‬ ‭(6‬ ‭options),‬ ‭crossover‬ ‭(5‬ ‭options),‬ ‭and‬ ‭mutation‬ ‭(3‬ ‭options),‬
‭resulting‬ ‭in‬ ‭90‬ ‭possible‬ ‭combinations.‬ ‭Users‬ ‭can‬ ‭also‬ ‭adjust‬ ‭crossover‬ ‭and‬ ‭mutation‬
‭probabilities.‬‭The‬‭success‬‭of‬‭the‬‭optimisation‬‭process‬‭greatly‬‭depends‬‭on‬‭how‬‭the‬‭optimisation‬
‭is‬ ‭implemented,‬ ‭which‬ ‭may‬ ‭vary‬ ‭on‬ ‭a‬ ‭case-by-case‬ ‭basis.‬ ‭Systematically‬ ‭testing‬ ‭all‬ ‭possible‬
‭combinations‬‭is‬‭unfeasible‬‭due‬‭to‬‭the‬‭large‬‭computational‬‭demand‬‭of‬‭an‬‭LSM.‬‭A‬‭more‬‭efficient‬
‭approach‬ ‭is‬ ‭to‬ ‭use‬ ‭an‬ ‭emulator‬ ‭(see‬ ‭Sect.‬ ‭4.1)‬ ‭rather‬ ‭than‬ ‭an‬ ‭LSM‬ ‭to‬ ‭find‬ ‭an‬ ‭optimal‬
‭experimental‬‭design‬‭(Dagon‬‭et‬‭al.,‬‭2020)‬‭;‬‭once‬‭the‬‭design‬‭has‬‭been‬‭identified,‬‭the‬‭optimisation‬
‭can be carried out using the LSM.‬

‭Furthermore,‬ ‭for‬ ‭gradient-based‬ ‭methods,‬ ‭implementing‬ ‭and‬ ‭maintaining‬ ‭the‬ ‭tangent‬‭linear‬‭or‬
‭adjoint‬‭model‬‭is‬‭a‬‭huge‬‭challenge‬‭in‬‭LSM‬‭DA.‬‭For‬‭complex‬‭LSMs,‬‭which‬‭are‬‭historically‬‭coded‬
‭in‬ ‭Fortran,‬ ‭the‬ ‭tangent‬ ‭linear‬ ‭and‬ ‭adjoint‬ ‭models‬ ‭can‬‭take‬‭years‬‭to‬‭develop,‬‭even‬‭when‬‭using‬
‭automatic‬ ‭differentiation‬ ‭software,‬ ‭since‬ ‭the‬ ‭code‬ ‭first‬ ‭needs‬ ‭to‬ ‭be‬ ‭cleaned‬ ‭and‬ ‭structural‬
‭adjustments‬ ‭need‬ ‭to‬ ‭be‬ ‭made‬ ‭to‬ ‭ensure‬ ‭the‬ ‭code‬ ‭is‬ ‭differentiable‬ ‭without‬ ‭changing‬ ‭the‬
‭fundamental‬ ‭physics.‬ ‭For‬ ‭example,‬ ‭this‬ ‭may‬ ‭require‬ ‭replacing‬ ‭look-up‬ ‭tables‬ ‭with‬ ‭their‬
‭continuous‬ ‭formulations‬ ‭and‬ ‭reformulating‬ ‭minimum‬ ‭and‬ ‭maximum‬ ‭calculations‬ ‭to‬ ‭allow‬ ‭a‬
‭smooth‬ ‭transition‬ ‭at‬ ‭the‬‭edge‬‭(Schürmann‬‭et‬‭al.,‬‭2016)‬‭.‬‭The‬‭years‬‭taken‬‭to‬‭derive‬‭the‬‭tangent‬
‭linear/adjoint‬ ‭models‬ ‭mean‬ ‭they‬ ‭quickly‬ ‭become‬ ‭outdated,‬ ‭especially‬ ‭with‬ ‭big‬ ‭community‬
‭models‬ ‭like‬‭JULES‬‭and‬‭ORCHIDEE,‬‭where‬‭new‬‭processes‬‭are‬‭added‬‭approximately‬‭every‬‭six‬
‭months.‬ ‭For‬ ‭JULES,‬ ‭the‬ ‭adjoint‬ ‭was‬ ‭developed‬ ‭for‬ ‭v2.2‬ ‭of‬ ‭the‬ ‭model‬ ‭(Raoult‬ ‭et‬ ‭al.,‬ ‭2016)‬‭,‬
‭whereas‬ ‭JULES‬ ‭is‬ ‭currently‬ ‭at‬ ‭v7.3‬ ‭at‬ ‭the‬ ‭time‬ ‭of‬ ‭writing.‬ ‭Similarly,‬ ‭while‬ ‭the‬ ‭tangent‬ ‭linear‬
‭exists‬‭for‬‭ORCHIDEE,‬‭it‬‭exists‬‭for‬‭an‬‭old‬‭version‬‭of‬‭the‬‭model‬‭(AR5)‬‭that‬‭predates‬‭the‬‭addition‬
‭of‬ ‭a‬ ‭multi-layered‬ ‭soil‬ ‭hydrology‬ ‭scheme‬ ‭and‬ ‭nitrogen‬ ‭cycle.‬ ‭To‬ ‭address‬ ‭this‬ ‭issue,‬ ‭the‬
‭ORCHIDEE‬ ‭DA‬ ‭team‬ ‭has‬ ‭been‬ ‭developing‬ ‭a‬ ‭tool‬ ‭to‬ ‭do‬ ‭the‬ ‭required‬ ‭preprocessing‬ ‭of‬ ‭any‬
‭version‬ ‭of‬ ‭ORCHIDEE‬ ‭so‬ ‭the‬ ‭tangent‬ ‭linear‬ ‭version‬ ‭of‬ ‭the‬ ‭model‬‭can‬‭be‬‭easily‬‭derived‬‭using‬
‭Transformation‬ ‭of‬ ‭Algorithms‬ ‭in‬ ‭Fortran‬ ‭(Giering,‬ ‭2010)‬‭.‬ ‭On‬ ‭the‬ ‭other‬ ‭hand,‬ ‭BETHY’s‬ ‭lower‬
‭complexity‬ ‭has‬ ‭allowed‬ ‭it‬ ‭to‬ ‭be‬ ‭kept‬ ‭compliant‬ ‭with‬ ‭automatic‬ ‭differentiation‬ ‭software‬ ‭for‬
‭decades,‬‭which‬‭provided‬‭efficient‬‭derivative‬‭code‬‭of‬‭the‬‭up-to-date‬‭version‬‭of‬‭the‬‭model.‬‭This‬‭is‬
‭also‬ ‭the‬ ‭case‬ ‭for‬ ‭its‬‭successor‬‭D&B‬‭(Knorr‬‭et‬‭al.,‬‭2024)‬‭,‬‭which‬‭is‬‭the‬‭model‬‭component‬‭of‬‭the‬
‭European‬ ‭Space‬ ‭Agency‬ ‭supported‬ ‭TCASS‬ ‭system,‬ ‭and‬ ‭for‬ ‭the‬ ‭Nanjing‬ ‭University‬ ‭Carbon‬
‭Assimilation‬ ‭System‬ ‭(NUCAS,‬ ‭Zhu‬ ‭et‬ ‭al.,‬ ‭2023)‬‭.‬ ‭Alternatively,‬ ‭models‬ ‭written‬ ‭directly‬ ‭in‬ ‭an‬
‭auto-differentiable‬ ‭language‬‭(Julia‬‭or‬‭python-JAX;‬‭see‬‭Sect.‬‭5.4)‬‭alleviate‬‭this‬‭issue‬‭(Gelbrecht‬
‭et‬ ‭al.,‬ ‭2023;‬ ‭C.‬ ‭Shen‬ ‭et‬ ‭al.,‬ ‭2023)‬‭.‬ ‭Although‬ ‭these‬ ‭languages‬ ‭have‬ ‭slower‬ ‭computational‬
‭performance‬ ‭than‬ ‭Fortran,‬ ‭these‬ ‭new‬ ‭languages‬ ‭often‬ ‭also‬ ‭facilitate‬ ‭the‬ ‭use‬ ‭of‬ ‭graphic‬
‭processing units (GPU), e.g., through packages like pyTorch‬‭(Paszke et al., 2019)‬‭.‬
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‭As‬‭discussed‬‭in‬‭Sect.‬‭2,‬‭in‬‭the‬‭absence‬‭of‬‭the‬‭tangent‬‭linear‬‭or‬‭adjoint‬‭model,‬‭one‬‭can‬‭use‬‭finite‬
‭differences.‬ ‭However,‬ ‭this‬ ‭necessitates‬ ‭the‬ ‭selection‬ ‭of‬ ‭an‬ ‭appropriate‬ ‭step‬ ‭size‬ ‭for‬‭accuracy‬
‭and‬‭convergence‬‭speed,‬‭which‬‭will‬‭differ‬‭based‬‭on‬‭the‬‭sensitivities‬‭of‬‭the‬‭parameter‬‭estimated.‬
‭Other‬ ‭methods‬ ‭to‬‭bypass‬‭the‬‭need‬‭for‬‭tangent‬‭linear‬‭and‬‭adjoint‬‭models‬‭include‬‭LAVENDAR's‬
‭ensemble‬‭4DVar‬‭approach‬‭(Pinnington‬‭et‬‭al.,‬‭2020)‬ ‭or‬‭the‬‭use‬‭of‬‭emulators,‬‭which‬‭can‬‭be‬‭used‬
‭to‬ ‭either‬ ‭avoid‬ ‭gradient-based‬ ‭approaches‬ ‭in‬ ‭favour‬ ‭of‬ ‭Monte‬ ‭Carlo‬ ‭ones,‬ ‭make‬ ‭numerical‬
‭approximations‬ ‭of‬ ‭gradients‬ ‭viable,‬ ‭or‬ ‭both‬ ‭(e.g.,‬ ‭Hamiltonian‬ ‭MCMC).‬ ‭However,‬ ‭these‬
‭algorithms‬‭also‬‭come‬‭with‬‭a‬‭number‬‭of‬‭hyperparameters‬‭that‬‭need‬‭to‬‭be‬‭selected‬‭including‬‭the‬
‭number of ensembles and convergence criteria.‬

‭4.‬ ‭Opportunities‬ ‭through‬ ‭machine‬ ‭learning‬ ‭for‬
‭parameter estimation‬
‭Despite‬ ‭the‬ ‭challenges‬‭and‬‭knowledge‬‭gaps‬‭discussed‬‭above,‬‭our‬‭community‬‭has‬‭never‬‭been‬
‭in‬‭a‬‭better‬‭position‬‭to‬‭calibrate‬‭land‬‭surface‬‭models‬‭and‬‭rigorously‬‭diagnose‬‭their‬‭uncertainties.‬
‭We‬ ‭now‬ ‭have‬ ‭access‬ ‭to‬ ‭large‬ ‭observational‬ ‭datasets‬ ‭at‬ ‭high‬ ‭spatio-temporal‬ ‭resolutions‬ ‭and‬
‭increased‬‭computational‬‭capacity‬‭and‬‭efficiency.‬‭These‬‭factors,‬‭combined‬‭with‬‭recent‬‭advances‬
‭in machine learning (ML), potentially allow us to make significant progress in model calibration.‬

‭The‬ ‭recent‬ ‭surge‬ ‭in‬ ‭ML‬ ‭has‬ ‭been‬ ‭evident‬ ‭in‬ ‭every‬ ‭aspect‬ ‭of‬ ‭society‬ ‭with‬ ‭the‬ ‭most‬ ‭relevant‬
‭examples‬‭coming‬‭from‬‭numerical‬‭weather‬‭prediction‬‭(Lam‬‭et‬‭al.,‬‭2023)‬‭or‬‭remote‬‭sensing‬‭(Lary‬
‭et‬‭al.,‬‭2016)‬‭.‬‭These‬‭examples‬‭can‬‭help‬‭us‬‭identify‬‭ways‬‭in‬‭which‬‭ML‬‭can‬‭assist‬‭with‬‭land‬‭PDA.‬
‭In‬‭this‬‭section,‬‭we‬‭specifically‬‭focus‬‭on‬‭how‬‭ML‬‭can‬‭help‬‭us‬‭address‬‭the‬‭current‬‭challenges‬‭and‬
‭limitations‬‭in‬‭land‬‭PDA‬‭outlined‬‭above,‬‭as‬‭well‬‭as‬‭areas‬‭where‬‭ML‬‭has‬‭the‬‭potential‬‭to‬‭improve‬
‭the‬‭DA‬‭workflow‬‭(Fig.‬‭1).‬‭With‬‭the‬‭large‬‭number‬‭of‬‭studies‬‭currently‬‭being‬‭published‬‭in‬‭the‬‭field‬
‭of‬‭machine‬‭learning,‬‭we‬‭only‬‭provide‬‭a‬‭short‬‭overview‬‭of‬‭the‬‭relevant‬‭literature.‬‭In‬‭the‬‭context‬‭of‬
‭ML‬ ‭for‬‭PDA,‬‭we‬‭can‬‭broadly‬‭group‬‭the‬‭existing‬‭studies‬‭and‬‭applications‬‭into‬‭four‬‭categories:‬‭i)‬
‭the‬ ‭use‬ ‭of‬ ‭ML‬ ‭to‬ ‭emulate‬ ‭the‬ ‭relationship‬ ‭between‬ ‭LSM‬ ‭parameters‬ ‭and‬ ‭its‬ ‭outputs‬ ‭or‬
‭performance‬‭(Sect.‬‭4.1),‬‭ii)‬‭the‬‭creation‬‭of‬‭‘hybrid‬‭models’‬‭in‬‭which‬‭ML‬‭replaces‬‭or‬‭complements‬
‭a‬ ‭component‬ ‭of‬ ‭a‬ ‭larger‬ ‭LSM‬ ‭(Sect.‬ ‭4.2),‬ ‭iii)‬ ‭the‬ ‭use‬ ‭of‬ ‭ML‬ ‭to‬ ‭improve‬ ‭or‬ ‭pre-process‬
‭observation‬‭datasets‬‭prior‬‭to‬‭their‬‭use‬‭in‬‭PDA‬‭(Sect.‬‭4.3),‬‭and‬‭iv)‬‭the‬‭use‬‭of‬‭ML‬‭to‬‭optimise‬‭the‬
‭parameter estimation process itself (Sect. 4.4).‬
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‭Figure 1‬‭: Examples of where ML can facilitate each part of the land surface model PDA workflow‬

‭4.1 Parameter perturbation emulators‬
‭The‬ ‭computational‬ ‭cost‬ ‭of‬ ‭high-complexity‬ ‭LSMs‬ ‭hinders‬ ‭the‬ ‭use‬‭of‬‭the‬‭more‬‭computationally‬
‭demanding‬‭PDA‬‭techniques‬‭such‬‭as‬‭MCMC.‬‭However,‬‭machine‬‭learning‬‭methods‬‭can‬‭mitigate‬
‭a‬ ‭portion‬ ‭of‬ ‭these‬ ‭computational‬ ‭burdens.‬ ‭By‬ ‭building‬ ‭a‬ ‭statistical‬ ‭relationship‬ ‭between‬ ‭input‬
‭parameter‬ ‭settings‬ ‭and‬ ‭the‬ ‭LSM‬ ‭output‬ ‭or‬ ‭an‬ ‭aggregate‬ ‭of‬ ‭the‬‭LSM‬‭output‬‭(for‬‭instance‬‭over‬
‭time‬ ‭or‬ ‭space),‬ ‭the‬ ‭LSM‬ ‭output‬ ‭can‬ ‭be‬ ‭estimated‬ ‭for‬ ‭a‬ ‭new‬ ‭set‬ ‭of‬ ‭input‬ ‭parameters.‬ ‭The‬
‭statistical‬ ‭relationship‬ ‭serves‬ ‭as‬ ‭a‬ ‭computationally‬ ‭efficient‬ ‭surrogate‬ ‭model‬‭for‬‭the‬‭expensive‬
‭LSM‬ ‭and‬ ‭is‬ ‭most‬ ‭frequently‬ ‭called‬ ‭an‬ ‭emulator‬ ‭(although‬ ‭this‬ ‭term‬ ‭is‬ ‭not‬ ‭exclusive‬ ‭to‬ ‭this‬
‭application),‬‭while‬‭surrogate,‬‭meta-model,‬‭or‬‭reduced-order‬‭model‬‭are‬‭also‬‭used‬‭to‬‭refer‬‭to‬‭this‬
‭tool.‬ ‭Indeed,‬ ‭emulators‬ ‭already‬ ‭have‬ ‭a‬ ‭rich‬ ‭history‬ ‭in‬ ‭climate‬ ‭sciences‬ ‭(Knutti‬ ‭et‬ ‭al.,‬ ‭2003;‬
‭Sanderson et al., 2008; Watson-Parris, 2021)‬‭.‬

‭Parameter Sampling Strategies‬
‭The‬ ‭training‬‭of‬‭an‬‭emulator‬‭requires‬‭an‬‭ensemble‬‭of‬‭LSM‬‭simulations‬‭with‬‭perturbations‬‭to‬‭the‬
‭input‬‭parameters‬‭often‬‭called‬‭a‬‭perturbed‬‭parameter‬‭ensemble‬‭(PPE,‬‭see‬‭McNeall‬‭et‬‭al.‬‭(2024)‬
‭and‬‭Kennedy‬‭et‬‭al.‬‭(2024)‬‭for‬‭PPEs‬‭constructed‬‭for‬‭JULES‬‭and‬‭CLM,‬‭respectively).‬‭The‬‭design‬
‭of‬ ‭the‬ ‭initial‬ ‭PPE‬ ‭depends‬ ‭on‬ ‭the‬ ‭intended‬ ‭use;‬ ‭for‬ ‭uncertainty‬ ‭quantification,‬ ‭it‬ ‭is‬ ‭often‬
‭preferable‬ ‭to‬ ‭sparsely‬ ‭sample‬ ‭the‬ ‭entire‬ ‭parameter‬ ‭space‬ ‭using‬ ‭Latin‬ ‭hypercube‬ ‭sampling‬
‭(McKay‬‭et‬‭al.,‬‭1979)‬‭.‬‭However,‬‭for‬‭calibration‬‭applications,‬‭it‬‭can‬‭be‬‭more‬‭cost‬‭effective‬‭to‬‭use‬‭a‬
‭non-random‬‭and‬‭targeted‬‭sampling‬‭strategy,‬‭such‬‭as‬‭active‬‭learning‬‭which‬‭tries‬‭to‬‭optimise‬‭the‬
‭selection‬‭of‬‭the‬‭next‬‭sample‬‭(e.g.,‬‭Zhao‬‭&‬‭Kowalski,‬‭2022)‬‭.‬‭Alternatively,‬‭an‬‭Ensemble‬‭Kalman‬
‭Filter‬ ‭approach‬ ‭(Evensen,‬ ‭2003)‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭place‬ ‭the‬ ‭initial‬ ‭design‬ ‭points‬ ‭in‬ ‭regions‬ ‭of‬
‭significant‬ ‭posterior‬ ‭mass‬ ‭to‬‭optimise‬‭the‬‭calibration‬‭process‬‭(e.g.,‬‭(Cleary‬‭et‬‭al.,‬‭2021)‬‭.‬‭When‬
‭building‬‭emulators‬‭for‬‭model‬‭calibration‬‭it‬‭can‬‭be‬‭particularly‬‭effective‬‭to‬‭treat‬‭this‬‭as‬‭an‬‭iterative‬
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‭design‬ ‭process,‬ ‭whereby‬ ‭an‬ ‭initial‬ ‭set‬ ‭of‬ ‭parameter‬ ‭vectors‬ ‭(e.g.,‬ ‭Latin‬‭hypercube)‬‭is‬‭used‬‭to‬
‭generate‬‭a‬‭rough‬‭idea‬‭of‬‭where‬‭in‬‭parameter‬‭space‬‭the‬‭optimum‬‭lies,‬‭then‬‭additional‬‭parameter‬
‭vectors‬ ‭are‬ ‭sampled‬ ‭from‬ ‭this‬ ‭region,‬ ‭refining‬ ‭the‬ ‭emulator‬ ‭in‬ ‭a‬ ‭way‬‭conceptually‬‭similar‬‭to‬‭a‬
‭nested‬‭grid‬‭in‬‭parameter‬‭space‬‭(Fer‬‭et‬‭al.,‬‭2018)‬‭.‬‭How‬‭to‬‭optimally‬‭propose‬‭points‬‭in‬‭parameter‬
‭space remains an important research question.‬

‭Emulation Methods‬
‭There‬ ‭are‬ ‭many‬ ‭ML‬ ‭methods‬ ‭appropriate‬ ‭for‬ ‭emulating‬ ‭the‬ ‭LSM‬ ‭response‬ ‭to‬ ‭parameter‬
‭modifications.‬‭When‬‭it‬‭comes‬‭to‬‭the‬‭calibration‬‭problem‬‭specifically,‬‭an‬‭alternative‬‭to‬‭emulating‬
‭the‬‭LSM‬‭output‬‭is‬‭to‬‭directly‬‭emulate‬‭the‬‭cost‬‭function‬‭itself‬‭(i.e.,‬‭the‬‭response‬‭surface‬‭of‬‭model‬
‭error‬ ‭as‬ ‭a‬ ‭function‬ ‭of‬ ‭parameter‬ ‭value)‬ ‭which‬ ‭is‬ ‭much‬ ‭lower‬ ‭dimensional‬ ‭and‬ ‭often‬ ‭much‬
‭smoother‬ ‭that‬ ‭the‬‭model‬‭output‬‭itself‬‭(Cheng‬‭et‬‭al.,‬‭2023,‬‭2024;‬‭Dagon‬‭et‬‭al.,‬‭2020;‬‭Fer‬‭et‬‭al.,‬
‭2018; Fer, Shiklomanov, et al., 2021)‬‭.‬

‭Gaussian‬ ‭processes‬ ‭are‬ ‭commonly‬ ‭applied‬ ‭as‬ ‭they‬ ‭are‬ ‭well-suited‬ ‭to‬ ‭interpolate‬ ‭non-linear‬
‭surfaces‬‭in‬‭data-scarce‬‭settings‬‭and‬‭moreover‬‭provide‬‭a‬‭measure‬‭of‬‭prediction‬‭uncertainty‬‭that‬
‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭quantify‬ ‭the‬ ‭emulator‬ ‭uncertainty.‬ ‭However,‬ ‭since‬ ‭the‬ ‭computational‬ ‭cost‬ ‭of‬
‭Gaussian‬ ‭processes‬ ‭dramatically‬ ‭increases‬ ‭with‬ ‭the‬‭size‬‭of‬‭the‬‭dataset,‬‭they‬‭are‬‭less‬‭feasible‬
‭for‬ ‭larger‬ ‭datasets.‬ ‭One‬ ‭option‬‭is‬‭to‬‭develop‬‭sparse‬‭Gaussian‬‭processes,‬‭as‬‭demonstrated‬‭by‬
‭Baker‬‭et‬‭al.‬‭(2022)‬‭.‬‭Running‬‭JULES‬‭at‬‭a‬‭1km‬‭resolution‬‭over‬‭Great‬‭Britain,‬‭they‬‭exploit‬‭the‬‭fact‬
‭that‬ ‭LSMs‬ ‭typically‬ ‭do‬ ‭not‬ ‭exchange‬ ‭information‬ ‭laterally‬ ‭between‬ ‭grid‬ ‭cells‬ ‭(river‬ ‭routing‬ ‭is‬
‭generally‬‭done‬‭as‬‭a‬‭separate‬‭step)‬‭to‬‭select‬‭a‬‭subset‬‭of‬‭coordinates‬‭representative‬‭of‬‭different‬
‭parameter settings and forcing data regimes.‬

‭Another‬ ‭popular‬ ‭method‬ ‭for‬ ‭emulating‬ ‭LSMs‬ ‭are‬ ‭neural‬ ‭networks‬ ‭(NNs),‬ ‭as‬ ‭they‬ ‭are‬
‭straightforward‬ ‭and‬ ‭fast‬ ‭to‬ ‭implement‬ ‭(Hatfield‬ ‭et‬ ‭al.,‬ ‭2021)‬‭,‬ ‭with‬ ‭fast‬ ‭evaluation‬ ‭speeds‬ ‭and‬
‭good‬‭predictive‬‭skill‬‭within‬‭the‬‭bounds‬‭of‬‭the‬‭training‬‭data.‬‭However,‬‭NNs‬‭are‬‭sensitive‬‭to‬‭biases‬
‭in‬ ‭the‬ ‭selection‬ ‭of‬ ‭the‬ ‭training‬ ‭data‬ ‭as‬ ‭well‬ ‭as‬ ‭the‬ ‭tuning‬ ‭of‬ ‭the‬ ‭algorithm‬ ‭hyperparameters,‬
‭which‬‭means‬‭that‬‭they‬‭generally‬‭cannot‬‭extrapolate‬‭to‬‭scenarios‬‭beyond‬‭the‬‭training‬‭data‬‭or‬‭be‬
‭transferred‬‭to‬‭new‬‭datasets‬‭without‬‭performance‬‭degradation‬‭(Shwartz-Ziv‬‭&‬‭Armon,‬‭2022)‬‭.‬‭(D.‬
‭Lu‬‭&‬‭Ricciuto,‬‭2019)‬‭used‬‭singular‬‭value‬‭decomposition‬‭with‬‭Bayesian‬‭optimisation‬‭to‬‭create‬‭a‬
‭reduced‬ ‭number‬ ‭of‬ ‭surrogate‬ ‭models‬ ‭for‬ ‭carbon‬ ‭modelling‬ ‭parameter‬ ‭perturbation.‬ ‭Their‬
‭approach‬ ‭showed‬ ‭minimal‬ ‭accuracy‬ ‭loss,‬ ‭making‬ ‭it‬ ‭effective‬ ‭for‬ ‭extensive‬ ‭parameter‬ ‭space‬
‭exploration‬ ‭and‬ ‭uncertainty‬ ‭quantification.‬ ‭Other‬ ‭examples‬ ‭of‬ ‭NNs‬ ‭used‬ ‭to‬ ‭emulate‬ ‭LSMs‬
‭include,‬ ‭Dagon‬ ‭et‬ ‭al.‬ ‭(2020)‬‭,‬ ‭where‬ ‭a‬ ‭series‬ ‭of‬ ‭artificial‬ ‭feed-forward‬ ‭NNs‬ ‭were‬ ‭trained‬ ‭to‬
‭emulate‬ ‭CLM5‬ ‭output‬ ‭given‬ ‭important‬ ‭biophysical‬ ‭parameter‬ ‭values‬ ‭and‬ ‭Meyer‬ ‭et‬ ‭al.‬ ‭(2022)‬‭,‬
‭where‬‭an‬‭NN‬‭was‬‭trained‬‭to‬‭emulate‬‭the‬‭ensemble‬‭mean‬‭of‬‭several‬‭urban‬‭LSMs‬ ‭combining‬‭the‬
‭strengths‬ ‭of‬ ‭the‬ ‭different‬ ‭into‬‭one‬‭ML‬‭model.‬‭While‬‭artificial‬‭NNs‬‭do‬‭not‬‭provide‬‭a‬‭probabilistic‬
‭prediction,‬‭new‬‭methods‬‭are‬‭emerging‬‭such‬‭as‬‭neural‬‭processes‬‭(e.g.,‬‭(Garnelo‬‭et‬‭al.,‬‭2018)‬‭or‬
‭randomised‬ ‭prior‬ ‭networks‬ ‭(Bhouri‬ ‭et‬ ‭al.,‬ ‭2023)‬‭.‬ ‭Regression‬ ‭trees‬ ‭can‬ ‭also‬ ‭be‬ ‭extended‬ ‭to‬
‭include‬‭probabilistic‬‭prediction‬‭such‬‭as‬‭with‬‭NGBoost‬‭(‬‭Duan‬‭et‬‭al.,‬‭2020)‬‭or‬‭XGBoost‬‭(Donnerer,‬
‭2024),‬‭as‬‭used‬‭for‬‭example‬‭to‬‭emulate‬‭ELM-FATES‬‭(Li‬‭et‬‭al.,‬‭2023)‬‭.‬‭XGBoost‬‭has‬‭been‬‭shown‬
‭to‬‭generally‬‭outperform‬‭NNs‬‭while‬‭requiring‬‭little‬‭parameter‬‭tuning‬‭and‬‭is‬‭able‬‭to‬‭achieve‬‭robust‬
‭performance‬ ‭even‬ ‭when‬ ‭extrapolating‬ ‭to‬ ‭scenarios‬ ‭beyond‬ ‭the‬‭training‬‭data‬‭(Grinsztajn‬‭et‬‭al.,‬
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‭2022;‬ ‭Shwartz-Ziv‬ ‭&‬ ‭Armon,‬ ‭2022)‬‭.‬ ‭A‬ ‭disadvantage‬ ‭of‬ ‭tree-based‬ ‭methods‬ ‭is‬ ‭their‬ ‭slower‬
‭evaluation‬‭speeds‬‭and‬‭the‬‭fact‬‭that‬‭they‬‭are‬‭not‬‭differentiable,‬‭which‬‭can‬‭limit‬‭their‬‭usability‬‭for‬
‭certain‬ ‭applications‬ ‭(e.g.,‬‭coupled‬‭DA,‬‭Hatfield‬‭et‬‭al.,‬‭2021)‬‭.‬‭Long-Short‬‭Term‬‭Memory‬‭(LSTM)‬
‭methods,‬ ‭which‬ ‭for‬ ‭example‬ ‭have‬ ‭been‬ ‭applied‬ ‭to‬ ‭ECLand‬ ‭(Boussetta‬ ‭et‬ ‭al.,‬ ‭2021)‬‭,‬ ‭include‬
‭memory‬ ‭mechanisms‬ ‭by‬ ‭leveraging‬ ‭long-term‬ ‭dependencies‬ ‭in‬ ‭the‬ ‭training‬ ‭data‬ ‭time‬ ‭series,‬
‭allowing‬ ‭them‬ ‭to‬ ‭effectively‬ ‭emulate‬ ‭model‬ ‭processes‬ ‭across‬ ‭different‬ ‭time‬ ‭scales‬ ‭without‬
‭performance‬‭loss‬‭at‬‭longer‬‭lead‬‭times‬‭(as‬‭is‬‭the‬‭case‬‭for‬‭XGBoost‬‭for‬‭example,‬‭(Wesselkamp‬‭et‬
‭al.,‬ ‭2024)‬‭.‬ ‭This‬ ‭makes‬ ‭them‬ ‭particularly‬ ‭suited‬ ‭for‬ ‭the‬ ‭emulation‬ ‭of‬ ‭large-scale‬ ‭forecasting‬
‭systems‬ ‭that‬ ‭encompass‬ ‭physical‬ ‭processes‬ ‭acting‬ ‭at‬ ‭different‬ ‭time‬ ‭scales‬ ‭(e.g.,‬ ‭Datta‬ ‭&‬
‭Faroughi, 2023; Guo et al., 2021; Wesselkamp et al., 2024)‬‭.‬

‭Computational Cost Reduction‬
‭Once‬ ‭an‬ ‭emulator‬‭is‬‭trained‬‭it‬‭becomes‬‭computationally‬‭feasible‬‭to‬‭apply‬‭PDA‬‭techniques‬‭that‬
‭require‬‭a‬‭large‬‭number‬‭of‬‭samples‬‭from‬‭a‬‭prior‬‭parameter‬‭distribution,‬‭e.g.,‬‭MCMC.‬ ‭Fer‬‭et‬‭al.,‬
‭(2018)‬‭showed‬‭how‬‭emulators‬‭sped‬‭up‬‭an‬‭MCMC‬‭optimisation‬‭for‬‭the‬‭relatively‬‭simple‬‭SIPNET‬
‭model‬ ‭by‬ ‭over‬ ‭two‬ ‭orders‬ ‭of‬ ‭magnitude‬ ‭(>100x).‬ ‭Further‬ ‭applying‬ ‭their‬ ‭method‬ ‭to‬ ‭the‬ ‭more‬
‭complex‬‭Ecosystem‬‭Demography‬‭model‬‭v2‬‭(ED2),‬‭whose‬‭complexity‬‭precluded‬‭it‬‭from‬‭a‬‭direct‬
‭application‬ ‭of‬ ‭the‬ ‭MCMC‬ ‭methodology‬ ‭for‬‭parameter‬‭tuning,‬‭they‬‭found‬‭that‬‭emulators‬‭helped‬
‭achieve‬‭a‬‭>20,000x‬‭increase‬‭in‬‭speed‬‭(27‬‭hr‬‭versus‬‭a‬‭predicted‬‭74‬‭years‬‭by‬‭traditional‬‭MCMC).‬
‭Similarly,‬ ‭Sawada‬ ‭(2020)‬ ‭and‬ ‭Cleary‬ ‭et‬ ‭al.‬ ‭(2021)‬ ‭both‬ ‭used‬ ‭emulators‬ ‭to‬ ‭perform‬ ‭Bayesian‬
‭inversion‬ ‭using‬ ‭the‬ ‭otherwise‬ ‭costly‬ ‭MCMC‬ ‭approach‬ ‭to‬ ‭sample‬ ‭the‬ ‭approximate‬ ‭posterior‬
‭parameter‬ ‭distribution‬ ‭after‬‭calibration.‬‭Torres-Rojas‬‭et‬‭al.‬‭(2022)‬‭combine‬‭surrogate‬‭modelling‬
‭with‬‭a‬‭multi-objective‬‭Pareto‬‭efficiency‬‭analysis‬‭to‬‭infer‬‭LSM's‬‭optimal‬‭subgrid‬‭parameters‬‭at‬‭1%‬
‭of‬ ‭the‬ ‭computational‬ ‭cost.‬ ‭The‬ ‭emulators‬ ‭were‬ ‭trained‬ ‭on‬ ‭forward‬ ‭model‬‭runs‬‭used‬‭to‬‭initially‬
‭calibrate‬ ‭the‬ ‭model‬ ‭using‬ ‭Ensemble‬ ‭Kalman‬ ‭sampling‬‭-‬‭a‬‭derivative-free‬‭optimisation‬‭method.‬
‭Coining‬‭the‬‭method‬‭“Calibrate,‬‭emulate,‬‭sample”,‬‭Cleary‬‭et‬‭al.‬‭(2021)‬‭showed‬‭how‬‭the‬‭method‬
‭could‬ ‭be‬ ‭successfully‬ ‭applied‬ ‭to‬ ‭models‬ ‭of‬ ‭different‬ ‭complexity,‬ ‭while‬ ‭other‬ ‭groups‬ ‭have‬ ‭also‬
‭demonstrated‬‭the‬‭suitability‬‭of‬‭ensemble‬‭approaches‬‭for‬‭parameter‬‭selection‬‭(e.g.,‬‭Couvreux‬‭et‬
‭al., 2021)‬‭.‬

‭History Matching‬
‭Emulators‬ ‭are‬ ‭commonly‬ ‭used‬ ‭in‬ ‭the‬ ‭field‬ ‭of‬ ‭uncertainty‬ ‭quantification,‬ ‭and‬ ‭one‬ ‭key‬ ‭method‬
‭from‬‭this‬‭field‬‭that‬‭is‬‭gaining‬‭traction‬‭in‬‭land‬‭surface‬‭modelling‬‭is‬‭the‬‭so-called‬‭history‬‭matching‬
‭(HM)‬‭method‬‭(Hourdin‬‭et‬‭al.,‬‭2023)‬‭.‬‭This‬‭method‬‭is‬‭not‬‭about‬‭finding‬‭the‬‭most‬‭likely‬‭parameter‬
‭values,‬ ‭but‬ ‭rather‬ ‭ruling‬ ‭out‬‭implausible‬‭ones‬‭based‬‭on‬‭some‬‭given‬‭metrics‬‭(Williamson‬‭et‬‭al.,‬
‭2013)‬‭.‬ ‭Using‬ ‭emulators‬ ‭to‬ ‭facilitate‬ ‭computation,‬ ‭HM‬ ‭is‬ ‭commonly‬ ‭applied‬ ‭using‬ ‭successive‬
‭iterations‬ ‭(also‬ ‭known‬ ‭as‬ ‭iterative‬ ‭refocusing)‬ ‭to‬ ‭reduce‬ ‭parameter‬ ‭space‬‭and‬‭retain‬‭the‬‭least‬
‭implausible‬‭parameters.‬‭Like‬‭the‬‭cost‬‭function‬‭used‬‭in‬‭variational‬‭DA,‬‭the‬‭implausibility‬‭takes‬‭the‬
‭observation‬ ‭and‬ ‭model‬ ‭structure‬ ‭errors‬ ‭into‬ ‭account.‬ ‭While‬ ‭these‬ ‭errors‬ ‭are‬ ‭still‬ ‭hard‬ ‭to‬
‭determine‬‭(Peatier‬‭et‬‭al.,‬‭2023)‬‭,‬‭it‬‭is‬‭arguably‬‭less‬‭dangerous‬‭to‬‭get‬‭them‬‭wrong‬‭here‬‭than‬‭in‬‭the‬
‭DA‬‭case‬‭-‬‭if‬‭the‬‭errors‬‭are‬‭overestimated,‬‭HM‬‭gives‬‭a‬‭clear‬‭diagnostic‬‭of‬‭this‬‭being‬‭the‬‭case,‬‭for‬
‭example,‬‭by‬‭ruling‬‭out‬‭little‬‭to‬‭no‬‭parameter‬‭space.‬‭If‬‭the‬‭errors‬‭are‬‭underestimated,‬‭HM‬‭will‬‭rule‬
‭everything‬ ‭out,‬ ‭suggesting‬ ‭the‬ ‭errors‬ ‭have‬ ‭been‬ ‭misspecified,‬ ‭whereas,‬ ‭in‬ ‭other‬ ‭optimisation‬
‭approaches,‬‭we‬‭would‬‭still‬‭get‬‭a‬‭solution‬‭even‬‭if‬‭one‬‭does‬‭not‬‭exist.‬‭HM‬‭also‬‭allows‬‭the‬‭user‬‭to‬
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‭test‬ ‭many‬ ‭different‬ ‭metrics‬ ‭to‬ ‭see‬ ‭if‬ ‭parameters‬ ‭can‬ ‭capture‬ ‭specific‬ ‭features,‬ ‭similar‬ ‭to‬
‭multi-objective‬ ‭optimisations,‬ ‭giving‬ ‭a‬ ‭clear‬ ‭diagnosis‬ ‭of‬ ‭model‬ ‭structure‬ ‭error.‬ ‭HM‬ ‭has‬
‭successfully‬ ‭been‬ ‭tested‬ ‭with‬ ‭some‬ ‭of‬ ‭the‬ ‭major‬ ‭high-complexity‬ ‭LSMs:‬ ‭CLM‬ ‭(Dagon‬ ‭et‬ ‭al.,‬
‭2020)‬‭,‬‭JULES‬‭(Baker‬‭et‬‭al.,‬‭2022;‬‭McNeall‬‭et‬‭al.,‬‭2024)‬‭,‬‭and‬‭ORCHIDEE‬‭(Raoult,‬‭Beylat,‬‭et‬‭al.,‬
‭2024)‬‭,‬ ‭for‬ ‭example.‬ ‭These‬ ‭studies‬ ‭highlight‬ ‭how‬ ‭HM‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭identify‬ ‭sensitive‬
‭parameters,‬ ‭redefine‬ ‭ranges‬ ‭of‬ ‭variation‬ ‭and‬ ‭identify‬ ‭non-Gaussian‬ ‭relationships‬ ‭between‬
‭parameters.‬‭This‬‭information‬‭could‬‭potentially‬‭be‬‭used‬‭to‬‭determine‬‭the‬‭prior‬‭error‬‭covariances‬
‭(i.e.,‬ ‭to‬ ‭set‬ ‭up‬ ‭the‬ ‭background‬ ‭error‬ ‭covariance‬‭matrix‬‭in‬‭variational‬‭DA)‬‭or‬‭provide‬‭ecological‬
‭constraints to an optimisation.‬

‭4.2 Hybrid modelling‬
‭ML‬ ‭can‬ ‭also‬ ‭be‬ ‭used‬ ‭in‬‭a‬‭hybrid‬‭modelling‬‭approach‬‭to‬‭substitute‬‭components‬‭of‬‭the‬‭physical‬
‭model‬‭with‬‭an‬‭ML‬‭approximation‬‭(Eyring‬‭et‬‭al.,‬‭2024)‬‭.‬‭The‬‭appeal‬‭of‬‭the‬‭hybrid‬‭approach‬‭is‬‭that‬
‭it‬‭can‬‭address‬‭known‬‭model‬‭inadequacies‬‭and‬‭computational‬‭bottlenecks‬‭in‬‭a‬‭targeted‬‭manner‬
‭while‬ ‭retaining‬ ‭the‬‭use‬‭of‬‭physical‬‭process‬‭knowledge‬‭and‬‭constraints‬‭where‬‭they‬‭are‬‭reliable.‬
‭For‬ ‭example,‬ ‭the‬ ‭hybrid‬ ‭approach‬ ‭can‬ ‭mitigate‬ ‭model‬ ‭structural‬ ‭errors,‬ ‭by‬ ‭replacing‬ ‭model‬
‭processes‬ ‭that‬ ‭are‬ ‭missing‬ ‭or‬ ‭poorly‬ ‭understood‬ ‭with‬ ‭data-driven‬ ‭substitutes,‬ ‭assuming‬
‭adequate‬ ‭data‬ ‭exists‬ ‭(Arsenault‬ ‭et‬ ‭al.,‬ ‭2018;‬ ‭Reichstein‬ ‭et‬ ‭al.,‬ ‭2019)‬‭.‬ ‭At‬ ‭the‬ ‭same‬ ‭time,‬ ‭the‬
‭hybrid‬ ‭approach‬ ‭can‬ ‭add‬ ‭physical‬ ‭constraints‬ ‭to‬ ‭the‬ ‭ML‬ ‭model‬ ‭components,‬‭thus‬‭maintaining‬
‭physical‬‭consistency‬‭and‬‭interpretability‬‭(e.g.,‬‭Beucler‬‭et‬‭al.,‬‭2021;‬‭Kraft‬‭et‬‭al.,‬‭2022;‬‭Reichstein‬
‭et‬‭al.,‬‭2019)‬‭.‬‭ML‬‭and‬‭process‬‭models‬‭can‬‭be‬‭combined‬‭in‬‭a‬‭number‬‭of‬‭different‬‭ways,‬‭including‬
‭i)‬ ‭substituting‬ ‭a‬ ‭specific‬ ‭model‬ ‭parameterisation‬ ‭with‬ ‭an‬ ‭ML‬ ‭approximation,‬ ‭ii)‬‭deriving‬‭spatial‬
‭parameterisations‬ ‭that‬ ‭better‬ ‭capture‬ ‭observed‬ ‭physical‬ ‭behaviour,‬ ‭iii)‬ ‭training‬ ‭on‬ ‭model-data‬
‭residuals‬ ‭to‬ ‭predict‬ ‭process-model‬ ‭biases‬ ‭and‬ ‭characterise‬ ‭structural‬ ‭errors,‬ ‭and‬ ‭iv)‬ ‭replace‬
‭computationally‬‭costly‬‭parts‬‭of‬‭the‬‭model.‬ ‭Hybrid‬‭modelling‬‭has‬‭been‬‭implemented‬‭successfully‬
‭in‬‭a‬‭number‬‭of‬‭LSM‬‭applications,‬‭including‬‭for‬‭streamflow‬‭(Yang‬‭et‬‭al.,‬‭2019)‬‭,‬‭evapotranspiration‬
‭(W.‬‭L.‬‭Zhao‬‭et‬‭al.,‬‭2019)‬‭,‬‭subsurface‬‭flow‬‭(N.‬‭Wang‬‭et‬‭al.,‬‭2020)‬‭,‬‭rainfall-runoff‬‭modelling‬‭(Xie‬‭et‬
‭al.,‬‭2021)‬‭,‬‭as‬‭well‬‭as‬‭more‬‭generally‬‭for‬‭the‬‭prediction‬‭of‬‭sea‬‭surface‬‭temperatures‬‭(de‬‭Bézenac‬
‭et‬ ‭al.,‬ ‭2019)‬‭,‬ ‭atmospheric‬ ‭convection‬ ‭(Gentine‬ ‭et‬ ‭al.,‬ ‭2018)‬‭,‬ ‭and‬ ‭high‬ ‭impact‬ ‭weather‬ ‭events‬
‭(McGovern‬ ‭et‬ ‭al.,‬ ‭2017)‬‭.‬ ‭As‬ ‭with‬ ‭all‬ ‭parameter‬ ‭estimation‬ ‭methods,‬ ‭hybrid‬ ‭modelling‬‭can‬‭be‬
‭subject‬‭to‬‭parameters‬‭compensating‬‭for‬‭model‬‭structural‬‭errors‬‭or‬‭errors‬‭in‬‭parameters‬‭outside‬
‭the‬‭calibration‬‭set‬‭(see‬‭also‬‭Sect.‬‭4.2).‬‭This‬‭can‬‭be‬‭counteracted‬‭through‬‭the‬‭use‬‭of‬‭multivariate‬
‭independent observation constraints in the calibration.‬

‭Substitution of Uncertain or Missing Parameterisations and Processes‬
‭In‬ ‭the‬ ‭context‬ ‭of‬ ‭land‬ ‭DA,‬ ‭hybrid‬ ‭modelling‬ ‭has‬ ‭been‬ ‭used‬ ‭to‬ ‭improve‬ ‭the‬ ‭representation‬ ‭of‬
‭complex‬‭processes,‬‭such‬‭as‬‭the‬‭representation‬‭of‬‭human‬‭processes‬‭and‬‭their‬‭impact,‬‭which‬‭are‬
‭often‬ ‭not‬ ‭represented‬ ‭in‬ ‭their‬ ‭full‬ ‭complexity‬ ‭or‬ ‭missing‬ ‭completely‬ ‭in‬ ‭traditional‬ ‭LSMs.‬ ‭ML‬
‭approaches‬‭trained‬‭in‬‭an‬‭aggregate‬‭manner‬‭(e.g.,‬‭one‬‭NN‬‭trained‬‭on‬‭all‬‭locations)‬‭and‬‭using‬‭a‬
‭combination‬ ‭of‬ ‭observations‬ ‭and‬ ‭process-model‬ ‭outputs‬ ‭can‬ ‭effectively‬ ‭account‬ ‭for‬ ‭human‬
‭processes‬ ‭by‬ ‭mapping‬ ‭observations‬ ‭into‬ ‭the‬‭model‬‭climatology‬‭(thus‬‭removing‬‭global‬‭biases).‬
‭At‬ ‭the‬ ‭same‬ ‭time,‬ ‭they‬ ‭can‬ ‭retain‬ ‭the‬ ‭independent‬ ‭information‬ ‭on‬ ‭human‬ ‭processes‬ ‭that‬ ‭is‬
‭inherent‬‭in‬‭the‬‭observations‬‭but‬‭typically‬‭removed‬‭in‬‭traditional‬‭bias‬‭correction‬‭approaches‬‭(e.g.,‬
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‭Kumar‬‭et‬‭al.,‬‭2012)‬‭.‬‭Kolassa‬‭et‬‭al.‬‭(2017)‬‭used‬‭an‬‭artificial‬‭NN‬‭observation‬‭operator‬‭trained‬‭on‬
‭brightness‬‭temperature‬‭observations‬‭from‬‭the‬‭Soil‬‭Moisture‬‭Active‬‭Passive‬‭(SMAP)‬‭mission‬‭and‬
‭GEOS‬ ‭land‬ ‭model‬ ‭outputs‬‭to‬‭assimilate‬‭soil‬‭moisture‬‭information,‬‭which‬‭introduced‬‭the‬‭impact‬
‭of‬ ‭irrigation‬ ‭and‬ ‭tile‬ ‭drainage‬ ‭in‬ ‭a‬ ‭model‬ ‭that‬ ‭does‬ ‭not‬ ‭normally‬ ‭represent‬ ‭these‬ ‭processes.‬
‭Assem‬ ‭et‬ ‭al.‬ ‭(2017)‬ ‭developed‬ ‭a‬ ‭Deep‬ ‭Convolutional‬ ‭NN,‬ ‭trained‬ ‭on‬ ‭historic‬ ‭water‬ ‭flow‬ ‭and‬
‭water‬ ‭level‬ ‭observations,‬ ‭to‬ ‭predict‬ ‭water‬‭flow‬‭in‬‭urban‬‭areas‬‭from‬‭runoff‬‭estimates‬‭generated‬
‭by‬ ‭a‬ ‭physical‬ ‭LSM.‬ ‭Hybrid‬ ‭modelling‬ ‭can‬ ‭also‬ ‭be‬ ‭used‬ ‭in‬ ‭cases‬ ‭when‬‭the‬‭naturally‬‭occurring‬
‭physical‬ ‭processes‬ ‭are‬ ‭poorly‬ ‭understood.‬ ‭For‬ ‭example,‬ ‭Arsenault‬‭et‬‭al.‬‭(2018)‬‭used‬‭an‬‭ANN‬
‭with‬ ‭a‬ ‭combination‬ ‭of‬ ‭remote‬ ‭sensing‬ ‭observations‬ ‭and‬ ‭model‬ ‭predicted‬ ‭states‬ ‭to‬ ‭generate‬
‭improved estimates of snow depth within the Land Information System.‬

‭Improved Spatial Parameterisations‬
‭Hybrid‬ ‭modelling‬ ‭techniques‬ ‭have‬ ‭also‬ ‭been‬ ‭used‬ ‭successfully‬ ‭to‬ ‭generate‬ ‭model‬
‭parameterisations‬ ‭that‬ ‭better‬ ‭capture‬ ‭the‬ ‭parameter‬ ‭spatial‬ ‭distribution‬‭and‬‭thus‬‭the‬‭observed‬
‭physical‬‭behaviour‬‭(Tao‬‭et‬‭al.,‬‭2020,‬‭2024)‬‭.‬‭Process-model‬‭parameterisations‬‭can‬‭be‬‭limited‬‭by‬
‭observation‬ ‭sparsity,‬ ‭which‬ ‭can‬ ‭lead‬ ‭to‬ ‭ad‬ ‭hoc‬ ‭decisions‬ ‭when‬ ‭assigning‬ ‭parameter‬ ‭values‬
‭globally.‬ ‭Similarly,‬ ‭many‬ ‭global‬ ‭LSMs‬ ‭significantly‬ ‭simplify‬ ‭biogeochemical‬ ‭and‬ ‭physical‬
‭mechanisms‬‭into‬‭empirical‬‭parametric‬‭functions.‬‭Hybrid‬‭modelling‬‭can‬‭address‬‭these‬‭issues‬‭by‬
‭mapping‬ ‭environmental‬ ‭variables‬ ‭into‬ ‭model‬ ‭parameters‬ ‭or‬ ‭using‬ ‭high-resolution,‬ ‭high-fidelity‬
‭model‬ ‭simulations‬ ‭to‬‭derive‬‭new‬‭parameterisations‬‭for‬‭coarse-resolution‬‭models‬‭(e.g.,‬‭Gentine‬
‭et‬‭al.,‬‭2018)‬‭.‬‭Bao‬‭et‬‭al.‬‭(2023)‬‭replaced‬‭the‬‭traditional‬‭PFT-based‬‭parameterisation‬‭of‬‭a‬‭light‬‭use‬
‭efficiency‬‭model‬‭with‬‭an‬‭ecosystem-property-based‬‭parameterisation‬‭derived‬‭from‬‭a‬‭multi-layer‬
‭perceptron‬‭NN‬‭to‬‭better‬‭capture‬‭the‬‭spatial‬‭variability‬‭of‬‭GPP‬‭within‬‭PFTs.‬‭Several‬‭studies‬‭have‬
‭used‬‭a‬‭hybrid‬‭ML‬‭approach‬‭to‬‭improve‬‭the‬‭representation‬‭of‬‭evapotranspiration‬‭in‬‭LSMs,‬‭either‬
‭by‬ ‭directly‬ ‭estimating‬ ‭evapotranspiration‬ ‭(Zhao‬ ‭et‬ ‭al.,‬ ‭2019)‬ ‭from‬ ‭observations‬ ‭or‬ ‭by‬ ‭inferring‬
‭related‬‭prognostic‬‭variables,‬‭such‬‭as‬‭the‬‭stomatal‬‭and‬‭aerodynamic‬‭resistances‬‭(ElGhawi‬‭et‬‭al.,‬
‭2023)‬‭,‬ ‭or‬ ‭transpiration‬‭stress‬‭(Koppa‬‭et‬‭al.,‬‭2022)‬‭.‬‭In‬‭each‬‭case,‬‭the‬‭hybrid‬‭model‬‭was‬‭able‬‭to‬
‭learn unknown latent processes and thus outperform traditional physics-based schemes.‬

‭Model Error Identification/Characterisation‬
‭Additionally,‬‭hybrid‬‭modelling‬‭implementations‬‭can‬‭serve‬‭as‬‭effective‬‭diagnostic‬‭tools‬‭to‬‭identify‬
‭model‬ ‭errors.‬ ‭For‬ ‭an‬ ‭independently‬ ‭evaluated‬ ‭ML‬ ‭approximation,‬ ‭systematic‬ ‭differences‬
‭between‬ ‭predictions‬ ‭from‬ ‭a‬ ‭physical‬ ‭model‬ ‭component‬ ‭and‬ ‭its‬ ‭ML‬ ‭counterpart‬ ‭can‬ ‭provide‬
‭insights‬ ‭into‬ ‭missing‬ ‭or‬ ‭flawed‬ ‭model‬ ‭process‬ ‭representations‬ ‭as‬ ‭well‬ ‭as‬ ‭identify‬ ‭inadequate‬
‭model‬ ‭parameters‬ ‭(e.g.,‬ ‭McGovern‬ ‭et‬ ‭al.,‬ ‭2017)‬‭,‬ ‭especially‬ ‭when‬ ‭the‬ ‭ML‬ ‭model‬ ‭is‬ ‭not‬ ‭only‬
‭trained‬ ‭to‬ ‭represent‬ ‭the‬‭model‬‭outputs‬‭but‬‭uses‬‭other‬‭observational‬‭constraints‬‭in‬‭the‬‭learning‬
‭phase.‬ ‭For‬ ‭example,‬ ‭Finn‬ ‭et‬ ‭al.‬ ‭(2023)‬ ‭and‬ ‭Gregory‬ ‭et‬ ‭al.‬ ‭(2023)‬ ‭used‬ ‭an‬ ‭ML‬ ‭trained‬ ‭on‬
‭model-data‬ ‭residuals‬ ‭to‬ ‭predict‬ ‭model‬‭biases‬‭and‬‭characterise‬‭structural‬‭errors,‬‭while‬‭Gregory‬
‭et‬ ‭al.‬ ‭(2024)‬ ‭extended‬ ‭this‬ ‭approach‬ ‭to‬ ‭implement‬ ‭an‬ ‭online‬ ‭bias‬ ‭correction‬ ‭within‬ ‭a‬ ‭DA‬
‭framework.‬ ‭Similarly,‬ ‭Farchi‬ ‭et‬ ‭al.‬ ‭(2021,‬ ‭2023)‬ ‭integrated‬ ‭a‬ ‭deep-learning‬ ‭step‬ ‭into‬ ‭a‬ ‭DA‬
‭framework‬ ‭to‬ ‭create‬ ‭a‬‭hybrid‬‭model‬‭that‬‭dynamically‬‭learns‬‭and‬‭corrects‬‭model‬‭errors‬‭at‬‭each‬
‭DA time step.‬
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‭Computational Cost Reduction‬
‭Finally,‬ ‭hybrid‬ ‭modelling‬‭can‬‭be‬‭used‬‭to‬‭replace‬‭computationally‬‭costly‬‭parts‬‭of‬‭the‬‭model.‬‭For‬
‭example,‬ ‭emulating‬ ‭the‬ ‭spinup,‬ ‭which‬ ‭can‬ ‭account‬ ‭for‬ ‭up‬ ‭to‬ ‭98%‬ ‭of‬ ‭computational‬ ‭time‬ ‭in‬
‭complex‬ ‭LSMs,‬ ‭would‬ ‭greatly‬ ‭alleviate‬ ‭challenges‬ ‭linked‬ ‭to‬ ‭this‬ ‭bottleneck‬ ‭(see‬ ‭Sect.‬ ‭3.6).‬ ‭A‬
‭successful‬‭undertaking‬‭by‬‭Sun‬‭et‬‭al.‬‭(2023)‬‭showed‬‭how‬‭bagging‬‭decision‬‭trees‬‭(an‬‭ensemble‬
‭ML‬‭method‬‭based‬‭on‬‭(Breiman,‬‭1996)‬‭could‬‭be‬‭used‬‭to‬‭emulate‬‭the‬‭spin-up‬‭of‬‭the‬‭ORCHIDEE‬
‭LSM.‬ ‭Koppa‬ ‭et‬ ‭al.‬ ‭(2022)‬ ‭developed‬ ‭a‬ ‭deep‬ ‭learning-based‬ ‭hybrid‬ ‭model‬ ‭combining‬ ‭a‬
‭process-based‬ ‭land‬ ‭surface‬ ‭model‬ ‭with‬ ‭remotely-sensed‬ ‭observations‬ ‭to‬ ‭estimate‬ ‭global‬
‭evaporation.‬ ‭They‬ ‭showed‬ ‭how‬ ‭hybrid‬ ‭models‬ ‭can‬ ‭significantly‬ ‭improve‬ ‭predictive‬ ‭accuracy‬
‭while reducing the computational cost.‬

‭Data Requirements‬
‭Hybrid‬‭modelling‬‭has‬‭the‬‭potential‬‭to‬‭be‬‭very‬‭powerful,‬‭but‬‭it‬‭is‬‭also‬‭susceptible‬‭to‬‭issues‬‭linked‬
‭to‬ ‭equifinality‬ ‭(Kraft‬ ‭et‬ ‭al.,‬ ‭2022;‬ ‭Sawada,‬ ‭2020)‬‭.‬ ‭We‬ ‭note‬ ‭that‬ ‭any‬ ‭ML‬ ‭approaches‬ ‭need‬
‭substantial‬ ‭data‬ ‭to‬ ‭perform‬ ‭well‬ ‭and‬ ‭thus‬ ‭the‬ ‭ML‬ ‭components‬ ‭in‬ ‭the‬ ‭hybrid‬ ‭part‬ ‭need‬ ‭to‬ ‭be‬
‭targeting‬ ‭processes‬ ‭for‬ ‭which‬ ‭data‬ ‭is‬ ‭plentiful.‬ ‭ML‬ ‭approaches‬ ‭often‬ ‭have‬ ‭a‬ ‭large‬ ‭number‬ ‭of‬
‭parameters‬‭in‬‭their‬‭training‬‭which‬‭gives‬‭them‬‭a‬‭larger‬‭degree‬‭of‬‭flexibility‬‭that‬‭can‬‭compensate‬
‭for errors in physical models,‬‭but can also lead to‬‭overfitting.‬

‭4.3 Observation Processing‬
‭There‬ ‭are‬ ‭many‬ ‭examples‬ ‭of‬ ‭using‬ ‭ML‬ ‭to‬ ‭improve‬ ‭or‬ ‭pre-process‬ ‭the‬ ‭observational‬ ‭datasets‬
‭that‬ ‭can‬ ‭be‬ ‭assimilated‬ ‭into‬ ‭LSMs,‬ ‭especially‬ ‭from‬‭the‬‭field‬‭of‬‭remote‬‭sensing.‬‭Many‬‭of‬‭these‬
‭novel‬ ‭datasets‬ ‭have‬ ‭yet‬ ‭to‬ ‭be‬ ‭exploited‬ ‭in‬ ‭the‬ ‭LSM‬ ‭parameter‬ ‭estimation‬ ‭studies,‬ ‭presenting‬
‭exciting new opportunities.‬

‭Observation Operators‬
‭One‬ ‭such‬ ‭application‬ ‭is‬ ‭the‬ ‭use‬ ‭of‬ ‭ML-generated‬ ‭observation‬ ‭operators‬ ‭to‬ ‭translate‬
‭satellite-observed‬ ‭radiances‬ ‭into‬ ‭model‬ ‭states‬ ‭or‬ ‭parameters‬ ‭(see‬ ‭challenges‬ ‭raised‬ ‭in‬ ‭Sect.‬
‭3.3).‬‭The‬‭use‬‭of‬‭ML‬‭techniques‬‭in‬‭this‬‭context‬‭has‬‭several‬‭advantages:‬‭i)‬‭ML-based‬‭observation‬
‭operators‬ ‭are‬ ‭relatively‬ ‭simple‬ ‭to‬ ‭implement‬ ‭compared‬‭to‬‭physically-based‬‭approaches,‬‭which‬
‭often‬‭involve‬‭the‬‭inversion‬‭of‬‭radiative‬‭transfer‬‭models,‬‭ii)‬‭they‬‭are‬‭able‬‭to‬‭easily‬‭accommodate‬
‭the‬ ‭simultaneous‬ ‭assimilation‬ ‭of‬ ‭multiple‬ ‭observation‬ ‭types,‬ ‭iii)‬ ‭they‬ ‭can‬ ‭inherently‬ ‭correct‬
‭climatological‬‭biases‬‭between‬‭model‬‭and‬‭observations,‬‭and‬‭iv)‬‭they‬‭facilitate‬‭the‬‭assimilation‬‭of‬
‭radiance‬ ‭observations‬ ‭rather‬ ‭than‬ ‭retrieval‬ ‭products,‬ ‭thus‬ ‭reducing‬ ‭errors‬ ‭stemming‬ ‭from‬
‭possible‬ ‭inconsistencies‬ ‭between‬ ‭retrieval‬ ‭algorithm‬ ‭assumptions‬ ‭and‬ ‭models.‬ ‭Due‬ ‭to‬ ‭these‬
‭advantages,‬ ‭ML-based‬ ‭observation‬ ‭operators‬ ‭have‬ ‭been‬ ‭applied‬ ‭in‬ ‭several‬ ‭land‬ ‭data‬
‭assimilation‬ ‭studies,‬ ‭including‬ ‭for‬ ‭soil‬ ‭moisture‬ ‭(Kolassa‬ ‭et‬‭al.,‬‭2017;‬‭Rodríguez-Fernández‬‭et‬
‭al.,‬‭2019)‬‭,‬‭leaf‬‭area‬‭index‬‭(Durbha‬‭et‬‭al.,‬‭2007)‬‭,‬‭snow‬‭water‬‭equivalent‬‭(Kwon‬‭et‬‭al.,‬‭2019)‬‭,‬‭and‬
‭as a combined forward model for soil moisture and LAI‬‭(Shan et al., 2022)‬‭.‬

‭Retrieval Algorithms‬
‭Similarly,‬ ‭ML‬ ‭approaches‬ ‭have‬ ‭been‬ ‭used‬‭to‬‭develop‬‭data-driven‬‭retrieval‬‭algorithms‬‭in‬‭cases‬
‭where‬‭physical‬‭retrieval‬‭algorithms‬‭are‬‭very‬‭complex.‬‭For‬‭example,‬‭Chen‬‭et‬‭al.‬‭(2022),‬‭Gentine‬
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‭&‬‭Alemohammad‬‭(2018),‬‭Shen‬‭et‬‭al.‬‭(2022)‬‭and‬‭Zhang‬‭et‬‭al.‬‭(2018)‬‭each‬‭used‬‭ML‬‭to‬‭estimate‬
‭SIF‬‭from‬‭MODIS‬‭radiances,‬‭OCO-2,‬‭and‬‭TROPOMI‬‭observations,‬‭respectively.‬‭Alemohammad‬
‭et‬ ‭al.‬ ‭(2017)‬ ‭developed‬ ‭an‬ ‭ML‬ ‭approach‬ ‭to‬ ‭retrieve‬ ‭global,‬ ‭monthly‬ ‭GPP‬ ‭estimates‬ ‭from‬
‭GOME-2 SIF observations only.‬

‭Gap-Filling‬
‭ML‬ ‭approaches‬ ‭can‬ ‭also‬ ‭be‬ ‭used‬ ‭to‬ ‭improve‬ ‭observation‬ ‭datasets‬ ‭by‬ ‭making‬ ‭them‬ ‭more‬
‭suitable‬ ‭for‬ ‭data‬ ‭assimilation‬ ‭applications.‬ ‭One‬ ‭approach‬ ‭is‬ ‭to‬ ‭use‬ ‭ML‬ ‭to‬ ‭generate‬ ‭gap-filled‬
‭observations‬ ‭or‬ ‭generate‬ ‭higher‬ ‭temporal‬ ‭resolution‬ ‭datasets.‬ ‭For‬ ‭example,‬‭Yatheendradas‬‭&‬
‭Kumar‬ ‭(2022)‬‭used‬‭an‬‭ML‬‭approach‬‭to‬‭create‬‭a‬‭gap-filled,‬‭high-resolution‬‭dataset‬‭of‬‭observed‬
‭snow‬ ‭cover‬ ‭fraction‬ ‭and‬ ‭Fang‬ ‭et‬ ‭al.‬ ‭(2019)‬ ‭used‬ ‭a‬ ‭deep‬ ‭learning‬ ‭Long‬ ‭Short-Term‬ ‭Memory‬
‭framework‬‭to‬‭predict‬‭daily‬‭“SMAP‬‭Level-3‬‭like”‬‭soil‬‭moisture‬‭estimates‬‭from‬‭atmospheric‬‭forcing‬
‭data‬‭and‬‭static‬‭physiographic‬‭attributes.‬‭Vekuri‬‭et‬‭al.‬‭(2023)‬‭used‬‭extreme‬‭graident‬‭boosting‬‭to‬
‭gap-fill‬ ‭eddy‬ ‭covariance‬ ‭data‬ ‭reducing‬ ‭the‬ ‭northern‬ ‭biases‬ ‭in‬ ‭the‬ ‭data‬‭found‬‭after‬‭using‬‭more‬
‭traditional‬‭gap-filling‬‭methods.‬‭Nevertheless,‬‭one‬‭must‬‭exert‬‭caution‬‭when‬‭using‬‭gap-filled‬‭data‬
‭(or‬ ‭other‬ ‭model-derived‬ ‭data,‬ ‭such‬ ‭as‬ ‭retrieval‬ ‭products)‬ ‭for‬ ‭parameter‬‭estimation,‬‭since‬‭they‬
‭are‬ ‭dependent‬ ‭on‬ ‭the‬ ‭assumptions‬ ‭of‬ ‭the‬ ‭selected‬ ‭gap-filling‬ ‭method.‬ ‭Furthermore,‬ ‭gap-filled‬
‭data can artificially inflate sample size, which leads to falsely precise parameter estimates.‬

‭Upscaling‬
‭Another‬ ‭approach‬ ‭is‬ ‭to‬ ‭use‬ ‭ML‬ ‭to‬ ‭map‬ ‭local‬ ‭observations‬ ‭to‬ ‭the‬ ‭global‬ ‭scale‬ ‭to‬ ‭mitigate‬
‭representativeness‬ ‭issues‬ ‭that‬ ‭can‬ ‭arise‬ ‭from‬ ‭the‬ ‭assimilation‬ ‭of‬ ‭local‬ ‭observations.‬ ‭For‬
‭example,‬‭studies‬‭by‬‭Beer‬‭et‬‭al.‬‭(2010),‬‭Joiner‬‭et‬‭al.‬‭(2018),‬‭Jung‬‭et‬‭al.‬‭(2011)‬‭and‬‭Tramontana‬
‭et‬‭al.‬‭(2016)‬‭all‬‭have‬‭used‬‭ML‬‭approaches‬‭in‬‭combination‬‭with‬‭remote‬‭sensing‬‭observations‬‭to‬
‭generate‬ ‭global‬ ‭estimates‬ ‭of‬ ‭carbon‬ ‭and‬ ‭energy‬ ‭fluxes‬ ‭from‬ ‭local‬ ‭flux-tower‬ ‭observations.‬
‭V‬‭ergopolan‬ ‭et‬ ‭al.‬ ‭(2021)‬ ‭used‬ ‭a‬ ‭high-resolution‬ ‭LSM‬ ‭and‬ ‭an‬ ‭ML‬ ‭Bayesian‬ ‭merging‬ ‭scheme‬
‭trained‬ ‭on‬ ‭in-situ‬ ‭soil‬ ‭moisture‬ ‭data‬ ‭to‬ ‭learn‬ ‭LSM‬ ‭and‬ ‭SMAP‬ ‭satellite‬ ‭biases‬ ‭and‬ ‭obtain‬‭30m‬
‭satellite-based‬ ‭soil‬‭moisture‬‭estimates‬‭over‬‭the‬‭contiguous‬‭United‬‭States.‬‭One‬‭caveat‬‭to‬‭using‬
‭ML‬ ‭to‬ ‭upscale‬ ‭point‬ ‭observations‬ ‭is‬ ‭that‬ ‭large‬ ‭discrepancies‬ ‭can‬ ‭exist‬ ‭between‬ ‭different‬‭data‬
‭products‬ ‭based‬ ‭on‬ ‭the‬ ‭same‬ ‭observations,‬ ‭highlighting‬ ‭the‬ ‭need‬ ‭for‬ ‭thorough‬ ‭evaluation‬ ‭and‬
‭uncertainty assessment of ML-based products.‬

‭Derived Quantities‬
‭Finally,‬ ‭ML‬ ‭can‬ ‭be‬ ‭used‬‭to‬‭improve‬‭the‬‭algorithms‬‭used‬‭to‬‭generate‬‭observation‬‭datasets.‬‭For‬
‭example,‬‭Tramontana‬‭et‬‭al.‬‭(2020)‬‭used‬‭a‬‭combined‬‭neural‬‭network‬‭approach‬‭that‬‭accounts‬‭for‬
‭the‬‭influence‬‭of‬‭soil‬‭property‬‭and‬‭micrometeorological‬‭drivers‬‭to‬‭generate‬‭improved‬‭estimates‬‭of‬
‭the‬‭partitioning‬‭of‬‭observed‬‭NEE‬‭into‬‭GPP‬‭and‬‭ecosystem‬‭respiration‬‭(RECO),‬‭while‬‭Zeng‬‭et‬‭al.‬
‭(2022)‬ ‭used‬ ‭an‬ ‭ML‬ ‭approach‬ ‭to‬ ‭separate‬ ‭the‬ ‭natural‬ ‭and‬ ‭anthropogenic‬ ‭contributions‬ ‭to‬
‭satellite-estimated evapotranspiration.‬

‭4.4 Optimisation process‬
‭Since‬‭optimisation‬‭is‬‭a‬‭key‬‭component‬‭to‬‭both‬‭ML‬‭and‬‭DA,‬‭there‬‭are‬‭many‬‭algorithms‬‭common‬
‭to‬‭both‬‭fields‬‭including‬‭gradient-based‬‭and‬‭evolutionary‬‭algorithms‬‭(Sect.‬‭2).‬‭Indeed,‬‭the‬‭strong‬
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‭mathematical‬ ‭similarities‬ ‭between‬‭ML‬‭and‬‭DA‬‭mean‬‭that‬‭both‬‭fields‬‭can‬‭learn‬‭from‬‭each‬‭other‬
‭and‬ ‭share‬ ‭methodologies‬ ‭(Geer,‬ ‭2021)‬‭.‬ ‭ML‬ ‭approaches‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭improve‬ ‭optimisation‬
‭algorithms‬ ‭themselves‬ ‭by‬ ‭helping‬ ‭speed‬ ‭up‬ ‭the‬ ‭search‬ ‭process‬ ‭and‬ ‭improve‬ ‭the‬ ‭quality‬ ‭of‬
‭solutions‬‭(Song‬‭et‬‭al.,‬‭2019)‬‭.‬‭Furthermore,‬‭ML‬‭can‬‭be‬‭used‬‭to‬‭automatically‬‭choose‬‭the‬‭setting‬
‭of‬ ‭adjustable‬ ‭parameters‬ ‭found‬ ‭in‬ ‭some‬ ‭optimisation‬ ‭algorithms.‬ ‭For‬ ‭example,‬ ‭clustering‬
‭methods‬ ‭can‬ ‭be‬‭used‬‭to‬‭set‬‭the‬‭population‬‭size,‬‭crossover‬‭probability‬‭and‬‭mutation‬‭probability‬
‭parameters‬ ‭in‬ ‭genetic‬ ‭algorithms‬ ‭(Zhang‬ ‭et‬ ‭al.,‬ ‭2007)‬ ‭and‬ ‭maintain‬ ‭population‬ ‭diversity.‬
‭Tree-based‬‭random‬‭forest‬‭models‬‭have‬‭been‬‭used‬‭to‬‭dynamically‬‭construct,‬‭search,‬‭and‬‭prune‬
‭the‬ ‭parameter‬ ‭space‬ ‭to‬ ‭efficiently‬ ‭optimise‬ ‭ML‬ ‭structure‬ ‭and‬ ‭hyperparameters‬ ‭(Akiba‬ ‭et‬ ‭al.,‬
‭2019)‬‭.‬‭ML‬‭techniques‬‭can‬‭also‬‭be‬‭used‬‭to‬‭choose‬‭the‬‭best-performing‬‭algorithm‬‭for‬‭a‬‭particular‬
‭optimisation‬ ‭problem‬ ‭(Kerschke‬ ‭et‬ ‭al.,‬ ‭2019)‬‭.‬ ‭While‬ ‭the‬ ‭emerging‬ ‭ML‬‭methods‬‭are‬‭promising,‬
‭they‬‭are‬‭very‬‭novel‬‭and‬‭-‬‭to‬‭the‬‭best‬‭of‬‭our‬‭knowledge‬‭-‬‭have‬‭not‬‭yet‬‭been‬‭applied‬‭to‬‭optimising‬
‭the parameter estimation algorithm hyperparameters themselves.‬

‭Finally,‬ ‭a‬ ‭novel‬ ‭and‬ ‭emerging‬ ‭use‬ ‭of‬‭ML‬‭is‬‭the‬‭use‬‭of‬‭large‬‭language‬‭models‬‭(e.g.‬‭ChatGPT).‬
‭Modern‬ ‭open-source‬ ‭coding‬ ‭languages‬ ‭like‬ ‭Julia‬ ‭and‬ ‭Python‬ ‭through‬ ‭the‬ ‭Google‬ ‭JAX‬ ‭library‬
‭(Bradbury‬‭et‬‭al.,‬‭2018)‬‭can‬‭be‬‭automatically‬‭differentiated‬‭to‬‭generate‬‭the‬‭tangent‬‭linear‬‭model‬
‭(see‬ ‭Sect.‬ ‭2).‬ ‭Many‬ ‭high-complexity‬‭LSMs‬‭are‬‭written‬‭in‬‭Fortran‬‭code;‬‭large‬‭language‬‭models‬
‭can‬ ‭help‬ ‭translate‬ ‭Fortran‬ ‭code‬ ‭to‬ ‭more‬‭modern‬‭languages‬‭(Zhou‬‭et‬‭al.,‬‭2024)‬‭,‬‭facilitating‬‭the‬
‭derivative‬ ‭of‬ ‭such‬ ‭models.‬ ‭Alternatively,‬ ‭we‬ ‭can‬ ‭use‬ ‭neural‬ ‭networks‬ ‭to‬ ‭emulate‬ ‭the‬ ‭tangent‬
‭linear‬ ‭and‬ ‭adjoint‬ ‭models‬ ‭since‬ ‭neural‬ ‭networks‬ ‭can‬ ‭be‬ ‭differentiated‬ ‭trivially‬ ‭(Hatfield‬ ‭et‬ ‭al.,‬
‭2021)‬‭.‬

‭Table 1: Summary of challenges outlined in Sect. 3 and their ML opportunities‬

‭PDA challenge‬ ‭ML opportunity‬

‭Selecting parameters and their prior distributions (Sect. 3.1)‬

‭-‬ ‭Identifying which model parameters to‬
‭optimise is challenging, due to high‬
‭dimensionality and strong parameter‬
‭covariances.‬

‭-‬ ‭Choosing prior distributions for parameters‬
‭is crucial yet difficult, requiring detailed‬
‭structural insights and data.‬

‭-‬ ‭Emulators can reduce the computational‬
‭demand of running models with many‬
‭different parameter settings needed for‬
‭sensitivity analyses (Sect. 4.1).‬

‭-‬ ‭Emulators can be used to facilitate‬
‭uncertainty quantification, for example,‬
‭through history matching (Sect. 4.1).‬

‭Characterisation of model and data/observation errors (Sect. 3.2)‬

‭-‬ ‭Model errors are difficult to quantify due to‬
‭uncertainties in process representation,‬
‭missing processes, and the challenge of‬
‭specifying an informative prior.‬

‭-‬ ‭Quantifying data errors is tricky because of‬
‭sampling variability, instrument‬
‭inaccuracies, and complex error‬
‭correlations that are often ignored.‬

‭-‬ ‭Hybrid modelling can be used to replace‬
‭model processes that are missing or‬
‭poorly understood, helping to diagnose‬
‭model structural errors (Sect. 4.2).‬

‭-‬ ‭ML methods can be used to generate‬
‭improved estimates of derived quantities,‬
‭thus reducing observation errors (Sect.‬
‭4.3).‬
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‭Developing observation operators (Sect. 3.3)‬

‭-‬ ‭Matching model outputs to observations‬
‭require transformations that can introduce‬
‭biases.‬

‭-‬ ‭ML-generated observation operators can‬
‭be used to directly translate‬
‭satellite-observed radiances into model‬
‭states or parameters (Sect.‬‭4.3).‬

‭Tackling spatial and temporal heterogeneity (Sect. 3.4)‬

‭-‬ ‭Variability in surface properties, driven by‬
‭diverse climates, soils, and ecosystems,‬
‭complicates parameter estimation across‬
‭locations.‬

‭-‬ ‭High computational demands make it‬
‭difficult to calibrate LSMs across large‬
‭spatial domains.‬

‭-‬ ‭Temporal variability and short data series‬
‭hinder the capture of both seasonal cycles‬
‭and long-term trends.‬

‭-‬ ‭Hybrid modelling can be used to improve‬
‭spatial parameterisations (Sect. 4.2).‬

‭-‬ ‭Emulators can help reduce the‬
‭computational demand of running the‬
‭model over large domains (Sect. 4.1).‬

‭-‬ ‭Long Short-Term Memory‬
‭encoder-decoder networks consider‬
‭long-term dependencies and therefore‬
‭may help capture seasonal and‬
‭interannual trends (Sect. 4.1).‬

‭Dealing with large and multiple observational datasets (Sect. 3.5)‬

‭-‬ ‭Scaling satellite products to match model‬
‭grids can lead to information loss.‬

‭-‬ ‭Products may be subject to regional‬
‭biases due to varying data quality and‬
‭processing methods.‬

‭-‬ ‭Assimilating multiple data streams in‬
‭model calibrations presents challenges in‬
‭consistency, error characterisation, and‬
‭balancing different data sources.‬

‭-‬ ‭ML methods can be used to upscale‬
‭sparse observational data (e.g., flux‬
‭tower observations) or map satellite‬
‭observations to a model grid (Sect. 4.3).‬

‭-‬ ‭ML can be applied to improve the‬
‭algorithms used to produce observational‬
‭datasets (Sect. 4.3).‬

‭-‬ ‭ML-based observation operators are able‬
‭to easily accommodate multiple‬
‭observation types and adjust their‬
‭respective impacts in the assimilation‬
‭(Sect. 4.3).‬

‭Including the historical period in the assimilation window (Sect. 3.6)‬

‭-‬ ‭Spin-up and transient parts of model runs‬
‭can be computationally demanding.‬

‭-‬ ‭Hybrid modelling can be used to replace‬
‭computationally costly parts of the model‬
‭(Sect. 4.2).‬

‭Choice and implementation of minimisation algorithms (Sect. 3.7)‬

‭-‬ ‭Algorithms‬ ‭requiring‬ ‭a‬ ‭large‬ ‭number‬ ‭of‬
‭model‬‭runs‬‭are‬‭computationally‬‭costly‬‭and‬
‭therefore rarely applied to complex LSMs.‬

‭-‬ ‭For‬ ‭different‬ ‭algorithms,‬ ‭there‬ ‭can‬ ‭be‬ ‭a‬
‭large‬ ‭number‬ ‭of‬‭configuration‬‭options‬‭and‬
‭tuneable hyperparameters.‬

‭-‬ ‭ML can enhance computational‬
‭efficiency, enabling the use of algorithms‬
‭that require numerous model runs (Sect.‬
‭4.1).‬

‭-‬ ‭ML can help find the best configurations‬
‭and hyperparameters to use when‬
‭optimising (Sect. 4.4).‬
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‭-‬ ‭Maintaining‬ ‭tangent‬ ‭linear/adjoint‬ ‭models‬
‭for‬‭gradient-based‬‭optimisation‬‭in‬‭complex‬
‭LSMs is challenging.‬

‭-‬ ‭Large language models can be used to‬
‭translate LSMs to modern coding‬
‭languages that are easier to differentiate‬
‭and can better exploit GPU. Alternatively,‬
‭we can emulate the LSM using NNs,‬
‭which are easily differentiable (Sect. 4.4).‬

‭5. Future priorities‬
‭Moving‬ ‭beyond‬ ‭the‬ ‭ML‬ ‭avenues‬ ‭outlined‬ ‭in‬ ‭the‬ ‭previous‬ ‭section‬ ‭and‬ ‭summarised‬ ‭in‬ ‭Table‬‭1,‬
‭here,‬‭we‬‭discuss‬‭the‬‭opportunities‬‭and‬‭future‬‭priorities‬‭where‬‭land‬‭PDA‬‭promises‬‭to‬‭have‬‭some‬
‭large‬ ‭impacts,‬ ‭building‬ ‭on‬ ‭recent‬ ‭successes.‬ ‭We‬ ‭argue‬ ‭that‬ ‭more‬ ‭funding‬ ‭for‬ ‭technical‬ ‭DA‬
‭studies and software engineering support would significantly aid this work.‬

‭5.1 Testing novel datasets and experimental configurations‬
‭In‬ ‭addition‬ ‭to‬ ‭the‬ ‭traditional‬ ‭datasets‬ ‭used‬ ‭to‬ ‭optimise‬ ‭LSM‬ ‭parameters,‬ ‭our‬ ‭data-rich‬ ‭world‬
‭offers‬‭access‬‭to‬‭a‬‭wide‬‭array‬‭of‬‭data‬‭streams‬‭enabling‬‭new‬‭and‬‭exciting‬‭constraints‬‭on‬‭multiple‬
‭different‬‭processes‬‭in‬‭LSMs‬‭(as‬‭have‬‭been‬‭used‬‭for‬‭parameter‬‭DA‬‭in‬‭smaller‬‭scale‬‭ecosystem‬
‭and ecology models). These include (to name a few):‬

‭●‬ ‭Manipulation‬ ‭experiments:‬ ‭For‬ ‭example,‬ ‭elevated‬ ‭CO‬‭2‬ ‭experiments‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬
‭constrain‬‭the‬‭fertilisation‬‭effect‬‭at‬‭nitrogen-limited‬‭sites‬‭(‬‭Thomas‬‭et‬‭al.,‬‭2017‬‭;‬‭Jiang‬‭et‬‭al.,‬
‭2020; Mahmud et al., 2018; Raoult, Edouard-Rambaut, et al., 2024)‬‭.‬

‭●‬ ‭Data‬‭about‬‭soil‬‭carbon‬‭stocks:‬‭Data‬‭from‬‭the‬‭International‬‭Soil‬‭Carbon‬‭Network‬‭(Harden‬
‭et‬‭al.,‬‭2018;‬‭Nave‬‭et‬‭al.,‬‭2016)‬‭and‬‭the‬‭global‬‭soil‬‭respiration‬‭database‬‭(Jian‬‭et‬‭al.,‬‭2021)‬
‭can‬ ‭provide‬ ‭valuable‬‭insights.‬‭Similarly,‬‭soil‬‭radiocarbon‬‭measurements‬‭(Lawrence‬‭et‬‭al.,‬
‭2020)‬‭can‬‭help‬‭constrain‬‭rates‬‭of‬‭soil‬‭carbon‬‭cycling‬‭(Shi‬‭et‬‭al.,‬‭2020)‬‭and‬‭ca‬‭rbon‬‭isotope‬
‭concentrations‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭improve‬ ‭simulated‬ ‭soil‬ ‭organic‬ ‭matter‬ ‭decomposition‬
‭(Mäkelä et al., 2022)‬‭.‬

‭●‬ ‭Tree‬ ‭ring‬ ‭data:‬ ‭Annual‬ ‭biomass‬ ‭increments‬ ‭derived‬ ‭from‬ ‭tree‬‭ring‬‭widths‬‭can‬‭help‬‭infer‬
‭carbon‬ ‭accumulation‬ ‭(Babst‬ ‭et‬ ‭al.,‬ ‭2014;‬ ‭Jeong‬ ‭et‬ ‭al.,‬‭2021)‬‭.‬‭Similarly,‬‭tree‬‭ring‬‭isotopic‬
‭data‬ ‭(carbon‬ ‭and‬ ‭oxygen)‬ ‭can‬ ‭act‬ ‭as‬ ‭constraints‬ ‭for‬ ‭leaf‬ ‭physiology‬ ‭and‬ ‭growth‬
‭(Barichivich et al., 2021)‬‭.‬

‭●‬ ‭Other‬ ‭aboveground‬ ‭biomass‬ ‭products:‬ ‭Products‬ ‭from‬ ‭the‬ ‭ESA‬ ‭BIOMASS‬ ‭mission‬
‭(Quegan‬ ‭et‬ ‭al.,‬ ‭2019)‬ ‭help‬ ‭constrain‬ ‭carbon‬ ‭allocation‬ ‭and‬ ‭woody‬ ‭biomass‬ ‭turnover‬
‭parameters‬ ‭(Smallman‬ ‭et‬ ‭al.,‬ ‭2021)‬‭.‬ ‭Similarly,‬ ‭land-use‬ ‭and‬ ‭land-cover‬ ‭products‬ ‭(e.g.,‬
‭MapBiomas‬ ‭Collection‬ ‭3.1,‬ ‭based‬ ‭on‬ ‭Landsat)‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭create‬ ‭regrowth‬ ‭curves‬
‭(Heinrich‬‭et‬‭al.,‬‭2021,‬‭2023)‬‭,‬‭which‬‭together‬‭with‬‭forest‬‭inventory‬‭data,‬‭can‬‭help‬‭constrain‬
‭disturbance processes.‬

‭●‬ ‭Additional‬ ‭remote‬ ‭sensing‬ ‭datasets:‬ ‭New‬ ‭datasets,‬ ‭such‬ ‭as‬ ‭full-waveform‬ ‭lidar‬ ‭data‬
‭from‬‭the‬‭GEDI‬‭(Global‬‭Ecosystem‬‭Dynamics‬‭Investigation)‬‭mission‬‭(Dubayah‬‭et‬‭al.,‬‭2020)‬‭,‬
‭can‬‭help‬‭constrain‬‭canopy‬‭structural‬‭parameters,‬‭including‬‭canopy‬‭height‬‭(Potapov‬‭et‬‭al.,‬
‭2021)‬‭.‬ ‭Similarly,‬ ‭improved‬ ‭observations‬ ‭of‬ ‭land‬ ‭surface‬ ‭temperature‬ ‭and‬ ‭total‬
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‭surface/groundwater‬ ‭content‬ ‭from‬ ‭GRACE‬ ‭instruments‬ ‭also‬ ‭can‬ ‭offer‬ ‭additional‬
‭constraints on the energy and water cycles.‬

‭●‬ ‭Trace‬ ‭gas‬ ‭flux‬ ‭measurements:‬ ‭Carbonyl‬ ‭sulfide‬ ‭measurements‬ ‭(Whelan‬ ‭et‬ ‭al.,‬ ‭2018)‬
‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭constrain‬ ‭GPP‬ ‭and‬‭stomatal‬‭conductance‬‭(Abadie‬‭et‬‭al.,‬‭2023)‬‭.‬‭There‬‭is‬
‭also‬ ‭a‬ ‭growing‬ ‭number‬ ‭of‬ ‭nitrous‬ ‭oxide‬ ‭flux‬ ‭measurements‬ ‭(Nicolini‬ ‭et‬ ‭al.,‬‭2013)‬‭,‬‭which‬
‭can‬‭be‬‭used‬‭to‬‭calibrate‬‭LSMs‬‭that‬‭include‬‭nitrogen‬‭cycles.‬‭Methane‬‭flux‬‭measurements,‬
‭such‬ ‭as‬ ‭those‬ ‭over‬ ‭peatlands‬ ‭(‬‭(Salmon‬ ‭et‬ ‭al.,‬‭2022)‬‭,‬‭can‬‭also‬‭be‬‭utilised‬‭to‬‭improve‬‭the‬
‭representation of methane production processes.‬

‭By‬ ‭combining‬ ‭these‬ ‭data‬ ‭and‬ ‭implementing‬ ‭novel‬ ‭DA‬ ‭approaches‬‭described‬‭in‬‭this‬‭paper,‬‭we‬
‭can‬ ‭aspire‬ ‭to‬ ‭assess‬ ‭how‬ ‭this‬ ‭information‬ ‭influences‬ ‭both‬ ‭short-term‬ ‭and‬ ‭long-term‬ ‭forecasts‬
‭and‬ ‭reduces‬ ‭model‬ ‭discrepancies.‬ ‭The‬ ‭focus‬ ‭should‬ ‭be‬ ‭on‬ ‭refining‬ ‭core‬ ‭processes‬ ‭driving‬
‭ecosystem-scale‬‭carbon‬‭and‬‭water‬‭fluxes‬‭and‬‭testing‬‭their‬‭responses‬‭to‬‭global‬‭change,‬‭beyond‬
‭just fitting historical data.‬

‭As‬ ‭with‬ ‭all‬ ‭past‬ ‭carbon‬ ‭cycle‬ ‭DA‬ ‭studies,‬ ‭before‬ ‭novel‬ ‭datasets‬ ‭can‬ ‭be‬‭reliably‬‭used‬‭in‬‭a‬‭DA‬
‭experiment,‬‭it‬‭will‬‭take‬‭time‬‭to‬‭test‬‭the‬‭best‬‭approaches‬‭for‬‭how‬‭to‬‭best‬‭use‬‭these‬‭data‬‭streams‬
‭within‬ ‭a‬ ‭DA‬ ‭experimental‬ ‭framework.‬ ‭It‬ ‭should‬ ‭be‬ ‭standard‬ ‭practice‬ ‭to‬ ‭run‬ ‭synthetic‬ ‭DA‬
‭experiments‬ ‭to‬ ‭test‬ ‭which‬ ‭observational‬ ‭characteristics‬ ‭(temporal‬ ‭sampling‬ ‭interval,‬ ‭record‬
‭length,‬ ‭observation‬ ‭uncertainty,‬ ‭choice‬ ‭of‬ ‭minimisation‬ ‭algorithm‬ ‭and‬ ‭its‬ ‭configuration,‬ ‭etc.‬ ‭–‬
‭Sect.‬‭3.7)‬‭are‬‭required‬‭to‬‭retrieve‬‭the‬‭correct‬‭parameter‬‭values‬‭with‬‭the‬‭strong‬‭assumption‬‭that‬
‭there‬ ‭is‬ ‭no‬ ‭modelling‬ ‭bias.‬ ‭Synthetic‬ ‭experiments,‬ ‭also‬ ‭known‬ ‭as‬ ‭“twin”‬ ‭experiments,‬ ‭use‬
‭“pseudo‬ ‭data”‬ ‭that‬ ‭have‬ ‭been‬ ‭output‬ ‭from‬ ‭the‬ ‭model‬ ‭and‬ ‭modified‬ ‭according‬ ‭to‬ ‭known‬
‭observational‬ ‭characteristics‬ ‭(see‬ ‭REFLEX‬ ‭and‬‭Optic‬‭experiments;‬‭Trudinger‬‭et‬‭al.,‬‭2007;‬‭Fox‬
‭et‬ ‭al.,‬ ‭2009).‬ ‭As‬ ‭these‬ ‭data‬ ‭are‬ ‭model‬ ‭outputs,‬ ‭the‬ ‭“true”‬ ‭value‬ ‭of‬ ‭the‬ ‭parameters‬ ‭is‬ ‭known.‬
‭Synthetic‬ ‭DA‬ ‭experiments‬ ‭can‬ ‭also‬ ‭be‬ ‭used‬ ‭prior‬ ‭to‬ ‭data‬ ‭collection,‬ ‭where‬ ‭they‬ ‭can‬ ‭help‬
‭optimise‬ ‭sampling‬ ‭over‬ ‭space,‬ ‭time,‬ ‭and‬ ‭sampling‬ ‭design.‬ ‭Indeed,‬ ‭calibration‬ ‭has‬ ‭yet‬ ‭to‬ ‭be‬
‭adequately‬ ‭integrated‬ ‭into‬ ‭the‬ ‭broader‬ ‭literature‬ ‭on‬ ‭model-driven‬‭observing‬‭system‬‭simulation‬
‭experiments.‬‭To‬‭improve‬‭this,‬‭advocating‬‭for‬‭standardised‬‭community‬‭benchmark‬‭protocols‬‭and‬
‭datasets‬ ‭could‬ ‭address‬ ‭different‬ ‭challenges,‬ ‭such‬ ‭as‬ ‭assessing‬ ‭resistance‬ ‭to‬ ‭noise‬ ‭and‬
‭evaluating‬ ‭forcing‬ ‭variability.‬ ‭Results‬ ‭from‬ ‭such‬ ‭community-driven‬ ‭experimental‬ ‭setups‬ ‭could‬
‭reveal‬ ‭common‬ ‭challenges‬ ‭and‬ ‭development‬ ‭opportunities,‬ ‭enhancing‬ ‭the‬ ‭robustness‬ ‭and‬
‭effectiveness of DA methods across the field (see Sect. 5.4).‬

‭Additional‬‭tests‬‭of‬‭DA‬‭experimental‬‭configuration‬‭that‬‭are‬‭rarely‬‭performed‬‭(or‬‭rarely‬‭reported‬‭in‬
‭the‬ ‭literature)‬ ‭should‬ ‭include‬‭testing‬‭i)‬‭how‬‭parameters‬‭retrieved‬‭at‬‭individual‬‭sites‬‭compare‬‭to‬
‭parameters‬ ‭retrieved‬ ‭when‬ ‭including‬ ‭multiple‬ ‭sites‬ ‭in‬ ‭the‬ ‭assimilation‬ ‭(Kuppel‬ ‭et‬ ‭al.,‬ ‭2012;‬
‭Raoult‬‭et‬‭al.,‬‭2016)‬‭or‬‭using‬‭hierarchical‬‭approaches‬‭(Fer,‬‭Shiklomanov,‬‭et‬‭al.,‬‭2021;‬‭Tian‬‭et‬‭al.,‬
‭2020)‬‭(see‬‭Sect.‬‭3.4),‬‭ii)‬‭the‬‭utility‬‭of‬‭PFT‬‭dependent‬‭parameters‬‭versus‬‭alternative‬‭approaches‬
‭for‬ ‭grouping‬ ‭parameters‬ ‭(e.g.,‬‭regionally‬‭dependent‬‭PFTs‬‭-‬‭e.g.‬‭Dahlin‬‭et‬‭al.,‬‭2017‬‭;‬‭Bao‬‭et‬‭al.,‬
‭2023)‬‭,‬ ‭iii)‬ ‭how‬ ‭retrieved‬ ‭parameters‬ ‭vary‬ ‭with‬ ‭the‬ ‭forcing‬ ‭dataset‬ ‭used‬ ‭in‬ ‭the‬ ‭simulations,‬ ‭iv)‬
‭how‬‭retrieved‬‭values‬‭depend‬‭on‬‭which‬‭parameters‬‭and/or‬‭PFTs‬‭are‬‭optimised‬‭or‬‭which‬‭terms‬‭to‬
‭include‬‭in‬‭the‬‭cost‬‭function,‬‭and‬‭v)‬‭how‬‭retrieved‬‭parameters‬‭vary‬‭in‬‭space‬‭and‬‭time‬‭within‬‭PFTs‬
‭and‬ ‭what‬ ‭this‬ ‭tells‬ ‭us‬ ‭about‬ ‭missing‬ ‭processes,‬ ‭among‬ ‭other‬ ‭factors.‬ ‭A‬ ‭critical‬ ‭test‬ ‭of‬ ‭any‬
‭parameterisation‬‭process‬‭is‬‭that‬‭the‬‭newly‬‭trained‬‭model‬‭must‬‭have‬‭improved‬‭predictive‬‭skill‬‭for‬
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‭independent‬ ‭data.‬ ‭For‬ ‭example,‬ ‭Famiglietti‬ ‭et‬ ‭al.‬ ‭(2021)‬ ‭demonstrated‬ ‭that‬ ‭different‬ ‭data‬
‭combinations‬ ‭impact‬ ‭the‬ ‭resultant‬ ‭predictive‬ ‭skill‬ ‭and‬ ‭that‬ ‭the‬ ‭amount‬ ‭of‬ ‭data‬ ‭used‬ ‭in‬ ‭model‬
‭calibration‬ ‭must‬ ‭be‬ ‭commensurate‬ ‭with‬ ‭the‬ ‭complexity‬ ‭of‬ ‭the‬ ‭model.‬ ‭Such‬‭technical‬‭tests‬‭are‬
‭required‬ ‭each‬ ‭time‬ ‭a‬ ‭new‬ ‭process‬ ‭is‬ ‭optimised‬ ‭or‬ ‭a‬ ‭novel‬‭dataset‬‭is‬‭used‬‭in‬‭the‬‭assimilation.‬
‭Building‬ ‭DA‬ ‭frameworks‬ ‭to‬ ‭include‬ ‭this‬‭technical‬‭testing‬‭will‬‭give‬‭confidence‬‭in‬‭using‬‭retrieved‬
‭parameter values in operational versions of the models.‬

‭5.2‬ ‭Moving‬ ‭towards‬ ‭land‬ ‭surface–atmospheric‬ ‭transport‬ ‭and‬ ‭full‬
‭Earth system model coupling in data assimilation‬
‭Atmospheric‬ ‭CO‬‭2‬ ‭mole‬ ‭fraction‬ ‭measurements‬ ‭collected‬ ‭at‬ ‭tall‬ ‭towers‬ ‭around‬ ‭the‬ ‭world‬ ‭have‬
‭proven‬‭valuable‬‭in‬‭improving‬‭NEE‬‭predictions‬‭at‬‭regional‬‭to‬‭global‬‭scales‬‭within‬‭a‬‭carbon‬‭cycle‬
‭DA‬ ‭framework‬ ‭(Bacour‬ ‭et‬ ‭al.,‬ ‭2023;‬ ‭Castro-Morales‬ ‭et‬ ‭al.,‬ ‭2019;‬ ‭Kaminski‬ ‭et‬‭al.,‬‭2002,‬‭2012,‬
‭2013;‬ ‭Knorr‬ ‭&‬ ‭Heimann,‬ ‭1995;‬ ‭Koffi‬ ‭et‬ ‭al.,‬ ‭2012;‬ ‭Peylin‬ ‭et‬ ‭al.,‬ ‭2016;‬ ‭Rayner‬ ‭et‬ ‭al.,‬ ‭2005;‬
‭Scholze‬ ‭et‬ ‭al.,‬ ‭2007,‬ ‭2016;‬ ‭Schürmann‬ ‭et‬ ‭al.,‬ ‭2016)‬‭.‬ ‭While‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭data‬ ‭provide‬ ‭a‬
‭direct‬ ‭constraint‬ ‭on‬ ‭net‬ ‭surface‬ ‭CO‬‭2‬ ‭exchange,‬ ‭reliable‬ ‭representation‬ ‭of‬ ‭terrestrial‬ ‭carbon‬
‭sources‬ ‭and‬ ‭sinks‬ ‭ideally‬ ‭requires‬ ‭accurate‬ ‭simulations‬ ‭of‬ ‭the‬ ‭gross‬ ‭carbon‬ ‭fluxes.‬ ‭However,‬
‭while‬‭global‬‭scale‬‭estimates‬‭of‬‭GPP‬‭are‬‭available‬‭for‬‭model‬‭evaluation‬‭or‬‭assimilation‬‭purposes‬
‭(Joiner‬‭et‬‭al.,‬‭2018;‬‭Nelson‬‭et‬‭al.,‬‭2024)‬‭the‬‭currently‬‭available‬‭RECO‬‭products‬‭are‬‭still‬‭subject‬
‭to‬ ‭large‬ ‭uncertainties.‬ ‭For‬ ‭instance,‬ ‭empirically‬ ‭upscaled‬ ‭RECO‬ ‭from‬ ‭eddy‬ ‭covariance‬
‭measurements‬ ‭provided‬ ‭by‬ ‭FLUXCOM‬ ‭are‬ ‭inconsistent‬ ‭with‬ ‭inversion-based‬ ‭products‬ ‭in‬ ‭the‬
‭tropics,‬ ‭possibly‬ ‭due‬ ‭to‬ ‭low‬ ‭sampling‬ ‭density‬‭in‬‭the‬‭region‬‭(Jung‬‭et‬‭al.,‬‭2020)‬‭.‬‭In‬‭situ‬‭data‬‭are‬
‭sparse‬ ‭and‬ ‭site‬ ‭history‬ ‭does‬ ‭not‬ ‭reflect‬ ‭larger-scale‬ ‭disturbance‬ ‭adequately.‬ ‭One‬ ‭benefit‬ ‭of‬
‭assimilating‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭concentration‬ ‭data‬ ‭is‬ ‭that‬ ‭it‬‭is‬‭one‬‭of‬‭the‬‭only‬‭datasets‬‭that‬‭can‬
‭provide‬‭a‬‭large‬‭spatial‬‭scale‬‭constraint‬‭(albeit‬‭indirect)‬‭on‬‭RECO‬‭because‬‭it‬‭is‬‭heavily‬‭influenced‬
‭by‬ ‭soil‬ ‭carbon‬ ‭stocks;‬ ‭thus,‬ ‭assimilating‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭data‬ ‭presents‬ ‭an‬ ‭opportunity‬ ‭to‬
‭improve‬ ‭the‬ ‭representation‬ ‭of‬ ‭both‬ ‭soil‬ ‭carbon‬ ‭flux‬ ‭and‬ ‭stock‬ ‭trajectories‬ ‭in‬ ‭LSMs,‬ ‭which‬ ‭is‬
‭crucial for future predictions regarding the carbon sink capacity of terrestrial ecosystems.‬

‭However,‬ ‭the‬ ‭assimilation‬ ‭of‬ ‭atmospheric‬ ‭CO‬‭2‬ ‭data‬ ‭requires‬ ‭coupling‬ ‭LSMs‬ ‭with‬ ‭atmospheric‬
‭transport‬ ‭models‬ ‭in‬ ‭order‬ ‭to‬ ‭scale‬ ‭the‬ ‭simulated‬ ‭land‬ ‭surface‬ ‭fluxes‬ ‭to‬ ‭atmospheric‬ ‭CO‬‭2‬

‭concentrations‬ ‭at‬ ‭specified‬ ‭vertical‬ ‭levels‬ ‭(for‬ ‭station‬ ‭data)‬ ‭or‬‭integrated‬‭over‬‭the‬‭atmospheric‬
‭column‬‭(for‬‭space-borne‬‭data).‬‭The‬‭observational‬‭constraints‬‭of‬‭atmospheric‬‭CO‬‭2‬ ‭data‬‭on‬‭LSM‬
‭parameters‬ ‭is‬ ‭also‬ ‭more‬ ‭"diffuse''‬ ‭than‬ ‭when‬ ‭assimilating‬ ‭surface‬‭observations.‬‭This‬‭is‬‭due‬‭to‬
‭the‬‭inclusion‬‭of‬‭additional‬‭modelling‬‭errors‬‭associated‬‭with‬‭the‬‭atmospheric‬‭model‬‭itself‬‭(physics‬
‭and‬ ‭spatial/vertical‬ ‭discretisation)‬ ‭and‬ ‭with‬ ‭the‬ ‭other‬ ‭CO‬‭2‬ ‭fluxes‬ ‭required‬ ‭as‬ ‭inputs‬ ‭(mainly‬
‭ocean‬‭fluxes,‬‭fossil‬‭fuel‬‭emissions,‬‭and‬‭biomass‬‭burning).‬‭The‬‭coupling‬‭also‬‭presents‬‭technical‬
‭and‬ ‭computational‬ ‭challenges.‬ ‭Compared‬ ‭to‬ ‭LSMs,‬ ‭the‬ ‭derivation‬ ‭of‬ ‭the‬ ‭tangent‬ ‭linear‬ ‭and‬
‭adjoint‬ ‭models‬‭of‬‭atmospheric‬‭transport‬‭models‬‭is‬‭more‬‭straightforward‬‭(Kaminski‬‭et‬‭al.,‬‭1999;‬
‭Meirink‬ ‭et‬ ‭al.,‬ ‭2008;‬ ‭Rödenbeck‬ ‭et‬ ‭al.,‬ ‭2003)‬‭,‬ ‭but‬ ‭their‬ ‭implementation‬ ‭increases‬ ‭the‬
‭computational‬ ‭load.‬ ‭One‬ ‭approach‬ ‭to‬ ‭overcome‬ ‭this‬ ‭issue‬ ‭is‬ ‭to‬ ‭use‬ ‭pre-calculated‬ ‭transport‬
‭fields‬ ‭of‬ ‭the‬ ‭sensitivity‬ ‭of‬ ‭mean‬‭atmospheric‬‭concentrations‬‭at‬‭selected‬‭stations‬‭to‬‭the‬‭surface‬
‭net‬‭CO‬‭2‬ ‭flux‬‭(see‬‭Peylin‬‭et‬‭al.‬‭(2016)‬‭;‬‭or‬‭Bacour‬‭et‬‭al.‬‭(2023)‬‭for‬‭further‬‭details).‬‭However,‬‭this‬
‭method‬ ‭has‬ ‭limited‬ ‭spatial‬ ‭and‬ ‭temporal‬ ‭coverage‬ ‭due‬ ‭to‬ ‭the‬ ‭finite‬ ‭time‬ ‭period‬ ‭of‬ ‭the‬
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‭precalculated‬ ‭sensitivities‬‭(estimating‬‭these‬‭sensitivities‬‭is‬‭also‬‭technically‬‭and‬‭computationally‬
‭expensive).‬ ‭Assimilation‬ ‭of‬ ‭space-borne‬ ‭retrievals‬ ‭of‬ ‭XCO‬‭2‬ ‭(column-averaged‬ ‭carbon‬‭dioxide)‬
‭with‬ ‭global‬ ‭coverage‬ ‭and‬ ‭pre-computed‬ ‭transport‬ ‭in‬‭SDBM‬‭and‬‭BETHY‬‭was‬‭demonstrated‬‭by‬
‭Kaminski‬ ‭et‬ ‭al.‬ ‭(2010)‬ ‭and‬ ‭Kaminski‬ ‭&‬ ‭Mathieu‬ ‭(2017)‬‭.‬ ‭Recent‬ ‭advances‬ ‭in‬ ‭the‬ ‭utilisation‬ ‭of‬
‭graphics‬ ‭accelerators‬ ‭(Chevallier‬ ‭et‬ ‭al.,‬ ‭2023)‬ ‭offer‬ ‭hope‬ ‭for‬ ‭a‬ ‭significant‬ ‭reduction‬ ‭in‬
‭computational‬ ‭times‬ ‭and‬ ‭the‬ ‭development‬ ‭of‬ ‭full‬ ‭coupling‬ ‭between‬ ‭LSMs‬ ‭and‬ ‭atmospheric‬
‭transport models in the near future.‬

‭While‬ ‭coupling‬‭to‬‭an‬‭atmospheric‬‭transport‬‭model‬‭at‬‭least‬‭permits‬‭the‬‭use‬‭of‬‭atmospheric‬‭CO‬‭2‬

‭data‬ ‭in‬ ‭parameter‬ ‭DA‬ ‭experiments,‬ ‭the‬‭ultimate‬‭goal‬‭for‬‭LSM‬‭parameter‬‭calibration‬‭is‬‭within‬‭a‬
‭fully‬ ‭coupled‬ ‭ESM.‬ ‭This‬ ‭would‬ ‭allow‬ ‭representation‬ ‭of‬ ‭carbon-climate‬ ‭and‬ ‭land-atmosphere‬
‭feedbacks‬ ‭within‬ ‭the‬ ‭optimisations.‬ ‭To‬ ‭date,‬ ‭there‬ ‭has‬ ‭been‬ ‭limited‬ ‭assessment‬ ‭of‬ ‭whether‬
‭posterior‬ ‭parameter‬ ‭values‬ ‭from‬ ‭offline‬‭DA‬‭experiments‬‭compare‬‭to‬‭retrieved‬‭values‬‭from‬‭fully‬
‭coupled‬ ‭runs‬ ‭(nor‬ ‭how‬ ‭retrieved‬ ‭values‬ ‭vary‬ ‭when‬ ‭different‬ ‭offline‬ ‭climate‬ ‭reanalysis‬ ‭forcing‬
‭products‬‭are‬‭used).‬‭To‬‭achieve‬‭this‬‭goal,‬‭LSM‬‭DA‬‭groups‬‭should‬‭learn‬‭from‬‭advances‬‭made‬‭in‬
‭the‬ ‭NWP‬ ‭community‬ ‭(de‬ ‭Rosnay‬ ‭et‬ ‭al.,‬ ‭2022)‬‭.‬ ‭As‬ ‭discussed‬ ‭at‬ ‭length‬ ‭in‬ ‭this‬ ‭review,‬ ‭while‬
‭computational‬‭cost‬‭has‬‭so‬‭far‬‭been‬‭a‬‭prohibiting‬‭factor‬‭in‬‭achieving‬‭full‬‭ESM‬‭coupling,‬‭new‬‭ML‬
‭techniques‬ ‭for‬ ‭model‬ ‭emulation‬ ‭(Sect.‬ ‭4.1)‬ ‭(Watson-Parris‬ ‭et‬ ‭al.,‬ ‭2021)‬ ‭and‬ ‭automatic‬
‭differentiation‬‭of‬‭model‬‭code‬‭(Gelbrecht‬‭et‬‭al.,‬‭2023)‬‭should‬‭help‬‭considerably‬‭in‬‭alleviating‬‭this‬
‭problem (see Sect. 3.7 for remaining challenges).‬

‭5.3‬ ‭Identifying‬ ‭and‬ ‭improving‬ ‭structural‬ ‭errors‬ ‭and‬ ‭model‬
‭representation‬
‭The‬ ‭best‬ ‭estimates‬ ‭of‬ ‭different‬‭parameters‬‭are‬‭very‬‭dependent‬‭on‬‭the‬‭experimental‬‭setup‬‭and‬
‭so‬ ‭few‬ ‭of‬ ‭the‬ ‭optimised‬ ‭parameter‬ ‭values‬‭are‬‭actually‬‭used‬‭in‬‭the‬‭operational‬‭version‬‭of‬‭each‬
‭LSM—although‬ ‭this‬ ‭is‬ ‭something‬ ‭to‬ ‭strive‬ ‭for‬ ‭in‬ ‭future‬ ‭efforts.‬ ‭Indeed,‬ ‭even‬ ‭when‬ ‭calibrated‬
‭parameters‬ ‭have‬ ‭been‬ ‭shown‬ ‭to‬ ‭improve‬ ‭model‬ ‭performance,‬ ‭getting‬ ‭them‬ ‭to‬ ‭be‬ ‭the‬ ‭new‬
‭defaults‬ ‭in‬ ‭coupled‬ ‭models‬ ‭is‬ ‭non-trivial‬ ‭(Kyker-Snowman‬ ‭et‬ ‭al.,‬ ‭2022)‬‭.‬ ‭Instead,‬ ‭the‬ ‭main‬
‭strength‬‭of‬‭parameter‬‭estimation‬‭for‬‭LSMs‬‭and,‬‭therefore,‬‭its‬‭main‬‭purpose‬‭thus‬‭far,‬‭has‬‭been‬‭to‬
‭identify‬ ‭structural‬ ‭errors.‬ ‭If‬ ‭we‬ ‭cannot‬ ‭match‬ ‭observations‬ ‭within‬ ‭the‬ ‭bounds‬ ‭of‬ ‭their‬ ‭known‬
‭uncertainties‬ ‭by‬ ‭simply‬ ‭changing‬ ‭the‬ ‭parameter‬ ‭values,‬ ‭this‬ ‭suggests‬‭that‬‭a‬‭process‬‭is‬‭poorly‬
‭represented‬ ‭or‬ ‭missing‬ ‭from‬ ‭the‬ ‭model.‬ ‭This‬ ‭critical‬ ‭information‬‭is‬‭then‬‭fed‬‭back‬‭to‬‭the‬‭model‬
‭developers‬ ‭to‬ ‭ensure‬ ‭changes‬ ‭are‬ ‭made‬ ‭to‬ ‭the‬ ‭model,‬ ‭before‬ ‭restarting‬ ‭the‬ ‭cycle‬ ‭of‬ ‭model‬
‭calibration.‬ ‭Although‬ ‭this‬ ‭exchange‬ ‭is‬ ‭key‬ ‭in‬ ‭developing‬ ‭any‬ ‭LSM,‬ ‭it‬ ‭is‬ ‭rarely‬ ‭published.‬
‭Nevertheless,‬ ‭a‬ ‭few‬ ‭documented‬ ‭examples‬‭from‬‭the‬‭ORCHIDEE‬‭land‬‭surface‬‭model‬‭workflow‬
‭exist.‬‭MacBean‬‭et‬‭al.‬‭(2015)‬‭demonstrated‬‭that‬‭temperate‬‭broadleaved‬‭temperature‬‭thresholds‬
‭for‬ ‭senescence‬ ‭in‬ ‭the‬ ‭ORCHIDEE‬ ‭LSM‬ ‭were‬ ‭too‬ ‭low.‬ ‭The‬ ‭newly‬ ‭optimised‬ ‭parameters‬ ‭have‬
‭since‬ ‭been‬ ‭included‬ ‭in‬ ‭ORCHIDEE‬ ‭trunk‬ ‭versions.‬ ‭Salmon‬ ‭et‬ ‭al.‬ ‭(2022)‬ ‭found‬ ‭that‬ ‭when‬
‭constraining‬ ‭parameters‬ ‭of‬ ‭the‬ ‭ORCHIDEE‬ ‭LSM‬ ‭against‬ ‭methane‬ ‭emissions‬ ‭in‬ ‭northern‬
‭peatlands,‬‭the‬‭process‬‭providing‬‭enough‬‭active‬‭carbon‬‭for‬‭methanogenesis‬‭was‬‭missing.‬‭Raoult‬
‭et‬‭al.‬‭(2023)‬‭found‬‭by‬‭assimilating‬‭MODIS‬‭snow‬‭albedo‬‭over‬‭Greenland‬‭that‬‭a‬‭three-layered‬‭ice‬
‭sheet‬ ‭model‬ ‭was‬ ‭insufficient‬ ‭to‬ ‭simulate‬ ‭accurately‬ ‭both‬ ‭the‬ ‭snow‬ ‭albedo‬ ‭and‬ ‭runoff‬ ‭rates,‬
‭leading to further discretisation of the model.‬
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‭However,‬‭careful‬‭consideration‬‭is‬‭needed‬‭to‬‭avoid‬‭equating‬‭the‬‭status‬‭quo‬‭of‬‭making‬‭changes‬‭to‬
‭models—often‬ ‭involving‬ ‭increased‬ ‭complexity—with‬ ‭progress‬ ‭in‬ ‭model‬ ‭development.‬ ‭While‬
‭identifying‬ ‭and‬ ‭addressing‬ ‭structural‬ ‭errors‬ ‭is‬ ‭crucial,‬ ‭introducing‬ ‭new‬ ‭processes‬ ‭or‬ ‭refining‬
‭existing‬ ‭ones‬ ‭can‬ ‭sometimes‬ ‭lead‬ ‭to‬ ‭models‬ ‭that‬ ‭are‬ ‭more‬ ‭complex‬ ‭without‬ ‭necessarily‬
‭improving‬ ‭their‬ ‭predictive‬ ‭power.‬ ‭It‬ ‭is‬ ‭important‬ ‭to‬ ‭strike‬ ‭a‬ ‭balance‬‭between‬‭enhancing‬‭model‬
‭accuracy‬ ‭and‬ ‭maintaining‬ ‭model‬ ‭parsimony.‬ ‭Overly‬ ‭complex‬ ‭models‬ ‭can‬ ‭become‬ ‭difficult‬ ‭to‬
‭validate‬ ‭and‬ ‭manage,‬ ‭potentially‬ ‭obscuring‬ ‭rather‬ ‭than‬ ‭clarifying‬ ‭underlying‬ ‭processes.‬
‭Therefore,‬‭the‬‭goal‬‭should‬‭be‬‭to‬‭make‬‭thoughtful‬‭adjustments‬‭that‬‭improve‬‭model‬‭performance‬
‭while‬‭ensuring‬‭that‬‭the‬‭added‬‭complexity‬‭is‬‭justified‬‭by‬‭significant‬‭improvements‬‭in‬‭accuracy‬‭or‬
‭functionality.‬ ‭This‬ ‭approach‬ ‭ensures‬ ‭that‬ ‭models‬ ‭remain‬ ‭robust‬ ‭and‬ ‭efficient‬ ‭and‬ ‭that‬ ‭any‬
‭modifications contribute meaningfully to their overall effectiveness.‬

‭As‬ ‭parameter‬ ‭estimation‬ ‭methods‬ ‭and‬ ‭systems‬ ‭become‬ ‭more‬ ‭developed,‬ ‭we‬ ‭can‬ ‭run‬ ‭more‬
‭experiments‬ ‭to‬ ‭quantify‬ ‭and‬ ‭reduce‬ ‭uncertainty‬ ‭due‬ ‭to‬ ‭poorly‬ ‭constrained‬ ‭parameters‬ ‭using‬
‭different‬‭driving‬‭datasets‬‭and‬‭versions‬‭of‬‭the‬‭model‬‭that‬‭account‬‭for‬‭different‬‭representations‬‭of‬
‭processes.‬ ‭In‬ ‭the‬ ‭wider‬‭climate‬‭science‬‭literature,‬‭there‬‭exist‬‭promising‬‭approaches‬‭to‬‭provide‬
‭objective‬ ‭assessments‬ ‭of‬ ‭structural‬ ‭and‬ ‭parametric‬ ‭components‬ ‭of‬‭model‬‭error‬‭(Peatier‬‭et‬‭al.,‬
‭2023)‬‭.‬ ‭Moreover,‬ ‭the‬ ‭proposed‬ ‭move‬ ‭to‬ ‭more‬ ‭modular‬‭LSMs‬‭(Fisher‬‭&‬‭Koven,‬‭2020)‬‭will‬‭also‬
‭allow‬‭for‬‭different‬‭processes‬‭in‬‭the‬‭model‬‭to‬‭be‬‭isolated‬‭and‬‭calibrated‬‭sequentially,‬‭reducing‬‭the‬
‭scale‬ ‭of‬ ‭parameter‬ ‭subspaces‬ ‭to‬ ‭be‬ ‭calibrated‬ ‭and‬ ‭enabling‬ ‭better‬ ‭testing‬ ‭of‬ ‭alternative‬
‭hypotheses‬ ‭(e.g.,‬ ‭different‬ ‭stomatal‬ ‭optimisation‬ ‭theories)‬ ‭and‬ ‭facilitate‬ ‭collaboration‬ ‭across‬
‭different modelling groups.‬

‭5.4‬ ‭International‬ ‭collaboration:‬ ‭intercomparison‬ ‭studies‬ ‭and‬
‭shared toolboxes‬
‭Efforts‬ ‭by‬ ‭AIMES‬ ‭and‬ ‭ILMF‬ ‭to‬ ‭build‬ ‭a‬ ‭Land‬ ‭Data‬ ‭Assimilation‬ ‭Community‬ ‭have‬ ‭significantly‬
‭advanced‬ ‭knowledge‬ ‭sharing‬ ‭through‬ ‭online‬ ‭workshops‬ ‭and‬ ‭town‬ ‭halls,‬ ‭highlighting‬ ‭the‬
‭importance‬ ‭of‬ ‭continued‬ ‭collaboration.‬ ‭The‬ ‭goal‬ ‭is‬ ‭to‬ ‭facilitate‬ ‭cross-group‬ ‭interaction‬ ‭for‬ ‭DA‬
‭methods‬ ‭training,‬ ‭knowledge‬ ‭exchange‬ ‭on‬ ‭technical‬ ‭DA‬ ‭developments‬ ‭and‬ ‭calibrated‬ ‭model‬
‭intercomparison‬ ‭projects.‬ ‭The‬ ‭learning‬ ‭curve‬ ‭associated‬ ‭with‬ ‭learning‬ ‭DA‬ ‭for‬ ‭land‬ ‭surface‬
‭modelling‬ ‭is‬ ‭steep.‬ ‭This‬ ‭is‬ ‭exacerbated‬ ‭by‬ ‭the‬ ‭lack‬ ‭of‬ ‭community-wide‬ ‭educational‬ ‭materials‬
‭(although‬‭some‬‭resources‬‭exist,‬‭see‬‭https://land-da-community.github.io/training/‬‭for‬‭a‬‭selective‬
‭list,‬ ‭last‬ ‭accessed‬ ‭27th‬ ‭August‬ ‭2024)‬‭.‬ ‭Understanding‬‭of‬‭DA‬‭methods‬‭is‬‭also‬‭hampered‬‭by‬‭the‬
‭fact‬ ‭that‬ ‭technical‬ ‭studies‬ ‭testing‬ ‭different‬ ‭DA‬ ‭configurations‬ ‭are‬ ‭generally‬ ‭buried‬ ‭in‬
‭supplementary‬‭materials‬‭or‬‭not‬‭published‬‭at‬‭all.‬‭Parameter‬‭DA‬‭system‬‭intercomparison‬‭studies‬
‭would‬‭help‬‭to‬‭determine‬‭how‬‭much‬‭parameter‬‭uncertainty‬‭is‬‭contributing‬‭to‬‭the‬‭spread‬‭in‬‭model‬
‭projections.‬ ‭This‬ ‭would‬ ‭signal‬ ‭to‬ ‭the‬ ‭wider‬ ‭LSM‬ ‭community‬ ‭that‬ ‭parameter‬ ‭uncertainty‬
‭quantification‬ ‭and‬ ‭reduction‬ ‭are‬ ‭needed‬ ‭to‬ ‭improve‬ ‭future‬ ‭projections‬ ‭of‬ ‭carbon-climate‬
‭feedbacks‬ ‭and‬ ‭land-atmosphere‬ ‭interactions.‬ ‭One‬ ‭desirable‬ ‭outcome‬ ‭may‬ ‭be‬ ‭to‬ ‭create‬ ‭and‬
‭share‬ ‭statistical‬ ‭toolboxes‬ ‭utilising‬ ‭community‬ ‭cyberinfrastructure,‬ ‭for‬ ‭example,‬ ‭following‬ ‭the‬
‭pioneering‬ ‭example‬ ‭of‬ ‭PEcAn‬ ‭(Predictive‬ ‭Ecosystem‬ ‭Analyzer;‬ ‭Fer,‬ ‭Gardella,‬ ‭et‬ ‭al.,‬ ‭2021;‬
‭LeBauer‬ ‭et‬ ‭al.,‬ ‭2013)‬‭,‬ ‭which‬ ‭offers‬ ‭a‬ ‭complete‬ ‭end-to-end‬ ‭informatic‬ ‭structure,‬ ‭as‬ ‭well‬ ‭as‬
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‭open-source‬ ‭land‬ ‭surface‬ ‭model‬ ‭benchmarking‬ ‭tools‬ ‭(iLAMB:‬‭Collier‬‭et‬‭al.,‬‭2018;‬‭Seiler‬‭et‬‭al.,‬
‭2022)‬‭.‬‭While‬‭LSMs‬‭with‬‭established‬‭DA‬‭systems‬‭may‬‭not‬‭switch‬‭to‬‭a‬‭community‬‭toolbox,‬‭such‬
‭shared‬‭toolboxes‬‭will‬‭facilitate‬‭knowledge‬‭sharing,‬‭intercomparison‬‭studies‬‭and‬‭training‬‭of‬‭early‬
‭career‬ ‭researchers.‬ ‭Simultaneously,‬ ‭if‬ ‭LSMs‬ ‭with‬ ‭established‬ ‭DA‬‭systems‬‭made‬‭more‬‭of‬‭their‬
‭tools‬ ‭available‬ ‭within‬ ‭established‬ ‭community‬ ‭toolboxes,‬ ‭it‬ ‭would‬ ‭help‬ ‭reduce‬ ‭redundant‬
‭research‬ ‭efforts‬ ‭and‬‭make‬‭the‬‭adoption‬‭of‬‭such‬‭tools‬‭easier.‬‭This‬‭is‬‭one‬‭of‬‭the‬‭big‬‭lessons‬‭we‬
‭can‬ ‭learn‬ ‭as‬ ‭a‬ ‭community‬ ‭from‬ ‭the‬ ‭recent‬ ‭boom‬ ‭in‬ ‭ML.‬ ‭In‬‭addition‬‭to‬‭the‬‭improved‬‭hardware‬
‭(e.g.,‬‭GPUs),‬‭new‬‭algorithms‬‭and‬‭huge‬‭datasets,‬‭one‬‭of‬‭the‬‭reasons‬‭ML‬‭has‬‭been‬‭so‬‭successful‬
‭is‬ ‭because‬ ‭the‬ ‭research‬ ‭has‬ ‭been‬ ‭done‬ ‭with‬ ‭a‬ ‭collaborative‬ ‭spirit‬ ‭and‬ ‭developed‬ ‭using‬
‭open-source frameworks (e.g., TensorFlow, PyTorch, JAX).‬

‭5.5‬ ‭Propagation‬ ‭of‬ ‭error‬ ‭reductions‬ ‭to‬ ‭constrain‬ ‭climate‬
‭predictions‬
‭Many‬‭studies‬‭have‬‭successfully‬‭constrained‬‭parameter‬‭uncertainty‬‭in‬‭LSMs,‬‭leading‬‭to‬‭reduced‬
‭uncertainty‬ ‭in‬ ‭contemporary‬ ‭land-atmosphere‬ ‭carbon‬ ‭fluxes.‬ ‭However,‬ ‭this‬ ‭reduction‬ ‭in‬
‭uncertainty‬ ‭has‬ ‭not‬ ‭been‬ ‭fully‬ ‭propagated‬ ‭to‬ ‭constrain‬ ‭future‬ ‭projections.‬ ‭There‬ ‭is‬ ‭a‬ ‭clear‬
‭opportunity‬‭to‬‭take‬‭this‬‭extra‬‭step‬‭to‬‭enable‬‭observationally‬‭constrained‬‭probabilistic‬‭statements‬
‭to‬ ‭be‬ ‭made‬ ‭about‬ ‭the‬ ‭future‬ ‭of‬ ‭the‬ ‭land‬‭biosphere.‬ ‭Such‬‭efforts‬‭are‬‭already‬‭commonplace‬‭in‬
‭ensembles‬ ‭of‬ ‭reduced‬ ‭complexity‬ ‭models‬ ‭(Sanderson,‬ ‭2020;‬ ‭Smith‬ ‭et‬ ‭al.,‬ ‭2024)‬‭,‬‭where‬‭large‬
‭ensembles‬‭of‬‭future‬‭projections‬‭are‬‭computationally‬‭trivial,‬‭but‬‭the‬‭difficulty‬‭of‬‭spinning‬‭up‬‭slow‬
‭carbon‬ ‭pool‬ ‭processes‬ ‭and‬ ‭ocean‬ ‭circulation‬ ‭in‬ ‭ESMs‬ ‭remains‬ ‭a‬ ‭challenge‬ ‭for‬ ‭probabilistic‬
‭coupled‬ ‭projections‬ ‭with‬ ‭ESMs‬ ‭(without‬ ‭flux‬ ‭corrections,‬ ‭(Irvine‬ ‭et‬ ‭al.,‬ ‭2013)‬‭.‬ ‭However,‬ ‭w‬‭ith‬
‭increased‬ ‭computational‬ ‭power,‬ ‭we‬ ‭are‬ ‭acquiring‬ ‭the‬ ‭capability‬ ‭to‬ ‭run‬ ‭LSMs‬ ‭as‬ ‭ensembles‬
‭rather‬‭than‬‭relying‬‭on‬‭a‬‭single‬‭realisation,‬‭thereby‬‭enabling‬‭us‬‭to‬‭better‬‭capture‬‭the‬‭uncertainty‬
‭of model predictions‬‭(Arora et al., 2023)‬‭.‬

‭By‬‭sampling‬‭from‬‭the‬‭posterior‬‭distributions‬‭after‬‭a‬‭PDA‬‭experiment,‬‭we‬‭can‬‭generate‬‭ensemble‬
‭simulations‬ ‭which‬ ‭can‬ ‭be‬ ‭used‬ ‭to‬ ‭explore‬ ‭future‬ ‭scenarios‬ ‭and‬ ‭idealised‬ ‭experiments‬ ‭(e.g.‬
‭1%/yr‬‭CO‬‭2‬ ‭concentration‬‭increase)‬‭and‬‭quantify‬‭constrained‬‭distributions‬‭of‬‭carbon-climate-CO‬‭2‬

‭feedbacks.‬‭For‬‭example,‬‭by‬‭weighting‬‭the‬‭probability‬‭of‬‭each‬‭of‬‭the‬‭ensemble‬‭members,‬‭we‬‭can‬
‭create‬ ‭probability‬ ‭density‬ ‭functions‬ ‭of‬ ‭future‬ ‭land‬ ‭carbon‬ ‭storage‬ ‭for‬ ‭different‬ ‭locations,‬ ‭thus‬
‭narrowing‬ ‭the‬ ‭associated‬ ‭uncertainty‬‭of‬‭the‬‭future‬‭land‬‭sink‬‭and‬‭subsequently‬‭leading‬‭to‬‭more‬
‭accurate‬ ‭calculations‬‭of‬‭carbon‬‭budget‬‭estimates.‬‭Although‬‭this‬‭can‬‭easily‬‭be‬‭done‬‭for‬‭simpler‬
‭models‬ ‭where‬ ‭MCMC‬ ‭can‬ ‭be‬ ‭applied,‬ ‭for‬ ‭computational‬ ‭demanding‬ ‭models,‬ ‭there‬ ‭are‬ ‭two‬
‭critical‬‭yet‬‭distinct‬‭questions‬‭in‬‭this‬‭area‬‭that‬‭need‬‭addressing.‬‭The‬‭first‬‭is‬‭how‬‭to‬‭generate‬‭joint‬
‭posterior‬ ‭distributions‬ ‭for‬ ‭large‬ ‭models,‬ ‭which‬ ‭likely‬ ‭requires‬ ‭the‬ ‭use‬ ‭of‬ ‭emulators‬ ‭(see‬ ‭Sect.‬
‭4.1).‬ ‭The‬ ‭second‬ ‭is‬ ‭how‬ ‭to‬ ‭intelligently‬ ‭select‬ ‭parameter‬ ‭vectors‬ ‭from‬ ‭those‬ ‭distributions.‬
‭Currently,‬ ‭simple‬ ‭models‬ ‭might‬ ‭propagate‬ ‭uncertainty‬ ‭by‬‭using‬‭100-1000‬‭ensemble‬‭members,‬
‭but‬ ‭protocols‬ ‭like‬ ‭that‬ ‭used‬ ‭in‬ ‭the‬ ‭Coupled‬ ‭Model‬ ‭Intercomparison‬ ‭Project‬‭(CMIP)‬‭are‬‭not‬‭yet‬
‭adopting‬ ‭such‬ ‭large‬ ‭ensembles,‬ ‭again‬ ‭due‬ ‭to‬ ‭computational‬ ‭expense‬‭and‬‭constraints‬‭on‬‭data‬
‭storage.‬‭As‬‭a‬‭climate‬‭community,‬‭we‬‭should‬‭be‬‭striving‬‭to‬‭move‬‭towards‬‭using‬‭data-constrained‬
‭ensemble‬ ‭simulations‬ ‭in‬ ‭CMIP‬ ‭or‬ ‭the‬ ‭TRENDY‬ ‭model‬ ‭intercomparison‬ ‭project‬ ‭(Sitch‬ ‭et‬ ‭al.,‬
‭2024)‬‭to‬‭quantify‬‭uncertainties‬‭in‬‭model‬‭predictions‬‭reported‬‭in‬‭the‬‭Intergovernmental‬‭Panel‬‭on‬
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‭Climate‬ ‭Change‬‭(IPCC)‬‭8‬‭th‬ ‭Assessment‬‭Report‬‭,‬‭the‬‭annual‬‭Global‬ ‭Carbon‬‭Budget‬‭(GCB)‬‭and‬
‭other‬ ‭emerging‬ ‭frameworks‬ ‭quantifying‬ ‭land‬ ‭carbon‬ ‭trajectories.‬ ‭Therefore,‬ ‭we‬ ‭must‬ ‭develop‬
‭methods‬ ‭to‬ ‭maximise‬ ‭the‬ ‭propagation‬ ‭and‬ ‭partitioning‬ ‭of‬ ‭uncertainty‬ ‭with‬ ‭a‬ ‭limited‬‭number‬‭of‬
‭ensemble‬‭runs.‬‭Constraining‬‭parameter‬‭uncertainty‬‭via‬‭improved‬‭DA‬‭and‬‭ML‬‭techniques‬‭should‬
‭also‬ ‭help‬ ‭to‬ ‭reduce‬ ‭inter-model‬ ‭spread‬ ‭in‬ ‭CMIP‬‭and‬‭TRENDY,‬‭as‬‭model‬‭differences‬‭are‬‭likely‬
‭partly attributable to variations in parameter values between models.‬

‭Other‬ ‭international‬ ‭frameworks‬ ‭that‬ ‭oversee‬ ‭policies‬ ‭and‬ ‭socioeconomic‬ ‭management‬ ‭of‬
‭terrestrial‬‭carbon‬‭stocks‬‭–‬‭such‬‭as‬‭the‬‭voluntary‬‭carbon‬‭market‬‭and‬‭national‬‭emissions‬‭reporting‬
‭for‬‭Nationally‬‭Determined‬‭Contributions‬‭under‬‭the‬‭Paris‬‭Agreement‬‭–‬‭already‬‭require‬‭estimates‬
‭of‬‭model‬‭uncertainty;‬‭however,‬‭so‬‭far‬‭the‬‭models‬‭used‬‭in‬‭voluntary‬‭carbon‬‭market‬‭offset‬‭project‬
‭verification‬‭tend‬‭to‬‭be‬‭of‬‭simple‬‭to‬‭intermediate‬‭complexity,‬‭and‬‭not‬‭full‬‭complexity‬‭LSMs.‬‭Better‬
‭estimating‬ ‭uncertainty‬ ‭in‬ ‭LSMs‬ ‭via‬ ‭methods‬ ‭such‬ ‭as‬ ‭parameter‬ ‭DA‬ ‭should‬ ‭therefore‬‭facilitate‬
‭their use in a wider range of policy and carbon management initiatives.‬

‭6. Summary and conclusion‬
‭Improving‬‭the‬‭accuracy‬‭of‬‭land‬‭surface‬‭models‬‭(LSMs)‬‭is‬‭of‬‭vital‬‭importance‬‭since‬‭land‬‭surface‬
‭feedbacks‬ ‭on‬ ‭climate‬ ‭change‬ ‭represent‬ ‭one‬ ‭of‬ ‭the‬ ‭largest‬ ‭sources‬ ‭of‬ ‭uncertainty‬ ‭in‬ ‭climate‬
‭change‬ ‭projections.‬ ‭Parameter‬ ‭data‬ ‭assimilation‬ ‭is‬ ‭critical‬ ‭for‬‭enhancing‬‭the‬‭performance‬‭and‬
‭reliability‬ ‭of‬ ‭these‬ ‭LSMs.‬ ‭This‬ ‭process‬ ‭involves‬ ‭determining‬ ‭the‬ ‭best‬ ‭estimates‬ ‭of‬ ‭model‬
‭parameters,‬ ‭and‬ ‭their‬ ‭uncertainties,‬ ‭that‬ ‭best‬ ‭align‬ ‭the‬ ‭model‬ ‭outputs‬ ‭with‬ ‭observed‬ ‭data.‬
‭Effective‬ ‭parameter‬ ‭estimation‬ ‭helps‬ ‭in‬ ‭capturing‬ ‭the‬ ‭complex‬ ‭dynamics‬ ‭of‬ ‭land-atmosphere‬
‭interactions‬‭and‬‭improves‬‭the‬‭model's‬‭ability‬‭to‬‭simulate‬‭real-world‬‭phenomena.‬‭However,‬‭LSMs‬
‭used‬ ‭to‬ ‭predict‬ ‭future‬ ‭climate‬ ‭scenarios‬ ‭(e.g.,‬ ‭when‬ ‭coupled‬ ‭to‬ ‭Earth‬ ‭System‬ ‭Models)‬ ‭are‬
‭complex‬ ‭in‬ ‭nature‬ ‭leading‬ ‭to‬ ‭many‬ ‭challenges‬ ‭when‬ ‭performing‬ ‭global‬ ‭scale‬ ‭optimisations.‬
‭Nevertheless,‬‭advances‬‭in‬‭computational‬‭capability,‬‭novel‬‭datasets‬‭and‬‭emerging‬‭technologies‬
‭offer promising avenues for improving parameter accuracy and model calibration.‬

‭Machine‬‭learning‬‭(ML)‬‭clearly‬‭has‬‭a‬‭pivotal‬‭part‬‭to‬‭play‬‭in‬‭the‬‭future‬‭of‬‭land‬‭surface‬‭model‬‭data‬
‭assimilation,‬ ‭helping‬ ‭to‬‭streamline‬‭the‬‭assimilation‬‭process,‬‭manage‬‭large‬‭datasets‬‭and‬‭speed‬
‭up‬‭otherwise‬‭computationally‬‭demanding‬‭processes.‬‭International‬‭collaboration‬‭is‬‭crucial‬‭in‬‭this‬
‭endeavour,‬‭as‬‭shared‬‭knowledge‬‭and‬‭resources‬‭can‬‭significantly‬‭accelerate‬‭the‬ ‭advancement‬
‭of‬ ‭LSM‬ ‭calibration‬‭and‬‭data‬‭assimilation.‬‭Efforts‬‭to‬‭build‬‭a‬‭Land‬‭Data‬‭Assimilation‬‭Community,‬
‭such‬‭as‬‭those‬‭by‬‭the‬‭AIMES‬‭Land‬‭Data‬‭Assimilation‬‭Working‬‭Group‬‭and‬‭the‬‭International‬‭Land‬
‭Model‬ ‭Forum,‬ ‭have‬ ‭already‬ ‭made‬ ‭substantial‬ ‭progress‬ ‭in‬ ‭facilitating‬ ‭cross-group‬ ‭interactions.‬
‭These‬ ‭collaborative‬ ‭platforms‬ ‭are‬ ‭essential‬ ‭for‬ ‭training,‬ ‭knowledge‬ ‭exchange,‬ ‭and‬ ‭the‬
‭development of standardised methodologies, ultimately leading to more accurate LSMs.‬
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‭parameter‬ ‭estimation‬ ‭for‬ ‭land‬ ‭data‬ ‭assimilation,‬ ‭and‬ ‭the‬ ‭opportunities‬ ‭offered‬ ‭by‬ ‭machine‬
‭learning—it‬ ‭does‬ ‭not‬ ‭include‬ ‭the‬ ‭specific‬ ‭use‬ ‭of‬ ‭any‬ ‭particular‬ ‭software‬ ‭or‬ ‭results‬ ‭involving‬
‭specific data products.‬
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‭Appendix‬
‭The‬ ‭process-based‬ ‭models‬‭mentioned‬‭through‬‭the‬‭paper‬‭are‬‭listed‬‭in‬‭Table‬‭A1.‬‭This‬‭list‬‭cover‬
‭wide‬ ‭spectrum‬ ‭of‬ ‭land‬ ‭models‬ ‭ranging‬ ‭in‬ ‭complexity‬ ‭and‬ ‭computational‬ ‭demand,‬ ‭including‬
‭LSMs‬ ‭that‬‭simulate‬‭interactions‬‭between‬‭carbon,‬‭water,‬‭and‬‭energy‬‭cycles,‬‭often‬‭incorporating‬
‭other‬ ‭biogeochemical‬ ‭cycles‬ ‭(e.g.,‬ ‭nitrogen‬ ‭cycling)‬ ‭and‬ ‭dynamic‬ ‭vegetation‬ ‭processes;‬
‭stand-alone‬ ‭DGVMs‬ ‭that‬ ‭have‬ ‭more‬ ‭complex‬ ‭representation‬ ‭of‬ ‭vegetation‬ ‭demography‬
‭(so-called‬ ‭vegetation‬ ‭demographic‬ ‭models,‬ ‭VDMs)‬ ‭but‬ ‭may‬ ‭not‬ ‭fully‬ ‭represent‬ ‭energy‬ ‭and‬
‭hydrology‬ ‭components;‬ ‭and‬ ‭ecosystem‬ ‭models‬ ‭that‬ ‭primarily‬ ‭represent‬ ‭carbon‬ ‭cycling‬ ‭and‬
‭simple‬‭representations‬‭of‬‭vegetation‬‭and‬‭hydrology‬‭processes‬‭but‬‭may‬‭lack‬‭the‬‭full‬‭mechanistic‬
‭representation‬‭of‬‭energy‬‭and‬‭hydrological‬‭processes‬‭or‬‭vegetation‬‭dynamics‬‭seen‬‭in‬‭LSMs‬‭and‬
‭VDMs.‬

‭Table A1‬‭. References for the process-based models‬‭mentioned in this article.‬

‭Acronym‬ ‭Full name‬ ‭Model reference‬

‭BETHY‬ ‭Biosphere Energy Transfer Hydrology‬ ‭Knorr (2000)‬

‭CABLE‬ ‭Community Atmosphere Biosphere‬
‭Land Exchange‬

‭Kowalczyk et al., (2006)‬

‭CARDAMOM‬ ‭CARbon DAta MOdel fraMework‬ ‭Bloom‬ ‭et‬ ‭al.‬ ‭(2016);‬ ‭Smallman‬ ‭et‬
‭al. (2021)‬

‭CLASSIC‬ ‭Canadian Land Surface Scheme‬
‭Including Biogeochemical Cycles‬

‭Melton et al. (2020)‬

‭CLM‬ ‭Community Land Model‬ ‭Lawrence et al. (2019)‬

‭D&B‬ ‭DALEC & BETHY‬ ‭Knorr et al. (2024)‬

‭DALEC‬ ‭Data Assimilation Linked Ecosystem‬
‭Carbon‬

‭Williams et al. (2005)‬

‭ED‬ ‭Ecosystem Demography‬ ‭Ma‬ ‭et‬ ‭al.‬ ‭(2022);‬ ‭Moorcroft‬ ‭et‬ ‭al.‬
‭(2001)‬

‭ECLand‬ ‭European Centre for Medium-range‬
‭Weather Forecasts Land model‬
‭(based on CHTESSEL: Carbon-Hydrology‬
‭Tiled Scheme for Surface Exchanges over‬
‭Land)‬

‭Boussetta et al. (2021)‬
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‭FATES‬ ‭Functionally Assembled Terrestrial‬
‭Ecosystem Simulator‬

‭Fisher‬ ‭et‬ ‭al.‬ ‭(2015);‬ ‭Koven‬ ‭et‬ ‭al.‬
‭(2020)‬

‭FöBAAR‬ ‭Forest Biomass, Assimilation, Allocation‬
‭and Respiration‬

‭Keenan et al. (2012)‬

‭JULES‬ ‭Joint UK Land Environment Simulator‬ ‭Best‬ ‭et‬ ‭al.‬ ‭(2011);‬ ‭Clark‬ ‭et‬ ‭al.‬
‭(2011)‬

‭JSBACH‬ ‭Jena Scheme for Biosphera-‬
‭Atmosphere Coupling in Hamburg‬

‭Mauritsen‬‭et‬‭al‬‭(2019);‬‭Reick‬‭et‬‭al.‬
‭(2021)‬

‭LPJ-GUESS‬ ‭Lund-Potsdam-Jena General‬
‭Ecosystem Simulator‬

‭Smith (2007)‬

‭Noah‬ ‭-‬ ‭Ek et al. (2003)‬

‭ORCHIDEE‬ ‭Organising Carbon and Hydrology In‬
‭Dynamic Ecosystems‬

‭Krinner‬ ‭et‬ ‭al.‬ ‭(2005);‬ ‭Vuichard‬ ‭et‬
‭al.‬ ‭(2019);‬ ‭Zaehle,‬ ‭Friend,‬ ‭et‬ ‭al.‬
‭(2010)‬

‭SDBM‬ ‭Simple Diagnostic Biosphere Model‬ ‭Knorr & Heimann (1995)‬

‭SIPNET‬ ‭Simplified Photosynthesis and‬
‭Evapotranspiration‬

‭Braswell et al. (2005)‬

‭TECOS‬ ‭terrestrial ecosystem‬ ‭Xu et al., (2006)‬
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