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Abstract—Graph coarsening is an important step for many
multi-level algorithms, most notably graph partitioning. How-
ever, such methods often utilize an iterative approach, where
a new coarser graph representation is explicitly constructed
and retained in memory at each level of coarsening. These
overheads can be prohibitive for processing massive datasets or in
constrained-memory environments like GPUs. We develop a data
structure (CM-Graph) for representing coarsened graphs, which
can be used with any adjacency-based graph representation. The
CM-Graph data structure uses a constant amount of memory,
regardless of the desired level of coarsening. In addition, CM-
Graph does not require modification to the existing graph
representation, it offers a several-fold memory savings in practice,
and it can even accelerate graph coarsening, due to not having to
explicitly construct coarser graph structures. We further describe
efficient GPU parallelizations of the CM-Graph subroutines for
adjacency access, which can also be utilized in most arbitrary
graph computations without modification.

Index Terms—graph coarsening, graph partitioning, parallel
algorithms

I. INTRODUCTION

This paper considers the problem of graph coarsening with

a specific focus on its usage within a graph partitioning-like

framework. Graph coarsening can be described as the process

of taking some input graph G (or matrix) and producing

a smaller output G′ that closely represents G per some

objective(s) [1]. The primary motivation for coarsening is to

accelerate a computationally difficult problem on a given input.

Coarsening has found wide applications in graph partition-

ing [2, 3] and clustering [4], graph neural networks [5], graph

embedding [6], and linear algebraic applications [7, 8, 9],

among a plethora of others [10].

The vast majority of prior work in graph coarsening has

focused on how to optimize the coarsening procedure to

produce some G′ that meets the desired objectives for a

given application. Generally, these optimizations have focused

on computational time to solution [3], parallelization effi-

ciency [2, 11, 12], and quality of solution per the given

objective [13, 14, 15]. Many coarsening procedures, partic-

ularly in graph partitioning [16, 17], follow a basic multi-

level approach, where the graph G is iteratively coarsened until

the resulting G′ is small enough that the target computational

problem becomes tractable. A solution on the coarsened graph

is then extrapolated back to the original input.

For our primary motivating problem, graph partitioning,

such a procedure produces many intermediate Gi graphs that

are maintained in memory to iteratively refine the produced

solution on G′ as it is extrapolated back to the original G.

This requires the explicit creation and storage of all inter-

mediate graphs in memory or disk. State-of-the-art coarsening

implementations often spend more than half of their processing

time during graph construction [2]. For massive graphs or

when processing in limited memory devices (e.g., GPUs),

these overheads can be prohibitive to scalability.

Contributions: We introduce CM-Graph and describe its

implementation and optimizations for serial and shared mem-

ory parallel applications on CPU and GPU. We demonstrate

it under two representative coarsening algorithms, including

greedy/random coarsening and heavy edge coarsening. These

two algorithms represent the primary ways the adjacencies of a

vertex are processed: basic adjacency reachability/traversal and

computing some reduction (e.g., max, sum) over the vertex’s

entire adjacency list. Our code is available on GitHub1.

II. CM-GRAPH: CONSTANT-MEMORY COARSENING

A. Basic Graph Coarsening

We first consider a graph G = (V,E,Wv,We), where V

(n = |V |) defines a set of vertices, E (m = |E|) defines

a set of edges, and Wv and We are weights for vertices

and edges (with possibly multiple weights per each). This

G can be coarsened in many different ways [10], though we

focus on pairwise aggregation in this work, or the processes

of contracting edges. An edge contraction combines both

endpoint vertices into a super-vertex, where the super-vertex

contains all adjacencies of the original vertex and the summed

vertex weights. When multi-edges appear during contraction,

they can be combined into a single edge with the summed edge

weights. Vertices can also be contracted in instances where no

direct edge exists between them (e.g., 2-hop coarsening) and

it is also possible to contract three or more vertices at once.

For many coarsening algorithms, a maximal matching is

first computed. A graph matching is a set of edges that share

no endpoint vertices, and it provides a set of independent

edge contractions. To coarsen G, matched edges are contracted

and the endpoint vertices are merged into super-vertices. This

process is then iteratively repeated until G′ is sufficiently

coarse, with all graphs at the intermediate coarsening levels

retained in some array. Note that the literature is quite broad

for graph coarsening, and there are plenty of methods which

do not fit this basic outline. In this work, we focus on the

coarsening algorithms that fit this outline for simplicity, though

our methods are much more broadly applicable.

1https://github.com/HPCGraphAnalysis/CMGraph





iteratively access the adjacencies of curVert = Next[u] while

Next[curVert ] ̸= curVert . See Algorithm 1, where we tra-

verse a graph G’s CSR adjacency list from some super-vertex

u. This approach is used for a greedy coarsening algorithm,

where we select the first vertex that has not been marked for

a merge on the current coarsening level.

Algorithm 1 Basic Access of Adjacencies of Super-vertex u

1: Input: CSR Graph G, CM-Graph C, Vertex u

2: adjIdx = G .offsets[u]
3: curVert = u

4: for all i in 1 . . .C .Degree[u] do

5: a = GetNextAdj(G,C, curVert , adjIdx )
6: v = C .Head [a]
7: Do processing given edge (u, v)

8: return

9: procedure GETNEXTADJ(G,C, curVert , adjIdx )

10: v = G .adjList [adjIdx ]
11: if adjIdx + 1 ≥ G .offsets[curVert + 1] then

12: curVert = C .Next [curVert ]
13: adjIdx = G .offsets[curVert ]
14: else

15: adjIdx = adjIdx + 1

16: return v

The second method explicitly creates the weighted adja-

cency list of u for the current level, given in Algorithm 2.

To do this, we need to access all adjacencies as described

above, tracking all unique super-vertices v and summing edge

weights for each v to get the effective edge weight between u

and each v. This procedure can be easily accomplished via a

hash table, and we use an efficient serial implementation from

prior work for this purpose [18]. Note that in Algorithm 2, the

Map.InsertOrUpdate(v, w) function will place key-value pair

(v, w) into the table if key v does not yet exist; otherwise, w is

added to the current value for v in the table. We also note that

this procedure will necessarily add memory overheads while

coarsening or processing using CM-Graph, and we discuss this

drawback later in our analysis section.

Algorithm 2 Hash-based Adjacency Expansion

1: Input: CSR Graph G, CM-Graph C, Vertex u

2: Map = HashTable()
3: adjIdx = G .offsets[u]
4: curVert = u

5: for all i in 1 . . .C .Degree[u] do

6: w = G .EdgeWeights[adjIdx ]
7: a = GetNextAdj(G,C, curVert , adjIdx )
8: v = C .Head [a]
9: Map.InsertOrUpdate(v, w)

10: return {Map.keys(),Map.values()}

Extracting all unique key-value pairs gives us lists of

adjacencies (keys) and edge weights (values) for vertex u.

We note that this second procedure can be used in any

arbitrary coarsening or graph algorithm, given that the vast

majority of graph processing algorithms perform computations

by accessing the adjacencies of vertices.

E. Creating a k-level Graph

Given the coarsening of the graph to K levels, we can also

explicitly construct a graph structure at any arbitrary level

k ≤ K. To access the adjacencies of u at some arbitrary level

k, we examine the Level[v] values for each v = C .Next [u]
vertex encountered during the above procedures. We stop the

linked list traversal when a Level[v] of k + 1 is found. To

construct a full graph representation, we first identify our set

of Heads as vertices u with Level[u] ≥ k, indicating that they

were super-head vertices until level k. We can then access

their adjacencies for level k as described above, and use those

adjacencies to fill an edge list or explicitly construct a new

CSR or similar graph representation.

F. Parallelization

A straightforward CPU parallelization of a matching-based

coarsening algorithm would assign in parallel every vertex

in a given level to some thread. Each thread then attempts

to identify a match for their owned vertex (with some syn-

chronization), with all identified matches across all threads

being merged in a later step. For such a scheme, our method

can be directly implemented without modification to the

underlying algorithm, as all expanded head adjacencies can

be processed independently and a proper matching will not

have any conflicts during merging. For the merging of more

than two vertices outside of an explicit matching, a bit more

synchronization is required, though the idea is the same. We

implement such a naive coarse-grained parallelization using

OpenMP for a comparison baseline.

However, for GPUs, a more fine-grained approach is gen-

erally required for performance on real-world graphs with

an irregular degree distribution [19, 20, 21]. Modern GPU

processing of such graphs considers parallelization across

edges, where the adjacencies of u are processed in parallel

by a warp, thread block, or some other construct of multiple

threads.

Hence, we consider two more fine-grained parallelizations

of our linked adjacency list expansion. With a super-vertex’s

adjacencies expanded and reduced into arrays, an adjacency

vertex→thread mapping and processing can proceed as nor-

mal. The first parallelization is relatively straightforward: we

simply parallelize Algorithm 2 by using a thread-safe hash

table, optimized for GPU from prior work [22], parallelizing

over the insertion loop.

The primary phase of this approach, given in Algorithm 3,

is for each thread to discover their assigned adjacencies of

super-vertex u by traversing u’s linked adjacency list. To do

this, a thread initially computes their effective offset tOffset

from u’s offset in the CSR G .offset array as a function of

their thread ID threadIdx . When their offset is greater than the

number of original adjacencies for u, it updates their current

vertex tVert to the next one in the linked adjacency list and



Algorithm 3 GPU Hash Parallelization of Adj. Expansion

1: Input: CSR Graph G, CM-Graph C, Vertex u
2: Map = ThreadSafeHashTable()
3: tOffset = threadIdx
4: tOffsetSum = tOffset
5: tIter = C .degree[u]/blockDim + 1
6: tVert = u
7: while tOffsetSum < C .degree[u] do
8: while G.offsets[tVert ]+tOffset ≥ G.offsets[tVert+1] do
9: tOffset −= (G.offsets[tVert + 1]−G.offsets[tVert ])

10: tVert = C .Next [u]

11: w = G.edgeWeights[G.offsets[tVert ] + tOffset ]
12: a = G.adjList [G.offsets[tVert ] + tOffset ]
13: v = C .Head [a]
14: Map.InsertOrUpdate(v, w)
15: tOffset = blockDim
16: tOffsetSum += tOffset

17: return {Map.keys(),Map.values()}

subtracts u’s original degree from tOffset . This process is

repeated iteratively, until the original degree of tVert is greater

than the current tOffset , which gives them a unique vertex

and adjacency offset within the linked adjacency lists. This

allows the thread to retrieve the neighbor and weight of the

associated edge for insertion into the hash table. For super-

vertices with a Degree larger than the number of processing

threads in a warp/block (blockDim), threads reset their tOffset

to blockDim and continues the process from their current

location in the linked adjacency list. When the thread’s offset

is greater than the total C .degree[u] of super-vertex u, the

thread has reached the end of the linked adjacency list and is

done with its portion of the expansion.

Algorithm 4 GPU Sorting Parallelization of Adj. Expansion

1: Input: CSR Graph G, CM-Graph C, Vertex u

2: {A,W} = ExpandAdjacencies(C,G, u)
3: {A,W} = RadixSort(A,W )
4: {A,W} = ReduceByKey(A,W )
5: return {A,W}

We note that the process given in Algorithm 3 can have a

significant amount of thread contention for hash table inser-

tions. Hence, we have also created a lock-free and atomic-free

variant for GPU adjacency expansion, given in Algorithm 4.

As we will discuss in our experimental results, this variant

tends to be more performant for large degree vertices and

with larger thread groups. This algorithm has three phases.

Initially, arrays are filled with the Head[v] values (for A) and

associated weights (for W ) for all v in the linked adjacency

list of super-vertex u. This process is similar to the one given

above for our hashing algorithm, though we compute unique

offsets in the A,W arrays for each adjacency/weight instead

of performing hash table insertions. We then use a radix sort

on the vertex IDs in A, with sorting of W simply mirroring

the index changes for values in A. Finally, we then perform

a reduce-by-key operation, which sums up values in W for

each associated ‘key’ in A and places these values into the

final reduced adjacency and weight arrays. These latter two

phases utilize atomic-free prefix-sums-based operations as key

subroutines. We must omit explicit details about these phases

for space considerations, but the broader routines are well-

known GPU operations.

G. Analysis

We analyze the complexity of our methods using standard

big-O notation. We consider both memory complexity and

time complexity for a serial implementation. In addition, we

consider parallel work and depth complexity, where ‘depth’

describes the longest sequence of serial dependencies. Depth

can be considered the best-case parallel time given infinite par-

allel resources, which is generally bounded below as (n+m)
parallel processing units for graph computations.

The memory complexity of our coarsening struct is O(n) for

the number of vertices of the graph. This is constant, regardless

of the number of coarsening levels. When performing explicit

adjacency expansion we require additional memory up to the

maximum possible degree in the current graph level, which

is bounded by the number of heads for that level or simply

O(n) in the worst case. In parallel, when there are multiple

concurrent adjacency expansions, the worst case memory is

required when all edges in G are being considered at once,

giving us O(m) complexity, though in practice it is much less

than that. Regardless, the memory complexity for all of our

methods is the same as the O(n + m) simply required for

storage of the original graph.

The time complexity of merging of v into u is dependent

on the number of sub-vertices for both, as each Head value

requires updating. An upper bound for number of sub-vertices

would be 2k for matching-based coarsening, where k is the

level of coarsening and is generally bounded by log n in real-

world settings. However, the time/work complexity for all

merges would be O(n), which improves on the O(n + m)
required for explicit graph reconstruction. Though, we note

that with explicit coarse graph construction, the size of the

graph and subsequent complexities decrease with each level.

Parsing the adjacency of a super-vertex also requires traver-

sal of all merged vertices along with an examination of all of

their adjacencies. Assume the length of an expanded adjacency

is a = 2kdmax in the worst case, where dmax is the maximum

degree in the graph. An upper bound on work complexity

(and parallel depth for naive CPU parallelization) would be

O(a) for matching-based coarsening. Over the entire graph,

expanding all adjacencies for all Heads requires O(m) work.

Our sorting-based GPU algorithm has three primary steps:

expanding all adjacencies into their Head values, sorting all

Heads and their edge weights, and then doing a reduce-by-key

operation. We can expand adjacencies in O(k2) parallel depth,

while radix sort has a parallel depth of O(log a log n), as we

do a prefix sums across the expanded adjacency list and require

log
2
n radix steps. The final reduce-by-key requires only log a,

giving us an overall parallel depth of O(2k + log a log n).
For hashing-based parallelization, we have a possible worst-

case occurring when only a single unique key (super-vertex)



appears across the full linked adjacency, resulting in a depth

of O(a), same as with naive CPU parallelization.

III. EXPERIMENTS

We perform our CPU testing on the bella server at RPI’s

High Performance Combinatorics and Graph Analytics Labo-

ratory. bella has dual AMD EPYC 7742 64-Core Processors

with 2 TB DDR4. For GPU experiments, we use a 40 GB

NVIDIA A100 GPU on the lab’s zepy GPU server.

We select the largest 20 matrices (see Figures 2 and 4) from

the SuiteSparse Matrix Collection [23] as of July 2024, sorted

using nonzeros, for our testing. For our serial tests, we use the

9 largest instances as well as the largest mesh (nlpkkt240). As

most of these graphs are too large for our GPU memory, we

use the rest of the largest 20 for parallel testing. We consider

all edges as undirected and utilize edge weights if available.

We otherwise use unit edge weights, and we use unit vertex

weights for all graphs.

We initially compare CM-Graph in serial directly against

the native METIS implementation. We use the 1-hop METIS

functions for both Random (greedy) matching (Match_RM)

and Sorted Heavy-Edge Matching (Match_SHEM) for merge

pairs during coarsening. All variables and algorithmic de-

tails are the same, except for the differences in how the

CM-Graph adjacency structure is accessed and how merges

are performed versus how the METIS code builds a new

coarsened graph. We compile both codes with 64 bit in-

teger types and -03 optimization using g++ (Ubuntu

9.4.0-1ubuntu1 20.04.2) for a direct comparison. For

our parallel tests, we are able to compile CM-Graph with 32

bit types to fit more test instances into GPU memory. We use

nvcc Cuda compilation tools, release 10.1,

V10.1.243 for the GPU codes and the above g++ with

-fopemp for the parallel CPU code.

A. Memory Savings

Our first experiment is the total peak memory usage during

coarsening. We compare our method against METIS using

the two discussed access patterns, with Random Matching

and coarsening utilizing the “linked adjacency” method (Al-

gorithm 1) and Sorted Heavy-Edge Matching utilizing the

“adjacency construction” method (Algorithm 2).
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Fig. 2. Maximum memory utilization of METIS and CM-Graph measured
when performing Sorted Heavy-Edge Matching and coarsening.

We plot the results for Sorted Heavy-Edge Matching (the

results are similar for Random Matching) in Figure 2. We

note that our approach saves a significant amount of memory,

averaging a somewhat consistent savings of 2.7× across all

tests. This savings is primarily due to not having the overhead

of storing a graph structure for each coarsening level.

B. Serial Performance

We next consider performance in terms of time to solution.

We output the time for coarsening using both Random and

Sorted Heavy-Edge Matching, and we plot the results for all

datasets in Figure 3.
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Fig. 3. Coarsening time comparison between METIS and CM-Graph for
Random and Sorted Heavy-Edge Matching (SHEM) and coarsening.

We note with surprise that our approach can actually save

a significant amount of time in addition to memory overheads

when performing direct adjacency accesses during Random

Matching and coarsening. We note that this savings is at-

tributable to not having to reconstruct a new graph on each

level. For Random Matching-based coarsening, we observe

an average speedup of 4.8× (geometric mean of 2.0×). We

note the performance is quite variable across instances, from

nearly a 2× slowdown on nlpkkt240 to a 28× speedup on

mycielskian20, with a higher speedup on more irregular

inputs.

For Heavy-edge Matching, we note an average and less

variable slowdown of approximately 2.2× with our method.

This is attributable to the extra work of having to expand the

entire linked adjacency chain and perform the edge weight

reductions on each level. In the case of Sorted Heavy-Edge

Matching, we need to reduce edge weights over every unique

C .Head [v] in the adjacency chain. Whether this tradeoff

between time-to-solution and memory overhead is “worth

it” will be naturally application-specific. On GPUs or other

memory-constrained devices, such a tradeoff might make sense

in order to keep all algorithmic data in device memory.



C. Parallel Performance

We now consider our approaches for fine-grained paral-

lelization of adjacency expansion. We compare our serial

method on CPU (baseline for speedups), coarse-grained par-

allelization on CPU (CPU-Coarse), and our two fine-grained

parallelizations on GPU (GPU-Hash, GPU-Sort) using par-

allelized implementations of Heavy-Edge Matching. During

testing, we also noticed performance differences for GPU-

Hash and GPU-Sort based on vertex degree, with the sorting

method being more performant for large degree vertices and

hashing being faster for low degree vertices. Hence, we also

implemented a basic heuristic (GPU-Combined), where we

assign vertices with degrees higher than the warp size of 32

for sorting and vertices with lower degrees for hashing.

For fine-grained parallelization on GPU, we assign a warp

of 32 threads to each vertex for adjacency expansion. We run

256 threads on CPU, which is the maximum supported by

our hardware. We compare speedups against serial times for

adjacency expansion. The core Sorted Heavy-Edge Matching

and coarsening algorithm for all tests is otherwise the same.

Optimizing the coarsening algorithm itself is not the focus of

this current effort, though incorporating our methods within

an optimized GPU framework [2] will make for interesting

future work.
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Fig. 4. Parallel speedup for coarsening with CM-Graph comparing CPU
coarse parallelization and GPU fine parallelization of our adjacency expansion
algorithms within Sorted Heavy Edge Matching. Speedups are relative to serial
CPU adjacency expansion.

Given in Figure 4 is the speedup of our parallelization

approaches relative to serial. Of particular note is how our

GPU-Combined heuristic is considerably more performant

on the larger inputs (size of input increases from left to

right), with an overall average speedup versus serial of 43×,

while most other methods have comparably modest speedups.

Though not shown for space, we also note that maximum

memory utilization is relatively low, being only marginally

higher that what is needed for expanding the maximum degree

super-vertex, even with a high thread concurrency. These

observation are attributable to the fact that most of these inputs

have particularly skewed degree distributions with a lot of low

degree vertices and a few very high degree vertices. The input

mawi_201512020330 also has this characteristic, though

it has vertices with degrees of the order of the total number

of vertices, which dominates its processing time. This overall

suggests that our heuristic and overall methods are quite

effective, and nontrivial parallelization strategies are necessary

to get optimal performance for coarsening these benchmarks in

general. Additional analysis and optimization of our heuristic

combined with variable thread counts based on vertex degrees

is a very good direction for future work.
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Fig. 5. Scaled coarsening time versus coarsening level for Sorted Heavy Edge
Matching on representative test instances. The plotted time values are relative
to the slowest iteration for each instance.

Our final experiments measure time per coarsening level,

plotted in Figure 5 for representative instances. We scale

the time per level proportionally to the maximum per-level

time for each input after running heavy-edge matching and

coarsening for a fixed 10 levels. We note that our method

accelerates as the graph coarsens, with the 10th level running

20× faster than the 1st level for the more regular inputs. This

indicates that it will not be prohibitive to directly run a graph

partitioning or other algorithm directly on a coarsened graph

using CM-Graph in some instances, instead of instantiating a

new coarsened representation. An obvious next step is direct

integration of partitioning algorithms after coarsening.

IV. CONCLUSIONS

We implemented CM-Graph as a low-overhead data struc-

ture for shared-memory graph coarsening. CM-Graph empiri-

cally offers a several-fold savings in memory and is relatively

lightweight, offering either a 2× speedup or 2× slowdown in

real-world applications, depending on how the adjacency struc-

ture needs to be accessed. We also introduce a parallelization

of our method for GPU, which similarly offers competitive

performance. Future work is considering extending this work

to distributed memory, further optimizing our GPU algorithms,

and utilizing this method for graph partitioning.
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