
Efficient Weighted Graph Matching on GPUs

Michael Mandulak
Department of Computer Science

Rensselaer Polytechnic Institute

Troy, USA

mandum@rpi.edu

Sayan Ghosh
Pacific Northwest National Laboratory

Richland, USA

sayan.ghosh@pnnl.gov

S M Ferdous
Pacific Northwest National Laboratory

Richland, USA

sm.ferdous@pnnl.gov

Mahantesh Halappanvar
Pacific Northwest National Laboratory

Richland, USA

mahantesh.halappanavar@pnnl.gov

George Slota
Department of Computer Science

Rensselaer Polytechnic Institute

Troy, USA

slotag@rpi.edu

Abstract—Weighted matching identifies a maximal subset of
edges in a graph such that these edges do not share any vertices
in common with each other. As a prototypical graph problem,
matching has numerous applications in science and engineering,
such as linear algebra, multi-level graph algorithms, computer
vision and machine learning. There is a critical need for efficient
matching algorithms. However, there are challenges in developing
efficient, parallel graph matching methods on contemporary
GPGPU systems, due to common complexities in general graph
processing, such as irregular memory access patterns and load
imbalances. Furthermore, increasingly massive graph sizes and
resultant intermediate data commonly exceeds available GPU
memory. Although dense-GPU systems are mainstream and
offer accelerated on-node interconnection to enhance data access
bandwidth, data dependencies and device synchronization costs
in multi-GPU enabled massive-graph processing create challenges
to sustainable scalability.

Considering these challenges, we present efficient approxima-
tion algorithms for locally dominant matching, and we demon-
strate scalability via batching and distributing graph data across
multiple NVIDIA A100/V100 GPUs of NVIDIA DGX dense-
GPU platforms. Our locally dominant (pointer-based) matching
method exhibits 2-45× performance improvements compared to
state-of-the-art single-GPU and multithreaded CPU matching
implementations on a variety of real-world and synthetic graphs.
We show competitive quality comparisons and detailed analysis of
GPU-data distribution considerations for practical and efficient
weighted graph matching on GPUs.

Index Terms—Graph Analytics, Maximal Weighted Matching,
GPGPU, CUDA

I. INTRODUCTION

Given a graph G(V,E,w), where w : E → R>0 is a weight

function with a positive real number associated with each edge,

a weighted matching M ⊆ E is a set of edges such that no

two edges in M are incident on the same vertex, and the sum

of weights of matched edges,
∑

e∈M w(e), is the maximum

among all possible matchings in G. Matching is a fundamental

graph problem with numerous applications in diverse fields.

Also known as the linear assignment problem, matching has

applications in assigning or mapping one set of entities (e.g.,

residents) to another (e.g., hospitals) [31], numerical linear

algebra [11], [16], computer vision and pattern recognition [4],

and a variety of scheduling, resource allocation and facility

location problems [1], [8].

Optimal algorithms for matching exploit the approach of

augmentation, where paths that alternate between matched and

unmatched edges are iteratively found from current solutions.

By swapping the matched edges along these paths, more edges

can be matched [27]. However, such an iterative approach

limits the amount of work that can be done in parallel. In

contrast, approximation algorithms that do not require comput-

ing long augmenting paths are amenable to parallelization and

therefore perform significantly better on parallel systems [23].

An approximation algorithm is required to generate a solution

with a provable bound to the optimal one (detailed in §II).

With the steady rise in graph sizes and ubiquity of dense-

GPU nodes on modern HPC platforms, it has become crucial

to develop efficient computational methods and identify trade-

offs for graph processing on multiple GPUs. For graph work-

loads, sustainable (strong) scalability is impacted by severe

and unbalanced data movement bottlenecks, brought on due

to inherent irregularity in the real-world graph structure and

limited computation within many graph algorithms. Linear

algebraic methods continue to demonstrate the significant per-

formance advantages of GPUs over multicore CPUs. Although

graph algorithms can be algebraically expressed [26], and

past research proposed efficient linear algebra based parallel

algorithm for finding a perfect matching in a weighted bipartite

graph [3], implementing weighted matching on general graphs

using sparse linear algebra methods can be prohibitive in terms

of the computation costs (currently, no known methods exist).

By contrast, efficient approximation algorithms for weighted

matching are known [35].

The scalability issues of the graph workloads can be

alleviated, to a certain extent, by limiting the data move-

ment within a compute node. This is achieved through

leveraging faster GPU interconnects and vendor-optimized

collective operations. Nodes with several GPUs and rela-

tively large main memories are becoming mainstream, allow-

ing for processing massive graph workloads, which would

have previously required distributed-memory systems and

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

the concerns associated with network communication and

load imbalance. Current support exists for up to 72 lat-

est NVIDIA™ Blackwell™ GPUs interconnected within a

rack using NVLink™ [19], which translates to an order-of-

magnitude increase in the GPU-GPU bandwidth relative to

contemporary RDMA/Infiniband interconnects.

However, memory requirements of graph workloads can still

easily surpass the available global memory within a GPU (tens

of GBs). Even with multiple GPUs, an arbitrary partitioning

of a graph can push the workload to its memory limit,

leading to out-of-memory and silent errors. In distributed-

memory, this problem can be sidestepped by using more

resources at startup or by considering fixed-size buffers—both

strategies increase communication overheads. In a single node

context, this mismatch of the available data and GPU global

memory is mitigated by considering a local partitioning of

the graph, where a “partition” roughly corresponds to the

maximum #edges that can be stored on each device. Further

enhancing the notion of this partitioning is the use of logical

“batches” associated with the per-device partitions, with syn-

chronization at the end of every processed batch. The intuition

behind batching is about selecting a working set (vertex

and corresponding edge ranges) and synchronization interval,

to mitigate load imbalances within partitions. Although the

device synchronization and batch transfer overheads can be

expensive for certain graphs, they can be offset by improved

data buffering, thread parallelism, memory access locality,

thread occupancy, faster data reductions, and ultimately, multi-

GPU parallelism [37], [38]. Even though graph processing

workloads are known for irregular data movement overheads

leading to implementation and scalability challenges [40], by

processing in batches, graph algorithm are able to regularize

the synchronization requirements and thus exploit vendor-

optimized GPU collective libraries such as NCCL™ [25] for

inter-GPU communication.

To the best of our knowledge, this work is the first-of-

its-kind multi-GPU implementation of weighted approximate

matching. Primary contributions are summarized.

• We extend the 1/2-approximate locally dominant match-

ing to multi-GPU setting.

• To accommodate large graph partitions on device and

control the working set size to enhance scalability, we

propose a flexible batch processing scheme in the con-

text of weighted matching on multi-GPU systems with

maintaining the approximation ratio.

• We demonstrate 2–45× performance improvement over

optimized OpenMP-based CPU graph matching imple-

mentation over multiple GPUs.

• We detail performance and quality analysis using several

billion-edge real-world and synthetic graphs on two GPU

platforms (comprising of NVIDIA™ A100 and V100

GPUs). For small graphs in which the optimal matching

could be performed, we show close to the optimal quality

(∼6% lower in weight on geometric mean).

We believe that this work will advance both the development

of new matching algorithms and matching-based applications

to accelerate a large number of domain problems.

II. BACKGROUND AND RELATED WORK

A. Preliminaries

a) Notations: Let G(V,E,w) be a simple undirected

graph, where V and E are the set of vertices and edges,

respectively, and w : E → R>0 is a positive weight function

defined on the edges. We define n = |V | and m = |E|. A

subset F ⊆ V induces a subgraph of G with F as vertex set

and edge set {{u, v} ∈ E : u ∈ F and v ∈ F}. Similarly, a

subset F ⊆ E induces a subgraph where the vertices are the

endpoints of F along with edgeset F . For a vertex v, N (v)
may represent the edges incident on v ({e ∈ E : v ∩ e /∈ ∅})
or vertices adjacent to v ({u ∈ V : {u, v} ∈ E}), and which

definition is used will be clear from the context. Similarly,

N (e) is also defined. For two integers x, y, where x ≤ y,

[x, y] represents the consecutive integers from x to y including

themselves. We denote f(X) =
∑

e∈X f(e), where f is a

function defined on the set X .

b) Maximum Weight Matching (MWM) Problem: Given a

graph G(V,E,w), a matching is a subset of edges, M ⊆ E,

where every vertex of G has at most one endpoint in M .

A maximum weight matching (MWM) is a matching M∗ of

maximum w(M∗) among all matching. A matching M is

maximal if it can not be extended without violating the

matching constraint. For an α ∈ (0, 1], M is an α-approximate

MWM if w(M) ≥ α w(M∗).

B. Locally dominant algorithm

Definition II.1 (Locally dominant matching). Given a match-

ing M , an edge e ∈ E \M is available if it does not share

any endpoints with any other edge of M , i.e., M ∩ e = ∅.
e is locally dominant w.r.t M if w(e) is greater or equal to

all available adjacent edges of e. A matching M is locally

dominant if every edge of M is locally dominant when it is

added to M . In Fig. 1 assuming M = ∅, the edges {1,0} and

{3,4} are locally dominating while {2,3} and {5,4} are not.

We restate the approximation result of a locally dominant

algorithm by Preis [36].

Lemma II.1 ([36]). Any algorithm that produces a maximal

locally dominant matching is 1

2
-approximate for maximum

weight matching.

The locally dominant algorithm provides us with a frame-

work to design highly concurrent algorithms for matching,

since it avoids global sorting as needed for the traditional

greedy algorithm. The LocalMax [6] and Suitor [30] algo-

rithms described in the literature are two examples of locally

dominant frameworks. We next discuss a pointer-based locally

dominant algorithm in Algorithm 1, which will provide a base

for our multi-GPU algorithms described in the subsequent

section. Each iteration of Algorithm 1 consists of two phases:

a pointing and a matching phase. In a pointing phase for each

vertex, v of G, we identify and point to a neighboring vertex

the rising #batches. Thus, we adopt a vertex-based approach

to impose independence in the setting of vertex pointers, no

matter the batch distribution. This further allows us to tweak

batch counts without restriction for optimal data distribution

given the irregularities within edge information. One trade-off

for this method, however, is the requirement to store global

matching information on each device. For our purposes, this

requires two arrays of size |V | to be allocated on each device.

Given the usage of batching and the relative memory complex-

ity of vertices to edges being trivial, we accept this trade-off

for ease of implementation and device communication.

D. GPU Implementation

We now discuss the details of our GPU implementation,

LD-GPU. We provide a general overview of the algorithm

in Fig. 3, which depicts the pointing and matching phases,

as introduced in Algorithm 1. We first provide a high-level

description in Algorithm 2 followed by specific kernels in

Algorithm 3.

Algorithm 3 Matching Kernels

1: procedure SETPOINTERS<stream>(Gb(V b, Eb),
pointers,mate) ▷ Batched Graph Data Gb

2: buffer ← V b[stream]
3: for u ∈ buffer in warp do

4: p ← ∅
5: if mate[u] = ∅
6: for v ∈ N (u) and mate[v] = ∅ per thread do

7: p ← argmaxx∈{v,p}{w({u, x})}
8: shuffle_reduce(p) ▷ Across Warp

9: pointers[u]← p

10: procedure SETMATES(pointers,mate)

11: for vertex u per thread do

12: if pointers[pointers[u]] = u ▷ Mutual Check

13: mate[u]← pointers[u]

Algorithms: After graph loading and distribution, our

algorithm proceeds as follows: each GPU’s host thread iter-

ates through its batches, sequentially loading and processing

batch data for the initial pointing phase. We utilize a dual-

buffer method to overlap communication and computation of

successive batches over CUDA streams (shown in Fig. 2).

Specifically, we allocate two buffers per device, such that

the loading and processing of batches can occur concurrently

using asynchronous CUDA streams (denoted by stream in

lines 4-6). Thus, we only have to synchronize between suc-

cessive batch invocations when the #batches are greater than

two. When there are one or two batches, there is no extra

synchronization between the respective batch invocations due

to the separate buffers. In the cases of a higher number of

batches, we sequentially perform these load and processing

steps, interleaving batches between the buffers and performing

host-device synchronization after determining the heaviest

available edge information for the vertices in each batch

(lines 5-6). Recall from Definition II.1, an available edge is an

edge that can be added to the current matching without violat-

ing the matching constraint. This pointing phase identifies and

sets pointers along these highest weighted neighbor edges for

each vertex, independently. Then, we invoke a reduction of the

pointer information across the GPUs using NCCL reduction

routines [25], ensuring that all devices contribute and obtain

the global pointer information and synchronize, before moving

on to the next phase (line 7).

For the matching phase, we maintain global matching in-

formation on device and perform mutual checks independently

using the pointer information obtained from the pointing phase

(line 8). Any mutually-pointing vertices are committed to the

matching. We do not require batching in this phase, since

we only reference the aggregated pointer information for

mutual checks. We perform another NCCL allreduce to

synchronize the matching information across devices (line 9).

Given the global matching information for an iteration, a

device can then decide to terminate if no new edges were

added to the matching. This process repeats until no more

available matching edges exist.

Kernels: For the pointing phase, we distribute contiguous

groups of vertices within the current batch across warps (a

warp is 32 threads). These groups are assigned a stream in

our dual buffer allocation based on the batch number (line 2).

Each warp then sequentially processes its assigned vertices,

with the threads concurrently iterating over the neighborhood/

adjacencies of the current vertex. Each thread performs a

reduction on its subset of the neighborhood to determine the

heaviest available edge (lines 5-7), which is further reduced

using a bandwidth-efficient warp-level shuffle reduction utiliz-

ing registers, communicating the heaviest active neighboring

edge across the warp (line 8). This edge is stored in an array at

the global device memory (pointers in Algorithm 3), and

the process continues for each vertex assigned to the warp.

In the matching phase, we check the list of vertices, without

scanning the individual neighborhoods. We can perform the

mutual pointer check (line 12) after distributing the vertices

evenly among the threads to limit load imbalance, assigning

contiguous groups of vertices to each thread, and performing

a global memory check and a subsequent write if a mutual

pointer exists (locally dominant edge). Although the global

memory check can lead to suboptimal performance due to non-

coalesced memory accesses arising from indirect indexing, in

practice we found the pointing phase to be more expensive, as

discussed in §IV. We further invoke a device-wide reduction

on the global matching information, to ensure consistency of

the mutual checks across the iterations of the matching phase.

Next, we show that our LD-GPU algorithm provides the 1

2

approximation guarantee as the LD-SEQ algorithm.

Lemma III.1. The matching produces by LD-GPU is 1

2
-

approximate for MWM.

Proof. It is sufficient to show that the edges committed to

matching (Line 12 in Algorithm 3) in LD-GPU are locally

dominant w.r.t. the current matching and the final matching

is maximal. The proof then follows from Lemma II.1. We

note that the only difference between the sequential LD-SEQ

TABLE I
(LEFT) GRAPH DATASETS AND PROPERTIES, WHERE |V | AND |E| ARE THE GRAPH VERTEX AND EDGE CARDINALITIES, dmax AND davg ARE THE GRAPH

MAXIMUM AND AVERAGE DEGREES, AND B, M, AND K REFER TO ×109 , ×106 , AND ×103 , RESPECTIVELY. (RIGHT) BEST EXECUTION TIMES (S) OVER

TEN RUNS PER ALGORITHM. LD-GPU DEMONSTRATES BETTER PERFORMANCE RELATIVE TO EXISTING CPU/GPU IMPLEMENTATIONS

(SR-OMP/SR-GPU) FOR 9/14 GRAPHS, DEPICTING 2–45× SPEEDUP FOR BILLION-EDGE GRAPHS RELATIVE TO SR-OMP. ’-’ REFERS TO TESTS THAT

FAILED DUE TO OUT-OF-MEMORY ERRORS.

Properties Best Execution Time (s) LD-GPU Vs.

Graphs |V | |E| dmax davg SR-OMP SR-GPU LD-GPU (#GPUs) LEMON SR-OMP SR-GPU

AGATHA-2015 184 M 5.8 B 12.6 M 63 36.07 - 16.04(8) - 2.2× -
uk-2007-05 105 M 3.3 B 975 K 62 N/A - 2.44(8) - - -
webbase-2001 30 M 3.3 B 2.1 M 220 N/A - 49.29(8) - - -
MOLIERE 2016 134 M 2.1 B 68 32 46.08 - 11.16(8) - 4.1× -
GAP-urand 134 M 2.1 B 1.5 M 31 17.66 - 0.319(8) - 45.4× -
GAP-kron 118 M 1.9 B 816 K 17 9.53 - 0.389(4) - 24.4× -
com-Friendster 65 M 1.8 B 5 K 55 8.40 0.661 0.693(6) - 12.1× 0.95×

Queen 4147 4 M 317 M 81 79 0.332 0.008 0.018(4) 323.5 18.4× 0.44×
mycielskian18 196 K 301 M 98 K 1530 0.113 0.025 0.019(1) 488.6 5.9× 1.32×
HV15R 2 M 283 M 484 140 0.240 0.047 0.032(4) 217.5 7.5× 1.47×
com-Orkut 3 M 234 M 33 K 76 4.351 0.036 1.215(4) 221.8 3.6× 0.03×
kmer U1a 68 M 139 M 70 4 0.798 0.048 0.152(4) 323.5 5.2× 0.32×
kmer V2a 55 M 117 M 30 2 0.636 0.058 0.131(1) 271.8 3.6× 0.44×
mouse gene 45 K 28 M 8 K 642 0.041 0.016 0.013(1) 488.6 3.1× 1.23×

and resulting distributions. Finally, in §IV-D, we compare the

overall performances of LD-GPU with state-of-the-art OpenMP-

based CPU (SR-OMP), single GPU (SR-GPU) and NVIDIA™

RAPIDS™ cuGraph implementations respectively, and intro-

duce a unique Figure-of-Merit (FoM) for assessing the quality

and performance of the results.

A. Matching Quality

We compare the quality of our LD-GPU and the multi-

threaded SR-OMP with the sequential optimal MWM algorithm

included in the Library of Efficient Models and Optimization

in Networks (LEMON) [13]. We exclude SR-GPU as we observe

the SR-GPU weights are very close to the SR-OMP ones. We are

able to only execute LEMON on the SMALL instances since the

LARGE graphs resulted out of memory conflicts. In Table II,

we show the percentage difference of weights of LD-GPU and

SR-OMP algorithms relative to the LEMON. Here, the lower is

the better. Across our SMALL inputs, we observe high quality

matching output by LD-GPU, with only 6% difference from the

optimal, on geometric mean. LD-GPU and SR-OMP achieve a

similar quality, which we attribute to both algorithm’s greedy

approach in approximate maximum weighted matching. These

results suggest that although our LD-GPU algorithm is 1

2
-

approximate in the worst case, in practice, we achieve close

to optimal quality.

B. Baseline Performance

Scalability: Fig. 4 presents strong scaling results on 1–8

A100 GPUs using the large inputs; we picked the best results

for every configuration by considering a range of batches (less

than 15) on up to 4 devices. Beyond 4 devices, each partition

fits into a device, and we can avoid the batch processing

related overheads. We observe up to 47× speedup on 8 GPUs

relative to a single GPU. This superlinear speedup is due

to the sequential nature of batch processing in the pointing

phase and the associated synchronization and data transfer

TABLE II
LD-GPU AND SR-OMP QUALITY PERCENTAGE DIFFERENCE RELATIVE

TO LEMON ON THE SMALL GRAPH INSTANCES.

Percentage Diff. from LEMON

Graphs LD-GPU SR-OMP

Queen 4147 4.8 4.7
mycielskian18 12.5 12.6
HV15R 2.8 2.8
com-Orkut 2.6 2.6
kmer U1a 8.9 9.0
kmer V2a 9.9 9.9
mouse gene 11.2 11.3

Geo. Mean 6.38 6.38

overheads for the low device counts, which can be optimized

away by increasing the number of device partitions. When the

Fig. 4. Strong scaling for LD-GPU on 1–8 GPUs, using a variety of batch
counts and choosing the best execution time over 10 runs.

batch processing overheads are absent, the scalability plateaus

beyond 4 GPUs for most of the large inputs as the scalability

from the matching/pointing phases are offset by the rising

costs of collective operations and synchronizations at higher

device counts. Details about the relative costs of the high-level

components in LD-GPU are discussed next.

To study the scalability potential of batches, we subject

relatively small inputs (to ensure a single partition per device)

with higher batches on multiple devices (deliberately intro-

ducing nontrivial batch processing overheads). We present the

results on the kmer U1a, mycielskian18 and kmer V2a graphs

in Fig. 6. For these instances, the default scenario (single

batch/partition) does not exhibit any scalability with increasing

the #devices, as the collective reduction/synchronization over-

heads offset improvements in the matching phase, as shown in

the component-wise timing in Fig. 7. Increasing the #batches,

we observe a more balanced distribution of the independent

work (pertaining to the pointing phase) and overall data

movement/synchronization, despite batch transfer overheads

(observe enhanced scalability for 3, 5 and 10 batches in Fig. 7

and Fig. 6). We anticipate subsequent batch transfer overheads

would ultimately impact the scalability beyond a certain point.

Component-wise timing analysis: In Fig. 5, we examine

the individual execution times of the high-level components in

Algorithm 2 for different batches on 1–8 GPUs, considering

LARGE and SMALL graphs. We track the individual contribu-

tions of the pointing and matching phases, allReduce oper-

ation for collecting the global pointers and mate information,

batch range related data transfers to device and explicit syn-

chronizations. For the com-Friendster and GAP-kron graphs,

we use batches for up to 4 GPUs to accommodate multiple

partitions on a device; otherwise, we proceed with the default

single batch version (even a single batch uses dual buffers,

as explained in §III-B). Fig. 5 conveys that synchronization

and communication costs dominate about 90% of the overall

execution time, excluding single GPU runs. In the single

GPU and non-default batching scenarios, the pointing phase

take about 50% of the overall execution time, as sequential

batch processing increases the (local/independent) computa-

tion overheads as well. This is similar to our observations

Fig. 5. Component-wise timing (in terms of %-overall in Y-axis) for SMALL/
LARGE graphs (X-axis) for variable #batches/GPU on 1–8 GPUs.

Fig. 6. LD-GPU using 1 (default), 3, 5 and 10 batches on 1–8 GPUs.

Fig. 7. Component-wise timing (%-overall in Y-axis) for kmer U1a graph
using LD-GPU with 1 (default), 3, 5 and 10 batches (X-axis) on 1–8 GPUs.

on a handful of SMALL graphs where we demonstrated that

considering reasonable #batches can increase the scalability

relative to the default scenario (see §IV-B). Thus, we see

a direct relation in vertex-batch distribution with scalability

across the devices, for LD-GPU. Also, due to greater than

50% of the overall time spent in collective communication

and synchronization, LD-GPU depends on the efficiency of the

underlying communication runtime and GPU interconnection

network. Impact on the performance due to GPU platform

interconnect is discussed next.

NVIDIA Ampere (A100) vs. Volta (V100) platforms: To

further evaluate the impact of the GPU platform, comparing

between generations of device and GPU interconnects, we

analyze the performance of LD-GPU considering— (i) devices/

interconnects: NVIDIA Ampere (A100) vs. Volta (V100)

GPUs, and, (ii) standardized vs. proprietary interconnect: PCIe

vs. NVLink (SXM4) on DGX-A100. Table III highlights the

performance impact of the GPU generation by comparing con-

temporary NVIDIA™ “Ampere” A100™ vs. previous “Volta”

V100™, reporting the speedup of LD-GPU on A100™ using

SMALL graphs relative to V100™. We use a single device to

capture the performance independent of device communication

and batch processing. We observe about 2-4× improvements

on contemporary A100 vs. previous-generation V100 GPU.

TABLE III
LD-GPU SPEEDUP ON A SINGLE NVIDIA A100 VS. V100.

Graphs A100 Speedup

Queen 4147 1.07×
mycielskian18 2.05×
com-Orkut 2.47×
kmer U1a 4.56×
kmer V2a 4.53×
mouse gene 1.49×

Geo. Mean 2.35×

Fig. 8. Mean and standard deviation of % of edges accessed by warps on pointing phase iteration of LD-GPU—for 90% of the iterations, less than 20% of
the edges are accessed.

We assess the impact of the GPU interconnect, PCIe vs.

NVLink (SXM4), in Fig. 9. Foley, et al. [21] report 5× the

bandwidth of PCIe using proprietary NVLink (on previous-

generation NVIDIA™ P100™ GPU). We consider SMALL

and LARGE inputs, with GAP-kron and com-Friendster using

batching for GPU counts less than 4. Given the reliance of

LD-GPU on fixed synchronization points around global device-

based collective operations, we observe average performance

improvements of 3× with NVLink over PCIe interconnect

(maximum performance improvement was about 17×). We

Fig. 9. Execution time speedup of NVLink vs PCIe for data transfer and
multi-GPU communication for LD-GPU.

observe the outlier input mouse gene (smallest graph), which

actually demonstrates relatively mild and stable collective

communication overhead up to 4 GPUs (see Fig. 5). Hence,

we expect non-trivial end-to-end improvements with enhanced

GPU interconnects across the vendor generations for larger

graphs. Fig. 10 compares LD-GPU scalability on NVIDIA™

DGX-A100 (8 A100 GPUs with NVLink SXM4) with previ-

ous generation DGX-2 (16 V100 GPUs with NVLink SXM3)

for two diverse LARGE inputs over the same #batches. While

GAP-kron exhibits a maximum of up to 8× improvement on

8 A100 GPUs as compared to 16 V100 GPUs, com-Friendster

demonstrates a maximum improvement of about 10× for the

same range. We observe a significant increase in the execution

times on V100 GPUs with rising matching iterations, for e.g.,

GAP-kron exhibits 15 iterations for LD-GPU, whereas com-

Friendster runs for around 2,000 iterations.

Fig. 10. LD-GPU scalability on the dense-GPU systems with annotated
#batches: DGX-2 (16 V100s) vs. the DGX-A100 (8 A100s).

C. GPU utilization

In this section, we demonstrate the challenges in maintain-

ing load balance throughout the progression of the matching

and pointing phases on device. The pointing phase deter-

mines the heaviest active neighbor edge for a vertex, while

the matching phase iterates over the remaining unmatched

vertices, “removing” edges from matching. Specifically, we

analyze the amount of edges processed on individual iterations

and relate it to the Streaming Multiprocessor (SM) occupancy

to assess the work efficiency on device.

Warp-Edge Work: The notion of warp-edge work in

LD-GPU can be expressed by the volume of consecutive edge

traversals during the pointing phase to determine the pointer

candidate per vertex neighborhood, on a per warp basis. We

consider the total number of edges traversed throughout the

matching progression across the iterations. Fig. 8 depicts

SMALL and LARGE inputs, capturing the mean and standard

deviation of percentages of the edge traversals across the

matching iterations, where each bar represents an iteration of

the respective input on LD-GPU.

Despite similar iteration counts across the inputs, we ob-

serve approximately 2–5× differences in the variance and

peak warp-edge work amounts. On average, a majority of the

edge traversals are performed in the first iteration of matching

(thus, the first iteration is the most expensive). Depending on

the graph structure and device partitions, we observe cases

such as the kmer U1a having a relatively high variance in

the distribution of warp-edge work on the second iteration.

Meanwhile, there are cases such as GAP-kron which exhibit

a relatively even distribution of warp-edge work throughout

the iterations. This variation is critical to GPU efficiency,

as an uneven distribution of edges across warps can signifiy

poor device utilization. For our purposes, however, the total

amount of work is reduced per iteration as pairings are added

to the matching. Thus, we capture the overall variations in the

densities of the warp-edge work in Fig. 8 and further study

the device occupancy, as discussed next.

Fig. 11. GPU Streaming Multiprocessor (SM) occupancy (Y-axis, higher is
better) as reported through NVIDIA Nsight profiler per iteration of LD-GPU

(X-axis shows iteration progression in terms of %).

Streaming Multiprocessor (SM) Occupancy: Extending

the edge-work notion to GPU utilization, we examine the

SM occupancy on runs with different graph inputs. We track

SM occupancy per groups of the kernel launches, taking an

average (over batches) of the pointing and the matching phases

in an iteration. Fig. 11 depicts about 90% SM occupancy

through 100% of the program iterations for most cases, except

the outliers (mycielskian18 and mouse gene), which exhibit

diverging behavior and at the lowest point demonstrates 30%/

50% occupancy for the later half (50% mark) of the iterations.

Considering the pointing phase invokes repetitive neighbor-

hood scan, memory accesses are mostly contiguous, indicative

of relatively high SM occupancy, which is a favorable trait for

sustainable performance.

D. Performance Comparisons

To assess the results of our LD-GPU implementation, we

consider two state-of-the-art parallel weighted graph matching

implementations for comparison: the OpenMP Suitor algo-

rithm (SR-OMP) discussed in [30], [43] and the GPU Suitor

(SR-GPU) algorithm in [32], [33]. The Suitor algorithm is an

improvement over locally dominant matching algorithm, as

the former is able to reduce the number of candidate edges

for matching. We further include a sequential baseline in

Edmond’s Blossom algorithm implementation in the LEMON

matching collection in [28]. SR-OMP results are collected using

256 CPU threads while SR-GPU results are collected on a

single NVIDIA™ A100 GPU.

Execution time performance: We compare the results of

LD-GPU method to the SR-GPU and SR-OMP implementations

for the graphs listed in Table I. For LD-GPU, we consider

several device and batch counts to find the best performance.

While higher batch counts typically increase execution times

for LD-GPU given initial data loading and synchronization over-

heads, for large and massive graphs, we can leverage multiple

devices for improved partition distribution, outweighing these

costs. Table I lists the best execution times of LD-GPU, SR-GPU,

SR-OMP and LEMON, and the speedup of LD-GPU relative to

SR-GPU and SR-OMP implementations (it is unfair to compare

with LEMON since it is sequential).

Relative to SR-OMP, we observe performance improvements

of 2-45×, with a geometric mean of about 7×. In cases

such as the mycielskian18 graph, we obtain the highest

improvement with a single GPU, while other instances such

as the kmer U1a graph shows a better performance across

multiple devices. In practice, we notice that denser graphs

perform better when less devices are used, as performance

gains using multiple GPUs are often outweighed by the com-

munication overheads between partitions and above-average

iteration counts. Across the SMALL instances, we report a

geometric mean performance improvements of approximately

5×. Our LARGE instances demonstrate improvements w.r.t

SR-OMP of approximately 6× on average. For the largest (in

terms of #edges) three graphs in our dataset, we are required

to apply batching on our maximum GPU count of eight since

one or more partitions could not fit into the available device

memory. Among the LARGE inputs, AGATHA-2015, uk-2007-

05 and MOLIERE 2016, performed best on relatively larger

GPU counts using 2 batches. For uk-2007-05 and webbase-

2001, SR-OMP comparison is omitted since SR-OMP requires

graphs to be in Matrix Market native data format. GAP-kron

and GAP-urand exhibit significantly greater improvements

compared to other graphs, most likely due to their synthetic

nature and atypical degree distribution. We now discuss the

performance of SR-GPU (a single-GPU implementation), for

which LD-GPU shows competitive results on a variety of mid-

size graphs. We omit the comparison results for the majority

of the LARGE instances, as we experienced “out of memory”

issues with SR-GPU. On 4/7 SMALL instances, SR-GPU is

on average 2× faster than LD-GPU, since it optimizes for

computation on a single device. In contrary, our goals are to

consider larger graphs for efficient multi-device computation,

and we observe up to 1.47× speedup relative to SR-GPU using

over multiple batches and devices. Overall, SR-GPU shows

performance improvements relative to LD-GPU for multiple

midsize instances, but is unable to run on our LARGE in-

stances, excluding the com-Friendster graph (SR-GPU uses 32-

bit graph representation, while we have adopted 64-bit).

Single GPU performance comparison: We aim to 1)

leverage multiple GPUs, and 2) solve large-scale matchings;

consequently, in most cases, the best execution times obtained

use multiple GPUs. SR-GPU adopted load redistribution by

varying vertices-per-warp, which can only work in small

or regular degree graphs. So, for some graphs, LD-GPU is

relatively expensive on a single GPU, as shown in Table IV.

However, graphs are multifarious, and fixing vertices-per-warp

is not a general recipe for enhancing single GPU performance

(rather poses challenges for multi-GPU), as evident from

3/8 cases where LD-GPU is better or competitive, shown in

Table IV.

TABLE IV
SINGLE GPU RUNTIME COMPARISON

Runtime (s)

Graphs LD-GPU SR-GPU

com-Friendster 0.725 0.661
Queen 4147 0.027 0.008
mycielskian18 0.019 0.025
HV15R 0.045 0.047
com-Orkut 1.274 0.036
kmer U1a 0.193 0.048
kmer V2a 0.131 0.058
mouse gene 0.013 0.016

Comparisons with NVIDIA™ RAPIDS™ cuGraph:

Recently, NVIDIA RAPIDS cuGraph has released a weighted

approximate matching implementation (following [29], which

builds on locally dominant algorithm by Preis [36], see

§II-C) for distributed-memory multi-GPU systems. However,

current multi-GPU implementation of cuGraph (over modern

C++) is experimental, considering a process-per-GPU model,

requiring a process to load an entire graph (in a native

format such as matrix-market) and then filtering the subgraphs

for specific processes, increasing the overall memory usage.

For this reason, it is only practical to compare medium-

sized graphs with multi-GPU cuGraph (on reasonable #GPUs

to optimize the communication overheads). Also, due to

the software dependencies mandated by latest cuGraph, we

used different versions of the compilers and programming

systems compared to the baseline experiments. Specifically,

we used GCC/12.2.0, CUDA/12.1, OpenMPI/4.1.4 (CUDA-

aware) and miniconda/24.4.0, to build cuGraph using the

conda package manager2. We use the same software versions

2https://docs.rapids.ai/api/cugraph/nightly/installation/getting cugraph/
#conda

to build LD-GPU for appropriate comparison. Table V shows

TABLE V
CUGRAPH RUNTIME COMPARISON ON 4 GPUS

Runtime (s)

Graphs LD-GPU cuGraph

Queen 4147 0.018 7.978
mycielskian18 0.058 3.055
com-Orkut 1.218 32.385
kmer U1a 0.152 2.383
kmer V2a 0.202 2.579

the results (for maximal weighted matching, excluding graph

loading/processing which can be non-trivial) on 4 A100 GPUs,

relative to LD-GPU using a single batch. LD-GPU is an order

of magnitude faster than cuGraph; we anticipate this is due

to differences in the underlying communication abstractions.

Notably, cuGraph uses RAFT Comms (built on top of MPI)3,

while we use NCCL over CUDA streams.

Figure of Merit: Comparing parallel maximum weighted

matching methods on the basis of execution time only is

beset with challenges. Different implementations might adopt

various techniques and heuristics to optimize the performance/

quality targeting diverse architectures; unless a baseline met-

ric or Figure-of-Merit (FoM) is devised, comparing relative

performances under different parameter settings will remain

challenging.

For graph matching, a prospective FoM must consider the

total #iterations, matching quality, edges in matching and the

execution time performance. To that effect, we propose a

new FoM: “Mega-Matching Edges per Second” (MMEPS). In

essence, we correlate the rate at which edges are committed

to the matching, to the enhance the quality over the iterations.

We provide instances of comparison on variable size inputs in

Table VI. For each case for LD-GPU, we collect the best FoM

(higher is better) for invocations across devices and compare

to the best of the 10 runs of SR-OMP. Under this FoM, LD-GPU

demonstrates 2–20× improvements relative to SR-OMP.

TABLE VI
MEGA-MATCHING EDGES PER SECOND (HIGHER IS BETTER).

FoM (MMEPS)

Graphs LD-GPU SR-OMP

AGATHA-2015 8.14 3.77
MOLIERE-2016 1.28 0.31
GAP-urand 41.99 7.37
GAP-kron 29.63 1.21
com-Friendster 37.84 3.12
kmer U1a 191.35 39.99

V. CONCLUDING REMARKS

In this paper, we devise a parallel algorithm for locally dom-

inant maximal weighted graph matching for multiple GPUs on

single node NVIDIA DGX™ platforms. We leverage vendor-

optimized collective communication libraries for data transfer

3https://docs.rapids.ai/api/raft/nightly/cpp api/mnmg/

between GPUs over NVLink interconnect, bypassing the host

CPU. We introduce batching to mitigate limited GPU memory,

increasing graph data sizes, and nontrivial graph partitioning

problems, the trio behind a myriad of out-of-memory issues.

Our batching method defines the working set size on GPUs,

providing a mechanism to balance independent work and syn-

chronization. Despite the irregularities in the graph structure

and the divergent computation patterns of locally dominant

matching (i.e., pointing and matching phases), we report 2–

45× performance improvements of our multi-GPU implemen-

tation relative to state-of-the-art OpenMP-based CPU (on 256

threads) for billion-edge graphs.

Towards the development of distributed matching schemes

targeting higher quality guarantees or similar improvements,

we conclude by highlighting the synchronization overheads

prevalent in parallel graph analytics. LD-GPU performs asyn-

chronous processing whenever possible, while adopting a

level-synchronous approach through explicit batch processing

for correctness. For more complex matching schemes, balanc-

ing the parallel efficiency, accuracy and synchronization costs

will be relevant in achieving sustainable strong scalability on

the next generation of HPC platforms.

ACKNOWLEDGMENTS

This research is in parts supported by the National Sci-

ence Foundation under Grant No. 2047821, the U.S. DOE

ExaGraph project; Data-Model Convergence Initiative (DMC)

and the LDRD initiative at the Pacific Northwest National

Laboratory (PNNL). PNNL is operated by Battelle Memorial

Institute under Contract DE-AC06-76RL01830. We would

also like to thank Dr. Tim Carlson at PNNL and the PNNL

Research Computing staff for their outstanding support.

REFERENCES

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network

flows: theory, algorithms, and applications. Prentice-Hall, Inc., USA,
1993.

[2] David Avis. A survey of heuristics for the weighted matching problem.
Networks, 13(4):475–493, 1983.

[3] Ariful Azad, Aydin Buluç, Xiaoye S Li, Xinliang Wang, and Johannes
Langguth. A distributed-memory algorithm for computing a heavy-
weight perfect matching on bipartite graphs. SIAM Journal on Scientific

Computing, 42(4):C143–C168, 2020.
[4] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object

recognition using shape contexts. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 24(4):509–522, 2002.
[5] Massimo Bernaschi, Alessandro Celestini, Pasqua D’Ambra, and Flavio

Vella. Multi-GPU aggregation-based AMG preconditioner for iterative
linear solvers, 2023.

[6] Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, and Nodari
Sitchinava. Efficient parallel and external matching. In European

Conference on Parallel Processing, pages 659–670. Springer, 2013.
[7] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I:

Compression techniques. In Proc. of the Thirteenth International World

Wide Web Conference (WWW 2004), pages 595–601, Manhattan, USA,
2004. ACM Press.

[8] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment

Problems. Society for Industrial and Applied Mathematics, USA, 2009.
[9] Jie Chen, Robert G. Edwards, and Weizhen Mao. Graph contractions

for calculating correlation functions in lattice qcd. In Proceedings of

the Platform for Advanced Scientific Computing Conference, PASC ’23,
New York, NY, USA, 2023. Association for Computing Machinery.

[10] Han-Yi Chou and Sayan Ghosh. Batched graph community detection
on gpus. In Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques, PACT ’22, page 172–184,
New York, NY, USA, 2023. Association for Computing Machinery.

[11] Pasqua D’Ambra, Fabio Durastante, S M Ferdous, Salvatore Filippone,
Mahantesh Halappanavar, and Alex Pothen. AMG preconditioners based
on parallel hybrid coarsening and multi-objective graph matching. In
2023 31st Euromicro International Conference on Parallel, Distributed

and Network-Based Processing (PDP), pages 59–67, 2023.

[12] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1), dec 2011.

[13] Balázs Dezső, Alpár Jüttner, and Péter Kovács. LEMON–an open source
C++ graph template library. Electronic notes in theoretical computer

science, 264(5):23–45, 2011.

[14] Doratha E Drake and Stefan Hougardy. A simple approximation
algorithm for the weighted matching problem. Information Processing

Letters, 85(4):211–213, 2003.

[15] Ran Duan and Seth Pettie. Linear-time approximation for maximum
weight matching. Journal of the ACM (JACM), 61(1):1–23, 2014.

[16] I. S. Duff and J. Koster. On algorithms for permuting large entries to
the diagonal of a sparse matrix. SIAM Journal on Matrix Analysis and

Applications, 22(4):973–996, 2001.

[17] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices.
Journal of research of the National Bureau of Standards B, 69(125-
130):55–56, 1965.

[18] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of

mathematics, 17:449–467, 1965.

[19] EETimes. Nvidia’s Blackwell Offers FP4, Second-Gen Transformer
Engine, 2024.

[20] Bas O Fagginger Auer and Rob H Bisseling. A GPU algorithm for
greedy graph matching. Facing the Multicore-Challenge II: Aspects of

New Paradigms and Technologies in Parallel Computing, pages 108–
119, 2012.

[21] Denis Foley and John Danskin. Ultra-performance pascal GPU and
NVLink interconnect. IEEE Micro, 37(2):7–17, 2017.

[22] Oded Green and David A Bader. cuSTINGER: Supporting dynamic
graph algorithms for gpus. In 2016 IEEE High Performance Extreme

Computing Conference (HPEC), pages 1–6. IEEE, 2016.

[23] Mahantesh Halappanavar, John Feo, Oreste Villa, Antonino Tumeo, and
Alex Pothen. Approximate weighted matching on emerging manycore
and multithreaded architectures. The International Journal of High

Performance Computing Applications, 26(4):413–430, 2012.

[24] Ismayil Ismayilov, Javid Baydamirli, Doğan Sağbili, Mohamed Wahib,
and Didem Unat. Multi-GPU communication schemes for iterative
solvers: When CPUs are not in charge. In Proceedings of the 37th

International Conference on Supercomputing, ICS ’23, page 192–202,
New York, NY, USA, 2023. Association for Computing Machinery.

[25] Sylvain Jeaugey. Nccl 2.0. In GPU Technology Conference (GTC),
volume 2, page 23, 2017.

[26] Jeremy Kepner and John Gilbert. Graph algorithms in the language of

linear algebra. SIAM, 2011.

[27] H. W. Kuhn. The hungarian method for the assignment problem. Naval

Research Logistics Quarterly, 2(1-2):83–97, 1955.

[28] LEMON Contributors. LEMON: Library for efficient modeling and
optimization in networks. https://lemon.cs.elte.hu/pub/doc/latest-svn/
index.html. Accessed: 2 April, 2024.

[29] Fredrik Manne and Rob H Bisseling. A parallel approximation algorithm
for the weighted maximum matching problem. In International Confer-

ence on Parallel Processing and Applied Mathematics, pages 708–717.
Springer, 2007.

[30] Fredrik Manne and Mahantesh Halappanavar. New effective multi-
threaded matching algorithms. In 2014 IEEE 28th International Parallel

and Distributed Processing Symposium, pages 519–528. IEEE, 2014.

[31] Briance Mascarenhas and Kartikeye Puranam. Analysis of the medical
residency matching algorithm to validate and improve equity. PLOS

ONE, 18(4):1–11, 04 2023.

[32] Md. Naim, Fredrik Manne, Mahantesh Halappanavar, Antonino Tumeo,
and Johannes Langguth. GPU suitor. https://hpc.pnl.gov/people/hala/
suitor.html. Accessed: 2 April, 2024.

[33] Md. Naim, Fredrik Manne, Mahantesh Halappanavar, Antonino Tumeo,
and Johannes Langguth. Optimizing approximate weighted matching on
Nvidia Kepler K40. 2015 IEEE 22nd International Conference on High

Performance Computing (HiPC), pages 105–114, 2015.

[34] Seth Pettie and Peter Sanders. A simpler linear time 2/3-ε approxima-
tion for maximum weight matching. Information Processing Letters,
91(6):271–276, 2004.

[35] Alex Pothen, SM Ferdous, and Fredrik Manne. Approximation algo-
rithms in combinatorial scientific computing. Acta Numerica, 28:541–
633, 2019.

[36] Robert Preis. Linear time 1/2-approximation algorithm for maximum
weighted matching in general graphs. In Annual Symposium on Theo-

retical Aspects of Computer Science, pages 259–269. Springer, 1999.
[37] Amir Hossein Nodehi Sabet, Zhijia Zhao, and Rajiv Gupta. Subway:

Minimizing data transfer during out-of-gpu-memory graph processing.
In Proceedings of the Fifteenth European Conference on Computer

Systems, pages 1–16, 2020.
[38] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal, and Karsten

Schwan. Graphreduce: processing large-scale graphs on accelerator-
based systems. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 1–12,
2015.

[39] Francesco Sgherzi, Alberto Parravicini, and Marco D. Santambrogio.
A mixed precision, Multi-GPU design for large-scale top-k sparse
eigenproblems. In 2022 IEEE International Symposium on Circuits and

Systems (ISCAS), pages 1259–1263, 2022.
[40] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He,

Bo Liu, and Qiang-Sheng Hua. Graph processing on GPUs: A survey.
ACM Computing Surveys (CSUR), 50(6):1–35, 2018.

[41] Kasia Świrydowicz, Eric Darve, Wesley Jones, Jonathan Maack, Shaked
Regev, Michael A Saunders, Stephen J Thomas, and Slaven Peleš.
Linear solvers for power grid optimization problems: a review of GPU-
accelerated linear solvers. Parallel Computing, 111:102870, 2022.

[42] Wenyong Zhong, Jianhua Sun, Hao Chen, Jun Xiao, Zhiwen Chen,
Chang Cheng, and Xuanhua Shi. Optimizing graph processing on GPUs.
IEEE Transactions on Parallel and Distributed Systems, 28(4):1149–
1162, 2016.

[43] Ümit V. Çatalyürek, Florin Dobrian, Assefaw Gebremedhin, Mahantesh
Halappanavar, and Alex Pothen. Distributed-memory parallel algorithms
for matching and coloring. In 2011 IEEE International Symposium on

Parallel and Distributed Processing Workshops and Phd Forum, pages
1971–1980, 2011.

	Introduction
	Background and Related Work
	Preliminaries
	Locally dominant algorithm
	Related Work

	GPU Implementation
	Graph distribution
	Batching
	Intermediate data sharing
	GPU Implementation

	Evaluations
	Matching Quality
	Baseline Performance
	GPU utilization
	Performance Comparisons

	Concluding Remarks
	References

