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A B S T R A C T

Generative artificial intelligence (AI) is shown to be a useful tool to automatically learn from existing information 
and generate new information based on their connections, but its usage for quantitative mechanical research is 
less understood. Here, we focus on the structure-mechanics relationship of architected graphene as graphene 
with void defects of specific patterns. We use Molecular Dynamics (MD) to simulate uniaxial tension on archi
tected graphene, extract the von Mises stress field in mechanical loading, and use the results to train a fine-tuned 
generative AI model through a Low-Rank Adaptation method. This model enables the freely designed architected 
graphene structures and predicts its associated stress field in uniaxial tension loading through simple descriptive 
language. We demonstrate that the fine-tuned model can be established with a few training images and can 
quantitatively predict the stress field for graphene with various defect geometries and distributions not included 
in the training set. We validate the accuracy of the stress field with MD simulations. Moreover, we illustrate that 
our generative AI model can predict the stress field from a schematic drawing of the architected graphene 
through image-to-image generation. These features underscore the promising future for employing advanced 
generative AI models in end-to-end advanced nanomaterial design and characterization, enabling the creation of 
functional, structural materials without using complex numerical modeling and data processing.

1. Introduction

2D materials (e.g., graphene, MoS2, Mxene, BN) have ultrathin 
thickness and remarkable mechanical strength, electrical conductivity, 
and thermal conductivity in comparison to their 3D bulk form, making 
them promising materials for future manufacturing in compact size 
[1–6]. Graphene exhibits high electrical conductivity, with a Young’s 
modulus of 1 TPa and an ultimate mechanical strength of 90 GPa [2]. Its 
impressive thermal conductivity of 5300 W⋅m−1⋅K−1 [7] enables 
effective performance under extreme mechanical, electrical, and ther
mal conditions, making it suitable for applications such as batteries, 
sensors, transistors, and robust composites [8,9]. Research efforts have 
explored doping methods and material composites to enhance graphe
ne’s mechanical strength, often resulting in altered electrical properties. 
For instance, introducing carbon nanotube (CNT) rebars embedded in 
graphene has demonstrated a fourfold increase in fracture energy [10]. 
Conversely, ordered defects in graphene have shown promise in tuning 

its mechanics without introducing foreign materials [11]. Previous 
studies have highlighted the effectiveness of pillared structures in 
enhancing the flexibility and toughness of 3D-printed macroscopic 
samples and applying this strategy to graphene and other 2D materials 
[12]. The introduction of architectural defects in the form of alternative 
bridge-gap structures has been observed to disperse stress concentra
tions and enhance both the strength and toughness of 2D materials [9]. 
It is shown that these mechanical features strongly depend on the stress 
field of the material subjected to loading.

MD simulations, particularly when executed with precise force fields, 
yield highly accurate predictions of the mechanical response of nano
materials, including the atomistic scale molecular behavior level and 
large-scale stress field [14–16]. However, they are computationally 
demanding and can easily exceed the available computational capacity 
if used to produce massive data for brute-force designing and optimi
zation purposes. In contrast, deep learning has arisen as a promising 
solution for tackling this challenge, offering an alternative to 
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first-principle methods like MD or finite element methods (FEM) [17]. It 
acts as an auxiliary model for MD and FEM by integrating the consti
tutive relationship and differential equations and simply replacing the 
correlation functions, which accelerates mechanical behavior prediction 
[18]. It also enables the massive consideration and comparison of 
different design configurations and the use of the results to make ma
terial design and rational reverse design possible [19]. However, most of 
these supervised learning methods are limited by the high training data 
and the quality requirements. They prevent it from being used in 
research applications because pioneering research usually lacks data, 
and the available data must be better structured.

Since 2022, artificial intelligence generated content (AIGC) has 
performed exceptionally well and garnered significant interest from 
researchers. AI-based image generators, including DALL-E 2 [20], 
Imagen [21], Midjourney [22], and Stable Diffusion (SD) [23], have 
emerged as a notable area of study. The main objective of these gener
ative AI algorithms is to create new synthetic images that accurately 
replicate the patterns found in their training dataset [24]. Among these 
tools, SD is a generative AI model enabled through image diffusion in the 
latent space, which facilitates the synthesis of high-resolution images by 
leveraging perceptual and semantic compressions. This model has 
proven effective across various applications, including text-to-image 
[25], text-to-video [26], and super-resolution [27]. Compared to tradi
tional diffusion models [28], SD offers greater computational efficiency, 
enabling the creation of higher-resolution images. Unlike the original 
generative adversarial networks (GANs) [29], SD does not suffer from 
mode collapse or training instabilities. The success of these models 
suggests the possibility of applying generative AI to process a small 
amount of data/image and use the augmented data/image for rational 
design and optimization. While these models have demonstrated their 
ability to produce realistic images [23,30,31], their potential for mate
rial design and characterization remains largely unexplored.

Similar to Large Language Models (LLMs) like GPT by open AI [32], 
developing special-purpose SD models that are experts in specific tasks 
or scientific domains can be costly, especially when diverse sets of ca
pabilities are required. However, methods like Low-Rank Adaptation 
(LoRA) [33], Differential Learning Rates (DLR) [34], Prompt Tuning 
[35], and Full Model Fine-Tuning [36] have been proposed as a more 
efficient way to fine-tune a pre-trained model by updating the weights 
and make the model improve its ability for specific tasks. For example, 
Buehler has utilized LoRA to fine-tune an LLM, creating MechGPT, 
which leverages LLMs to improve multiscale modeling of materials 
failure. [37]. Another fine-tuned LLM, BioinspiredLLM, highlights the 
potential for AI to accelerate research and scientific discovery in 
bio-inspired materials [38]. In another study, X-LoRA was presented as a 
mixture-of-experts, framework enhancing LLMs with LoRAs for 
specialized tasks in protein mechanics and molecular design [39]. Zhao 
et al. employed LoRA to train a special-purpose SD model that can 
efficiently generate remote sensing image-annotation pairs, drastically 
reducing the time and effort required for detailed pixel-level annotations 
in semantic segmentation [40]. In our recent research [41], we explored 
the ability of a fine-tuned SD model to simultaneously generate a 
bicontinuous composite structure and its corresponding von Mises stress 
field. We demonstrate that the model is highly data-efficient and suc
cessfully captures the essential mechanical characteristics of a bicon
tinuous composite under load. These studies demonstrate LoRA’s 
effectiveness in fine-tuning general-purpose models into specialized 
experts focusing on a target scientific domain. LoRA is a training strat
egy designed to accelerate the training of large models while reducing 
memory usage, commonly employed for specific, targeted tuning. In 
LoRA modeling, the principle involves integrating low-rank matrices 
with the original full-scale matrix, where these low-rank matrices are 
the sole trainable components of the model. This approach allows the 
model to retain the extensive knowledge acquired during its initial 
pre-training phase while adapting more specifically to particular tasks 
[33].

Here, we establish a workflow that combines Molecular Dynamics 
(MD) and generative AI enabled through SD to swiftly design the bridge 
structures for graphene with enhanced toughness and rapidly reveal the 
stress field of architected graphene under uniaxial load. As depicted in 
Fig. 1(a), our workflow consists of three primary stages: (I) gathering a 
training dataset via MD simulations of architected graphene sheets 
under uniaxial tension, utilizing the resulting von Mises stress fields; (II) 
fine-tuning a pre-trained SD model using LoRA to tailor it for stress field 
prediction in architected graphene; and (III) employing the text-to- 
image and image-to-image capabilities of SD to simultaneously 
generate 2D graphene sheet configurations with artificially induced 
defects along with their corresponding von Mises stress fields. Our 
model can learn the structure-mechanics relationship for the architected 
graphene sheets and can predict the stress field of an architecture very 
different from the existing training set (Fig. 1(b)).

2. Materials and method

2.1. MD simulation setup and parameters

We simulate uniaxial strain in architected 2D graphene sheets with a 
pre-existing sharp crack and periodic artificial defects in front of the 
crack. The inclusion of a crack in the graphene structure is purposeful to 
study its impact on stress distribution around defects, specifically 
focusing on the stress concentration caused by the crack even before it 
begins to propagate. This detail is crucial for predicting how stress is 
distributed in the structure with an existing crack, right up to the point 
where the crack begins to extend. The sample geometry is varied by 
systematically changing the defect position and dimensions to generate 
the training data.

The adaptive intermolecular reactive empirical bond order (AIREBO) 
[42] potential is used to model the interatomic interactions in graphene. 
Long-range interactions are described by a Lennard-Jones potential with 
a cutoff of 8.5 Å. The system is energetically minimized using the con
jugate gradient method for 20,000 steps with a 1 fs timestep, followed by 
equilibration to 300 K in the NVE ensemble for 10,000 steps. The frac
ture is simulated by applying uniaxial strain along the zigzag direction at 
a rate of 2 × 10−7 Å/fs for 5 ns, with the upper and lower edge atoms 
fixed. The thickness of graphene is assumed to be 3.35 Å. All simulations 
are performed using LAMMPS, and OVITO is used to visualize the atomic 
structures, dynamics, and stress fields. Images portraying the von Mises 
stress fields at a strain of ε = 0.02, just before crack propagation begins, 
are processed and collected as the ground truth for the training dataset. 
The “hot” color map is used for visualizing these stress field contours, 
which spans from "black" [RGB = (0, 0, 0)], indicating a lower limit 
stress of 0.2 GPa, to "white" [RGB = (255, 255, 255)], representing an 
upper limit stress of 50 GPa. Although the specific lower and upper 
bounds may differ across various cases, they remain uniform within our 
dataset. Ultimately, the images are saved with a resolution of 1350 ×

2810 pixels. More details about the MD simulation are shown in Fig. S1
in Supplementary Materials and our previous study [13].

2.2. Overall workflow of SD

We employ generative AI enabled through SD models for image 
generation and fine-tune a pre-trained SD model using the Low Rank 
Adaptation (LoRA) method, tailoring it specifically for generating 
architected graphene stress field images.

SD is based on the foundational diffusion approach, specifically 
denoising diffusion probabilistic models. This method involves two main 
phases: the forward phase and the backward phase (Fig. 2 (a)). In the 
forward phase, noise is incrementally added to an original image in a 
controlled manner, with each step of added noise adhering to a specific 
normal distribution. This process transforms the original image into one 
that is completely obscured by noise. During the backward phase, 
denoising modules that resemble the architecture of a U-Net are trained 
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to predict and remove the noise that was added during the forward 
phase. This denoising process is carried out step by step, starting from 
the fully noised image and gradually restoring it to resemble the original 
image. Once the denoising modules are effectively trained, the model 
can reconstruct images from their noised states, reversing the noise 
addition process. The general term formula for the forward process can 
be expressed mathematically: 

xt =
̅̅̅̅
αt

√
xt−1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√
εt (1) 

Where xt is the image at timestep t, xt−1 is the image at the previous 
timestep, εt represents the noise added at step t, which is sampled from a 
normal distribution, and αt is a parameter to describe the noise intensity 
with 0 ≤ αt < 1. As t increases, more noise is added to xt, making it less 
recognizable as the original image x0. The entire forward processing can 
be rewritten as: 

xt =
̅̅̅̅
αt

√
x0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√
ϵt , ϵt ∈ N (0, I), αt =

∏t

i=1
αi (2) 

The coefficients {αt} are predetermined and its value decreases for 
each step t, guiding how the original image is gradually converted into a 
noise-dominated image by the end of the forward process (i.e., xt⟶ϵt). 
This noised image then serves as the starting point for the backward 
process, where the model learns to denoise the image step by step, ul
timately recovering an approximation of x0. In the backward processing 
phase, under the assumptions of a Gaussian process and Markov chain, 
the objective is to progressively denoise the image, moving from a state 
of high noise back to the original or a close approximation of the original 
image. The mathematical formulation for this process is focused on 
iteratively estimating and removing the noise added during the forward 
phase to recover the clean image. The general term formula for the 
backward process, at a timestep t, can be expressed as: 

xt−1 =
1̅
̅̅̅
αt

√

(

xt −
1 − αt
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√ ϵθ(xt , t)
)

+ ηtzt , zt ∈ N (0, I) (3) 

Where the first term represents the t step recovered image, ϵθ(xt , t) is 
the model’s estimate of the noise added at time t, that is, the output of 
the denoising U-Net, ηt = 1−αt−1

1−αt 
is a parameter controlling the amount of 

stochasticity or randomness reintroduced at step t, and zt is a random 
noise vector sampled from a Gaussian distribution.

In the workflow, the process starts with a stress field image xL
0. In 

forward processing, the noise is systematically introduced to xL
0 

following Eq. 1 for t times. The culmination of this phase is xL
t . The 

backward processing phase begins with xL
t . The image undergoes a 

denoising process aimed at restoring it to the original image, xL
0, by Eq. 

3. Once the U-Net is adequately trained to predict and negate the noise, 
it becomes capable of generating any number of stress field images from 
a given set of arbitrarily noised images. Fig. 2(a) illustrates the pixel 
space transformations for clarity. However, most forward and backward 
processing happens in the latent space.

As illustrated in Fig. 2(b), SD begins by compressing the original 
image from its pixel format (x) into a more compact latent representa
tion (z) using the encoder ε of a Variational Autoencoder (VAE). The 
model then undergoes forward processing, resulting in zT. The model is 
then refined through backward processing with a denoising U-Net, 
which aims to remove noise and reconstruct z from zT. Lastly, the VAE 
decoder D translates this refined latent representation (z) back into the 
original pixel space (x̃), completing the image generation process. The 
transformer τθ encodes the input prompt into a highly informative form 
for the subsequent image generation steps, ensuring that the final output 
is a visual representation that matches the prompt’s description. 
Regarding the network details, the diffusion step number t of xL

t in Fig. 2
(a) is set to 40, implying that the denoising process in the diffusion 
model is conducted through 40 distinct U-nets in each iteration.

Fig. 1. (a) The overall workflow of the study includes the following: I) training dataset collection, II) generative AI enabled through SD models, and III) image 
generation. We deliberately modified the spelling of "graphene" to "gr4phen" in the text prompts because we observed that the model showed improved performance 
by including numbers and special characters. Additionally, this unique phrasing helps distinguish our prompts from those in the pre-existing dataset of the pre- 
trained SD model. (b) Comparison of the synthetic and ground truth stress field of a graphene configuration that includes a defect in the shape of the Syracuse 
University logo. This image-to-image generation function underscores the efficiency of this study for designs, which allows bypassing the Molecular Dynamics 
simulation setup and running it to directly predict the stress field of architected graphene sheets under mechanical loading.
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2.3. Technical detail of the LoRA method

To limit the generation of stress field images in the training dataset’s 
pixel distribution and to accelerate the training process, we integrate the 
LoRA method into a pre-trained model. We apply LoRA to a pre-trained 
SD model to guide it toward generating the stress field of architected 
graphene sheets. The LoRA block number is the same as the pre-trained 
model (Fig. 2(c)). Unlike complete parameter tuning methods that 
necessitate updating all weights during the fine-tuning phase, LoRA 
retains the weights of the original model and integrates trainable low- 
rank matrices to the transformer layers to simulate the weight adjust
ment. Fig. 2 (d) presents the mechanism of LoRA. Suppose W0 ∈ Rd×k 

as the matrix from the pre-trained model. LoRA approximates the 
transition from W0 to W0 +ΔW in the following manner: 

W0 + ΔW = W0 + WdownWup (4) 

Where Wdown ∈ Rd×r and Wup ∈ Rr×k, with r" min(d,k). W0 is held 
constant throughout the fine-tuning stage, but Wdown and Wup are the 
adjustable parameters. For any given input x with its original output h, 
the updated output h is calculated as: 

h = W0x + ΔWx = h + WdownWupx (5) 

When fine-tuning the SD model, LoRA can be explicitly employed on 
the cross-attention layers (Fig. 2 (b) and (c)) that are responsible for 
establishing connections between image representations and corre
sponding descriptive prompts.

Fig. 2. Overall procedure and network architecture of LoRA-tuned SD model (a)An illustration showing how diffusion and denoising processes are carried out by 
integrating LoRA and pretrained SD models. The model ultimately learns to create an image from complete noise based on the input text prompt. Although these tasks 
occur in latent space, they are presented in pixel space for clarity. (b) SD architecture (c) details of SD denoising module and LoRA (d) The core components of LoRA 
and mechanism of fine-tuning a pre-trained SD model, showing how the weights of the pre-trained model are fine-tuned by LoRA matrices according to Eqs. 4 and 5.
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2.4. Model training

We train five LoRA-tuned SD models using varying numbers of stress 
field images from our collection pool of 100 architected graphene sheets. 
Specifically, the models are trained with 10, 20, 40, 80, and 100 images, 
designated as T10, T20, T40, T80, and T100, respectively. To ensure a 
robust evaluation and mitigate the influence of selection bias, we 
employ a randomized selection process to draw images from our training 
set. Each model undergoes five training iterations (i.e., T10_1, T10_2, …, 
T100_5) conducted with different randomly chosen image subsets. 
Notably, for T100, which utilizes the entire pool of 100 images, varia
tion between iterations arises solely from the sequence in which the 
images are selected and presented to the model. This methodological 
approach is designed to rigorously evaluate the impact of training set 
size on model performance while minimizing potential subjectivity in 
the selection process.

The selected training images are adjusted to a resolution of 1350 ×
2810. Our training utilizes the stable-diffusion-v1–5 pre-trained model, 
adopting a batch size of 1, a training duration of 10 epochs, and a 
learning rate of 0.00001 without any adjustments (constant learning 
rate schedule). Optimization is performed using the AdamW8bit opti
mizer, facilitating effective network adjustment. The training hyper
parameters are detailed in Table S1 of Supplementary Materials. The 
training procedure is conducted using the open-source Kohya SS library 
in Python. We include SAFETENSOR and JSON files for the T100 model 
in Supplementary Materials to share the model weights and hyper
parameters, enabling others to replicate our work effectively.

2.5. Image generation

We employ two distinct approaches to produce stress field images 
from the trained models: text-to-image and image-to-image translation. 
A predefined text prompt is the input for the text-to-image approach, 
guiding the model to generate random stress field images. Subsequently, 
a binary mask is applied to these images to transform the stress fields 
into their initial configurations. The image-to-image method uses an 
initial configuration image as the input, prompting the model to 
generate a stress field that corresponds directly to the given configura
tion (Fig. 1(a)). Image generation uses the open-source "Automatic 
1111" GUI [43], a user-friendly platform for interaction with the SD 
model.

2.6. Image normalization and comparison

Using OpenCV, PIL, and NumPy Python libraries, we first convert 
generated RGB images into grayscale using: 

σgray = 0.2989RσRGB + 0.5870GσRGB + 0.1140BσRGB (6) 

Where σgray is the matrix of pixel values for a grayscale image, and RσRGB , 
GσRGB , and BσRGB are the red, green, and blue components of the 
σRGBmatrix. Next, we normalize σgray, adjusting pixel values to fall 
between 0 and 1 using: 

σ =
σgray − min(σgray)

max
(
σgray

)
− min(σgray)

(7) 

Then σ is turned into a 2D configuration through the application of a 
binary mask combined with a threshold using: 

Ω =

{
1&ifσ < θ

0&otherwise (8) 

Where Ω is the matrix of binary configuration, and θ is a defined 
threshold. These configurations are then subjected to uniaxial strain in 
LAMMPS (refer to Materials and Methods Section 2.2), and the resulting 
stress fields are compared to the ground truth images.

To facilitate the comparison and evaluation of the models, we post
process both synthetic and ground truth images. After cropping and 
resizing to 1350 × 2810, we use Eqs. 6 and 7 to obtain σsynthetic and σground 

as the normalized pixel value of the generated image and MD output. 
This step ensures uniformity and enhances contrast. For accuracy 
assessment, we calculate the Root Mean Squared Error (RMSE) between 
the ground truth and synthetic images by RMSEstress =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
i=1(σsynthetici

− σgroundi
)
2

√

, where N is the total number of pixels in 
the images, σsynthetici 

and σgroundi 
are the pixel values at the i-th position in 

σsyntheticand σground, respectively. Additionally, the absolute error map is 
calculated for each pixel to visually highlight discrepancies between the 
synthetic and the ground truth values. This map effectively summarizes 
the model’s performance by illustrating where and how σsynthetic and 
σground differ. The absolute error is computed by Errorstress =
⃒
⃒σsynthetic −σground

⃒
⃒.

For image-to-image generation, in addition to the RMSEstress and 
Errorstress, we also calculate RMSEconf and obtain an error map for the 
generated configurations. This is done by using Eqs. 6–8 to convert a 
synthetic stress field into a configuration, denoted as Ωsynthetic, which is 
then compared to the input configuration, Ωground. The RMSE for the 
configurations is computed using RMSEconf =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
i=1(Ωsynthetici

− Ωgroundi
)
2

√

, Where N is the total number of pixels 
in the images, Ωsynthetici 

and Ωgroundi 
are the pixel values at the i-th po

sition in Ωsynthetic and Ωground, respectively. To visually display discrep
ancies between the synthetic and ground truth configurations, the 
formula for computing the absolute error map is given as Errorconf =
⃒
⃒Ωsynthetic −Ωground

⃒
⃒.

Furthermore, we examine how varying the denoising strength, λ, in 
the SD Image-to-Image tool affects model performance. λ controls the 
model’s alteration of the input image: higher values lead to more sig
nificant changes, potentially diverging from the original image to meet 
the prompt’s requirements. In comparison, lower values maintain more 
of the original features. We quantitatively evaluate the impact of this 
parameter by calculating RMSEstress, Errorstress, RMSEconf , and Errorconf . 
We maintain a constant Classifier Free Guidance (CFG) scale of 5 to 
isolate the effects of denoising strength on the model’s performance. 
CFG scale controls the influence of textual prompts on the generated 
images.

3. Results and discussion

To generate images from the trained SD models, we employ two 
approaches: 1) text-to-image, where a predefined text prompt acts as the 
model’s stimulus, and 2) image-to-image, in which the model uses a 
configuration image as input and attempts to predict the stress field of 
that input based on the associated text prompt (Fig. 1 (a)). For each 
approach, we evaluate the performance of the prediction with the 
method, as we discuss in the Materials and Method section.

3.1. Text-to-image generation of architected graphene design and related 
stress field

We develop five SD models, each comprising five repeats, totaling 
twenty-five models, as detailed in the Materials and Methods section. 
While training, we assign each model a unique text prompt, such as "a 
photo of a graphene stress field" to guide image generation. After 
training, we assess the models’ performance both quantitatively and 
qualitatively.

3.1.1. Analysis for stress prediction errors and distributions
Fig. 3 compares three synthetic images alongside their actual ground 

truth counterparts. Our analysis reveals that the models successfully 
capture key features, including stress concentration at crack tips, stress 
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distribution near defects, and low-stress areas adjacent to pre-existing 
cracks. The model also captures the stress drop at the edge, followed 
by a gradual decrease moving away from the defects (Fig. 3 (a) and (b)). 
In addition, our methodology adeptly extends beyond the scope of the 
training data, which consisted of uniform rectangular defects, to accu
rately predict stress fields in structures with non-uniform rectangular 
(Fig. 3 (c)) and even diverse defect geometries, such as I-shaped and 
triangular defects (Fig. 3 (d)). This not only underscores the model’s 
strong capability for generalization but also highlights its proficiency in 
handling a broad spectrum of novel structural configurations.

Several divergences are evident between the synthetic and ground 
truth images. In narrow defects, synthetic images often show diminished 
stress concentrations at the edges compared to ground truth images 
(Fig. 3 (b)). This contrast arises because, in ground truth data, the 
proximity of carbon atoms allows for non-bonded interaction between 
them, thereby sealing the defects and eliminating the lower stress re
gions apparent in synthetic representations. Moreover, the generated 
images sometimes fail to accurately represent the stress of the free- 
hanging atoms near the defects’ edges, as seen in Fig. 3(c). The free- 
hanging carbon atoms effectively feel no stress in the ground truth, 
which is not the case for some synthetic images generated.

3.1.2. Fine-tuned models for reducing stress prediction errors
The error histograms shown in Fig. 3 have a prominent peak at or 

near zero, suggesting that most errors in the image comparison are 
minimal. This peak indicates that the synthetic images closely match the 
ground truth, with the majority of pixel-wise comparisons yielding 
minor errors.

Unlike GANs, which are data-intensive and require substantial 
datasets for training, SD models demonstrate robust performance even 
with limited training data. We construct our training dataset with only 
100 images to emphasize this advantage. To explore the effect of 
training dataset size on model accuracy, we conduct experiments with 
subsets of 10,20,40,80 and 100 images. To minimize the subjectivity in 
selecting training images from the dataset pool, we subject each of the 

five models to five separate training runs, each generated by randomly 
selecting images (refer to Materials and Methods for details). During the 
image generation, we observe that some models occasionally produce 
unacceptable images that deviate significantly from expected results, 
necessitating their rejection. Therefore, we introduce another metric to 
assess model reliability based on the ability of the models to generate 
images that meet predefined acceptance criteria—specifically, the 
presence of a pre-existing crack and at least one structural defect in the 
generated images. We compute the ratio of accepted images, denoted as 
Paccept, to all generated images to quantify this aspect. (Fig. S2 in Sup
plementary Materials demonstrates examples of rejected and accepted 
images). Consequently, we calculate Paccept for each model by Paccept =
Naccept
Ntotal

, where Naccept and Ntotal represent the number of accepted and total 
images for each model, respectively. This approach allows us to quan
titatively measure the consistency and reliability of each model in pro
ducing images that align with the essential characteristics of the ground 
truth images. For each iteration, ranging from T10_1 to T100_5, we 
generate 200 images, resulting in 1000 images per model. We compute 
Paccept for each iteration and then calculate the average Paccept across 
all iterations of a model to determine the Paccept of each model. The 
outcomes are depicted in Fig. 4(a), which illustrates that an increase in 
the volume of training images enhances the models’ reliability. This 
enhancement is evidenced by a reduction in the number of rejected 
images, indicating that the models have become increasingly precise in 
forecasting the general characteristics of the training images.

Fig. 4(b) demonstrates that there is no significant improvement in 
model performance with an increase in the size of the training images, 
except for the T100 model, which exhibits a lower RMSE. However, 
there is a noticeable discrepancy between the mean RMSE and the 
standard deviation across the iterations for each model, underscoring 
that the specific images chosen for training can influence the effective
ness of the models. This variance is less pronounced in the T100 model, 
as it uses the entire pool of 100 images, and the variation between its 
iterations is attributed solely to the order in which images are fed to the 
model.

Fig. 3. Comparison between text-to-image synthetic and the corresponding ground truth stress fields. The “Hot” color map is used to visualize the values of von Mises 
stress. The error map employs a "Blues" heatmap to represent normalized error values, where lighter pixels correspond to lower errors and darker blue pixels indicate 
higher error magnitudes. The error histogram is derived by computing the ratio of the number of pixels within each bin to the total number of pixels.
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3.2. Image-to-image generation of stress field for a given architecture

We use SD’s image-to-image tool to predict the stress field of an input 
configuration. This feature works by taking the input image and trans
forming the configuration and color according to the unique textual 
prompt associated with the model. The output is an image that retains 
the overall structure of the initial input but is altered in creative ways to 
reflect the conditions imposed by the textual prompt. Here, we use the 
T100 model, which best performs in text-to-image comparison.

The results summarized in Fig. 5 illustrate that the image-to-image 
tool of SD effectively predicts the stress field of specified graphene 
configurations. Like the text-to-image tool, this method captures critical 
mechanical attributes within the structure by accurately predicting the 
associated stress fields. A significant advantage of this tool over the text- 
to-image option is the ability to control the configuration of the gener
ated structure. Specifically, while the text-to-image tool generates a 
random structure and its corresponding stress field, the image-to-image 
tool allows for the input of a predefined structure and the corresponding 
stress field as the output. This approach is markedly faster than 

traditional simulation methods such as FEM and MD, with each image 
being generated in mere seconds. We further examine the model’s 
generalizability by introducing a graphene configuration that includes a 
defect in the shape of the Syracuse University logo (Fig. 1(b)). This 
configuration is entirely novel to the model as it differs from any 
architected graphene configuration within the training set; nonetheless, 
it successfully predicts the stress field and identifies the principal 
structural features. Although the model’s performance on this unique 
configuration is slightly inferior compared to other tested configura
tions, as depicted in Fig. S4, its ability to delineate major mechanical 
characteristics within the stress field remains commendable.

The performance of the Image-to-Image tool is significantly influ
enced by the CFG scale and denoising strength (λ). The CFG scale de
termines the model’s fidelity to the textual prompts during image 
generation, while λ adjusts the extent to which the model corrects or 
removes perceived noise during the transformation process, influencing 
the model’s randomness and creativity. By holding the CFG scale con
stant, we varied λ to observe its impact on the generated configurations 
and the accuracy of the predicted stress field images. As shown in Fig. 5, 

Fig. 4. Effect of training dataset volume on the (a) model’s reliability to generate images meeting predefined acceptance criteria and (b) accuracy.

Fig. 5. Performance variation of image-to-image SD models with changing denoising strengths (λ), demonstrating the balance between adherence to input 
configuration and precision in stress field prediction. The close-up panels in the third row illustrate the increasing divergence of the synthetic configurations from the 
input as denoising strength increases.
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a lower λ value results in the model adhering closely to the input 
configuration, yet it struggles to predict the stress field accurately. 
Conversely, increasing λ enhances the model’s creativity, allowing it to 
capture more detailed features in the stress field image, which leads to 
deviations from the original input configuration. We see the exact in
fluence of λ on the performance of the model for another structure, as 
shown in Fig. S3. We extend this analysis to 10 different input config
urations and calculate RMSEstress and RMSEconf , which are summarized in 
Fig. 6. The different overall trends of RMSEconf and RMSEstress as func
tions of λ (Fig. 6 (a) and (b), respectively) suggest a trade-off in model 
performance influenced by λ. As λ increases, the model diverges from 
the input configuration, resulting in a rise in RMSEconf . However, the 
optimal stress prediction, indicated by the lowest RMSEstress, is achieved 
at λ=0.7, as shown in Fig. 6 (b). This reveals a balance between main
taining fidelity to the input configuration and accurately predicting the 
stress field.

4. Conclusion

In this study, we effectively combined Molecular Dynamics and 
generative AI techniques, enabled through SD, to design and rapidly 
predict the stress fields of architected graphene under mechanical load, 
demonstrating the powerful synergy between these components. By 
leveraging MD simulations for initial data generation and employing the 
high-dimensional data-learning capabilities of SD, particularly through 
LoRA, we have effectively created an AI model to rapidly find and utilize 
structure-mechanics correlation to design architected graphene struc
tures. We found that for the text-to-image function, by increasing the 
training dataset volume, the AI model will provide a higher number of 
reasonable design configurations, and the stress field corresponding to 
these accepted configurations is more accurate by comparing to MD 
results. We observed that for the image-to-image function, increasing 
denoising strength can disrupt the input conformation but provide a 
stress field with slightly improved accuracy. Our workflow of training 
and applying the generative AI model to material study can enhance 
material design efficiency by generating reliable predictions with small 
data amounts and computational resources. This work underscores the 
potential of integrating AI in materials science and highlights a prom
ising pathway to create rapid and cost-effective design protocols, which 
is crucial for application-oriented research.

The architected graphene in this study can be considered an extreme 
example of composite materials composed of graphene and in-plane 
voids. Composites of matrix and reinforced components have unique 

mechanics that outperform each material phase and dominate many 
modern engineering fields. Classical studies have shown that the com
posite’s toughness can go beyond that of each material phase [44]. 
Optimizing composite mechanics per se has become a fundamental 
question: how to decide the material distribution that yields the optimal 
material functions? Having an efficient tool to facilitate design and 
reveal the structure-mechanics relationship will help give a quick 
answer to the question and lead to material innovations for broader 
engineering applications. Our study demonstrates that outputs of mul
tiscale modeling can finely tune generative AI models. It forms a rapidly 
evolving technique that can understand and massively produce 
distinctive designs in response to simple natural language instructions. 
This tool will, therefore, reduce the technical barrier and computational 
amount for regular users of numerical modeling. The predicted outcome 
can be directly applied to composite synthesis for validation or appli
cation to broad engineering fields, including aerospace, wind energy 
industry, high-end automotive, healthcare, sports gear, and construction 
restoration, by generating coherent designs not limited by human 
experience or existing models or trapped by local optimal results.

5. Future works

As the future work, our AI model may be enhanced by training 
generative AI model for movie generation (e.g., Sora by OpenAI) with 
simulation trajectory that may predict the crack propagation path and 
its interaction with different architected patterns. At the current point, 
there are existing works based on CNN to project the crack path and 
stress-strain curve for a composite design [45,46] despite the limited 
composite resolution. Laveraging generative AI, we aim to overcome 
this limitation, significantly increasing the resolution of the composite 
for which we can predict the mechanical properties and crack propa
gation path. This approach will also enable us to predict the crack path 
for architected graphene as well.

Our "text-to-image" model is adept at simultaneously generating 
novel architected graphene structures and predicting their correspond
ing stress fields. This capacity to innovate and create designs not 
encountered during its training underscores GenAI’s ability to navigate 
and expand the design space, while providing critical stress field data for 
these new configurations. This functionality is integral to the develop
ment of pioneering structural designs. Looking ahead, however, we aim 
to enhance the model’s utility by integrating it with deep neural net
works (DNN), optimization techniques, and mechanical analysis. These 
future studies will focus on predicting mechanical properties from the 
generated structures and their stress fields, and optimizing these 

Fig. 6. Impact of denoising strength (λ) on T100 model precision for generating (a) configurations and (b) stress fields in the Image-to-Image generation via SD.
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structures to meet specific design targets.
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