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ABSTRACT

Generative artificial intelligence (AI) is shown to be a useful tool to automatically learn from existing information
and generate new information based on their connections, but its usage for quantitative mechanical research is
less understood. Here, we focus on the structure-mechanics relationship of architected graphene as graphene
with void defects of specific patterns. We use Molecular Dynamics (MD) to simulate uniaxial tension on archi-
tected graphene, extract the von Mises stress field in mechanical loading, and use the results to train a fine-tuned
generative Al model through a Low-Rank Adaptation method. This model enables the freely designed architected
graphene structures and predicts its associated stress field in uniaxial tension loading through simple descriptive
language. We demonstrate that the fine-tuned model can be established with a few training images and can
quantitatively predict the stress field for graphene with various defect geometries and distributions not included
in the training set. We validate the accuracy of the stress field with MD simulations. Moreover, we illustrate that
our generative Al model can predict the stress field from a schematic drawing of the architected graphene
through image-to-image generation. These features underscore the promising future for employing advanced
generative Al models in end-to-end advanced nanomaterial design and characterization, enabling the creation of

functional, structural materials without using complex numerical modeling and data processing.

1. Introduction

2D materials (e.g., graphene, MoS2, Mxene, BN) have ultrathin
thickness and remarkable mechanical strength, electrical conductivity,
and thermal conductivity in comparison to their 3D bulk form, making
them promising materials for future manufacturing in compact size
[1-6]. Graphene exhibits high electrical conductivity, with a Young’s
modulus of 1 TPa and an ultimate mechanical strength of 90 GPa [2]. Its
impressive thermal conductivity of 5300 W-m—1-K—1 [7] enables
effective performance under extreme mechanical, electrical, and ther-
mal conditions, making it suitable for applications such as batteries,
sensors, transistors, and robust composites [8,9]. Research efforts have
explored doping methods and material composites to enhance graphe-
ne’s mechanical strength, often resulting in altered electrical properties.
For instance, introducing carbon nanotube (CNT) rebars embedded in
graphene has demonstrated a fourfold increase in fracture energy [10].
Conversely, ordered defects in graphene have shown promise in tuning

its mechanics without introducing foreign materials [11]. Previous
studies have highlighted the effectiveness of pillared structures in
enhancing the flexibility and toughness of 3D-printed macroscopic
samples and applying this strategy to graphene and other 2D materials
[12]. The introduction of architectural defects in the form of alternative
bridge-gap structures has been observed to disperse stress concentra-
tions and enhance both the strength and toughness of 2D materials [9].
It is shown that these mechanical features strongly depend on the stress
field of the material subjected to loading.

MD simulations, particularly when executed with precise force fields,
yield highly accurate predictions of the mechanical response of nano-
materials, including the atomistic scale molecular behavior level and
large-scale stress field [14-16]. However, they are computationally
demanding and can easily exceed the available computational capacity
if used to produce massive data for brute-force designing and optimi-
zation purposes. In contrast, deep learning has arisen as a promising
solution for tackling this challenge, offering an alternative to
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first-principle methods like MD or finite element methods (FEM) [17]. It
acts as an auxiliary model for MD and FEM by integrating the consti-
tutive relationship and differential equations and simply replacing the
correlation functions, which accelerates mechanical behavior prediction
[18]. It also enables the massive consideration and comparison of
different design configurations and the use of the results to make ma-
terial design and rational reverse design possible [19]. However, most of
these supervised learning methods are limited by the high training data
and the quality requirements. They prevent it from being used in
research applications because pioneering research usually lacks data,
and the available data must be better structured.

Since 2022, artificial intelligence generated content (AIGC) has
performed exceptionally well and garnered significant interest from
researchers. Al-based image generators, including DALL-E 2 [20],
Imagen [21], Midjourney [22], and Stable Diffusion (SD) [23], have
emerged as a notable area of study. The main objective of these gener-
ative Al algorithms is to create new synthetic images that accurately
replicate the patterns found in their training dataset [24]. Among these
tools, SD is a generative Al model enabled through image diffusion in the
latent space, which facilitates the synthesis of high-resolution images by
leveraging perceptual and semantic compressions. This model has
proven effective across various applications, including text-to-image
[25], text-to-video [26], and super-resolution [27]. Compared to tradi-
tional diffusion models [28], SD offers greater computational efficiency,
enabling the creation of higher-resolution images. Unlike the original
generative adversarial networks (GANs) [29], SD does not suffer from
mode collapse or training instabilities. The success of these models
suggests the possibility of applying generative Al to process a small
amount of data/image and use the augmented data/image for rational
design and optimization. While these models have demonstrated their
ability to produce realistic images [23,30,31], their potential for mate-
rial design and characterization remains largely unexplored.

Similar to Large Language Models (LLMs) like GPT by open AI [32],
developing special-purpose SD models that are experts in specific tasks
or scientific domains can be costly, especially when diverse sets of ca-
pabilities are required. However, methods like Low-Rank Adaptation
(LoRA) [33], Differential Learning Rates (DLR) [34], Prompt Tuning
[35], and Full Model Fine-Tuning [36] have been proposed as a more
efficient way to fine-tune a pre-trained model by updating the weights
and make the model improve its ability for specific tasks. For example,
Buehler has utilized LoRA to fine-tune an LLM, creating MechGPT,
which leverages LLMs to improve multiscale modeling of materials
failure. [37]. Another fine-tuned LLM, BioinspiredLLM, highlights the
potential for AI to accelerate research and scientific discovery in
bio-inspired materials [38]. In another study, X-LoRA was presented as a
mixture-of-experts, framework enhancing LLMs with LoRAs for
specialized tasks in protein mechanics and molecular design [39]. Zhao
et al. employed LoRA to train a special-purpose SD model that can
efficiently generate remote sensing image-annotation pairs, drastically
reducing the time and effort required for detailed pixel-level annotations
in semantic segmentation [40]. In our recent research [41], we explored
the ability of a fine-tuned SD model to simultaneously generate a
bicontinuous composite structure and its corresponding von Mises stress
field. We demonstrate that the model is highly data-efficient and suc-
cessfully captures the essential mechanical characteristics of a bicon-
tinuous composite under load. These studies demonstrate LoRA’s
effectiveness in fine-tuning general-purpose models into specialized
experts focusing on a target scientific domain. LoRA is a training strat-
egy designed to accelerate the training of large models while reducing
memory usage, commonly employed for specific, targeted tuning. In
LoRA modeling, the principle involves integrating low-rank matrices
with the original full-scale matrix, where these low-rank matrices are
the sole trainable components of the model. This approach allows the
model to retain the extensive knowledge acquired during its initial
pre-training phase while adapting more specifically to particular tasks
[33].
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Here, we establish a workflow that combines Molecular Dynamics
(MD) and generative Al enabled through SD to swiftly design the bridge
structures for graphene with enhanced toughness and rapidly reveal the
stress field of architected graphene under uniaxial load. As depicted in
Fig. 1(a), our workflow consists of three primary stages: (I) gathering a
training dataset via MD simulations of architected graphene sheets
under uniaxial tension, utilizing the resulting von Mises stress fields; (II)
fine-tuning a pre-trained SD model using LoRA to tailor it for stress field
prediction in architected graphene; and (III) employing the text-to-
image and image-to-image capabilities of SD to simultaneously
generate 2D graphene sheet configurations with artificially induced
defects along with their corresponding von Mises stress fields. Our
model can learn the structure-mechanics relationship for the architected
graphene sheets and can predict the stress field of an architecture very
different from the existing training set (Fig. 1(b)).

2. Materials and method
2.1. MD simulation setup and parameters

We simulate uniaxial strain in architected 2D graphene sheets with a
pre-existing sharp crack and periodic artificial defects in front of the
crack. The inclusion of a crack in the graphene structure is purposeful to
study its impact on stress distribution around defects, specifically
focusing on the stress concentration caused by the crack even before it
begins to propagate. This detail is crucial for predicting how stress is
distributed in the structure with an existing crack, right up to the point
where the crack begins to extend. The sample geometry is varied by
systematically changing the defect position and dimensions to generate
the training data.

The adaptive intermolecular reactive empirical bond order (AIREBO)
[42] potential is used to model the interatomic interactions in graphene.
Long-range interactions are described by a Lennard-Jones potential with
a cutoff of 8.5 A. The system is energetically minimized using the con-
jugate gradient method for 20,000 steps with a 1 fs timestep, followed by
equilibration to 300 K in the NVE ensemble for 10,000 steps. The frac-
ture is simulated by applying uniaxial strain along the zigzag direction at
a rate of 2 x 107 A/fs for 5 ns, with the upper and lower edge atoms
fixed. The thickness of graphene is assumed to be 3.35 A. All simulations
are performed using LAMMPS, and OVITO is used to visualize the atomic
structures, dynamics, and stress fields. Images portraying the von Mises
stress fields at a strain of ¢ = 0.02, just before crack propagation begins,
are processed and collected as the ground truth for the training dataset.
The “hot” color map is used for visualizing these stress field contours,
which spans from "black” [RGB = (0, 0, 0)], indicating a lower limit
stress of 0.2 GPa, to "white" [RGB = (255, 255, 255)], representing an
upper limit stress of 50 GPa. Although the specific lower and upper
bounds may differ across various cases, they remain uniform within our
dataset. Ultimately, the images are saved with a resolution of 1350 x
2810 pixels. More details about the MD simulation are shown in Fig. S1
in Supplementary Materials and our previous study [13].

2.2. Overall workflow of SD

We employ generative Al enabled through SD models for image
generation and fine-tune a pre-trained SD model using the Low Rank
Adaptation (LoRA) method, tailoring it specifically for generating
architected graphene stress field images.

SD is based on the foundational diffusion approach, specifically
denoising diffusion probabilistic models. This method involves two main
phases: the forward phase and the backward phase (Fig. 2 (a)). In the
forward phase, noise is incrementally added to an original image in a
controlled manner, with each step of added noise adhering to a specific
normal distribution. This process transforms the original image into one
that is completely obscured by noise. During the backward phase,
denoising modules that resemble the architecture of a U-Net are trained
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Fig. 1. (a) The overall workflow of the study includes the following: I) training dataset collection, II) generative Al enabled through SD models, and III) image
generation. We deliberately modified the spelling of "graphene" to "gr4phen" in the text prompts because we observed that the model showed improved performance
by including numbers and special characters. Additionally, this unique phrasing helps distinguish our prompts from those in the pre-existing dataset of the pre-
trained SD model. (b) Comparison of the synthetic and ground truth stress field of a graphene configuration that includes a defect in the shape of the Syracuse
University logo. This image-to-image generation function underscores the efficiency of this study for designs, which allows bypassing the Molecular Dynamics
simulation setup and running it to directly predict the stress field of architected graphene sheets under mechanical loading.

to predict and remove the noise that was added during the forward
phase. This denoising process is carried out step by step, starting from
the fully noised image and gradually restoring it to resemble the original
image. Once the denoising modules are effectively trained, the model
can reconstruct images from their noised states, reversing the noise
addition process. The general term formula for the forward process can
be expressed mathematically:

Xe = VX1 + /1 — e (@9)

Where x; is the image at timestep t, x;_; is the image at the previous
timestep, ¢, represents the noise added at step t, which is sampled from a
normal distribution, and a; is a parameter to describe the noise intensity
with 0 < a; < 1. As t increases, more noise is added to x;, making it less
recognizable as the original image x,. The entire forward processing can
be rewritten as:

t
x=vaxo+V1-me , e €100, @&=][]a @)
i=1

The coefficients {a,} are predetermined and its value decreases for
each step t, guiding how the original image is gradually converted into a
noise-dominated image by the end of the forward process (i.e., x,—¢,).
This noised image then serves as the starting point for the backward
process, where the model learns to denoise the image step by step, ul-
timately recovering an approximation of x,. In the backward processing
phase, under the assumptions of a Gaussian process and Markov chain,
the objective is to progressively denoise the image, moving from a state
of high noise back to the original or a close approximation of the original
image. The mathematical formulation for this process is focused on
iteratively estimating and removing the noise added during the forward
phase to recover the clean image. The general term formula for the
backward process, at a timestep t, can be expressed as:

1 1-—a .
Xe—1 = ﬁ (xt - ﬁeS(xh t)> +nZ, %€ '/1/(071) (3)

Where the first term represents the t step recovered image, ey(x;, t) is

the model’s estimate of the noise added at time ¢, that is, the output of
1-
o

L is a parameter controlling the amount of

the denoising U-Net, 7, =
stochasticity or randomness reintroduced at step ¢, and 2z, is a random
noise vector sampled from a Gaussian distribution.

In the workflow, the process starts with a stress field image x5. In
forward processing, the noise is systematically introduced to x5
following Eq. 1 for t times. The culmination of this phase is xt. The
backward processing phase begins with xI. The image undergoes a
denoising process aimed at restoring it to the original image, x5, by Eq.
3. Once the U-Net is adequately trained to predict and negate the noise,
it becomes capable of generating any number of stress field images from
a given set of arbitrarily noised images. Fig. 2(a) illustrates the pixel
space transformations for clarity. However, most forward and backward
processing happens in the latent space.

As illustrated in Fig. 2(b), SD begins by compressing the original
image from its pixel format (x) into a more compact latent representa-
tion (z) using the encoder ¢ of a Variational Autoencoder (VAE). The
model then undergoes forward processing, resulting in zr. The model is
then refined through backward processing with a denoising U-Net,
which aims to remove noise and reconstruct z from zr. Lastly, the VAE
decoder Ztranslates this refined latent representation (z) back into the
original pixel space (x), completing the image generation process. The
transformer 7y encodes the input prompt into a highly informative form
for the subsequent image generation steps, ensuring that the final output
is a visual representation that matches the prompt’s description.
Regarding the network details, the diffusion step number t of x in Fig. 2
(a) is set to 40, implying that the denoising process in the diffusion
model is conducted through 40 distinct U-nets in each iteration.
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Fig. 2. Overall procedure and network architecture of LoRA-tuned SD model (a)An illustration showing how diffusion and denoising processes are carried out by
integrating LoRA and pretrained SD models. The model ultimately learns to create an image from complete noise based on the input text prompt. Although these tasks
occur in latent space, they are presented in pixel space for clarity. (b) SD architecture (c) details of SD denoising module and LoRA (d) The core components of LoORA
and mechanism of fine-tuning a pre-trained SD model, showing how the weights of the pre-trained model are fine-tuned by LoRA matrices according to Eqs. 4 and 5.

2.3. Technical detail of the LoRA method

To limit the generation of stress field images in the training dataset’s
pixel distribution and to accelerate the training process, we integrate the
LoRA method into a pre-trained model. We apply LoRA to a pre-trained
SD model to guide it toward generating the stress field of architected
graphene sheets. The LoRA block number is the same as the pre-trained
model (Fig. 2(c)). Unlike complete parameter tuning methods that
necessitate updating all weights during the fine-tuning phase, LoRA
retains the weights of the original model and integrates trainable low-
rank matrices to the transformer layers to simulate the weight adjust-
ment. Fig. 2 (d) presents the mechanism of LoRA. Suppose W, € Rk
as the matrix from the pre-trained model. LoRA approximates the
transition from Wy to Wy +AW in the following manner:

Wo+AW = Wy + WiwnWip 4
Where Wiun € R and W, € R™*, with ' min(d,k). WO is held
constant throughout the fine-tuning stage, but Wy,,, and Wy, are the
adjustable parameters. For any given input x with its original output h,

the updated output h is calculated as:

h = Wox + AWx = h+ Wpun Wypx 5)

When fine-tuning the SD model, LoRA can be explicitly employed on
the cross-attention layers (Fig. 2 (b) and (c)) that are responsible for
establishing connections between image representations and corre-
sponding descriptive prompts.
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2.4. Model training

We train five LoRA-tuned SD models using varying numbers of stress
field images from our collection pool of 100 architected graphene sheets.
Specifically, the models are trained with 10, 20, 40, 80, and 100 images,
designated as T10, T20, T40, T80, and T100, respectively. To ensure a
robust evaluation and mitigate the influence of selection bias, we
employ a randomized selection process to draw images from our training
set. Each model undergoes five training iterations (i.e., T10_1, T10_2, ...,
T100_5) conducted with different randomly chosen image subsets.
Notably, for T100, which utilizes the entire pool of 100 images, varia-
tion between iterations arises solely from the sequence in which the
images are selected and presented to the model. This methodological
approach is designed to rigorously evaluate the impact of training set
size on model performance while minimizing potential subjectivity in
the selection process.

The selected training images are adjusted to a resolution of 1350 x
2810. Our training utilizes the stable-diffusion-v1-5 pre-trained model,
adopting a batch size of 1, a training duration of 10 epochs, and a
learning rate of 0.00001 without any adjustments (constant learning
rate schedule). Optimization is performed using the AdamW8bit opti-
mizer, facilitating effective network adjustment. The training hyper-
parameters are detailed in Table S1 of Supplementary Materials. The
training procedure is conducted using the open-source Kohya SS library
in Python. We include SAFETENSOR and JSON files for the T100 model
in Supplementary Materials to share the model weights and hyper-
parameters, enabling others to replicate our work effectively.

2.5. Image generation

We employ two distinct approaches to produce stress field images
from the trained models: text-to-image and image-to-image translation.
A predefined text prompt is the input for the text-to-image approach,
guiding the model to generate random stress field images. Subsequently,
a binary mask is applied to these images to transform the stress fields
into their initial configurations. The image-to-image method uses an
initial configuration image as the input, prompting the model to
generate a stress field that corresponds directly to the given configura-
tion (Fig. 1(a)). Image generation uses the open-source "Automatic
1111" GUI [43], a user-friendly platform for interaction with the SD
model.

2.6. Image normalization and comparison

Using OpenCV, PIL, and NumPy Python libraries, we first convert
generated RGB images into grayscale using:

Ggay = 0.2989R,,, +0.5870G,,,,, +0.1140B,,, (6)

Where 644y is the matrix of pixel values for a grayscale image, and R,
Gppes» and Bg,are the red, green, and blue components of the
orgpmatrix. Next, we normalize o0gqy, adjusting pixel values to fall
between 0 and 1 using:

Ogray — MN(Ogray)
Max(Ogqy) — MiN(Cgray)

)

oc =

Then & is turned into a 2D configuration through the application of a
binary mask combined with a threshold using:

Q:{l&ifa-<0 ®)

0&otherwise

Where Q is the matrix of binary configuration, and 6 is a defined
threshold. These configurations are then subjected to uniaxial strain in
LAMMPS (refer to Materials and Methods Section 2.2), and the resulting
stress fields are compared to the ground truth images.
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To facilitate the comparison and evaluation of the models, we post-
process both synthetic and ground truth images. After cropping and
resizing to 1350 x 2810, we use Egs. 6 and 7 to obtain Gyneric and Gground
as the normalized pixel value of the generated image and MD output.
This step ensures uniformity and enhances contrast. For accuracy
assessment, we calculate the Root Mean Squared Error (RMSE) between
the ground truth and by  RMSEyess =

synthetic images

\/ % Ef;l (Csynthetic, — Egmmdi)z, where N is the total number of pixels in
the images, Gyniheic, and Ggroung, are the pixel values at the i-th position in
Csynthericand Ggroung, respectively. Additionally, the absolute error map is
calculated for each pixel to visually highlight discrepancies between the
synthetic and the ground truth values. This map effectively summarizes
the model’s performance by illustrating where and how Ggnerc and
Ggouna differ. The absolute error is computed by Errorspes =
}Esynthetic 7f_7ground ‘ .

For image-to-image generation, in addition to the RMSEgy,ss and
Errorgyess, we also calculate RMSE_ .y and obtain an error map for the
generated configurations. This is done by using Eqs. 6-8 to convert a
synthetic stress field into a configuration, denoted as Qgnheiic, Which is
then compared to the input configuration, Qgunq. The RMSE for the
configurations is computed RMSE oy =

\/% Zil (stnthetici -

in the images, Qunheric, and  Qgroung, are the pixel values at the i-th po-

using

ngundi)z, Where N is the total number of pixels

sition in Qgyneheric and Qgroung, respectively. To visually display discrep-
ancies between the synthetic and ground truth configurations, the
formula for computing the absolute error map is given as Errorco,s =
}stnthen'c - ground}-

Furthermore, we examine how varying the denoising strength, A, in
the SD Image-to-Image tool affects model performance. A controls the
model’s alteration of the input image: higher values lead to more sig-
nificant changes, potentially diverging from the original image to meet
the prompt’s requirements. In comparison, lower values maintain more
of the original features. We quantitatively evaluate the impact of this
parameter by calculating RMSEqyess, ErToTsiress, RMSEcons, and Errorcoy.
We maintain a constant Classifier Free Guidance (CFG) scale of 5 to
isolate the effects of denoising strength on the model’s performance.
CFG scale controls the influence of textual prompts on the generated
images.

3. Results and discussion

To generate images from the trained SD models, we employ two
approaches: 1) text-to-image, where a predefined text prompt acts as the
model’s stimulus, and 2) image-to-image, in which the model uses a
configuration image as input and attempts to predict the stress field of
that input based on the associated text prompt (Fig. 1 (a)). For each
approach, we evaluate the performance of the prediction with the
method, as we discuss in the Materials and Method section.

3.1. Text-to-image generation of architected graphene design and related
stress field

We develop five SD models, each comprising five repeats, totaling
twenty-five models, as detailed in the Materials and Methods section.
While training, we assign each model a unique text prompt, such as "a
photo of a graphene stress field" to guide image generation. After
training, we assess the models’ performance both quantitatively and
qualitatively.

3.1.1. Analysis for stress prediction errors and distributions

Fig. 3 compares three synthetic images alongside their actual ground
truth counterparts. Our analysis reveals that the models successfully
capture key features, including stress concentration at crack tips, stress
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distribution near defects, and low-stress areas adjacent to pre-existing
cracks. The model also captures the stress drop at the edge, followed
by a gradual decrease moving away from the defects (Fig. 3 (a) and (b)).
In addition, our methodology adeptly extends beyond the scope of the
training data, which consisted of uniform rectangular defects, to accu-
rately predict stress fields in structures with non-uniform rectangular
(Fig. 3 (c)) and even diverse defect geometries, such as I-shaped and
triangular defects (Fig. 3 (d)). This not only underscores the model’s
strong capability for generalization but also highlights its proficiency in
handling a broad spectrum of novel structural configurations.

Several divergences are evident between the synthetic and ground
truth images. In narrow defects, synthetic images often show diminished
stress concentrations at the edges compared to ground truth images
(Fig. 3 (b)). This contrast arises because, in ground truth data, the
proximity of carbon atoms allows for non-bonded interaction between
them, thereby sealing the defects and eliminating the lower stress re-
gions apparent in synthetic representations. Moreover, the generated
images sometimes fail to accurately represent the stress of the free-
hanging atoms near the defects’ edges, as seen in Fig. 3(c). The free-
hanging carbon atoms effectively feel no stress in the ground truth,
which is not the case for some synthetic images generated.

3.1.2. Fine-tuned models for reducing stress prediction errors

The error histograms shown in Fig. 3 have a prominent peak at or
near zero, suggesting that most errors in the image comparison are
minimal. This peak indicates that the synthetic images closely match the
ground truth, with the majority of pixel-wise comparisons yielding
minor errors.

Unlike GANs, which are data-intensive and require substantial
datasets for training, SD models demonstrate robust performance even
with limited training data. We construct our training dataset with only
100 images to emphasize this advantage. To explore the effect of
training dataset size on model accuracy, we conduct experiments with
subsets of 10,20,40,80 and 100 images. To minimize the subjectivity in
selecting training images from the dataset pool, we subject each of the

five models to five separate training runs, each generated by randomly
selecting images (refer to Materials and Methods for details). During the
image generation, we observe that some models occasionally produce
unacceptable images that deviate significantly from expected results,
necessitating their rejection. Therefore, we introduce another metric to
assess model reliability based on the ability of the models to generate
images that meet predefined acceptance criteria—specifically, the
presence of a pre-existing crack and at least one structural defect in the
generated images. We compute the ratio of accepted images, denoted as
Paceept, to all generated images to quantify this aspect. (Fig. S2 in Sup-
plementary Materials demonstrates examples of rejected and accepted
images). Consequently, we calculate Py for each model by Paccepe =
images for each model, respectively. This approach allows us to quan-
titatively measure the consistency and reliability of each model in pro-
ducing images that align with the essential characteristics of the ground
truth images. For each iteration, ranging from T10_1 to T100_5, we
generate 200 images, resulting in 1000 images per model. We compute
Pgccepe  for each iteration and then calculate the average Pyccepr  across
all iterations of a model to determine the Py of each model. The
outcomes are depicted in Fig. 4(a), which illustrates that an increase in
the volume of training images enhances the models’ reliability. This
enhancement is evidenced by a reduction in the number of rejected
images, indicating that the models have become increasingly precise in
forecasting the general characteristics of the training images.

Fig. 4(b) demonstrates that there is no significant improvement in
model performance with an increase in the size of the training images,
except for the T100 model, which exhibits a lower RMSE. However,
there is a noticeable discrepancy between the mean RMSE and the
standard deviation across the iterations for each model, underscoring
that the specific images chosen for training can influence the effective-
ness of the models. This variance is less pronounced in the T100 model,
as it uses the entire pool of 100 images, and the variation between its
iterations is attributed solely to the order in which images are fed to the
model.

where Nyccepr and Ny, represent the number of accepted and total
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Fig. 4. Effect of training dataset volume on the (a) model’s reliability to generate images meeting predefined acceptance criteria and (b) accuracy.

3.2. Image-to-image generation of stress field for a given architecture

We use SD’s image-to-image tool to predict the stress field of an input
configuration. This feature works by taking the input image and trans-
forming the configuration and color according to the unique textual
prompt associated with the model. The output is an image that retains
the overall structure of the initial input but is altered in creative ways to
reflect the conditions imposed by the textual prompt. Here, we use the
T100 model, which best performs in text-to-image comparison.

The results summarized in Fig. 5 illustrate that the image-to-image
tool of SD effectively predicts the stress field of specified graphene
configurations. Like the text-to-image tool, this method captures critical
mechanical attributes within the structure by accurately predicting the
associated stress fields. A significant advantage of this tool over the text-
to-image option is the ability to control the configuration of the gener-
ated structure. Specifically, while the text-to-image tool generates a
random structure and its corresponding stress field, the image-to-image
tool allows for the input of a predefined structure and the corresponding
stress field as the output. This approach is markedly faster than

A 0.1 0.2 0.3
C"synt:hetic E E

Osynthetic — Oground

0.4

stnthetic

stnthe tic n'ground

traditional simulation methods such as FEM and MD, with each image
being generated in mere seconds. We further examine the model’s
generalizability by introducing a graphene configuration that includes a
defect in the shape of the Syracuse University logo (Fig. 1(b)). This
configuration is entirely novel to the model as it differs from any
architected graphene configuration within the training set; nonetheless,
it successfully predicts the stress field and identifies the principal
structural features. Although the model’s performance on this unique
configuration is slightly inferior compared to other tested configura-
tions, as depicted in Fig. S4, its ability to delineate major mechanical
characteristics within the stress field remains commendable.

The performance of the Image-to-Image tool is significantly influ-
enced by the CFG scale and denoising strength (A). The CFG scale de-
termines the model’s fidelity to the textual prompts during image
generation, while A adjusts the extent to which the model corrects or
removes perceived noise during the transformation process, influencing
the model’s randomness and creativity. By holding the CFG scale con-
stant, we varied A to observe its impact on the generated configurations
and the accuracy of the predicted stress field images. As shown in Fig. 5,

50 GPa

0.2GPa

0.5

Jgrou.nd

i

|
|

1
0
Qgroum:l

0

Fig. 5. Performance variation of image-to-image SD models with changing denoising strengths (A), demonstrating the balance between adherence to input
configuration and precision in stress field prediction. The close-up panels in the third row illustrate the increasing divergence of the synthetic configurations from the

input as denoising strength increases.
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a lower A value results in the model adhering closely to the input
configuration, yet it struggles to predict the stress field accurately.
Conversely, increasing A enhances the model’s creativity, allowing it to
capture more detailed features in the stress field image, which leads to
deviations from the original input configuration. We see the exact in-
fluence of A on the performance of the model for another structure, as
shown in Fig. S3. We extend this analysis to 10 different input config-
urations and calculate RMSEqyess and RMSE ons, which are summarized in
Fig. 6. The different overall trends of RMSE s and RMSEqgess as func-
tions of A (Fig. 6 (a) and (b), respectively) suggest a trade-off in model
performance influenced by A. As A increases, the model diverges from
the input configuration, resulting in a rise in RMSE,,,s. However, the

optimal stress prediction, indicated by the lowest RMSEg., is achieved
at A=0.7, as shown in Fig. 6 (b). This reveals a balance between main-
taining fidelity to the input configuration and accurately predicting the
stress field.

4. Conclusion

In this study, we effectively combined Molecular Dynamics and
generative Al techniques, enabled through SD, to design and rapidly
predict the stress fields of architected graphene under mechanical load,
demonstrating the powerful synergy between these components. By
leveraging MD simulations for initial data generation and employing the
high-dimensional data-learning capabilities of SD, particularly through
LoRA, we have effectively created an Al model to rapidly find and utilize
structure-mechanics correlation to design architected graphene struc-
tures. We found that for the text-to-image function, by increasing the
training dataset volume, the Al model will provide a higher number of
reasonable design configurations, and the stress field corresponding to
these accepted configurations is more accurate by comparing to MD
results. We observed that for the image-to-image function, increasing
denoising strength can disrupt the input conformation but provide a
stress field with slightly improved accuracy. Our workflow of training
and applying the generative AI model to material study can enhance
material design efficiency by generating reliable predictions with small
data amounts and computational resources. This work underscores the
potential of integrating Al in materials science and highlights a prom-
ising pathway to create rapid and cost-effective design protocols, which
is crucial for application-oriented research.

The architected graphene in this study can be considered an extreme
example of composite materials composed of graphene and in-plane
voids. Composites of matrix and reinforced components have unique
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mechanics that outperform each material phase and dominate many
modern engineering fields. Classical studies have shown that the com-
posite’s toughness can go beyond that of each material phase [44].
Optimizing composite mechanics per se has become a fundamental
question: how to decide the material distribution that yields the optimal
material functions? Having an efficient tool to facilitate design and
reveal the structure-mechanics relationship will help give a quick
answer to the question and lead to material innovations for broader
engineering applications. Our study demonstrates that outputs of mul-
tiscale modeling can finely tune generative Al models. It forms a rapidly
evolving technique that can understand and massively produce
distinctive designs in response to simple natural language instructions.
This tool will, therefore, reduce the technical barrier and computational
amount for regular users of numerical modeling. The predicted outcome
can be directly applied to composite synthesis for validation or appli-
cation to broad engineering fields, including aerospace, wind energy
industry, high-end automotive, healthcare, sports gear, and construction
restoration, by generating coherent designs not limited by human
experience or existing models or trapped by local optimal results.

5. Future works

As the future work, our AI model may be enhanced by training
generative AI model for movie generation (e.g., Sora by OpenAl) with
simulation trajectory that may predict the crack propagation path and
its interaction with different architected patterns. At the current point,
there are existing works based on CNN to project the crack path and
stress-strain curve for a composite design [45,46] despite the limited
composite resolution. Laveraging generative Al, we aim to overcome
this limitation, significantly increasing the resolution of the composite
for which we can predict the mechanical properties and crack propa-
gation path. This approach will also enable us to predict the crack path
for architected graphene as well.

Our "text-to-image" model is adept at simultaneously generating
novel architected graphene structures and predicting their correspond-
ing stress fields. This capacity to innovate and create designs not
encountered during its training underscores GenAI’s ability to navigate
and expand the design space, while providing critical stress field data for
these new configurations. This functionality is integral to the develop-
ment of pioneering structural designs. Looking ahead, however, we aim
to enhance the model’s utility by integrating it with deep neural net-
works (DNN), optimization techniques, and mechanical analysis. These
future studies will focus on predicting mechanical properties from the
generated structures and their stress fields, and optimizing these
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Fig. 6. Impact of denoising strength (1) on T100 model precision for generating (a) configurations and (b) stress fields in the Image-to-Image generation via SD.
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structures to meet specific design targets.
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