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Abstract Machine learning (ML) is a revolutionary technology with demonstrable applications across
multiple disciplines. Within the Earth science community, ML has been most visible for weather forecasting,
producing forecasts that rival modern physics‐based models. Given the importance of deepening our
understanding and improving predictions of the Earth system on all time scales, efforts are now underway to
develop Earth‐system models (ESMs) capable of representing all components of the coupled Earth system (or
their aggregated behavior) and their response to external changes over long timescales. Building trust in ESMs
is a much more difficult problem than for weather forecast models, not least because the model must represent
the alternate (e.g., future or paleoclimatic) coupled states of the system for which there are no direct
observations. Given that the physical principles that enable predictions about the response of the Earth system
are often not explicitly coded in these ML‐based models, demonstrating the credibility of ML‐based ESMs thus
requires us to build evidence of their consistency with the physical system. To this end, this paper puts forward
five recommendations to enhance comprehensive, standardized, and independent evaluation of ML‐based
ESMs to strengthen their credibility and promote their wider use.

Plain Language Summary Machine learning (ML) has the potential to be a step change in our ability
to simulate the Earth system, and early efforts in this space have already yielded impressive outcomes. However,
to be useful, either scientifically or in practice, we must have confidence that ML‐based Earth‐system models
(ESMs) are producing simulations and predictions that are consistent with physical laws. Comprehensive,
standardized and independent evaluation of these models provide one avenue to develop that confidence. This
paper puts forward five recommendations on how the community can come together to evaluate these ML‐based
ESMs, with the expectation that such an effort would lead to their wider use.

1. Introduction
Earth system models (ESMs) have long been and continue to be invaluable tools for deepening our understanding
of the Earth system and its response to forcing, such as greenhouse gasses, aerosols, land‐use land‐cover change,
and solar irradiance. Scientists use ESMs to understand how the Earth system looked in the past and how it may
look in the future. A wide array of end‐users apply the data produced by ESMs to assess risk and inform
adaptation planning. Despite their broad importance, traditional ESMs are also computationally expensive and
incorporate sometimes crude assumptions about fundamental physical processes, leading to significant biases in
key climatological fields (Chen et al., 2021; Christopoulos & Schneider, 2021; Moreno‐Chamarro et al., 2021;
Zhou et al., 2022). However, recent and rapid progress in machine learning (ML) has the potential to advance
solutions to these problems. Building upon the successes of ML in other fields, ML‐based weather forecast
models have emerged that, once trained, can leverage hardware accelerators to produce skillful weather forecasts
at a much lower time‐to‐solution than conventional physics‐based models (e.g., Ben Bouallègue et al., 2024; Lam
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et al., 2023). These efforts have stimulated recent work on ESMs that incorporate ML components or are entirely
data‐driven, including a variety of hybrid models, emulators, and foundation models (see Table 1 for a definition
of these terms) (Eyring et al., 2024). Despite promising advancements, building trust in ML‐based ESMs for
scientific discovery or applications remains an outstanding challenge. To this end, this paper outlines a plan for
comprehensive, standardized, and independent evaluation of ML‐based ESMs to strengthen their credi-
bility for wider application, based on five core recommendations.

ESMs are widely used for various scientific and applied purposes (see Table 2 for a summary of common ap-
plications). What sets the problem of Earth system modeling apart from weather modeling is the requirement to
achieve top‐of‐the‐atmosphere energy balance in pre‐industrial simulations and perform experiments out‐of‐
sample (and sometimes extremely so, in the case of deep‐time paleoclimate): ESMs need to be able to
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Table 1
Descriptors Commonly Used to Describe ML‐Based Weather and Climate Models

Descriptor Summary

Forecasting Models trained primarily on historical weather data or operational forecast archives; these
systems may neglect the coupling of Earth system components or climate‐relevant fields
altogether, like sea‐surface temperatures or irradiance, which are essential for ESMs.

Autoregressive/Roll outs Models whose output from the current iteration becomes the input for the next iteration.

Surrogate Models trained to predict a specific quantity (e.g., global temperature change as a function of
greenhouse gas concentration).

Hybrid Traditional physics‐based weather/climate model infrastructure with one or more
parameterizations/components replaced with ML.

Emulator Models trained to emulate a single physics‐based weather/climate model.

Foundation Models pre‐trained on multiple, large data sets (e.g., CMIP6 models, reanalysis data products)
that can be fine‐tuned to support many downstream applications.

Note. These descriptors are not meant to be mutually exclusive.

Table 2
Applications of Earth‐System Models (ESMs) and Potential Roles of ML‐Based ESMs

ESM application Role of ML‐Based ESMs

Predictions of weather, subseasonal to seasonal (S2S), or subseasonal to decadal
(S2D) time scales

Rapid generation of huge forecast ensembles to quantify the probability of different
climate states on weather/S2S/S2D time scales. ML‐based models could be
more skillful than physics‐based models because of direct training on
observations (consequently avoiding assumptions sometimes made necessary
by unresolved processes; although this is aspirational for ESMs, there is
evidence of this being the case for ML‐based hydrologic models, e.g., Kratzert
et al., 2019).

Assessing the risk of extreme weather or low‐likelihood high‐impact events Rapid generation of huge forecast or projection ensembles to better quantify the
frequency and character of rare events.

Detection and attribution Cheap generation of large climate ensembles to increase signal‐to‐noise ratio; using
explainable AI techniques to decompose temperature or precipitation time
series into components of forcing (e.g., Sweeney & Fu, 2024).

Transient climate response and equilibrium climate sensitivity Quantifying global temperature as a result of CO2 and/or other radiative forcing
and Earth system feedbacks across climate timescales.

Process understanding and hypothesis testing Rapid testing of ideas before running more expensive physics‐based model
simulations; use of auto differentiation to probe input/output relationships.

Climate change projections and uncertainty quantification Rapid generation of huge ensembles of future climate projections to characterize
uncertainties; computationally efficient quantification of the model prediction
uncertainty.

Assessment of climate impacts Computationally efficient downscaling of coarse resolution climate projections to a
finer resolution for assessment of regional climate impact.

Tipping points and “what if” science Unclear. This topic is far out of sample, and so may require physics‐based modeling
at a fundamental level.
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simulate the coupled Earth system under forcings outside the range of the period of instrumental record (generally
since industrialization). This is primarily accomplished through adherence to the physical laws that govern the
Earth system, including fundamental concepts such as conservation of mass, momentum, and energy, and con-
sistency with emergent behavior such as geostrophic balance or constraints on globally averaged precipitation. If
these laws are not explicitly enforced in the physics‐based or ML‐based model, it is essential to demonstrate that
the respective model somehow exhibits them. With only one period of record covering a short and recent span of
the Earth's history available to us, we need confidence that ESMs can do more than align with these observations;
they need to get the right answer for the right reasons to be useful for understanding and simulating future or past
climates. Coming up with a testing strategy that goes beyond historical comparison requires us to build upon a
long history of ESM evaluation and devise creative strategies to evaluate models' physical consistency.

Despite the challenges still ahead, ML‐based ESMs are potentially a step‐change in our ability to do meaningful
science and deliver actionable information to decision‐makers. Most remarkably, emulators and foundation
models (see Table 1), again in large part because of their capacity to use a simplified set of operations on hardware
accelerators, can provide an order‐of‐magnitude or greater speed‐up (and lower computing power per simulated
year) compared with physics‐based models. This enables the construction of very large ensembles that deliver
improved uncertainty quantification (e.g., Kochkov et al., 2024; Mahesh et al., 2024a, 2024b), higher signal‐to‐
noise ratios (relevant for detection and attribution), more exhaustive exploration of low‐likelihood high‐impact
events and the tails of statistical distributions, and the capacity to generate future climate scenarios by interpo-
lating between available ones. Notably, and as will be discussed later, the historical record alone isn't sufficient to
properly sample the space of possible weather states, and likely needs to be supplemented by training data from
physics‐based models.

Many in the climate community are rightly skeptical of the ability of emulators to generalize beyond the bounds of
their training data sets: especially when changes in forcings are involved. Much work still remains to assess
whether these models are credible for producing future projections, particularly under forcings that are far from
recent history. A related question has been a central theme in ESM research over the past several decades: how do
we assess the trustworthiness of an ESM's ability to operate in regimes where we do not know the correct answer?
In the past, climate scientists have approached this question, in part, by various intercomparison efforts and
hierarchical model evaluation approaches. We argue that such an approach is relevant for ML‐based ESMs as
well. This scientifically grounded effort to establish model credibility will allow ML‐based ESMs to complement
and expand upon the ecosystem of tools for understanding the Earth's past and future.

Motivated by the considerable excitement that has brewed around ML‐based ESMs, this paper puts forward the
following recommendations to the growing ML‐based ESM development community for comprehensive and
independent evaluation of these models:

1. Build upon the experience of the ESM community and its long history with model intercomparison while
leveraging shared model code, data, and diagnostics.

2. Assemble a suite of idealized and simplified tests to evaluate the basic behavior of ML models.
3. Intercompare ML‐based ESMs, physics‐based regional and global models, and related statistical techniques

using common metrics.
4. Develop an extensible evaluation framework useful for both ML‐based and traditional models that is widely

accepted by the scientific community and relevant users.
5. Identify a trusted independent party to manage regular intercomparison of ML‐based and physics‐based

models.

The remainder of this paper walks through these recommendations, connecting with the substantial work already
done in ESM evaluation. It concludes with our draft proposal for a common evaluation strategy among ML‐based
ESMs, aiming to inspire further developments in this space.

2. Building on the Experience of the Earth System Modeling Community
Coordinated ESM evaluation has a long and storied history, originating in the early 1980s with Robert Cess'
organization of the Feedback Analysis of GCMs (general circulation models) and Intercomparison with Ob-
servations (FANGIO) project (Potter et al., 2011). This effort, using prescribed sea surface temperature exper-
iments, led to the first multi‐model constraints on climate sensitivity (which have taken decades to refine;
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Sherwood et al., 2020), and was the basis for the Atmospheric Model Intercomparison Project (AMIP;
Gates, 1992) and subsequent Coupled Model Intercomparison Projects (CMIPs; Eyring et al., 2016b; Meehl
et al., 2000, 2005; Taylor et al., 2012). The consensus from this work was that intercomparison was effective at
making better climate models (Meehl et al., 1997), with a steady increase in the fidelity of “top tier” models (e.g.,
Ahn et al., 2022; Eyring et al., 2021; Lee et al., 2024). A wealth of products have emerged from these past efforts,
including model codes, data, and diagnostics, all of which need to be considered in the ML model landscape.

There is no doubt that the ML model development community should leverage these past efforts and draw upon
the deep experience of the ESM evaluation community. Perhaps the lowest hanging fruit is through direct
application of the many ESM evaluation toolkits now available. Observing systems have recorded key climate
variables since the late 1800s, and have been supplemented over the past four decades by comprehensive remotely
sensed measurements from an array of global satellites. The summary statistics derived from these observations
are an essential reference for ESM performance and have been widely vetted for use in a wide variety of model
benchmarking toolkits. Benchmarking toolkits incorporate suites of metrics and diagnostics that measure and
depict consistency between model simulations and observations. Metrics and diagnostics evaluate meteorological
patterns, mean climatology, climate variability (including well‐known modes of variability such as the El Niño‐
Southern Oscillation), extreme weather events, physical processes, emergent relationships, and historical trends
(under changes in observed forcing). A list of some more commonly employed packages is provided in Table 3;
further information on available tools in the community can be found in Dingley (2025). Use of these evaluation
tools would allow ML model developers to draw on decades of evaluation experience with physics‐based ESMs,
and feedback from the ML community would allow developers to augment their toolkits with benchmarks
appropriate for ML models. These tools are also applied with relative ease; Figure 1 depicts a portrait plot from
the PCMDI Metrics Package which shows evaluation results for the Ai2 Climate Emulator (ACE; Watt‐Meyer
et al., 2023) as trained on the Energy Exascale Earth System Model (E3SM) v2 (Duncan et al., 2024), relative
to other CMIP6 models. As an additional example, Cresswell‐Clay et al. (2024) employ “Taylor diagrams”
(Taylor, 2001) to evaluate modes of extratropical climate variability in the Deep Learning Earth System Model
(DLESyM) as compared to ERA5. Data standardization is also important in facilitating the use of these tools, and
should leverage software packages such as the Climate Model Output Rewriter (CMOR; Mauzey et al., 2024). If
such tools are widely employed in the ML model development community, intercomparison would be far easier
between such models. Notably, Table 4 lists several efforts underway to develop evaluation packages targeted
specifically at ML‐based ESMs, though these are in the early stages.

Although the application of existing ESM benchmarking packages is an essential first step, there are unavoidable
challenges and limitations in this approach. The majority of the metrics and diagnostics from these packages focus
on comparing against historical observations, despite the historical record only covering a period of relatively
stationary climate and only one possible meteorological trajectory. For many ML‐based climate models, the need
to avoid testing models against the data used to train them further limits our capacity to compare them against
observations (in case those observations were used as training data). Just as physics‐based models may be tuned to
reduce model‐observation differences, ML‐based models may be trained to statistically reproduce the observa-
tions without learning the underlying physics or being able to extrapolate beyond the historical training period.
This concern underscores the need for more creativity in devising evaluation strategies, some of which we explore
here.

Table 3
Common Benchmarking Toolsets for Evaluation of Global Earth‐System Models

Tools Primary evaluation focus Citation

PCMDI Metrics Package (PMP) Mean climate, variability modes, extremes Lee et al. (2024)

International Land Model Benchmarks (ILAMB) Land surface Collier et al. (2018)

International Ocean Model Benchmarks (IOMB) Ocean Fu et al. (2022)

Cyclone Metrics Package (CyMEP) Tropical cyclones Zarzycki et al. (2021)

ESMValTool Mean climate, processes, variability Eyring, Righi, et al. (2016)

Climate Variability Diagnostics Package for Large Ensembles (CVDP‐LE) Climate variability in large ensembles Philips et al. (2020)

Model Diagnostics Task Force (MDTF) Processes Neelin et al. (2023)
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3. Beyond Historical Evaluation
Out‐of‐sample projections of the climate system are generally considered credible if they are grounded in physical
principles (i.e., the conservation laws that underlie all of modern physics) and their emergent properties are
consistent with our understanding of the Earth system. Conservation laws in the atmosphere were discussed at
length in Thuburn (2008), and it was concluded that only a few of the conserved quantities could be used
effectively to measure model performance. Indeed, beyond mass (and to a lesser degree energy, with appropriate
tuning, and only in coupled ESMs), no other quantity is explicitly conserved in most physics‐based ESMs. With
that said, mass conservation lends itself to more than global metrics of invariance. It also means that tracer
concentrations can't go negative: for example, in each grid cell precipitation needs to be strictly limited by the
amount of water vapor in the column. So these metrics provide a good start for evaluating models beyond their
ability to reproduce the historical records. That said, these constraints are insufficient on their own: For instance,
the conservation of mass and energy does not translate to any sort of useful constraint on equilibrium climate
sensitivity, one of the most important quantities in climate science. Instead, some of the most scientifically and
societally relevant quantities emerge from a complex series of processes and feedbacks.

Evaluation of model performance can also rely on the properties that emerge from fundamental physics. From
basic atmospheric science, we know air parcel saturation limits the amount of water vapor present in a grid cell
before condensation and precipitation will occur; while supersaturation can occur in the upper troposphere, it is
extremely rare for it to occur in the near‐surface or mid‐troposphere. More complex constraints could also be
included. For instance, theory indicates that globally averaged precipitation increases at a rate ∼1–2%/K while
atmospheric water vapor increases at ∼7%/K (Held & Soden, 2006; Pendergrass & Hartmann, 2014). Many other

Figure 1. Tools like the PCMDI metrics package can be easily adapted to evaluate ML‐based climate modeling systems. Here the Ai2 Climate Emulator (ACE; Watt‐
Meyer et al., 2023), trained on time‐varying sea‐surface temperature E3SMv2 data, is intercompared with CMIP6 models on seasonal measures of normalized root‐
mean‐square error of precipitation (pr) compared to GPCP (Adler et al., 2018), along with 200‐ and 850‐mb temperature (ta‐200, ta‐850), zonal wind speed (ua‐200, ua‐
850) and meridional wind speed (va‐200, va‐850) compared to ERA5 reanalysis data (Hersbach et al., 2020). For ACE, the seasonal measures at pressure levels are
interpolated from the native output vertical levels. The RMSE of each variable is normalized by the median RMSE of all models. The blue color indicates the model
performs relatively better than other models, and the red color indicates the opposite. A result of +0.2 indicates an error that is 20% greater than the median RMSE across
all models, whereas −0.2 indicates an error that is 20% less than the median. A detailed description of the portrait plot can be found in Lee et al. (2024).

Table 4
Benchmarking Toolsets for Evaluation of Global ML‐Based Earth‐System Models

Tools Primary evaluation focus Citation

Earth‐2 MIP Weather and climate NVIDIA (2024)

ClimateBench Physically based ESM emulators Watson‐Parris et al. (2022)

ClimDetect Climate change detection and attribution Yu et al. (2024)

ClimSim‐Online Hybrid ML‐physics models Yu et al. (2023)

WeatherBench 2 Weather Rasp et al. (2024)
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emergent constraints have also been explored in the literature in recent years, developed both as a means of
assessing models' consistency with the real world and as an alternate pathway to link historical observations with
future change (Hall et al., 2019; Klein & Hall, 2015; Shiogama et al., 2022; Williamson et al., 2021).

Power spectra have been embraced as one approach to assessing the two‐dimensional spatial structures of the
simulated fields (e.g., Karlbauer et al., 2024). In multiple cases, the spectra reveal that some ML models tend to
damp higher wavenumbers more strongly than physics‐based models, and that the model behavior in the small‐
scale, damped regime may be less physically consistent (e.g., not exhibiting geostrophic balance) than physics‐
based models (Bonavita, 2024; Kochkov et al., 2024). These results suggest that the “effective resolution” of
some ML‐based weather and climate models is likely coarser than in physics‐based models with similar grid
spacing. This behavior may be tied to the chosen loss function and model architecture, with some recent examples
seeming to avoid excessive damping (e.g., Mahesh et al., 2024a, 2024b; Price et al., 2025). Thus, metrics related
to power spectra and co‐spectra can help track effective versus reported grid resolution as new emulators are
developed (Rasp et al., 2024).

Relationships between variables (i.e., covariances) provide another mechanism to test consistency within the
model. For example, heat waves are often associated with weaker wind speeds since they are related to high‐
pressure ridges. Recent work by Zhang and Boos (2023) also highlighted the temporal pattern in precipitation that
occurs around the hottest days of the year, where dry conditions are generally present before temperature peaks,
followed by moist conditions once high temperatures drive sufficient atmospheric instability to initiate con-
vection. Such behavior could readily inform the development of an associated metric or diagnostic.

Feature structure is another avenue for model evaluation where ML‐based forecasting models have struggled
(Bonavita, 2024). Feature tracking packages such as TempestExtremes (Ullrich et al., 2021) and the Toolkit for
Extreme Climate Analysis (TECA; Loring et al., 2023) can be employed to track tropical cyclones, extratropical
cyclones, monsoon depressions, atmospheric rivers, and other important atmospheric features. Trackers can also
be employed in the ocean, such as in Mason et al. (2014), or on the land‐surface, as in Liu et al. (2021). Other
features, such as wildfires, marine heatwaves or sea ice extent, could also be incorporated. Composites of the
environmental structure can then reveal anomalous or unphysical behavior.

4. Revisiting Simplified Tests in the Age of Machine Learning
Given the inherent complexity of physics‐based ESMs, evaluation begins far before most physical processes are
even incorporated into the model. Software engineering operates in much the same way—rather than only testing
the software package once all the functionality has been implemented, unit testing is employed to validate each
function as it is added. Applied to an ESM, hierarchical evaluation means focusing first on the simplest model that
exhibits behavior consistent with the component of the Earth system being tested (e.g., dry dynamics with no
topography or surface fluxes for the atmosphere), making sure physical laws are obeyed at each timestep, and
gradually adding complexity. This process allows us to evaluate ESM behavior in a simpler context, where
analytic or semi‐analytic solutions are available. Notably, O’Loughlin et al. (2024) advocate for such a modular
design as a way to develop a component‐level understanding of ML models.

In the case of the atmospheric component model, testing begins with the dynamical core, which is responsible for
solving the fluid flow equations in the thin spherical annulus that wraps the Earth. Major physical components are
then added one at a time, beginning with moisture and moist processes, ocean‐atmosphere fluxes, topography, and
finally a land surface and fully coupled ocean (see below). Such a traditional ESM evaluation hierarchy for the
atmospheric model component is given in Table 5.

In a manner similar to the atmospheric component model, testing of the land component can begin with the
biophysical core, which is responsible for simulating terrestrial water and energy balance processes. Major
physical components are then added one at a time, beginning with vegetation dynamics and photosynthesis,
carbon and nitrogen cycles, topography‐driven runoff, and finally human land use and land cover change (Fisher
& Koven, 2020). Throughout this process, the high heterogeneity of land surfaces necessitates testing across
diverse landscapes to ensure robust performance across varied environmental conditions (Byrne et al., 2024).
When coupling to the atmosphere, an important consideration for land modeling is the representation of surface
turbulent fluxes, and notably sub‐daily fluxes, for capturing land‐atmosphere feedbacks (Chaney et al., 2024).
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Simplified tests for the ocean component can follow the recommendations of Bishnu et al. (2024), which outlines
a suite of shallow water test cases with increasing complexity. Additional examples of simplified tests for the
coupled system include testing the ML atmosphere model coupled to a hierarchy of ocean models such as slab
ocean, mixed layer ocean, and full ocean models (Hsu et al., 2022).

For ML‐based ESMs, such a hierarchy may seem unnecessary if the underlying model framework is kept rela-
tively simple. However, these tests are important to demonstrate that the fundamental physical laws are respected
in the model in such a way that important emergent phenomena spontaneously manifest (e.g., baroclinic Rossby
waves in the atmosphere). They exercise a specific model's ability to simulate physics using initial states that are
well outside the model's training data set: effectively building trust in the models by demonstrating (or failing to
demonstrate) generalizability.

With that said, the traditional ESM evaluation hierarchy does not necessarily translate to ML‐based models,
especially tests that involve activating/deactivating/swapping specific model components that represent specific
components of the Earth system. ML‐based models often lack explicitly distinct components representing specific
physical processes, unlike their physics‐based counterparts. Consequently, deactivating particular physics (e.g.,
moist physics) in these ML models may not be practical through simple component deactivation. Instead, it might
require retraining the entire model using data from a physics‐based model where the specific process has been
deactivated. However, retraining a ML‐based model for a particular test (e.g., as needed for an atmosphere model
running the 2D shallow water experiments) introduces new challenges with interpreting what can be learned
about the more general ML‐based ESM. Several of the idealized atmospheric test cases highlighted in Table 5 can
be run in certain ML‐based ESMs, assuming that those models allow for prescribed topography and radiative
forcing. For instance, the baroclinic instability test of Jablonowski and Williamson (2006) is a dry dynamical core
test case with prescribed topography and zero radiative forcing, with a well‐documented numerical solution for
short‐period runs, suitable for a forecasting model or ESM. This test has been essential in evaluating atmospheric
dynamical cores, given the importance of baroclinic instability to global weather patterns. Similarly, the tropical
cyclone test of Reed and Jablonowski (2012) could be run in any ESM with at least 0.5° grid spacing, as long as
topography can be removed entirely, and would be helpful for assessing the ability of a model to capture the
structure of simulated tropical cyclones. Even advection could be tested under the formulation documented in the
2008 Dynamical Core Model Intercomparison Project (DCMIP) test case document for test 1‐0‐y (Jablonowski
et al., 2008). Other such tests are documented as part of the 2008, 2012, and 2016 DCMIP test case documents
(Jablonowski et al., 2008; Ullrich et al., 2012, 2016).

To demonstrate that ML‐based models are capable of performing such idealized tests, despite these tests being
outside the range of their training data, we show results from a moist baroclinic wave test using the Spherical
Fourier Neural Operators (SFNO) model of Bonev et al. (2023). We implement the initial condition specification
of Bouvier et al. (2024), which uses an analytical formula to define the initial conditions. This choice was made
because other baroclinic wave tests require numerically integrating quantities in a way consistent with a model's
dynamical core: this is not possible in most emulators since the numerical discretization scheme is not explicitly
knowable. Results from this test are depicted in Figure 2. While the model does produce a Rossby wave, the test
immediately reveals an important, albeit expected, deviation of SFNO from the behavior of physics‐based
models: the imprint of topography and continental geometry immediately becomes evident in many fields,
despite the initial condition being zonally uniform. This expected behavior emerges because SFNO internalizes

Table 5
The Traditional Earth‐System Model Evaluation Hierarchy (Atmospheric Model Component)

Step in the Hierarchy What is tested

2D shallow water experiments (e.g., Williamson et al., 1992) Horizontal fluid dynamics on a sphere, barotropic energy exchange across scales

3D without moisture (e.g., Jablonowski & Williamson, 2006) Baroclinic dynamics (e.g., baroclinic instability, one of the most fundamental
atmospheric processes), baroclinic energy exchange across scales

3D with moisture and simplified physics (e.g., Reed & Jablonowski, 2012) Isolated dynamical processes in the global system

Aquaplanet experiments (e.g., Hess et al., 1993) Atmospheric model behavior without land‐atmosphere or dynamic ocean

Fixed sea‐surface temperature runs (e.g., Gates et al., 1999) Atmosphere and land‐surface behavior with tight constraints on model drift

Fully coupled simulations (e.g., Gates et al., 1995) Fully coupled modeling system
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the impact of Earth's topography and land‐sea contrast on atmospheric flow, since all the training data involved
real Earth topography (as pointed out in Koldunov et al., 2024, this behavior can actually be harnessed to
effectively downscale data). To the best of our knowledge, no presently available ML‐based ESM supports
arbitrary, prescribed topography. Nonetheless the test remains stable and the results otherwise consistent with
expectations, highlighting the power in utilizing idealized tests to evaluate ML‐based models.

Besides those tests commonly employed in physics‐based model development, there are also tests that are un-
necessary in most physics‐based ESMs since the explicit numerical methods used by these ESMs encode local
causality directly. However, in ML models, causality can and should be explicitly tested. To do so one could begin
with a near‐steady atmospheric flow and add a large local perturbation at the scale of a single grid point. The
propagation of that disturbance should be limited to the acoustic wave (in the case of a hydrodynamic pertur-
bation) or the maximum wind speed (in the case of a tracer perturbation). Such a test could reveal if the ML model
allows information to propagate faster than physics would allow.

In recent work by Hakim and Masanam (2024), four idealized tests were conducted with realistic topography and
a climatological mean steady state, which may be more suitable for ML‐based models that do not allow modi-
fication of topography. These tests include steady tropical heating with Matsuno–Gill response, an extratropical
cyclone test analogous to Jablonowski and Williamson (2006) except over the Pacific, a test of geostrophic
adjustment, and a test looking at Atlantic tropical cyclogenesis. The authors used these novel experiments to
conclude that Pangu‐Weather (an ML‐based global forecasting model; Bi et al., 2022) does likely encode physical
principles since its behavior is consistent with physical understanding even for tests in which the idealized initial
conditions are far outside the distribution of initial conditions in the training data. Similar tests could also be
employed in the open ocean, away from the coast, in ML‐based ocean models.

5. ML Models Are Part of the Broader Ecosystem
While we may not be able to definitively conclude whether ML‐based ESMs are producing the right answer for
the right reasons, we can evaluate if the ML‐based models are within or outside the envelope of pre‐existing
models under alternate forcings (e.g., under projected warming). Namely, we can compare projections from
ML‐based models side‐by‐side with existing physics‐based models, reduced complexity models (Nicholls
et al., 2021), and statistical/dynamical downscaling methods. The toolkits discussed in Section 2 could be used for
these experiments, except instead of comparing models against observations, the alternate forcing experiment

Figure 2. Snapshots of 2 m temperature (t2m), total column water vapor (tcwv), mean sea‐level pressure (msl) and 10 m wind speed (u10 m) from the Bouvier
et al. (2024) idealized baroclinic wave test at 120 hr after initialization, as simulated using the Spherical Fourier Neural Operators model of Bonev et al. (2023).
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would be compared to the respective historical simulation. This approach could then be used to cover a variety of
variables, regions, and experiments. One such effort in this direction is ClimateBench (Watson‐Parris
et al., 2022), which uses training data from the Norwegian Earth System Model (NorESM2; Seland et al., 2020)
and measures models' consistency with these projections. However, a large enough ensemble of ESM projections
would be needed to delineate internal variability from forced response (e.g., Lütjens et al., 2024).

Of course, care needs to be taken in case a discrepancy arises between the ML models and the other physics‐based
models in the ecosystem. One should not simply assume that the ML models are behaving inconsistently with
physical principles, as the reasons for these differences could be far more nuanced and can include physics‐based
ESM biases.

Hybrid models can also be paired with their “sibling” (i.e., the ESM used to embed ML) and emulators paired with
their “parent” (i.e., the physics‐based ESM(s) on which they are trained), providing another route for examining
consistency. Evaluations could include pairwise hybrid‐to‐sibling or emulator‐to‐parent comparisons against
observational metrics, allowing us to identify similarities or differences. Alternatively, in the context of a multi‐
model ensemble (MME), one could ask if the projection spread of hybrid models or emulators is distinguishable
from the MME of traditional physics‐based ESMs? These comparisons open opportunities to reveal and un-
derstand the behaviors of emulators, hybrid models, and physics‐based models beyond benchmarking using direct
comparison with observations.

6. Developing a Framework for Intercomparison
There is no doubt that the significant successes in ESM development over the past four decades can be attributed
to regular intercomparison and healthy competition and collaboration among modeling groups. However,
frameworks for intercomparison require agreement and investment from all involved. Using our past experience
with evaluating CMIP class ESMs as guidance, there is a clear need for all of the following:

• common metrics and diagnostics recipes that all groups can agree upon to measure success,
• commitment to open source code, pre‐trained ML‐based ESMs, data access, user documentation for each

experiment, and model/data provenance from modeling groups, to ensure transparency, fairness, and repro-
ducible science,

• a consistent output format (for when data is written to disk), compatible with widely accepted, Climate
and Forecasting metadata convention standards (Hassell et al., 2017; Eaton et al., 2022, http://cfconventions.
org/), and

• an independent organization responsible for validating and collating results from development groups.

The aforementioned framework would be effective at building trust in these ML‐based ESM models, and making
it clear that nothing is being hidden from data users. The objective would be to provide a buffer against model
development groups cherry‐picking metrics that show good performance, ensure that all models are evaluated on
a level playing field, and support intercomparison by the broad community of ESM developers, climate scientists,
and users of ESM model outputs.

With a common, prescribed metrics recipe, there are always concerns that groups will engage in “metric hack-
ing”—namely, training the ML‐based model or tuning the physics‐based model to maximize their performance
scores as a shortcut to building a skillful model. However, we would also argue that there should not be a single
metric to summarize performance (it is not even clear if any single metric would make sense for something as
complicated as an ESM). If groups are obliged to show all metrics, then optimizing among all metrics becomes
nearly impossible even with sophisticated uncertainty quantification, multi‐objective optimization, and model
calibration methods. Regardless, such optimization would simply result in a model that is more consistent with
physical principles, if these evaluation metrics are well defined. Inevitably, it is necessary to pick some quan-
titative measure of skill (i.e., a loss function) for training an ML system, and efforts to devise better loss functions
that enable more comprehensive performance gains could be an exciting and innovative direction for research.

7. Summary
Although ML‐based ESMs are in their infancy, there is no better time than now to lay out common standards for
ML‐based ESM evaluation and encourage common targets for intercomparison. Physics‐based ESMs have been
undergoing standardized intercomparison for 40 years, and in that time have made considerable progress in their
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Table 6
An Example of a Menu for ML‐Based Earth‐System Model Evaluation

Benchmarking packages (§2)

PCMDI Metrics Package (PMP)

• Mean climate

• ENSO metrics

• Tropical and extratropical modes of variability

• Monsoon metrics

• Extremes metrics

• Precipitation variability

• Cloud feedbacksa

International Land Model Benchmarks (ILAMB)b

International Ocean Model Benchmarks (IOMB)c

Cyclone Metrics Package (CyMEP) ESMValTool

Model Diagnostics Task Force (MDTF)

Sanity checks (§3)

Global mass conservation

Non‐negative tracer mass

No near‐surface supersaturation

Performance metrics (§3)

Zonal means

Power spectra

Covariances

Feature (e.g., TC) frequency, character and structure

Historic (1900‐present) temperature trends under historic forcing

Emergent constraints (§3)

Global water vapor change (∼7%/K)

Global precipitation change (∼1–2%/K)

Ratio of OLR to Niño‐3.4 index

Others?

Idealized Test Cases (§4)

Steady‐state advection (DCMIP2008)d

Baroclinic wave test case (DCMIP2008)d

Mountain‐induced Rossby wave (DCMIP2008)d

3D Rossby‐Haurwitz wave (DCMIP2008)d

Moist baroclinic instability (DCMIP2012)d

Tropical cyclone test (DCMIP2012)d

Causality test

Steady tropical heating (H&M2024)

Extratropical cyclone development (H&M2024)

Geostrophic adjustment (H&M2024)

Atlantic hurricane development (H&M2024)
aAMIP and AMIP +4K experiments required. bLand model evaluation. cOcean model evaluation. dOnly models that allow prescription of bottom topography.
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ability to simulate the Earth system with minimal intervention. By leveraging the knowledge, experience, and
capabilities built up by the scientific and model evaluation community over this time, comprehensive evaluation
of ML‐based ESMs is achievable in a relatively short time. Our discussion of benchmarks for this new generation
of models is summarized in Table 6 by no means intending to be the final say on the types of evaluation that
should be performed, but a starting point for a conversation between the development and evaluation commu-
nities. The authors of this paper have already begun work to codify this menu, yielding greater insight into the
capability of ML‐based models to simulate the Earth system out‐of‐sample.

Data Availability Statement
The ACE‐E3SMv2 AMIP climatology used to generate Figure 1 are available from Duan (2024). The results of
the idealized baroclinic wave run with the SFNO model of Bonev et al. (2023) that were subsequently used to
generate Figure 2 are available from Elms (2024).
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