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Abstract Terrestrial processes influence the atmosphere by controlling land‐to‐atmosphere fluxes of
energy, water, and carbon. Prior research has demonstrated that parameter uncertainty drives uncertainty in land
surface fluxes. However, the influence of land process uncertainty on the climate system remains
underexplored. Here, we quantify how assumptions about land processes impact climate using a perturbed
parameter ensemble for 18 land parameters in the Community Earth System Model version 2 under preindustrial
conditions. We find that an observationally‐informed range of land parameters generate biogeophysical
feedbacks that significantly influence the mean climate state, largely by modifying evapotranspiration. Global
mean land surface temperature ranges by 2.2°C across our ensemble (σ = 0.5°C) and precipitation changes were
significant and spatially variable. Our analysis demonstrates that the impacts of land parameter uncertainty on
surface fluxes propagate to the entire Earth system, and provides insights into where and how land process
uncertainty influences climate.

Plain Language Summary Land processes can affect climate by controlling the transfer of energy
and water from the land to the atmosphere. Previous research has shown that uncertainty surrounding land
processes (e.g., photosynthesis and the movement of water through soils) can drive uncertainty in land‐to‐
atmosphere fluxes. However, it remains unclear how much that land uncertainty can impact climate. Here, we
quantify how climate is sensitive to assumptions about land processes by varying 18 land model parameters to
create an ensemble of 36 possible worlds in a global climate model. Land temperature ranges by 2.2°C across
this ensemble, mostly due to changes in how much water is evaporated from the land surface. Changing land
parameters also drives regionally variable changes in mean precipitation. This study highlights a large and
underappreciated impact of land processes in determining the mean climate state, and provides insights into how
climate is influenced by land process uncertainty.

1. Introduction
Land models were initially developed to support weather and climate prediction by providing atmospheric models
with lower boundary conditions of energy, water, and momentum fluxes. Given this limited scope, early land
models were simple biogeophysical models, in which land‐to‐atmosphere fluxes were determined by prescribed
land surface albedo, evaporative resistance, and roughness (Manabe, 1969). Since then, land models have sub-
stantially expanded in scope and complexity. Modern land models now represent biogeochemical cycling, hy-
drology, ecology, land use, and land management, and are used to predict how processes across these domains
interact and respond to global change (Fisher & Koven, 2020). This evolution has been accompanied by an in-
crease in the number of model parameters, many of which can influence land‐to‐atmosphere fluxes by altering the
emergent land surface albedo, turbulent flux partitioning, and roughness.

The increasingly complex land model parameter space has driven a large body of research exploring the im-
plications of land parameter uncertainty for land model calibration (Dagon et al., 2020), carbon and water flux
uncertainty quantification (Hou et al., 2012; McNeall et al., 2023), and process understanding (Boulton
et al., 2017). Earth system parametric uncertainty is often quantified through perturbed parameter ensembles
(PPEs), in which multiple poorly constrained parameters are systematically varied within a single model struc-
ture. Land PPEs have demonstrated that parameter uncertainty is a major driver of uncertainty in land‐to‐
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atmosphere surface fluxes, at local (Fisher et al., 2019; Ricciuto et al., 2018), regional (Bauerle et al., 2014; Huo
et al., 2019), and global scales (Dagon et al., 2020; Zaehle et al., 2005).

Most existing land parameter uncertainty studies have quantified parameters' impact in a land‐only framework
(Bauerle et al., 2014; Dagon et al., 2020; Dietze et al., 2014; Fisher et al., 2019; Ricciuto et al., 2018; Zaehle
et al., 2005), where the atmospheric forcing is an external boundary condition and land surface fluxes do not
influence the atmosphere. Only a handful of previous studies have assessed the biogeophysical (Fischer
et al., 2011; Liu et al., 2005; Williams et al., 2016) or carbon cycle (Booth et al., 2012, 2017; L. R. Hawkins
et al., 2019; McNeall et al., 2023) implications of land parameter uncertainty in a coupled context, or included
land parameters in PPEs perturbing parameters across the Earth system (Sexton et al., 2021; Yamazaki
et al., 2021). This is in part due to computing constraints. For example, in the Community Earth System Model
version 2 (CESM2), a simulation with a dynamic atmosphere requires about 10 times more computing time per
modeled year than a land‐only simulation, and coupled configurations often require more simulated years to
establish a signal due to internal variability of the coupled system (Kay et al., 2015). Additionally, the prevalence
of land‐only analyses reflects the land modeling community's focus on how land parameter uncertainty influences
terrestrial processes, rather than atmospheric processes. The biogeophysical impact of land parameter uncertainty
on atmospheric processes and land‐atmosphere interactions remains underexplored. Of the few studies which
have assessed land parameter uncertainty in a coupled context, only one has quantified the biogeophysical impact
of land parameters on climate globally (Fischer et al., 2011).

This is a problematic gap in the literature because land parameters' demonstrated influence on land surface fluxes
suggests that land parameters can influence the mean climate state. It has been established for decades that
changes in land surface albedo (Charney, 1975; Charney et al., 1975, 1977), roughness (Sud et al., 1988), and
capacity to evaporate water (Shukla & Mintz, 1982) can alter temperature and precipitation on global scales. More
recently, Laguë et al. (2019) used a modern Earth system model to show that atmospheric feedbacks are critical in
determining how land temperatures respond to idealized land surface changes. Extensive previous work has
demonstrated that changes in land cover can drive local, regional, and remote climate impacts (e.g., Boysen
et al., 2020; Pongratz et al., 2010; Swann et al., 2012). Additionally, changing land model representations of
terrestrial processes such as stomatal conductance and soil hydrology can influence the mean climate state
(Lawrence et al., 2007) and frequency of extremes (Kala et al., 2016).

In this study, we aim to close this gap in the literature by using a coupled PPE to address the following questions:
(a) to what extent can land parameters impact the mean climate state? and (b) through what mechanisms do land
parameters influence climate?

2. Methods
We ran PPEs under preindustrial conditions using two configurations of CESM2 (Danabasoglu et al., 2020): a
partially coupled configuration (“coupled”) and an uncoupled, land only configuration (“land‐only”). In both the
coupled and land‐only PPE, the land model (the Community Land Model version 5, CLM5; Lawrence
et al., 2019) was run with prognostic leaf area. In the coupled ensemble, we ran preindustrial simulations with
constant greenhouse gas concentrations using an active atmosphere (CAM6; Bogenschutz et al., 2018) and a slab
ocean (Danabasoglu & Gent, 2009). Because these simulations have fixed concentrations of greenhouse gasses
including CO2, they capture the biogeophysical impacts of land parameters which is the focus of this paper, but
they do not capture biogeochemical feedbacks. The land‐only simulations used a custom atmospheric forcing,
which was generated by CAM6 in the reference coupled simulation that used default parameters.

Our PPEs sampled 18 land parameters (Table S1 in Supporting Information S1), and our parameter selection was
informed by the CLM5 PPE project (data and methods description are available via https://github.com/djk2120/
clm5ppe). The CLM5 PPE differs from ours in that the simulations were run in a land‐only configuration forced
with observationally‐derived atmospheric data for present‐day. Nonetheless, the one‐at‐a‐time parameter per-
turbations provide insight into which parameters might be meaningful for our coupled PPE. We used two
parameter selection criteria: (a) that parameters would likely have a large impact on the atmosphere, based on
results from the CLM5 PPE, and (b) that parameters sampled different functional areas of the model (Text S2 in
Supporting Information S1). The 18 parameters we selected are described in detail in Table S2 in Supporting
Information S1 and span nine functional categories: soil hydrology, stomatal conductance and plant water use,
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snow, photosynthesis, boundary layer/roughness, radiation, canopy evaporation, biomass heat storage, and
temperature acclimation.

For each parameter, we ran two simulations, where the parameter was perturbed to a minimum and maximum
value (ensemble n = 36). We used the parameter ranges from the CLM5 PPE, which were determined by domain‐
area experts based on literature review and expert judgment. Because some parameters have larger ranges than
others, our analysis includes both the sensitivity of the climate system to a change in a parameter combined with
the uncertainty in that parameter's range. Each parameter perturbation simulation, which we refer to as an
ensemble member, was run for 140 years under constant preindustrial greenhouse gas concentrations and land use
conditions. The first 40 years were discarded as spin up, which is long enough for fast atmospheric processes, leaf
area, soil moisture and temperature, and the surface ocean to largely equilibrate (Figure S1 in Supporting In-
formation S1). We chose this minimum‐maximum one‐at‐a‐time sampling procedure because we prioritized
running long simulations, and it was not computationally feasible to run a 140‐year PPE that more densely
sampled the parameter space. We used a two‐tailed Student's t‐test at each grid cell to test whether each ensemble
member was different from the reference case (defined as the simulation run with the default parameterization;
Text S1 in Supporting Information S1), comparing the distributions of interannual annual mean climates and
controlling for a false discovery rate of 0.05 (Wilks, 2006).

3. Results and Discussion
3.1. Mean Temperature Changes

Our ensemble demonstrates that land parameters can substantially impact the mean climate state. Global mean
land surface temperatures range by 2.2°C across our coupled PPE (σ = 0.5°C), and by over 3°C at some lat-
itudes (σ > 0.65°C above 67°N; Figure 1a). Seven out of 18 parameters generated a greater than 1°C tem-
perature range (Figure 1b), and more than 70% of the land surface experienced statistically significant changes
in annual mean temperature in 20 out of the 36 ensemble members (Figure S2 in Supporting Information S1).
Global mean surface temperatures (including ocean) ranged by 1.1°C (σ = 0.5°C; Figures S3 and S4 in Sup-
porting Information S1), which is over 40% of the preindustrial absolute temperature range in CMIP6 (2.4°C,
σ = 0.58°C; Tett et al., 2022) and CMIP5 (E. Hawkins & Sutton, 2016). Three soil hydrology parameters—
frac_sat_soil_dsl_init, d_max, and fff—had the largest impact on global mean temperature. Land
surface temperature changes in the land‐only PPE were generally much smaller than those in the coupled PPE
(Figure 1), consistent with the fact that atmospheric feedbacks substantially amplify the land surface temper-
ature response to changing land surface properties (Laguë et al., 2019).

Parameters generally impacted surface temperature with a similar spatial pattern globally. The leading mode of
variability in annual mean surface temperature changes, as quantified by the first empirical orthogonal function
(EOF; Lorenz, 1956), explains 78% of the variance across our coupled ensemble (Figure 2a, Figure S5 in Sup-
porting Information S1) and is highly correlated with the global average mean land temperature change (Figure S6
in Supporting Information S1). We note that we calculated the EOF across ensemble members' annual mean
climate changes, rather than across time. As expected, the leading EOF in the land‐only ensemble explains less of
the temperature variance and has a different spatial pattern (Figure 2b), indicating that regional to global‐scale
atmospheric responses contribute to the consistent coupled PPE pattern of temperature change. Notably, the
leading coupled PPE EOF differs from the typical pattern of radiatively driven warming (e.g., CO2‐driven
warming, Figure 2c and Text S3 in Supporting Information S1), a pattern which is generally consistent across
climate models (Proistosescu et al., 2020). This indicates that the dominant coupled spatial pattern is not only due
to parameter‐driven temperature changes kicking off radiative feedbacks (e.g., ice albedo feedback, water vapor
feedback) which have consistent spatial fingerprints. Rather, this suggests that land parameter uncertainty drives a
consistent temperature response pattern, despite the fact that parameters influence different terrestrial processes.

The dominant coupled PPE temperature pattern is characterized by temperature sensitivity hotspots in the grassland
ecosystems of both North America and eastern Europe/central Asia, and larger temperature changes in the Northern
hemisphere than the Southern hemisphere. Across the tropics, the temperature response is larger in South America
than in tropical Africa or Asia. This pattern resembles the summer temperature response to soil moisture forcing in
the Global Land‐Atmosphere Climate Experiment (GLACE) experiments (Koster et al., 2006; Seneviratne
et al., 2013) which we discuss further in Section 3.3. The hemispheric asymmetry of the land parameter temperature
pattern reflects the higher land fraction in the Northern hemisphere, and land perturbations have a larger impact on
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climate in zonal bands with higher land fraction (Laguë et al., 2021), noting that these are for land‐only zonal means
and thus already take into account zonal variation in land fraction. Fischer et al. (2011)'s land PPE also generated
larger land temperature changes in the Northern hemisphere than in the Southern hemisphere, but in Fischer et al.
high latitude temperature changes were driven mainly by model sensitivity to snow albedo, while in our PPE most
parameters drive high latitude temperature changes. Our PPE generated a larger temperature range than Fischer
et al., perhaps due to the fact that Fischer et al. used a flux‐corrected slab ocean which can dampen global‐scale
temperature responses to perturbations (Yamazaki et al., 2021).

3.2. Mean Precipitation Changes

We found that terrestrial precipitation is highly sensitive to land parameter choice. Global annual land mean
precipitation ranged by about 5% (σ = 1%) across our ensemble, and in several regions our PPE drove annual
mean precipitation changes of greater than 30% (Figure 3a). The same three soil hydrology parameters which
most changed global mean temperature—frac_sat_soil_dsl_init, d_max, and fff—also generated
the most extensive spatial coverage of statistically significant annual mean precipitation changes (Figure S7 in
Supporting Information S1). Across the PPE, less of the land surface experienced statistically significant changes
in annual mean precipitation compared to statistically significant changes in mean temperature (Figures S8 and S9
in Supporting Information S1).

Figure 1. Zonal mean (a) and global mean (b) changes in annual land temperature across the coupled perturbed parameter ensemble, relative to the default simulation.
Color indicates parameter category, and only ensemble members perturbing soil hydrology and plant water use parameters are colored in (a). In (b), bars indicate the
range of coupled global mean land surface temperature changes associated with each parameter, and Xs mark the range of land‐only global mean land surface
temperature changes.
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Changing parameters drove spatially variable signs of precipitation change, in
contrast to mostly consistent signs of temperature change globally (Figure
S10 in Supporting Information S1). Similarly, while there was a single
dominant temperature response pattern across our PPE, the patterns of annual
mean precipitation changes were less consistent across ensemble members.
The leading EOF of precipitation change explained 48% of the variance
across the PPE (Figure 3, Figure S11 in Supporting Information S1) compared
to the 78% temperature variance explained. This aligns with the fact that
precipitation is generally more variable over time than temperature, and some
of the variance across the ensemble is likely due to internal variability.
Nonetheless, our PPE identified several hotspots where precipitation is the
most sensitive to land parameter choice. In particular the North American
Great Plains again emerged as a hotspot when considering precipitation
changes on both a percentage (Figure 3) and absolute (Figure S12 in Sup-
porting Information S1) basis.

Surprisingly, precipitation in the Great Plains region was not especially
sensitive to land parameters in Fischer et al. (2011). However, this region has
been identified as a land‐atmosphere coupling hotspot due to soil moisture
feedbacks in both modeling (Koster et al., 2006; Santanello et al., 2018;
Zheng et al., 2015) and observational (Abdolghafoorian & Dirmeyer, 2021;
Ferguson et al., 2012) studies. Many land‐atmosphere studies use metrics that
quantify covariances of surface fluxes and the land and atmospheric state on
daily timescales. Here we are quantifying how land assumptions influence
climate on decadal rather than daily timescales, but this spatial correspon-
dence suggests that changing land parameters may influence long‐term
climate through mechanisms similar to the soil moisture feedbacks that
drive land‐atmosphere coupling on daily timescales.

3.3. Mechanisms Through Which Land Parameters Influence Climate

Parameters relating to soil hydrology and plant water use drove the largest
temperature and precipitation changes in our ensemble (Figures 1b and 3c),
highlighting that hydrological processes play a critical role in determining land
temperature and precipitation. We note that we purposefully chose parameters
across a range of model components and that soil hydrology parameters did not
dominate the land‐only CLM5 PPE rankings of parameters with the largest
impact on global temperature (Table S3 in Supporting Information S1), so we
did not expect a priori that hydrological processes would dominate the tem-
perature response. We also found that multiple parameters typically evaluated
in the context of biogeochemical rather than biogeophysical impacts (e.g.,
jmaxb0, the baseline proportion of nitrogen allocated for electron transport;
jmaxb1 the response of the electron transport rate to light availability) can
still generate large climate responses through biogeophysical pathways,
consistent with prior work (Smith et al., 2017). We note that the large climate
responses reflect both the climate sensitivity to a change in a parameter and the
magnitude of the parameter ranges we tested. Parameters that influence
boundary layer processes and roughness length drove the smallest global mean
temperature changes, but they generated significant local temperature and
precipitation changes, particularly over ice sheets and snow‐covered regions
(Figure S2 in Supporting Information S1). We also note that this one‐at‐a‐time
sampling procedure does not account for parameter interactions, though we
expect that parameter interactions may be of second‐order importance based

Figure 2. Spatial patterns of annual mean temperature change. The
leading empirical orthogonal function (EOF) of annual mean temperature
change across (a) the coupled perturbed parameter ensemble (PPE) and
(b) the land‐only PPE explain 78% and 65% of the variance across the
coupled and land‐only PPEs, respectively. The EOFs are scaled to depict
two standard deviations of the variation across the ensemble along that
mode of variability. The bottom panel (c) shows the CESM pattern of
warming due to a doubling of CO2 (Text S3 in Supporting
Information S1).
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on Fischer et al. (2011) who finds that nonlinear interactions between pa-
rameters were minimal in a stationary climate.

It is challenging to fully disentangle the pathways through which parameters
influence climate, because land parameters alter multiple land surface prop-
erties simultaneously. For example, increasing the parameter kmax, which
sets the maximum plant hydraulic conductance, simultaneously changes the
land surface evaporative resistance, albedo, and aerodynamic roughness, all
of which influence temperature through different mechanisms. Increasing
kmax decreases evaporative resistance by increasing the rate at which plants
can transpire water, which decreases land temperatures. Increasing kmax also
decreases plant water stress and increases leaf area, which changes albedo and
thereby temperature. Increased photosynthetic rates due to reduced plant
water stress also increases vegetation height, which can increase aerodynamic
roughness, driving further cooling.

We used multiple linear regression to disentangle the extent to which land
precipitation and temperature changes across our coupled PPE are driven by
three land surface properties: albedo (α), evaporative fraction (EF), and a
measure of aerodynamic coupling (ra) (Text S4 in Supporting Informa-
tion S1). This analysis further emphasizes that evapotranspiration changes
dominate the spread in land surface temperature and precipitation responses
across our PPE. Changes in evaporative fraction explained the most variance
across our ensemble, with albedo playing a secondary role (Figure 4).
Coupled temperature changes due to changes in aerodynamic coupling were
minimal. The dominance of the evapotranspiration mechanism in our PPE
may in part be due to the subset of parameters we selected from the 40 top
parameters identified based on CLM5‐PPE output, but nonetheless our results
demonstrate that land parameters' influence on evapotranspiration is an
important (and potentially the dominant) mechanism whereby which land
parameters influence the mean climate state.

Further, the dominance of the evapotranspiration mechanism across our
ensemble may explain why the leading EOF explains such a high percentage of
temperature change variance, and why principal components for the leading
temperature and precipitation EOFs are correlated with each other (Figure S6
in Supporting Information S1). While we initially designed the PPE to sample
multiple processes across CLM's high‐dimensional parameter space
(including photosynthesis, snow processes, radiation, etc.), parameters mainly
impacted surface climate through changes in evapotranspiration, resulting in
an ultimately low‐dimensional ensemble of climate responses. We hypothe-
size that the leading EOFs of temperature and precipitation changes capture the
atmospheric response to land evapotranspiration changes, which is supported
by the strong correlation between land‐only changes in evaporative fraction
and the leading coupled temperature and precipitation EOFs (Figure S13 in
Supporting Information S1). The spatial correspondence of mean climate
changes between our PPE and GLACE experiments (Seneviratne et al., 2013)
further supports this interpretation, because in GLACE experiments soil
moisture forcing is also influencing climate by modifying turbulent fluxes.
However, we note that the climate responses in our PPE are not directly driven
by soil moisture changes. Rather, land parameter perturbations influence land

evaporative resistance, which directly influences land evapotranspiration independently of any soil moisture
change. That land evapotranspiration change (and associated climate feedbacks) can in turn influence soil moisture,
but in our experimental design soil moisture changes are an effect or feedback, rather than an external forcing.

Figure 3. Range of annual mean land precipitation change across the coupled
perturbed parameter ensemble (PPE). (a) Map of the range of percent
changes in annual mean precipitation across the ensemble. Stippling
indicates regions where precipitation changes were not statistically
significant for 31 out of 36 ensemble members. (b) First empirical
orthogonal function (EOF) of precipitation changes across the coupled PPE.
(c) Principal component 1 across parameters. Colors in (c) indicate
parameter category as in Figure 1.
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It has long been recognized that changes in soil moisture and evaporative resistance can impact climate (Laguë
et al., 2019; Sellers et al., 1996; Seneviratne et al., 2013; Shukla & Mintz, 1982), but this is the first study to our
knowledge that quantifies how parameter uncertainty associated with terrestrial controls on evapotranspiration
impacts mean climate, and compares the impact of the evapotranspiration mechanism to other land surface
property changes. For example, the only previous study that quantified the global biogeophysical impact of land
parameter uncertainty (Fischer et al., 2011) did not evaluate the relative impact of evapotranspiration, albedo, and
aerodynamic resistance changes on climate. Leveraging the results of the land‐only CLM5‐PPE enabled us to take
a more systematic approach to parameter selection, yielding new insights which may not have emerged had we
chosen parameters based on our own assumptions or prior work. This highlights the value of projects that sys-
tematically quantify and report parameter uncertainty in land models (e.g., the CLM5 PPE), which we encourage
land modeling groups to incorporate as a standard part of model development and documentation efforts. This
study also underscores the importance of developing better observational constraints for land parameters which
influence evapotranspiration.

4. Conclusions
This study highlights a large and underappreciated impact of land processes in determining the mean climate
state. We used a PPE to quantify the biogeophysical impact of land parameters on terrestrial climate. We found
that land parameters can substantially impact mean temperature and precipitation, primarily through parameters'

Figure 4. Relationship between land‐only surface property changes and coupled land surface climate changes. The top panel (a) shows the percent variance of
temperature and precipitation changes explained by each land surface property based on multiple linear regression at the grid cell level, and at the global scale for
temperature. Solid colors indicate the marginal additional percentage of variance explained by each land surface property when all other predictors are included, and the
hatched bar indicates the percentage variance explained by multiple predictors (i.e., the covariance between predictors). The bottom panel shows the relationships
between global mean coupled land surface temperature change and land‐only change in (b) evaporative fraction, (c) albedo, and (d) aerodynamic resistance across all
ensemble members. Colors indicated parameter category, as in Figure 1.
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influence on evapotranspiration, and that uncertainty associated with soil hydrology and plant water use pa-
rameters drive the largest spread in the mean climate state. Uncertainty in land models' representation of land
surface fluxes stems from multiple sources: internal variability, model structure, and model parameters. This
study focuses on the effect of land parametric uncertainty, but our results demonstrate the importance of land
process uncertainty more generally because both model structure and parameters control the land surface
properties (e.g., evaporative resistance) that ultimately influence climate.

Land processes' influence on climate means that biases in land models can contribute to biases in ESM clima-
tology. Biases in land evapotranspiration have been invoked as possible drivers for several persistent ESM biases
(e.g., the central United States warm and dry summer biases, Cheruy et al., 2014; Klein et al., 2006; Lin
et al., 2017; Ma et al., 2018; Morcrette et al., 2018; Mueller & Seneviratne, 2014; Williams et al., 2016; Zhang
et al., 2018), and this work directly shows how land assumptions can influence the mean climate at regional and
global scales, demonstrating the importance of including land perspectives in the assessments of model biases.
Additionally, this study underscores that land processes primarily discussed in the context of carbon cycle un-
certainty (e.g., photosynthesis) can have large biogeophysical impacts on the physical climate, in addition to their
influence on atmospheric CO2 concentration.

There has been a concerted effort across climate modeling centers to create “digital twins” of the Earth (e.g.,
Li et al., 2023; Voosen, 2020) by increasing climate model resolution, thereby enabling direct modeling of
fine‐scale atmospheric processes such as convection that are subgrid‐scale parameterizations in coarser scale
models (Betancourt, 2022). While increased resolution will likely diminish biases associated with some
atmospheric processes, increased resolution does less to improve land process representation because many
land processes occur at molecular to hillslope scales and therefore will continue to require subgrid pa-
rameterizations (Balaji et al., 2022; Fisher & Koven, 2020; Reichstein et al., 2019). Further, finite
computational resources imply tradeoffs between increasing resolution and the number of ensembles to
quantify parameter uncertainty and calibrate models. If atmospheric‐focused model advancements are not
accompanied by efforts to improve land models, land parameter uncertainty may remain a persistent driver of
climatological uncertainty and biases, even in the next generation of high‐resolution climate models.
Recognizing that land process uncertainty influences climate also presents an opportunity for model
improvement. The climate modeling community has historically devoted more effort to atmospheric un-
certainty than to land uncertainty (Hourdin et al., 2017), and we hypothesize that committing comparable
resources to land parameter calibration could drive rapid improvements in model representation of present‐
day climate.

By demonstrating that land parameters influence the mean climate state, we hope that this study will stimulate
further research into the climate impacts of land process uncertainty by a broader geophysical research com-
munity. In particular, our results suggest there is potential for land parameter uncertainty to influence the
sensitivity of land temperature trends in historical and future climates, and we plan to test this in future work.
Because the evaporative fraction influences how much the land surface warms in response to radiative forcing, we
hypothesize that changing parameters that influence the baseline evaporative fraction will influence the modeled
trajectory of land surface temperatures under increasing greenhouse gas concentrations. Furthermore, land
processes influence how the evaporative fraction changes over time, for example, due to plant physiological
responses to CO2 (Lemordant et al., 2018). Quantifying how land parameter uncertainty influences future land
temperature trajectories should be a high research priority.

While land modeling has substantially expanded beyond its initial scope of providing lower atmospheric
boundary conditions into its own subdiscipline and research community, land models' continued role as atmo-
spheric boundary conditions means that a broader climate science community must engage with land processes
(and uncertainty therein) in order to understand and model the physical climate system.
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The model output used in this paper is available via the Dryad Digital Repository at Zarakas (2024).
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