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Abstract

Transformers have emerged as the state-of-the-art archi-
tecture in medical image registration, outperforming con-
volutional neural networks (CNNs) by addressing their lim-
ited receptive fields and overcoming gradient instability in
deeper models. Despite their success, transformer-based
models require substantial resources for training, includ-
ing data, memory, and computational power, which may
restrict their applicability for end users with limited re-
sources. In particular, existing transformer-based 3D image
registration architectures face two critical gaps that chal-
lenge their efficiency and effectiveness. Firstly, although
window-based attention mechanisms reduce the quadratic
complexity of full attention by focusing on local regions,
they often struggle to effectively integrate both local and
global information. Secondly, the granularity of tokeniza-
tion, a crucial factor in registration accuracy, presents a
performance trade-off: smaller voxel-size tokens enhance
detail capture but come with increased computational com-
plexity, higher memory usage, and a greater risk of over-
fitting. We present EFFICIENTMORPH, a transformer-
based architecture for unsupervised 3D image registration
that balances local and global attention in 3D volumes
through a plane-based attention mechanism and employs
a Hi-Res tokenization strategy with merging operations,
thus capturing finer details without compromising com-
putational efficiency. Notably, EFFICIENTMORPH sets a
new benchmark for performance on the OASIS dataset with
∼16-27× fewer parameters. https://github.com/MedVIC-
Lab/Efficient Morph Registration

1. Introduction
3D image registration [23, 60] is a critical task for var-

ious medical imaging applications in fields such as image-

Figure 1. Parameter Count Comparisons with performance
on OASIS Dataset. The proposed variants are formatted
as EfficientMorph-11-stride-C and EfficientMorph-23-stride-C.
Comparison of parameter count in millions(M) and Dice scores
between the proposed variants and baselines.

guided surgery [2], radiation therapy planning [49], image
fusion for multimodality imaging [27], and quality enhance-
ment [6]. Registration involves determining the spatial
alignment between two volumes, typically referred to as the
fixed and moving images, by identifying correspondences
between similar structures or features and their relative
spatial positions. Conventional approaches such as ANTs
[5], Elastix [36], and NiftiReg [45] employ optimization-
based frameworks [4, 20, 22, 67]. This iterative search for
the optimal transformation makes these methods inherently
slow, especially when dealing with large datasets or high-
resolution images [33, 37, 47]. To address these challenges,
there is increasing interest in adopting learning-based ap-
proaches. In particular, deep learning methods offer signifi-
cantly faster inference times and currently achieve state-of-
the-art performance in 3D image registration [7, 9, 28].

Learning-based registration methods predominantly rely
on convolutional architectures (e.g., [3, 7, 28, 35, 46]), us-
ing U-Net-based architectures to generate the deformation
fields. However, the effectiveness of convolutional lay-
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ers for registration tasks can be compromised due to their
limited receptive fields that hinder capturing global con-
text [9] and their increased susceptibility to vanishing gra-
dients as network depth grows to enhance learning capac-
ity [21]. Since the advent of Vision Transformers [59],
transformer-based architectures have shown superior per-
formance across various tasks, such as classification, seg-
mentation, and registration [9, 15, 59, 69], thanks to their
long-range modeling capabilities. In particular, they of-
fer promising mitigations to CNN limitations. Specifi-
cally, transformers leverage global contextual information
through self-attention mechanisms and provide more stable
gradient flow across layers via techniques such as layer nor-
malization and skip connections that are integral to trans-
formers’ design [9,15,59]. Despite their success, transform-
ers’ advantages come at the expense of a significant increase
in parameter count, requiring approximately 10 to 20 times
more parameters than convolutional counterparts [9, 19],
making them impractical for deployment to end-user appli-
cations.

Specifically, existing transformer-based registration
methods, including TransMorph [9], the current state-of-
the-art transformer-based model for medical image regis-
tration, encounter two main significant limitations that com-
promise its efficiency and overall performance. Firstly, win-
dowed attention approaches (e.g., the Swin transformer [40]
backbone used in TransMorph [9]) optimize computational
efficiency through local attention and shifted windows, en-
hancing interactions between adjacent windows. However,
this limits global context capture, particularly in shallow
layers, due to within-window constraints(masks for calcu-
lating attention) compared to methods that interact glob-
ally. Secondly, the pixel granularity of tokenization plays
a crucial role in registration accuracy. To fit within avail-
able GPU memory, tokenization is applied to downsampled
volumes, with each dimension reduced by 4 to 8. Increas-
ing the token resolution within the same volume can capture
finer details, but it also escalates computational and mem-
ory demands due to the corresponding rise in the number of
tokens. [9, 34, 59]. Existing multi-resolution architectures,
such as GradICON [58], HRNet [63], and HRFormer [73],
leverage features at various resolutions to enhance perfor-
mance. However, these approaches necessitate the simulta-
neous training of multiple models to optimize performance
at each resolution level. These training methods signifi-
cantly increase complexity and computational cost, leading
to a substantial rise in the number of parameters. As a re-
sult, the models become more resource-intensive and chal-
lenging to deploy in environments with limited resources.

In this paper, we propose EFFICIENTMORPH, a novel
transformer-based framework for unsupervised 3D image
registration that addresses the aforementioned challenges.
We introduce a plane attention mechanism inspired by

3D anatomical views (coronal, sagittal, and axial) to en-
hance the balance between local and global feature recogni-
tion [24]. We propose Hi-Resolution tokenization to cap-
ture finer image details. To further reduce model com-
plexity within the encoded representation, we introduce a
method for merging neighboring tokens in a high-resolution
feature space, thereby decreasing the computational load
of self-attention calculations. By integrating Hi-Res tok-
enization, EFFICIENTMORPH becomes a highly parameter-
efficient registration architecture (see Figure 1A). Addition-
ally, we introduce a multi-resolution EFFICIENTMORPH,
which concatenates latent features from different resolu-
tions to produce more precise deformation fields. This ap-
proach leverages multi-resolution data without needing to
train separate models.

The main contributions of this paper are:
• A novel attention module for 3D registration that fo-

cuses attention across the coronal (xy), sagittal (yz),
or Axial (zx) planes within a single transformer block.

• A Hi-Resolution tokenization mechanism to encode
high-resolution voxel features without increasing com-
putation complexity.

• Proposed Multi-Resolution EFFICIENTMORPH lever-
ages the concatenation of multi-resolution latent space
features to enhance model performance.

• A new parameter-efficient architecture achieves per-
formance within ±0.05 Dice score of existing methods,
surpassing state-of-the-art on 2 out of 3 datasets (single
and multi-modal Registration), with 16-27x fewer pa-
rameters (Figure 1) and 5x faster convergence. Com-
prehensive ablation studies on regularization losses, at-
tention mechanisms, and key design choices are also
presented.

2. Related Works
3D Volume Registration. Learning-based approaches for
3D image registration can generally be divided into two
main categories: supervised and unsupervised. Supervised
methods [53, 54, 71] require estimates of deformation fields
derived from traditional optimization-based approaches, the
acquisition of which can be prohibitively costly for large
datasets. Moreover, the efficacy of supervised approaches
is contingent upon the availability of high-quality defor-
mation fields for supervised training, with their perfor-
mance capped by the accuracy of the method used to obtain
these fields. In contrast, unsupervised methods do not re-
quire deformation fields and use image similarity as a self-
supervised signal to train a registration network. Most unsu-
pervised 3D registration methods [7,9,28,43,46] are trained
to produce a 3D deformation field that is then used to trans-
form (or warp) the moving image. Loss (L1 or L2) between
the warped moving image and the fixed image is used to
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train the network. With sufficient data and training time,
the model learns to produce realistic deformation fields that
outperform optimization-based methods in accuracy and in-
ference speed [9, 28]. Additionally, unsupervised methods
incorporate regularization losses to promote spatial smooth-
ness in the deformation field, often employing techniques
such as bending energy [30, 51], total variation minimiza-
tion [61], and consistency penalties [57,58,74], among oth-
ers. To enhance the accuracy of registration, segmentations
of the underlying anatomies are incorporated as regular-
ization losses [9, 28]. However, this approach makes the
registration problem fully or semi-supervised due to the re-
quirement for manual segmentation. Ideally, unsupervised
registration methods should perform effectively without the
need for additional supervision. We present a parameter-
efficient registration architecture that outperforms state-of-
the-art models on three public datasets while significantly
reducing the number of parameters. Our proposed model
not only performs well in unsupervised 3D volume regis-
tration but can also leverage available segmentation data to
outperform state-of-the-art models, all while maintaining a
lower parameter count.

Efficient Transformer Attention Architectures. As
deep learning models continue to grow in size each year
[1, 16, 62, 68], deploying them on end-user devices such as
mobile phones or desktops becomes increasingly impracti-
cal. Users often need access to a server API for model infer-
ence or a local desktop with substantial computing power to
run these models. These requirements restrict the applica-
bility of many deep learning models, particularly in medical
applications where data privacy is paramount [29,44,72]. In
many cases, patient data cannot be transferred to a server,
requiring computations to be performed locally to comply
with HIPAA guidelines. As a result, developing efficient ar-
chitectures that preserve the accuracy of large models while
being deployable on end-user devices is both essential and
highly relevant. Examples of such architectures and meth-
ods proposed for efficient deep learning models include Ef-
ficientNet [55], MobileNet [26], LLM-pruner [41], GPTQ
[18], and Mobillama [56] [8, 32, 64, 66].

Applying transformer self-attention to high-resolution
medical images presents substantial computational chal-
lenges due to its quadratic complexity with respect to input
size [34, 59, 75], making it difficult and resource-intensive
to scale to large datasets and model sizes. As a result,
these models often cannot be deployed in end-user applica-
tions in hospitals and clinics. Various strategies have been
developed to address the computational challenges of ap-
plying transformer self-attention to high-resolution images.
An effective strategy involves optimizing the attention ma-
trix through techniques such as approximations—like Lin-
former [65], Memory efficient attention [48], and sparse at-
tention [12, 50]—or by limiting exact attention to localized

windows, as seen in models like the SWIN Transformer
[40]. Moreover, efficiency can be significantly improved
through GPU optimizations, as demonstrated by Flash At-
tention [13, 14]. An alternative strategy is to stack multiple
sparse attention layers with restricted contexts, which al-
lows overlapping layers to achieve full-context modeling.
For example, the Strided Sparse Transformer [17] employs
custom GPU kernels to implement block-sparse matrix mul-
tiplications, enhancing computational efficiency. Similarly,
the Axial Transformer [24] maintains full conditioning con-
texts by processing both masked and unmasked tokens dur-
ing each decomposition stage. In contrast, our proposed
module is specifically designed for 3D medical volumes, in-
troducing a novel 3D plane-based attention mechanism that
selectively operates on a subset of planes (axial, sagittal,
coronal) within each decomposition block. This approach
allows for the creation of models with significantly fewer
parameters. Furthermore, by utilizing high-resolution voxel
tokens, our model matches and surpasses the performance
of state-of-the-art models.

3. Methods

Given a 3D volume represented as A ∈ RH×W×D,
where H , W , and D denote the height, width, and depth
dimensions, respectively. If each voxel is mapped into the
latent space, the number of tokens for the volume would be
WHD, which may exceeds the memory capacity of a GPU
for a single sample. Therefore, strided convolutions are
used in the patch embedding layer (with stride s) to project
the voxels in A into a high-dimensional feature space, re-
sulting in A′ ∈ RH′×W ′×D′×C , where C is the embedding
dimension, (H ′,W ′, D′) = (Hs ,

W
s , D

s ). The resulting fea-
ture space is tokenized to train the downstream transformer
layers. In the following sections, we detail the Hi-Res tok-
enization process, and the plane attention mechanism of the
proposed EFFICIENTMORPH, as illustrated in Figure 2A.
We have provided a comprehensive explanation of the over-
all training process in Sections 6.2.2 and 6.2.3 of the sup-
plementary materials.

3.1. Hi-Res Tokenization

For a fixed embedding dimension C, using each voxel
of a 3D volume of size 1x1x1 for tokenization would cre-
ate N tokens, where N = H × W × D. Voxel-level tok-
enization results in attention matrices of more than a trillion
parameters with a complexity of O(N2). Transformer ar-
chitectures for images often rely on s-strided convolutions
(e.g., s = 4 [9]) for volume tokenization and patch embed-
ding, trading off computational complexity, which is now
O
((

N
s3

)2)
, at the cost of detailed features. However, fine-

grained spatial information is critical for medical segmenta-
tion and registration tasks, which may be lost due to strided
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Figure 2. EFFICIENTMORPH Architecture. (A) EFFICIENTMORPH utilizes utilizes plane attention mechanism on the whole volume as
shown in Efficient Transformer Block. We use different numbers and types of plane attentions (xy, yz, or zx planes) for each block in the
transformer backbone (Table 1). Hi-Res Tokenization is shown in the left end of the figure. (B) Shows the architectural modification for
multi-resolution variant where S

′
1 > S

′
2.

convolutions.
We propose Hi-Resolution tokenization strategy that uses

a smaller stride (s′ < 4) within the embedding layer,
thereby utilizing better spatial information available in the
volume. However, this increases the number of tokens in-
creasing the computational complexity. To reduce the com-
putation complexity, we propose a token merging operation.
These high-resolution tokens are positionally encoded and
merged by grouping and concatenating the features of adja-
cent non-overlapping d×d×d voxel token blocks (along the
embedding dimension), resulting in N ′ = H

d × W
d × D

d to-
kens with an embedding dimension of C ′ = C × d3. Then,
C ′ is projected into a linear layer to attain a reduced embed-
ding dimension of C × d, as shown in Hi-Res tokenization
block in Figure 2A. This approach to tokenization enables
us to use high-resolution features and reduces the overall
complexity of the model. Refer to Figure 2A for pictorial
depiction of the Hi-Res Tokenization process.

3.2. Plane Attention Mechanism

Despite using Hi-Res tokenization, the number of to-
kens generated from each volume remains high. Running
full attention on these tokens, while feasible, demands con-

siderable computational resources. We introduce a novel
attention framework called plane attention to address this
challenge. Instead of performing full 3D attention on all
tokens, this method utilizes attention along coronal (xy),
sagittal (yz), or axial (zx) planes, as shown in Figure 2A.
Although attention confines focus to a specific plane, EF-
FICIENTMORPH achieves volume attention by sequentially
employing different attention combinations xy followed by
yz or zx, thus covering all plane directions.

Attn(A′
dim) = softmax

(
QdimKT

dim√
dk

)
Vdim (1)

Here, dim ∈ {xy, yz, zx}, A′
dim can be represented as

A′
xy ∈ RH′×W ′×C , A′

yz ∈ RW ′×D′×C and A′
zx ∈

RD′×H′×C for xy, yz, and zx planes, respectively. By
decomposing the 3D attention into 2D plane attention, the
proposed attention mechanism significantly reduces the pa-
rameter count while preserving the ability to capture essen-
tial volumetric features necessary for registration. Figure
2A shows different plane attention blocks across the effi-
cient transformer block.
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3.3. Multi-Resolution EFFICIENTMORPH

HiRes Tokenization effectively harnesses high-
resolution spatial information early in the network but
limits all tokens to a single resolution. However, prior
work [57,58,63,73] has demonstrated that multi-resolution
features significantly improve registration accuracy.
Therefore, we propose a multi-resolution variant for
EFFICIENTMORPH.

Multi-resolution EFFICIENTMORPH processes the input
image along two distinct paths, each with its patch embed-
ding block tailored to tokenize patches of different sizes (S

′

1

and S
′

2, where S
′

1 > S
′

2). This approach captures patches
at multiple resolutions, enhancing the richness of the fea-
ture representation. Instead of training the entire architec-
ture simultaneously, a phased training strategy is adopted.
In this process, patches pass through two stages of Efficient
Transformer blocks, as illustrated in Figure 2B, where their
latent dimensions are merged. The merged representation
is then fed into the decoder, ensuring that the output inte-
grates comprehensive information from both resolution lev-
els. This methodology not only improves the model’s abil-
ity to capture fine details but also enhances computational
efficiency during training.

4. Results and Discussion

4.1. Datasets and Implementation Details

OASIS Brain MRI. We evaluated EFFICIENTMORPH
on the publicly available dataset OASIS [42], obtained from
the Learn2Reg challenge [23] for inter-patient registration
and pre-processed from [25]. It has a total of 451 brain T2
MRI images. Among these, 394, 19, and 38 scans are used
for training, validation, and testing, respectively.

ReMIND2Reg. This dataset aims to register 3D iUS im-
ages with either ceT1 or T2 MRI images to account for brain
shift during tumor resection, requiring models to handle
large deformations and missing data scenarios. The dataset
is divided into 155 image pairs for training, 10 image pairs
for validation, and 40 for testing.

Atlas-to-Patient Brain MRI (IXI). We additionally
evaluated the proposed model on IXI dataset that contains
600 MRI scans. Among these, 576 T1-weighted brain MRI
images were employed as moving images, while the fixed
image for this task was an atlas brain MRI [35]. The dataset
was partitioned into training, validation, and test sets, com-
prising 403, 58, and 115 volumes, respectively. For more
details on datasets, refer to supplementary section 6.2.1

Implementation Details. EFFICIENTMORPH was trained
on NVIDIA A100 GPUs with 40GB RAM and a batch size
of 1. We used the same splits for both datasets as the ex-
isting works [9, 28]. We limited training epochs to 100
to prioritize parameter efficiency and quick convergence

within resource limits. We used the Adam optimizer with
a learning rate of 5e−4 for OASIS & Remind2Reg and
3e−4 for IXI. We used a cosine annealing scheduler for
OASIS and stepLR for IXI. We evaluated different vari-
ants: EfficientMorph-11, which includes one plane atten-
tion transformer (xy, yz, or zx) per efficient block as shown
in Figure 2, and EfficientMorph-23, which features two
plane attention transformers in the first efficient block and
three in the second. The specific plane attentions used in
these variants are detailed in Table 1. Note that no data aug-
mentation was applied during training.

Table 1. EfficientMorph Variants. EFFICIENTMORPH-AB de-
notes a configuration with A plane attention transformers in the
first efficient block and B plane attention transformers in the sec-
ond efficient block.

Variants Planes
EFFICIENTMORPH-11 (xy, yz)
EFFICIENTMORPH-23 (xy-yz, xy-yz-zx)

Loss function. In the unsupervised registration set-
ting, we utilized normalized cross-correlation with bend-
ing energy regularization, consistent with other registration
frameworks in the literature [9, 11, 28]. Let IF and IM be
the fixed and moving image volumes and SF and SM be the
associated anatomy segmentations (if available).

LUnSupReg = LNCC(IF ,Warp(IM )) + BendingEnergy

To ensure a thorough comparison on the OASIS dataset, we
also incorporated an additional segmentation loss (Dice co-
efficient) during training, aligning with the approaches used
in other methods [7, 9, 28].

LOASIS =LNCC(IF ,Warp(IM )) + BendingEnergy
+ DiceLoss(SF ,Warp(SM ))

Comparisons Methods. We compare EFFICIENTMORPH
with convolutional-based methods, including VoxelMorph
[7] and Fourier-Net [28], as well as different Tran-
former based methods such as TransMorph [9], including
TransMorph-Tiny, TransMorph, and TransMorph-L, Trans-
Match [11] and Vit-V-Net [10]. All methods were trained
on the same GPU as previously mentioned, using their orig-
inal implementations.

Evaluation Metrics. To evaluate the results on the OA-
SIS and IXI datasets, we utilized the Dice score for anatomi-
cal segmentation (35 regions for OASIS and 29 for IXI) and
computed the percentage of negative values of Jacobian de-
terminant. For the ReMIND2Reg, we used the Learn2Reg
[23] leaderboard evaluation system, where the output defor-
mation fields were submitted to obtain Target Registration
Error (TRE) and percentage of negative values of Jacobian
determinant of deformation.
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4.2. Experimental Results

OASIS Results. The results on the OASIS dataset are
shown in Table 2. Among the variants, EfficientMorph-
23 achieves the highest Dice score with just 2.8M param-
eters—16 times fewer than TransMorph and 8 times fewer
than TransMatch—outperforming all compared baselines,
including TransMorph-L, which has over 100M parameters.
Despite having fewer parameters, EfficientMorph-11 deliv-
ers comparable performance to the other baselines. Both
variants maintain consistently low percentage of negative
values in Jacobian determinant of deformation, demonstrat-
ing that even with fewer parameters, EFFICIENTMORPH
learns a more robust representation of the underlying data,
leading to superior registration performance. Table 2 fur-
ther demonstrates the results when segmentation loss is
added as an additional training loss for the registration net-
work. While all models show improved accuracy with
added segmentation supervision, EFFICIENTMORPH still
outperforms all others, achieving the highest average Dice
score and the lowest Jacobian determinant score.

Supplementary Figure 6 presents a comparison of dice
scores between the EFFICIENTMORPH variants and the
baseline across different brain MR substructures, highlight-
ing significant improvements with our proposed models.
Our models consistently achieve the highest test dice scores
across all brain segments. Supplementary Figure 5 also pro-
vides qualitative results of the segmentations obtained after
registration of three anatomies, along with their correspond-
ing dice scores. The figure includes the best, median, and
worst-performing cases for analysis. Notably, the worst-
performing case, characterized by a fixed image with non-
smooth boundaries, challenges all models in registration ac-
curacy; however, our proposed model still outperforms oth-
ers, achieving the highest Dice score for the case.

EFFICIENTMORPH has a significantly low parameter
count and coverges faster. Figure 1 (Page 1) shows that
compared to TransMorph [9], EFFICIENTMORPH proposed
architectures have between 2.5-6% of the total parameters,
however with comparable and even better dice scores for
EfficientMorph-23 variant. Similarly, when compared with
Fourier-Net [28], Efficient morph EM-11-2-96 has 1

3 rd pa-
rameter count and with higher dice score. These results
clearly show that EFFICIENTMORPH achieves better regis-
tration accuracy than other models and a very low parameter
count. Models trained with segmentation loss were used for
this analysis, as using an extra loss doesn’t have an impact
on number of parameters.

The convergence curves in Figure 3 clearly show that
TransMorph learns quickly in a few initial epochs but then
slowly saturates to the final performance, whereas all Effi-
cientMorph variants slowly and steadily converge to higher
dice scores. EfficientMorph starts to outperform Trans-
Morph by a significant margin as early as 10 epochs. This

result clearly shows that efficient morph is not only param-
eter efficient but requires less compute for converging to a
better solution.

Figure 3. Convergence Curves. The proposed variants are
formatted as EfficientMorph-11-stride-C and EfficientMorph-23-
stride-C. Dice score curves of EfficientMorph variants as a func-
tion of epochs.

Multiresolution EFFICIENTMORPH is better for Unsu-
pervised Registration. We employed a multi-resolution
architecture to enhance unsupervised registration results
on the OASIS dataset. The outcomes, detailed in Table
3, demonstrate that incorporating multi-resolution features
improves registration accuracy across all cases. Notably,
the best performance is achieved with EFFICIENTMORPH
when using patch embedding blocks with strides of 2 and 4
(refer to Figure 2B).

ReMIND2Reg Results. The ReMIND2Reg dataset
presents two key challenges: (a) It comprises multi-modal
data, which introduces complexity in processing and anal-
ysis, and (b) It has a significantly smaller number of train-
ing samples—approximately half of those available in the
OASIS dataset—further increasing the difficulty of achiev-
ing accurate results. Table 4 presents the target registration
error (TRE) and Jacobian determinant results on the Re-
MIND2Reg dataset. EFFICIENTMORPH achieves the low-
est TRE and the smallest percentage of negative values in
Jacobian determinant of deformation among all methods.
This indicates that EFFICIENTMORPH not only excels in
efficiency, with a much smaller model size, but also learns
superior representations for multi-modal registration. Ad-
ditionally, EFFICIENTMORPH demonstrates robustness to
limited dataset sizes, further widening the performance gap
on smaller datasets.

IXI Results. Results of the IXI dataset are presented
in Supplementary Table 9. EFFICIENTMORPH outper-
forms traditional optimization-based methods such as SyN,
NiftiReg, and various convolutional-based approaches such
as VoxelMorph-H [7] and CycleMorph [35] by a signifi-
cant margin. EFFICIENTMORPH variants EM-11 and EM-
23 with 4x4x4 strides achieve comparable performance
(within ±0.003) with less than 3 million parameters com-
pared to TransMorph’s 46 million parameters and 5× fewer
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Table 2. OASIS Registration Results Using Single Resolution. Average Dice Score Evaluated over 35 anatomies and percentage
of negative values in Jacobian determinant of deformation are obtained for all test samples. w/o Seg Loss is the full unsupervised
registration setting where only similarity and regularization loss between fixed and moving images are used for training. For Seg Loss
setting, segmentation loss between segmentation of fixed and moving image anatomies are also used for training. Param are listed in
Millions of parameters used for training the model. We can clearly see that EFFICIENTMORPH performs on par or better than other models
with fewer parameters.* indicates the performance numbers taken from TransMorph [9] and Fourier-Net [28].

w/o Seg Loss with Seg Loss
Methods stride C Param Dice ↑ |J| < 0% ↓ Dice ↑ |J| < 0% ↓

VoxelMorph [7] - - 0.063 0.6783 ± 0.039 2.981 ± 0.105 0.78 ± 0.024 0.1304±0.011
Fourier-Net [28] - - 4.19 0.770 ± 0.021 0.031 ± 0.003 0.847±0.013* -
ViT-V-Net [10] 8x8x8 252 9.8 0.3632±0.0072 0.0149 ± 0.0001 0.4659±0.0052 0.1272 ± 0.0145

TransMatch [11] 4x4x4 96 26.39 0.4037 ± 0.055 0.1167 ± 0.0082 0.4612±0.0582 0.0546 ± 0.0011
TransMorph-Tiny [9] 4x4x4 6 0.24 0.441 ± 0.021 0.013 ± 0.001 0.801±0.056 0.081 ± 0.010

TransMorph [9] 4x4x4 96 46.5 0.801 ± 0.003 0.03 ± 0.002 0.8458±0.0137 0.119 ± 0.019
TransMorph-L [9] 4x4x4 128 108.11 0.804 ± 0.024 0.009 ± 0.001 0.862±0.014* 0.128 ± 0.021*

EfficientMorph-23 4x4x4 96 2.8 0.796 ± 0.035 0.091 ± 0.0006 0.846 ± 0.013 0.125 ± 0.020
EfficientMorph-11 2x2x2 96 1.8 0.803 ± 0.070 0.011 ± 0.002 0.8623±0.0133 0.010 ± 0.001
EfficientMorph-23 2x2x2 96 2.8 0.810 ± 0.062 0.010 ± 0.001 0.870 ± 0.016 0.017 ± 0.001

Table 3. Multiresolution Unsupervised Registration Results on
OASIS.

Methods stride Param Dice ↑

Si
ng

le
R

es

EM-11 (2× 2× 2) 1.8 0.803 ± 0.070
EM-11 (4× 4× 4) 1.8 0.795 ± 0.071
EM-11 (8× 8× 8) 1.8 0.765 ± 0.021
EM-23 (2× 2× 2) 2.8 0.810 ± 0.062
EM-23 (4× 4× 4) 2.8 0.796 ± 0.067
EM-23 (8× 8× 8) 2.8 0.768 ± 0.026

M
ul

ti
R

es

EM-11 (2× 2× 2),(4× 4× 4) 6.8 0.820 ± 0.041
EM-11 (2× 2× 2),(8× 8× 8) 6.8 0.821 ± 0.015
EM-11 (4× 4× 4),(8× 8× 8) 6.8 0.812 ± 0.037
EM-23 (2× 2× 2),(4× 4× 4) 9.0 0.817 ± 0.023
EM-23 (2× 2× 2),(8× 8× 8) 9.0 0.818 ± 0.019
EM-23 (4× 4× 4),(8× 8× 8) 9.0 0.811 ± 0.021

Table 4. ReMIND2Reg Unsupervised Registration Results. Av-
erage Target Registration Error and Jacobian Determinant are ob-
tained from Learn2Reg 2024 Challenge Page. Param are listed in
Millions of parameters used for training the model.

Methods C Param TRE ↓ |J| < 0% ↓
Siebert et al. [52] - - 3.87 ± 1.05 0.18 ± 0.009
Fourier-Net [28] - 1.1 4.128 ± 0.890 7.047 ± 1.113

TransMorph-Tiny [9] 6 0.22 3.944 ± 0.693 0.013 ± 0.004
TransMorph [9] 96 46.5 3.916 ± 0.77 0.024 ± 0.007

TransMorph-L [9] 128 108 3.902 ± 0.763 0.018 ± 0.003
EfficientMorph-11 96 1.8 3.734 ± 0.798 0.011 ± 0.002
EfficientMorph-23 96 2.8 3.599 ± 0.620 0.010 ± 0.001

epochs. Variants employing the Hi-Res tokenization tech-
nique with a stride 2 do not perform well for IXI. How-
ever, the ablations experiment with fewer embedding di-
mensions (C=24) improved the performance of 0.7317 to

TransMorph’s 0.7293 at 100 epochs, achieving similar ac-
curacy as Fourier-Net-s. If trained for a longer period
(> 100 epochs), EFFICIENTMORPH may probably be as
accurate as TransMorph (maybe even higher), however this
is left for future experiments. Accuracy vs epochs curves
shown in supplementary Figure 7 indicate that most EF-
FICIENTMORPH variants outperform TransMorph in initial
epochs, but then performance tends to saturate. Qualitative
segmentations for the IXI dataset, shown in supplementary
Figure 9, show that EFFICIENTMORPH produces results of
similar quality to TransMorph. For different substructures,
EfficientMorph performs on par with the baseline, as shown
in supplementary Figure 8.

4.3. Ablation Studies

Most ablation studies were conducted using the OASIS
dataset. Additionally, specific studies, such as those on
stride and embedding dimensions, were also carried out on
the IXI dataset.

Percentage of Segmentation Data. Segmentation an-
notations are often unavailable for registration datasets, par-
ticularly in the medical field, where obtaining them is both
time-consuming and labor-intensive. This challenge arises
because multiple radiologists are typically required to mit-
igate human bias, which significantly increases the effort
and time needed to generate accurate annotations. In this
ablation study, we trained registration models with varying
levels of segmentation data availability using the OASIS
dataset. The results, shown in Figure 4, indicate that the
performance curve is skewed. A substantial improvement
in registration accuracy is observed when the initial 20%-
40% of the dataset includes segmentations, but beyond this
point, the relative performance improvements diminish with
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Table 5. Stride and Embedding Dimension Ablations. Mean average dice score and standard deviation are evaluated on 35 segmented
anatomies in OASIS. ‘stride’ and ‘C’ are the strides and embedding dimensions.

w/o Seg Loss with Seg Loss
Methods stride C Param(M) Dice Score ↑ |J| < 0% ↓ Dice Score ↑ |J| < 0% ↓

EfficientMorph-11 4x4x4 96 1.8 0.795 ± 0.071 0.109 ± 0.012 0.841 ± 0.013 0.121 ± 0.017
EfficientMorph-23 4x4x4 96 2.8 0.796 ± 0.035 0.091 ± 0.0006 0.846 ± 0.013 0.125 ± 0.020
EfficientMorph-11 2x2x2 96 1.8 0.803 ± 0.070 0.011 ± 0.002 0.8623±0.0133 0.010 ± 0.001
EfficientMorph-23 2x2x2 96 2.8 0.810 ± 0.062 0.010 ± 0.001 0.870 ± 0.016 0.017 ± 0.001
EfficientMorph-11 2x2x2 24 1.2 0.796 ± 0.067 0.108 ± 0.008 0.840 ± 0.011 0.125 ± 0.016
EfficientMorph-23 2x2x2 24 2.25 0.799 ± 0.024 0.110 ± 0.014 0.8426 ± 0.013 0.126 ± 0.019
EfficientMorph-11 2x2x2 16 0.5 0.765 ± 0.004 0.164 ± 0.001 0.8311 ± 0.071 0.118 ± 0.011
EfficientMorph-23 2x2x2 16 1.3 0.796 ± 0.003 0.149 ± 0.065 0.8345 ± 0.102 0.130 ± 0.102

further increases in annotated data.

Figure 4. Impact of Annotated Segmentation Available for
Training. These models were trained for EM-23 variant with
stride 4x4x4 and embedding dimension 96.

Stride and Embedding Dimension Ablations. We
fully evaluate the impact of different hyper-parameters such
as the stride of the voxel used for tokenization and the em-
bedding dimension used in the patch embedding block. Re-
sults of these ablation studies are shown in Table 5. From
the results, we see that increasing the embedding dimension
with the same stride always performs better. Also, models
trained with a smaller stride are always performing better,
this proves that utilizing high-resolution spatial information
for unsupervised registration results in better accuracy.

Plane Order Ablations. We also investigated the effect
of varying the plane order (xy vs yx) in the EM-11 and EM-
23 variants. The results of these experiments are shown in
supplementary Table 6 and Table 7. The findings suggest
that the order of plane attention has minimal impact on per-
formance, as all variants cover all three volume axes, mak-
ing the plane order unimportant.

Attention Type Ablation. We also explored the im-
pact of various attention optimizations mentioned in related
works, including Sparse [12], Linformer [65], Memory Effi-
cient [48], Nystrom [70], and Flash [14]. The results, shown

in supplementary Table 8, indicate that for models using a
stride of 4, different attention mechanisms have minimal ef-
fects on both performance and parameter count. This may
be because these methods are optimized for processing bil-
lions of tokens, whereas 3D volumes typically involve only
a few thousands tokens per sample. When experimenting
with a stride of 2, we found that Flash attention reduced the
parameter count by approximately 150k while maintaining
similar performance to our best-performing EM-23 variant
on OASIS dataset.

5. Conclusion and Future Work
We propose EFFICIENTMORPH, a parameter-efficient

transformer-based architecture for unsupervised 3D de-
formable image registration. EFFICIENTMORPH uses a
novel plane attention mechanism, which attends to 3D vol-
umetric features by sequentially placing different plane at-
tention blocks xy followed by yz or zx, thus attending to
features along all three axes. Additionally, we propose a
Hi-Res tokenization strategy to capture higher spatial res-
olution information while maintaining computational com-
plexity. Evaluations of three datasets demonstrate that EF-
FICIENTMORPH can achieve state-of-the-art results with
a considerably lower parameter count (∼16-27×). EF-
FICIENTMORPH with higher resolution token consumes
larger memory while training, therefore in future work, we
plan to explore memory-efficient model architectures using
multi-resolution for 3D registration, segmentation, and syn-
thesis applications. Additionally, incorporating frameworks
such as Fourier-Net [28] or SegFormer [69] to reduce de-
coder complexity can further enhance the efficiency and ef-
fectiveness of our proposed model.
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pher Ré. Flashattention: Fast and memory-efficient exact at-

tention with io-awareness. Advances in Neural Information
Processing Systems, 35:16344–16359, 2022. 3, 8, 14

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2

[16] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024. 3

[17] Lue Fan, Ziqi Pang, Tianyuan Zhang, Yu-Xiong Wang, Hang
Zhao, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang.
Embracing single stride 3d object detector with sparse trans-
former. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8458–8468,
2022. 3

[18] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan
Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. arXiv preprint
arXiv:2210.17323, 2022. 3

[19] Morteza Ghahremani, Mohammad Khateri, Bailiang Jian,
Benedikt Wiestler, Ehsan Adeli, and Christian Wachinger.
H-vit: A hierarchical vision transformer for deformable im-
age registration. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
11513–11523, 2024. 2, 13

[20] Ben Glocker, Aristeidis Sotiras, Nikos Komodakis, and
Nikos Paragios. Deformable medical image registration: set-
ting the state of the art with discrete methods. Annual review
of biomedical engineering, 13(1):219–244, 2011. 1

[21] Boris Hanin. Which neural net architectures give rise to ex-
ploding and vanishing gradients? Advances in neural infor-
mation processing systems, 31, 2018. 2

[22] Mattias P Heinrich, Mark Jenkinson, Manav Bhushan,
Tahreema Matin, Fergus V Gleeson, Michael Brady, and Ju-
lia A Schnabel. Mind: Modality independent neighbourhood
descriptor for multi-modal deformable registration. Medical
image analysis, 16(7):1423–1435, 2012. 1

[23] Alessa Hering, Lasse Hansen, Tony CW Mok, Albert CS
Chung, Hanna Siebert, Stephanie Häger, Annkristin Lange,
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and Sébastien Ourselin. Fast free-form deformation using
graphics processing units. Computer methods and programs
in biomedicine, 98(3):278–284, 2010. 1

[46] Tony CW Mok and Albert CS Chung. Large deformation
diffeomorphic image registration with laplacian pyramid net-
works. In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2020: 23rd International Conference,
Lima, Peru, October 4–8, 2020, Proceedings, Part III 23,
pages 211–221. Springer, 2020. 1, 2

[47] Mircea Mujat, James D Akula, Anne B Fulton, R Daniel Fer-
guson, and Nicusor Iftimia. Non-rigid registration for high-
resolution retinal imaging. Diagnostics, 13(13):2285, 2023.
1

[48] Markus N Rabe and Charles Staats. Self-attention does not
need o(n2) memory. arXiv preprint arXiv:2112.05682, 2021.
3, 8, 14

[49] Bastien Rigaud, Antoine Simon, Joël Castelli, Caroline La-
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