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1. Introduction

A classic theorem in model theory of groups states that every abelian group, viewed as
a structure in the language of groups, is stable. This follows from Szmielew’s quantifier
elimination for abelian groups down to pp-formulas [43]. This leads naturally to the
question of whether analogous results might be proved for nilpotent groups, which are in
some sense the least complicated class of groups properly containing the abelian groups.
Constructions of Mekler [32] and related ones by Ershov [18] show, however, that already
groups of nilpotence class 2 and exponent p, for an odd prime p, are totally wild. These
results give an ad hoc construction of a nilpotent group that codes an arbitrary graph
into the commutation relation on the group. Given the nature of these constructions,
these results leave open whether or not nilpotent groups might still generically exhibit
tame model-theoretic behavior.

This paper studies the neostability-theoretic properties of nilpotent groups and Lie
algebras at a generic scale and lays the foundations for a detailed study of definability in
such structures. Within model theory, the study of existentially closed nilpotent groups
was initiated by Saracino in [36], who showed that the theories of nilpotent groups of
class ¢ and torsion-free nilpotent groups of class ¢ do not admit model companions.
Saracino [37] and later Saracino and Wood [38] extended the theory, focusing on the
nilpotence class 2 case. Maier gave an elaborate amalgamation construction for torsion-
free groups of nilpotence class ¢, for ¢ possibly greater than 2 [30]. He extended this to
nilpotent groups of class ¢ and exponent p, for primes p > ¢ [31]. Lie rings of Morley
rank less than or equal to 4 have recently been described by Deloro and Tindzogho Ntsiri
[15].

Our starting point is the investigation of Fraissé limits of nilpotent groups of class 2
and exponent p, for an odd prime p, which we study in detail in Section 3. In [2], Baudisch
considers the class of finite 2-nilpotent groups G of exponent p and shows that it forms a
Fraissé class in the language of groups, together with a predicate P for a subgroup such
that [G,G] C P(G) C Z(QG). These Fraissé limits are natural generalizations of the extra-
special p-groups, which impose the additional requirement that Z(G) be cyclic. The extra
special p-groups were studied by Felgner in [19] and were later an important example of
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quasi-finite theories, studied by Cherlin and Hrushovski, all of which have simple theories.
However, in [4], Baudisch shows that his Fraissé limits have TP5, and therefore have the
independence property and are not simple. We build on Baudisch’s analysis, showing that
the theories of these Fraissé limits are NSOP; and 2-dependent and thus are, roughly
speaking, minimally complicated outside of the NIP, simple theories, and NTP5 theories.
The feature of these groups that makes them particularly tractable is that, in such a
group, both G/Z(G) and Z(G) may be viewed as Fp-vector spaces, with the commutator
inducing an alternating bilinear map [-,-] : G/Z(G) x G/Z(G) — Z(G). Although the
interpretation of this bilinear map is not a bi-interpretation, we, following Baudisch,
observe that many of the model-theoretic features of the Fraissé limit are determined
by those of the associated bilinear map, reducing the group-theoretic analysis to linear
algebra.

In subsequent sections, we turn our attention to groups of exponent p and nilpotence
class greater than 2. A group G is of nilpotence class c if there is a subnormal series

G=H,>Hy>H3> ...

such that [HZ-,H]»] C Hiyj and Hp = 1 for all kK > c. Such a series is called a Lazard
series of length ¢ for the group; the lower central series of a c-nilpotent group is a
familiar example. Lazard series may be analogously defined for Lie algebras, replacing
subgroups with subalgebras and commutator with Lie bracket. Our main tool in the
study of nilpotent groups is the Lazard correspondence, which provides a different way of
reducing the study of these groups to linear algebra. This correspondence, an analogue of
the more well-known Malcev correspondence, associates to each group of exponent p and
nilpotence class c a Lie algebra of nilpotence class c over F,, assuming the prime p > c.
In fact, this correspondence is a uniform bi-interpretation between the group and the Lie
algebra which takes a Lazard series for the group to a Lazard series for the Lie algebra.
The details of the Lazard correspondence are outlined in Section 2. The remainder of the
paper considers the model-theoretic properties of nilpotent Lie algebras in a language
with predicates for a Lazard series. The Lazard correspondence allows us, then, to infer
properties of certain nilpotent Lie algebras over [F,, but, moreover, this analysis turns
out to be interesting in its own right and allows us to analyze nilpotent Lie algebras over
arbitrary fields.

The algebraic heart of the paper is contained in Section 4, where we prove that, for
any field I, the class of c-nilpotent Lie algebras over I, in a language with predicates for
a Lazard series, has the amalgamation property. In fact, we prove that such Lie algebras
can be freely amalgamated, for a notion of free amalgamation introduced by Baudisch.
The existence of strong amalgams for c-nilpotent Lie algebras, in the special case where
the field of scalars is IF,, for a prime p > ¢, can be deduced, via the Lazard correspon-
dence, from the amalgamation results of Maier [31]. The existence of free amalgams for
nilpotent Lie algebras over an arbitrary field was sketched by Baudisch in [3]. We are very
influenced by Baudisch’s proposed construction in [3, Theorem 4.1], but the details pro-
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vided there do not suffice for our applications, so we opted to give our own account. Our
construction proceeds in several stages. In the first stage, we amalgamate two extensions
of codimension 1 over a common ideal, presenting the amalgam as a semi-direct product
of the ideal and a free nilpotent Lie algebra generated by elements in the complements of
the ideal in the respective structures. In the next stages, we use this construction itself
as a step in an inductive construction of an amalgam, which draws heavily on ideas of
Maier from the group case.

In Section 5, we spell out the consequences of the existence of free amalgams for the
model-theoretic properties of Fraissé limits of nilpotent groups and Lie algebras. In this
section, we naturally restrict attention to Lie algebras over finite fields, and especially
over finite prime fields, which correspond to groups via the Lazard correspondence, since
these Fraissé limits have Ry-categorical theories. We show that for ¢ > 2, Fraissé limits of
c-nilpotent Lie algebras over finite fields have an SOP3 and NSOP, theory. To show that
the theories have SOP3, we provide a direct construction of a 3-nilpotent Lie algebra
which witnesses SOP3 with respect to quantifier-free formulas. On the other hand, to
show that these theories are NSOP,, we leverage the stationary independence relation
coming from free amalgamation, following the strategy of Patel for bowtie-free graphs
[34], later systematized by Conant in [13] and generalized by Mutchnik [33]. As NSOP4
has recently emerged as a class of theories for which there is some hope of a meaningful
structure theory, we are optimistic that these Lie algebras (and the associated groups)
can serve, alongside the curve-exluding fields of [25], as illuminating algebraic examples
of strictly NSOP, theories, playing a similar role to that played by Lie geometries for
simple theories and played by the two-sorted vector spaces equipped with bilinear forms
for NSOP; theories. We summarize the analogies in the following table:

Stable Simple NSOP, NSOP4
ACF Psf/ACFA w-free PAC fields Curve-excluding
fields
Vector spaces F,-vector spaces Vector spaces over Nilpotent Lie
with a bilinear map  ACF with a bilinear map algebras
Equivalence relations  Random graph Parameterized equivalence  Henson graphs
relations

We also analyze the place of these examples in the n-dependence hierarchy introduced
by Shelah [39,40]. In essence, a theory is called n-dependent if there is no interpretable
(n 4+ 1)-ary (n + 1)-partite hypergraph that contains the random (n + 1)-ary (n + 1)-
partite hypergraph as an induced subhypergraph. The placement of a theory in this
hierarchy, then, gives a way of quantifying the arity of random relations in the theory.
The n = 1 case corresponds to the much-studied class of NIP theories, and recent
work has generalized some aspects of the theory to this broader setting and produced
new examples [10,7,22]. The only known examples of pure groups that are (n + 1)-
dependent but not n-dependent were constructed by Chernikov and Hempel [6]. These
groups are produced by the aforementioned construction of Mekler, which takes a graph
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and produces a group of nilpotence class 2 and exponent p that codes the graph into the
commutation relation of the group. Due to the somewhat artificial character of the groups
produced by this method, it was left open whether these model-theoretic classes were
inhabited by groups occurring ‘in nature” We show that the Fraissé limit of c-nilpotent
groups of exponent p (for p > ¢), in the language with predicates for a Lazard series, is
c-dependent and (c¢—1)-independent. As these predicates are definable (with quantifiers)
in the pure group language, these furnish natural examples that exhibit the strictness of
the n-dependence hierarchy in groups. Our proof makes use of the ‘Composition Lemma’
of Chernikov-Hempel [8], drawing on a similar set of ideas as their work on multilinear
forms, which has yet to appear.

The above results give a fairly exhaustive analysis of the neostability-theoretic com-
plexity of the theories of generic nilpotent groups and Lie algebras we considered.
However, genericity for nilpotent groups can be understood within three distinct rubrics:

(1) Model-theoretic: Understand existentially closed nilpotent groups, investigate the
existence of Fraissé limits and/or model companions and describe their definable
sets.

(2) Descriptive set-theoretic: Naturally view the collection of all nilpotent groups with
underlying set N and interesting subclasses of such nilpotent groups as Polish spaces,
describe which properties hold on a comeager set of groups.

(3) Probabilistic: Consider various models of random groups (e.g. random groups in
the sense of Gromov), specialized to the case of nilpotent groups. Calculate the
probability that group-theoretic properties hold in a randomly sampled nilpotent
group and determine the ‘probability 1’ theory.

There has been a considerable amount of work in each of these directions. In addition
to the model-theoretic work mentioned above, the descriptive set-theoretic point of view
on generic groups has been taken up in recent work by Elekes, Gehér, Kanalas, Ka-
tay, and Keleti [17] and by Goldbring, Elayavalli, and Lodha [20]. Both of these papers
considered the space of all countable groups with domain N and the former addition-
ally studied the generic properties of the subspace of abelian groups, leaving the class of
nilpotent groups as an unexplored intermediary case. The primary treatment of nilpotent
groups from a probabilistic point of view was undertaken by Cordes, Duchin, Duong,
Ho, and Sanchez, who adapted the Gromov model for random groups to the nilpotent
setting [14]. In a different vein, Diaconis and Malliaris gave a quantitative study of ran-
domness in Heisenberg groups over F,, particularly illustrative examples of 2-nilpotent
groups [16]. We view the work done here as a first step in a broad project of deter-
mining how these rubrics for the study of generic nilpotent groups fit together. In this
paper, we focus exclusively on the model-theoretic picture but anticipate that the alge-
braic foundations laid here will be useful in subsequent explorations of these intersecting

frameworks.
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2. Preliminaries

Our model-theoretic notation is standard. We do not distinguish between singletons
and tuples except when explicitly mentioned, and we use the usual model-theoretic abuse
of notation of denoting AU B by AB. We write a =4 b to indicate that tp(a/A) =
tp(b/A). We write acl(4) and dcl(A4) to denote the algebraic and definable closures of
A, respectively. We write w for the set of natural numbers and, given k > 1, we define

k] ={1,...,k}.
2.1. Fraissé theory

Let £ be a first-order language and let % be a class of .Z-structures. We say that
% has the hereditary property (HP) if it is closed under substructures, i.e., whenever
B € % and A C B, then A € €. We say that € has the joint embedding property (JEP)
if whenever A, B are in €, there exists a structure S € ¥ which embeds both A and
B. Finally, we say that € has the amalgamation property if for all A, B,C in ¥ and
embeddings fy : C — A and g¢ : C — B, there exists a structure S € € together with
embeddings f1 : A — S and g1 : B — S such that f; o fo = g1 0 go. In this case, we say
that S is an amalgam of A and B over C. When f1(A) N g1(B) = f1(fo(C)) we say that
S is a strong amalgam.

The amalgamation property

Definition 2.1.

o We say that a class € of finitely generated Z-structures is a Fraissé class if it is
closed under isomorphisms, contains countably many isomorphism types, and has
the hereditary property, joint embedding property, and amalgamation property.

e A countable Z-structure M is called homogeneous if every isomorphism between
finitely generated substructures of M extends to an automorphism of M.

o An .Z-structure M is called uniformly locally finite if there exists a function f : N —
N such that any substructure of M which is generated by n elements has cardinality
at most f(n).

Fact 2.2 (Fraissé’s theorem). Suppose that € is a Fraissé class of finitely generated .£-
structures. Then there exists a unique (up to isomorphism) homogeneous structure M
such that the class of all structures isomorphic to finitely generated substructures of M
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(known as the age of M) is precisely ¢. We call M the Fraissé limit of . Conversely,
the age of a homogeneous structure is a Fraissé class.

Fact 2.3. [24, Corollary 6.4.2] Let £ be a finite first-order language and let M be a
countably infinite .Z-structure. Then the following are equivalent.

(i) M is homogeneous and uniformly locally finite.
(ii) The theory of M is w-categorical and has quantifier elimination.

2.2. Nilpotent groups and Lie algebras

Let G be a group and let a,b € G. The commutator of a and b is the group element
[a,b] = a~1b~lab. For two subsets A, B C G we define [A, B] to be the subgroup gener-
ated by all commutators of the form [a,b] where a € A and b € B. The derived subgroup
of G is the normal subgroup G’ = [G, G]. Given a normal subgroup N of G, the quotient
G/N is abelian if and only if G’ C N. We denote the center of the group G by Z(G).
The lower central series (Gy)n>1 of G is defined as follows:

e G1 =G
o Gpy1=[Gp,G] forn > 1.

The lower central series is a normal series, i.e. each G, is normal in G. Since G!, =
(G, Gr] C [Gr, G] = Gy, it follows that the successive quotients G, /G, 41 are abelian
groups. We also have that G,,/G,,+1 is contained in Z(G/G,,+1). We have the following
containments:

G=G1>G >G> ...

Definition 2.4. A group G is nilpotent if its lower central series terminates in the trivial
subgroup in finitely many steps. The least integer ¢ such that G.;1 = 1 is called the
nilpotency class of G. For this, we also say G is a c-nilpotent group or a nil-c group for
short.

Nilpotent groups of class 1 are exactly the abelian groups. Nilpotent groups of class 2
are nonabelian groups where the derived subgroup is contained in the center. In general,
if G is a c-nilpotent group, then G. C Z(G).

Definition 2.5. A Lie algebra L over a field F is a vector space L over F equipped with a
binary operation [, -] : Lx L — L, called a Lie bracket, satisfying the following properties

for every a,b,c € L and p € F:

e [a,a] =0; (Alternativity)
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a+b,c] =la,cl+ b, (Bilinearity)

a, [b, c]] + [b, [¢, a]] + [¢, [a, b]] = 0. (Jacobi identity)

It follows that the Lie bracket is antisymmetric, that is, [a,b] = —[b, a] for all a,b € L.
This follows by using alternativity and bilinearity to evaluate [a + b, a + b]. Indeed, if the
characteristic of I is not 2, then alternativity and antisymmetry are equivalent.

We use the following standard notation for iterated brackets: For n > 3 and elements
Z1,...,Z, in any Lie algebra L, we define [z1,...,x,] inductively by [z1,...,2,] =
[[®1,.. . Tp_1],Tn]-

A subspace U C L is called a Lie subalgebra of L if U is closed under the Lie bracket.
If U and V are subspaces of L, we define [U, V] as the subspace spanned by the elements
[u,v] for u € U and v € V, that is,

[U,V]={r1|ur,n] + ...+ 7% [uk,v] | k> 1u; € Uyv; € Vyr; €F}

Note that [U, V] = [V, U] by antisymmetry of the bracket. A priori, one does not know
whether or not [U,V] is a subalgebra. A subalgebra I C L is called an ideal of L
if [I,L] C I. The bracket in Lie algebras is analogous to the commutator in groups.
Consequently, we present the following concepts. The center of L is Z(L) = {a € L |
[a,b] =0 for all b € L}. Also, L is abelian if [a,b] = 0 for all a,b € L.

The Jacobi identity and antisymmetry further imply the following useful identities.

The first bullet point, for example, can be viewed as saying that for a € L, the
map ad, : L — L defined by ad,(z) = [a, 2] satisfies the Leibniz rule (with respect to
‘multiplication’ given by the Lie bracket). In other words, ad, is a derivation on L in
the following sense.

Definition 2.6. A derivation 6 on a Lie algebra L over F is an F-linear endomorphism
d : L — L which satisfies Leibniz’ rule: §([a,b]) = [d(a),b] + [a, §(b)]. We write Der(L)

for the space of all derivations over L.

Note that Der(L) is a vector subspace of the space of F-linear endomorphism of L. It
is also a Lie algebra for the bracket

[0, ] = O — pd.
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The map ad : L — Der(L) is a homomorphism of Lie algebras with kernel Z(L), usu-
ally called the adjoint representation. A derivation of the form ad, is called an inner
derivation on L, otherwise it is called an outer derivation.

Definition 2.7 (Semi-direct product). Given two Lie algebras L, Ly and a homomorphism

g : Ly — Der(Lq) we define the semi-direct product S = L; x Ly to be the Lie algebra
with underlying vector space Ly & Lo and bracket defined as:

[1 + 22,91 + o] = [21,01]L, + 9(22)(11) — 9(y2) (1) + [22, Y2 L,
for x1,y1 € L1, x2,y2 € Lo.
One easily checks that if S = Ly x Ly then Lo is a subalgebra of S and L is an ideal
of S.

We define inductively the lower central series of L as follows:

. Ll = L7
o Lyy1=[Lp, L] forn>1.

Note that each L, is an ideal of L. A Lie algebra L is nilpotent of class c if ¢ is the least
integer such that

L=L12LsD...2L.D L.y1 =0.
If L is nilpotent of class ¢, then L. < Z(L).
Definition 2.8. Let G be any group. A Lazard series of length ¢ of G is a sequence
of subgroups G = Hy > Hy > ... > H.y; = 1 such that [H;, H;] € H,y; for all i, ;.
By convention, we set Hp = 1 for all k& > ¢. Accordingly, we say that a sequence of
subalgebras (L;)1<i<c+1 is a Lazard series of a Lie algebra L if
L=L>Ly>...>Loi1 =0
and
[Li, Lj] < Liv;

for all ¢, j (where, as above, we stipulate Ly = 0 for all k > ¢).

Note that if G is a group with a Lazard series (H;)1<i<c+1, then G must be of nilpo-

tence class at most ¢ (and analogously for Lie algebras). The lower central series is an
example of a Lazard series.
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Definition 2.9. We define a Lazard group (G, H) to be a group G together with a distin-
guished Lazard series H = (H;)1<;<c41. Similarly, a Lazard Lie algebra (LLA) (L, L) is
a Lie algebra L with a distinguished Lazard series L = (L;)1<;<c+1. We will not always
explicitly display the Lazard series L when referring to an LLA (L, L), referring to it
instead simply as L.

Definition 2.10. Let A be an LLA of nilpotency class < ¢ with distinguished Lazard series
(Ai)i<i<ct1. For any a € A, we define the level of a, denoted lev(a) to be the maximal
1 <i < c+1 such that a € A;. Equivalently, for a # 0, lev(a) is the (unique) i such that
a€ A; \ Ai+1.

The property [A;, A;] € A;1; of the Lazard series implies the property lev([a,b]) >
lev(a) +lev(b). Note that lev(a) +1lev(b) takes the value ¢+ 1 as soon as lev(a) +lev(b) >
c+ 1.

Definition 2.11. Suppose L is an LLA with Lazard series (L;)1<ij<c+1. Define Derpa, (L)
by

Derpa, (L) = {6 € Der(L) : 6(L;) C L;41 for all i}.
Lemma 2.12. Suppose L is an LLA with Lazard series (L;)1<i<c+1-

(1) Derra,(L) is a (¢ — 1)-nilpotent subalgebra of Der(L) with Lazard series (D;)1<i<c
defined by

D; = {6 € Derpa,(L) : 6(L;) C Liy; for all 5}.

(2) If I C L is an ideal of L (with LLA structure induced from L, that is, with Lazard
series (I;); defined by I; = I N L;), then there is an LLA homomorphism L —
Derp,a,(I) defined by a — ad(a)|;.

Proof. (1) It is clear from the definitions that we have
Deryay(L) =Dy 2 Dy D ... 2 D, = 0.

Suppose that § € D; and ¢’ € D;. Let k be arbitrary. Then we have §¢'(Ly) C 0(Lj1x) C
Lt ;41 and likewise, 0'6(Ly) C ¢'(Litx) € Liyj+k, hence

[0,0")(Ly) = (80" — 0"0)(Lk) C Litjtr-

This shows that [D;, D;] C Dj4;.

(2) As ad : L — Der(]) is a Lie algebra homomorphism, we only need to show that,
for each i, a € L; implies ad(a)|; € D;. Fix ¢ and pick a € L;. Let j and b € I; be
arbitrary. As I is an ideal, we have ad(a)(b) € I and, since b € L;, we have
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ad(a)(b) = [a,b] € Li;.
This shows ad(a) € D;, as desired. O
2.8. Lazard correspondence

Our main technical tool for understanding nilpotent groups of exponent p is the Lazard
correspondence. Assuming ¢ < p for an odd prime p, this correspondence associates to
each nil-c group of exponent p a nil-c Lie algebra over the field F,*. From a model-
theoretic point of view, this correspondence establishes the uniform bi-definability of
nil-c groups of exponent p and of nil-c Lie algebras over F,. Indeed, this uniform bi-
definability applies both to the pure languages of groups and Lie algebras and to their
respective expansions to languages with predicates for Lazard series. This will allow us
to conclude that the model-theoretic study of nil-¢ groups of exponent p reduces entirely
to studying Lie algebras, which in turn can be analyzed using the more transparent tools
of linear algebra.

Suppose ¢ < p, for p an odd prime. If G is a group of exponent p and nilpotence class
< ¢, we define Lg to be a structure with same underlying set and operations +,. and
[, ]Le defined by

9+1e h=hi(g,h) = ghlg,h)"%[g,9,h) "7 [h,g,h] = ...

and

(9. hlLe = ha(g.h) = [g,Dllg, 9. h)2 [, g, B2 ...

where the brackets on the right denote group commutators in G. We will usually omit
the subscripts. Since the nilpotence class of G is at most ¢, it turns out that both h; and
ho are finite products of group commutators in G raised to powers in Z ), where Z,
denotes the set of ¢ € Q such that if ¢ = # is in reduced form, then ged(m, p) = 1. Since
the group G is of exponent p, it makes sense to raise any element to powers in Z,) and
these yield well-defined operations on Lg. The coefficients of h; and ho are explicitly
described in [12].

Conversely, given a Lie algebra L over [, of nilpotence class at most ¢, one defines
G, to be the structure with the same underlying set and with a binary operation g,
defined by

1 1 1
a*xg,b=H(a,b)=a+b+ §[a,b]+ﬁ[a,a,b]—ﬁ[b,a,b]—l—...

3 In fact, the Lazard correspondence is considerably more general than this, associating to every Q-
powered nilpotent group a Lie ring over Q, of the same nilpotence class, where 7 is a set of primes < c.
As this is far more generality than we will need, we refer the interested reader to [28, Chapter 10].
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This is the Baker-Campbell-Hausdorff formula, where the brackets on the right-hand side
are the Lie bracket of L. This is usually an infinite sum but, since L is of nilpotence class
at most ¢, the function H can be written as a finite linear combination of Lie monomials
with coefficients in Z,). This can thus be viewed as an [F-linear combination of Lie
monomials.

The following fact summarizes the Lazard correspondence.

Fact 2.13. [28, Chapter 10] Suppose ¢ < p for an odd prime p. To every group G of
exponent p and nilpotence class < ¢, the Lazard correspondence associates a Lie algebra
L¢ over F,, with the same underlying set L = G and with operations a + b = hq(a, b)
and [a,b] = ha(a,b), and ra = a” for every r € F,,. Conversely, for every Lie algebra L
over [, of nilpotence class < ¢, there is a corresponding group G, of exponent p with
the same underlying set and group operation defined by

a*xb= H(a,b)

and a” = ra for r € F,,. These operations are inverses to each other: as Lie algebras over
F,, we have Lg, = L and additionally G, = G as groups.

The following summarizes the key facts that we need about the Lazard correspon-
dence.

Fact 2.14. [28, Chapter 10] Suppose ¢ < p for an odd prime p. Suppose that L is a Lie
algebra over IF,, of nilpotence class < ¢, that G is a group of nilpotence class < ¢ of
exponent p, and that L and G are in correspondence with one another, i.e. L = Lg as
Lie algebras and G = G, as groups.

(1) For all a,b € L,

[av b]L = [a7 b]G' H X;j
J
where s; € Z,) and x; are group commutators in a and b of degree > 3.
(2) For all a,b € G,

[a,b]q = [a,b]1, + Z%‘Xj

J

where u; € F,, and the x; are Lie monomials in a and b of degree > 3.

(3) A subset K C G is a subgroup of G if and only if K C L is a Lie subalgebra.

(4) A subset I is a normal subgroup of G if and only if I is an ideal of L.

(5) A function from the underlying set G = L to itself is an endomorphism of the
group G if and only if it is an endomorphism of the Lie algebra L. In particular, the
automorphism groups Aut(L) and Aut(G) coincide as permutation groups.
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Note that Fact 2.14 implies if L is a Lie algebra over I, of nilpotence class < ¢, the
group G is of nilpotence class < ¢ of exponent p, and L and G are in correspondence
with one another, then a sequence (H;)1<i<c+1 is a Lazard series for G if and only if it
is a Lazard series for L.

3. The generic nilpotent group of class 2
3.1. The bilinear-map correspondence

We recall the following definitions from Baudisch [2].

Definition 3.1. Let p be a prime number.

(1) We write Gy, for the class of nilpotent groups of class 2 and exponent p. We let
K, denote the finite groups in G 5.

(2) Zp is the language of groups together with a unary predicate P. We write 65 p for
those Zp-structures G whose reduct to the language of groups lies in G, and in
which additionally P(G) is a normal subgroup satistying [G,G] C P(G) C Z(G).
Likewise, we write ]Ki p for the finite structures in this class. When p is understood
from context, we will simply write G” and K*.

(3) We write B, for the class of pairs of Fp-vector spaces (V, W), viewed as £ g-structures,
where Lp contains a sort for each vector space (and the abelian group structure on
each) together with an alternating bilinear map 5: V x V — W. As in (2), we just
write B when p is understood from context.

Baudisch defines a functor F : G — B, which is defined by

for all G € G, where [+, ] is the commutator in G. Given an embedding f : G — H of
structures in G¥, we define F(f)(= (F(f)v,F(f)w)) to be the pair of maps (f, f|p)).
where f: G/P(G) — H/P(H) is the induced embedding and f|p(¢) is the restriction of
f to P(G).

Baudisch deduces that both K” and the class of finite structures in B are Fraissé
classes with quantifier elimination [2, Corollary 1.3]. Let G and B be their respective
Fraissé limits. It can be shown that in G, we have P(G) = Z(QG) [2, Corollary 1.3]. Let
Te = Th(G) and Tg = Th(B) Let Mg F Tg and Mg = (V,W,ﬁ) E Ty be their
respective monster models. Note that we may view Mg as a structure interpreted in
Mg with V = Mg/Z(Mg), W = Z(Mg), and 8(-,-) = [,-]. By abuse of notation,
if A C Mg is a substructure, we will write F'(A) to denote the image of A under this
interpretation, i.e. identifying F'(A) with a substructure of Mg is an obvious way.

Given B = (V,W,3) € B, we fix a basis b = {b; : i < a} for V and define a group
G(b, B) whose underlying set consists of V' x W with multiplication defined by
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(Z’Q‘bi, ’LU) . (Zsibi7 w’) = Z(Ti+si)bia U)+’LU,+ Z ’I”iSjﬂ(bj,bi) )
<o <o

i< i<j<a

where, in the above expressions, all but finitely many r; and s; are zero. Note that if
B = F(H) for some H € G, we have G(b, F(H)) = H. More explicitly, if h € H, then,
since b is a basis of H/P(H), we can pick ¢; € H such that ¢;P(H) = b; for each i < a.
Then we have that hP(H) = [],., ci*P(H) for some 0 < r; < p for each i < a. It

i<a i
follows that h = []

ci'w for some w € P(H). The map h — (>, ribi,w) is an
isomorphism from H to G(b, B).

<a 1 <o

Lemma 3.2. Given a set A of parameters in Mg,
acl(A) = dcl(A) = spany, (V(A)) Uspany, (W (A) U B(V(A)?)).

Proof. Let S = span (V(A)) Uspany, (W(A) U B(V(A4)?)). As the other containments
are clear, it suffices to show acl(A) C S. Pick u € Mg \ S. We will show there are
infinitely many pairwise distinct u; with u; =g u. Since, in particular, u; =4 u, it follows
that u ¢ acl(A).

Case 1: Assume u € V. Introduce distinct new elements (u;);<, and consider the
vector space V' spanned by V(A) and {u; : i < w}, with the u; linearly independent
over V(A). We define 8’ by setting 8’ (u;,b) = B(u,b) for all i < w and b € V(S), and
B’ (u;, u;) = 0 for all 4,j < w. This determines a unique alternating bilinear map 3’ on
V'. Embedding over S, we may assume (V', W(S), 8') is a substructure of (V, W, ). By
construction, the function v — wu; extends to an isomorphism

i+ ((V(S)u), W(S), Blv(syuwy) = (V(S)ui), W(S), '),

which fixes S pointwise. By quantifier elimination, the o; witness that u; =g wu for all 7.

Case 2: If u € W, we can just take infinitely many new elements (u;);<. and define
W’ to be a vector space spanned by W (S)U{w; : i < w} with the u; linearly independent
over W (S). Then in an obvious way, we have

(V(S),W(S), Blvsy) € (V(S), W', Blv(s)),
so embedding (V(S), W', Bly(s)) into (V, W, 3), we see that u; =5 u for all i <w. O
3.2. NSOP,

In this subsection, we will establish that Tg is NSOP; by characterizing Kim-
independence in this theory. See [26] for the basis of the theory. We will actually first
establish that Ty is NSOP; by establishing the independence theorem for algebraic in-
dependence and applying the NSOP; Kim-Pillay theorem. We will then use Baudisch’s
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functor F' to deduce that Te is NSOP; as well. Recall that algebraic independence, de-
noted by a ch b, means acl(aC) Nacl(bC) = acl(C). Note that, by [4, Proposition 2.1],
Te is not simple so NSOP; is, in some sense, best possible.

Lemma 3.3 (Independence theorem). Suppose we are given small subsets A, B, Cy, Cq,
D C Mg such that A JfDB, Cy JfDA, Ci JfDB, and Co =p C1. Then there is C,
such that C. =ap Co, Ci =pp C1, and Cy [© JAB.

Proof. We may assume A = acl(AD), B = acl(BD), Cy = acl(CyD), C; = acl(C1D),
and D = acl(D). Moreover, applying extension for | “, we may assume that A and
B are models of Tg. Let E = acl(AB). So in particular, D is an algebraically closed

subset of all of the given sets. Choose X to be a set that is linearly independent over
W (A) UW(Cy) such that

W (acl(ACy)) = span(W(A) UW (Ch) U X).
Likewise choose Y to be linearly independent over W (B) U W (C;) and such that
W (acl(BCy)) = span(W(B)UW(C1)UY).

Fix 0 € Aut(Mp/D) with o(Cy) = C;.

Work briefly in the reduct (V, W) consisting of a disjoint union of two infinite
dimensional [F,-vector spaces, which is clearly stable. Choose C. which realizes the
unique non-forking extension of tp(Cy/A) to E. By transitivity and stationarity, we
have that C, realizes the unique non-forking extension of tp(Ci/B) as well. Note
that in this reduct, we have X independent from CyA over D and Y independent
from C1B over D. Pick X, such that X,C, has the same type (in the reduct) as
XCy over A and Y, such that Y,C, has the same type as Yy over B. By in-
variance, Y, is independent over D from C,B so, by extension, we may assume Y,
is independent from C,.X.E. There are isomorphisms (in the reduct language) 7o :
(V(acl(ACY)), W(acl(ACy))) — (span(V(A)V(C.)),span(W (C,) X, W (A))) over A and
also 71 : (V(acl(BCy)), W(acl(BC1))) — (span(V(B)V(C.)),span(W (C,)Y. W (B)))
over B such that 7 o ol¢, = T0|c,-

Let By be the alternating bilinear map on span(V(A)V(C,)) defined by pushing for-
ward [ along 7p. In other words, we define

Bo(v,w) = 1o(B(rg " (v), 75 (w))),

for all v,w € span(V(A)V(C.)). Likewise, define 81 on span(V(B)V(C.)) by pushing
forward (8 along 7.

We claim that there is a unique alternating bilinear map on span(V(C,)V(E)) ex-
tending (o, f1, and By (). First, note that if v,w € span(V(A)V(C)) NV (E), then
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since C., is independent with E over A, it follows that v,w € V(A). Since 7y fixes A
pointwise and A = acl(A) (and therefore is closed under ), we have

Bo(v, w) = 10(B(15  (v), 75 (w)))
= 70(B(v,w))
= B(v,w),

so 8o and S|y (g) agree on their common domain. A symmetric argument shows that (;
and S|y (g) agree on their common domain, using now that C, is independent with F
over B. Finally, suppose

v,w € span(V(A)V(C,)) Nspan(V (B)V(Cy)).

We know that, in the reduct, C, is independent from AB over D and A is independent
from B over D, so by base monotonicity and transitivity, it follows that A and B are
independent over C,. It follows, then, that v,w € V(C\). Since 19|c, = 11 0 0l¢, and o
preserves 3, we have

Bo(v,w) = 10(B(75 " (v), 75 (w)))
= (noo)(B((e™ o ) (w), (07 o ) (w)))
=1 (B(r ! (v), 71 (w)))
= B1(v, w),

so By and (1 agree on the intersection of their domains. It follows that the union of Sy,
B1, and 3|y (g) determines an alternating form on span(V(C.)V(E)). After embedding
over E into Mg, we may assume that the structure we have constructed is a substructure
of Mig. By quantifier elimination, the isomorphisms 7y and 7 witness that C, =4 Cy
and C, =5 C].

We are left with showing that C, |° 5 AB. However, by construction, we know V(C,)
is independent from V(E) over V(D) and W (C\) is independent from W (E) over W (D).
Therefore C, N E = D which entails C, |* , £ and therefore C; 14 5 AB. O

Definition 3.4. Suppose A, B,C C Mg and denote by Z the center of Mg. We write
A o B to indicate that the following hold:

(1) (AC) N (BC) = (C).
(2) (A/Z)N(B/Z) = (C/Z), where (A/Z) denotes the subgroup of Mg/Z generated by
the cosets represented by elements of A.
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Lemma 3.5. Suppose A, B,C C Mig. Then

A |*B < F((AC)) |* F((BC)).
c FC)

Proof. We prove that the right hand side implies (1) of the definition of |*, the rest
is immediate from Lemma 3.2. Assume that F({(AC)) N F((BC)) = F({(C)) and let
x € (AC) N (BC). As ((ACY/Z)n ((BC)/Z) = (C)/Z, there exists ¢ € (C) such that
x—c€ Z.Nowx—c € Z({AC))NZ({BC)) and the latter equals Z((C)) since F({(AC))N
F((BC)) = F({(C)). So x —c € Z({C)) hence x € (C). The other inclusion being trivial,
we have (AC) N (BC) = (C). O

Theorem 3.6. Suppose A, B,Cy,C1,D C Mg satisfy A \BDCO, B \BDCb A J/*DB,
and Cy =p C4, then there is C, with C, =ap Cy, Cx =pp C1, and C, |* AB.

Proof. We may assume A = (AD), B = (BD), C; = (C;D) for i = 0,1, and D = (D).
Fix ¢ : Cy — C1, an isomorphism over D that witnesses that Cy =p C. By Lemma 3.5,
it follows that F'(A) JfF(D) F(Cy), F(B) ﬁF(D) F(Cy), and F(A) JfF(D) F(B). More-
over, we have F'(Cp) =p(py F(C1), witnessed by the F'(D)-isomorphism F(¢).

Fix a basis d for V(F (D)), then extend this by @ to a basis for V(F(A)), by b to a
basis bd of V(F(B)), and by ¢ to a basis ¢od of V(F(Cp)). Then setting ¢, = F(¢)(co),
we see that ¢;d is a basis of V/(F(Cy)). By independence, dacy is linearly independent so
can be extended by €y to a basis dacoey for V(F({ACp))) and, likewise, we can find e;
such that dbc,€; is a basis for V(F({BC1))), and we can find f such that dabf is a basis
for V(F({AB))). For each X € {A, B,Cy,C1, D, (ACy), (BC4),(AB)}, we may identify
the group X with G(z, F(X)), where T is the distinguished basis for X described above.
Note that, with this identification,

@ ((Zn@&u)) = (ZTaF(@)v(Ca)aF(@)w(w)> :

where o ranges over the indices of ¢ and all but finitely many r, € I, are equal to zero.

Now we apply Lemma 3.3 to obtain some F, such that F. =pa) F(Cy), Fi =p(p)
F(Cy), and F, \BF(D) F(A)F(B). Let fo : F({ACy)) — (F(A)F,) be an isomorphism
over F(A) and let f; : F({(BC1)) — (F(B)F\) be an isomorphism over F'(B) such that

folrce) = (f1 0 F(9)|r(cy)-

Let ¢, = fo(co) = f1(¢1). Define the group C. as G(C., Fy). Note that if fo = (fo,v, fo,w),
then we have fo v (acodey) = ac.de, for some €. Then, we can define a map g :
G(acydey, F({ACy))) — G(ac.dey, (F(A)F,)) by

<Zraxa,w> — (ZrafV(xa)afW(w)> )
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where x, ranges over elements of the basis acodey and all but finitely many r, are
0. Note that this defines an isomorphism and F(pg) = fo. Similarly, we may de-
fine an isomorphism ¢, : G(béider, F((BC1))) — G(be.de), (F(B)F.)). Note that
Polc(@zo,co) = (@1 °9)la@e,co)- By quantifier elimination, we may assume that all
these structures are embedded in Mg over (AB). Then we have C, =4 Cy, Ci. =p C1,
and C, JjD AB, by Lemma 3.2. O

By [11, Proposition 5.3], there is an Kim-Pillay-style criterion for NSOP;, allowing
one to show that a theory is NSOP; by proving the existence of a well-behaved inde-
pendence relation. The variant of this theorem in [27, Theorem 6.11], moreover, allows
one to conclude that this independence relation must additionally correspond to Kim-
independence. For the definitions of the relevant properties of an independence relation,
we encourage the reader to consult [27].

Corollary 3.7. The theory Tg is NSOPy and |* = |X over models.

Proof. It is easy to check that | ™ is invariant and satisfies strong finite character,
symmetry, monotonicity, and existence over models. The independence theorem is es-
tablished in Theorem 3.6. Finally, to show witnessing, suppose M F Tg and a J//jw b.
Take a coheir sequence (b;);<, over M with by = b. Suppose we are given terms t, s
and tuples m,m’ € M. If d = t(a,m) = s(b,m’) and d € M, then, as (b;);<,, is a coheir
sequence over M and s(b,m’) ¢ M, we must have that the s(b;, m’) are pairwise distinct,
so {t(z,m) = s(b;,m') : i < w} is inconsistent. Next, consider the case that we have an
equality d = t(a,m)Z = s(b,m')Z of cosets of Z with d ¢ M/Z. As before, since (b;);<,
is a coheir sequence over M, we must have that the cosets s(b;,m’)Z are pairwise dis-
tinct: if s(by,m')Z = s(by,m’)Z, then the formula (s(y,m’))~'s(by,m’) € Z must have
a realization in M, hence s(by,m')Z = d € M/Z, against our assumption. This shows
that {(t(z,m))"ts(b;,m') € Z : i < w} is inconsistent. Together these show witnessing,
so we conclude that | * = | % over M. O

Remark 3.8. It is straightforward to modify the previous arguments to show that Tg
satisfies the existence axiom for | * and that | * = \LK over all sets, using the variant
of the NSOP; Kim-Pillay theorem in [9, Theorem 6.1]. As we will not use this later, we
leave this extension to the reader for brevity’s sake.

Corollary 3.9. The theory Tg is NSOPy and | ™ = | * over models.

Proof. This follows from Lemma 3.5 and Corollary 3.7, using the interpretation of Ty
inTg. O
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3.3. 2-Dependence

In this subsection, we will give a rapid argument that Ty is 2-dependent. Although
the 2-dependence of T can be deduced from this, the fact that the interpretation of
Ty in Tg is not a bi-interpretation makes this route to proving the 2-dependence of Tg
excessively cumbersome. We will prove the 2-dependence of T later, in Corollary 5.19,
as a consequence of a more general result about the c-dependence of c-nilpotent Lie
algebras, using the Lazard correspondence.

Definition 3.10. A formula ¢(z;yo, ..., yr—1) is said to have the k-independence property
(or IPy) if there are (ag,...,ar—1,i)i<w and (bx)xce+ such that, for all X C wk,

E (p(bx; QA0,igs - - - 7a’k—17ik71) <~ (io, ey ik—l) c X.
We say a theory T is k-dependent (or NIPy) if no formula has IP; modulo T

Note that IP; is exactly the usual independence property and the 1-dependent theories
are exactly the NIP theories.

Fact 3.11. [7, Theorem 5.12] Let M be an .#’-structure such that its reduct to a language
Z C £ isNIP. Let (x1, ..., 24) be an .Z-formula. For each i € [d], fix some s; < t; € [3]

and let f; : M, x My, — M, be an arbitrary binary function. Then the formula

V(W13 y2,¥3) = (f1(Ysrs Y1 )s - -+ fa(Vsar Yta))
is 2-dependent.
Lemma 3.12. The theory Ty is 2-dependent.

Proof. Let T denote the reduct of Ty to the language .Z_ consisting of the sorts V
and W and the abelian group structure on each, but forgetting the bilinear map. This
is the theory of two disjoint copies of an infinite dimensional IF,-vector space which is
interpretable in an Fp-vector space and is therefore stable (even w-stable). By quantifier
elimination, every .#Zg-formula ¢(x1,...,%n,Y1,--.,Ym), where the z; are in the sort V
and the y; are in the sort W, can be written in the form

w(xlw"7xn7y17"‘7ymu(ﬁ($ivxj) 1g <j))

where ¥(Z,7,Z) is a (stable) Z_-formula. By Fact 3.11, we can conclude that Tg is
2-dependent. O

The following was pointed out to us by Gabe Conant:
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Remark 3.13. In [45], Terry and Wolf defined a new classification hierarchy called
NFOP;,, which was subsequently developed by Abd Aldaim, Conant and Terry in [1].
NFOPy, is a promising candidate to be a k-ary extension of stability, the same way NIPy
is a k-ary extension of NIP. Using [1, Theorem 2.16] instead of Fact 3.11 in the proof of
Lemma 3.12, we immediately conclude that Ty is NFOP5. Our proof of the 2-dependence
of T also gives that Tg is NFOPs.

4. Free amalgamation of Lie algebras
4.1. Stages of the construction

In this section, we fix a natural number ¢, a prime number p > ¢ and a field F.
We extend the notations from Definition 3.1. Let £, be the (one-sorted) language
of F-vector spaces {4, —,0,(X-) er} expanded by a binary function symbol [-,-] and
predicates (P;)i<i<c+1- Let £, be the reduct of .Z, y omitting the functions (A-) -

Definition 4.1.

(1) Let L. be the class of finitely generated Lazard Lie algebras over F of nilpotency
class < ¢, in the language .2, F.

(2) Let L., be the class of finite Lazard Lie algebras over F,, of nilpotency class < ¢, in
the language .Z..

(3) We write G, for the class of finite Lazard groups of exponent p and of nilpotency
class < ¢ in the language of groups expanded by predicates for the Lazard series.

When p > ¢, the classes L., and G, are uniformly bi-definable via the Lazard
correspondence, see Subsection 2.3. Further, L., is a particular case of L. y. The goal
of this section is to prove that L. is a Fraissé class (see Definition 2.1), by proving an
amalgamation result. We actually prove a stronger result: L.y is a free amalgamation
class in the sense of Baudisch (Definition 4.14 below).

This free amalgam can be compared to an amalgamated free product of structures.
Although the existence of the free amalgam of graded Lie algebras (a notion equivalent
to that of an LLA) was claimed by Baudisch in [3], we found it worthwhile to give
our own account, which differs substantially from the argument of [3]. Section 4.4 gives
explicitly the induction mentioned (but not proved) by Baudisch in [3], which turns out
to be highly non-trivial.

Definition 4.2. A basic extension of an LLA A is an extension B O A such that A is an
ideal of B and B = (Ab) for some singleton b. Note, we do not require B to be a proper
extension of A.

The construction of the free amalgam of nilpotent Lie algebras passes through three
stages.
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(I) (Subsection 4.3) We construct the free amalgam of A = (Ca) and B = (Cb) over
C where both A and B are basic extensions of C. The free amalgam is in this case
explicitly constructed as a semi-direct product of C and a free nilpotent Lie algebra
generated by X and Y, where X and Y act on C by derivations in the same way
as a and b respectively.

(II) (Subsection 4.4) We construct the free amalgam of A and B over C' when A is a
basic extension of C' and B is arbitrary. This is achieved using Stage I and induction
on a certain rank of the extension B of C. This rank computes a certain amount
of complexity of the extension B/C. It is also witnessed via a particular linear
basis of B over C, which we called Malcev basis.* An induction scheme is used
to construct the amalgam which is rooted in the work of Maier [31].> The rank
drops at each step of the induction and yields a first amalgam (denoted by the
@-amalgam) which is complicated to describe except as “the amalgam resulting
from the induction scheme”. Revisiting the induction for each case, we prove that
the @-amalgam obtained satisfies (1), (2) and (3) of Definition 4.14 hence is a free
amalgam.

(III) (Subsection 4.5) We construct the free amalgam of A and B over C' when A and
B are arbitrary. This is achieved via a standard induction using Stage II.

The conclusion is given in Subsection 4.6: the classes L., L., are Fraissé (and
therefore G, as well, when p > ¢). The last subsection of Section 4—Subsection 4.7—is
dedicated to a technical result on the free amalgam which will be used in Section 5 to
prove that the theories of the Fraissé limits of L. ), and G, are NSOP,.

4.2. Free Lazard Lie algebras and Hall sets

4.2.1. Free nilpotent Lie algebras

The goal of this subsubsection is to define the free LLA in a given set of generators.
Recall that we fix a field F. Every vector space and Lie algebra for the entirety of this
section will be assumed to be over F.

Definition 4.3. Let X = (X1,...,X,,) be a tuple of indeterminates. The free Lie algebra
(over F ) generated by X is the Lie algebra F(X) containing X which satisfies the follow-
ing universal property: for any Lie algebra L and any function f : {Xy,..., X,} — L,
there exists a unique Lie algebra homomorphism g : F(X) — L which extends f.

For any choice of X, the free Lie algebra generated by X exists and is unique up
to isomorphism (see for instance [5, Proposition 1]). When |X| = 1, we get the free
Lie algebra on one generator which is an abelian Lie algebra of dimension 1 as an

4 We called those bases after Malcev for their direct connection with the so-called Malcev coordinates in
nilpotent groups of exponent p.
5 Maier himself was inspired by the work of Higman [23].
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F-vector space. When |X| > 2, the free Lie algebra will be of infinite dimension as
an [F-vector space. Elements of F(X) will often be identified with Lie polynomials i.e.
formal expressions obtained by identifying terms of the language {+,0,[-,-]} modulo
the equations [X;, X;] = 0 and the Jacobi identity. For any P(X) € F(X) and any
a = (ay,...,a,) from some Lie algebra L, the map X; — a; extends to a Lie algebra
homomorphism h : F(X) — (a1,...,a,) and we will denote h(P(X)) by P(a), the
evaluation of P in a.

Gradation. Free Lie algebras carry a natural gradation: elements of the free Lie algebra
are Lie polynomials in the generators and the Lie algebra can be written as the direct
sum of the Lie monomials of each degree. Lie monomials, or just monomials when it is
understood from context, in F'(X) are inductively defined as follows: every X; € X is a
monomial and if P and @ are monomials, then so is [P, Q)]. We denote by M (X) the set
of Lie monomials. We will also need to consider gradations on a free Lie algebra where
the generators live in a specified summand, which might not be the first summand.

Let Nt = {1,2,...}. Any map f : {X1,...,X,} — N7 extends’ to a map f :
M(X) — N7 such that f defines a gradation of F(X) in the following sense: define

Vi :=span({Q € M(X) | f(Q) =n})

then we have:

. F(X)= @ V/,
neN
. Wivilcv!

n+m:*

This appears for instance in [5, Chapitre 2, §2, Section 6]. By setting

P,{ = @ka,

k>n

we get that (Pif )i<w is a Lazard series (of infinite length) in the Lie algebra F(X). The
map f is entirely determined by the tuple a = (a1, ..., a,) where a; = f(X;) hence we

will for now consider that each tuple a € (NT)" determines a unique gradation (V;%);<.,

and a Lazard series (P?);<.,. Then, for each element Q € F(Xy,...,X,) \ {0} there

3
exists a maximal m and a minimal n such that m <n and

QeEVIOVE , ®... 0V

6 More precisely, as (N*,—Q—) is a magma, the map f extends to a homomorphism of the free magma
generated by X, and being a magma homomorphism one has f([X;, X;]) = f(X;) + f(X;). This map can
directly be extended to the free Lie algebra in the following way: the map extends to the free F-algebra
having M (X) as monomials and then to the quotient by the ideal generated by the elements [z, ] and the
Jacobi identity elements [z,y, z] + [y, 2z, ] + [2, , y] to get the corresponding f.
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In this case we call m the a-level of Q and n the a-degree of QQ, denoted respectively by
lev,(Q) and deg,, (Q). We extend those functions to 0 by setting lev, (0) = deg,, (0) = .
Then P¥ ={Q € F(X1,...,Xn) | leva(Q) > n}. An element Q € V,* for some n is called
a-homogeneous and such element satisfies deg,, (Q) = lev,(Q).

When « is not mentioned, lev, deg, P, in F(X) refers to the case where a = (1,...,1),
and the associated gradation is called the natural gradation. In this case, elements of each
V,, are called homogeneous.

Example 4.4 (Natural gradation). Consider the gradation given by a = (1,...,1) in
F(X,Y,...). Then X is of level and degree 1, [X, Y] is of level and degree 2 and X +[X, Y]
has level 1 and degree 2. The degree behaves like the degree of polynomials and the level
behaves like a valuation: lev(a+b) > min {lev(a),lev(b)} with equality if lev(a) # lev(b).

Observe that for all @ € N™ and ¢ € N the space P2, is an ideal of F'(X), hence we
may consider the quotient of F'(X) by P2, ;. This quotient is a Lie algebra of nilpotency
class at most ¢. In the case of the natural gradation o = (1,...,1), the Lie algebra
F.(X) := F(X)/P.41 is of nilpotency class ¢ and is usually called the free c-nilpotent
Lie algebra. Tt is easy to deduce the universal property for the Lie algebra F.(X) in the
category of c-nilpotent Lie algebras from the universal property for F(X) in the category
of Lie algebras.

Definition 4.5 (Free Lazard Lie algebra). Given X = (X1,...,X,), a = (a1,...,qy) €
N™ and ¢ € N, we denote by F.(X,a) the quotient F(X)/P2 . Then F.(X,«a) is
nilpotent of nilpotency class at most ¢. In F.(X, «), the sequence (S¥)1<i<c+1 of ideals
defined by

S = PPl

is a Lazard series in F.(X, ). The Lie algebra F.(X, a) equipped with the Lazard series
(S%)1<i<ct1 is called the free Lazard Lie algebra associated to n, a, c.

One easily sees that levy(Q) > lev(i,. 1)(Q) hence P, C P in general. It follows
that F.(X, «) surjects onto F.(X) in general, though they need not be isomorphic, see
Example 4.11.

Recall that in any LLA A and a € A, lev(a) is the maximal ¢ such that a € P;(A4).
In F.(X, @), the a-level coincides with the level of the LLA (F.(X, ), (58);). The free
LLA F.(X,a) enjoys the following universal property:

For any LLA A and a = (aq,...,a,) € A™ such that lev(a;) > «; for each 1 <i<n
then the map X; — a; extends to a LLA homomorphism F.(X, a) — A.
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4.2.2. Hall sets
A particular (ordered) linear basis for the free Lie algebra F(X) is given by the set
of Hall monomials.

Definition 4.6 (Hall sets). Let X = (Xy,..., X, ). We recursively define linearly ordered
sets of monomials in F(X), called Hall sets. Start with HS; = {X3, X5,...,X,,} and
declare X7 < Xo < --- < X,,. If HSq,...,HS,, have been defined, then HS,,;; is the set
of monomials [P, Q)] such that

(a) P,Q € HS; U---UHS,;
(b) deg(P) + deg(Q) =n+1
(¢) P> Q;and

(d) if P =[R,S], then S < Q.

We then linearly order the monomials in HS,,;; and for P € HS; U --- U HS,, and
Q € HS, 11 we declare P < Q. Put HS(X4,...,X,,) = Un21HSn. Members of HS are
called Hall monomials.”

Every monomial of the Hall set HS,, is of degree n. By construction, for any Hall
monomials P and Q, if deg(P) < deg(Q), then P < Q. Also, if P < @, then deg(P) <
deg(Q). For any n, the set HS,, is a basis of the space of homogeneous polynomials of
(natural) degree n in F(X), see [21]. In particular, the set HS forms a basis for the free
Lie algebra F'(X).

In the free c-nilpotent Lie algebra F.(X), Hall monomials of degree larger than ¢
vanish and the family HS<. := {J, . HS,, is a basis of F,(X).

There is also a weighted version of Hall sets which we give now. This appears in [29,
Section 2], where it is called a weighted Hall set. This is similar to [3, Fact 4.2].

Definition 4.7 (Weighted Hall sets). Let X = (Xi,...,X,,) and o € (N1)". We recur-
sively define linearly ordered sets of monomials in F(X), called Hall sets. Let HST be
those X; of a-degree 1 and order HS{ arbitrarily, for instance X; < X; if ¢ < j. If
HST,...,HS] have been defined, then HSj,, is the set of those X; of a-degree n + 1
together with monomials [P, Q] such that

7 These are known as basic commutators in the literature, this terminology comes from the fact that they
form a basis of the free Lie algebra.
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We then linearly order the monomials in HSj, ; and for P € HS{ U--- UHS) and
Q € HS},; we declare P < Q. Put HS®(Xy,..., X,,) = U, >, HS},. Members of HS® are
called (weighted) Hall monomials.

We again get that HSJ is a basis of the space of a-homogeneous polynomials of a-
degree d.

Remark 4.8 (Witt formula). The cardinality of HS,, i.e. the number of Hall monomials
of degree d in the free Lie algebra with n generators is given by the Witt formula

S nkn,

k|d

where £ is Mobius function. See [5, Ch. II, §3, Théoréme 2]. It follows that the dimension
of F.(X) is

Note that the dimension of F,(X, ) only depends on ¢,n and «, we denote it g, o(c) or
just g(a). There should exist an explicit description of the function g. For any o € (N )™
we have P,, C PS, hence the dimension of F,.(X,a) = F(X)/P2, is less than or equal
to the dimension of F.(X) = F(X)/P.41. Thus

9(0) < g1, 1) = 32 53 ulkyn™.

d=1" k|d

Remark 4.9 (A construction of weighted Hall sets). We now describe an easy recipe
for obtaining weighted Hall bases given the existence of unweighted ones. Let X =
(X1,...,Xn) and @ = (v, ..., o) be given. For each i = 1,... ,nlet Y{,..., Y} benew
variables and consider a Hall set HS in the free algebra F((Y,!)k<ay---» (Vi )k<a,) and
pick Z; € (Y{,...,Y. ) NHS of degree o; for each i. The Lie algebra L = (Zy,...,Zy)
is free by the Shirshov—Witt Theorem [42,46], hence L is isomorphic to F(X7y,..., X,).
Let H be the set of those monomials in HS which only involve Z;, then H is a weighted
Hall set of L for the gradation given by «.

Remark 4.10 (Weighted Hall sets in two variables). In the case of two variables (X,Y)
and given a gradation (a, 3), the situation is easier. The weighted Hall monomials HS*?
are constructed following the same algorithm as in the unweighted case with the only
constraint that X and Y are ordered consistently with the order of @ and 5, i.e. X <Y
if and only if @ < 8. Then X,Y are elements of minimal a-degree, the next monomial
in the Hall basis is [X,Y] (or [Y,X]) and the iterative construction of the Hall set
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follows the same procedure as in the unweighted case. This allows us to forget about
the differences between weighted and unweighted Hall monomials in what concerns their
iterative construction, as we will only consider them in two variables in the construction
of the free amalgam of two basic extensions.

We now illustrate the notions above with concrete examples.

Example 4.11. We consider F3(X,Y,a,3) in the case of nilpotence class 3, with two
different initial conditions.

If « = 8 =1, then the Hall set is given by ¥ v I
HS<s ={X <V <[V, X] <[[Y, X], X] < [[\, X], Y]} P
and Py = HS>y4, so F(X,Y,1,1) is identified with the vector Py
span of HS<3. In particular, dim(F5(X,Y, o, 5)) = 5.
If « = 1,8 = 2, one computes:
Q ‘ dega,ﬁ(@)
7
X 1 p y -
Y 2
Y, X] 3 Yy /
HY?X])X] 4 Y, X] /
Y, X],Y] 5 : Py

The Hall sets are: HS?? = {X}, HSS? = {v}, HS}" =
{[v, X1}, 0837 = {[[v, X], X}, HSg"” = {[[V, X], Y]} In par-
ticular, P;” = HSZ} hence dim(F3(X,Y, a, 8)) = 3.

4.3. Stage I - basic extensions

Recall that all vector spaces and Lie algebras will be considered to be taken over F.
Additionally, we fix a ¢ and will write ‘LLA’ to mean ‘Lazard Lie algebra over F of
nilpotence class at most ¢’ for the rest of the section, unless otherwise specified. Recall
(Definition 2.10) that the level lev(a) is defined as the maximal ¢ < ¢ + 1 such that
a€ P

Definition 4.12. For LLAs B C A, the level of A over B, denoted lev(A/B), is defined
to be the maximal 1 <4 < ¢+ 1 such that A = span(BPFP;(A)).

The goal of this subsection is to prove the following theorem.

Theorem 4.13. Let A, B,C be LLAs of nilpotency class < ¢ with A, B basic extensions of
C. Assume that A = (Ca) and B = (Cb) with lev(a),lev(b) mazimal with this property.
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Let o = lev(a), B = lev(b). Then there exists a strong amalgam S of A and B over C
such that the following conditions are satisfied:

(1) in S, we have {a,b) = F.(X,Y,a, ) via the map a— X, b—Y;

(2) C is an ideal of S;

(3) there exists an ideal D of S containing B such that S = (Da) is a basic extension
of D and lev(D/B) = lev(a) + lev(b).

In(3), D = (Bhs...hy), where (hi)s<i<y is an enumeration of Hall monomials in HS®?
without X and Y.

Proof. We define the amalgam S as follows. Consider the free Lazard Lie algebra F' =
F.(X,Y,a, ). As C is an ideal of both A and B, ad(a)|c and ad(b)|c define derivations
on C. Moreover, ad(a)|c and ad(b)|c are in D, and Dpg respectively in the associated
Lazard series on Dery,,,(C), by Lemma 2.12. By the universal property of F.(X,Y, o, 5),
the function X — ad(a)|c and Y — ad(b)|c gives rise to a unique LLA homomorphism
g: F — Derp,,(C). We define S = C' x F to be the associated semi-direct product. We
interpret the predicates by

P;(S) = Span(P;(C) U Pi(F)).
If ce P(C),d € P;(C) and u € P;(F),v € P;(F) then
[c 4+ u,d+v] = [e,d] — g(v)(c) + g(u)(d) + [u,v]

It is clear that [c,d] € P;y;(C) and [u,v] € Pi4;(F). Further, as g is an LLA homomor-
phism, g(v) € D; hence g(v)(c) € Pi4;(C). Similarly, g(u)(d) € Pi4+;(C). We conclude
that [c+u,d+v] € Pi4;(S) hence (P;(S))i<i<c+1 is a Lazard series on S. Now we check
that this S is the desired amalgam. Observe that properties (1) and (2) are satisfied by
construction.

Next, note that the map ¢ : A — (C, X), defined to be the identity on C and mapping
a — X, is an LLA isomorphism, where (C, X) is the subalgebra of S generated by C
and X. It is clearly an isomorphism of the underlying vector spaces, since C' is an ideal
of both and thus, as vector spaces, we have A = C @ {(a) and (C,X) = C ® (X). It
also respects the predicates for the Lazard series on S. Finally, if we are given arbitrary
c+n~a, c +~'a€ A, where ¢,¢’ € C and 7,7 € F, we have

Wle+a,d +9'd]) = u([e, ] +vad(a)(c') —~'ad(a)(c)) = [e, '] + 7[X, ] = 7'[X, c].
Similarly, we have

[t +7a), (¢ +7'a)] = [e+ X, " +7'X].
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By bilinearity, this easily implies that ¢ is a Lie algebra homomorphism and therefore
¢ is an LLA isomorphism. This shows that, via ¢, A embeds into S over C. A parallel
argument shows that B embeds into S over C, and thus S is an amalgam. Since (C, X) N
(C,Y) = C, this amalgam is strong.

Thus, we only are left with showing (3). If we set D = (Bhs ... hy), where (h;)s<i<k
is an enumeration of Hall monomials in HS®? without X and Y, then, since [X,Y] €
P,+5(S) (or [Y,X] € Py1p(S)) is the monomial of minimal degree in the Hall basis,
excluding X and Y, we have lev(D/B) = a+ 8 = lev(a) + lev(b). Since the Hall basis is
a basis of S over C and [X, h;] € Span(hs, ..., hy) for all ¢ > 1, we know D is an ideal
of S and S = (D, X) is a basic extension of D. O

4.3.1. What is the amalgam constructed by Baudisch?
Recall Baudisch’s definition of the free amalgam.

Definition 4.14 (Baudisch). Let A, B, C be LLAs with embeddings fo: C — A,¢9: C —
B. We say that S is a free amalgam of A and B over C if S is an amalgam of A and B
over C, with embedding f; : A = S, g1 : B — S with f1 o fy = g1 0 go and such that the
following three conditions hold, for A’ = f1(A), B’ = g1(B),C’ = (f1 0 fo)(C):

(1) §=(A'B');

(2) (Strongness) A'NB' = C";

(3) (Freeness) for any LLA D and any LLA homomorphisms f : A— D and g: B — D,
there exists a (unique) h : S — D such that the following diagrams commute.

We denote the free amalgam S by A ®¢ B.

Remark 4.15. Under condition (1) if a map h satisfying (3) exists, then it is unique.
Thus, we will allow ourselves to talk about the free amalgam of A and B over C.

Remark 4.16 (The free amalgam is unique up to isomorphism over C). Let S and S’ be
two free amalgams of A and B over C. Then S = S’. By Remark 4.15, we may assume
that A, B are finitely generated over C. By considering images, assume that A, B,C C S.
Let f: A— S and g : B — S’ be embeddings agreeing on C and let A’ B’,C’ be the
images of A, B,C in S’. By the freeness property, there is a homomorphism b : S — S’
which commutes with the inclusions C' € AN B and the isomorphism f : A & A’ and
g : B = B’. We have that h is surjective as S’ = (4’ B’). The same argument yields that
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there is a surjective homomorphism from S’ — S. As S and S’ are finitely generated
over C, h is an isomorphism. Note that the strongness condition is not used for the
uniqueness, only properties (1) and (3). This definition is designed to make the strong
amalgam unique, if it exists.

Lemma 4.17. Let C, A be LLAs. If C is an ideal of (AC), then (AC) = span(AC).

Proof. We may assume that A,C are finitely generated. Let ¢ = (cy,...,¢,) and
a = (ai,...,am) be generators of C' (resp. A) as LLAs. Let v = (71,...,7») and
a = (a1,...,0n) be the levels of ¢ and a. Let X = (Xy,...,X,), Y = (Y1,...,Y)
and F = F.(X1,...,Xn,Y1,...,Yn,7,a). Let H be a Hall basis of F. The surjec-
tive endomorphism F — (C, A) given by the universal property of F implies that
Hy = {P(c,a) | P(X,Y) € H} is a generating subset of (AC) as a vector space. We
prove that for each P € H, either P(c,a) € C or P(c,a) € A. We prove it by induction
on the complexity. If P(X,Y) is X or Y then P(c,a) is in C or A. By induction, assume
that P = [Q, R] for P,@Q, R € H. By induction hypothesis, Q(c,a) and R(c,a) are in A
or C'. If either one is in C then so is P as C is an ideal. Otherwise both @ and R are in
A hence Pisin A. O

Here is a cheap way to get free amalgams in the sense of Definition 4.14.

Lemma 4.18. Let C C AN B be LLAs and let S be an amalgam of A and B over C
with S = (AB). Let a = (a1,...,a,) and b = (by,...,by) be bases of A and B over C
respectively. If

(1) C is an ideal of S
(2) (ab) N C = {0}
(3) (ab) = F(X,Y,lev(a),lev(b))

Then S satisfies (1), (2), and (3) of Definition 4.14. In particular, the existence of
such an S implies A ®c B exists (here X = (X1,...,X,) and lev(a) denotes the tuple
(lev(ay),...,lev(ay)) and likewise for Y and lev(b)).

Proof. Condition (3) implies that a U b is linearly independent over @), hence by (2) we
have AN B = C. It remains to prove the freeness condition. By (1), C is an ideal of
(C{ab)) hence S = (AB) = span(C, (ab)) by Lemma 4.17. Then S = C' @ (ab), as a vector
space, by (2). Let f: A — D and g : B — D be homomorphisms such that f(c) = g(c)
forall c € C. Let jo = f | C : C — D. We extend jg to j : S — D. By (3) there is
a Hall basis H of (ab) and we define j; : (ab) — D by the universal property of the
free LLA. More precisely we define j; inductively: for a;, b; we define j;(a;) = f(a;) and
j1(b;) = g(b;). For P € H there exists a unique pair (Q, R) € H such that P = [Q, R].
Inductively, j; is defined on @, R and we define j1(P) := [j1(Q), j1(R)]. This defines
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an LLA homomorphism j; : {(ab) — D. As S = C & (ab), j := jo + j1 defines a linear
homomorphism. We check that it preserves the Lie bracket. Note that as C' is an ideal,
hence for ¢,¢’ € C,u,v € (ab)

[c+u,d +v] = [c,d]+ [e,v] + [u, ] +][u, v].
ec

It follows that j([c + u,¢ + v]) = Jjo([c,c]) + Jol([e,v]) + jo([u,c]) + ji([u,v]) =
[70(c), do(N)] + jo([e,v]) + jo([u, ¢']) + [j1(u), j1(v)] hence by bilinearity it is enough to
check that j([c, P]) = [i(c),4(P)] for all ¢ € C,P € H. We proceed by induction. If
P = qa; (or P =b;) then it follows from the fact that f (resp. g) is a Lie algebra homo-
morphism. If P = [Q, R] for Q, R € H, we have [c, P] = [[¢, Q], R] +[Q, [¢, R]]. As C'is an
ideal, [¢, Q] € C hence by the induction hypothesis on R, j([[c, @], R]) = [i([¢, Q)]), 1 (R)].
By the induction hypothesis (on Q) we have j([c,Q]) = [j(¢),j(Q)] hence in turn
j(lle> @, ) = [, J(Q)), J(R)). Similarly §(Qs e, B])) = [H(@), [i(c),(R)], 50, using
bilinearity and the Jacobi identity backwards:

i(le; Pl) = 3([le, Q) R]) +5([Q, [¢, B]]) = [i(c), [1(Q), (R)]

As j extends j; we have [j(Q),j(R)] = j([Q, R]) = j(P) hence we conclude j([c, P]) =
li(e),3(P)l. o

Remark 4.19. Of course, the converse of Lemma 4.18 does not hold in general: take
A = (a) and B = (b1, be) with b1, by not free (e.g. [by,b2] = 0), then there is no such
amalgam of A and B.

Corollary 4.20. The amalgam constructed in Theorem /.13 is a free amalgam. In partic-
ular for singletons a,b,C with C' an ideal of (Ca) and (Cb) the free amalgam of (Ca)
and (Cb) over C exists. Finally, the following are equivalent:

(1) (Cab) = (Ca) @¢ (Ch)
(2) (a) C is an ideal of (Cab)
(b) {ab) N C = {0}
(c) {ab) = F(X,Y,deg(a), deg(b))

Proof. By Theorem 4.13 and Lemma 4.18, for any such C,a,b an amalgam satisfying
(a), (b), (c) exists and this amalgam is free. (2) implies (1) is Lemma 4.18. Now assume
that (Cab) = (Ca)®c(Cb) and let S be the amalgam of (Ca) and (Cb) over C' constructed
from Theorem 4.13. Then S is also free hence by the uniqueness of the free amalgam we
have S = (Ca) ®¢ (Cb) hence via the isomorphism, (Cab) satisfies (a), (b), (c). O
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Definition 4.21. For all A, B, C subsets of a common c-nilpotent LLA over F, we define

A |®B < (ABC) = (AC) ®¢ (BC)
C

Proposition 4.22. The relation |% satisfies symmetry, invariance, stationarity, and tran-
sitivity. Furthermore, if |® satisfies full existence (for all A, B,C there exists A =¢ A
such that A’ \|/®C B) then it also satisfies monotonicity and base monotonicity, hence
1% is a stationary independence relation in the sense of [{4].

Proof. This follows from [3, Theorem 3.4], with the observation that the proofs of sym-
metry, invariance, stationarity, and transitivity do not use full existence.® 0O

4.4. Stage II - induction on the rank

4.4.1. Malcev sets
Observe the following consequence of Lemma 4.17:

Corollary 4.23. If C <4 (Ca1) < (Caraz) < ... <4 (Cay...ayn) then (Cay...am) =
spang(Cay ... an) for allm <n.

Proof. Let  be in (Cay...an). As {(an) = span(a,), span(a,,) is an LLA so by
Lemma 4.17 there exists A\, € F and y € (Cay...am—1) such that z = y + A\pap,.
By induction hypothesis, there exists A1,..., A\n_1 € F such that y = ¢+ Z?:ll i
hence z = ¢+ Y_* | Nja; € spang(Cay,...,ap). O

Recall from Corollary 4.20: for singletons a,b with C' an ideal of (Ca) and (Cb), we
have a Ji@c b if and only if

(1) C is an ideal of (Cab)
(2) (ab) N C = {0}
(3) (ab) =2 F(X,Y,deg(a),deg(b))

Corollary 4.24. Assume that C is an ideal of (Ca) and (Cb) for singletons a,b. If a \L®C b,
then for all E C C with E < (Ea) and E < (Eb) we have a L®E b.

Proof. If £ < (FEa) and E < (Eb) then a J?E b is equivalent to

(1) E is an ideal of (Fab)

8 Note that what is here called full existence is what was called existence in [3] and the literature at that
time. Existence is nowadays understood to refer to the property A J_,C C for all A, C. Full existence follows

from existence and extension: if A \Lc B and C C B C D then there exists A’ =g¢ A such that A’ \LC D.



C. d’Elbée et al. / Journal of Algebra 662 (2025) 640-701 671

(2) {ab) N E = {0}
(3) (ab) = F(X,Y, deg(a), deg(b))

As E C C only Condition (1) needs to be checked. Let hq,...,h; be the Hall basis,
evaluated in (a,b), with hy = a and hy = b. Then (Eab) = spang(E(h;)1<i<i) and we
prove by induction that E is an ideal of (Eab). For h; = a and hy = b we have, for all
e € E,[e,h1] € F and [e, ho] € E as E is an ideal of (Fa) and (Eb). Then for each k > 3
there exists 4,7 < k such that [h;, h;] = hy. Then by induction we see that, for all e € E,
le, hi) = [[e, hi], hj] + [hi, [e, h;]] € E so we conclude. O

Remark 4.25. For singletons a,b we actually always have E < (Ea) and E < (Eb) iff
E < (Eab).

Definition 4.26. A tuple a = (ay,...,a,) is called a Malcev tuple over an LLA C (or
simply Malcev over C) if a is linearly independent over C and for all i = 1,. .., ¢ we have

spang (CP;((Ca))) = spang (CP;(a)).

Here we write P;(a) for the subtuple of a contained in P;. If A = (Ca) we call a a Malcev
basis of A over C.

Remark 4.27. Note that we always have the inclusion spang(CP;({(Ca))) 2
spang (CP;(a)). Below we list some easy facts.

(1) If a = (a1,...,ay) is Malcev over C then there is a re-indexing of a such that for
somen =k; > ...> k. >1 we have
spanp (C'P;((Ca))) = spang (Cay . . . ag,).

Namely, re-index a so that lev(a;) > lev(a;+1) and apply Corollary 4.23. Then we
also have:

C§]<CG1>§§<CG1GTL>

and hence (Cay ...a;) = spanp(Cay ... q;) foralli =1,...,n. We will now call it an
ordered Malcev basis/tuple.

(2) Tt is easy to see that for a = (ay...a,) with lev(a;) > lev(a;+1), the tuple a is
Malcev over C if and only if (agi1,...,a,) is Malcev over Cay ...ar and a; ... ag is
Malcev over C, for all 1 < k < n.

Proof. For the forward direction, fix 1 < k < n and A = (Cay,...,ar). We prove
that span(AP;((Aak+1,-..,a,)) = span(AP;(agt1,--.,an)). Fix 1 <i < ¢+ 1. From
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(1) we have C' 9 (Ca;) < ... < (Caq,...,a,) hence A = span(Cay,...,a;) and
(Aak41,...,a,) =span(Cay,...,ay,). As a is Malcev over C, it follows that

P,((Aagy1,...,a,)) Cspan(Cay, ..., as)
where 1 < s < n is such that P;(a) = (ay,...,as). If s <k, then
span(AP;({(Aak41,...,a,)) = A
and we conclude since Pj(ak+1,-..,a,) = 0. If s > k then
span(AP;({Aagi1, ..., an)) = span(Aagi1, ... ,as)

and we conclude since (ax+1,...,as) = Pi(agt1,-..,a,). The same sort of argu-
ment yields that aq,...,a; is Malcev over C. The converse is a particular case of
Lemma 4.28 (1) below. O

By (1) if a = (a1, ..., a,) is Malcev over C then
(Cay ...an) =spang(Cay ... ay)

This is regardless of the indexing of the a;.

For any LLA extension B C A there exists an ordered Malcev basis ag, . .., a, such
that A = (B, aq,...,a,) = span(B,ay,...,a,). This is obtained by iteratively taking
bases of the complement of B in P.(A), in P._1(A), etc. Another way of seeing this:
observe that B is an ideal of span(BP.(A)) which is an ideal of span(BP._1(A)),
etc. which is an ideal of span(BP;(A)) = A and a Malcev basis is given by taking
iteratively bases of span(BP;(A)) over span(BPFP;1(A)). For such basis, we have
lev(a;) > lev(a;+1) so we see that a,, is of minimal level among the a}s.

If a tuple a = (a1, ...,a,) is Malcev over C' then it is not necessarily the case that
every subtuple of a is Malcev over C. To see this, consider a Lie algebra with basis
a1, as, as such that [as, as] = a1 and every other bracket [a;, a;] with ¢ < j is trivial.
Then for lev(ay) > lev(az) > lev(as) we have that (a1, as,as) is an ordered Malcev
basis of A = (a1, as, as), over {0} in particular it is Malcev over {0} but ag, ag is not
Malcev over {0}.

Consider the following example: let b be in P; \ P, and B = spang(b). Let a be in
P, \ P; and define the bracket to be trivial on A = span(a,b). We have c=a+b €
Pi\P; and a+b € span(BP,(A)) and lev(a+b) = 1, hence lev(span(BP2(A))/B) = 1.
We have A = (B,a) = (B,c). Here both a and c¢ satisfy (Ba) = span(Ba) and
(Bc) = span(Bc) but only a is Malcev over B.

By the previous point if for some B and a = (ay,...,a,) we have (Baj...a,) =
span(Baj .. .ay) then a is not necessarily Malcev over B.
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(8) If (Ca)®c (Cb) = (C(h;);) = spany (C(h;);) is as in Corollary 4.20, where hy, ..., hy
are (evaluated) Hall polynomials from HS®” where a = lev(a) and 3 = lev(b). Then
Rk, ..., hy is a (ordered) Malcev basis of (Ca) @¢ (Cb) over C, see Proposition 4.29.

Lemma 4.28. Let L be any LLA and let a, b be tuples and C a subalgebra of L.

(1) If a is Malcev over (Cb) and b is Malcev over C, then ab is Malcev over C.
(2) If b is Malcev over C' and ab is Malcev over C, then a is Malcev over Cb.
(3) If a is Malcev over (Cb) and ab is Malcev over C, then b is Malcev over C.

In short, any two of the three Malcev conditions between a,b and C above imply the third.

Proof. For an ease of notation, we say M (x/D) holds if x is Malcev over (D). Recall

(i) M(a/Cb) if and only if a is independent over (Cb) and for any k we have
span({Cb) P, ({Cab)) = span({Cb) Py(a));
(if) M (b/C) if and only if b is independent over C and for any k we have span(C Py, ((Cb))
= span(C Py (b)) and
(iii) M(ab/C) if and only if ab is independent over C' and for any k we have
span(C Py, ((Cab)) = span(C Py (ab)).

Proof of (1): Assume (i) and (i¢) from above hold. We want to establish (¢ii). One easily
checks that ab is still linearly independent over C. For the equality of the spans, consider
x € span(C Py ((Cab)) arbitrary. We can write

r=c+y

for some ¢; € C and y € Py((Cab)). By (i), we know z € span((Cb)Py({Cab))) =
span((Cb) Py(a)), whence

for some A; € F,a; from Py(a) and 8 € (Cb). As P(L) is a subalgebra, observe that
also y — >, Nia; = f — ¢ is in Py(L). Further, as 8,¢; € (Cb), we get that actually
B —c1 € Pp({(Cb)) and by (i7) we infer that 8 — ¢; € span(CPg(b)). Thus, we find ¢; € C
and p; € F such that 8 —c1 = ¢ + >, pib; for by € Pi(b). This yields,

r=p+ Z Aia; = ¢+ e + Z wib; + Z Aia; € span(C Py (ab)),

as desired.

Proof of (2): Now assume (4i) and (¢4) hold. We want to establish (7). To see that
a is linearly independent over (Cb), recall that by (i7) and Remark 4.27 (3), we get



674 C. d’Elbée et al. / Journal of Algebra 662 (2025) 640-701

that (Cb) = span(Cbh) and use that, by (ii7), we know that ab is linearly independent
over C'. Now we need to take care of the equality of spans. To this end, consider = €
span((Ch) P, ({Cab))) arbitrary. Then there are 8 € (Cb) and y € P;((Cab)) such that
x = f +y. By (iii), we get y € span(CPy(ab)), whence y = ¢+ >, Nja; + >, pib;, for
some ¢ € C,a; € Py(a),b; € Pi(b) and A;, p; € F. Thus

and as B+ c+ >, uib; € (Cb), we conclude z € span((Cb)Py(a)), as desired.

Proof of (3): Finally, assume (4) and (#7¢) hold. We need to establish (iz). Clearly, b is
independent over C' by (ii7). Now, as above, pick z € span(C Py ((Cb)) arbitrary. By (i),
we have z € span(C Py (ab)). But by choice we know that x € (Cb) and as (i) yields that
a is linearly independent over (Cb), it is easy to conclude that indeed = € span(C Py (b)),
as desired. O

Proposition 4.29. Let a,b be singletons and let A = (Ca) and B = (Cb) be basic exten-
sions of C. Let S = A®c B and (hy, ..., h;) be an enumeration of the evaluated Hall
monomials in a and b, with hy = a, hs = b, and hz = [a,b]. Then

(1) (hi,...,hx) is a Malcev basis of S over C,
(2) (a,hs, ..., hg) is Malcev over C,

(b, hs, ..., hy) is Malcev over C,

(

Proof. (1) We may assume that lev(h;) > lev(h;4q) for all ¢ = 1,...,k — 1. By
Corollary 4.20 and Lemma 4.17, (hq,...,hg) is a linear basis of S over C. Let
i€ {l,...,c} and let n, < k such that P;(hy,...,ht) = (hn,,.-.,hi). By Theo-
rem 4.13, P;(S) is defined as P;(C) @ P;({a,b)). As {(a,b) = F(X,Y,lev(a),lev(d)),
we have P;({a,b)) = span(hy,, ..., h;) hence span(CP;(S)) = span(Chy,, ... hy), so
(h1,...,hi) is a Malcev basis over C.

(2) Asin (1), we may assume that lev(h;) > lev(h;41) for alli =1,...,k — 1 and that
1 =mn; <...<n. <k are such that P;(hy,...,ht) = (hn,,..., k). It is clear
that b’ = (a, hs, ..., hg) is linearly independent over C. In particular, we still have
P,((Ch')) = P,(C) + P;({(h')), so it is enough to prove that P;((h')) = span(P;(h)).
First, by Theorem 4.13, we have (a,b) = F(X,Y,lev(a),lev(b)). In particular, b ¢ (h')
and from (hi, ..., hx) = span(hq,..., hi) we obtain (k') = span(h’). Then

Pi((R')) = (W) N Py((ha, .., hw))
= span(h’) Nspan(hy,, ..., hy)
= span(P;(h')).
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(3) Same as (2) by symmetry.
(4) As A is a basic extension of C, a is Malcev over C. Using (2) and Lemma 4.28 (2)
we get that (hs, ..., hx) is Malcev over A. The argument for B is symmetric. O

Remark 4.30 (Malcev calculus). Lemma 4.28 can be seen as a list of basic operations for
obtaining new Malcev tuples from old ones. For any tuples a, b, we denote M (a/bC') to
express “a is Malcev over (Cb)”. We have the Malcev triangle:

M(a/Ch) M(b/C)

M(ab/C)

where by Lemma 4.28 every two vertices imply the third. For instance, one easily de-
duces M (a/Cbhg, ..., h;) and M (bhg, ..., hi/Ca) from Proposition 4.29. This “Malcev
calculus” will be heavily used later, in particular in the proof of Theorem 4.47.

4.4.2. Rank of LLA extensions

Recall (Definition 4.12) that, given LLAs B C A, the level lev(A/B) is the maximal
1 < i < ¢+ 1 such that A = span(BP;(A)). Recall that as far as levels of elements
are concerned, the addition is “truncated” in {1,...,c+ 1} in the sense that for i,j €
{1,...,¢+ 1} we have that i + j takes the value ¢ + 1 if the numerical value of ¢ + j is
>c+ 1.

Definition 4.31. Given LLAs B C A with A finite-dimensional over B, we define the rank
of A over B, denoted rk(A/B) to be the pair (v,n) where v = lev(A/B) and n is the
dimension of span(BP,(A)) over span(BP,+1(A)) if v #c+1lorn=0if v =c+1.

We order those pairs in a counter-intuitive way:

n>v or

(n,m) < (v,n) <=
v=pand m<n

Remark 4.32. Some easy facts.

(1) rk(A/B) = (¢ +1,0) if and only if A = B.

(2) Assume that rk(A/B) = (v,n) and B C A. Let aq,...,a; be a Malcev basis of A
over B. Then v = lev(A/B) is the minimum of the levels of a; and n is the number
of elements among a1, ..., a; which are of level v.

(3) Let C € B C A be LLA, then lev(A/B) > lev(A/C). Indeed, for v = lev(A/C) we
have A = span(CP,(A)) hence also A = span(BP,(A)) so we have
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v<max{i <c+1|A=span(BP;(A))} =lev(A/B).

(4) Assume that C C B are LLAs and for some singleton a we have B < (Ba) then
lev((Ba)/C) > lev(B/C) hence rk(B/C) < rk({Ba)/C).

Proof. First, we prove that lev(B/C) > lev({(Ba)/C). Let lev(a) = p and
lev(B/C) = v. If p > v, then a € P,((Ba)) and (Ba) = span(CP,({(Ba)) so
lev({(Ba)/C) = v = lev(B/C). If p < v then (Ba) = span(CP,((Ba)) and
lev((Ba)/C) =p<v=Ilev(B/C). O

(5) For A = (Ca) and B = (Cb) basic extensions of C' we have

(a) tk(A®c B/A) = (lev(b), 1)

(b) rk(A®c B/B) = (lev(a), 1)

(¢) f A®c B = (Da) = (D'b) for some A C D’ < (D'b), B C D < (Da) then
rk(D/B) = rk(D’/A) = (lev(a) + lev(b),1) This follows from Proposition 4.29
4).

4.4.8. Construction of a @-amalgam

In this subsubsection, we describe the induction scheme along which the free amalgam
of a basic extension and an arbitrary extension will be constructed. We are not certain
whether the induction suggested by Baudisch in [3] (at the bottom of p. 944), corresponds
to the one we describe below.”

To define the @-amalgam A@¢ B for a basic extension A of C, we proceed by induction
on rk(B/C). More precisely, we prove the following by induction on rk(B/C):

For all LLAs A, B, C such that A = (Ca) is a basic extension of C
and C' C B, there exists an amalgam S of A and B over C such
that:

(a) there exists H < S containing B such that S = (Ha) is a basic
extension of H and lev(H/B) =lev(a) + lev(B/C)
(b) S=(AB)

We call S a @-amalgam of A and B over C if it satisfies those
conditions, denoted S = A @¢ B.

9 The naive way one would inductively amalgamate a basic extension A = (Ca) of C and an arbitrary

extension B over C would be by writing B = (Cby, ..., b,) where (b1,...b,) is a Malcev basis of B over
C and do an induction on n. However, if D is the amalgam of A and (Cby ...b,_1) over C then there is
no control of the dimension of D over (Cby,...,b,_1), which could be greater than n. The notion of rank

is there to circumvent this problem.



C. d’Elbée et al. / Journal of Algebra 662 (2025) 640-701 677

Note that in the above (and below) we identify A and B with their image in the
amalgam. For instance, condition (a) and (b) above hold in the amalgam S.

We prove (x) by induction on rk(B/C) for the order <.

The base case starts with any A = (Ca) and B = (Cb) with rk(B/C) minimal such
that C C B, i.e. rk(B/C) = (¢+1,0). This means that B = C' and the amalgam S := A
satisfies (%) by considering H = C. Recall that as far as addition of levels is concerned,
c+k =c+1forall k> 1, in particular ¢ + 1 = lev(C/C) = lev(a) + lev(C/C) =
lev(a) + ¢+ 1.

Assume now that for some (v,n) we have that (x) holds for any basic extension
A = (Ca) of C and B extending C with rk(B/C) < (v, n). Fix a basic extension A = (Ca)
of C' and an extension B of C such that rk(B/C) = (v,n). There exists an ordered
Malcev basis by, . ..,bs of B over C so that B = (Cby,...,bs) = span(Cby,...,bs). Then
v =lev(bs). Let u =lev(a). We have 1 < p,v < c+ 1.

Let Ag = A,Cy = C and let Dy = (C,by,...,bs_1) so that B = (Dgbs). Asv = lev(by),
we have that rk(Dg/Cy) is either (v,n — 1) or (v, k) for some v/ > v. It follows that
rk(Do/Cp) < (v,n) so by the induction hypothesis (with A = Ay, B = Dy, C' = Cy), there
exists a @-amalgam A; of A = (Ca) and Dy over Cy, and there exists Cy containing Dy
such that A; = (C1a) and lev(C1/Dg) = lev(a) 4+ lev(Dy/Cop). As Do = (C,b1,...,bs—1)
we have that lev(Dy/Cy) > v (it is equal if n > 1). It follows that lev(Cy/Dg) > p+v > v.

Starting with Ag = A, By = B, Cp = C and Dy = (C,by,...,bs_1), we recursively
construct sequences (A;, B;, Cy, D;)i<¢ for some ¢ < ¢+1 for which C; = Dy or D, = Cy44
and such that the following holds:

e A;y1 is a @-amalgam of A; and D; over C;

e By is a @-amalgam of B; and C;11 over D;

A; = (C;a) is a basic extension of C;, B; = (D;b) is a basic extension of D;

e C;CD; CCiy1 and lev(D;/C;) > i(p+v)+vand lev(Cip1/D;) > (i + 1) (1 + v)

We already constructed Cy,C1, Dg, Ag, A1. Let By = B. We refer to Fig. 1 for an
overall picture of what is happening.

(1) Construction of Biy1, Diy1 from D;, B;, Ciy1,C;. By the recursive construction, we
have that lev(C;11/D;) > (i+1)(p+v) > v. It follows that rk(Ci+1/D;) < (v,n). We
have that B; = (D;bs), so we apply the induction hypothesis () interchanging the
roles of a and b, (i.e. with A = (D;bs), B = C;11 and C = D;) to get a @-amalgam
By of B; = (D;bs) and C;y; over D;, and D;;q extending C;y; such that B,y =
(Djt1bs) is a basic extension of D; 1 with lev(D;11/Ciy1) = lev(bs) +1ev(Cit1/D;).
By recursion, lev(C;11/D;) > (i+1)(pu+v) hence lev(D;11/Ciy1) > (i41)(u+v)+v.

(2) Construction of Aiy1,Cit1 from A;, D;, C;. By recursion, lev(D;/C;) > i(p+v)+v >
v in particular rk(D;/C;) < (v,n). As A; = (C;a), by the induction hypothesis
(%), there exists a @-amalgam A;y; of A; and D; over C; and C;41 containing D;
such that A;y; = (Cit1a) is a basic extension of C;y; such that lev(C;11/D;) =
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At ®c, B

\

Ay = A1 Qc, , Di—1 = (Cra) = Bi—1 @p, , Ct = (Cybs)

T
/

\

Bi—1

Az = As @c, D2 = (Cza)

x T
Cs By = B1 @p, C2 = (Daby)
I —=

Az = Ay Q¢, D1 = (Cza) D>
x 01 By = Bo @p, C1 = (Dib)
A1 = Ao @¢, Do = (Cia) [1 /
x jl Bo = B = (Dob,)
Ag = A = (Coa) 11 /
\ COLC

Fig. 1. Stage II induction scheme.

lev(a) + lev(D;/C;). By recursion lev(D;/C;) > (i + v) + v hence lev(Ci11/D;) >
(i+1)(n+v).

By nilpotence, there exists a smallest ¢ € N such that either Cy = D, or Dy = Cyy1.
Assume C; = Dy, the other case is treated similarly. We have that C; is an ideal of its
basic extensions A; = (Cia) and By = (Cybs). In that case, there is a free amalgam S of
A; and B; over C; by Theorem 4.13 and Corollary 4.20. As C = Cy C C;, the structure
S is an amalgam of A and B over C.

It remains to check that S satisfies (x) relative to A = (Ca) and B over C = Cj,
i.e. that S = A @¢ B. For (x)(a), we prove that there exists H C S containing B such
that S = (Ha) and lev(H/B) = lev(a) + lev(B/C). Let hy, ..., hr be Hall monomials
in a = hy and by = hy with hy = [a,bs] so that S = span(Cy,bs, hy, ..., hs,a) and
let H = (Ct, bs, hy, ..., hg). By Proposition 4.29 (3), bg, hy, ..., hs is a Malcev basis of
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H over C; and H = span(Ct, bs, hg, ..., h3). By Proposition 4.29 (4), hy,...,hs is an
ordered Malcev basis of H over span(Cy,bs). We have that lev(H/(Cybs)) = lev(hs) =
lev(a)+lev(bs) = p+v and lev(bs) = lev(B/C). Note that H = span((Cibs) P, 4., (H)). As
B C (Cibs), it H = span(BP;(H)) then H = span({Ctbs)P;(H)) so i < lev(H/{C}bs)).
It follows that lev(H/B) < lev(H/{Cibs)) = pu + v. Note that B = (Dgybs). To get
lev(H/B) > lev(H/(C4, b)), it is enough to show that H C spang(B,P,1,(H)). Re-
call that H C spang(C,bs, hi, ..., hs). Now, for each ¢ > 1 we have lev(C;/D;_1) >
w~+ v and lev(D;/C;) > p+ v. This implies that there is a basis of C; over Dy in
P,y (H), hence Cy C span(DoP,4,(H)). As hy, ..., hs are all of degree > p + v we
also have span(Cihy,...,h3) C span(DoP,y,(H)). Finally span(Cihg,. .., hs,bs) C
span(Dobs P4, (H)) = span(BP,,(H)). This proves that lev(H/B) = lev(a) +
lev(B/C).

For (x)(b), first note that Dg,a,bs C S hence (AB) C S. Conversely, note that
Co € AC (AB) and Dy C B C (AB). By construction, C;y; C A;41 and by (x)(b),
Aiv1 = (Ai, D;) hence Ciy1 C (A;, D;). Similarly, D;11 C (Ciy1, B;). By induction,
A;, B; C (AB). We conclude S = (A, B,;) = (AB), hence we proved (x)(b).

In turn, we have proved that there exists an @-amalgam of A and B over C.

4.4.4. A ©-amalgam is strong

Theorem 4.33. Let A, B,C be LLAs such that A is a basic extension of C' and B contains
C. Then a ©@-amalgam of A and B over C is a strong amalgam, i.e. AN B = C (in
Aoc B).

Proof. We proceed using the inductive construction of A @¢ B via rk(B/C), by adding
an extra condition in (*), namely the following:

For all LLAs A, B, C such that A = (Ca) is a basic extension of C
and C C B, there exists an amalgam S of A and B over C such
that:

(a) there exists H < S containing B such that S = (Ha) is a basic
extension of H and lev(H/B) = lev(a) + lev(B/C)
(b) S = (AB)

(c) S is a strong amalgam of A and B over C

The base case starts with any A = (Ca) and B = C, the amalgam is S = A which
clearly satisfies (x)(c).
Now applying () in the inductive construction of the @-amalgam, we get:

o A4 is a strong @-amalgam of A; and D; over C;
e By is a strong @-amalgam of B; and C; 1 over D;
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o A; = (C;a) is a basic extension of C;, B; = (D;b) is a basic extension of D;
e C; CD; CCiyq and lev(D;/C;) > i(u+v) + v and lev(Cip1/D;) > (i + 1) (pn + v)

Nl

Again, we refer to Fig. 1 for an overall picture of what is happening.

Let t € N be such that either Cy = D; or Dy = Cyy1. Assume C; = Dy, the other case
is treated similarly. We have that C; is an ideal of its basic extensions A; = (Cia) and
B; = (Cibs) and S = (Cia) ®c¢, (Cibs), in particular S is a strong amalgam of A; and
B; over C;.

We prove that S is a strong amalgam of A and B over C. We identify LLAs with their
image, so every arrow in Fig. 1 is an inclusion. In particular, Ag C A; C ... C A; and
By C B; C...C By. By (%)(¢), A;nD; =C; and B; N C;41 = D;, as those are strongly
amalgamated at each step. Let t € AN B, so x € ﬂ:zo A;NB;. Thenx € A,NB; = C,.
In particular x € C; N By_1 = Dy_1, hence x € D;_1 N Ay = Cy_1. A straightforward
iteration gives that x € C. Hence AN B = C which gives (x)(c). O

4.4.5. A ©-amalgam is free

Theorem 4.34. Let A, B,C' be LLAs such that A is a basic extension of C' and such
that B contains C. Then the ©@-amalgam of A and B over C is a free amalgam, i.e.
AQc B= A®c B. In particular the free amalgam exists.

Proof. We proceed using the inductive construction of A @¢ B via rk(B/C), by adding
an extra condition in (x), namely the following:

For all LLAs A, B, C such that A = (Ca) is a basic extension of C
and C' C B, there exists an amalgam S of A and B over C' such
that:

(a) there exists H < S containing B such that S = (Ha) is a basic

(%) extension of H and lev(H/B) =lev(a) + lev(B/C)

(b) S = (AB)

(c) S is a strong amalgam of A and B over C

(d) for all LLAs L and for all homomorphisms f: A — L and g :
B — L such that f | C'= g | C, there exists a homomorphism
h:S — L extending f and g;

The base case starts with any A = (Ca) and B = C, the amalgam is S = A which
clearly satisfies (x).

We assume that f: A — L and g : B — L are LLA homomorphisms to an LLA L
such that f | C =g | C. We denote fo = f and go = g.

At the first stage of the induction, we have rk(Dy/Cy) < (v,n) by Remark 4.32 and
Ay = Ao @¢, Do hence applying the induction hypothesis (x)(d) with fo and go [ Do we
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get an LLA homomorphism f; : A; — L which extends fy and go | Do with f; | Cy =
go I Co=f 1 Co.

At the second stage of the induction, we have rk(C}/Dg) < (v,n) and By = By@p,C1.
As fi extends gog [ Dy, we have fi | Dy = go | Do hence applying the induction
hypothesis (x)(d) with go and f; | C; we get an LLA homomorphism g; : By — L which
extends gp and f [ Cy with g1 [ Do =go [ Do = f | Co.

Now applying () in the inductive construction of the @-amalgam, we get:

e A;y; is a strong @-amalgam of A; and D; over C;

e By is a strong @-amalgam of B; and C; 41 over D;

o A; = {(C;a) is a basic extension of C;, B; = (D;b) is a basic extension of D;

o C; CD; CCiyqrandlev(D;/C;) > i(p+v) +vand lev(Cip1/D;) > (i + 1) (1 + v)

. fi+1 : Ai+1 — L such that fi+1 extends fz : Ai — L and gi [ D; with fi+1 F Cl =
filCi=g | C;

e gitv1: Biy1 — L extends g; : B; — L and fiyq [ Cip1 with giyq [ Dy = gi [ Di =
Jiv1 I D;

We refer to Fig. 1 for an overall picture of what is happening.

Let ¢t € N such that either C; = D; or Dy = Ciy1. Assume C; = Dy, the other
case is treated similarly. We have that C is an ideal of its basic extensions A; = (C:a)
and B; = (Cibs) and S = A; ®¢, B. As fy + Ay — L and ¢; : By — L are such
that f; | C; = g¢ | Cy, by Corollary 4.20 there exists h : S — L which extends f;
and g; and such that h [ C; = f | C; = g¢ | Cs. As fix1 | D; = g; | D; and
gi+1 | Cit1 = fix1 [ Ciy1 we easily deduce from C = Cy C Dy C Cy C Dy C ... that
folC =90 C=h]C. Also as f;+1 extends f; for all i and fo = f, we have that
h extends f : A — L. Similarly, h extends go = g : B — L, so S satisfies condition

(%)(d). O
4.5. Stage IIT - from one to many

We now describe the last stage of the construction of the amalgam.

Theorem 4.35. Let A, B,C with C C A and C C B. Then there exists a free amalgam
A ®c B.

Proof. By Theorem 4.34, we know that a free amalgam exists if one of the extensions is
basic. Assume now that A, B, C are arbitrary LLA, we inductively construct an amalgam
S of Aand B over C. Let aq, ..., a, be an ordered Malcev basis of A over C'. In particular,
for A, =(Cay...a;),i=1...n, we have

C<94,49...94,=4
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Spn=A®a, , Sn-1
A=A, Spn=An_1®a,_, Sn—1

T T

Sa = A2 ®a, S1

L

Az = (Cajaz) S1=A1 ®c B
T

A, = (Cay) B
.
C

Fig. 2. Stage III induction scheme.

and A;41 is a basic extension of A;. We define a chain S; C ... C S, such that S, is the
required amalgam. Start by taking S; = A; ®¢ B. Then, as A, is a basic extension of
Ai, take Sy = Ay ®4, S1 and recursively if S; is constructed as S; = A, ®4,_, Si—1, we
have A;y; is a basic extension of A; hence define S; 11 = A;y1 ®a4, S;, until S := 5, =
A®a4, _, Sn—1. We refer to Fig. 2 for this construction. We check that S is a free amalgam
of A and B over C. First, we check that S = (AB). As S =5, = A®a4,,_, Sn—1, we have
Sn = (A, Sp—1) and more generally, S; = (A;S;_1), we immediately get S = (AS;_1)
and iteratively S = (AB). We now prove that S is a strong amalgam of A and B over
C.As S =A®a, , Sp—1 we have ANS,_1 = A,_1. Also, BC S C ... C S,, so
we have ANB C AnNS,_1 C A,_1 N S,_1 and iteratively, AN B C A; N.S; until
ANB C A;NB = C. It remains to check that S satisfies the freeness property. Let
f:A— Land g: B — L be a homomorphism such that f [ C = g [ C. Consider
fi=fl1A; As fi: Ay > Land g: B— Lagreeon C C A; N B we use S; = A1 ®c B
to get a map ji : S1 — L that extends both f; and g. Then f5 and j; agree on A; hence
as Sy = As ®4, 51, there exists a homomorphism j; : So — L extending fo and ji. A
straightforward iteration yields ji, ..., j, such that j; : S; — L extends both f; and j;_1
and agrees on A;_;. In the end j, extends both f and g. O

4.6. Conclusion

We refer to Subsection 2.1 for generalities on Fraissé theory. Recall the following
definition.

Definition 4.36. Let p be a prime number.
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(1) Let L. be the class of finitely generated Lazard Lie algebras over F of nilpotency
class < ¢, in the language .2, F.

(2) Let L., be the class of finite Lazard Lie algebras over I, of nilpotency class < ¢, in
the language .Z..

(3) We write G, for the class of finite Lazard groups of exponent p and of nilpotency
class < ¢ in the language of groups expanded by predicates for the Lazard series.

By Theorem 4.35, the class L, has the AP. Note that JEP follows from AP, since 0
is a common substructure of all structures in the class. As HP is immediate we conclude
the following.

Theorem 4.37. For any ¢ € NT and field F, the class L. is a Fraissé class, with Fraissé
limit denoted L. .

Remark 4.38. Assume that A is a finite LLA, generated by say ai,...,a,. Let a; =
lev(a;). By the universal property, there exists a surjection F(X1,..., Xp,01,...,0,) —
A. Using Remark 4.8, the dimension of A is bounded by

EC: % Z,u(d)nk/d.
k=1"" dlk

It follows that when F is a finite field, L. r is uniformly locally finite.

As L., is a particular case of L.y and using the Lazard correspondence for ¢ < p
(see Subsection 2.3) we get the following:

Corollary 4.39. When F is a finite field, the theory Th(L.x) is w-categorical with quan-
tifier elimination. Likewise, for ¢ < p, the class G.p is a Fraissé class and, letting G, p
denote the Fraissé limit, the theory Th(Ge. ) is w-categorical with quantifier-elimination.

We will write T, g for the theory Th(L, ) when F is a finite field or T, in the special
case that F =TF,.

Corollary 4.40. In a monster model of T, ,,, the relation |% is a stationary independence
relation in the sense of Tent-Ziegler [/4].

Proof. Apply Proposition 4.22. 0O
As the Fraissé limit of L. p, it is standard that L., is L. p-saturated: for any finite
A C L., (substructure as an LLA) and for any finite LLA B extending A there is a

copy of B in L and extending A.

Proposition 4.41. In L = L. ,, the following holds.
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(1) a € Piy; if and only if there exists b € P; and ¢ € Pj such that a = [b, c].

(2) Forn<c—1, ifa € P,\ P,y1 then there exists b € L such that [a,b] € Ppi1\ Pry2-

(8) (Pn)i<n<ct1 s the lower central series of L, i.e. Py = L and P,41 = [P,,L] for all
1<n<ec.

(4) The lower central series and the upper central series of L coincide.

Proof. (1) Let a € Pi;;. Let A = (a). Then as [a,a] = 0 A is the abelian LLA on
spang (a) with P, = P, = ... = P;;; = A. Note that anything can happen for
Piyjt1, Piyjt2,... etc, it could be that Pyj.1 = A or that Pii;41 = {0}, depend-
ing on the type of a. Let b, ¢ be linearly independent over a and define a Lie algebra
structure on B := span(a, b, c¢) by the following: [a,b] = [a,c] = 0 and [b,¢] = a. We
check the Jacobi identity:

0= [a,a} = [a, [bv C]]
= [[a, b], ] + [b, [a, c]]
=040

The bracket thus defined is a Lie algebra which is often referred to as the Heisenberg
algebra. To define the predicates, assume i < j. Define P, = P, = ... = P, = B,
P11 = span(c,a) so that b € P; \ Pit1, and similarly Pj41 = span(a) = ... = P4,
so that b is of degree ¢ and c is of degree j. Define Py i1, Piyjy2,... as in A. The Lie
bracket defined above is compatible with the Lazard predicates because b € P;, c € P;
and a € P;y;. By L. ,-saturation, there exists a copy of B in L hence there is some
b',c € L such that a = [V/, ] and b’ € P;(L), ¢ € P;(L).

(2) Consider A = (a) then Py(A) =...=P,(A) = Aand P,41(4) =... = P.(4) =
{0}. Let b, ¢ be independent elements and consider B = span(a, b, ¢). Define the bracket:
[a,b] = ¢, [a,c] = [b,c] = 0. One Jacobi identity to check is enough:

0= [(l7 0] = [a7 [b> CH
= [[a,b], c] + [b, [a, ]]
= [c, C] +0=0.

It remains to define the predicates: the only nontrivial relation is [a, b] = ¢ hence we may
put b € P\ P> and ¢ € P41 \ Py since a € P, \ P41 (which means: P, = B, P, =
span(a,c) = P; = ... P, then P,41 = span(c), Pyy2 = {0} = ... = P.). This defines an
LLA structure on B which extends the LLA A, hence we conclude by L. ,-saturation.
(3) Immediate from (1).
(4) Recall that the upper central series is defined by Z; = Z(L) and

ZH_l:{aEL\[a,b]eZi foralleL}.
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We show that Z,, = P._,,+1. As Z; = P,, by induction, we assume that P._,, 12 = Z,,_1.
First if a € P._,41, then for all b, [a,b] € P._j42 = Z,—1 hence by definition a € Z,.
Conversely assume that a € Z,, and a ¢ P._,11. Using (2) above, there exists b € L
such that [a,b] ¢ P._pt2 = Zp—1, which contradicts a € Z,. O

Let (L,+,0,[-,],(Pi)i<i<ct+1) be any LLA which is a model of T,,. Then us-
ing the Lazard correspondence, there exist O-definable functions -,~' such that
(L,-,7',1,(Pi)1<i<et1) is a c-nilpotent group with a Lazard series (P;(L))1<i<c+1 and
(L,+,0,[,"]) and (L,-,7!) are interdefinable. Thus, when considering models of T,
we implicitly consider it to be equipped with both a Lie algebra and a group structure,
L=(L,+,0,[,], '771 1 (pi)1§i§c+1)'

Corollary 4.42. Let TP be the theory of G in the language of groups {~,_1 , 1}. Then
Ty is the model-companion of the theory of c-nilpotent groups of exponent p. Similarly
if ng;f is the reduct of Ly to the language of Lie rings {+,—,0,[-,-]}, then ng;e is the

model-companion of the theory of c-nilpotent Lie algebras over Fp,.

Proof. We first check that ng;,e is model-complete. It is enough to prove that the
predicates P; are both existentially and universally definable in {4, —,0,[-,:]}. Using
Proposition 4.41 (3), (4), the following are equivalent:

(1) » € Py;
ST
(3> Vyh...,yc—n+1[y1,...7yc_n+17x] =0.

This gives that ng;e is model-complete. It remains to check that ngli,e is a companion of
the theory of c-nilpotent Lie algebras over F,,. To see this, observe that any c-nilpotent Lie
algebra may be equipped with predicates for a Lazard series (for instance, by interpreting
the predicates to coincide with the lower central series) to get an LLA, which may then be
embedded in a model of Tt , by standard arguments. Then by forgetting the predicates,
we get the result. Using the Lazard correspondence, the same transfers to Tg)P. O

Remark 4.43 (An explicit axiomatization of Ty." ). In [38], Saracino and Woods give

P
explicit axioms for the model companion 7" of the theory of 2-nilpotent groups of
exponent m € N. By uniqueness of the model companion we conclude that T? = T. 2g)rpp .
In particular, their axiomatization of 7™, then, entails that the theory T3 may be

axiomatized as follows:
e the center Z is infinite and equals the set of commutators;
o for each ai,...,a, Fp-linearly independent over Z, for each ci,...,c, € Z there

exists b such that [a1,b] = c1,...,[an,b] = cx.

Corollary 4.44. For ¢ > 4 and ¢ < p, Ly, is definable in L .
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Proof. Assume ¢ > 4 and let k = [§] be the floor of ¢/2. As ¢ > 4 we have k > 2.
Then 2k is either ¢ or ¢ — 1 s0 P, # 0. Also, 3k = 2k+k >c—1+k >c+1
so that [Py, Pog] = [Pak, Pax] = 0. Now for H = P, and K = Puj, we conclude that
H is a Lie algebra which is nilpotent of class 2 with center contained in K. We equip
H with the Lazard series @1 = H,Q2 = K,(Q3 = 0. We prove that (H, (Qi)i<i<3) is
existentially closed in the class of 2-nilpotent LLAs. Let (A4, (Q;)1<i<3) be a 2-nilpotent
LLA extending (H, (Q;)1<i<3). We define a Lazard series of length ¢ on A: set P;(A) =
.=Py(A) =Q1(A) =Aand P11(A) =... = P.(A) = Q2(A) and P.y1(A) = 0. Then
(A, (P)1<i<c+1) is an LLA extension of L. ,. It is clear that any existential formula
Jzo(z) in (A, (Qi)1<i<s) with parameters in H can be translated into an equivalent
statement (3z € Py)¢(z) in {4+, —,0, [, ], (P})1<i<et1} which will be true in L., and be
translated back in {4, —,0, [, ], (Q:)1<i<3} so that H F 3x¢(x). As the 2-nilpotent LLA
that we defined is clearly Ng-categorical and every 2-nilpotent LLA embeds into it, we
must have that it is Ly ,. O

Remark 4.45. The same method should yield that L,, , is definable in L., for ¢ suffi-
ciently larger than n.

Question 4.46. Is L, ,, definable/interpretable in Lg ,,?
4.7. An extra result on Malcev sets and free amalgamation

In the following proof, we use that |¥ satisfies transitivity and monotonicity, hence
it uses Corollary 4.40 (for monotonicity). Note that we believe that a direct proof exists
without using monotonicity, via modifying (x*)(e) and by an induction showing that
constructing the free amalgam of a and b over C' automatically yields a free amalgam of
a and b over E (under the assumptions below).

Theorem 4.47. Let A = (Ca) and B = (Cby,...,bs). Let E C C. Assume that

e a is Malcev over C and E
o (by...bs) is Malcev over C and E.

Ifa sz’cbl...bs then a \|§’Eb1...bs.

Proof. We prove the theorem by re-writing the induction in stage II with extra as-
sumptions at each step. We refer to Fig. 1 for a picture of the induction scheme. By
Theorem 4.34 we know that © = ®. We assume that at each stage of the recursion, the
®-amalgam satisfies the following property:
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For all LLAs A, B, C such that A = (Ca) is a basic extension of
C and C C B, there exists an amalgam S = A ®¢ B of A and B
over C' such that:

for all E C C, if B = (Cby,...,bs) where b = (by...bs) is
ordered Malcev over both C' and E, and A = (Ca) where a is
Malcev over C' and FE (i.e. C 9 (Ca), E < (Ea)), there exists
(xx) a tuple v such that

(a) (a,b,v)is a Malcev basis of S over C and lev(v) = lev(a)+
lev(b).
(b) (a,b,v) is Malcev over E.
(c) vis Malcev over B and (ED)
(d) a is Malcev over (Bv) and (Ebv)
)

(e) a [Z,0

Observe first that, assuming (*x)(a), we may consider H = (Bv) which is an ideal of
S satisfying S = (Ha) and lev(H/B) = lev(v) = lev(a) + lev(B/C). This gives (x)(a)
from the previous inductive constructions and hence we will use the induction scheme
as above.

We assume that by,...,bs is an ordered Malcev basis of B over C which is Malcev
over E C C. In particular, by Remark 4.27 (2) by,...,bs—1 is Malcev over C' and FE
and by is Malcev over Cb;y ...bs_1 and Eby...bs_1. Let S = A®c B be the @-amalgam
constructed above. We apply the induction hypothesis at each stage of the construction.
Let Eg = E,Fy = (Eby...bs_1).

At the first stage of the construction, we have that a is Malcev over C' = Cy and
over £ = Ey, and by,...,bs_1 is a Malcev basis of Dy over Cy and Malcev over Ey. As
rk(Dy/C) < (v,n), by the induction hypothesis, there exists a tuple uy such that

o (a,b1,...,bs_1,u1) is a Malcev basis of A1 = Ay ®¢, Doy over Cy

o uy is Malcev over Dy and over Fy = (Egby ...bs—1)

o a is Malcev over C1 = (Douq) and over Eq := (Egby ... bs_q1u1) = (Fouq)
* a J—(?E bl . .bs_l, ie. a \|/®Eo FO

Set C; = (Dguq). Then we have A; = (Cya) and C7 < A;.

At the second stage of the construction, we have C; = span(Dgu;). We consider
Fy C Dgy. We have that bg is Malcev over Dy and over Fjy and u; Malcev over Dy and
Fy. As 1k(Cy/Dg) < (v,n), by induction hypothesis, there exists a tuple v, such that

o (bs,u1,v1) is a Malcev basis of By = By ®p, C1 over Dy
o vy is Malcev over C; and over Ey = (Fyuy)
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e by is Malcev over Dy = (Cyuv1) and Fy := (Ejv1)
. ®
b 12, B

Set Dy = (Cyv1) so that By = (D1bs) and Dy < Bj.

Construction of Eiy1,u;11 from F; v, F;.

Suppose that we have already constructed F;, F;, v; such that v; is a Malcev basis of
D; over C; and v; is Malcev over E;. We also have that a is Malcev over C; and over F;.
By induction, there exists a tuple u;11 such that

e (a,vi,u;y1) is a Malcev basis of A;41 = A4; ®¢, D; over C;
o u;y1 is Malcev D; and over F;
e a is Malcev over C¢+1 = <Diui+1> and over Ei+1 = <Fiui+1>

e a JLX)EL Fz

Set Cit1 = (Djuit1) so that A;q = (Cip1a) and Cipg < A4

Construction of Fiy1,viy1 from E;11,u;41, F;.

Suppose that we have already constructed F;i1,u;4+1, F; such that u; 1 is a Malcev
basis of C;41 over D; and u;y1 is Malcev over F;. We also have that bs is Malcev over
D; and over F;. By induction, there exists a tuple v;41 such that

o (bs,uit1,vi41) is a Malcev basis of B;11 = B; ®p, Ci+1 over D;
e v;41 is Malcev over C; 41 and over E; 4

e by is Malcev over D; 11 = (Cyv;41) and over Fj i1 := (E;v;41)

o by J?Fi Eit1

Set D;y1 = (Ci11v;41) so that B;y1 = (D;y1bs) and D;y1 < Bjiq.

As the rank drops at each stage there exists ¢t such that Cy = D, or Dy = Cy11. Let
us assume the former, the other case is treated similarly.

If C; = Dy, we have that v; = (), whence E; = F; and C; is an ideal of both
(Cra) and (Cibs) and S is given by (Cia) ®¢, (Cibs). Now let uyr1 be such that
S = (Ciabsu 1) as in Proposition 4.29, i.e. such that (a,bs,us11) = (h1,..., k). Let
V= UVT ... U1 U1 U 1. We need to check that S satisfies (#+) with the tuple v.
Recall that £ = Ey and C = Cj.

We prove (a). Let vg = (b1,...,bs—1). By construction we have C; = (Cvouvy ...
vi—1u;) and D; = (Cvpuqvg ... u;v;). We also have that u;4q is Malcev over D; and
viy1 is Malcev over C;11. We conclude that u;yq is Malcev over Cvguiv; ... u;v; and
vi+1 18 Malcev over Cuguivy ... vui41. As vg is Malcev over C and uy is Malcev over
Cvg we have by Lemma 4.28 (1) that vou; is Malcev over C. As vy is Malcev over
Cvouy we have by Lemma 4.28(1) that vouqv; is Malcev over C'. An easy iteration using
Lemma 4.28(1) yields that vouivy ... vi—1u; is Malcev over C. Then the last amalgam
yields absu;y1 is Malcev over Cuyg ... us—1vi—1us hence a last use of Lemma 4.28(1)
yields that absvg . .. vi—1ugusr1 = aby ... bsv is Malcev over C. The same argument yields
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that (b) also holds. Concerning the equality in (a), first, for ¢ < ¢ we have lev(u;) >
lev(a) + lev(b) and lev(v;) > lev(a) + lev(d). Also, [a,bs] € ust1 and is the element of
lowest level in w41, whence lev(v) = lev(a) + lev(b).

We check (c). First, a is Malcev over (Cybsusi1) = (Cobsvouivy . .. uptizr1). Asb = vobs
and v = wjvy ... ugupr1, we get that a is Malcev over Cbu. As (a,b,v) is Malcev over
C, by Lemma 4.28(3), we have bv is Malcev over C. As bv is Malcev over C and b is
Malcev over C' we conclude by Lemma 4.28(2) that v is Malcev over (Cb) = B. A similar
argument yields that v is also Malcev over (Eb).

We check (d). By Proposition 4.29 (1) and (3), we have that absu;y; is Malcev over
Cy and bsuzyq is Malcev over Ct, hence by Lemma 4.28 (2) we get that a is Malcev over
(Crbsut1). As Cy = (Cuguqvy . .. vi—1uz), we have (Crbsur1) = (Cbv) hence a is Malcev
over Cbv.

As for (e), working in S, we assume that a JE? bs. Then, a is Malcev over C} and
over F; and b, is Malcev over D; = C; and over Ft FE;. In other words, F; is an ideal
of (Eya) and (E;bs), so, by Lemma 4.24, we have a \|/®Et b. We also have by construction
that by \L E; 1anda L® Fiforalli=0,...,t—1. From a J/®Et bs and b, J/®Ft_1 E
we get a J?Ft—l bs by trans1t1v1ty, symmetry, and monotonicity (Proposition 4.22). As
a J?E,_l Fi_1, we get a J?Ef_l bs by transitivity and monotonicity. A direct induction
yields a LX’FO bs. As Fy = (E’b1 ...bs_1) and a JLX)E Eb;...bs_1, we use transitivity to
conclude a \|/®E bi...bs. O

The following will be crucial in order to prove that the theory of the generic LLA is
NSOPy.

Theorem 4.48. Assume that a = (a1,...,a,), b = (b1,...,by) are both Malcev over C
and over some sub-LLA E of C. If a \|/®C b, then a \|/®E b

Proof. We assume that a;...a, is an ordered Malcev basis of B over C, so by Re-
mark 4.27 (2), agt1,-..,an is Malcev over Cay ...a; and Fay...a, forallk=1...n
Using Theorem 4.47 at the first stage of Fig. 2, we have that a; LX) b. At the Second

stage, we use again Theorem 4.47 where (Ea;) plays the role of E to get as J/ >

Iterating, we get ay, J/® bfor all k =1...n. Using transitivity of | ( Pr0p031—

(Eay...akp_1)

tion 4.22), we conclude ajas ... ag \|/®E bforall k=1...n hence a \|/®E b. O
5. Neostability properties of c-nilpotent groups and Lie algebras

In this section, we analyze the model-theoretic properties of the theories of Fraissé
limits of LLAs over a finite field and, via the Lazard correspondence, deduce parallel
classification results for the associated groups. For the entirety of the section, we will fix
a finite field F, a natural number ¢, and a prime number p. We will denote the monster
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model of T, g by M.F and we will write M., for M,y when F = I,. We begin with
some preliminary observations on definability in these theories.

5.1. Definability

5.1.1. Flags
We define Zag . F by

Lhag,eF = {0, 4+, —, (Pi)i<i<e+1, (A)aeF }-

When F = F,, we may omit the scalar multiplication functions from the language.

Let Kgagr denote all finite dimensional F-vector spaces V' viewed as Zhag cF-
structures in which the A- are interpreted as the map x — A -z and the P;(V)s are
subspaces of V satisfying

V=P(V)DP(V)D...2 P41 (V)=0.
The following observation is easy.

Lemma 5.1. Fiz ¢ > 1.

(1) The class Kaag .7 is a Fraissé class.
(2) For finite F, the theory Tqag o F of the Fraissé limit is Ro-categorical, w-stable, and
has elimination of quantifiers.

Proof. (1) To check that Kqag . F is a Fraissé class, we note that the hereditary property
is easy and joint embedding follows from the amalgamation property since the trivial
subspace is a subspace of all structures in Kg,e . r. If A, B,C are structures in Kq,g . F
with A C B,C and BNC = A, then we can define an amalgam D by taking D to be the
F-vector space which is the direct sum of B and C over A interpreting P;(D) to be the
span of P;(B) U P;(C) for all 1 <i < ¢+ 1. This proves that K., .7 is a Fraissé class.

(2) Quantifier elimination and Ng-categoricity follow from (1) and the fact that
Kfag e r is uniformly locally finite: a structure in Kq,, . 5 generated by n elements has
cardinality at most |F|™. Then w-stability follows easily by quantifier elimination. Over
a countable model V', there are at most Ny non-algebraic 1-types p(x) which assert
x € P;\ P41, determined by specifying the coset x + P;(V) = v + P;(V) or asserting
that « + P;j(V) #v+ P;(V) for all v € V and i < j < ¢+ 1. Thus there are at most Ny
many types over any countable set. O

Recall that L., defined in Theorem 4.37, is the Fraissé limit of L., the class of
c-nilpotent LLAs over F in the language £ r, which properly contains Zg.s -

Lemma 5.2. The reduct of L.y to the language Lyag cF is the Fraissé limit of Kpag o -
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Proof. By [35, Lemma 2.12], we must show that if A, B € Kgag . and 7: A — B is an
Liag,c, F-embedding, then, if C' = (A) is a c-nilpotent Lie algebra over F generated by A,
then there is some D = (B) generated by B and an LLA embedding 7 : C' — D extending
. Write the vector space B as the direct sum of 7(A)® E. Given C, define a vector space
D = F@FE extending m(A) @ E so that F' D w(A) has the same dimension as C' and define
7 : C'— D to be the vector space embedding taking C to F' extending 7. Define a bracket
on F by pushing forward the structure from C, i.e. defining [w(c), 7w(¢')] = 7([¢, ¢']) for
all ¢,¢’ € C. Then define [d,e] = 0 when d € D and e € E, i.e. we give E the structure
of an abelian Lie algebra and then D is the abelian direct sum of the Lie algebras F' and
E. 1t is clear that D is an LLA and 7 : C'— D, then, is an embedding of LLAs. O

5.1.2. Algebraic closure
Lemma 5.3. In T,y we have acl(A) = dcl(A) = (A) for all sets A C M, .

Proof. Pick ¢ € M.f \ (4). We let By = (¢, A) and inductively pick B; such that
B; =4 By and (B<;) = B; ®4 (B«;) be the amalgam over A. For each i < w, we can
pick some isomorphism o; : By — B; and define ¢; = 0;(c¢). By quantifier-elimination,
we have ¢; =4 c for all 4, and, since each B; is freely amalgamated with (B;) over A,
we get B; N B; = (A) for all i # j. Therefore ¢; # ¢; for all ¢ # j which shows ¢ ¢ acl(A).
Since (A) C dcl(A) C acl(A) always holds, the conclusion follows. O

5.2. SOP3

In this section, we will prove that the theories T, g have SOP3, when ¢ > 3. Note that
this is a marked jump in complexity from the 2-nilpotent case analyzed in Section 3,
though we will show in the next subsection that T y is NSOP, for all c.

Definition 5.4. Suppose n > 3. We say a theory T" has SOP,, (n-strong order property), if
there is some type p(z,y) and an indiscernible sequence (a;);<,, satisfying the following:

o (a5,a5) Fp <= i<j.
o p(xo,x1)Up(z1,22) U. .. Up(@p_2,2n—1) Up(xn_1,x0) is inconsistent.

We say that T is NSOP,, if it does not have SOP,,.

Remark 5.5. If T" is NSOP,, then T is NSOP,, ;1. Indeed if T is NSOP,,, then for any
indiscernible sequence (a;);<,, there are ¢i, ..., ¢, such that ¢;c;11 = aga; for i < n and
cnc1 = apar. Then cico = aga; = agas hence there exists Cs such that c1C3¢2 = apaiag
and ¢y, €3,C2,...,Cn witness NSOP,, 1.

The following is [41, Fact 1.3]. Note that the original third condition there of
{e(x;y),¥(z;y)} being contradictory, is superfluous, whence we avoid it below.
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Fact 5.6. [41, Fact 1.3] The theory T has SOPj if and only if there are formulas p(x;y)
and ¥ (z;y), as well as an indiscernible sequence (a;);<. satisfying the following:

e For all k < w the set {p(z;a;) 11 < k} U{(x;a;) : i > k} is consistent.
o For all i < j the set {1)(z;a;), ¢(z;a;)} is inconsistent.

Lemma 5.7. Let F be a field. Suppose V and W are F-vector spaces and [-,-]o : V2 — W
is an alternating bilinear map. Define a map [-,-] : (V @ W)? — (V& W) by

[('Ua w)v (Ula w/)] = (07 [Ua U/]O)

for allv,v' € V, w,w' € W. Then [-,:] gives V & W the structure of a 2-nilpotent Lie
algebra over FF.

Proof. Clearly [, ] is an alternating bilinear map since [-, ]y is. Moreover,

[z, [y, 2]l = 0

for all x,y,z € V @& W so the Jacobi identity is trivially satisfied and the resulting Lie
algebra is 2-nilpotent. O

Theorem 5.8. Assume ¢ > 3. The theory T, 7 has SOPs.

Proof. It suffices to show that 15  has SOP3, since the 3-nilpotent LLA V' we construct
below may also be regarded as a c-nilpotent LLA for any ¢ > 3 with the interpretation
P;(V) =0 for all ¢ > 3, and hence may be embedded into My as well.

Let V be an F-vector space with basis X = {a;,a},b;,0},d; j : i < j < w}. Define an

alternating bilinear map [-,-] : V2 — V by [a},b;] = d; ; for i < j and [z,y] = 0 for all
z,y € X such that {z,y} # {al,b;} for all i < j. If we define Vy = (a;,a}, b;,0; : i < w)
and V; = (d; j : i < j < w), we have V = V& V; and we may view the map [-,-] : V2 =V

as a map induced from the alternating bilinear map [-,-Jo : ViZ — V4 by [a}, bjlo = d;; for
i < jand [z,y]o = 0 for {z,y} # {a],b;} for all i < j, by Lemma 5.7. Therefore (V,[-,])
is a 2-nilpotent Lie algebra. We give V a flag structure by interpreting P, ..., Py by

P1(V) =V D PQ(V) = <a;,b;,di7j << OJ> D) Pg(V) = <di7j << OJ>,
and Py(V) = 0. It is easy to check [P;(V'), P;(V)] C P;y;(V) for all 7, 5. Thus, we may
regard V as a substructure of M3 . Let ¢; = (a;, a;, b;, ;) for all i < w. It is immediate
from the quantifier elimination that I = (¢;);<. is an indiscernible sequence.
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We will define two formulas o(x;y,y', 2, 2') = [z, 2] = 2’ and ¥(x,y,v', 2,2") = [z,y] =
y'. We will show that ¢, 1, and I witness SOPs3.
Claim 1: For all £ < w,

{o(z;c) i <kPU{P(x5¢) 2§ > K}

is consistent.
Proof of Claim: Let W = (W, [-,-], W1, ..., Wy) be the substructure generated by

{bi,bgiigk}U{a]‘,a;— 13> k}

Note that, by the construction of V; W is just the span of these vectors together with a
trivial Lie bracket (i.e. [z,y] = 0 for all z,y € W).

Let W, be an F-vector space spanned by {b; : i < k}U{a,; : j > k}U{c.} where ¢, is a
new basis element. Let W... be the F-vector space spanned by {t} : i < k}U{a}; : j > k}.
Define an alternating bilinear map [, -] : W, — W, by

[cx, i) = 0 fori <k
lew,aile = a fori >k
[y, = 0 forz,ye{b:i<k}U{a;:i>k}

Form W = W, ® W, and let [:] be the Lie algebra induced by [, -], via application of
Lemma 5.7. Note that W may be naturally viewed as an extension of W, with the flag
defined by P, (W) = W and P;(W) = Py(W) for i = 2,3,4. By quantifier elimination,
we may embed W into M F, so we may likewise assume W is a substructure of Ms .

By construction, we have

e E /\ [2,0;] =0} | A (/\[x,ai] = a§> and thus

i<k i>k
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e E{o(mici) i <k U{Y(zi¢5) : j >k},

so this set of formulas is consistent. O
Now to establish SOPg3, we have to prove the following:
Claim 2: If i < j,

{¥(x; ), 0(5¢5)}

is inconsistent.
Proof of Claim: Suppose towards contradiction that there is some d realizing these
two formulas, i.e. some d with [d, a;] = a and [d, b;] = ). Then we recall

di,j = [a/ivbj] = [[dv ai]vbj]'

Applying the Jacobi identity to the expression on the right yields

dij = [[d, ai], bj]
= —[bj, [d, ail]
= —([[bj, d], ;] + [d, [bj, ai]])
= —([-b};,a;] +0)
=0
where the last two lines follow from [a;, b;] = [a;,b}] = 0. Since d; ; # 0, this yields a

contradiction, so we conclude this pair of formulas is inconsistent. O

If dE {¢Y(x,ci), p(x,cj)} for i < j, then
dij = [a;’bj} = Hdr ai]rbj]

= Hdv bj]v ai] + [d7 [ai7 b]“

= [b;» ai] + [{1’70]

=0+0=0.

We have proved that ¢, 1, and I witness the two-formula version of SOP3, completing
the proof. O

5.8. NSOP,

In this section, we argue that the theory 7.y is NSOP4. To begin, we will establish
two general model-theoretic lemmas. Their statements concern an arbitrary complete
theory T. Recall that if M E T, then coheir independence a J_/;/I b means tp(a/Mb) is
finitely satisfiable in M and heir independence a J/}]Q b means b \de a. The following is
certainly well-known but, for lack of a precise reference, we give a proof.
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Lemma 5.9. Suppose I = (a;)i<., s an indiscernible sequence. Then there is a model M
such that a; JfM a<i for all i < w.

Proof. Expand the monster model to have Skolem functions and denote the resulting
expansion MS¥, By Ramsey and compactness, we can extract an LS-indiscernible se-
quence I’ from I and then stretch I’ so that I’ = (a});<w+4w. Let M = dclpsk(a’,). Now

!

b0y, foralli < w. Any formulain tpy (al, ...al,;_/Ma[, ;)

we claim a, ,; JfM a
can be written as o(zo, ..., z;_1;ay,;, t(al y)) for an L-formula ¢, a natural number N,

and some Skolem term ¢. By LS*-indiscernibility, we have

MSk = 90(06\/" ) a§V+i—1; aalu-i-i’ t(a’/<N))a

Working now in M, we have shown tpy(a,...al,,;_;/Ma,;) is finitely satisfiable in
M, or, in other words, a/,; JfM a;,...a,, ;_;- Choose an automorphism o € Aut(M),
with o(al,,;) = a; for all i. Then M, = o(M) is a model such that a; JfM* a<; for all 4,

as desired. O

The following result is a variant of the results of [13] and [33] yielding NSOP, via the
existence of an independence relation with certain properties. See also [25] for a similar
approach.

Theorem 5.10. Let | be an invariant relation satisfying symmetry, full existence, sta-
tionarity over models, and the following “weak transitivity” over models:

albanda |"dandb |“d = a | b
Md M M M

for all finite tuples a,b,d and small model M. Then T is NSOPy.
Proof. Let (a;);<, be an indiscernible sequence and p(x,y) = tp(ap, a1). We show that

p(xo, x1) U p(x1, 22) U p(xe, 23) U p(ws, z0)

is a consistent partial type. By Lemma 5.9, a; \|f a<; for all i < w and some small
model M.

By full existence, there exists afy =pq, ao such that af | Ma, @2 By symmetry, we

M

* h * |u * .
have as \LMal ag- As az | a1 and a5 |*, a1, we conclude az |, aj using the weak
transitivity assumption.

We have af =p a2 and aj J/M az. Let a be such that ajas = aza. Then by invari-
ance, we have ag | A @ and by symmetry we obtain a | A @2 Now stationarity yields
a =Ma, 05, Whence aas =) ajaz, and thus ajas =u azaf.

Then, there exists aj such that afaza; =p azafal. We claim that (af, a1, asz,a3)
satisfies the type above. First, aja1 = apay hence p(a, a1). By indiscernibility, aga; =ps
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ajas hence p(ai,az). By choice, asaj =p afa; hence p(ag,al). Finally afal =nm aiao
hence p(a},aj). O

We will use Theorem 5.10 to prove that the theory T, g is NSOP4.

Lemma 5.11. Let A, B,C be LLAs with C C ANB. If A chB or A JfCB then for
EVETY G1,...,0, € A if

B S’ (Ba1> S] (Ba1a2> S] ..

.<(Baj...an)
then

C < {(Ca1) < (Caraz) ... <9(Cay ...an).

Proof. Let aq,...,a, be as in the hypothesis. By Lemma 4.17, we have (Bay, ..., an) =
spang(Bay ...a,) for all m < n. Fix m < n and assume by induction that
(Cay,...,a;—1) is an ideal of (Cay,...,a;) for all i < m. Again by Lemma 4.17 we
have (Cay,...,am) = spanp(Cay...an). In order to prove that (Caj...ay) is an
ideal of (Cajy...amy1), it is enough to prove that [am41,v] € (Cay...an) for all
v € (Cay...am). Let v = ¢+ > Na; € (Cay...an). As (Baj...a,) is an ideal
of (Baj ...am+1), [@m+t1,v] € (Bay ...a.,) hence there exists b € B and py,..., 1y, €F
such that [am,11,v] = b+ Y iv, pia;. It follows that the formula ¢(z1,...,Zm41,c,b)
defined by

m

m
[Tmq1,c+ Z Xi;] = b+ Z i T
i=1 i=1

isin p(z1,...,Tm+1) = tpay, ..., amy1/B).

Assume that A fc B. Then ¢(x1, ..., Tm41, ¢, b) is satisfiable by a tuple (c1, . .. ¢my1)
from C and it follows that b € C. Then [am41,v] = b+ > v wia; € (Cay ... an) and we
conclude.

Assume that A ch B. In that case, there exists ¢’ € C such that F ¢(aq, ..., am+1,¢,
) hence [apm1,v] = + >0, wia; € (Cay ...an) and we conclude. O

Recall Definition 4.26 of a tuple being Malcev.

Corollary 5.12. Let A,B,C be LLAs over ¥ with C C ANB. If A JfCB or A JfCB
then for every a = (a1,...,an) from A if a is (ordered) Malcev over B, then it is also
(ordered) Malcev over C.

Proof. Let a = (ay,...,a,) be in A and Malcev over B. We prove that a is Mal-
cev over C, that is spany(CP;({Ca))) = spany(CPF;(a)). First, using Lemma 5.11
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we have (Caq,...,a,) = spanp(Cas...ay). If z € spang(CP;({(Ca))) then there ex-
ist A1,...,An € F such that z = ¢+ >, Aja;. By assumption, spang(BP;((aB))) =
spang (BP;(a)), whence there exist p1,...ug such that for a;,,...,a;, € P;(a) we have
x=b+>, uea;,. It follows that >~ pea;, — Zj Aja; € B which implies that A\; = p;, if
i=1t¢and \; =01if j ¢ {i1,...,4r} so we conclude that z € spany(CP;(a)). O

Theorem 5.13. The theory T, F is NSOP;.

Proof. By Corollary 4.40 the relation |® is a stationary independence relation, hence
by Theorem 5.10 it suffices to prove the “weak transitivity” property. Let a, b, d be finite
tuples and E be an LLA such that for C = (Ed) we have a LX’C b, a JfE dandb [ d.
We may assume that a and b are Malcev bases of (Ca) and (Cb) over C. As a JfE C
and b | 5 C, by Corollary 5.12 we have that a and b are Malcev over E hence a \|§’E b
by Theorem 4.48. O

Restricting to F = [F, and ¢ < p, we obtain a corresponding result for groups, via
Lazard correspondence.

Corollary 5.14. For all ¢ < p, the theory Th(G.p) is NSOP,.

Proof. This follows from Theorem 5.13, since T¢. ,, = Th(L, ) and Fact 2.14 which states
that L., and G, are bi-interpretable. O

5.4. c-Dependence

In this subsection, we will show that T, F is c-dependent and (¢ — 1)-independent (see
Definition 3.10). Via the Lazard correspondence, it will follow as a corollary that the
theories Th(G.,,) for ¢ < p furnish examples of groups showing the strictness of the
NIPj hierarchy.

Lemma 5.15. Every term t(T) of Z.F is equal modulo T, to an F-linear combination
of Lie monomials.

Proof. This is an easy induction on terms. Clearly the constant 0 and the variables are
of the required form. Suppose it has been established for terms s(Z) and ¢(Z). Then
s(Z) 4+ t(z) is of the required form. If we have

s(@) = 3 aumi(@)
i<k

H@) =Y Bim}(T),
j<l

for scalars a;,3; € F and Lie monomials m;(Z), m)(¥) for all i < k, j < [, then, by
bilinearity, we have
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[5(@), t@)] = | > cims(®), Y pm}(T)

i<k j<l
= > aipilmi@), mj(@)],
i<k,j<l

and each [m;(¥), m}(7)] is a Lie monomial. This completes the induction. O

Corollary 5.16. Every formula ¢(T) of £, F is equivalent modulo T, g to one of the form
P(mo(T), ..., mp—1(T)) where Y(Yo, ..., yx—1) is a quantifier-free Laag c F-formula and
each m;(T) is a Lie monomial.

Proof. Immediate by quantifier elimination, Corollary 4.39, and Lemma 5.15. O

The following theorem of Chernikov and Hempel gives a key criterion for establishing
that a theory is NIPg. It is the k-ary analogue of the earlier cited Fact 3.11. The proof
of this theorem has not yet been disseminated, so we note that our Theorem 5.18 below
is conditional on results which are not yet publicly available.

Fact 5.17. [8] Let M be an .Z’-structure such that its reduct to a language ¥ C &’
is NIP. Let d,k be natural numbers and ¢(z1,...,24) be an Z-formula. Let fur-
ther yo,...,yr be arbitrary (k 4+ 1)-tuples of variables. For each 1 < ¢ < d, let
0 < it1,...,%, < k be arbitrary and let f; : Myit,1 X ... X Myim — M,, be an
arbitrary k-ary function. Then the formula

'l/](y(); Yy ooy yk) = @(fl(yiLl’ cee ,yilyk), L) fd(yidyla s 7yid7k))
is k-dependent.
Theorem 5.18. The theory T, is c-dependent and (c — 1)-independent.

Proof. By Lemma 5.1, we know that Tq,. . is stable. Moreover, in a c-nilpotent Lie
algebra, each Lie monomial m(Z) is at most c-ary. Therefore, the c-dependence follows
by Fact 5.17.

Now we argue that this theory is (¢c—1)-independent. Let L denote the free c-nilpotent
Lie algebra over F with generators (bX)ngcfl and (ai’j)i<c,1’j<w. Let < denote an
arbitrary linear order of the monomials in these generators such that a;; < ay ;- if
(4,J) <iew (7,j") and such that a;; < bx for all (i,j) and X. Then the monomials
[bx,a0,j5, 01,415 - @c—2,_,] are in the Hall basis (defined with respect to the ordering
<) for all X C w® ! and (jo,...,je2) € w® L. Define I C L to be the vector space
spanned by

{[bx,ao,jo, Q1,515+ ac_27j672] : X C wc_l, (jo, L. ,jc_z) € X} .
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Since L is c-nilpotent, if z € L and y € I, then [z,y] = 0 and therefore I is an ideal.
Moreover, since terms in the Hall basis are linearly independent, we know

(b5 @0,jos Q1,515+ -5 Qe—2,j. o] & 1

when (jo,...,jc_2)¢X. _
It follows, then, that in the c-nilpotent Lie algebra L = L/I,

[bx,@0,jgs -+ -5 Qe—2,j,_,] = 0
if and only if (jo,...,jc—1) € X. Since Age(L) C Age(M.F), we may assume L is
embedded in M. This shows that T" has the (¢ — 1)-independence property. O

Corollary 5.19. Assume p is an odd prime and ¢ > p. Then the theory Th(G.,) is
c-dependent and has the (¢ — 1)-independence property. In particular, Tg, defined in
Section 3, is 2-dependent.

Proof. As in Corollary 5.14, this follows from Theorem 5.13, since T, , = Th(L.,) and
L., and G, are bi-interpretable by Fact 2.14. Finally, the ‘in particular’ part of the
statement follows from the fact that G2, and G are easily seen to be bidefinable (the
only difference in languages is that G has a single predicate while G, ;, has two additional
predicates, one for the trivial subgroup and one for the entire subgroup). O

Remark 5.20. By Proposition 4.41, the predicates for the terms of the Lazard series,
interpreted in G p, are definable in the language of groups. Therefore, after taking the
reducts to the language of groups, the theories Th(G ) as ¢ varies give examples of
pure groups witnessing the strictness of the NIP; hierarchy.
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