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1. Introduction

A classic theorem in model theory of groups states that every abelian group, viewed as 
a structure in the language of groups, is stable. This follows from Szmielew’s quantifier 
elimination for abelian groups down to pp-formulas [43]. This leads naturally to the 
question of whether analogous results might be proved for nilpotent groups, which are in 
some sense the least complicated class of groups properly containing the abelian groups. 
Constructions of Mekler [32] and related ones by Ershov [18] show, however, that already 
groups of nilpotence class 2 and exponent p, for an odd prime p, are totally wild. These 
results give an ad hoc construction of a nilpotent group that codes an arbitrary graph 
into the commutation relation on the group. Given the nature of these constructions, 
these results leave open whether or not nilpotent groups might still generically exhibit 
tame model-theoretic behavior.

This paper studies the neostability-theoretic properties of nilpotent groups and Lie 
algebras at a generic scale and lays the foundations for a detailed study of definability in 
such structures. Within model theory, the study of existentially closed nilpotent groups 
was initiated by Saracino in [36], who showed that the theories of nilpotent groups of 
class c and torsion-free nilpotent groups of class c do not admit model companions. 
Saracino [37] and later Saracino and Wood [38] extended the theory, focusing on the 
nilpotence class 2 case. Maier gave an elaborate amalgamation construction for torsion-
free groups of nilpotence class c, for c possibly greater than 2 [30]. He extended this to 
nilpotent groups of class c and exponent p, for primes p > c [31]. Lie rings of Morley 
rank less than or equal to 4 have recently been described by Deloro and Tindzogho Ntsiri 
[15].

Our starting point is the investigation of Fraïssé limits of nilpotent groups of class 2
and exponent p, for an odd prime p, which we study in detail in Section 3. In [2], Baudisch 
considers the class of finite 2-nilpotent groups G of exponent p and shows that it forms a 
Fraïssé class in the language of groups, together with a predicate P for a subgroup such 
that [G, G] ⊆ P (G) ⊆ Z(G). These Fraïssé limits are natural generalizations of the extra-
special p-groups, which impose the additional requirement that Z(G) be cyclic. The extra 
special p-groups were studied by Felgner in [19] and were later an important example of 
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quasi-finite theories, studied by Cherlin and Hrushovski, all of which have simple theories. 
However, in [4], Baudisch shows that his Fraïssé limits have TP2, and therefore have the 
independence property and are not simple. We build on Baudisch’s analysis, showing that 
the theories of these Fraïssé limits are NSOP1 and 2-dependent and thus are, roughly 
speaking, minimally complicated outside of the NIP, simple theories, and NTP2 theories. 
The feature of these groups that makes them particularly tractable is that, in such a 
group, both G/Z(G) and Z(G) may be viewed as Fp-vector spaces, with the commutator 
inducing an alternating bilinear map [·, ·] : G/Z(G) × G/Z(G) → Z(G). Although the 
interpretation of this bilinear map is not a bi-interpretation, we, following Baudisch, 
observe that many of the model-theoretic features of the Fraïssé limit are determined 
by those of the associated bilinear map, reducing the group-theoretic analysis to linear 
algebra.

In subsequent sections, we turn our attention to groups of exponent p and nilpotence 
class greater than 2. A group G is of nilpotence class c if there is a subnormal series

G = H1 � H2 � H3 � . . .

such that [Hi, Hj ] ⊆ Hi+j and Hk = 1 for all k > c. Such a series is called a Lazard 
series of length c for the group; the lower central series of a c-nilpotent group is a 
familiar example. Lazard series may be analogously defined for Lie algebras, replacing 
subgroups with subalgebras and commutator with Lie bracket. Our main tool in the 
study of nilpotent groups is the Lazard correspondence, which provides a different way of 
reducing the study of these groups to linear algebra. This correspondence, an analogue of 
the more well-known Malcev correspondence, associates to each group of exponent p and 
nilpotence class c a Lie algebra of nilpotence class c over Fp, assuming the prime p > c. 
In fact, this correspondence is a uniform bi-interpretation between the group and the Lie 
algebra which takes a Lazard series for the group to a Lazard series for the Lie algebra. 
The details of the Lazard correspondence are outlined in Section 2. The remainder of the 
paper considers the model-theoretic properties of nilpotent Lie algebras in a language 
with predicates for a Lazard series. The Lazard correspondence allows us, then, to infer 
properties of certain nilpotent Lie algebras over Fp, but, moreover, this analysis turns 
out to be interesting in its own right and allows us to analyze nilpotent Lie algebras over 
arbitrary fields.

The algebraic heart of the paper is contained in Section 4, where we prove that, for 
any field F , the class of c-nilpotent Lie algebras over F , in a language with predicates for 
a Lazard series, has the amalgamation property. In fact, we prove that such Lie algebras 
can be freely amalgamated, for a notion of free amalgamation introduced by Baudisch. 
The existence of strong amalgams for c-nilpotent Lie algebras, in the special case where 
the field of scalars is Fp for a prime p > c, can be deduced, via the Lazard correspon-
dence, from the amalgamation results of Maier [31]. The existence of free amalgams for 
nilpotent Lie algebras over an arbitrary field was sketched by Baudisch in [3]. We are very 
influenced by Baudisch’s proposed construction in [3, Theorem 4.1], but the details pro-
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vided there do not suffice for our applications, so we opted to give our own account. Our 
construction proceeds in several stages. In the first stage, we amalgamate two extensions 
of codimension 1 over a common ideal, presenting the amalgam as a semi-direct product 
of the ideal and a free nilpotent Lie algebra generated by elements in the complements of 
the ideal in the respective structures. In the next stages, we use this construction itself 
as a step in an inductive construction of an amalgam, which draws heavily on ideas of 
Maier from the group case.

In Section 5, we spell out the consequences of the existence of free amalgams for the 
model-theoretic properties of Fraïssé limits of nilpotent groups and Lie algebras. In this 
section, we naturally restrict attention to Lie algebras over finite fields, and especially 
over finite prime fields, which correspond to groups via the Lazard correspondence, since 
these Fraïssé limits have ℵ0-categorical theories. We show that for c > 2, Fraïssé limits of 
c-nilpotent Lie algebras over finite fields have an SOP3 and NSOP4 theory. To show that 
the theories have SOP3, we provide a direct construction of a 3-nilpotent Lie algebra 
which witnesses SOP3 with respect to quantifier-free formulas. On the other hand, to 
show that these theories are NSOP4, we leverage the stationary independence relation 
coming from free amalgamation, following the strategy of Patel for bowtie-free graphs 
[34], later systematized by Conant in [13] and generalized by Mutchnik [33]. As NSOP4
has recently emerged as a class of theories for which there is some hope of a meaningful 
structure theory, we are optimistic that these Lie algebras (and the associated groups) 
can serve, alongside the curve-exluding fields of [25], as illuminating algebraic examples 
of strictly NSOP4 theories, playing a similar role to that played by Lie geometries for 
simple theories and played by the two-sorted vector spaces equipped with bilinear forms 
for NSOP1 theories. We summarize the analogies in the following table:

Stable Simple NSOP1 NSOP4

ACF Psf/ACFA ω-free PAC fields Curve-excluding
fields

Vector spaces Fp-vector spaces
with a bilinear map

Vector spaces over
ACF with a bilinear map

Nilpotent Lie
algebras

Equivalence relations Random graph Parameterized equivalence
relations

Henson graphs

We also analyze the place of these examples in the n-dependence hierarchy introduced 
by Shelah [39,40]. In essence, a theory is called n-dependent if there is no interpretable 
(n + 1)-ary (n + 1)-partite hypergraph that contains the random (n + 1)-ary (n + 1)-
partite hypergraph as an induced subhypergraph. The placement of a theory in this 
hierarchy, then, gives a way of quantifying the arity of random relations in the theory. 
The n = 1 case corresponds to the much-studied class of NIP theories, and recent 
work has generalized some aspects of the theory to this broader setting and produced 
new examples [10,7,22]. The only known examples of pure groups that are (n + 1)-
dependent but not n-dependent were constructed by Chernikov and Hempel [6]. These 
groups are produced by the aforementioned construction of Mekler, which takes a graph 



644 C. d’Elbée et al. / Journal of Algebra 662 (2025) 640–701
and produces a group of nilpotence class 2 and exponent p that codes the graph into the 
commutation relation of the group. Due to the somewhat artificial character of the groups 
produced by this method, it was left open whether these model-theoretic classes were 
inhabited by groups occurring ‘in nature.’ We show that the Fraïssé limit of c-nilpotent 
groups of exponent p (for p > c), in the language with predicates for a Lazard series, is 
c-dependent and (c −1)-independent. As these predicates are definable (with quantifiers) 
in the pure group language, these furnish natural examples that exhibit the strictness of 
the n-dependence hierarchy in groups. Our proof makes use of the ‘Composition Lemma’ 
of Chernikov-Hempel [8], drawing on a similar set of ideas as their work on multilinear 
forms, which has yet to appear.

The above results give a fairly exhaustive analysis of the neostability-theoretic com-
plexity of the theories of generic nilpotent groups and Lie algebras we considered. 
However, genericity for nilpotent groups can be understood within three distinct rubrics:

(1) Model-theoretic: Understand existentially closed nilpotent groups, investigate the 
existence of Fraïssé limits and/or model companions and describe their definable 
sets.

(2) Descriptive set-theoretic: Naturally view the collection of all nilpotent groups with 
underlying set N and interesting subclasses of such nilpotent groups as Polish spaces, 
describe which properties hold on a comeager set of groups.

(3) Probabilistic: Consider various models of random groups (e.g. random groups in 
the sense of Gromov), specialized to the case of nilpotent groups. Calculate the 
probability that group-theoretic properties hold in a randomly sampled nilpotent 
group and determine the ‘probability 1’ theory.

There has been a considerable amount of work in each of these directions. In addition 
to the model-theoretic work mentioned above, the descriptive set-theoretic point of view 
on generic groups has been taken up in recent work by Elekes, Gehér, Kanalas, Ká-
tay, and Keleti [17] and by Goldbring, Elayavalli, and Lodha [20]. Both of these papers 
considered the space of all countable groups with domain N and the former addition-
ally studied the generic properties of the subspace of abelian groups, leaving the class of 
nilpotent groups as an unexplored intermediary case. The primary treatment of nilpotent 
groups from a probabilistic point of view was undertaken by Cordes, Duchin, Duong, 
Ho, and Sánchez, who adapted the Gromov model for random groups to the nilpotent 
setting [14]. In a different vein, Diaconis and Malliaris gave a quantitative study of ran-
domness in Heisenberg groups over Fp, particularly illustrative examples of 2-nilpotent 
groups [16]. We view the work done here as a first step in a broad project of deter-
mining how these rubrics for the study of generic nilpotent groups fit together. In this 
paper, we focus exclusively on the model-theoretic picture but anticipate that the alge-
braic foundations laid here will be useful in subsequent explorations of these intersecting 
frameworks.
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2. Preliminaries

Our model-theoretic notation is standard. We do not distinguish between singletons 
and tuples except when explicitly mentioned, and we use the usual model-theoretic abuse 
of notation of denoting A ∪ B by AB. We write a ≡A b to indicate that tp(a/A) =
tp(b/A). We write acl(A) and dcl(A) to denote the algebraic and definable closures of 
A, respectively. We write ω for the set of natural numbers and, given k ≥ 1, we define 
[k] = {1, . . . , k}.

2.1. Fraïssé theory

Let L be a first-order language and let C be a class of L -structures. We say that 
C has the hereditary property (HP) if it is closed under substructures, i.e., whenever 
B ∈ C and A ⊆ B, then A ∈ C . We say that C has the joint embedding property (JEP) 
if whenever A, B are in C , there exists a structure S ∈ C which embeds both A and 
B. Finally, we say that C has the amalgamation property if for all A, B, C in C and 
embeddings f0 : C → A and g0 : C → B, there exists a structure S ∈ C together with 
embeddings f1 : A → S and g1 : B → S such that f1 ◦ f0 = g1 ◦ g0. In this case, we say 
that S is an amalgam of A and B over C. When f1(A) ∩ g1(B) = f1(f0(C)) we say that 
S is a strong amalgam.

A

C S

B

f1f0

g0 g1

The amalgamation property

Definition 2.1.

• We say that a class C of finitely generated L -structures is a Fraïssé class if it is 
closed under isomorphisms, contains countably many isomorphism types, and has 
the hereditary property, joint embedding property, and amalgamation property.

• A countable L -structure M is called homogeneous if every isomorphism between 
finitely generated substructures of M extends to an automorphism of M .

• An L -structure M is called uniformly locally finite if there exists a function f : N →
N such that any substructure of M which is generated by n elements has cardinality 
at most f(n).

Fact 2.2 (Fraïssé’s theorem). Suppose that C is a Fraïssé class of finitely generated L -
structures. Then there exists a unique (up to isomorphism) homogeneous structure M
such that the class of all structures isomorphic to finitely generated substructures of M
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(known as the age of M) is precisely C . We call M the Fraïssé limit of C . Conversely, 
the age of a homogeneous structure is a Fraïssé class.

Fact 2.3. [24, Corollary 6.4.2] Let L be a finite first-order language and let M be a 
countably infinite L -structure. Then the following are equivalent.

(i) M is homogeneous and uniformly locally finite.
(ii) The theory of M is ω-categorical and has quantifier elimination.

2.2. Nilpotent groups and Lie algebras

Let G be a group and let a, b ∈ G. The commutator of a and b is the group element 
[a, b] = a−1b−1ab. For two subsets A, B ⊆ G we define [A, B] to be the subgroup gener-
ated by all commutators of the form [a, b] where a ∈ A and b ∈ B. The derived subgroup
of G is the normal subgroup G′ = [G, G]. Given a normal subgroup N of G, the quotient 
G/N is abelian if and only if G′ ⊆ N . We denote the center of the group G by Z(G). 
The lower central series (Gn)n≥1 of G is defined as follows:

• G1 = G;
• Gn+1 = [Gn, G] for n ≥ 1.

The lower central series is a normal series, i.e. each Gn is normal in G. Since G′
n =

[Gn, Gn] ⊆ [Gn, G] = Gn+1, it follows that the successive quotients Gn/Gn+1 are abelian 
groups. We also have that Gn/Gn+1 is contained in Z(G/Gn+1). We have the following 
containments:

G = G1 � G2 � G3 � . . .

Definition 2.4. A group G is nilpotent if its lower central series terminates in the trivial 
subgroup in finitely many steps. The least integer c such that Gc+1 = 1 is called the 
nilpotency class of G. For this, we also say G is a c-nilpotent group or a nil-c group for 
short.

Nilpotent groups of class 1 are exactly the abelian groups. Nilpotent groups of class 2 
are nonabelian groups where the derived subgroup is contained in the center. In general, 
if G is a c-nilpotent group, then Gc ⊆ Z(G).

Definition 2.5. A Lie algebra L over a field F is a vector space L over F equipped with a 
binary operation [·, ·] : L ×L → L, called a Lie bracket, satisfying the following properties 
for every a, b, c ∈ L and μ ∈ F :

• [a, a] = 0; (Alternativity)



C. d’Elbée et al. / Journal of Algebra 662 (2025) 640–701 647
• [a + b, c] = [a, c] + [b, c], (Bilinearity)
[a, b + c] = [a, b] + [a, c],
[μa, b] = μ[a, b] = [a, μb];

• [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0. (Jacobi identity)

It follows that the Lie bracket is antisymmetric, that is, [a, b] = −[b, a] for all a, b ∈ L. 
This follows by using alternativity and bilinearity to evaluate [a + b, a + b]. Indeed, if the 
characteristic of F is not 2, then alternativity and antisymmetry are equivalent.

We use the following standard notation for iterated brackets: For n ≥ 3 and elements 
x1, . . . , xn in any Lie algebra L, we define [x1, . . . , xn] inductively by [x1, . . . , xn] =
[[x1, . . . , xn−1], xn].

A subspace U ⊆ L is called a Lie subalgebra of L if U is closed under the Lie bracket. 
If U and V are subspaces of L, we define [U, V ] as the subspace spanned by the elements 
[u, v] for u ∈ U and v ∈ V , that is,

[U, V ] = {r1 [u1, v1] + . . . + rk [uk, vk] | k ≥ 1, ui ∈ U, vi ∈ V, ri ∈ F}.

Note that [U, V ] = [V, U ] by antisymmetry of the bracket. A priori, one does not know 
whether or not [U, V ] is a subalgebra. A subalgebra I ⊆ L is called an ideal of L

if [I, L] ⊆ I. The bracket in Lie algebras is analogous to the commutator in groups. 
Consequently, we present the following concepts. The center of L is Z(L) = {a ∈ L |
[a, b] = 0 for all b ∈ L}. Also, L is abelian if [a, b] = 0 for all a, b ∈ L.

The Jacobi identity and antisymmetry further imply the following useful identities.

◦ [a, [b, c]] = [[a, b], c] + [b, [a, c]].
◦ [[b, c], a] = [[b, a], c] + [b, [c, a]].

The first bullet point, for example, can be viewed as saying that for a ∈ L, the 
map ada : L → L defined by ada(x) = [a, x] satisfies the Leibniz rule (with respect to 
‘multiplication’ given by the Lie bracket). In other words, ada is a derivation on L in 
the following sense.

Definition 2.6. A derivation δ on a Lie algebra L over F is an F -linear endomorphism 
δ : L → L which satisfies Leibniz’ rule: δ([a, b]) = [δ(a), b] + [a, δ(b)]. We write Der(L)
for the space of all derivations over L.

Note that Der(L) is a vector subspace of the space of F -linear endomorphism of L. It 
is also a Lie algebra for the bracket

[δ, μ] := δμ− μδ.
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The map ad : L → Der(L) is a homomorphism of Lie algebras with kernel Z(L), usu-
ally called the adjoint representation. A derivation of the form ada is called an inner 
derivation on L, otherwise it is called an outer derivation.

Definition 2.7 (Semi-direct product). Given two Lie algebras L1, L2 and a homomorphism 
g : L2 → Der(L1) we define the semi-direct product S = L1 � L2 to be the Lie algebra 
with underlying vector space L1 ⊕ L2 and bracket defined as:

[x1 + x2, y1 + y2] = [x1, y1]L1 + g(x2)(y1)− g(y2)(x1) + [x2, y2]L2

for x1, y1 ∈ L1, x2, y2 ∈ L2.

One easily checks that if S = L1 �L2 then L2 is a subalgebra of S and L1 is an ideal 
of S.

We define inductively the lower central series of L as follows:

• L1 = L;
• Ln+1 = [Ln, L] for n ≥ 1.

Note that each Ln is an ideal of L. A Lie algebra L is nilpotent of class c if c is the least 
integer such that

L = L1 ⊇ L2 ⊇ . . . ⊇ Lc ⊇ Lc+1 = 0.

If L is nilpotent of class c, then Lc ≤ Z(L).

Definition 2.8. Let G be any group. A Lazard series of length c of G is a sequence 
of subgroups G = H1 � H2 � . . . � Hc+1 = 1 such that [Hi, Hj ] ⊆ Hi+j for all i, j. 
By convention, we set Hk = 1 for all k > c. Accordingly, we say that a sequence of 
subalgebras (Li)1≤i≤c+1 is a Lazard series of a Lie algebra L if

L = L1 ≥ L2 ≥ . . . ≥ Lc+1 = 0

and

[Li, Lj ] ≤ Li+j

for all i, j (where, as above, we stipulate Lk = 0 for all k > c).

Note that if G is a group with a Lazard series (Hi)1≤i≤c+1, then G must be of nilpo-
tence class at most c (and analogously for Lie algebras). The lower central series is an 
example of a Lazard series.
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Definition 2.9. We define a Lazard group (G, H) to be a group G together with a distin-
guished Lazard series H = (Hi)1≤i≤c+1. Similarly, a Lazard Lie algebra (LLA) (L, L) is 
a Lie algebra L with a distinguished Lazard series L = (Li)1≤i≤c+1. We will not always 
explicitly display the Lazard series L when referring to an LLA (L, L), referring to it 
instead simply as L.

Definition 2.10. Let A be an LLA of nilpotency class ≤ c with distinguished Lazard series 
(Ai)1≤i≤c+1. For any a ∈ A, we define the level of a, denoted lev(a) to be the maximal 
1 ≤ i ≤ c + 1 such that a ∈ Ai. Equivalently, for a �= 0, lev(a) is the (unique) i such that 
a ∈ Ai \Ai+1.

The property [Ai, Aj ] ⊆ Ai+j of the Lazard series implies the property lev([a, b]) ≥
lev(a) +lev(b). Note that lev(a) +lev(b) takes the value c +1 as soon as lev(a) +lev(b) ≥
c + 1.

Definition 2.11. Suppose L is an LLA with Lazard series (Li)1≤i≤c+1. Define DerLaz(L)
by

DerLaz(L) = {δ ∈ Der(L) : δ(Li) ⊆ Li+1 for all i}.

Lemma 2.12. Suppose L is an LLA with Lazard series (Li)1≤i≤c+1.

(1) DerLaz(L) is a (c − 1)-nilpotent subalgebra of Der(L) with Lazard series (Di)1≤i≤c

defined by

Di = {δ ∈ DerLaz(L) : δ(Lj) ⊆ Li+j for all j}.

(2) If I ⊆ L is an ideal of L (with LLA structure induced from L, that is, with Lazard 
series (Ii)i defined by Ii = I ∩ Li), then there is an LLA homomorphism L →
DerLaz(I) defined by a �→ ad(a)|I .

Proof. (1) It is clear from the definitions that we have

DerLaz(L) = D1 ⊇ D2 ⊇ . . . ⊇ Dc = 0.

Suppose that δ ∈ Di and δ′ ∈ Dj . Let k be arbitrary. Then we have δδ′(Lk) ⊆ δ(Lj+k) ⊆
Li+j+k and likewise, δ′δ(Lk) ⊆ δ′(Li+k) ⊆ Li+j+k, hence

[δ, δ′](Lk) = (δδ′ − δ′δ)(Lk) ⊆ Li+j+k.

This shows that [Di, Dj ] ⊆ Di+j .
(2) As ad : L → Der(I) is a Lie algebra homomorphism, we only need to show that, 

for each i, a ∈ Li implies ad(a)|I ∈ Di. Fix i and pick a ∈ Li. Let j and b ∈ Ij be 
arbitrary. As I is an ideal, we have ad(a)(b) ∈ I and, since b ∈ Lj , we have
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ad(a)(b) = [a, b] ∈ Li+j .

This shows ad(a) ∈ Di, as desired. �
2.3. Lazard correspondence

Our main technical tool for understanding nilpotent groups of exponent p is the Lazard 
correspondence. Assuming c < p for an odd prime p, this correspondence associates to 
each nil-c group of exponent p a nil-c Lie algebra over the field Fp

3. From a model-
theoretic point of view, this correspondence establishes the uniform bi-definability of 
nil-c groups of exponent p and of nil-c Lie algebras over Fp. Indeed, this uniform bi-
definability applies both to the pure languages of groups and Lie algebras and to their 
respective expansions to languages with predicates for Lazard series. This will allow us 
to conclude that the model-theoretic study of nil-c groups of exponent p reduces entirely 
to studying Lie algebras, which in turn can be analyzed using the more transparent tools 
of linear algebra.

Suppose c < p, for p an odd prime. If G is a group of exponent p and nilpotence class 
≤ c, we define LG to be a structure with same underlying set and operations +LG

and 
[·, ·]LG

defined by

g +LG
h = h1(g, h) = gh[g, h]− 1

2 [g, g, h]− 1
12 [h, g, h] 1

12 . . .

and

[g, h]LG
= h2(g, h) = [g, h][g, g, h] 1

2 [h, g, h] 1
2 . . .

where the brackets on the right denote group commutators in G. We will usually omit 
the subscripts. Since the nilpotence class of G is at most c, it turns out that both h1 and 
h2 are finite products of group commutators in G raised to powers in Z(p), where Z(p)
denotes the set of q ∈ Q such that if q = l

m is in reduced form, then gcd(m, p) = 1. Since 
the group G is of exponent p, it makes sense to raise any element to powers in Z(p) and 
these yield well-defined operations on LG. The coefficients of h1 and h2 are explicitly 
described in [12].

Conversely, given a Lie algebra L over Fp of nilpotence class at most c, one defines 
GL to be the structure with the same underlying set and with a binary operation ∗GL

defined by

a ∗GL
b = H(a, b) = a + b + 1

2[a, b] + 1
12 [a, a, b]− 1

12 [b, a, b] + . . .

3 In fact, the Lazard correspondence is considerably more general than this, associating to every Qπ-
powered nilpotent group a Lie ring over Qπ of the same nilpotence class, where π is a set of primes ≤ c. 
As this is far more generality than we will need, we refer the interested reader to [28, Chapter 10].
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This is the Baker-Campbell-Hausdorff formula, where the brackets on the right-hand side 
are the Lie bracket of L. This is usually an infinite sum but, since L is of nilpotence class 
at most c, the function H can be written as a finite linear combination of Lie monomials 
with coefficients in Z(p). This can thus be viewed as an Fp-linear combination of Lie 
monomials.

The following fact summarizes the Lazard correspondence.

Fact 2.13. [28, Chapter 10] Suppose c < p for an odd prime p. To every group G of 
exponent p and nilpotence class ≤ c, the Lazard correspondence associates a Lie algebra 
LG over Fp with the same underlying set LG = G and with operations a + b = h1(a, b)
and [a, b] = h2(a, b), and ra = ar for every r ∈ Fp. Conversely, for every Lie algebra L
over Fp of nilpotence class ≤ c, there is a corresponding group GL of exponent p with 
the same underlying set and group operation defined by

a ∗ b = H(a, b)

and ar = ra for r ∈ Fp. These operations are inverses to each other: as Lie algebras over 
Fp, we have LGL

= L and additionally GLG
= G as groups.

The following summarizes the key facts that we need about the Lazard correspon-
dence.

Fact 2.14. [28, Chapter 10] Suppose c < p for an odd prime p. Suppose that L is a Lie 
algebra over Fp of nilpotence class ≤ c, that G is a group of nilpotence class ≤ c of 
exponent p, and that L and G are in correspondence with one another, i.e. L = LG as 
Lie algebras and G = GL as groups.

(1) For all a, b ∈ L,

[a, b]L = [a, b]G
∏

j

χ
sj

j

where sj ∈ Z(p) and χj are group commutators in a and b of degree ≥ 3.
(2) For all a, b ∈ G,

[a, b]G = [a, b]L +
∑

j

ujχj

where uj ∈ Fp and the χj are Lie monomials in a and b of degree ≥ 3.
(3) A subset K ⊆ G is a subgroup of G if and only if K ⊆ L is a Lie subalgebra.
(4) A subset I is a normal subgroup of G if and only if I is an ideal of L.
(5) A function from the underlying set G = L to itself is an endomorphism of the 

group G if and only if it is an endomorphism of the Lie algebra L. In particular, the 
automorphism groups Aut(L) and Aut(G) coincide as permutation groups.
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Note that Fact 2.14 implies if L is a Lie algebra over Fp of nilpotence class ≤ c, the 
group G is of nilpotence class ≤ c of exponent p, and L and G are in correspondence 
with one another, then a sequence (Hi)1≤i≤c+1 is a Lazard series for G if and only if it 
is a Lazard series for L.

3. The generic nilpotent group of class 2

3.1. The bilinear-map correspondence

We recall the following definitions from Baudisch [2].

Definition 3.1. Let p be a prime number.

(1) We write G2,p for the class of nilpotent groups of class 2 and exponent p. We let 
K2,p denote the finite groups in G2,p.

(2) LP is the language of groups together with a unary predicate P . We write GP
2,p for 

those LP -structures G whose reduct to the language of groups lies in G2,p and in 
which additionally P (G) is a normal subgroup satisfying [G, G] ⊆ P (G) ⊆ Z(G). 
Likewise, we write KP

2,p for the finite structures in this class. When p is understood 
from context, we will simply write GP and KP .

(3) We write Bp for the class of pairs of Fp-vector spaces (V, W ), viewed as LB-structures, 
where LB contains a sort for each vector space (and the abelian group structure on 
each) together with an alternating bilinear map β : V × V → W . As in (2), we just 
write B when p is understood from context.

Baudisch defines a functor F : GP → B, which is defined by

F (G) = (G/P (G), P (G), [·, ·])

for all G ∈ GP , where [·, ·] is the commutator in G. Given an embedding f : G → H of 
structures in GP , we define F (f)(= (F (f)V , F (f)W )) to be the pair of maps (f, f |P (G)), 
where f : G/P (G) → H/P (H) is the induced embedding and f |P (G) is the restriction of 
f to P (G).

Baudisch deduces that both KP and the class of finite structures in B are Fraïssé 
classes with quantifier elimination [2, Corollary 1.3]. Let G and B be their respective 
Fraïssé limits. It can be shown that in G, we have P (G) = Z(G) [2, Corollary 1.3]. Let 
TG = Th(G) and TB = Th(B). Let MG � TG and MB = (V , W , β) � TB be their 
respective monster models. Note that we may view MB as a structure interpreted in 
MG with V = MG/Z(MG), W = Z(MG), and β(·, ·) = [·, ·]. By abuse of notation, 
if A ⊆ MG is a substructure, we will write F (A) to denote the image of A under this 
interpretation, i.e. identifying F (A) with a substructure of MB is an obvious way.

Given B = (V, W, β) ∈ B, we fix a basis b = {bi : i < α} for V and define a group 
G(b, B) whose underlying set consists of V ×W with multiplication defined by
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(∑
i<α

ribi , w

)
·
(∑

i<α

sibi , w′

)
=

⎛
⎝∑

i<α

(ri + si)bi , w + w′ +
∑

i<j<α

risjβ(bj , bi)

⎞
⎠ ,

where, in the above expressions, all but finitely many ri and si are zero. Note that if 
B = F (H) for some H ∈ Gp, we have G(b, F (H)) ∼= H. More explicitly, if h ∈ H, then, 
since b is a basis of H/P (H), we can pick ci ∈ H such that ciP (H) = bi for each i < α. 
Then we have that hP (H) =

∏
i<α cri

i P (H) for some 0 ≤ ri < p for each i < α. It 
follows that h =

∏
i<α cri

i w for some w ∈ P (H). The map h �→
(∑

i<α ribi, w
)

is an 
isomorphism from H to G(b, B).

Lemma 3.2. Given a set A of parameters in MB,

acl(A) = dcl(A) = spanV (V (A)) ∪ spanW (W (A) ∪ β(V (A)2)).

Proof. Let S = spanV (V (A)) ∪ spanW (W (A) ∪ β(V (A)2)). As the other containments 
are clear, it suffices to show acl(A) ⊆ S. Pick u ∈ MB \ S. We will show there are 
infinitely many pairwise distinct ui with ui ≡S u. Since, in particular, ui ≡A u, it follows 
that u �∈ acl(A).

Case 1: Assume u ∈ V . Introduce distinct new elements (ui)i<ω and consider the 
vector space V ′ spanned by V (A) and {ui : i < ω}, with the ui linearly independent 
over V (A). We define β′ by setting β′(ui, b) = β(u, b) for all i < ω and b ∈ V (S), and 
β′(ui, uj) = 0 for all i, j < ω. This determines a unique alternating bilinear map β′ on 
V ′. Embedding over S, we may assume (V ′, W (S), β′) is a substructure of (V , W , β). By 
construction, the function u �→ ui extends to an isomorphism

σi : (〈V (S)u〉, W (S), β|〈V (S)u〉) → (〈V (S)ui), W (S), β′),

which fixes S pointwise. By quantifier elimination, the σi witness that ui ≡S u for all i.
Case 2: If u ∈ W , we can just take infinitely many new elements (ui)i<ω and define 

W ′ to be a vector space spanned by W (S) ∪{ui : i < ω} with the ui linearly independent 
over W (S). Then in an obvious way, we have

(V (S), W (S), β|V (S)) ⊆ (V (S), W ′, β|V (S)),

so embedding (V (S), W ′, β|V (S)) into (V , W , β), we see that ui ≡S u for all i < ω. �
3.2. NSOP1

In this subsection, we will establish that TG is NSOP1 by characterizing Kim-
independence in this theory. See [26] for the basis of the theory. We will actually first 
establish that TB is NSOP1 by establishing the independence theorem for algebraic in-
dependence and applying the NSOP1 Kim-Pillay theorem. We will then use Baudisch’s 
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functor F to deduce that TG is NSOP1 as well. Recall that algebraic independence, de-
noted by a |a� C

b, means acl(aC) ∩ acl(bC) = acl(C). Note that, by [4, Proposition 2.1], 
TG is not simple so NSOP1 is, in some sense, best possible.

Lemma 3.3 (Independence theorem). Suppose we are given small subsets A, B, C0, C1,

D ⊆ MB such that A |a� D
B, C0 |a� D

A, C1 |a� D
B, and C0 ≡D C1. Then there is C∗

such that C∗ ≡AD C0, C∗ ≡BD C1, and C∗ |a� D
AB.

Proof. We may assume A = acl(AD), B = acl(BD), C0 = acl(C0D), C1 = acl(C1D), 
and D = acl(D). Moreover, applying extension for |�

a, we may assume that A and 
B are models of TB. Let E = acl(AB). So in particular, D is an algebraically closed 
subset of all of the given sets. Choose X to be a set that is linearly independent over 
W (A) ∪W (C0) such that

W (acl(AC0)) = span(W (A) ∪W (C0) ∪X).

Likewise choose Y to be linearly independent over W (B) ∪W (C1) and such that

W (acl(BC1)) = span(W (B) ∪W (C1) ∪ Y ).

Fix σ ∈ Aut(MB/D) with σ(C0) = C1.
Work briefly in the reduct (V , W ) consisting of a disjoint union of two infinite 

dimensional Fp-vector spaces, which is clearly stable. Choose C∗ which realizes the 
unique non-forking extension of tp(C0/A) to E. By transitivity and stationarity, we 
have that C∗ realizes the unique non-forking extension of tp(C1/B) as well. Note 
that in this reduct, we have X independent from C0A over D and Y independent 
from C1B over D. Pick X∗ such that X∗C∗ has the same type (in the reduct) as 
XC0 over A and Y∗ such that Y∗C∗ has the same type as Y C1 over B. By in-
variance, Y∗ is independent over D from C∗B so, by extension, we may assume Y∗
is independent from C∗X∗E. There are isomorphisms (in the reduct language) τ0 :
(V (acl(AC0)), W (acl(AC0))) → (span(V (A)V (C∗)), span(W (C∗)X∗W (A))) over A and 
also τ1 : (V (acl(BC1)), W (acl(BC1))) → (span(V (B)V (C∗)), span(W (C∗)Y∗W (B)))
over B such that τ1 ◦ σ|C0 = τ0|C0 .

Let β0 be the alternating bilinear map on span(V (A)V (C∗)) defined by pushing for-
ward β along τ0. In other words, we define

β0(v, w) = τ0(β(τ−1
0 (v), τ−1

0 (w))),

for all v, w ∈ span(V (A)V (C∗)). Likewise, define β1 on span(V (B)V (C∗)) by pushing 
forward β along τ1.

We claim that there is a unique alternating bilinear map on span(V (C∗)V (E)) ex-
tending β0, β1, and β|V (E). First, note that if v, w ∈ span(V (A)V (C∗)) ∩ V (E), then 
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since C∗ is independent with E over A, it follows that v, w ∈ V (A). Since τ0 fixes A
pointwise and A = acl(A) (and therefore is closed under β), we have

β0(v, w) = τ0(β(τ−1
0 (v), τ−1

0 (w)))

= τ0(β(v, w))

= β(v, w),

so β0 and β|V (E) agree on their common domain. A symmetric argument shows that β1

and β|V (E) agree on their common domain, using now that C∗ is independent with E
over B. Finally, suppose

v, w ∈ span(V (A)V (C∗)) ∩ span(V (B)V (C∗)).

We know that, in the reduct, C∗ is independent from AB over D and A is independent 
from B over D, so by base monotonicity and transitivity, it follows that A and B are 
independent over C∗. It follows, then, that v, w ∈ V (C∗). Since τ0|C∗ = τ1 ◦ σ|C∗ and σ
preserves β, we have

β0(v, w) = τ0(β(τ−1
0 (v), τ−1

0 (w)))

= (τ1 ◦ σ)(β((σ−1 ◦ τ−1
1 )(v), (σ−1 ◦ τ−1

1 )(w)))

= τ1(β(τ−1
1 (v), τ−1

1 (w)))

= β1(v, w),

so β0 and β1 agree on the intersection of their domains. It follows that the union of β0, 
β1, and β|V (E) determines an alternating form on span(V (C∗)V (E)). After embedding 
over E into MG, we may assume that the structure we have constructed is a substructure 
of MB. By quantifier elimination, the isomorphisms τ0 and τ1 witness that C∗ ≡A C0

and C∗ ≡B C1.
We are left with showing that C∗ |a� D

AB. However, by construction, we know V (C∗)
is independent from V (E) over V (D) and W (C∗) is independent from W (E) over W (D). 
Therefore C∗ ∩ E = D which entails C∗ |a� D

E and therefore C∗ |a� D
AB. �

Definition 3.4. Suppose A, B, C ⊆ MG and denote by Z the center of MG. We write 
A |∗� C

B to indicate that the following hold:

(1) 〈AC〉 ∩ 〈BC〉 = 〈C〉.
(2) 〈A/Z〉 ∩〈B/Z〉 = 〈C/Z〉, where 〈A/Z〉 denotes the subgroup of MG/Z generated by 

the cosets represented by elements of A.
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Lemma 3.5. Suppose A, B, C ⊆MG. Then

A |∗�
C

B ⇐⇒ F (〈AC〉) |a�
F (〈C〉)

F (〈BC〉).

Proof. We prove that the right hand side implies (1) of the definition of |∗� , the rest 
is immediate from Lemma 3.2. Assume that F (〈AC〉) ∩ F (〈BC〉) = F (〈C〉) and let 
x ∈ 〈AC〉 ∩ 〈BC〉. As (〈AC〉/Z) ∩ (〈BC〉/Z) = 〈C〉/Z, there exists c ∈ 〈C〉 such that 
x −c ∈ Z. Now x −c ∈ Z(〈AC〉) ∩Z(〈BC〉) and the latter equals Z(〈C〉) since F (〈AC〉) ∩
F (〈BC〉) = F (〈C〉). So x − c ∈ Z(〈C〉) hence x ∈ 〈C〉. The other inclusion being trivial, 
we have 〈AC〉 ∩ 〈BC〉 = 〈C〉. �
Theorem 3.6. Suppose A, B, C0, C1, D ⊆ MG satisfy A |∗� D

C0, B |∗� D
C1, A |∗� D

B, 
and C0 ≡D C1, then there is C∗ with C∗ ≡AD C0, C∗ ≡BD C1, and C∗ |∗� AB.

Proof. We may assume A = 〈AD〉, B = 〈BD〉, Ci = 〈CiD〉 for i = 0, 1, and D = 〈D〉. 
Fix ϕ : C0 → C1, an isomorphism over D that witnesses that C0 ≡D C1. By Lemma 3.5, 
it follows that F (A) |a� F (D) F (C0), F (B) |a� F (D) F (C1), and F (A) |a� F (D) F (B). More-
over, we have F (C0) ≡F (D) F (C1), witnessed by the F (D)-isomorphism F (ϕ).

Fix a basis d for V (F (D)), then extend this by a to a basis for V (F (A)), by b to a 
basis bd of V (F (B)), and by c0 to a basis c0d of V (F (C0)). Then setting c1 = F (ϕ)(c0), 
we see that c1d is a basis of V (F (C1)). By independence, dac0 is linearly independent so 
can be extended by e0 to a basis dac0e0 for V (F (〈AC0〉)) and, likewise, we can find e1
such that dbc1e1 is a basis for V (F (〈BC1〉)), and we can find f such that dabf is a basis 
for V (F (〈AB〉)). For each X ∈ {A, B, C0, C1, D, 〈AC0〉, 〈BC1〉, 〈AB〉}, we may identify 
the group X with G(x, F (X)), where x is the distinguished basis for X described above. 
Note that, with this identification,

ϕ

((∑
α

rαcα, w

))
=
(∑

α

rαF (ϕ)V (cα), F (ϕ)W (w)
)

,

where α ranges over the indices of c and all but finitely many rα ∈ Fp are equal to zero.
Now we apply Lemma 3.3 to obtain some F∗ such that F∗ ≡F (A) F (C0), F∗ ≡F (B)

F (C1), and F∗ |a� F (D) F (A)F (B). Let f0 : F (〈AC0〉) → 〈F (A)F∗〉 be an isomorphism 

over F (A) and let f1 : F (〈BC1〉) → 〈F (B)F∗〉 be an isomorphism over F (B) such that

f0|F (C0) = (f1 ◦ F (ϕ))|F (C0).

Let c∗ = f0(c0) = f1(c1). Define the group C∗ as G(c∗, F∗). Note that if f0 = (f0,V , f0,W ), 
then we have f0,V (ac0de0) = ac∗de′

0 for some e′
0. Then, we can define a map ϕ0 :

G(ac0de0, F (〈AC0〉)) → G(ac∗de′
0, 〈F (A)F∗〉) by(∑

rαxα, w

)
�→
(∑

rαfV (xα), fW (w)
)

,

α α
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where xα ranges over elements of the basis ac0de0 and all but finitely many rα are 
0. Note that this defines an isomorphism and F (ϕ0) = f0. Similarly, we may de-
fine an isomorphism ϕ1 : G(bc1de1, F (〈BC1〉)) → G(bc∗de′

1, 〈F (B)F∗〉). Note that 
ϕ0|G(d,c0,C0) = (ϕ1 ◦ ϕ)|G(d,c0,C0). By quantifier elimination, we may assume that all 
these structures are embedded in MG over 〈AB〉. Then we have C∗ ≡A C0, C∗ ≡B C1, 
and C∗ |∗� D

AB, by Lemma 3.2. �

By [11, Proposition 5.3], there is an Kim-Pillay-style criterion for NSOP1, allowing 
one to show that a theory is NSOP1 by proving the existence of a well-behaved inde-
pendence relation. The variant of this theorem in [27, Theorem 6.11], moreover, allows 
one to conclude that this independence relation must additionally correspond to Kim-
independence. For the definitions of the relevant properties of an independence relation, 
we encourage the reader to consult [27].

Corollary 3.7. The theory TG is NSOP1 and |∗� = |K� over models.

Proof. It is easy to check that |�
∗ is invariant and satisfies strong finite character, 

symmetry, monotonicity, and existence over models. The independence theorem is es-
tablished in Theorem 3.6. Finally, to show witnessing, suppose M � TG and a � |�

∗
M

b. 
Take a coheir sequence (bi)i<ω over M with b0 = b. Suppose we are given terms t, s
and tuples m, m′ ∈ M . If d = t(a, m) = s(b, m′) and d �∈ M , then, as (bi)i<ω is a coheir 
sequence over M and s(b, m′) �∈ M , we must have that the s(bi, m′) are pairwise distinct, 
so {t(x, m) = s(bi, m′) : i < ω} is inconsistent. Next, consider the case that we have an 
equality d = t(a, m)Z = s(b, m′)Z of cosets of Z with d �∈ M/Z. As before, since (bi)i<ω

is a coheir sequence over M , we must have that the cosets s(bi, m′)Z are pairwise dis-
tinct: if s(b1, m′)Z = s(b0, m′)Z, then the formula (s(y, m′))−1s(b0, m′) ∈ Z must have 
a realization in M , hence s(b0, m′)Z = d ∈ M/Z, against our assumption. This shows 
that {(t(x, m))−1s(bi, m′) ∈ Z : i < ω} is inconsistent. Together these show witnessing, 
so we conclude that |�

∗ = |�
K over M . �

Remark 3.8. It is straightforward to modify the previous arguments to show that TG

satisfies the existence axiom for |�
∗ and that |�

∗ = |�
K over all sets, using the variant 

of the NSOP1 Kim-Pillay theorem in [9, Theorem 6.1]. As we will not use this later, we 
leave this extension to the reader for brevity’s sake.

Corollary 3.9. The theory TB is NSOP1 and |�
K = |�

a over models.

Proof. This follows from Lemma 3.5 and Corollary 3.7, using the interpretation of TB

in TG. �
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3.3. 2-Dependence

In this subsection, we will give a rapid argument that TB is 2-dependent. Although 
the 2-dependence of TG can be deduced from this, the fact that the interpretation of 
TB in TG is not a bi-interpretation makes this route to proving the 2-dependence of TG

excessively cumbersome. We will prove the 2-dependence of TG later, in Corollary 5.19, 
as a consequence of a more general result about the c-dependence of c-nilpotent Lie 
algebras, using the Lazard correspondence.

Definition 3.10. A formula ϕ(x; y0, . . . , yk−1) is said to have the k-independence property
(or IPk) if there are (a0,i, . . . , ak−1,i)i<ω and (bX)X⊆ωk such that, for all X ⊆ ωk,

� ϕ(bX ; a0,i0 , . . . , ak−1,ik−1) ⇐⇒ (i0, . . . , ik−1) ∈ X.

We say a theory T is k-dependent (or NIPk) if no formula has IPk modulo T .

Note that IP1 is exactly the usual independence property and the 1-dependent theories 
are exactly the NIP theories.

Fact 3.11. [7, Theorem 5.12] Let M be an L ′-structure such that its reduct to a language 
L ⊆ L ′ is NIP. Let ϕ(x1, . . . , xd) be an L -formula. For each i ∈ [d], fix some si < ti ∈ [3]
and let fi : Mysi

×Myti
→ Mxi

be an arbitrary binary function. Then the formula

ψ(y1; y2, y3) = ϕ(f1(ys1 , yt1), . . . , fd(ysd
, ytd

))

is 2-dependent.

Lemma 3.12. The theory TB is 2-dependent.

Proof. Let T− denote the reduct of TB to the language L− consisting of the sorts V
and W and the abelian group structure on each, but forgetting the bilinear map. This 
is the theory of two disjoint copies of an infinite dimensional Fp-vector space which is 
interpretable in an Fp-vector space and is therefore stable (even ω-stable). By quantifier 
elimination, every LB-formula ϕ(x1, . . . , xn, y1, . . . , ym), where the xi are in the sort V
and the yi are in the sort W , can be written in the form

ψ(x1, . . . , xn, y1, . . . , ym, (β(xi, xj) : i < j))

where ψ(x, y, z) is a (stable) L−-formula. By Fact 3.11, we can conclude that TB is 
2-dependent. �

The following was pointed out to us by Gabe Conant:
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Remark 3.13. In [45], Terry and Wolf defined a new classification hierarchy called 
NFOPk, which was subsequently developed by Abd Aldaim, Conant and Terry in [1]. 
NFOPk is a promising candidate to be a k-ary extension of stability, the same way NIPk

is a k-ary extension of NIP. Using [1, Theorem 2.16] instead of Fact 3.11 in the proof of 
Lemma 3.12, we immediately conclude that TB is NFOP2. Our proof of the 2-dependence 
of TG also gives that TG is NFOP2.

4. Free amalgamation of Lie algebras

4.1. Stages of the construction

In this section, we fix a natural number c, a prime number p > c and a field F . 
We extend the notations from Definition 3.1. Let Lc,F be the (one-sorted) language 
of F -vector spaces {+,−, 0, (λ·)λ∈F} expanded by a binary function symbol [·, ·] and 
predicates (Pi)1≤i≤c+1. Let Lc be the reduct of Lc,F omitting the functions (λ·)λ∈F .

Definition 4.1.

(1) Let Lc,F be the class of finitely generated Lazard Lie algebras over F of nilpotency 
class ≤ c, in the language Lc,F .

(2) Let Lc,p be the class of finite Lazard Lie algebras over Fp of nilpotency class ≤ c, in 
the language Lc.

(3) We write Gc,p for the class of finite Lazard groups of exponent p and of nilpotency 
class ≤ c in the language of groups expanded by predicates for the Lazard series.

When p > c, the classes Lc,p and Gc,p are uniformly bi-definable via the Lazard 
correspondence, see Subsection 2.3. Further, Lc,p is a particular case of Lc,F . The goal 
of this section is to prove that Lc,F is a Fraïssé class (see Definition 2.1), by proving an 
amalgamation result. We actually prove a stronger result: Lc,F is a free amalgamation 
class in the sense of Baudisch (Definition 4.14 below).

This free amalgam can be compared to an amalgamated free product of structures. 
Although the existence of the free amalgam of graded Lie algebras (a notion equivalent 
to that of an LLA) was claimed by Baudisch in [3], we found it worthwhile to give 
our own account, which differs substantially from the argument of [3]. Section 4.4 gives 
explicitly the induction mentioned (but not proved) by Baudisch in [3], which turns out 
to be highly non-trivial.

Definition 4.2. A basic extension of an LLA A is an extension B ⊇ A such that A is an 
ideal of B and B = 〈Ab〉 for some singleton b. Note, we do not require B to be a proper
extension of A.

The construction of the free amalgam of nilpotent Lie algebras passes through three 
stages.
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(I) (Subsection 4.3) We construct the free amalgam of A = 〈Ca〉 and B = 〈Cb〉 over 
C where both A and B are basic extensions of C. The free amalgam is in this case 
explicitly constructed as a semi-direct product of C and a free nilpotent Lie algebra 
generated by X and Y , where X and Y act on C by derivations in the same way 
as a and b respectively.

(II) (Subsection 4.4) We construct the free amalgam of A and B over C when A is a 
basic extension of C and B is arbitrary. This is achieved using Stage I and induction 
on a certain rank of the extension B of C. This rank computes a certain amount 
of complexity of the extension B/C. It is also witnessed via a particular linear 
basis of B over C, which we called Malcev basis.4 An induction scheme is used 
to construct the amalgam which is rooted in the work of Maier [31].5 The rank 
drops at each step of the induction and yields a first amalgam (denoted by the 
�-amalgam) which is complicated to describe except as “the amalgam resulting 
from the induction scheme”. Revisiting the induction for each case, we prove that 
the �-amalgam obtained satisfies (1), (2) and (3) of Definition 4.14 hence is a free 
amalgam.

(III) (Subsection 4.5) We construct the free amalgam of A and B over C when A and 
B are arbitrary. This is achieved via a standard induction using Stage II.

The conclusion is given in Subsection 4.6: the classes Lc,F , Lc,p are Fraïssé (and 
therefore Gc,p as well, when p > c). The last subsection of Section 4—Subsection 4.7—is 
dedicated to a technical result on the free amalgam which will be used in Section 5 to 
prove that the theories of the Fraïssé limits of Lc,p and Gc,p are NSOP4.

4.2. Free Lazard Lie algebras and Hall sets

4.2.1. Free nilpotent Lie algebras
The goal of this subsubsection is to define the free LLA in a given set of generators. 

Recall that we fix a field F . Every vector space and Lie algebra for the entirety of this 
section will be assumed to be over F .

Definition 4.3. Let X = (X1, . . . , Xn) be a tuple of indeterminates. The free Lie algebra 
(over F) generated by X is the Lie algebra F (X) containing X which satisfies the follow-
ing universal property: for any Lie algebra L and any function f : {X1, . . . , Xn} → L, 
there exists a unique Lie algebra homomorphism g : F (X) → L which extends f .

For any choice of X, the free Lie algebra generated by X exists and is unique up 
to isomorphism (see for instance [5, Proposition 1]). When |X| = 1, we get the free 
Lie algebra on one generator which is an abelian Lie algebra of dimension 1 as an 

4 We called those bases after Malcev for their direct connection with the so-called Malcev coordinates in 
nilpotent groups of exponent p.

5 Maier himself was inspired by the work of Higman [23].
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F -vector space. When |X| ≥ 2, the free Lie algebra will be of infinite dimension as 
an F -vector space. Elements of F (X) will often be identified with Lie polynomials i.e. 
formal expressions obtained by identifying terms of the language {+, 0, [·, ·]} modulo 
the equations [Xi, Xi] = 0 and the Jacobi identity. For any P (X) ∈ F (X) and any 
a = (a1, . . . , an) from some Lie algebra L, the map Xi → ai extends to a Lie algebra 
homomorphism h : F (X) → 〈a1, . . . , an〉 and we will denote h(P (X)) by P (a), the 
evaluation of P in a.

Gradation. Free Lie algebras carry a natural gradation: elements of the free Lie algebra 
are Lie polynomials in the generators and the Lie algebra can be written as the direct 
sum of the Lie monomials of each degree. Lie monomials, or just monomials when it is 
understood from context, in F (X) are inductively defined as follows: every Xi ∈ X is a 
monomial and if P and Q are monomials, then so is [P, Q]. We denote by M(X) the set 
of Lie monomials. We will also need to consider gradations on a free Lie algebra where 
the generators live in a specified summand, which might not be the first summand.

Let N+ = {1, 2, . . .}. Any map f : {X1, . . . , Xn} → N+ extends6 to a map f :
M(X) → N+ such that f defines a gradation of F (X) in the following sense: define

V f
n := span({Q ∈ M(X) | f(Q) = n})

then we have:

• F (X) =
⊕

n∈N
V f

n ,

• [V f
n , V f

m] ⊆ V f
n+m.

This appears for instance in [5, Chapitre 2, §2, Section 6]. By setting

P f
n :=

⊕
k≥n

V f
k ,

we get that (P f
i )i<ω is a Lazard series (of infinite length) in the Lie algebra F (X). The 

map f is entirely determined by the tuple α = (α1, . . . , αn) where αi = f(Xi) hence we 
will for now consider that each tuple α ∈ (N+)n determines a unique gradation (V α

i )i<ω

and a Lazard series (P α
i )i<ω. Then, for each element Q ∈ F (X1, . . . , Xn) \ {0} there 

exists a maximal m and a minimal n such that m ≤ n and

Q ∈ V α
m ⊕ V α

m+1 ⊕ . . .⊕ V α
n .

6 More precisely, as (N+, +) is a magma, the map f extends to a homomorphism of the free magma 
generated by X, and being a magma homomorphism one has f([Xi, Xj ]) = f(Xi) + f(Xj). This map can 
directly be extended to the free Lie algebra in the following way: the map extends to the free F-algebra 
having M(X) as monomials and then to the quotient by the ideal generated by the elements [x, x] and the 
Jacobi identity elements [x, y, z] + [y, z, x] + [z, x, y] to get the corresponding f .
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In this case we call m the α-level of Q and n the α-degree of Q, denoted respectively by 
levα(Q) and degα(Q). We extend those functions to 0 by setting levα(0) = degα(0) = ∞. 
Then P α

n = {Q ∈ F (X1, . . . , Xn) | levα(Q) ≥ n}. An element Q ∈ V α
n for some n is called 

α-homogeneous and such element satisfies degα(Q) = levα(Q).
When α is not mentioned, lev, deg, Pn in F (X) refers to the case where α = (1, . . . , 1), 

and the associated gradation is called the natural gradation. In this case, elements of each 
Vn are called homogeneous.

Example 4.4 (Natural gradation). Consider the gradation given by α = (1, . . . , 1) in 
F (X, Y, . . .). Then X is of level and degree 1, [X, Y ] is of level and degree 2 and X+[X, Y ]
has level 1 and degree 2. The degree behaves like the degree of polynomials and the level 
behaves like a valuation: lev(a +b) ≥ min {lev(a), lev(b)} with equality if lev(a) �= lev(b).

Observe that for all α ∈ Nn and c ∈ N the space P α
c+1 is an ideal of F (X), hence we 

may consider the quotient of F (X) by P α
c+1. This quotient is a Lie algebra of nilpotency 

class at most c. In the case of the natural gradation α = (1, . . . , 1), the Lie algebra 
Fc(X) := F (X)/Pc+1 is of nilpotency class c and is usually called the free c-nilpotent 
Lie algebra. It is easy to deduce the universal property for the Lie algebra Fc(X) in the 
category of c-nilpotent Lie algebras from the universal property for F (X) in the category 
of Lie algebras.

Definition 4.5 (Free Lazard Lie algebra). Given X = (X1, . . . , Xn), α = (α1, . . . , αn) ∈
Nn and c ∈ N, we denote by Fc(X, α) the quotient F (X)/P α

c+1. Then Fc(X, α) is 
nilpotent of nilpotency class at most c. In Fc(X, α), the sequence (Sα

i )1≤i≤c+1 of ideals 
defined by

Sα
i := P α

i /P α
c+1

is a Lazard series in Fc(X, α). The Lie algebra Fc(X, α) equipped with the Lazard series 
(Sα

i )1≤i≤c+1 is called the free Lazard Lie algebra associated to n, α, c.

One easily sees that levα(Q) ≥ lev(1,...,1)(Q) hence Pn ⊆ P α
n in general. It follows 

that Fc(X, α) surjects onto Fc(X) in general, though they need not be isomorphic, see 
Example 4.11.

Recall that in any LLA A and a ∈ A, lev(a) is the maximal i such that a ∈ Pi(A). 
In Fc(X, α), the α-level coincides with the level of the LLA (Fc(X, α), (Sα

i )i). The free 
LLA Fc(X, α) enjoys the following universal property:

For any LLA A and a = (a1, . . . , an) ∈ An such that lev(ai) ≥ αi for each 1 ≤ i ≤ n

then the map Xi → ai extends to a LLA homomorphism Fc(X, α) → A.
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4.2.2. Hall sets
A particular (ordered) linear basis for the free Lie algebra F (X) is given by the set 

of Hall monomials.

Definition 4.6 (Hall sets). Let X = (X1, . . . , Xn). We recursively define linearly ordered 
sets of monomials in F (X), called Hall sets. Start with HS1 = {X1, X2, . . . , Xn} and 
declare X1 < X2 < · · · < Xn. If HS1, . . . , HSn have been defined, then HSn+1 is the set 
of monomials [P, Q] such that

(a) P, Q ∈ HS1 ∪ · · · ∪HSn;
(b) deg(P ) + deg(Q) = n + 1;
(c) P > Q; and
(d) if P = [R, S], then S ≤ Q.

We then linearly order the monomials in HSn+1 and for P ∈ HS1 ∪ · · · ∪ HSn and 
Q ∈ HSn+1 we declare P < Q. Put HS(X1, . . . , Xn) =

⋃
n≥1 HSn. Members of HS are 

called Hall monomials.7

Every monomial of the Hall set HSn is of degree n. By construction, for any Hall 
monomials P and Q, if deg(P ) < deg(Q), then P < Q. Also, if P < Q, then deg(P ) ≤
deg(Q). For any n, the set HSn is a basis of the space of homogeneous polynomials of 
(natural) degree n in F (X), see [21]. In particular, the set HS forms a basis for the free 
Lie algebra F (X).

In the free c-nilpotent Lie algebra Fc(X), Hall monomials of degree larger than c

vanish and the family HS≤c :=
⋃

n≤c HSn is a basis of Fc(X).
There is also a weighted version of Hall sets which we give now. This appears in [29, 

Section 2], where it is called a weighted Hall set. This is similar to [3, Fact 4.2].

Definition 4.7 (Weighted Hall sets). Let X = (X1, . . . , Xn) and α ∈ (N+)n. We recur-
sively define linearly ordered sets of monomials in F (X), called Hall sets. Let HSα

1 be 
those Xi of α-degree 1 and order HSα

1 arbitrarily, for instance Xi < Xj if i < j. If 
HSα

1 , . . . , HSα
n have been defined, then HSα

n+1 is the set of those Xi of α-degree n + 1
together with monomials [P, Q] such that

(a) P, Q ∈ HSα
1 ∪ . . . ∪HSα

n;
(b) degα(P ) + degα(Q) = n + 1;
(c) P > Q; and
(d) if P = [R, S], then S ≤ Q.

7 These are known as basic commutators in the literature, this terminology comes from the fact that they 
form a basis of the free Lie algebra.
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We then linearly order the monomials in HSα
n+1 and for P ∈ HSα

1 ∪ · · · ∪ HSα
n and 

Q ∈ HSα
n+1 we declare P < Q. Put HSα(X1, . . . , Xn) =

⋃
n≥1 HSα

n. Members of HSα are 
called (weighted) Hall monomials.

We again get that HSα
d is a basis of the space of α-homogeneous polynomials of α-

degree d.

Remark 4.8 (Witt formula). The cardinality of HSd, i.e. the number of Hall monomials 
of degree d in the free Lie algebra with n generators is given by the Witt formula

1
d

∑
k|d

μ(k)nd/k,

where μ is Möbius function. See [5, Ch. II, §3, Théorème 2]. It follows that the dimension 
of Fc(X) is

c∑
d=1

1
d

∑
k|d

μ(k)nd/k.

Note that the dimension of Fc(X, α) only depends on c, n and α, we denote it gn,c(α) or 
just g(α). There should exist an explicit description of the function g. For any α ∈ (N+)n

we have Pn ⊆ P α
n , hence the dimension of Fc(X, α) = F (X)/P α

c+1 is less than or equal 
to the dimension of Fc(X) = F (X)/Pc+1. Thus

g(α) ≤ g(1, . . . , 1) =
c∑

d=1

1
d

∑
k|d

μ(k)nd/k.

Remark 4.9 (A construction of weighted Hall sets). We now describe an easy recipe 
for obtaining weighted Hall bases given the existence of unweighted ones. Let X =
(X1, . . . , Xn) and α = (α1, . . . , αn) be given. For each i = 1, . . . , n let Y i

1 , . . . , Y i
αi

be new 
variables and consider a Hall set HS in the free algebra F ((Y 1

k )k≤α1 , . . . , (Y n
k )k≤αn

) and 
pick Zi ∈ 〈Y i

1 , . . . , Y i
αi
〉 ∩ HS of degree αi for each i. The Lie algebra L = 〈Z1, . . . , Zn〉

is free by the Shirshov–Witt Theorem [42,46], hence L is isomorphic to F (X1, . . . , Xn). 
Let H be the set of those monomials in HS which only involve Zi, then H is a weighted 
Hall set of L for the gradation given by α.

Remark 4.10 (Weighted Hall sets in two variables). In the case of two variables (X, Y )
and given a gradation (α, β), the situation is easier. The weighted Hall monomials HSα,β

are constructed following the same algorithm as in the unweighted case with the only 
constraint that X and Y are ordered consistently with the order of α and β, i.e. X < Y

if and only if α < β. Then X, Y are elements of minimal α-degree, the next monomial 
in the Hall basis is [X, Y ] (or [Y, X]) and the iterative construction of the Hall set 
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follows the same procedure as in the unweighted case. This allows us to forget about 
the differences between weighted and unweighted Hall monomials in what concerns their 
iterative construction, as we will only consider them in two variables in the construction 
of the free amalgam of two basic extensions.

We now illustrate the notions above with concrete examples.

Example 4.11. We consider F3(X, Y, α, β) in the case of nilpotence class 3, with two 
different initial conditions.

If α = β = 1, then the Hall set is given by

HS≤3 = {X < Y < [Y, X] < [[Y, X], X] < [[Y, X], Y ]}

and P4 = HS≥4, so F (X, Y, 1, 1) is identified with the vector 
span of HS≤3. In particular, dim(F3(X, Y, α, β)) = 5.

X Y

[Y, X]

[[Y, X], X]
[[Y, X], Y ]

P3

P2

P1

If α = 1, β = 2, one computes:

Q degα,β(Q)
X 1
Y 2

[Y, X] 3
[[Y, X], X] 4
[[Y, X], Y ] 5

The Hall sets are: HSα,β
1 = {X}, HSα,β

2 = {Y }, HSα,β
3 =

{[Y, X]}, HSα,β
4 = {[[Y, X], X]}, HSα,β

5 = {[[Y, X], Y ]}. In par-
ticular, P α,β

4 = HSα,β
≥4 hence dim(F3(X, Y, α, β)) = 3.

X

Y

[Y, X]
P3

P2

P1

4.3. Stage I - basic extensions

Recall that all vector spaces and Lie algebras will be considered to be taken over F . 
Additionally, we fix a c and will write ‘LLA’ to mean ‘Lazard Lie algebra over F of 
nilpotence class at most c’ for the rest of the section, unless otherwise specified. Recall 
(Definition 2.10) that the level lev(a) is defined as the maximal i ≤ c + 1 such that 
a ∈ Pi.

Definition 4.12. For LLAs B ⊆ A, the level of A over B, denoted lev(A/B), is defined 
to be the maximal 1 ≤ i ≤ c + 1 such that A = span(BPi(A)).

The goal of this subsection is to prove the following theorem.

Theorem 4.13. Let A, B, C be LLAs of nilpotency class ≤ c with A, B basic extensions of 
C. Assume that A = 〈Ca〉 and B = 〈Cb〉 with lev(a), lev(b) maximal with this property. 
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Let α = lev(a), β = lev(b). Then there exists a strong amalgam S of A and B over C
such that the following conditions are satisfied:

(1) in S, we have 〈a, b〉 ∼= Fc(X, Y, α, β) via the map a �→ X, b �→ Y ;
(2) C is an ideal of S;
(3) there exists an ideal D of S containing B such that S = 〈Da〉 is a basic extension 

of D and lev(D/B) = lev(a) + lev(b).

In (3), D = 〈Bh3 . . . hk〉, where (hi)3≤i≤k is an enumeration of Hall monomials in HSα,β

without X and Y .

Proof. We define the amalgam S as follows. Consider the free Lazard Lie algebra F =
Fc(X, Y, α, β). As C is an ideal of both A and B, ad(a)|C and ad(b)|C define derivations 
on C. Moreover, ad(a)|C and ad(b)|C are in Dα and Dβ respectively in the associated 
Lazard series on DerLaz(C), by Lemma 2.12. By the universal property of Fc(X, Y, α, β), 
the function X �→ ad(a)|C and Y �→ ad(b)|C gives rise to a unique LLA homomorphism 
g : F → DerLaz(C). We define S = C � F to be the associated semi-direct product. We 
interpret the predicates by

Pi(S) = Span(Pi(C) ∪ Pi(F )).

If c ∈ Pi(C), d ∈ Pj(C) and u ∈ Pi(F ), v ∈ Pj(F ) then

[c + u, d + v] = [c, d]− g(v)(c) + g(u)(d) + [u, v]

It is clear that [c, d] ∈ Pi+j(C) and [u, v] ∈ Pi+j(F ). Further, as g is an LLA homomor-
phism, g(v) ∈ Dj hence g(v)(c) ∈ Pi+j(C). Similarly, g(u)(d) ∈ Pi+j(C). We conclude 
that [c + u, d + v] ∈ Pi+j(S) hence (Pi(S))1≤i≤c+1 is a Lazard series on S. Now we check 
that this S is the desired amalgam. Observe that properties (1) and (2) are satisfied by 
construction.

Next, note that the map ι : A → 〈C, X〉, defined to be the identity on C and mapping 
a �→ X, is an LLA isomorphism, where 〈C, X〉 is the subalgebra of S generated by C
and X. It is clearly an isomorphism of the underlying vector spaces, since C is an ideal 
of both and thus, as vector spaces, we have A = C ⊕ 〈a〉 and 〈C, X〉 = C ⊕ 〈X〉. It 
also respects the predicates for the Lazard series on S. Finally, if we are given arbitrary 
c + γa, c′ + γ′a ∈ A, where c, c′ ∈ C and γ, γ′ ∈ F , we have

ι([c + γa, c′ + γ′a]) = ι([c, c′] + γad(a)(c′)− γ′ad(a)(c)) = [c, c′] + γ[X, c′]− γ′[X, c].

Similarly, we have

[ι(c + γa), ι(c′ + γ′a)] = [c + γX, c′ + γ′X].
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By bilinearity, this easily implies that ι is a Lie algebra homomorphism and therefore 
ι is an LLA isomorphism. This shows that, via ι, A embeds into S over C. A parallel 
argument shows that B embeds into S over C, and thus S is an amalgam. Since 〈C, X〉 ∩
〈C, Y 〉 = C, this amalgam is strong.

Thus, we only are left with showing (3). If we set D = 〈Bh3 . . . hk〉, where (hi)3≤i≤k

is an enumeration of Hall monomials in HSα,β without X and Y , then, since [X, Y ] ∈
Pα+β(S) (or [Y, X] ∈ Pα+β(S)) is the monomial of minimal degree in the Hall basis, 
excluding X and Y , we have lev(D/B) = α + β = lev(a) + lev(b). Since the Hall basis is 
a basis of S over C and [X, hi] ∈ Span(h3, . . . , hk) for all i > 1, we know D is an ideal 
of S and S = 〈D, X〉 is a basic extension of D. �
4.3.1. What is the amalgam constructed by Baudisch?

Recall Baudisch’s definition of the free amalgam.

Definition 4.14 (Baudisch). Let A, B, C be LLAs with embeddings f0 : C → A, g0 : C →
B. We say that S is a free amalgam of A and B over C if S is an amalgam of A and B
over C, with embedding f1 : A → S, g1 : B → S with f1 ◦ f0 = g1 ◦ g0 and such that the 
following three conditions hold, for A′ = f1(A), B′ = g1(B), C ′ = (f1 ◦ f0)(C):

(1) S = 〈A′B′〉;
(2) (Strongness) A′ ∩B′ = C ′;
(3) (Freeness) for any LLA D and any LLA homomorphisms f : A → D and g : B → D, 

there exists a (unique) h : S → D such that the following diagrams commute.

A

C S D

B

f1

f

f0

g0

h

g1

g

We denote the free amalgam S by A ⊗C B.

Remark 4.15. Under condition (1) if a map h satisfying (3) exists, then it is unique. 
Thus, we will allow ourselves to talk about the free amalgam of A and B over C.

Remark 4.16 (The free amalgam is unique up to isomorphism over C). Let S and S′ be 
two free amalgams of A and B over C. Then S ∼= S′. By Remark 4.15, we may assume 
that A, B are finitely generated over C. By considering images, assume that A, B, C ⊆ S. 
Let f : A → S′ and g : B → S′ be embeddings agreeing on C and let A′, B′, C ′ be the 
images of A, B, C in S′. By the freeness property, there is a homomorphism h : S → S′

which commutes with the inclusions C ⊆ A ∩ B and the isomorphism f : A ∼= A′ and 
g : B ∼= B′. We have that h is surjective as S′ = 〈A′B′〉. The same argument yields that 



668 C. d’Elbée et al. / Journal of Algebra 662 (2025) 640–701
there is a surjective homomorphism from S′ → S. As S and S′ are finitely generated 
over C, h is an isomorphism. Note that the strongness condition is not used for the 
uniqueness, only properties (1) and (3). This definition is designed to make the strong 
amalgam unique, if it exists.

Lemma 4.17. Let C, A be LLAs. If C is an ideal of 〈AC〉, then 〈AC〉 = span(AC).

Proof. We may assume that A, C are finitely generated. Let c = (c1, . . . , cn) and 
a = (a1, . . . , am) be generators of C (resp. A) as LLAs. Let γ = (γ1, . . . , γn) and 
α = (α1, . . . , αm) be the levels of c and a. Let X = (X1, . . . , Xn), Y = (Y1, . . . , Ym)
and F = Fc(X1, . . . , Xn, Y1, . . . , Yn, γ, α). Let H be a Hall basis of F . The surjec-
tive endomorphism F → 〈C, A〉 given by the universal property of F implies that 
H0 = {P (c, a) | P (X, Y ) ∈ H} is a generating subset of 〈AC〉 as a vector space. We 
prove that for each P ∈ H, either P (c, a) ∈ C or P (c, a) ∈ A. We prove it by induction 
on the complexity. If P (X, Y ) is X or Y then P (c, a) is in C or A. By induction, assume 
that P = [Q, R] for P, Q, R ∈ H. By induction hypothesis, Q(c, a) and R(c, a) are in A
or C. If either one is in C then so is P as C is an ideal. Otherwise both Q and R are in 
A hence P is in A. �

Here is a cheap way to get free amalgams in the sense of Definition 4.14.

Lemma 4.18. Let C ⊆ A ∩ B be LLAs and let S be an amalgam of A and B over C

with S = 〈AB〉. Let a = (a1, . . . , an) and b = (b1, . . . , bm) be bases of A and B over C
respectively. If

(1) C is an ideal of S
(2) 〈ab〉 ∩ C = {0}
(3) 〈ab〉 ∼= F (X, Y, lev(a), lev(b))

Then S satisfies (1), (2), and (3) of Definition 4.14. In particular, the existence of 
such an S implies A ⊗C B exists (here X = (X1, . . . , Xn) and lev(a) denotes the tuple 
(lev(a1), . . . , lev(an)) and likewise for Y and lev(b)).

Proof. Condition (3) implies that a ∪ b is linearly independent over ∅, hence by (2) we 
have A ∩ B = C. It remains to prove the freeness condition. By (1), C is an ideal of 
〈C〈ab〉〉 hence S = 〈AB〉 = span(C, 〈ab〉) by Lemma 4.17. Then S = C⊕〈ab〉, as a vector 
space, by (2). Let f : A → D and g : B → D be homomorphisms such that f(c) = g(c)
for all c ∈ C. Let j0 = f � C : C → D. We extend j0 to j : S → D. By (3) there is 
a Hall basis H of 〈ab〉 and we define j1 : 〈ab〉 → D by the universal property of the 
free LLA. More precisely we define j1 inductively: for ai, bi we define j1(ai) = f(ai) and 
j1(bi) = g(bi). For P ∈ H there exists a unique pair (Q, R) ∈ H such that P = [Q, R]. 
Inductively, j1 is defined on Q, R and we define j1(P ) := [j1(Q), j1(R)]. This defines 
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an LLA homomorphism j1 : 〈ab〉 → D. As S = C ⊕ 〈ab〉, j := j0 + j1 defines a linear 
homomorphism. We check that it preserves the Lie bracket. Note that as C is an ideal, 
hence for c, c′ ∈ C, u, v ∈ 〈ab〉

[c + u, c′ + v] = [c, c′] + [c, v] + [u, c′]︸ ︷︷ ︸
∈ C

+[u, v].

It follows that j([c + u, c′ + v]) = j0([c, c′]) + j0([c, v]) + j0([u, c′]) + j1([u, v]) =
[j0(c), j0(c′)] + j0([c, v]) + j0([u, c′]) + [j1(u), j1(v)] hence by bilinearity it is enough to 
check that j([c, P ]) = [j(c), j(P )] for all c ∈ C, P ∈ H. We proceed by induction. If 
P = ai (or P = bi) then it follows from the fact that f (resp. g) is a Lie algebra homo-
morphism. If P = [Q, R] for Q, R ∈ H, we have [c, P ] = [[c, Q], R] +[Q, [c, R]]. As C is an 
ideal, [c, Q] ∈ C hence by the induction hypothesis on R, j([[c, Q], R]) = [j([c, Q]), j(R)]. 
By the induction hypothesis (on Q) we have j([c, Q]) = [j(c), j(Q)] hence in turn 
j([[c, Q], R]) = [[j(c), j(Q)], j(R)]. Similarly j([Q, [c, R]]) = [j(Q), [j(c), j(R)]], so, using 
bilinearity and the Jacobi identity backwards:

j([c, P ]) = j([[c, Q], R]) + j([Q, [c, R]]) = [j(c), [j(Q), j(R)]]

As j extends j1 we have [j(Q), j(R)] = j([Q, R]) = j(P ) hence we conclude j([c, P ]) =
[j(c), j(P )]. �
Remark 4.19. Of course, the converse of Lemma 4.18 does not hold in general: take 
A = 〈a〉 and B = 〈b1, b2〉 with b1, b2 not free (e.g. [b1, b2] = 0), then there is no such 
amalgam of A and B.

Corollary 4.20. The amalgam constructed in Theorem 4.13 is a free amalgam. In partic-
ular for singletons a, b, C with C an ideal of 〈Ca〉 and 〈Cb〉 the free amalgam of 〈Ca〉
and 〈Cb〉 over C exists. Finally, the following are equivalent:

(1) 〈Cab〉 ∼= 〈Ca〉 ⊗C 〈Cb〉
(2) (a) C is an ideal of 〈Cab〉

(b) 〈ab〉 ∩ C = {0}
(c) 〈ab〉 ∼= F (X, Y, deg(a), deg(b))

Proof. By Theorem 4.13 and Lemma 4.18, for any such C, a, b an amalgam satisfying 
(a), (b), (c) exists and this amalgam is free. (2) implies (1) is Lemma 4.18. Now assume 
that 〈Cab〉 ∼= 〈Ca〉 ⊗C〈Cb〉 and let S be the amalgam of 〈Ca〉 and 〈Cb〉 over C constructed 
from Theorem 4.13. Then S is also free hence by the uniqueness of the free amalgam we 
have S ∼= 〈Ca〉 ⊗C 〈Cb〉 hence via the isomorphism, 〈Cab〉 satisfies (a), (b), (c). �
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Definition 4.21. For all A, B, C subsets of a common c-nilpotent LLA over F , we define

A |⊗�
C

B ⇐⇒ 〈ABC〉 ∼= 〈AC〉 ⊗C 〈BC〉

Proposition 4.22. The relation |⊗� satisfies symmetry, invariance, stationarity, and tran-
sitivity. Furthermore, if |⊗� satisfies full existence (for all A, B, C there exists A′ ≡C A

such that A′ |⊗� C
B) then it also satisfies monotonicity and base monotonicity, hence 

|⊗� is a stationary independence relation in the sense of [44].

Proof. This follows from [3, Theorem 3.4], with the observation that the proofs of sym-
metry, invariance, stationarity, and transitivity do not use full existence.8 �
4.4. Stage II - induction on the rank

4.4.1. Malcev sets
Observe the following consequence of Lemma 4.17:

Corollary 4.23. If C � 〈Ca1〉 � 〈Ca1a2〉 � . . . � 〈Ca1 . . . an〉 then 〈Ca1 . . . am〉 =
spanF (Ca1 . . . am) for all m ≤ n.

Proof. Let x be in 〈Ca1 . . . am〉. As 〈am〉 = span(am), span(am) is an LLA so by 
Lemma 4.17 there exists λm ∈ F and y ∈ 〈Ca1 . . . am−1〉 such that x = y + λmam. 
By induction hypothesis, there exists λ1, . . . , λm−1 ∈ F such that y = c +

∑m−1
i=1 λiai

hence x = c +
∑m

i=1 λiai ∈ spanF (Ca1, . . . , am). �
Recall from Corollary 4.20: for singletons a, b with C an ideal of 〈Ca〉 and 〈Cb〉, we 

have a |⊗� C
b if and only if

(1) C is an ideal of 〈Cab〉
(2) 〈ab〉 ∩ C = {0}
(3) 〈ab〉 ∼= F (X, Y, deg(a), deg(b))

Corollary 4.24. Assume that C is an ideal of 〈Ca〉 and 〈Cb〉 for singletons a, b. If a |⊗� C
b, 

then for all E ⊆ C with E � 〈Ea〉 and E � 〈Eb〉 we have a |⊗� E
b.

Proof. If E � 〈Ea〉 and E � 〈Eb〉 then a |⊗� E
b is equivalent to

(1) E is an ideal of 〈Eab〉

8 Note that what is here called full existence is what was called existence in [3] and the literature at that 
time. Existence is nowadays understood to refer to the property A |�C

C for all A, C. Full existence follows 
from existence and extension: if A |� B and C ⊆ B ⊆ D then there exists A′ ≡BC A such that A′ |� D.
C C
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(2) 〈ab〉 ∩E = {0}
(3) 〈ab〉 ∼= F (X, Y, deg(a), deg(b))

As E ⊆ C only Condition (1) needs to be checked. Let h1, . . . , hl be the Hall basis, 
evaluated in (a, b), with h1 = a and h2 = b. Then 〈Eab〉 = spanF (E(hi)1≤i≤l) and we 
prove by induction that E is an ideal of 〈Eab〉. For h1 = a and h2 = b we have, for all 
e ∈ E, [e, h1] ∈ E and [e, h2] ∈ E as E is an ideal of 〈Ea〉 and 〈Eb〉. Then for each k ≥ 3
there exists i, j ≤ k such that [hi, hj ] = hk. Then by induction we see that, for all e ∈ E, 
[e, hk] = [[e, hi], hj ] + [hi, [e, hj ]] ∈ E so we conclude. �
Remark 4.25. For singletons a, b we actually always have E � 〈Ea〉 and E � 〈Eb〉 iff 
E � 〈Eab〉.

Definition 4.26. A tuple a = (a1, . . . , an) is called a Malcev tuple over an LLA C (or 
simply Malcev over C) if a is linearly independent over C and for all i = 1, . . . , c we have

spanF (CPi(〈Ca〉)) = spanF (CPi(a)).

Here we write Pi(a) for the subtuple of a contained in Pi. If A = 〈Ca〉 we call a a Malcev 
basis of A over C.

Remark 4.27. Note that we always have the inclusion spanF (CPi(〈Ca〉)) ⊇
spanF (CPi(a)). Below we list some easy facts.

(1) If a = (a1, . . . , an) is Malcev over C then there is a re-indexing of a such that for 
some n = k1 ≥ . . . ≥ kc ≥ 1 we have

spanF (CPi(〈Ca〉)) = spanF (Ca1 . . . aki
).

Namely, re-index a so that lev(ai) ≥ lev(ai+1) and apply Corollary 4.23. Then we 
also have:

C � 〈Ca1〉 � . . . � 〈Ca1 . . . an〉

and hence 〈Ca1 . . . ai〉 = spanF (Ca1 . . . ai) for all i = 1, . . . , n. We will now call it an 
ordered Malcev basis/tuple.

(2) It is easy to see that for a = (a1 . . . an) with lev(ai) ≥ lev(ai+1), the tuple a is 
Malcev over C if and only if (ak+1, . . . , an) is Malcev over Ca1 . . . ak and a1 . . . ak is 
Malcev over C, for all 1 ≤ k ≤ n.

Proof. For the forward direction, fix 1 ≤ k ≤ n and A = 〈Ca1, . . . , ak〉. We prove 
that span(APi(〈Aak+1, . . . , an〉) = span(APi(ak+1, . . . , an)). Fix 1 ≤ i ≤ c +1. From 
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(1) we have C � 〈Ca1〉 � . . . � 〈Ca1, . . . , an〉 hence A = span(Ca1, . . . , ak) and 
〈Aak+1, . . . , an〉 = span(Ca1, . . . , an). As a is Malcev over C, it follows that

Pi(〈Aak+1, . . . , an〉) ⊆ span(Ca1, . . . , as)

where 1 ≤ s ≤ n is such that Pi(a) = (a1, . . . , as). If s ≤ k, then

span(APi(〈Aak+1, . . . , an〉) = A

and we conclude since Pi(ak+1, . . . , an) = ∅. If s > k then

span(APi(〈Aak+1, . . . , an〉) = span(Aak+1, . . . , as)

and we conclude since (ak+1, . . . , as) = Pi(ak+1, . . . , an). The same sort of argu-
ment yields that a1, . . . , ak is Malcev over C. The converse is a particular case of 
Lemma 4.28 (1) below. �

(3) By (1) if a = (a1, . . . , an) is Malcev over C then

〈Ca1 . . . an〉 = spanF (Ca1 . . . an)

This is regardless of the indexing of the ai.
(4) For any LLA extension B ⊆ A there exists an ordered Malcev basis a1, . . . , an such 

that A = 〈B, a1, . . . , an〉 = span(B, a1, . . . , an). This is obtained by iteratively taking 
bases of the complement of B in Pc(A), in Pc−1(A), etc. Another way of seeing this: 
observe that B is an ideal of span(BPc(A)) which is an ideal of span(BPc−1(A)), 
etc. which is an ideal of span(BP1(A)) = A and a Malcev basis is given by taking 
iteratively bases of span(BPi(A)) over span(BPi+1(A)). For such basis, we have 
lev(ai) ≥ lev(ai+1) so we see that an is of minimal level among the a′

is.
(5) If a tuple a = (a1, . . . , an) is Malcev over C then it is not necessarily the case that 

every subtuple of a is Malcev over C. To see this, consider a Lie algebra with basis 
a1, a2, a3 such that [a2, a3] = a1 and every other bracket [ai, aj ] with i < j is trivial. 
Then for lev(a1) ≥ lev(a2) ≥ lev(a3) we have that (a1, a2, a3) is an ordered Malcev 
basis of A = 〈a1, a2, a3〉, over {0} in particular it is Malcev over {0} but a2, a3 is not 
Malcev over {0}.

(6) Consider the following example: let b be in P1 \ P2 and B = spanF (b). Let a be in 
P2 \ P3 and define the bracket to be trivial on A = span(a, b). We have c = a + b ∈
P1\P2 and a +b ∈ span(BP2(A)) and lev(a +b) = 1, hence lev(span(BP2(A))/B) = 1. 
We have A = 〈B, a〉 = 〈B, c〉. Here both a and c satisfy 〈Ba〉 = span(Ba) and 
〈Bc〉 = span(Bc) but only a is Malcev over B.

(7) By the previous point if for some B and a = (a1, . . . , an) we have 〈Ba1 . . . an〉 =
span(Ba1 . . . an) then a is not necessarily Malcev over B.
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(8) If 〈Ca〉 ⊗C 〈Cb〉 = 〈C(hi)i〉 = spanF (C(hi)i) is as in Corollary 4.20, where h1, . . . , hk

are (evaluated) Hall polynomials from HSα,β where α = lev(a) and β = lev(b). Then 
hk, . . . , h1 is a (ordered) Malcev basis of 〈Ca〉 ⊗C 〈Cb〉 over C, see Proposition 4.29.

Lemma 4.28. Let L be any LLA and let a, b be tuples and C a subalgebra of L.

(1) If a is Malcev over 〈Cb〉 and b is Malcev over C, then ab is Malcev over C.
(2) If b is Malcev over C and ab is Malcev over C, then a is Malcev over Cb.
(3) If a is Malcev over 〈Cb〉 and ab is Malcev over C, then b is Malcev over C.

In short, any two of the three Malcev conditions between a, b and C above imply the third.

Proof. For an ease of notation, we say M(x/D) holds if x is Malcev over 〈D〉. Recall

(i) M(a/Cb) if and only if a is independent over 〈Cb〉 and for any k we have 
span(〈Cb〉Pk(〈Cab〉) = span(〈Cb〉Pk(a));

(ii) M(b/C) if and only if b is independent over C and for any k we have span(CPk(〈Cb〉)
= span(CPk(b)) and

(iii) M(ab/C) if and only if ab is independent over C and for any k we have 
span(CPk(〈Cab〉) = span(CPk(ab)).

Proof of (1): Assume (i) and (ii) from above hold. We want to establish (iii). One easily 
checks that ab is still linearly independent over C. For the equality of the spans, consider 
x ∈ span(CPk(〈Cab〉) arbitrary. We can write

x = c1 + y

for some c1 ∈ C and y ∈ Pk(〈Cab〉). By (i), we know x ∈ span(〈Cb〉Pk(〈Cab〉)) =
span(〈Cb〉Pk(a)), whence

x = β +
∑

i

λiai

for some λi ∈ F , ai from Pk(a) and β ∈ 〈Cb〉. As Pk(L) is a subalgebra, observe that 
also y −

∑
i λiai = β − c1 is in Pk(L). Further, as β, c1 ∈ 〈Cb〉, we get that actually 

β− c1 ∈ Pk(〈Cb〉) and by (ii) we infer that β− c1 ∈ span(CPk(b)). Thus, we find c2 ∈ C

and μi ∈ F such that β − c1 = c2 +
∑

i μibi for bi ∈ Pk(b). This yields,

x = β +
∑

i

λiai = c1 + c2 +
∑

i

μibi +
∑

i

λiai ∈ span(CPk(ab)),

as desired.

Proof of (2): Now assume (ii) and (iii) hold. We want to establish (i). To see that 
a is linearly independent over 〈Cb〉, recall that by (ii) and Remark 4.27 (3), we get 
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that 〈Cb〉 = span(Cb) and use that, by (iii), we know that ab is linearly independent 
over C. Now we need to take care of the equality of spans. To this end, consider x ∈
span(〈Cb〉Pk(〈Cab〉)) arbitrary. Then there are β ∈ 〈Cb〉 and y ∈ Pk(〈Cab〉) such that 
x = β + y. By (iii), we get y ∈ span(CPk(ab)), whence y = c +

∑
i λiai +

∑
i μibi, for 

some c ∈ C, ai ∈ Pk(a), bi ∈ Pk(b) and λi, μi ∈ F . Thus

x =
(

β + c +
∑

i

μibi

)
+
∑

i

λiai

and as β + c +
∑

i μibi ∈ 〈Cb〉, we conclude x ∈ span(〈Cb〉Pk(a)), as desired.

Proof of (3): Finally, assume (i) and (iii) hold. We need to establish (ii). Clearly, b is 
independent over C by (iii). Now, as above, pick x ∈ span(CPk(〈Cb〉) arbitrary. By (iii), 
we have x ∈ span(CPk(ab)). But by choice we know that x ∈ 〈Cb〉 and as (i) yields that 
a is linearly independent over 〈Cb〉, it is easy to conclude that indeed x ∈ span(CPk(b)), 
as desired. �
Proposition 4.29. Let a, b be singletons and let A = 〈Ca〉 and B = 〈Cb〉 be basic exten-
sions of C. Let S = A ⊗C B and (h1, . . . , hk) be an enumeration of the evaluated Hall 
monomials in a and b, with h1 = a, h2 = b, and h3 = [a, b]. Then

(1) (h1, . . . , hk) is a Malcev basis of S over C,
(2) (a, h3, . . . , hk) is Malcev over C,
(3) (b, h3, . . . , hk) is Malcev over C,
(4) (h3, . . . , hk) is Malcev over A and over B.

Proof. (1) We may assume that lev(hi) ≥ lev(hi+1) for all i = 1, . . . , k − 1. By 
Corollary 4.20 and Lemma 4.17, (h1, . . . , hk) is a linear basis of S over C. Let 
i ∈ {1, . . . , c} and let ni ≤ k such that Pi(h1, . . . , hk) = (hni

, . . . , hk). By Theo-
rem 4.13, Pi(S) is defined as Pi(C) ⊕ Pi(〈a, b〉). As 〈a, b〉 ∼= F (X, Y, lev(a), lev(b)), 
we have Pi(〈a, b〉) = span(hni

, . . . , hk) hence span(CPi(S)) = span(Chni
. . . hk), so 

(h1, . . . , hk) is a Malcev basis over C.
(2) As in (1), we may assume that lev(hi) ≥ lev(hi+1) for all i = 1, . . . , k − 1 and that 

1 = n1 ≤ . . . ≤ nc ≤ k are such that Pi(h1, . . . , hk) = (hni
, . . . , hk). It is clear 

that h′ = (a, h3, . . . , hk) is linearly independent over C. In particular, we still have 
Pi(〈Ch′〉) = Pi(C) + Pi(〈h′〉), so it is enough to prove that Pi(〈h′〉) = span(Pi(h′)). 
First, by Theorem 4.13, we have 〈a, b〉 ∼= F (X, Y, lev(a), lev(b)). In particular, b /∈ 〈h′〉
and from 〈h1, . . . , hk〉 = span(h1, . . . , hk) we obtain 〈h′〉 = span(h′). Then

Pi(〈h′〉) = 〈h′〉 ∩ Pi(〈h1, . . . , hk〉)
= span(h′) ∩ span(hni

, . . . , hn)

= span(Pi(h′)).
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(3) Same as (2) by symmetry.
(4) As A is a basic extension of C, a is Malcev over C. Using (2) and Lemma 4.28 (2) 

we get that (h3, . . . , hk) is Malcev over A. The argument for B is symmetric. �
Remark 4.30 (Malcev calculus). Lemma 4.28 can be seen as a list of basic operations for 
obtaining new Malcev tuples from old ones. For any tuples a, b, we denote M(a/bC) to 
express “a is Malcev over 〈Cb〉”. We have the Malcev triangle:

M(a/Cb) M(b/C)

M(ab/C)

where by Lemma 4.28 every two vertices imply the third. For instance, one easily de-
duces M(a/Cbh3, . . . , hk) and M(bh3, . . . , hk/Ca) from Proposition 4.29. This “Malcev 
calculus” will be heavily used later, in particular in the proof of Theorem 4.47.

4.4.2. Rank of LLA extensions
Recall (Definition 4.12) that, given LLAs B ⊆ A, the level lev(A/B) is the maximal 

1 ≤ i ≤ c + 1 such that A = span(BPi(A)). Recall that as far as levels of elements 
are concerned, the addition is “truncated” in {1, . . . , c + 1} in the sense that for i, j ∈
{1, . . . , c + 1} we have that i + j takes the value c + 1 if the numerical value of i + j is 
≥ c + 1.

Definition 4.31. Given LLAs B ⊆ A with A finite-dimensional over B, we define the rank 
of A over B, denoted rk(A/B) to be the pair (ν, n) where ν = lev(A/B) and n is the 
dimension of span(BPν(A)) over span(BPν+1(A)) if ν �= c + 1 or n = 0 if ν = c + 1.

We order those pairs in a counter-intuitive way:

(μ, m) ≺ (ν, n) ⇐⇒
{

μ > ν or
ν = μ and m < n

.

Remark 4.32. Some easy facts.

(1) rk(A/B) = (c + 1, 0) if and only if A = B.
(2) Assume that rk(A/B) = (ν, n) and B � A. Let a1, . . . , ak be a Malcev basis of A

over B. Then ν = lev(A/B) is the minimum of the levels of ai and n is the number 
of elements among a1, . . . , ak which are of level ν.

(3) Let C ⊆ B ⊆ A be LLA, then lev(A/B) ≥ lev(A/C). Indeed, for ν = lev(A/C) we 
have A = span(CPν(A)) hence also A = span(BPν(A)) so we have
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ν ≤ max {i ≤ c + 1 | A = span(BPi(A))} = lev(A/B).

(4) Assume that C ⊆ B are LLAs and for some singleton a we have B � 〈Ba〉 then 
lev(〈Ba〉/C) ≥ lev(B/C) hence rk(B/C) � rk(〈Ba〉/C).

Proof. First, we prove that lev(B/C) ≥ lev(〈Ba〉/C). Let lev(a) = μ and 
lev(B/C) = ν. If μ ≥ ν, then a ∈ Pν(〈Ba〉) and 〈Ba〉 = span(CPν(〈Ba〉) so 
lev(〈Ba〉/C) = ν = lev(B/C). If μ < ν then 〈Ba〉 = span(CPμ(〈Ba〉) and 
lev(〈Ba〉/C) = μ < ν = lev(B/C). �

(5) For A = 〈Ca〉 and B = 〈Cb〉 basic extensions of C we have

(a) rk(A ⊗C B/A) = (lev(b), 1)
(b) rk(A ⊗C B/B) = (lev(a), 1)
(c) If A ⊗C B = 〈Da〉 = 〈D′b〉 for some A ⊆ D′ � 〈D′b〉, B ⊆ D � 〈Da〉 then 

rk(D/B) = rk(D′/A) = (lev(a) + lev(b), 1) This follows from Proposition 4.29
(4).

4.4.3. Construction of a �-amalgam
In this subsubsection, we describe the induction scheme along which the free amalgam 

of a basic extension and an arbitrary extension will be constructed. We are not certain 
whether the induction suggested by Baudisch in [3] (at the bottom of p. 944), corresponds 
to the one we describe below.9

To define the �-amalgam A �C B for a basic extension A of C, we proceed by induction 
on rk(B/C). More precisely, we prove the following by induction on rk(B/C):

(∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For all LLAs A, B, C such that A = 〈Ca〉 is a basic extension of C
and C ⊆ B, there exists an amalgam S of A and B over C such 
that:

(a) there exists H � S containing B such that S = 〈Ha〉 is a basic 
extension of H and lev(H/B) = lev(a) + lev(B/C)

(b) S = 〈AB〉

We call S a �-amalgam of A and B over C if it satisfies those 
conditions, denoted S = A �C B.

9 The naive way one would inductively amalgamate a basic extension A = 〈Ca〉 of C and an arbitrary 
extension B over C would be by writing B = 〈Cb1, . . . , bn〉 where (b1, . . . bn) is a Malcev basis of B over 
C and do an induction on n. However, if D is the amalgam of A and 〈Cb1 . . . bn−1〉 over C then there is 
no control of the dimension of D over 〈Cb1, . . . , bn−1〉, which could be greater than n. The notion of rank 
is there to circumvent this problem.
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Note that in the above (and below) we identify A and B with their image in the 
amalgam. For instance, condition (a) and (b) above hold in the amalgam S.

We prove (∗) by induction on rk(B/C) for the order ≺.
The base case starts with any A = 〈Ca〉 and B = 〈Cb〉 with rk(B/C) minimal such 

that C ⊆ B, i.e. rk(B/C) = (c + 1, 0). This means that B = C and the amalgam S := A

satisfies (∗) by considering H = C. Recall that as far as addition of levels is concerned, 
c + k = c + 1 for all k ≥ 1, in particular c + 1 = lev(C/C) = lev(a) + lev(C/C) =
lev(a) + c + 1.

Assume now that for some (ν, n) we have that (∗) holds for any basic extension 
A = 〈Ca〉 of C and B extending C with rk(B/C) ≺ (ν, n). Fix a basic extension A = 〈Ca〉
of C and an extension B of C such that rk(B/C) = (ν, n). There exists an ordered 
Malcev basis b1, . . . , bs of B over C so that B = 〈Cb1, . . . , bs〉 = span(Cb1, . . . , bs). Then 
ν = lev(bs). Let μ = lev(a). We have 1 ≤ μ, ν ≤ c + 1.

Let A0 = A, C0 = C and let D0 = 〈C, b1, . . . , bs−1〉 so that B = 〈D0bs〉. As ν = lev(bs), 
we have that rk(D0/C0) is either (ν, n − 1) or (ν′, k) for some ν′ > ν. It follows that 
rk(D0/C0) ≺ (ν, n) so by the induction hypothesis (with A = A0, B = D0, C = C0), there 
exists a �-amalgam A1 of A = 〈Ca〉 and D0 over C0, and there exists C1 containing D0
such that A1 = 〈C1a〉 and lev(C1/D0) = lev(a) + lev(D0/C0). As D0 = 〈C, b1, . . . , bs−1〉
we have that lev(D0/C0) ≥ ν (it is equal if n > 1). It follows that lev(C1/D0) ≥ μ +ν > ν.

Starting with A0 = A, B0 = B, C0 = C and D0 = 〈C, b1, . . . , bs−1〉, we recursively 
construct sequences (Ai, Bi, Ci, Di)i≤t for some t ≤ c +1 for which Ct = Dt or Dt = Ct+1
and such that the following holds:

• Ai+1 is a �-amalgam of Ai and Di over Ci

• Bi+1 is a �-amalgam of Bi and Ci+1 over Di

• Ai = 〈Cia〉 is a basic extension of Ci, Bi = 〈Dib〉 is a basic extension of Di

• Ci ⊆ Di ⊆ Ci+1 and lev(Di/Ci) ≥ i(μ + ν) + ν and lev(Ci+1/Di) ≥ (i + 1)(μ + ν)

We already constructed C0, C1, D0, A0, A1. Let B0 = B. We refer to Fig. 1 for an 
overall picture of what is happening.

(1) Construction of Bi+1, Di+1 from Di, Bi, Ci+1, Ci. By the recursive construction, we 
have that lev(Ci+1/Di) ≥ (i +1)(μ +ν) > ν. It follows that rk(Ci+1/Di) ≺ (ν, n). We 
have that Bi = 〈Dibs〉, so we apply the induction hypothesis (∗) interchanging the 
roles of a and bs (i.e. with A = 〈Dibs〉, B = Ci+1 and C = Di) to get a �-amalgam 
Bi+1 of Bi = 〈Dibs〉 and Ci+1 over Di, and Di+1 extending Ci+1 such that Bi+1 =
〈Di+1bs〉 is a basic extension of Di+1 with lev(Di+1/Ci+1) = lev(bs) +lev(Ci+1/Di). 
By recursion, lev(Ci+1/Di) ≥ (i +1)(μ +ν) hence lev(Di+1/Ci+1) ≥ (i +1)(μ +ν) +ν.

(2) Construction of Ai+1, Ci+1 from Ai, Di, Ci. By recursion, lev(Di/Ci) ≥ i(μ +ν) +ν >

ν in particular rk(Di/Ci) ≺ (ν, n). As Ai = 〈Cia〉, by the induction hypothesis 
(∗), there exists a �-amalgam Ai+1 of Ai and Di over Ci and Ci+1 containing Di

such that Ai+1 = 〈Ci+1a〉 is a basic extension of Ci+1 such that lev(Ci+1/Di) =
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At ⊗Ct
Bt

At = At−1 �Ct−1 Dt−1 = 〈Cta〉 Bt = Bt−1 �Dt−1 Ct = 〈Ctbs〉

Ct = Dt Bt−1

At−1 Dt−1

... Ct−1

...

A3 = A2 �C2 D2 = 〈C3a〉
...

C3 B2 = B1 �D1 C2 = 〈D2bs〉

A2 = A1 �C1 D1 = 〈C2a〉 D2

C2 B1 = B0 �D0 C1 = 〈D1bs〉

A1 = A0 �C0 D0 = 〈C1a〉 D1

C1 B0 = B = 〈D0bs〉

A0 = A = 〈C0a〉 D0

C0 = C

Fig. 1. Stage II induction scheme.

lev(a) + lev(Di/Ci). By recursion lev(Di/Ci) ≥ i(μ + ν) + ν hence lev(Ci+1/Di) ≥
(i + 1)(μ + ν).

By nilpotence, there exists a smallest t ∈ N such that either Ct = Dt or Dt = Ct+1. 
Assume Ct = Dt, the other case is treated similarly. We have that Ct is an ideal of its 
basic extensions At = 〈Cta〉 and Bt = 〈Ctbs〉. In that case, there is a free amalgam S of 
At and Bt over Ct by Theorem 4.13 and Corollary 4.20. As C = C0 ⊆ Ct, the structure 
S is an amalgam of A and B over C.

It remains to check that S satisfies (∗) relative to A = 〈Ca〉 and B over C = C0, 
i.e. that S = A �C B. For (∗)(a), we prove that there exists H ⊆ S containing B such 
that S = 〈Ha〉 and lev(H/B) = lev(a) + lev(B/C). Let h1, . . . , hk be Hall monomials 
in a = h1 and bs = h2 with h3 = [a, bs] so that S = span(Ct, bs, hk, . . . , h3, a) and 
let H = 〈Ct, bs, hk, . . . , h3〉. By Proposition 4.29 (3), bs, hk, . . . , h3 is a Malcev basis of 
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H over Ct and H = span(Ct, bs, hk, . . . , h3). By Proposition 4.29 (4), hk, . . . , h3 is an 
ordered Malcev basis of H over span(Ct, bs). We have that lev(H/〈Ctbs〉) = lev(h3) =
lev(a) +lev(bs) = μ +ν and lev(bs) = lev(B/C). Note that H = span(〈Ctbs〉Pμ+ν(H)). As 
B ⊆ 〈Ctbs〉, if H = span(BPi(H)) then H = span(〈Ctbs〉Pi(H)) so i ≤ lev(H/〈Ctbs〉). 
It follows that lev(H/B) ≤ lev(H/〈Ctbs〉) = μ + ν. Note that B = 〈D0bs〉. To get 
lev(H/B) ≥ lev(H/〈Ct, bs〉), it is enough to show that H ⊆ spanF (B, Pμ+ν(H)). Re-
call that H ⊆ spanF (Ct, bs, hk, . . . , h3). Now, for each i ≥ 1 we have lev(Ci/Di−1) ≥
μ + ν and lev(Di/Ci) ≥ μ + ν. This implies that there is a basis of Ct over D0 in 
Pμ+ν(H), hence Ct ⊆ span(D0Pν+μ(H)). As hk, . . . , h3 are all of degree ≥ μ + ν we 
also have span(Cthk, . . . , h3) ⊆ span(D0Pν+μ(H)). Finally span(Cthk, . . . , h3, bs) ⊆
span(D0bsPν+μ(H)) = span(BPν+μ(H)). This proves that lev(H/B) = lev(a) +
lev(B/C).

For (∗)(b), first note that D0, a, bs ⊆ S hence 〈AB〉 ⊆ S. Conversely, note that 
C0 ⊆ A ⊆ 〈AB〉 and D0 ⊆ B ⊆ 〈AB〉. By construction, Ci+1 ⊆ Ai+1 and by (∗)(b), 
Ai+1 = 〈Ai, Di〉 hence Ci+1 ⊆ 〈Ai, Di〉. Similarly, Di+1 ⊆ 〈Ci+1, Bi〉. By induction, 
Ai, Bi ⊆ 〈AB〉. We conclude S = 〈AtBt〉 = 〈AB〉, hence we proved (∗)(b).

In turn, we have proved that there exists an �-amalgam of A and B over C.

4.4.4. A �-amalgam is strong

Theorem 4.33. Let A, B, C be LLAs such that A is a basic extension of C and B contains 
C. Then a �-amalgam of A and B over C is a strong amalgam, i.e. A ∩ B = C (in 
A �C B).

Proof. We proceed using the inductive construction of A �C B via rk(B/C), by adding 
an extra condition in (∗), namely the following:

(∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For all LLAs A, B, C such that A = 〈Ca〉 is a basic extension of C
and C ⊆ B, there exists an amalgam S of A and B over C such 
that:

(a) there exists H � S containing B such that S = 〈Ha〉 is a basic 
extension of H and lev(H/B) = lev(a) + lev(B/C)

(b) S = 〈AB〉
(c) S is a strong amalgam of A and B over C

The base case starts with any A = 〈Ca〉 and B = C, the amalgam is S = A which 
clearly satisfies (∗)(c).

Now applying (∗) in the inductive construction of the �-amalgam, we get:

• Ai+1 is a strong �-amalgam of Ai and Di over Ci

• Bi+1 is a strong �-amalgam of Bi and Ci+1 over Di
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• Ai = 〈Cia〉 is a basic extension of Ci, Bi = 〈Dib〉 is a basic extension of Di

• Ci ⊆ Di ⊆ Ci+1 and lev(Di/Ci) ≥ i(μ + ν) + ν and lev(Ci+1/Di) ≥ (i + 1)(μ + ν)

Again, we refer to Fig. 1 for an overall picture of what is happening.
Let t ∈ N be such that either Ct = Dt or Dt = Ct+1. Assume Ct = Dt, the other case 

is treated similarly. We have that Ct is an ideal of its basic extensions At = 〈Cta〉 and 
Bt = 〈Ctbs〉 and S = 〈Cta〉 ⊗Ct

〈Ctbs〉, in particular S is a strong amalgam of At and 
Bt over Ct.

We prove that S is a strong amalgam of A and B over C. We identify LLAs with their 
image, so every arrow in Fig. 1 is an inclusion. In particular, A0 ⊆ A1 ⊆ . . . ⊆ At and 
B0 ⊆ B1 ⊆ . . . ⊆ Bt. By (∗)(c), Ai ∩Di = Ci and Bi ∩Ci+1 = Di, as those are strongly 
amalgamated at each step. Let x ∈ A ∩B, so x ∈

⋂t
i=0 Ai ∩Bi. Then x ∈ At ∩Bt = Ct. 

In particular x ∈ Ct ∩ Bt−1 = Dt−1, hence x ∈ Dt−1 ∩ At−1 = Ct−1. A straightforward 
iteration gives that x ∈ C. Hence A ∩B = C which gives (∗)(c). �
4.4.5. A �-amalgam is free

Theorem 4.34. Let A, B, C be LLAs such that A is a basic extension of C and such 
that B contains C. Then the �-amalgam of A and B over C is a free amalgam, i.e. 
A �C B ∼= A ⊗C B. In particular the free amalgam exists.

Proof. We proceed using the inductive construction of A �C B via rk(B/C), by adding 
an extra condition in (∗), namely the following:

(∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For all LLAs A, B, C such that A = 〈Ca〉 is a basic extension of C
and C ⊆ B, there exists an amalgam S of A and B over C such 
that:

(a) there exists H � S containing B such that S = 〈Ha〉 is a basic 
extension of H and lev(H/B) = lev(a) + lev(B/C)

(b) S = 〈AB〉
(c) S is a strong amalgam of A and B over C
(d) for all LLAs L and for all homomorphisms f : A → L and g :

B → L such that f � C = g � C, there exists a homomorphism 
h : S → L extending f and g;

The base case starts with any A = 〈Ca〉 and B = C, the amalgam is S = A which 
clearly satisfies (∗).

We assume that f : A → L and g : B → L are LLA homomorphisms to an LLA L
such that f � C = g � C. We denote f0 = f and g0 = g.

At the first stage of the induction, we have rk(D0/C0) ≺ (ν, n) by Remark 4.32 and 
A1 = A0 �C0 D0 hence applying the induction hypothesis (∗)(d) with f0 and g0 � D0 we 
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get an LLA homomorphism f1 : A1 → L which extends f0 and g0 � D0 with f1 � C0 =
g0 � C0 = f � C0.

At the second stage of the induction, we have rk(C1/D0) ≺ (ν, n) and B1 = B0�D0 C1. 
As f1 extends g0 � D0, we have f1 � D0 = g0 � D0 hence applying the induction 
hypothesis (∗)(d) with g0 and f1 � C1 we get an LLA homomorphism g1 : B1 → L which 
extends g0 and f1 � C1 with g1 � D0 = g0 � D0 = f � C0.

Now applying (∗) in the inductive construction of the �-amalgam, we get:

• Ai+1 is a strong �-amalgam of Ai and Di over Ci

• Bi+1 is a strong �-amalgam of Bi and Ci+1 over Di

• Ai = 〈Cia〉 is a basic extension of Ci, Bi = 〈Dib〉 is a basic extension of Di

• Ci ⊆ Di ⊆ Ci+1 and lev(Di/Ci) ≥ i(μ + ν) + ν and lev(Ci+1/Di) ≥ (i + 1)(μ + ν)
• fi+1 : Ai+1 → L such that fi+1 extends fi : Ai → L and gi � Di with fi+1 � Ci =

fi � Ci = gi � Ci

• gi+1 : Bi+1 → L extends gi : Bi → L and fi+1 � Ci+1 with gi+1 � Di = gi � Di =
fi+1 � Di

We refer to Fig. 1 for an overall picture of what is happening.
Let t ∈ N such that either Ct = Dt or Dt = Ct+1. Assume Ct = Dt, the other 

case is treated similarly. We have that Ct is an ideal of its basic extensions At = 〈Cta〉
and Bt = 〈Ctbs〉 and S = At ⊗Ct

Bt. As ft : At → L and gt : Bt → L are such 
that ft � Ct = gt � Ct, by Corollary 4.20 there exists h : S → L which extends ft

and gt and such that h � Ct = ft � Ct = gt � Ct. As fi+1 � Di = gi � Di and 
gi+1 � Ci+1 = fi+1 � Ci+1 we easily deduce from C = C0 ⊆ D0 ⊆ C1 ⊆ D1 ⊆ . . . that 
f0 � C = g0 � C = h � C. Also as fi+1 extends fi for all i and f0 = f , we have that 
h extends f : A → L. Similarly, h extends g0 = g : B → L, so S satisfies condition 
(∗)(d). �
4.5. Stage III - from one to many

We now describe the last stage of the construction of the amalgam.

Theorem 4.35. Let A, B, C with C ⊆ A and C ⊆ B. Then there exists a free amalgam 
A ⊗C B.

Proof. By Theorem 4.34, we know that a free amalgam exists if one of the extensions is 
basic. Assume now that A, B, C are arbitrary LLA, we inductively construct an amalgam 
S of A and B over C. Let a1, . . . , an be an ordered Malcev basis of A over C. In particular, 
for Ai = 〈Ca1 . . . ai〉, i = 1 . . . n, we have

C � A1 � . . . � An = A
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Sn = A ⊗An−1 Sn−1

A = An Sn = An−1 ⊗An−2 Sn−1

...
...

... S2 = A2 ⊗A1 S1

A2 = 〈Ca1a2〉 S1 = A1 ⊗C B

A1 = 〈Ca1〉 B

C

Fig. 2. Stage III induction scheme.

and Ai+1 is a basic extension of Ai. We define a chain S1 ⊆ . . . ⊆ Sn such that Sn is the 
required amalgam. Start by taking S1 = A1 ⊗C B. Then, as A2 is a basic extension of 
A1, take S2 = A2 ⊗A1 S1 and recursively if Si is constructed as Si = Ai ⊗Ai−1 Si−1, we 
have Ai+1 is a basic extension of Ai hence define Si+1 = Ai+1 ⊗Ai

Si, until S := Sn =
A ⊗An−1 Sn−1. We refer to Fig. 2 for this construction. We check that S is a free amalgam 
of A and B over C. First, we check that S = 〈AB〉. As S = Sn = A ⊗An−1 Sn−1, we have 
Sn = 〈A, Sn−1〉 and more generally, Si = 〈AiSi−1〉, we immediately get S = 〈ASi−1〉
and iteratively S = 〈AB〉. We now prove that S is a strong amalgam of A and B over 
C. As S = A ⊗An−1 Sn−1 we have A ∩ Sn−1 = An−1. Also, B ⊆ S1 ⊆ . . . ⊆ Sn, so 
we have A ∩ B ⊆ A ∩ Sn−1 ⊆ An−1 ∩ Sn−1 and iteratively, A ∩ B ⊆ Ai ∩ Si until 
A ∩ B ⊆ A1 ∩ B = C. It remains to check that S satisfies the freeness property. Let 
f : A → L and g : B → L be a homomorphism such that f � C = g � C. Consider 
fi = f � Ai. As f1 : A1 → L and g : B → L agree on C ⊆ A1 ∩B we use S1 = A1 ⊗C B

to get a map j1 : S1 → L that extends both f1 and g. Then f2 and j1 agree on A1 hence 
as S2 = A2 ⊗A1 S1, there exists a homomorphism j2 : S2 → L extending f2 and j1. A 
straightforward iteration yields j1, . . . , jn such that ji : Si → L extends both fi and ji−1

and agrees on Ai−1. In the end jn extends both f and g. �

4.6. Conclusion

We refer to Subsection 2.1 for generalities on Fraïssé theory. Recall the following 
definition.

Definition 4.36. Let p be a prime number.
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(1) Let Lc,F be the class of finitely generated Lazard Lie algebras over F of nilpotency 
class ≤ c, in the language Lc,F .

(2) Let Lc,p be the class of finite Lazard Lie algebras over Fp of nilpotency class ≤ c, in 
the language Lc.

(3) We write Gc,p for the class of finite Lazard groups of exponent p and of nilpotency 
class ≤ c in the language of groups expanded by predicates for the Lazard series.

By Theorem 4.35, the class Lc,F has the AP. Note that JEP follows from AP, since 0
is a common substructure of all structures in the class. As HP is immediate we conclude 
the following.

Theorem 4.37. For any c ∈ N+ and field F , the class Lc,F is a Fraïssé class, with Fraïssé 
limit denoted Lc,F .

Remark 4.38. Assume that A is a finite LLA, generated by say a1, . . . , an. Let αi =
lev(ai). By the universal property, there exists a surjection F (X1, . . . , Xn, α1, . . . , αn) →
A. Using Remark 4.8, the dimension of A is bounded by

c∑
k=1

1
k

∑
d|k

μ(d)nk/d.

It follows that when F is a finite field, Lc,F is uniformly locally finite.

As Lc,p is a particular case of Lc,F and using the Lazard correspondence for c < p

(see Subsection 2.3) we get the following:

Corollary 4.39. When F is a finite field, the theory Th(Lc,F ) is ω-categorical with quan-
tifier elimination. Likewise, for c < p, the class Gc,p is a Fraïssé class and, letting Gc,p

denote the Fraïssé limit, the theory Th(Gc,p) is ω-categorical with quantifier-elimination.

We will write Tc,F for the theory Th(Lc,F ) when F is a finite field or Tc,p in the special 
case that F = Fp.

Corollary 4.40. In a monster model of Tc,p, the relation |⊗� is a stationary independence 
relation in the sense of Tent-Ziegler [44].

Proof. Apply Proposition 4.22. �
As the Fraïssé limit of Lc,p, it is standard that Lc,p is Lc,p-saturated: for any finite 

A ⊆ Lc,p (substructure as an LLA) and for any finite LLA B extending A there is a 
copy of B in L and extending A.

Proposition 4.41. In L = Lc,p the following holds.
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(1) a ∈ Pi+j if and only if there exists b ∈ Pi and c ∈ Pj such that a = [b, c].
(2) For n ≤ c −1, if a ∈ Pn \Pn+1 then there exists b ∈ L such that [a, b] ∈ Pn+1 \Pn+2.
(3) (Pn)1≤n≤c+1 is the lower central series of L, i.e. P1 = L and Pn+1 = [Pn, L] for all 

1 ≤ n ≤ c.
(4) The lower central series and the upper central series of L coincide.

Proof. (1) Let a ∈ Pi+j . Let A = 〈a〉. Then as [a, a] = 0 A is the abelian LLA on 
spanFp

(a) with P1 = P2 = . . . = Pi+j = A. Note that anything can happen for 
Pi+j+1, Pi+j+2, . . . etc, it could be that Pi+j+1 = A or that Pi+j+1 = {0}, depend-
ing on the type of a. Let b, c be linearly independent over a and define a Lie algebra 
structure on B := span(a, b, c) by the following: [a, b] = [a, c] = 0 and [b, c] = a. We 
check the Jacobi identity:

0 = [a, a] = [a, [b, c]]

= [[a, b], c] + [b, [a, c]]

= 0 + 0

The bracket thus defined is a Lie algebra which is often referred to as the Heisenberg 
algebra. To define the predicates, assume i < j. Define Pi = Pi−1 = . . . = P1 = B, 
Pi+1 = span(c, a) so that b ∈ Pi \ Pi+1, and similarly Pj+1 = span(a) = . . . = Pi+j , 
so that b is of degree i and c is of degree j. Define Pi+j+1, Pi+j+2, . . . as in A. The Lie 
bracket defined above is compatible with the Lazard predicates because b ∈ Pi, c ∈ Pj

and a ∈ Pi+j . By Lc,p-saturation, there exists a copy of B in L hence there is some 
b′, c′ ∈ L such that a = [b′, c′] and b′ ∈ Pi(L), c′ ∈ Pj(L).

(2) Consider A = 〈a〉 then P1(A) = . . . = Pn(A) = A and Pn+1(A) = . . . = Pc(A) =
{0}. Let b, c be independent elements and consider B = span(a, b, c). Define the bracket: 
[a, b] = c, [a, c] = [b, c] = 0. One Jacobi identity to check is enough:

0 = [a, 0] = [a, [b, c]]

= [[a, b], c] + [b, [a, c]]

= [c, c] + 0 = 0.

It remains to define the predicates: the only nontrivial relation is [a, b] = c hence we may 
put b ∈ P1 \ P2 and c ∈ Pn+1 \ Pn+2 since a ∈ Pn \ Pn+1 (which means: P1 = B, P2 =
span(a, c) = P3 = . . . Pn then Pn+1 = span(c), Pn+2 = {0} = . . . = Pc). This defines an 
LLA structure on B which extends the LLA A, hence we conclude by Lc,p-saturation.

(3) Immediate from (1).
(4) Recall that the upper central series is defined by Z1 = Z(L) and

Zi+1 = {a ∈ L | [a, b] ∈ Zi for all b ∈ L} .
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We show that Zn = Pc−n+1. As Z1 = Pc, by induction, we assume that Pc−n+2 = Zn−1. 
First if a ∈ Pc−n+1, then for all b, [a, b] ∈ Pc−n+2 = Zn−1 hence by definition a ∈ Zn. 
Conversely assume that a ∈ Zn and a /∈ Pc−n+1. Using (2) above, there exists b ∈ L

such that [a, b] /∈ Pc−n+2 = Zn−1, which contradicts a ∈ Zn. �
Let (L, +, 0, [·, ·], (Pi)1≤i≤c+1) be any LLA which is a model of Tc,p. Then us-

ing the Lazard correspondence, there exist 0-definable functions ·,−1 such that 
(L, ·,−1 , 1, (Pi)1≤i≤c+1) is a c-nilpotent group with a Lazard series (Pi(L))1≤i≤c+1 and 
(L, +, 0, [·, ·]) and (L, ·,−1 ) are interdefinable. Thus, when considering models of Tc,p, 
we implicitly consider it to be equipped with both a Lie algebra and a group structure, 
L = (L, +, 0, [·, ·], ·,−1 , 1, (Pi)1≤i≤c+1).

Corollary 4.42. Let T grp
c,p be the theory of Gc,p in the language of groups 

{
·,−1 , 1

}
. Then 

T grp
c,p is the model-companion of the theory of c-nilpotent groups of exponent p. Similarly 

if T Lie
c,p is the reduct of Lc,p to the language of Lie rings {+,−, 0, [·, ·]}, then T Lie

c,p is the 
model-companion of the theory of c-nilpotent Lie algebras over Fp.

Proof. We first check that T Lie
c,p is model-complete. It is enough to prove that the 

predicates Pi are both existentially and universally definable in {+,−, 0, [·, ·]}. Using 
Proposition 4.41 (3), (4), the following are equivalent:

(1) x ∈ Pn;
(2) ∃y1, . . . , yn[y1, . . . , yn] = x;
(3) ∀y1, . . . , yc−n+1[y1, . . . , yc−n+1, x] = 0.

This gives that T Lie
c,p is model-complete. It remains to check that T Lie

c,p is a companion of 
the theory of c-nilpotent Lie algebras over Fp. To see this, observe that any c-nilpotent Lie 
algebra may be equipped with predicates for a Lazard series (for instance, by interpreting 
the predicates to coincide with the lower central series) to get an LLA, which may then be 
embedded in a model of Tc,p by standard arguments. Then by forgetting the predicates, 
we get the result. Using the Lazard correspondence, the same transfers to T grp

c,p . �
Remark 4.43 (An explicit axiomatization of T grp

2,p ). In [38], Saracino and Woods give 
explicit axioms for the model companion T m of the theory of 2-nilpotent groups of 
exponent m ∈ N. By uniqueness of the model companion we conclude that T p = T grp

2,p . 
In particular, their axiomatization of T m, then, entails that the theory T grp

2,p may be 
axiomatized as follows:

• the center Z is infinite and equals the set of commutators;
• for each a1, . . . , an Fp-linearly independent over Z, for each c1, . . . , cn ∈ Z there 

exists b such that [a1, b] = c1, . . . , [an, b] = cn.

Corollary 4.44. For c ≥ 4 and c < p, L2,p is definable in Lc,p.
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Proof. Assume c ≥ 4 and let k = � c
2� be the floor of c/2. As c ≥ 4 we have k ≥ 2. 

Then 2k is either c or c − 1 so P2k �= 0. Also, 3k = 2k + k ≥ c − 1 + k ≥ c + 1
so that [Pk, P2k] = [P2k, P2k] = 0. Now for H = Pk and K = P2k, we conclude that 
H is a Lie algebra which is nilpotent of class 2 with center contained in K. We equip 
H with the Lazard series Q1 = H, Q2 = K, Q3 = 0. We prove that (H, (Qi)1≤i≤3) is 
existentially closed in the class of 2-nilpotent LLAs. Let (A, (Qi)1≤i≤3) be a 2-nilpotent 
LLA extending (H, (Qi)1≤i≤3). We define a Lazard series of length c on A: set P1(A) =
. . . = Pk(A) = Q1(A) = A and Pk+1(A) = . . . = Pc(A) = Q2(A) and Pc+1(A) = 0. Then 
(A, (Pi)1≤i≤c+1) is an LLA extension of Lc,p. It is clear that any existential formula 
∃xφ(x) in (A, (Qi)1≤i≤3) with parameters in H can be translated into an equivalent 
statement (∃x ∈ Pk)φ̃(x) in {+,−, 0, [·, ·], (Pi)1≤i≤c+1} which will be true in Lc,p and be 
translated back in {+,−, 0, [·, ·], (Qi)1≤i≤3} so that H � ∃xφ(x). As the 2-nilpotent LLA 
that we defined is clearly ℵ0-categorical and every 2-nilpotent LLA embeds into it, we 
must have that it is L2,p. �

Remark 4.45. The same method should yield that Ln,p is definable in Lc,p for c suffi-
ciently larger than n.

Question 4.46. Is L2,p definable/interpretable in L3,p?

4.7. An extra result on Malcev sets and free amalgamation

In the following proof, we use that |⊗� satisfies transitivity and monotonicity, hence 
it uses Corollary 4.40 (for monotonicity). Note that we believe that a direct proof exists 
without using monotonicity, via modifying (∗∗)(e) and by an induction showing that 
constructing the free amalgam of a and b over C automatically yields a free amalgam of 
a and b over E (under the assumptions below).

Theorem 4.47. Let A = 〈Ca〉 and B = 〈Cb1, . . . , bs〉. Let E ⊆ C. Assume that

• a is Malcev over C and E
• (b1 . . . bs) is Malcev over C and E.

If a |⊗� C
b1 . . . bs then a |⊗� E

b1 . . . bs.

Proof. We prove the theorem by re-writing the induction in stage II with extra as-
sumptions at each step. We refer to Fig. 1 for a picture of the induction scheme. By 
Theorem 4.34 we know that � = ⊗. We assume that at each stage of the recursion, the 
⊗-amalgam satisfies the following property:
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(∗∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For all LLAs A, B, C such that A = 〈Ca〉 is a basic extension of 
C and C ⊆ B, there exists an amalgam S = A ⊗C B of A and B
over C such that:

for all E ⊆ C, if B = 〈Cb1, . . . , bs〉 where b = (b1 . . . bs) is 
ordered Malcev over both C and E, and A = 〈Ca〉 where a is 
Malcev over C and E (i.e. C � 〈Ca〉, E � 〈Ea〉), there exists 
a tuple v such that

(a) (a, b, v) is a Malcev basis of S over C and lev(v) = lev(a) +
lev(b).

(b) (a, b, v) is Malcev over E.
(c) v is Malcev over B and 〈Eb〉
(d) a is Malcev over 〈Bv〉 and 〈Ebv〉
(e) a |⊗� E

b

Observe first that, assuming (∗∗)(a), we may consider H = 〈Bv〉 which is an ideal of 
S satisfying S = 〈Ha〉 and lev(H/B) = lev(v) = lev(a) + lev(B/C). This gives (∗)(a)
from the previous inductive constructions and hence we will use the induction scheme 
as above.

We assume that b1, . . . , bs is an ordered Malcev basis of B over C which is Malcev 
over E ⊆ C. In particular, by Remark 4.27 (2) b1, . . . , bs−1 is Malcev over C and E

and bs is Malcev over Cb1 . . . bs−1 and Eb1 . . . bs−1. Let S = A ⊗C B be the �-amalgam 
constructed above. We apply the induction hypothesis at each stage of the construction. 
Let E0 = E, F0 = 〈Eb1 . . . bs−1〉.

At the first stage of the construction, we have that a is Malcev over C = C0 and 
over E = E0, and b1, . . . , bs−1 is a Malcev basis of D0 over C0 and Malcev over E0. As 
rk(D0/C) ≺ (ν, n), by the induction hypothesis, there exists a tuple u1 such that

• (a, b1, . . . , bs−1, u1) is a Malcev basis of A1 = A0 ⊗C0 D0 over C0

• u1 is Malcev over D0 and over F0 = 〈E0b1 . . . bs−1〉
• a is Malcev over C1 = 〈D0u1〉 and over E1 := 〈E0b1 . . . bs−1u1〉 = 〈F0u1〉
• a |⊗� E

b1 . . . bs−1, i.e. a |⊗� E0
F0

Set C1 = 〈D0u1〉. Then we have A1 = 〈C1a〉 and C1 � A1.
At the second stage of the construction, we have C1 = span(D0u1). We consider 

F0 ⊆ D0. We have that bs is Malcev over D0 and over F0 and u1 Malcev over D0 and 
F0. As rk(C1/D0) ≺ (ν, n), by induction hypothesis, there exists a tuple v1 such that

• (bs, u1, v1) is a Malcev basis of B1 = B0 ⊗D0 C1 over D0

• v1 is Malcev over C1 and over E1 = 〈F0u1〉
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• bs is Malcev over D1 = 〈C1v1〉 and F1 := 〈E1v1〉
• bs |⊗� F0

E1

Set D1 = 〈C1v1〉 so that B1 = 〈D1bs〉 and D1 � B1.
Construction of Ei+1, ui+1 from Fi, vi, Ei.
Suppose that we have already constructed Ei, Fi, vi such that vi is a Malcev basis of 

Di over Ci and vi is Malcev over Ei. We also have that a is Malcev over Ci and over Ei. 
By induction, there exists a tuple ui+1 such that

• (a, vi, ui+1) is a Malcev basis of Ai+1 = Ai ⊗Ci
Di over Ci

• ui+1 is Malcev Di and over Fi

• a is Malcev over Ci+1 = 〈Diui+1〉 and over Ei+1 := 〈Fiui+1〉
• a |⊗� Ei

Fi

Set Ci+1 = 〈Diui+1〉 so that Ai+1 = 〈Ci+1a〉 and Ci+1 � Ai+1.
Construction of Fi+1, vi+1 from Ei+1, ui+1, Fi.
Suppose that we have already constructed Ei+1, ui+1, Fi such that ui+1 is a Malcev 

basis of Ci+1 over Di and ui+1 is Malcev over Fi. We also have that bs is Malcev over 
Di and over Fi. By induction, there exists a tuple vi+1 such that

• (bs, ui+1, vi+1) is a Malcev basis of Bi+1 = Bi ⊗Di
Ci+1 over Di

• vi+1 is Malcev over Ci+1 and over Ei+1
• bs is Malcev over Di+1 = 〈Civi+1〉 and over Fi+1 := 〈Eivi+1〉
• bs |⊗� Fi

Ei+1

Set Di+1 = 〈Ci+1vi+1〉 so that Bi+1 = 〈Di+1bs〉 and Di+1 � Bi+1.
As the rank drops at each stage there exists t such that Ct = Dt or Dt = Ct+1. Let 

us assume the former, the other case is treated similarly.
If Ct = Dt, we have that vt = ∅, whence Et = Ft and Ct is an ideal of both 

〈Cta〉 and 〈Ctbs〉 and S is given by 〈Cta〉 ⊗Ct
〈Ctbs〉. Now let ut+1 be such that 

S = 〈Ctabsut+1〉 as in Proposition 4.29, i.e. such that (a, bs, ut+1) = (h1, . . . , hk). Let 
v = u1v1 . . . ut−1vt−1utut+1. We need to check that S satisfies (∗∗) with the tuple v. 
Recall that E = E0 and C = C0.

We prove (a). Let v0 = (b1, . . . , bs−1). By construction we have Ci = 〈Cv0u1v1 . . .

vi−1ui〉 and Di = 〈Cv0u1v1 . . . uivi〉. We also have that ui+1 is Malcev over Di and 
vi+1 is Malcev over Ci+1. We conclude that ui+1 is Malcev over Cv0u1v1 . . . uivi and 
vi+1 is Malcev over Cv0u1v1 . . . viui+1. As v0 is Malcev over C and u1 is Malcev over 
Cv0 we have by Lemma 4.28 (1) that v0u1 is Malcev over C. As v1 is Malcev over 
Cv0u1 we have by Lemma 4.28(1) that v0u1v1 is Malcev over C. An easy iteration using 
Lemma 4.28(1) yields that v0u1v1 . . . vt−1ut is Malcev over C. Then the last amalgam 
yields absut+1 is Malcev over Cv0 . . . ut−1vt−1ut hence a last use of Lemma 4.28(1) 
yields that absv0 . . . vt−1utut+1 = ab1 . . . bsv is Malcev over C. The same argument yields 
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that (b) also holds. Concerning the equality in (a), first, for i ≤ t we have lev(ui) ≥
lev(a) + lev(b) and lev(vi) ≥ lev(a) + lev(b). Also, [a, bs] ∈ ut+1 and is the element of 
lowest level in ut+1, whence lev(v) = lev(a) + lev(b).

We check (c). First, a is Malcev over 〈Ctbsut+1〉 = 〈C0bsv0u1v1 . . . utut+1〉. As b = v0bs

and v = u1v1 . . . utut+1, we get that a is Malcev over Cbv. As (a, b, v) is Malcev over 
C, by Lemma 4.28(3), we have bv is Malcev over C. As bv is Malcev over C and b is 
Malcev over C we conclude by Lemma 4.28(2) that v is Malcev over 〈Cb〉 = B. A similar 
argument yields that v is also Malcev over 〈Eb〉.

We check (d). By Proposition 4.29 (1) and (3), we have that absut+1 is Malcev over 
Ct and bsut+1 is Malcev over Ct, hence by Lemma 4.28 (2) we get that a is Malcev over 
〈Ctbsut+1〉. As Ct = 〈Cv0u1v1 . . . vt−1ut〉, we have 〈Ctbsut+1〉 = 〈Cbv〉 hence a is Malcev 
over Cbv.

As for (e), working in S, we assume that a |⊗� Ct
bs. Then, a is Malcev over Ct and 

over Et and bs is Malcev over Dt = Ct and over Ft = Et. In other words, Et is an ideal 
of 〈Eta〉 and 〈Etbs〉, so, by Lemma 4.24, we have a |⊗� Et

b. We also have by construction 

that bs |⊗� Fi
Ei+1 and a |⊗� Ei

Fi for all i = 0, . . . , t − 1. From a |⊗� Et
bs and bs |⊗� Ft−1

Et

we get a |⊗� Ft−1
bs by transitivity, symmetry, and monotonicity (Proposition 4.22). As 

a |⊗� Et−1
Ft−1, we get a |⊗� Et−1

bs by transitivity and monotonicity. A direct induction 

yields a |⊗� F0
bs. As F0 = 〈Eb1 . . . bs−1〉 and a |⊗� E

Eb1 . . . bs−1, we use transitivity to 

conclude a |⊗� E
b1 . . . bs. �

The following will be crucial in order to prove that the theory of the generic LLA is 
NSOP4.

Theorem 4.48. Assume that a = (a1, . . . , an), b = (b1, . . . , bm) are both Malcev over C
and over some sub-LLA E of C. If a |⊗� C

b, then a |⊗� E
b.

Proof. We assume that a1 . . . an is an ordered Malcev basis of B over C, so by Re-
mark 4.27 (2), ak+1, . . . , an is Malcev over Ca1 . . . ak and Ea1 . . . ak, for all k = 1 . . . n. 
Using Theorem 4.47 at the first stage of Fig. 2, we have that a1 |⊗� E

b. At the second 
stage, we use again Theorem 4.47 where 〈Ea1〉 plays the role of E to get a2 |⊗� 〈Ea1〉 b. 
Iterating, we get ak |⊗� 〈Ea1...ak−1〉 b for all k = 1 . . . n. Using transitivity of |⊗� (Proposi-
tion 4.22), we conclude a1a2 . . . ak |⊗� E

b for all k = 1 . . . n hence a |⊗� E
b. �

5. Neostability properties of c-nilpotent groups and Lie algebras

In this section, we analyze the model-theoretic properties of the theories of Fraïssé 
limits of LLAs over a finite field and, via the Lazard correspondence, deduce parallel 
classification results for the associated groups. For the entirety of the section, we will fix 
a finite field F , a natural number c, and a prime number p. We will denote the monster 



690 C. d’Elbée et al. / Journal of Algebra 662 (2025) 640–701
model of Tc,F by Mc,F and we will write Mc,p for Mc,F when F = Fp. We begin with 
some preliminary observations on definability in these theories.

5.1. Definability

5.1.1. Flags
We define Lflag,c,F by

Lflag,c,F = {0, +,−, (Pi)1≤i≤c+1, (λ·)λ∈F}.

When F = Fp, we may omit the scalar multiplication functions from the language.
Let Kflag,c,F denote all finite dimensional F -vector spaces V viewed as Lflag,c,F -

structures in which the λ· are interpreted as the map x �→ λ · x and the Pi(V )s are 
subspaces of V satisfying

V = P1(V ) ⊇ P2(V ) ⊇ . . . ⊇ Pc+1(V ) = 0.

The following observation is easy.

Lemma 5.1. Fix c ≥ 1.

(1) The class Kflag,c,F is a Fraïssé class.
(2) For finite F , the theory Tflag,c,F of the Fraïssé limit is ℵ0-categorical, ω-stable, and 

has elimination of quantifiers.

Proof. (1) To check that Kflag,c,F is a Fraïssé class, we note that the hereditary property 
is easy and joint embedding follows from the amalgamation property since the trivial 
subspace is a subspace of all structures in Kflag,c,F . If A, B, C are structures in Kflag,c,F

with A ⊆ B, C and B∩C = A, then we can define an amalgam D by taking D to be the 
F -vector space which is the direct sum of B and C over A interpreting Pi(D) to be the 
span of Pi(B) ∪ Pi(C) for all 1 ≤ i ≤ c + 1. This proves that Kflag,c,F is a Fraïssé class.

(2) Quantifier elimination and ℵ0-categoricity follow from (1) and the fact that 
Kflag,c,F is uniformly locally finite: a structure in Kflag,c,F generated by n elements has 
cardinality at most |F |n. Then ω-stability follows easily by quantifier elimination. Over 
a countable model V , there are at most ℵ0 non-algebraic 1-types p(x) which assert 
x ∈ Pi \ Pi+1, determined by specifying the coset x + Pj(V ) = v + Pj(V ) or asserting 
that x + Pj(V ) �= v + Pj(V ) for all v ∈ V and i < j ≤ c + 1. Thus there are at most ℵ0
many types over any countable set. �

Recall that Lc,F , defined in Theorem 4.37, is the Fraïssé limit of Lc,F , the class of 
c-nilpotent LLAs over F in the language Lc,F , which properly contains Lflag,c,F .

Lemma 5.2. The reduct of Lc,F to the language Lflag,c,F is the Fraïssé limit of Kflag,c,F .
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Proof. By [35, Lemma 2.12], we must show that if A, B ∈ Kflag,c,F and π : A → B is an 
Lflag,c,F -embedding, then, if C = 〈A〉 is a c-nilpotent Lie algebra over F generated by A, 
then there is some D = 〈B〉 generated by B and an LLA embedding π̃ : C → D extending 
π. Write the vector space B as the direct sum of π(A) ⊕E. Given C, define a vector space 
D = F⊕E extending π(A) ⊕E so that F ⊇ π(A) has the same dimension as C and define 
π̃ : C → D to be the vector space embedding taking C to F extending π. Define a bracket 
on F by pushing forward the structure from C, i.e. defining [π(c), π(c′)] = π̃([c, c′]) for 
all c, c′ ∈ C. Then define [d, e] = 0 when d ∈ D and e ∈ E, i.e. we give E the structure 
of an abelian Lie algebra and then D is the abelian direct sum of the Lie algebras F and 
E. It is clear that D is an LLA and π̃ : C → D, then, is an embedding of LLAs. �
5.1.2. Algebraic closure

Lemma 5.3. In Tc,F we have acl(A) = dcl(A) = 〈A〉 for all sets A ⊆Mc,F .

Proof. Pick c ∈ Mc,F \ 〈A〉. We let B0 = 〈c, A〉 and inductively pick Bi such that 
Bi

∼=A B0 and 〈B≤i〉 ∼= Bi ⊗A 〈B<i〉 be the amalgam over A. For each i < ω, we can 
pick some isomorphism σi : B0 → Bi and define ci = σi(c). By quantifier-elimination, 
we have ci ≡A c for all i, and, since each Bi is freely amalgamated with 〈B<i〉 over A, 
we get Bi∩Bj = 〈A〉 for all i �= j. Therefore ci �= cj for all i �= j which shows c �∈ acl(A). 
Since 〈A〉 ⊆ dcl(A) ⊆ acl(A) always holds, the conclusion follows. �
5.2. SOP3

In this section, we will prove that the theories Tc,F have SOP3, when c ≥ 3. Note that 
this is a marked jump in complexity from the 2-nilpotent case analyzed in Section 3, 
though we will show in the next subsection that Tc,F is NSOP4 for all c.

Definition 5.4. Suppose n ≥ 3. We say a theory T has SOPn (n-strong order property), if 
there is some type p(x, y) and an indiscernible sequence (ai)i<ω satisfying the following:

• (ai, aj) � p ⇐⇒ i < j.
• p(x0, x1) ∪ p(x1, x2) ∪ . . . ∪ p(xn−2, xn−1) ∪ p(xn−1, x0) is inconsistent.

We say that T is NSOPn if it does not have SOPn.

Remark 5.5. If T is NSOPn then T is NSOPn+1. Indeed if T is NSOPn, then for any 
indiscernible sequence (ai)i<ω there are c1, . . . , cn such that cici+1 ≡ a0a1 for i < n and 
cnc1 ≡ a0a1. Then c1c2 ≡ a0a1 ≡ a0a2 hence there exists c 3

2
such that c1c 3

2
c2 ≡ a0a1a2

and c1, c 3
2
, c2, . . . , cn witness NSOPn+1.

The following is [41, Fact 1.3]. Note that the original third condition there of 
{ϕ(x; y), ψ(x; y)} being contradictory, is superfluous, whence we avoid it below.
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Fact 5.6. [41, Fact 1.3] The theory T has SOP3 if and only if there are formulas ϕ(x; y)
and ψ(x; y), as well as an indiscernible sequence (ai)i<ω satisfying the following:

• For all k < ω the set {ϕ(x; ai) : i ≤ k} ∪ {ψ(x; ai) : i > k} is consistent.
• For all i < j the set {ψ(x; ai), ϕ(x; aj)} is inconsistent.

Lemma 5.7. Let F be a field. Suppose V and W are F-vector spaces and [·, ·]0 : V 2 → W

is an alternating bilinear map. Define a map [·, ·] : (V ⊕W )2 → (V ⊕W ) by

[(v, w), (v′, w′)] = (0, [v, v′]0)

for all v, v′ ∈ V , w, w′ ∈ W . Then [·, ·] gives V ⊕ W the structure of a 2-nilpotent Lie 
algebra over F .

Proof. Clearly [·, ·] is an alternating bilinear map since [·, ·]0 is. Moreover,

[x, [y, z]] = 0

for all x, y, z ∈ V ⊕ W so the Jacobi identity is trivially satisfied and the resulting Lie 
algebra is 2-nilpotent. �
Theorem 5.8. Assume c ≥ 3. The theory Tc,F has SOP3.

Proof. It suffices to show that T3,F has SOP3, since the 3-nilpotent LLA V we construct 
below may also be regarded as a c-nilpotent LLA for any c ≥ 3 with the interpretation 
Pi(V ) = 0 for all c > 3, and hence may be embedded into Mc,F as well.

Let V be an F -vector space with basis X = {ai, a′
i, bi, b′

i, di,j : i < j < ω}. Define an 
alternating bilinear map [·, ·] : V 2 → V by [a′

i, bj ] = di,j for i < j and [x, y] = 0 for all 
x, y ∈ X such that {x, y} �= {a′

i, bj} for all i < j. If we define V0 = 〈ai, a′
i, bi, b′

i : i < ω〉
and V1 = 〈di,j : i < j < ω〉, we have V = V0⊕V1 and we may view the map [·, ·] : V 2 → V

as a map induced from the alternating bilinear map [·, ·]0 : V 2
0 → V1 by [a′

i, bj ]0 = di,j for 
i < j and [x, y]0 = 0 for {x, y} �= {a′

i, bj} for all i < j, by Lemma 5.7. Therefore (V, [·, ·])
is a 2-nilpotent Lie algebra. We give V a flag structure by interpreting P1, . . . , P4 by

P1(V ) = V ⊇ P2(V ) = 〈a′
i, b′

i, di,j : i < j < ω〉 ⊇ P3(V ) = 〈di,j : i < j < ω〉,

and P4(V ) = 0. It is easy to check [Pi(V ), Pj(V )] ⊆ Pi+j(V ) for all i, j. Thus, we may 
regard V as a substructure of M3,F . Let ci = (ai, a′

i, bi, b′
i) for all i < ω. It is immediate 

from the quantifier elimination that I = (ci)i<ω is an indiscernible sequence.
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(dij)i<j

(b′
i) b′

l

(a′
i) a′

l

(bi)
bl

(ai) al

c̄l

V0

⊕

V1

V =

F3

F2

F1
a′

i

bj

dij = [a′
i, bj ]

We will define two formulas ϕ(x; y, y′, z, z′) = [x, z] = z′ and ψ(x, y, y′, z, z′) = [x, y] =
y′. We will show that ϕ, ψ, and I witness SOP3.

Claim 1: For all k < ω,

{ϕ(x; ci) : i ≤ k} ∪ {ψ(x; cj) : j > k}

is consistent.
Proof of Claim: Let W = (W, [·, ·], W1, . . . , W4) be the substructure generated by

{bi, b′
i : i ≤ k} ∪ {aj , a′

j : j > k}.

Note that, by the construction of V , W is just the span of these vectors together with a 
trivial Lie bracket (i.e. [x, y] = 0 for all x, y ∈ W ).

Let W∗ be an F -vector space spanned by {bi : i ≤ k} ∪{aj : j > k} ∪{c∗} where c∗ is a 
new basis element. Let W∗∗ be the F -vector space spanned by {b′

i : i ≤ k} ∪{a′
j : j > k}. 

Define an alternating bilinear map [·, ·]∗ : W∗ → W∗∗ by

[c∗, bi]∗ = b′
i for i ≤ k

[c∗, ai]∗ = a′
i for i > k

[x, y]∗ = 0 for x, y ∈ {bi : i ≤ k} ∪ {ai : i > k}.

Form W̃ = W∗ ⊕W∗∗ and let ˜[·, ·] be the Lie algebra induced by [·, ·]∗, via application of 
Lemma 5.7. Note that W̃ may be naturally viewed as an extension of W , with the flag 
defined by P1(W̃ ) = W̃ and Pi(W̃ ) = Pi(W ) for i = 2, 3, 4. By quantifier elimination, 
we may embed W̃ into M3,F , so we may likewise assume W̃ is a substructure of M3,F .

(dij)i<j

(b′
i)

(a′
i)

(bi)
(ai)

c∗ k
W∗

⊕
W∗∗

W̃ =
bj

ai

b′
j = [c∗, bj ]

a′
i = [c∗, ai]

By construction, we have

c∗ �

⎛
⎝∧

[x, bj ] = b′
j

⎞
⎠ ∧

(∧
[x, ai] = a′

i

)
and thus
j≤k i>k
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c∗ � {ϕ(x; ci) : i ≤ k} ∪ {ψ(x; cj) : j > k},

so this set of formulas is consistent. �
Now to establish SOP3, we have to prove the following:
Claim 2: If i < j,

{ψ(x; ci), ϕ(x; cj)}

is inconsistent.
Proof of Claim: Suppose towards contradiction that there is some d realizing these 

two formulas, i.e. some d with [d, ai] = a′
i and [d, bj ] = b′

j . Then we recall

di,j = [a′
i, bj ] = [[d, ai], bj ].

Applying the Jacobi identity to the expression on the right yields

di,j = [[d, ai], bj ]

= −[bj , [d, ai]]

= −([[bj , d], ai] + [d, [bj , ai]])

= −([−b′
j , ai] + 0)

= 0

where the last two lines follow from [ai, bj ] = [ai, b′
j ] = 0. Since di,j �= 0, this yields a 

contradiction, so we conclude this pair of formulas is inconsistent. �

(dij)i<j

(b′
i)

(a′
i)

(bi)
(ai) bj

ai

[d, ·]

b′
j =[d, bj ]

a′
i =[d, ai]

[d, ·]

dij = [a′
i, bj ]

If d � {ψ(x, ci), ϕ(x, cj)} for i < j, then

dij = [a′
i, bj ] = [[d, ai], bj ]

= [[d, bj ], ai] + [d, [ai, bj ]]

= [b′
j , ai] + [d, 0]

= 0 + 0 = 0.

We have proved that ϕ, ψ, and I witness the two-formula version of SOP3, completing 
the proof. �
5.3. NSOP4

In this section, we argue that the theory Tc,F is NSOP4. To begin, we will establish 
two general model-theoretic lemmas. Their statements concern an arbitrary complete 
theory T . Recall that if M � T , then coheir independence a |�

u

M
b means tp(a/Mb) is 

finitely satisfiable in M and heir independence a |�
h

M
b means b |�

u

M
a. The following is 

certainly well-known but, for lack of a precise reference, we give a proof.
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Lemma 5.9. Suppose I = (ai)i<ω is an indiscernible sequence. Then there is a model M
such that ai |h� M

a<i for all i < ω.

Proof. Expand the monster model to have Skolem functions and denote the resulting 
expansion MSk. By Ramsey and compactness, we can extract an LSk-indiscernible se-
quence I ′ from I and then stretch I ′ so that I ′ = (a′

i)i<ω+ω. Let M = dclLSk(a′
<ω). Now 

we claim a′
ω+i |h� M

a′
ω . . . a′

ω+i−1 for all i < ω. Any formula in tpL(a′
ω . . . a′

ω+i−1/Ma′
ω+i)

can be written as ϕ(x0, . . . , xi−1; a′
ω+i, t(a′

<N )) for an L-formula ϕ, a natural number N , 
and some Skolem term t. By LSk-indiscernibility, we have

MSk � ϕ(a′
N , . . . , a′

N+i−1; a′
ω+i, t(a′

<N )),

Working now in M, we have shown tpL(a′
ω . . . a′

ω+i−1/Ma′
ω+i) is finitely satisfiable in 

M , or, in other words, a′
ω+i |h� M

a′
ω . . . a′

ω+i−1. Choose an automorphism σ ∈ Aut(M), 
with σ(a′

ω+i) = ai for all i. Then M∗ = σ(M) is a model such that ai |h� M∗
a<i for all i, 

as desired. �
The following result is a variant of the results of [13] and [33] yielding NSOP4 via the 

existence of an independence relation with certain properties. See also [25] for a similar 
approach.

Theorem 5.10. Let |� be an invariant relation satisfying symmetry, full existence, sta-
tionarity over models, and the following “weak transitivity” over models:

a |�
Md

b and a |h�
M

d and b |u�
M

d =⇒ a |�
M

b

for all finite tuples a, b, d and small model M . Then T is NSOP4.

Proof. Let (ai)i<ω be an indiscernible sequence and p(x, y) = tp(a0, a1). We show that

p(x0, x1) ∪ p(x1, x2) ∪ p(x2, x3) ∪ p(x3, x0)

is a consistent partial type. By Lemma 5.9, ai |h� M
a<i for all i < ω and some small 

model M .
By full existence, there exists a∗

0 ≡Ma1 a0 such that a∗
0 |�Ma1

a2. By symmetry, we 

have a2 |�Ma1
a∗

0. As a2 |h� M
a1 and a∗

0 |u� M
a1, we conclude a2 |�M

a∗
0 using the weak 

transitivity assumption.
We have a∗

0 ≡M a2 and a∗
0 |�M

a2. Let a be such that a∗
0a2 ≡M a2a. Then by invari-

ance, we have a2 |�M
a and by symmetry we obtain a |�M

a2. Now stationarity yields 
a ≡Ma2 a∗

0, whence aa2 ≡M a∗
0a2, and thus a∗

0a2 ≡M a2a∗
0.

Then, there exists a∗
3 such that a∗

0a2a1 ≡M a2a∗
0a∗

3. We claim that (a∗
0, a1, a2, a∗

3)
satisfies the type above. First, a∗

0a1 ≡ a0a1 hence p(a∗
0, a1). By indiscernibility, a0a1 ≡M
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a1a2 hence p(a1, a2). By choice, a2a∗
3 ≡M a∗

0a1 hence p(a2, a∗
3). Finally a∗

3a∗
0 ≡M a1a2

hence p(a∗
3, a∗

0). �
We will use Theorem 5.10 to prove that the theory Tc,F is NSOP4.

Lemma 5.11. Let A, B, C be LLAs with C ⊆ A ∩ B. If A |u� C
B or A |h� C

B then for 
every a1, . . . , an ∈ A if

B � 〈Ba1〉 � 〈Ba1a2〉 � . . . � 〈Ba1 . . . an〉

then

C � 〈Ca1〉 � 〈Ca1a2〉 � . . . � 〈Ca1 . . . an〉.

Proof. Let a1, . . . , an be as in the hypothesis. By Lemma 4.17, we have 〈Ba1, . . . , am〉 =
spanF (Ba1 . . . am) for all m ≤ n. Fix m ≤ n and assume by induction that 
〈Ca1, . . . , ai−1〉 is an ideal of 〈Ca1, . . . , ai〉 for all i ≤ m. Again by Lemma 4.17 we 
have 〈Ca1, . . . , am〉 = spanF (Ca1 . . . am). In order to prove that 〈Ca1 . . . am〉 is an 
ideal of 〈Ca1 . . . am+1〉, it is enough to prove that [am+1, v] ∈ 〈Ca1 . . . am〉 for all 
v ∈ 〈Ca1 . . . am〉. Let v = c +

∑m
i=1 λiai ∈ 〈Ca1 . . . am〉. As 〈Ba1 . . . am〉 is an ideal 

of 〈Ba1 . . . am+1〉, [am+1, v] ∈ 〈Ba1 . . . am〉 hence there exists b ∈ B and μ1, . . . , μm ∈ F

such that [am+1, v] = b +
∑m

i=1 μiai. It follows that the formula φ(x1, . . . , xm+1, c, b)
defined by

[xm+1, c +
m∑

i=1
λixi] = b +

m∑
i=1

μixi

is in p(x1, . . . , xm+1) = tp(a1, . . . , am+1/B).
Assume that A |u� C

B. Then φ(x1, . . . , xm+1, c, b) is satisfiable by a tuple (c1, . . . cm+1)
from C and it follows that b ∈ C. Then [am+1, v] = b +

∑m
i=1 μiai ∈ 〈Ca1 . . . am〉 and we 

conclude.
Assume that A |h� C

B. In that case, there exists c′ ∈ C such that � φ(a1, . . . , am+1, c,

c′) hence [am+1, v] = c′ +
∑m

i=1 μiai ∈ 〈Ca1 . . . am〉 and we conclude. �
Recall Definition 4.26 of a tuple being Malcev.

Corollary 5.12. Let A, B, C be LLAs over F with C ⊆ A ∩ B. If A |u� C
B or A |h� C

B

then for every a = (a1, . . . , an) from A if a is (ordered) Malcev over B, then it is also 
(ordered) Malcev over C.

Proof. Let a = (a1, . . . , an) be in A and Malcev over B. We prove that a is Mal-
cev over C, that is spanF (CPi(〈Ca〉)) = spanF (CPi(a)). First, using Lemma 5.11
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we have 〈Ca1, . . . , an〉 = spanF (Ca1 . . . an). If x ∈ spanF (CPi(〈Ca〉)) then there ex-
ist λ1, . . . , λn ∈ F such that x = c +

∑
j λjaj . By assumption, spanF (BPi(〈aB〉)) =

spanF (BPi(a)), whence there exist μ1, . . . μk such that for ai1 , . . . , aik
∈ Pi(a) we have 

x = b +
∑

	 μ	ai�
. It follows that 

∑
	 μ	ai�

−
∑

j λjaj ∈ B which implies that λj = μi�
if 

i = i	 and λj = 0 if j /∈ {i1, . . . , ik} so we conclude that x ∈ spanF (CPi(a)). �
Theorem 5.13. The theory Tc,F is NSOP4.

Proof. By Corollary 4.40 the relation |⊗� is a stationary independence relation, hence 
by Theorem 5.10 it suffices to prove the “weak transitivity” property. Let a, b, d be finite 
tuples and E be an LLA such that for C = 〈Ed〉 we have a |⊗� C

b, a |h� E
d and b |u� E

d. 
We may assume that a and b are Malcev bases of 〈Ca〉 and 〈Cb〉 over C. As a |h� E

C

and b |u� E
C, by Corollary 5.12 we have that a and b are Malcev over E hence a |⊗� E

b

by Theorem 4.48. �
Restricting to F = Fp and c < p, we obtain a corresponding result for groups, via 

Lazard correspondence.

Corollary 5.14. For all c < p, the theory Th(Gc,p) is NSOP4.

Proof. This follows from Theorem 5.13, since Tc,p = Th(Lc,p) and Fact 2.14 which states 
that Lc,p and Gc,p are bi-interpretable. �
5.4. c-Dependence

In this subsection, we will show that Tc,F is c-dependent and (c − 1)-independent (see 
Definition 3.10). Via the Lazard correspondence, it will follow as a corollary that the 
theories Th(Gc,p) for c < p furnish examples of groups showing the strictness of the 
NIPk hierarchy.

Lemma 5.15. Every term t(x) of Lc,F is equal modulo Tc,F to an F-linear combination 
of Lie monomials.

Proof. This is an easy induction on terms. Clearly the constant 0 and the variables are 
of the required form. Suppose it has been established for terms s(x) and t(x). Then 
s(x) + t(x) is of the required form. If we have

s(x) =
∑
i<k

αimi(x)

t(x) =
∑
j<l

βjm′
j(x),

for scalars αi, βj ∈ F and Lie monomials mi(x), m′
j(x) for all i < k, j < l, then, by 

bilinearity, we have
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[s(x), t(x)] =

⎡
⎣∑

i<k

αimi(x),
∑
j<l

βjm′
j(x)

⎤
⎦

=
∑

i<k,j<l

αiβj [mi(x), m′
j(x)],

and each [mi(x), m′
j(x)] is a Lie monomial. This completes the induction. �

Corollary 5.16. Every formula ϕ(x) of Lc,F is equivalent modulo Tc,F to one of the form 
ψ(m0(x), . . . , mk−1(x)) where ψ(y0, . . . , yk−1) is a quantifier-free Lflag,c,F -formula and 
each mi(x) is a Lie monomial.

Proof. Immediate by quantifier elimination, Corollary 4.39, and Lemma 5.15. �
The following theorem of Chernikov and Hempel gives a key criterion for establishing 

that a theory is NIPk. It is the k-ary analogue of the earlier cited Fact 3.11. The proof 
of this theorem has not yet been disseminated, so we note that our Theorem 5.18 below 
is conditional on results which are not yet publicly available.

Fact 5.17. [8] Let M be an L ′-structure such that its reduct to a language L ⊆ L ′

is NIP. Let d, k be natural numbers and ϕ(x1, . . . , xd) be an L -formula. Let fur-
ther y0, . . . , yk be arbitrary (k + 1)-tuples of variables. For each 1 ≤ t ≤ d, let 
0 ≤ it,1, . . . , it,k ≤ k be arbitrary and let ft : Myit,1

× . . . × Myit,k
→ Mxt

be an 
arbitrary k-ary function. Then the formula

ψ(y0; y1, . . . , yk) = ϕ(f1(yi1,1 , . . . , yi1,k
), . . . , fd(yid,1 , . . . , yid,k

))

is k-dependent.

Theorem 5.18. The theory Tc,F is c-dependent and (c − 1)-independent.

Proof. By Lemma 5.1, we know that Tflag,c,F is stable. Moreover, in a c-nilpotent Lie 
algebra, each Lie monomial m(x) is at most c-ary. Therefore, the c-dependence follows 
by Fact 5.17.

Now we argue that this theory is (c −1)-independent. Let L denote the free c-nilpotent 
Lie algebra over F with generators (bX)X⊆ωc−1 and (ai,j)i<c−1,j<ω. Let ≺ denote an 
arbitrary linear order of the monomials in these generators such that ai,j ≺ ai′,j′ if 
(i, j) <lex (i′, j′) and such that ai,j ≺ bX for all (i, j) and X. Then the monomials 
[bX , a0,j0 , a1,j1 , . . . , ac−2,jc−2 ] are in the Hall basis (defined with respect to the ordering 
≺) for all X ⊆ ωc−1 and (j0, . . . , jc−2) ∈ ωc−1. Define I ⊆ L to be the vector space 
spanned by

{
[bX , a0,j0 , a1,j1 , . . . , ac−2,jc−2 ] : X ⊆ ωc−1, (j0, . . . , jc−2) ∈ X

}
.
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Since L is c-nilpotent, if x ∈ L and y ∈ I, then [x, y] = 0 and therefore I is an ideal. 
Moreover, since terms in the Hall basis are linearly independent, we know

[bX , a0,j0 , a1,j1 , . . . , ac−2,jc−2 ] �∈ I

when (j0, . . . , jc−2) �∈ X.
It follows, then, that in the c-nilpotent Lie algebra L = L/I,

[bX , a0,j0 , . . . , ac−2,jc−2 ] = 0

if and only if (j0, . . . , jc−1) ∈ X. Since Age(L) ⊆ Age(Mc,F ), we may assume L is 
embedded in M. This shows that T has the (c − 1)-independence property. �
Corollary 5.19. Assume p is an odd prime and c > p. Then the theory Th(Gc,p) is 
c-dependent and has the (c − 1)-independence property. In particular, TG, defined in 
Section 3, is 2-dependent.

Proof. As in Corollary 5.14, this follows from Theorem 5.13, since Tc,p = Th(Lc,p) and 
Lc,p and Gc,p are bi-interpretable by Fact 2.14. Finally, the ‘in particular’ part of the 
statement follows from the fact that G2,p and G are easily seen to be bidefinable (the 
only difference in languages is that G has a single predicate while G2,p has two additional 
predicates, one for the trivial subgroup and one for the entire subgroup). �
Remark 5.20. By Proposition 4.41, the predicates for the terms of the Lazard series, 
interpreted in Gc,p, are definable in the language of groups. Therefore, after taking the 
reducts to the language of groups, the theories Th(Gc,p) as c varies give examples of 
pure groups witnessing the strictness of the NIPk hierarchy.
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