
Interrelation between Teaching Assistants’ debugging strategies
and adherence to sound tutoring practices during office hours

Yana Malysheva
Washington University in St. Louis

USA
yana.m@wustl.edu

Caitlin Kelleher
Washington University

USA
ckelleher@cse.wustl.edu

Barbara Jane Ericson
School of Information, University of

Michigan
USA

barbarer@umich.edu

Abstract
Office hours often play an important role in Computer Science
courses. But office hours are often conducted primarily by graduate
and undergraduate Teaching Assistants (TAs). These TAs may have
limited experience with both debugging issues that students may
encounter in their code, and with utilizing good tutoring practices
when guiding the student toward a solution. In order to understand
TAs’ challenges and strategies during office hours, we conducted an
observational study of TAs holding office hours for a Data Oriented
programming course. We found that TAs tend to use fewer good
tutoring practices in help sessions where they’ve encountered more
difficulty with debugging the student code. We also identified three
dimensions of debugging strategies where the TA’s choices may
either exacerbate or alleviate the difficulty they have with both
debugging and guiding the student. We believe that these insights
can help inform the design of tools and interventions to help TAs
conduct more effective office hours.

CCS Concepts
• Social and professional topics→ Computing education pro-
grams.

ACM Reference Format:
Yana Malysheva, Caitlin Kelleher, and Barbara Jane Ericson. 2024. Interre-
lation between Teaching Assistants’ debugging strategies and adherence
to sound tutoring practices during office hours. In 24th Koli Calling Inter-
national Conference on Computing Education Research (Koli Calling ’24),
November 12–17, 2024, Koli, Finland. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3699538.3699562

1 Introduction
Office hours can play an important role in Computer Science (CS)
courses, since they are one of the few opportunities for students to
get one-on-one help with the course material. Office hours in CS
courses are often conducted at least in part by Teaching Assistants
(TAs), who are usually either undergraduate or graduate students
with some experience in the course material. Since the TAs are

This work is licensed under a Creative Commons Attribution International
4.0 License.

Koli Calling ’24, November 12–17, 2024, Koli, Finland
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1038-4/24/11
https://doi.org/10.1145/3699538.3699562

themselves students, their experience in both tutoring and debug-
ging can vary widely. Therefore, the extent to which a particular
office hour session is helpful to the student can also vary.

In CS courses, students usually come into office hours seeking
help with a specific programming problem or task. The TA’s goal is
to both help the student resolve the specific issue they are having
with their program, and help the student learn some skill or concept
that may help them resolve similar problems on their own in the
future. Accordingly, we examine two aspects of conducting office
hours where TAs may experience varying degrees of difficulty:

(1) Understanding and debugging what is happening in the
student’s program

(2) Using sound tutoring practices to guide the student toward
understanding something they previously didn’t.

We refer to these aspects as "debugging" and "guiding" through-
out the rest of the paper.

Previous qualitative research has suggested that TAs do not
always use sound tutoring practices to guide the student during
office hours [12, 23], and that the difficulty of finding and fixing bugs
in student code under time pressure could be a contributing factor
to this problem [23]. In this work, we conduct a deeper quantitative
and qualitative analysis of the connection between a TA’s difficulties
debugging the student’s code during a particular office hour session,
and the difficulty they have guiding the student during that same
session. Specifically, we pose two research questions:

• RQ1: What is the relationship between the difficulty a TA
has debugging and the difficulty they have guiding the
student in a particular help session?

• RQ2: What debugging strategies do TAs employ that may
affect their ability to effectively guide the student?

To answer these research questions, we conducted an observa-
tional study of TA-student interactions during office hours across
two semesters of a Data Oriented Programming course. We found
that there is a positive correlation between how much difficulty
the TA had with debugging student code, and how much difficulty
they had in utilizing known good tutoring practices for guiding the
students. We also identified three specific dimensions where a TA’s
choice of strategy for debugging the student code may affect the
difficulty that TA has in guiding the student.

2 Related Work
2.1 TA-student interactions in Computer

Science courses
Mirza et al. [26] conducted a systematic literature review of the prior
work on Undergraduate TAs (UTAs) in CS. The studies described

https://orcid.org/0000-0002-7624-4736
https://orcid.org/0000-0002-9470-1478
https://orcid.org/0000-0001-6881-8341
https://doi.org/10.1145/3699538.3699562
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3699538.3699562
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3699538.3699562&domain=pdf&date_stamp=2024-11-13

Koli Calling ’24, November 12–17, 2024, Koli, Finland Yana Malysheva,Caitlin Kelleher,Barbara Ericson,et al.

in this literature review suggest that introducing TA programs can
benefit both TAs [2, 8, 35] and students [1, 5, 6, 25, 29]. However,
these studies were primarily concerned with the organization of
TA programs in CS departments, and did not directly touch on the
interactions between TAs and students.

In recent years, several studies have explored TA-student inter-
actions from the perspectives of both TAs and students. Lim et al.
[19] found that students’ desired outcome of office hours did not
always match the students’ own expectations of what is benefi-
cial for their learning. Likewise, several studies of TA experiences
[24, 28, 30] identified a tension between the TAs’ goals of helping a
student learn and helping them achieve a better grade by resolving
their current issues. Two recent observational studies [12, 23] show
that TAs often have difficulties following sound tutoring practices
during office hours. Goletti et al. [9] and Cheng et al.[3] investigate
interventions which give TAs explicit guidelines for using good
tutoring practices.

While several prior works describe the challenges TAs face in
both debugging student code and using good tutoring practices, our
work is focused on the relationship between these two common
areas of difficulty. In particular, we investigate how a TA’s approach
to debugging the student code may impact their adherence to good
tutoring practices.

2.2 Practices of effective tutors
Prior research on effective tutoring techniques identifies several
patterns of behaviors that may lead to more effective tutoring.
In particular, effective tutors prefer to provide indirect guidance
instead of directly giving away the answer [17, 18, 21, 22]. They
often ask leading questions to help the student focus their thought
process [4, 31, 33, 34]. This can give students the opportunity to
arrive at the important conclusion themselves, and thus retain a
better understanding of the concepts involved [4, 31, 33, 34].

In our study, we use these patterns to inform our metrics of
effective tutoring during office hours. Specifically, we measure
TAs’ use of explicit vs. indirect guidance, and their use of leading
questions when helping the student.

2.3 Novice debugging
Since Teaching Assistants are still students themselves, they often
lack extensive experience when it comes to debugging code, es-
pecially code that was written by someone else. When debugging
student code during office hours, they are likely to utilize common
novice debugging strategies and experience pitfalls that are typical
of novice debuggers. Research on novice debugging behaviors has
uncovered several behavior patterns that are relevant to our work:

Novices often utilize pattern-matching and tinkering techniques
to make changes to the code without understanding the code or the
effect of the change. For example, they may change code that looks
"suspicious" simply because it’s different from what they are used
to seeing, or more generally make trial-and-error changes based
on their intuition of what might help [7, 20, 27, 36]. When novices
do try to understand what is going wrong, they often prefer using
forward reasoning — tracing through the code — over backward
reasoning — trying to understand the output and reasoning about
how it may have been caused by the code [7, 10, 36].

Finally, several studies have shown that self-explaining - ex-
plicitly verbalizing explanations of one’s thought process and un-
derstanding of the problem - is linked to better performance and
outcomes on debugging tasks [16, 20, 32].

3 Methods
In order to understand how TAs’ debugging strategies affect office
hour dynamics and outcomes, we collected and analyzed recordings
of office hours for an intermediate-level course on Data-Oriented
Programming. The office hours we collected were conducted over
videoconferencing by both undergraduate and graduate teaching
assistants.

3.1 Data Collection
We collected recordings of office hours during two semesters of an
undergraduate course on Data-Oriented Programming. Students
in this course are expected to already be familiar with basic pro-
gramming concepts. The course is focused on teaching the students
how to accomplish data-oriented tasks in Python, such as using
APIs, scraping HTML, and extracting and aggregating data. This
course employs both undergraduate and graduate teaching assis-
tants. Since both graduate and undergraduate students had the
same responsibilities during office hours, for the purpose of this
study, we did not differentiate between graduate and undergraduate
teaching assistants.

In this course, some office hour sessions were conducted in
person, and some were conducted over Zoom, a videoconferencing
application. We only recorded and analyzed office hours that were
conducted over Zoom, as recording all of the relevant information
during in-person office hours would be prohibitively complicated
and intrusive.

7 TAs and 170 students agreed to participate in this study. We
asked the TAs who were participating in the study to use Zoom to
record and upload the videos of their help sessions in cases when
the student they were helping was also participating in the study.

In practice, not all TAs who agreed to participate in the study
recorded and uploaded the eligible help sessions they took part in.
We collected and analyzed a total of 12 help session recordings,
which together comprised 167 minutes of video data. 4 different TAs
and 8 different students took part in these help sessions. This study
design was reviewed and approved by the university’s Institutional
Review Board (IRB).

3.2 Data Preparation
To prepare the data for analysis, we first used an automatic tran-
scription service (Otter.ai) to create first-draft transcriptions of each
of the help sessions. Since the automatic transcription service is
geared toward transcribing everyday language, the first-draft tran-
scriptions contained a lot of errors when the conversation revolved
around programming jargon and the specific code being discussed.
Therefore, two researchers manually corrected the generated tran-
scriptions.

To capture data about the TA and students’ problem-solving
strategies, one researcher who was familiar with the content of the
course also transcribed two sets of data about the problems being
addressed during each help session:

Interrelation between Teaching Assistants’ debugging strategies and adherence
to sound tutoring practices during office hours Koli Calling ’24, November 12–17, 2024, Koli, Finland

(1) The focus of the discussion: Instances when the partic-
ipants are directly discussing something on the student’s
screen, such as a particular line of code or the current state
of the program’s output. For each instance, the researcher
recorded what specific line or item was being discussed.

(2) Edits made: Instances when the student made edits to their
code. For each instance, the researcher recorded:
• Whether the TA directly suggested making this specific
edit. For example, "What happens if you get rid of ’results’
on line 201?" or "I would suggest using that json.loads
function".

• Whether this edit was intended to correct a problem, or
was a diagnostic edit, such as printing out a value or tem-
porarily commenting out broken code to see output from
a different line of code.

• In cases where the edit was intended to correct a problem,
whether it was successful (the code moved toward being
more correct) or not (the edit made the code more wrong
and/or did not address the existing problems).

3.3 Data Analysis
In order to analyze TA-student interactions during office hour help
sessions, we coded the utterances in the help sessions using a cod-
ing scheme based on the scheme developed in [23]. This coding
scheme categorizes each utterance into one of four high-level cate-
gories, and one of several possible sub-categories in each category.
The four high-level categories capture the intended direction of
information flow for that utterance: who has (or is presumed to
have) the information being discussed, and who is receiving this
information?

• Student to TA utterances — the information in question is
something the student knows, such as what issue they want
help with, or how they were approaching the problem.

• TA to student utterances — the information in question is
something that the TA knows (or is assumed to know), such
as how the student should change their code to fix a bug.

• Mutually Creating Information (MCI) utterances — no-
body currently knows or has the information in question.
The student and TA are trying to gain an understanding
that neither of them has. These are almost always debug-
ging utterances - trying to build an understanding of what
is happening and how to fix it.

• Social Glue utterances — utterances which do not carry any
information related to the problem.

A particularly important subset of the "TA to student" high-level
category is the set of six guidance levels (Guidance Level 0 through
5). These sub-categories capture how directly and explicitly the
TA was guiding the student to the answer. Research suggests that
indirect guidance can lead to more effective learning than explicitly
giving away the answer [18, 21], so this set of categories is an
important measure of how the TA is adhering to good tutoring
practices.

Table 1 shows the full list of categories we used, with an example
for each category. We merged three pairs of sub-categories from
the original coding scheme [23], because we found that it was often
hard to draw a distinction between them, and the distinctions did

not provide meaningful information in the context of our research
questions. For example, wemerged "Referencing TA’s own solution"
and "Referencing third-party solutions", since the source of the
solution being referenced did not matter in our context.

In addition to these categories, the coding scheme includes two
boolean flags that indicate important events:

• Whether this utterance is a leading question—a question to
which the speaker already knows the answer, but they think
asking it will lead the other person to a useful realization.

• Whether this utterance represents a context change — a
change in the specific topic of the discussion. For example,
the student asking a new unrelated question; or the TA de-
ciding to give up on the current approach and try something
different.

We measured inter-rater reliability separately for the main clas-
sification scheme and the two boolean flags. Two researchers in-
dependently coded around 20% of the data, and we measured the
inter-rater reliability using Fleiss’ kappa. For the main classification
categories, Fleiss’ kappa was 0.69, indicating substantial agreement.
For the context change data, Fleiss’ kappa was 0.84, indicating very
good agreement. For the leading question data, Fleiss’ kappa was
0.52, indicating moderate agreement. The leading question data
was fairly sparse, since the TAs in this data set did not ask leading
questions very often. This may have contributed to the lower Fleiss’
kappa score.

3.4 Data Filtering
Since the main focus of our work is TA debugging behavior, we
were specifically interested in sessions where the TA did at least
some debugging. For this reason, we excluded those sessions where
either (1) the TA made no utterances in the "Mutually Creating
Information" category — since this is the category that contains
debugging utterances, the TA must not have needed to debug any-
thing during those sessions; or (2) there were no edits made to code
during the entire session — if the session involved any debugging,
we would expect the TA and student to touch the code in some
way.

Based on these criteria, we excluded 3 out of 12 sessions from
our analysis. These three sessions primarily dealt with clarification
questions about problem statements, grading criteria, and validating
a student’s high-level approach.

4 Results
We used both quantitative and qualitative analysis of the data to
answer the two research questions we posed:

(1) RQ1: What is the relationship between how much difficulty
a TA has debugging during office hours and how much
difficulty they have using good tutoring practices to guide
the student?

(2) RQ2: What debugging strategies do TAs use during of-
fice hours which may increase or decrease the amount of
difficulty the TA encounters in guiding the student?

Koli Calling ’24, November 12–17, 2024, Koli, Finland Yana Malysheva,Caitlin Kelleher,Barbara Ericson,et al.

Table 1: Classification Categories

Type Label Example

St
ud

en
t

to TA

Issue or symptom Student: "So I ran it and I don’t know why it’s giving me this
message."

Establishing Context TA: "Okay, let me take a look at your find_bio_names function."
Student’s approach so far Student: "I was trying to get the birth years using regex"
Student’s knowledge state TA: "Do you remember how you can convert a variable from

one type to another?"

M
ut
ua
lly

cr
ea
te
d

in
fo
rm

at
io
n Reproducing the issue Student: "Here, let me run it again."

Code (or system) comprehension TA: "So we’re getting an error, but it’s somewhere else now."
Proposing or trying changes TA: "And then let’s just run and see what happens."
Referencing External Resources TA: "I’m going to double check it next to the other one"
Diagnosing misconceptions TA: "Why did you decide to do ".load"?"

TA
to

St
ud

en
t

(Guidance 5) Explicit answer TA: "So, actually, it’s hand.read"
(Guidance 4) Explicit algorithm TA: "Then we’re gonna want to write that variable to the file"
(Guidance 3) Step(s) to resolve the issue TA: "The way I would build that, is I would build it a very small

amount at a time."
(Guidance 2) Declarative description of state TA: "that tells me that there’s not a key called "results" when

you go through it."
(Guidance 1) Building understanding TA: "So, you know how with turtles, you would name the turtle

something?"
(Guidance 0) General relevant resources TA: "Shift+tab is how you go backwards."
Generalizing, reflecting, making connections TA: "We love new errors, new errors are the best."
Social Glue Student: "Oh, well, that went fast."

4.1 RQ1: Relationship between difficulty
debugging and difficulty guiding

To analyze the relationship between the difficulty a TA has with de-
bugging and understanding the student’s problem and the difficulty
they have in using good tutoring practices to guide the student, we
first performed Bayesian Estimation to establish whether there is a
significant relationship between measures of these two dimensions
of difficulty.

In recent years, researchers have argued that Bayesian meth-
ods are better suited than traditional Null Hypothesis Significance
Testing (NHST) for several areas of research on human behavior,
including Psychology [14], Human-Computer Interaction [11], and
Organizational Sciences [15]. In particular, researchers argue that
Bayesian analysis provides data that is more informative, easier to
interpret, and more suitable for small-n studies [11, 14, 15].

We found that there is, indeed, a credible positive correlation: in a
given help session, the more difficulty a TA has in debugging issues,
the more difficulty they are likely to have in using good tutoring
practices to guide the student. To gain a deeper understanding of
this relationship, we then qualitatively compared two help sessions
that were conducted by the same TA, but were on the opposite ends
of the spectrum when it came to each dimension of difficulty.

4.1.1 Correlation between difficulty debugging and difficulty guid-
ing. We used two metrics for each of the two dimensions of diffi-
culty, which we derived from the coded utterance data.

For difficulty debugging, we measured:
(1) The number of Mutually Creating Information (MCI)

utterances in the help session — this number captures how

much debugging the TA and student had to do in order to
resolve the student’s issue.

(2) The number of Context Changes that happened during
the help session — these often indicate that the student and
TA encountered an additional complication: "go ahead and
make sure you open up your- oh wait, why do you have "file
not found"?" or may have abandoned their current line of
inquiry because they felt they exhausted it: "Okay, anyways,
we tried going through that other rabbit hole...". These types
of shifts both indicate that the participants are encountering
difficulties, and may themselves cause increased cognitive
load.

For difficulty in using good tutoring practices to guide the stu-
dent, we measured:

(1) The average Guidance Level the TA used when providing
guidance to the student — as described in the Methods sec-
tion above, more explicit guidance (higher guidance level)
means that the TA is giving away the answer to the student,
which may not be conducive to effective learning [18, 21].

(2) The number of Leading questions the TA asked during the
help session — phrasing information in the form of a leading
question encourages the student to engage with the question
and draw their own conclusion.

We used BayesianMultiple Linear Regression (BMLR), a Bayesian
Estimation approach to multiple linear regression, to assess how
well the difficulty debugging metrics together can predict each
of the difficulty guiding metrics.

Interrelation between Teaching Assistants’ debugging strategies and adherence
to sound tutoring practices during office hours Koli Calling ’24, November 12–17, 2024, Koli, Finland

(a) (b)

Figure 1: Regression results for predicting guidance level (a)
and leading questions asked (b) using metrics of difficulty
debugging.

In Bayesian Estimation, a hierarchical model is first chosen to de-
scribe the relationship between several variables. We used a robust
multiple linear regression model [13, 15]. This model describes a
linear relationship between two or more independent variables (in
our case, the metrics for "difficulty debugging") and one dependent
variable (in our case, we performed this analysis separately for each
of the metrics for "difficulty guiding"). In addition, the noise in the
data is modeled as having a t-distribution around this linear model.
A prior belief distribution is then chosen for each parameter in the
model. We used the mildly-informed priors described in Chapter
18 of Kruschke(2014) [13].

Given the model, the prior distribution, and our set of data, we
can now estimate the posterior distribution for the model param-
eters. To do this, we used Stan1, a popular software package for
performing Bayesian analysis.

To decide whether we can use the posterior distribution to draw
credible conclusions about the relationship between the variables,
we analyze how the distribution of certain parameters relates to
some null value. In the case of linear regression, we can analyze
how the posterior distribution of the slope for each independent
variable relates to the slope of 0, which would indicate no relation-
ship between the variables. We compute the 95% Highest Density
Interval(HDI) - the highest-density interval which covers 95% of
the probability distribution. If the null value lies outside of that
interval, we conclude that this distribution represents a credible
relationship between the variables.

Our first BMLR model uses the number of MCI (debugging) ut-
terances and the number of context changes to predict the average
guidance level used by the TA. For this model, we used the total
number of debugging utterances and context changes as our inde-
pendent variable metrics. These totals depend in part on the total
length of the help session, in addition to the moment-to-moment
difficulty the TA may have had debugging. This total session length
is, in itself, a salient and important component of the overall com-
plexity of the session, and is important to capture in this case.

Our second BMLR model uses the fraction of time spent on MCI
(debugging) utterances and the frequency of context changes (mea-
sured in utterances) to predict the frequency of leading questions
asked by the TA during the help session. For this model, we used
fractional metrics of the independent variables instead of the totals
1https://mc-stan.org/

(a) Predicting guidance level from
MCI utterances

(b) Predicting guidance level from
context switches

(c) Predicting leading questions from
MCI utterances

(d) Predicting leading questions
from context switches

Figure 2: Histograms of credible values for the slope parame-
ters of predicting difficulty guiding usingmetrics of difficulty
debugging.

we used in the first model, because we anticipated that using total
values for all metrics would introduce a confounding factor. All
three of the metrics involved (debugging utterances, number of
context shifts, and number of leading questions) would correlate
positively with the total length of the debugging session. However,
we anticipated (and observed) a predominantly negative numeric
correlation between the measures of difficulty of debugging and the
measure of difficulty guiding: We expected the metric for leading
questions asked to decrease, but the metrics for difficulty debugging
to increase, when the TA has more difficulty with both aspects of
conducting office hours. In this case, eliminating this confounding
factor was more important than capturing the aspect of difficulty
that comes from the total length of the help session.

Table 2 shows the estimated posterior mean and standard devia-
tion for each of the parameters in the two models. Figure 1 shows
the regression planes of each model plotted against a scatter plot
of the data. Figure 2 shows the estimated posterior distribution
of each of the slope parameters in the two models. From the his-
tograms of credible values, we can see that the metric associated
with debugging time does have a credible linear correlation with
each of the metrics of difficulty guiding the student. In both models,
the 95% HDI area does not intersect with the null value. However,
for the metric associated with context changes, the null value
does fall squarely within the 95% HDI in both models. Therefore, at
least in the context of these multiple-regression models, we cannot
conclude that the number or frequency of context changes has
predictive power over the difficulty the TA will have with guiding
the student. This may be because the context shift variable is sim-
ply redundant in the multiple regression model, and the variable
for debugging time already captures all of the predictive power of
the model. The context shift metric may also be too noisy to be
predictive. Nevertheless, this analysis shows a credible correlation
between the difficulty a TA has debugging code during a help ses-
sion and the difficulty they have in using good tutoring practices
during the same help session.

Koli Calling ’24, November 12–17, 2024, Koli, Finland Yana Malysheva,Caitlin Kelleher,Barbara Ericson,et al.

Table 2: Posterior means and standard deviations of parameters in the BMLR model predicting metrics of difficulty guiding
(guidance level and number of leading questions asked) from metrics of difficulty debugging

Guidance Level Leading Questions
Parameter Mean Std. Dev. Mean Std. Dev.
Z-intercept 2.28 0.47 0.1 0.07
Slope (debugging utterances) 0.02 0.0088 -0.33 0.08
Slope (context changes) -0.04 0.08 1.1 1.21
𝜎 of t-distribution 0.4 0.17 0.03 0.01
𝜈 of t-distribution 33.16 30.11 30.36 28.53

4.1.2 Comparison of two contrasting sessions. The statistical anal-
ysis described above suggests that at least one measure of the diffi-
culty the TA had debugging in a help session predicts how much
difficulty the TA had using good practices when guiding the stu-
dent. However, this prediction does not necessarily imply a causal
relationship. It could be true that encountering difficulties in the
debugging process makes the TA less able to tutor effectively. But it
could also be true that some other latent aspect(s) of a help session
affect both types of difficulty. To gain insight into why both types
of difficulties occur in some sessions but not others, we compare
two contrasting sessions conducted by the same TA. We found that
the TA’s approach to debugging was similar across the two sessions,
and reflected common novice debugging practices. This approach
proved effective in the first, easier session; but in the second session,
the approach led the TA to pitfalls which hindered both effective
debugging and effective guiding.

The first session occurred during the fifth week of class (out of
15). The student was looking for help with a homework assignment
which introduced the concept of multiple classes interacting with
each other. Most of the student’s issues were based in conceptual
misunderstandings — the student was confusing classes and objects,
and was having trouble understanding when to use the keyword
"self". This session went very well with respect to the metrics of
difficulty guiding. Out of all sessions in our dataset, it had the
highest number of leading questions asked (8) and lowest value for
the mean level of guidance the TA provided (2.19). The majority
of the guidance the TA provided was phrased as guidance level
2 (declarative description of state), e.g.: "something we want to
keep straight is "self". So whatever class self is in, that’s what self
refers to". The session also went reasonably well with respect to the
metrics of difficulty debugging. There were 8 total context changes
in the session, which was the median number across our dataset.
And 28% of the session was spent on debugging utterances, which
is slightly less than the median (31%). This session took around 14
minutes, which is less than the medians session length of about 16
minutes. After this session, the student had a more correct version
of their code and a demonstrated ability to find and fix similar
errors on their own.

The second session occurred during the twelfth week of the same
semester. The student in this session was working on a homework
assignment which concerned querying an API, caching data in a
local file, parsing the JSON that the API returned, and aggregating
values. The student had a mostly-working solution and needed
help finding and fixing a few small bugs. This session had the worst

values in the dataset for each of the four metrics of difficulty. 58% of
the session was spent on debugging utterances, and there were 13
total context changes. The TA asked no leading questions. Themean
level of guidance the TA provided was 4.1, because the majority
of the guidance was phrased either as level 4 (explicit algorithm),
e.g. "And then we’re gonna want to write that variable to the file"
or level 5 (explicit answer), e.g. "And then it’s at request_url just
like [line] 124". This session took nearly 34 minutes, which makes
it the longest session in the dataset by far — the second longest
session was around 18 minutes. The student and TA did eventually
find and fix the two original bugs. But they also introduced a new
subtle bug which remained unfixed when the session ended.

The overall approach. Although the outcome of these two ses-
sions differed drastically, the TA’s approach to debugging and guid-
ing the student was quite similar across the two sessions. In both
of these sessions, the TA’s primary strategy for locating issues was
to scan through some promising sub-section of the code and look
for things that seemed problematic to the TA. The TA would make
a decision about a change they wanted to make to the code, and
then guide the student toward that change using varying degrees
of explicitness. The TA did not make many attempts to involve the
student in their problem-solving process in either session. Although
the TA occasionally explained their thought process to the student,
this was almost always after the fact, as a side note: "That’s why
I wanted to start with the other function to get you warmed up"
(from the first session); "I just sort of wanted to clear it, but..." (from
the second session).

This approach closely maps onto the sub-optimal novice debug-
ging strategies that we discuss in section 2.3: The TA used forward
reasoning to trace through code, then tinkered with parts of the
code that look different from what the TA expected. They did not
engage in self-explaining or verbalizing their thought process in
the moment.

First help session. The TA was able to immediately identify sev-
eral errors in the student code and begin explaining the problems
to the student: "So there’s already something that I’ve seen the mis-
conception with a ton of students already. So it’s totally normal."
They explained when the student should be using a class name and
when they should use an instance of the class, and led the student
toward fixing one of the cases of using a class name instead of an
instance.

The session continued with the TA pointing out and discussing
other problems they noticed with the code. For each problem, the

Interrelation between Teaching Assistants’ debugging strategies and adherence
to sound tutoring practices during office hours Koli Calling ’24, November 12–17, 2024, Koli, Finland

TA would try to lead the student toward their intended solution
indirectly, e.g. "we want to call the dining halls student list, but
we don’t actually have a dining hall to access". Sometimes the TA
would phrase the guidance as a leading question, e.g. "So how come
we were allowed to use dining_hall above? The lowercase version?".

In some instances, when the student was unable to use higher-
level hints to arrive at a solution, the TA would increase the level
of explicit guidance until they "bottomed out" and told the student
what change they should make, e.g. "we don’t need the self at the
beginning"; "so where you have that Dining_Hall in capitals, should
be in lowercase".

As the session went on, the student began applying the con-
cepts that the TA had been explaining to find and fix similar errors
without the TA’s direct intervention: "Can I just put... Oh wait, self
because it’ll be in student class?"

Second help session. In the second help session, the TA had sig-
nificantly more trouble finding the bugs in the student code. After
the student explained that one of their functions was throwing
and catching an exception, the TA started by scanning the code in
that function from the top down: "So you have a request URL from
get_request_url(list), that’s good. And then you do read_json on
the file name, so that’s good. "if request URL is in datadict.keys",
that’s good."

When the TA reached a particular line of code which seemed
suspicious, they paused and examined it silently for around 20
seconds. After that, the TA jumped to telling the student exactly
what to change, without providing any justification: "see how in line
128 You’re doing read_json? I would suggest using that json.loads
function that we went over in class instead". In this case, the change
the TA suggested was correct, because the read_json function was
for reading json from a file, but the student was trying to parse json
from a string. This also happened to be the bug that was causing the
current exception, so when the student re-ran the code, it resulted
in a new error message, and the TA was able to conclude that the
fix worked. However, the TA didn’t seem to connect the exception
to the bug in any way.

The TA then spent nearly 20 minutes trying to locate the next
bug. Similar to the first bug, the TA used the error message to
identify a starting place for examining the code, and then looked
for potential changes to make in that general area: "Okay, so we’re
going to 133 that is where the error is coming up first." The TA
briefly acknowledged the contents of the error message — that a
function call in the call stack expected a string, but got a dictionary—
but did not seem to apply this information to inform their debugging.
Instead, the TA made a series of specific suggestions for changes to
the code in the vicinity of the error message. Before they were able
to find the actual error, the TA made 5 separate suggestions for how
to change the code. All of these were either wrong (making the
code more incorrect) or unnecessary (not changing the behavior of
the code), and the TA rarely explained the reasoning behind their
suggestions. For example, the TA insisted on changing how the
student’s code reads and writes JSON from file:

TA: Okay, so a lot of you are doing just "load" instead
of "loads". Why did you decide to do ".load"?
Student: [...] I thought that load was meant for [load-
ing from] the file.

TA: Okay, yeah.What I’m gonna suggest you do is
we change the format for both.

Even though the TA seemed to agree that the student’s approach
was valid, they insisted on splitting up the functionality into two
steps - reading the file and converting the string into JSON. This
change did not affect the code’s behavior, and the TA did not explain
the purpose of this change.

In another attempt to fix the same bug, the TA did provide a
speculative justification to a change they suggested: "Why don’t
we change that to say if new_dict["status"]="OK" as its value? Be-
cause maybe what’s happening is the status isn’t "OK". And there’s
actually some kind of error." However, this justification did not
make much sense, since the if statement in question was working
correctly in the test case they were trying to debug: the if condition
passed, and the exception was being triggered by a line of code
inside of the if block. After the student made the suggested edit,
nothing immediately changed in the execution, because the altered
if condition still passed. However, this did make the if condition
less correct in general. The new condition throws an exception
in a different test case, where the status key did not exist. This
new failure mode went undetected until the very end of the help
session. At that point, the TA and student could not identify what
was triggering this new error message before the TA ended the
help session.

Discussion. The TA’s strategy of scanning sections of code to
find potentially problematic areas worked much better in the first
session than in the second one. In the first session, the TA was
quickly able to identify parts of the code that were wrong, and
immediately knew why they were wrong, based on the TA’s un-
derstanding of the underlying concepts. However, in the second
session, the problems in the student’s code were more subtle and
specific to the student’s approach to the problem. Therefore, when
the TA found sections of code that looked different from what they
expected, these sections did not always correspond to actual bugs
or problems. And when the TA attempted to debug these sections
by tinkering with the code, the changes they made were frequently
unproductive or outright wrong.

Although the TA did not verbalize their debugging thought pro-
cess in either session, this was not as noticeable in the first session,
when the TA did not have to do much debugging to identify the
problems. But in the second session, the TA would frequently fall
silent for long stretches of time or simply express their confusion
about the code: "This function is like very convoluted...", "Give me
just... give me one second because there’s a lot going on in this
function".

The TA’s strategies of forward reasoning, tinkering, and not ver-
balizing their thought process acted as effective debugging shortcuts
when the problems in the student code were relatively easy, and
did not hinder their ability to guide the student. In the first session,
the TA was able to quickly jump to the correct conclusions, and
then demonstrated good use of sound tutoring practices such as
using leading questions and giving indirect guidance by describing
what was happening in the student code and why. But when the
problems got harder, these same strategies seemed to undermine
the TA’s ability to both debug and guide effectively. In the second
session, those same strategies did not allow the TA to develop a

Koli Calling ’24, November 12–17, 2024, Koli, Finland Yana Malysheva,Caitlin Kelleher,Barbara Ericson,et al.

clear understanding of what was going wrong with the student
code, and consequently made it harder to provide good explana-
tions to the student. Thus, the TA primarily resorted to telling the
student what to change.

4.2 RQ2: TAs’ debugging strategies which may
have an impact on the TAs’ difficulty in
guiding the student

In order to understand how different TAs approach the debugging
strategies we identified in section 4.1.2, and how this affects their
success in both debugging and guiding, we conducted both a quali-
tative and quantitative analysis of all of the office hour sessions in
our dataset. Specifically, we identified three dimensions of debug-
ging strategies corresponding to the three suboptimal debugging
practices we observed in the case study in section 4.1.2:

• Suggesting changes to student code: are the suggested changes
a result of tinkering and pattern-matching, or are they well-
reasoned changes?

• Finding and diagnosing bugs in student code: does the TA
use forward reasoning to scan code, or backward reasoning
to interpret the output and trace the bug backwards from it?

• Communicating their thought process: does the TA think
aloud and explain their thought process to the student?

We first examined the sessions qualitatively to understand the
range of different approaches TAs took for each dimension. We
then used the coded utterance data to draw quantitative conclusions
about the relationship between the range of debugging approaches
and the TAs’ ability to guide the student.

4.2.1 Suggesting code changes. As part of the debugging process,
TAs sometimes chose to make a direct suggestion for an edit the
student should make to their code. Some of these suggestions were
well-reasoned and made sense in the context of the current issue.
However, other times, the TA simply wasn’t sure how to fix the
current issue, and thus speculatively suggested changes that may
or may not help: "go back to your folder for the homework, just go
ahead and delete the cache file. If not, I have ideas for your other
function but I thought maybe we would check this first."

These types of suggestions often turned out to be wrong, and
the speculative change either made the program more incorrect, or
did not address the current issue. In the example above, the cache
file was not related to the issue the student was having. The TA
thought that the deleted cache file would regenerate after they ran
the code, but this was not the case. After deleting it, the TA and
student spent a significant amount of time trying to recreate it.
Other times, TAs introduced new bugs by suggesting changes that
were wrong and were not reversed by the end of the help session.

This pattern of suggesting changes that may be wrong was most
problematic when the TA did not explain or motivate the change.
If no explanation is provided, the student does not have much
information to reason about whether the change might make sense,
and what side effects it might have. Moreover, the TA is also less
likely to have thought the change all the way through than in cases
where they talk through why they are suggesting a change.

By contrast, sometimes the TA suggested a change they weren’t
completely sure would work, but only after talking through what

(a) Histograms of guidance levels
that preceded correct
and incorrect TA edit suggestions

(b) Histogram of posterior distribu-
tion of the difference between the
means

Figure 3: Relationship between the correctness of TA-
suggested edits and the guidance that the TA provided prior
to suggesting the edit

they think might be happening, and why this change might fix it.
For example, one TA noted that the key "results" did not work when
trying to index into a complex data object, but similar indexing
on other lines worked correctly when "results" was omitted. They
then suggested trying to delete that index: "I don’t know if the
whole thing is going to work but it seems like that results key was
blowing up." This change did, in fact, turn out to be correct because
the nested JSON structure did not have the "results" key that the
incorrect code expected. Even though the TA did not dig through
the entire object to verify that this was the case, their guess was
both educated and well-motivated.

To gauge the effect of talking through and motivating one’s
suggestions for code changes, we considered all edits that were
made directly at a TA’s suggestion, and were either correct (moved
the code closer to being correct) or wrong (made the code less
correct, or were not relevant to the issue at hand). This excluded
diagnostic edits and edits made to undo some previous incorrect
change. For each edit, we calculated the average guidance level of
the TA’s utterances made between the previous edit and this one.
This provides an estimate of the extent to which the TA explained
their thought process for the edit: talking through their thought
process would mean that the TA had to provide explanations at a
higher level of abstraction than simply stating what they want to
change.

Figure 3a shows the histograms of the mean guidance level for
edits that turned out to be correct and ones that turned out to
be wrong. We used the Bayesian estimation model described in
[14] to estimate the credible difference between the means of the
distributions of correct and wrong suggestions made by the TA.
As seen in Figure 3b, the 95% HDI of the difference is entirely
positive. Therefore, we can credibly conclude that TAs’ correct edit
suggestions come from a distribution with a lower (less explicit)
mean guidance level than suggestions that are incorrect. In other
words, making a well-motivated suggestion tends to be a better
idea than making one without providing much motivation.

4.2.2 Finding and diagnosing bugs. TAs often start the process of
diagnosing a bug by looking at the current output of the program,
e.g. an error message, an exception, a unit test failure, or a generated
file. However, TA behavior differs in how and to what extent they
extract information from the output. As we have seen in Section
4.1.2, sometimes the TA uses the output solely as a clue to where
in the code they should start looking for the bug, for example by

Interrelation between Teaching Assistants’ debugging strategies and adherence
to sound tutoring practices during office hours Koli Calling ’24, November 12–17, 2024, Koli, Finland

going to one of the lines in a stack trace. Their main strategy in
locating the bug is then to scan the code in the vicinity of that line.

This type of strategy may seem like a tempting shortcut to TAs.
If they can look at the code and visually identify the problem, they
don’t need to spend time interpreting or considering the full context
of the output. This strategy may work well enough at the beginning
of the semester, when the homework problems are easier and the
students’ issues tend to be simpler too. However, in more complex
situations, it can easily lead the debugging down the wrong path,
since the TA is making much less informed decisions about what
could or could not cause the current issue.

For example, one extended debugging sequence started with
the TA noting that the stack trace for an exception pointed to
a function which was given as part of the starter code: "on line
15? Did we not give you that code?". The exception was triggered
because the student had misspelled a file name they were trying to
open. Although the student and TA briefly acknowledged the error
message ("no such directory"), they instead focused on reading
through one of the student’s functions and fixated on a totally
unrelated issue of whether a variable update should be inside or
outside of a loop: "And then let’s just move num=1 to outside of the
for loop." Once they saw that this change had no effect (since that
code wasn’t even being reached), they looked at the error message
again and noticed the incorrect spelling.

By contrast, some TAs devote a considerable amount of focus
and attention to explicitly interpreting the contents of the output.
For example: "And let’s try to think through why we’re ending up
with this exception ... It seems like every time we run this ... we’re
going straight to the except. Which means something in this try
block is hitting an error like every time." Here, the TA is not able to
immediately identify what is going wrong. But by reasoning about
what the output could mean, they are able to narrow down not
only where the problem is (in the try block), but also what they
should do next to diagnose the problem ("think through why" this
exception is happening).

Given this goal, the TA focused on interpreting the exception
and tracing it back to its cause:

And what it’s saying is "List indices must be inte-
gers or slices, not strings" ... you think it could be a
dictionary, so you’re looking upwith a key but it’s say-
ing, "Nope, this is a list". So our json_dict on line 158
that we’re calling, that’s the problem, that json_dict
that we’ve read in is really just a list. So where that
json_dict come from? line 142, whenwe read the JSON
of the cache file name. So let’s go look at read_json and
see if it’s returning an empty list at any point. It is...
on line 43, you got an empty [list] called empty_dict.
Switch those for curly braces, you’ll end up with a
dictionary.

By synthesizing the error message with the code’s apparent
intent (to write to a dictionary), the TA was able to build the un-
derstanding that a supposed dictionary object was actually a list,
and then trace back the issue to where that list was created in a
completely different part of the code. This issue would have been
really hard to discover by simply scanning the code around the
exception, without interpreting the error message.

(a) Data distribution and sample
credible regression lines

(b) Histogram of the posterior distri-
bution of the slope

Figure 4: Correlation between fraction of debugging utter-
ances that were focused on lines of code and the mean TA
guidance level.

To measure the extent to which TAs focus on debugging by scan-
ning through code, we calculated the fraction of TAs’ debugging
utterances that were specifically about some line or line(s) of code.
We chose to measure TA focus on lines of code, rather than their
focus on the output, because in two of the help sessions, nobody
looked at the output at all. In those help sessions, the TA was so
confident that they saw the problem that they didn’t check their
answers by running code. Thus, any potential debugging difficulties
were obscured by the fact that they didn’t try testing their changes.

Figure 4b shows that while there is a possible relationship, we
cannot credibly conclude that there is a linear correlation, since the
null value falls within the 95% HDI of the credible values. Part of
the issue may be that the difficulty of the underlying problem is
not factored into this prediction. As we discussed above, in some
cases, it is actually easy for the TA to glance at a line of code and
visually identify the issue. In those cases, the TA would be able to
focus all of their attention on finding ways to indirectly guide the
student to the answer they see.

4.2.3 Collaborating with the student. In some help sessions, the
TAs actively engaged the student in the discussion, and tried to
ensure that they were both on the same page. In these sessions, the
TAs often actively verbalized their thought process: "We’re getting
some sort of JSON back because the json.loads isn’t popping an
error. But the JSON that we get back doesn’t have a status key in it,
which tells me that maybe something’s going wrong there."

In other help sessions, the TA spent much less time on keeping
the student in the loop, and instead preferred to study and debug the
code unilaterally. These types of sessions were often characterized
by the TA verbalizing lines of code as they considered them: "Okay,
<li class...> so there’s multiple within each... it looks like find all...
" Followed by a relatively long pause and then either a next-step
suggestion for the student: "Can we look up the class name starting
with an underscore and then 1?" or some aside on their confusion:
"Wow, this is quite difficult to know what’s going on."

In these cases, the TA was largely on their own in terms of de-
bugging, since the student had no way of knowing what they were
thinking about. So, even if the student had some relevant insight,
they did not have the opportunity to jump in and help debug more
effectively. This solo debugging strategy was also often directly
detrimental to the TA’s quality of guiding and communicating with
the student — when the TA discovered something helpful after long
periods of thinking about code, they tended to blurt the answer
out to the student instead of guiding them toward the solution,

Koli Calling ’24, November 12–17, 2024, Koli, Finland Yana Malysheva,Caitlin Kelleher,Barbara Ericson,et al.

(a) Data distribution and sample
credible regression lines

(b) Histogram of the posterior distri-
bution of the slope

Figure 5: Correlation between the fraction of long time gaps
between utterances and the mean TA guidance level in that
help session.

e.g. "Okay, I understand what the error message is now. You just
reversed the arguments."

We used Bayesian linear regression to understand the relation-
ship between how often there was a long (at least 5 seconds) gap
in the conversation, indicating that one or both participants were
likely thinking about something instead of communicating their
thought process; and the overall guidance level for that help session.
Figure 5a shows the result of the regression. We can see that there
is a strong positive correlation between having many long gaps in
the conversation and providing very explicit and direct guidance.
The histogram in Figure 5b shows that the 95% HDI of the slope of
this regression is quite far from 0, indicating that the relationship
is significant.

4.3 Discussion
The quantitative analyses of these TA strategies use inexact numeric
proxies to measure each strategy. This is in large part because we
had defined our coding scheme before analyzing the data to identify
these strategies. So, the coding scheme sometimes lacks nuance
that could have been helpful in quantifying these TA strategies.
For example, if our coding scheme included identifying whether an
utterance provided an interpretation of an output message, we
could more precisely capture to what extent the TA was using an
output-focused strategy for identifying bugs.

Nevertheless, these proxies suggest that a TA’s choice of strategy
is related to the success they have in both debugging and guid-
ing the student. Moreover, these results continue to reinforce the
conclusion that the difficulties a TA has debugging and guiding
are closely and positively related to each other. Yet prior research
indicates that TAs often perceive a tension between helping the
student solve their issue and guiding the student in a way that helps
them learn [24, 28, 30]. In other words, they perceive a trade-off
between focusing on debugging and focusing on guiding. Thus, it
may be worthwhile to emphasize to TAs that certain strategies can
make both aspects easier in tandem.

These relationships are not necessarily causal. For example, it
could be that a TA is more likely to make an erroneous suggestion
if they haven’t reasoned it through at a high level; or it could be
that a TA is less likely to talk through their reasoning if they don’t
have a clear line of reasoning about their suggestion, which also
makes the suggestion less likely to be correct. However, the set of
strategies we’ve identified can lead to a set of actionable guidelines
regardless of causality. "If you can’t explain it, avoid suggesting
it" could be an actionable guideline in both of the possible cases

in the example above. Moreover, guidelines that focus on concrete
debugging strategies may be more actionable and constructive than
simply asking TAs to follow good tutoring practices. Our results
suggest that TAs do already try to follow good tutoring practices.
For example, if TAs weren’t already aware of the benefits of asking
leading questions, they wouldn’t ask significantly more of them
when they don’t have to spend as much time debugging.

5 Limitations
The main limitations of this study are the small sample size of par-
ticipants and somewhat limited scope. This study involved four TAs
and seven students from one specific beginner-to-intermediate pro-
gramming class at one university, interacting across nine different
office hour sessions. Although we were able to draw statistically
significant conclusions, it is not clear how these conclusions about
TA behavior might generalize to different classes in different con-
texts. For example, in a similar previous study conducted in a more
advanced class at a different university [23], the TAs did very little
debugging in general. Therefore, it is unlikely that their debugging
strategies had the same effect on their ability to guide the students.
More research is needed to understand how TA behavior varies
across different contexts.

Moreover, the recordings we analyzed were, to some extent, self-
selected by the TAs we were analyzing. Although in theory all
TAs who agreed to participate in the study were asked to record
and upload all of their help sessions with students who were also
participating, this clearly did not happen in practice. In particular,
only four out of the seven TAs who agreed to participate uploaded
any recordings at all. Part of the reason for this could be that record-
ing, tracking, and uploading videos of help sessions was too much
overhead for TAs during office hours. Another reason could be that
TAs felt self-conscious recording and uploading their help sessions,
especially when the TA felt they didn’t perform well. Thus, the
recordings we analyzed may not be a representative sample of the
types of help sessions that occurred. However, these recordings still
presented a wide range of TA behaviors and types of difficulties
encountered.

6 Conclusion
We demonstrated a clear positive correlation between the amount
of difficulty a TA has debugging student code, and the difficulty
they have in using good tutoring practices to guide the student
toward understanding the issue.

Through a qualitative analysis of two contrasting sessions con-
ducted by the same TA, we observed that a TA’s choice of debugging
strategy can affect how well they guide the student. Certain de-
bugging strategies may seem like shortcuts when the student’s
problems are not too difficult for the TA. But in more complex
situations, these same strategies can lead to pitfalls that affect both
their ability to debug the code and their ability to effectively guide
the student.

We identified three specific dimensions of debugging strategies
where the TA’s choices can have an impact on both debugging and
guiding. We found both qualitative and quantitative evidence that
these choices in debugging strategy affect how well the TA guides
the student within a particular help session.

Interrelation between Teaching Assistants’ debugging strategies and adherence
to sound tutoring practices during office hours Koli Calling ’24, November 12–17, 2024, Koli, Finland

Finally, we discussed the implications of these findings on the
types of guidelines that may help TAs both debug code and guide
students more effectively. Specifically, we discussed that guidelines
which focus on concrete debugging strategies, and explicitly empha-
size how these strategies could make both debugging and guiding
easier at the same time, may be a constructive way to lead TAs
toward better practices in both areas.

Acknowledgments
This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. 2214538

References
[1] Maureen Biggers, Tuba Yilmaz, and Monica Sweat. 2009. Using collaborative,

modified peer led team learning to improve student success and retention in
intro cs. In Proceedings of the 40th ACM technical symposium on Computer science
education. 9–13.

[2] Rebecca Brent, Jason Maners, Dianne Raubenheimer, and Amy Craig. 2007.
Preparing undergraduates to teach computer applications to engineering fresh-
men. In 2007 37th Annual Frontiers In Education Conference-Global Engineering:
Knowledge Without Borders, Opportunities Without Passports. IEEE, F1J–19.

[3] Alan Y. Cheng, Ellie Tanimura, Joseph Tey, Andrew C. Wu, and Emma Brunskill.
2024. Brief, Just-in-Time Teaching Tips to Support Computer Science Tutors. In
Proceedings of the 55th ACM Technical Symposium on Computer Science Education
V. 1 (SIGCSE 2024). Association for Computing Machinery, New York, NY, USA,
200–206. https://doi.org/10.1145/3626252.3630794

[4] Jennifer G. Cromley. 2005. What Do Reading Tutors Do? A Naturalistic Study of
More and Less Experienced Tutors in Reading. Discourse Processes 40, 2 (Sept.
2005), 83–113. https://doi.org/10.1207/s15326950dp4002_1

[5] Adrienne Decker, Phil Ventura, and Christopher Egert. 2006. Through the looking
glass: reflections on using undergraduate teaching assistants in CS1. In Proceed-
ings of the 37th SIGCSE technical symposium on Computer science education. 46–50.

[6] Ronald Erdei, John A. Springer, and David M. Whittinghill. 2017. An impact com-
parison of two instructional scaffolding strategies employed in our programming
laboratories: Employment of a supplemental teaching assistant versus employ-
ment of the pair programming methodology. In 2017 IEEE Frontiers in Education
Conference (FIE). 1–6. https://doi.org/10.1109/FIE.2017.8190650

[7] Sue Fitzgerald, Gary Lewandowski, Renee McCauley, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: finding, fixing and flailing,
a multi-institutional study of novice debuggers. Computer Science Education 18,
2 (2008), 93–116. Publisher: Taylor & Francis.

[8] Meg Fryling, MaryAnne Egan, Robin Y. Flatland, Scott Vandenberg, and Sharon
Small. 2018. Catch’em Early: Internship and Assistantship CS Mentoring Pro-
grams for Underclassmen. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education. 658–663.

[9] Olivier Goletti, Kim Mens, and Felienne Hermans. 2022. An Analysis of Tutors’
Adoption of Explicit Instructional Strategies in an Introductory Programming
Course. In Proceedings of the 22nd Koli Calling International Conference on Comput-
ing Education Research (Koli Calling ’22). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3564721.3565951

[10] Irvin R. Katz and John R. Anderson. 1987. Debugging: An analysis of bug-location
strategies. Human-Computer Interaction 3, 4 (1987), 351–399. Publisher: Taylor
& Francis.

[11] Matthew Kay, Gregory L. Nelson, and Eric B. Hekler. 2016. Researcher-Centered
Design of Statistics: Why Bayesian Statistics Better Fit the Culture and Incentives
of HCI. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems. ACM, San Jose California USA, 4521–4532. https://doi.org/10.1145/
2858036.2858465

[12] Sophia Krause-Levy, Rachel S. Lim, Ismael Villegas Molina, Yingjun Cao, and
Leo Porter. 2022. An Exploration of Student-Tutor Interactions in Computing. In
Proceedings of the 27th ACM Conference on on Innovation and Technology in Com-
puter Science Education Vol. 1 (ITiCSE ’22). Association for Computing Machinery,
New York, NY, USA, 435–441. https://doi.org/10.1145/3502718.3524786

[13] John Kruschke. 2014. Doing Bayesian data analysis: A tutorial with R,
JAGS, and Stan. (2014). https://books.google.com/books?hl=en&lr=&id=
FzvLAwAAQBAJ&oi=fnd&pg=PP1&dq=kruschke&ots=ChqhNXyfXM&sig=
vtn5IUxqV5j15NJvJpqu7pa_Iso Publisher: Academic Press.

[14] John K. Kruschke. 2013. Bayesian estimation supersedes the t test. Journal of
Experimental Psychology: General 142, 2 (2013), 573. https://psycnet.apa.org/
journals/xge/142/2/573/ Publisher: American Psychological Association.

[15] John K. Kruschke, Herman Aguinis, and Harry Joo. 2012. The Time Has Come:
Bayesian Methods for Data Analysis in the Organizational Sciences. Organi-
zational Research Methods 15, 4 (Oct. 2012), 722–752. https://doi.org/10.1177/

1094428112457829
[16] Kyungbin Kwon, Christiana D. Kumalasari, and Jane L. Howland. 2011. Self-

Explanation Prompts on Problem-Solving Performance in an Interactive Learning
Environment. Journal of Interactive Online Learning 10, 2 (2011). https://www.
academia.edu/download/34736057/Kwon_2011_ex.pdf

[17] Mark R. Lepper, Michael F. Drake, and Teresa O’Donnell-Johnson. 1997. Scaffold-
ing techniques of expert human tutors. (1997). 268.

[18] Mark R. Lepper and Maria Woolverton. 2002. The wisdom of practice: Lessons
learned from the study of highly effective tutors. In Improving academic achieve-
ment. Elsevier, 135–158. 210.

[19] Rachel S. Lim, Sophia Krause-Levy, Ismael Villegas Molina, and Leo Porter. 2023.
Student Expectations of Tutors in Computing Courses. In Proceedings of the
54th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE
2023). Association for Computing Machinery, New York, NY, USA, 437–443.
https://doi.org/10.1145/3545945.3569766

[20] Zhongxiu Liu, Rui Zhi, Andrew Hicks, and Tiffany Barnes. 2017. Understanding
problem solving behavior of 6–8 graders in a debugging game. Computer Science
Education 27, 1 (2017), 1–29.

[21] Xin Lu, Barbara Di Eugenio, Trina C. Kershaw, Stellan Ohlsson, and Andrew
Corrigan-Halpern. 2007. Expert vs. non-expert tutoring: Dialogue moves, interac-
tion patterns and multi-utterance turns. In International Conference on Intelligent
Text Processing and Computational Linguistics. Springer, 456–467. 27.

[22] Xin Lu, Barbara Di Eugenio, Trina C Kershaw, Stellan Ohlsson, and Andrew
Corrigan-Halpern. 2006. Tutorial Dialogue Patterns: Expert vs. Non-expert
Tutors. (2006), 8. 4.

[23] Yana Malysheva, John Allen, and Caitlin Kelleher. 2022. How Do Teaching
Assistants Teach? Characterizing the Interactions Between Students and TAs in
a Computer Science Course. In 2022 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). 1–9. https://doi.org/10.1109/VL/HCC53370.
2022.9832962 ISSN: 1943-6106.

[24] Julia M. Markel and Philip J. Guo. 2021. Inside the Mind of a CS Undergraduate
TA: A Firsthand Account of Undergraduate Peer Tutoring in Computer Labs. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education.
ACM, Virtual Event USA, 502–508. https://doi.org/10.1145/3408877.3432533

[25] Mia Minnes, Christine Alvarado, and Leo Porter. 2018. Lightweight Techniques
to Support Students in Large Classes. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education. ACM, Baltimore Maryland USA,
122–127. https://doi.org/10.1145/3159450.3159601

[26] Diba Mirza, Phillip T. Conrad, Christian Lloyd, Ziad Matni, and Arthur Gatin.
2019. Undergraduate Teaching Assistants in Computer Science: A Systematic
Literature Review. In Proceedings of the 2019 ACM Conference on International
Computing Education Research (ICER ’19). Association for Computing Machinery,
New York, NY, USA, 31–40. https://doi.org/10.1145/3291279.3339422

[27] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. Debugging: the good, the bad, and the quirky –
a qualitative analysis of novices’ strategies. ACM SIGCSE Bulletin 40, 1 (March
2008), 163–167. https://doi.org/10.1145/1352322.1352191

[28] Elizabeth Patitsas. 2012. A case study of environmental factors influencing
teaching assistant job satisfaction. In Proceedings of the ninth annual international
conference on International computing education research. 11–16.

[29] Inna Pivkina. 2016. Peer learning assistants in undergraduate computer science
courses. In 2016 IEEE Frontiers in Education Conference (FIE). IEEE, 1–4.

[30] Emma Riese, Madeleine Lorås, Martin Ukrop, and Tomáš Effenberger. 2021. Chal-
lenges Faced by Teaching Assistants in Computer Science Education Across
Europe. In Proceedings of the 26th ACM Conference on Innovation and Technology
in Computer Science Education V. 1. Association for Computing Machinery, New
York, NY, USA, 547–553. https://doi.org/10.1145/3430665.3456304

[31] Caroline P. Rosé, Dumisizwe Bhembe, Stephanie Siler, Ramesh Srivastava, and
Kurt VanLehn. 2003. The role of why questions in effective human tutoring. In
Proceedings of the 11th International Conference on AI in Education. 55–62.

[32] Lasang Jimba Tamang, Zeyad Alshaikh, Nisrine Ait Khayi, Priti Oli, and Vasile
Rus. 2021. A Comparative Study of Free Self-Explanations and Socratic Tutoring
Explanations for Source Code Comprehension. In Proceedings of the 52nd ACM
Technical Symposium on Computer Science Education. ACM, Virtual Event USA,
219–225. https://doi.org/10.1145/3408877.3432423

[33] Kurt VanLehn, Stephanie Siler, Charles Murray, and William B Baggett. 1998.
What Makes a Tutorial Event Effective? (1998), 6. 39.

[34] Kurt VanLehn, Stephanie Siler, Charles Murray, Takashi Yamauchi, andWilliam B.
Baggett. 2003. Why do only some events cause learning during human tutoring?
Cognition and Instruction 21, 3 (2003), 209–249. 475.

[35] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Jaakko Kurhila. 2013.
Massive increase in eager TAs: Experiences from extreme apprenticeship-based
CS1. In Proceedings of the 18th ACM conference on Innovation and technology in
computer science education. 123–128.

[36] Jacqueline Whalley, Amber Settle, and Andrew Luxton-Reilly. 2023. A Think-
Aloud Study of Novice Debugging. ACM Transactions on Computing Education
23, 2 (June 2023), 28:1–28:38. https://doi.org/10.1145/3589004

https://doi.org/10.1145/3626252.3630794
https://doi.org/10.1207/s15326950dp4002_1
https://doi.org/10.1109/FIE.2017.8190650
https://doi.org/10.1145/3564721.3565951
https://doi.org/10.1145/2858036.2858465
https://doi.org/10.1145/2858036.2858465
https://doi.org/10.1145/3502718.3524786
https://books.google.com/books?hl=en&lr=&id=FzvLAwAAQBAJ&oi=fnd&pg=PP1&dq=kruschke&ots=ChqhNXyfXM&sig=vtn5IUxqV5j15NJvJpqu7pa_Iso
https://books.google.com/books?hl=en&lr=&id=FzvLAwAAQBAJ&oi=fnd&pg=PP1&dq=kruschke&ots=ChqhNXyfXM&sig=vtn5IUxqV5j15NJvJpqu7pa_Iso
https://books.google.com/books?hl=en&lr=&id=FzvLAwAAQBAJ&oi=fnd&pg=PP1&dq=kruschke&ots=ChqhNXyfXM&sig=vtn5IUxqV5j15NJvJpqu7pa_Iso
https://psycnet.apa.org/journals/xge/142/2/573/
https://psycnet.apa.org/journals/xge/142/2/573/
https://doi.org/10.1177/1094428112457829
https://doi.org/10.1177/1094428112457829
https://www.academia.edu/download/34736057/Kwon_2011_ex.pdf
https://www.academia.edu/download/34736057/Kwon_2011_ex.pdf
https://doi.org/10.1145/3545945.3569766
https://doi.org/10.1109/VL/HCC53370.2022.9832962
https://doi.org/10.1109/VL/HCC53370.2022.9832962
https://doi.org/10.1145/3408877.3432533
https://doi.org/10.1145/3159450.3159601
https://doi.org/10.1145/3291279.3339422
https://doi.org/10.1145/1352322.1352191
https://doi.org/10.1145/3430665.3456304
https://doi.org/10.1145/3408877.3432423
https://doi.org/10.1145/3589004

	Abstract
	1 Introduction
	2 Related Work
	2.1 TA-student interactions in Computer Science courses
	2.2 Practices of effective tutors
	2.3 Novice debugging

	3 Methods
	3.1 Data Collection
	3.2 Data Preparation
	3.3 Data Analysis
	3.4 Data Filtering

	4 Results
	4.1 RQ1: Relationship between difficulty debugging and difficulty guiding
	4.2 RQ2: TAs' debugging strategies which may have an impact on the TAs' difficulty in guiding the student
	4.3 Discussion

	5 Limitations
	6 Conclusion
	Acknowledgments
	References

