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Key Points:

e We find a relationship between tropical cloud feedback and mean-state biases in Southern
Hemisphere extratropical cloud properties.

e This intermodel relationship is found to be present in three different ensembles of global
climate models, a sign of robustness.

e This relationship suggests a likely tropical cloud feedback value of 0.52 + 0.34 W/m?/K,
which equates to a 34% reduction in uncertainty.



10

11

12

13

14

15

16

17

18

19

20

21

Abstract

Global climate model (GCM) projections of future climate are uncertain largely due to a
persistent spread in cloud feedback. This is despite efforts to reduce this model uncertainty
through a variety of emergent constraints (ECs); with several studies suggesting an important role
for present-day biases in clouds. Here, we use three generations of GCMs to assess the value of
climatological cloud metrics for constraining uncertainty in cloud feedback. We find that
shortwave cloud radiative properties across the Southern Hemisphere extratropics are most
robustly correlated with tropical cloud feedback (TCF). Using this relationship in conjunction
with observations, we produce an EC that yields a TCF value of 0.52 + 0.34 W/m?/K, which
equates to a 34% reduction in uncertainty. Thus, we show that climatological cloud properties can
be used to reduce uncertainty in how clouds will respond to future warming.

Plain Language Summary

Different global climate models exhibit large variability in how clouds across the tropics will
respond to future warming. This is largely due to the complexity and diversity of responses that
differing cloud types may experience under warming. A long-term goal of the community has
been to narrow this disagreement between different models. Over the past 15 years, several
studies have proposed ways in which the variability in future cloud changes might be related to
errors in how these models represent present-day properties. Here, we use three collections of
models to show that variability in tropical cloud changes is closely tied to shortwave cloud
radiative properties across the Southern Ocean. We then use this intermodel relationship along

with observations to produce a best estimate of cloud feedback across the tropics.
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1. Introduction

Global climate models (GCMs) have long disagreed about how clouds will respond to future
warming, as exemplified by a large and persistent intermodel spread in cloud feedback (Cess et al.
1990; Bony and Dufresne, 2005; Bony et al. 2006; Webb et al. 2013; Zelinka et al. 2020). Given
that cloud feedback is the largest source of uncertainty for model estimates of equilibrium climate
sensitivity (ECS) (Caldwell et al. 2016; Sherwood et al. 2020), there has been a major emphasis
on determining which projected cloud changes are most likely. Emergent constraints (ECs) are a
popular approach to tackling this problem as they use intermodel relationships between current
and future climate metrics in conjunction with observations to narrow uncertainty (Klein and Hall
2015; Williamson et al. 2021). Past studies have suggested that both observable cloud variations
with temperature change (Qu et al. 2014; Zhai et al. 2015; Zhou et al. 2015; Brient and Schneider
2016; Jiang et al. 2023) and climatological biases in cloud or radiative properties (Williams and
Tselioudis 2007; Volodin 2008; Trenberth and Fasullo 2010; Klein et al. 2013; Brient et al. 2016;
Lipat et al. 2017; Siler et al. 2018) might directly affect cloud feedback, and thus ECS.

Here we focus on the latter hypothesis, and briefly discuss two proposed mean-state biases
of relevance to global cloud feedback (GCF). Building off Volodin (2008), Siler et al. (2018) use
the Fifth Coupled Model Intercomparison Project (CMIP5) to find a strong relationship between
GCF/ECS and the difference in cloud contributions to albedo between regions of warm versus
cool (separated by 23.5°C isotherm) sea surface temperatures (SSTs) (derived as a projection of
each model’s albedo climatology onto the albedo-GCF correlation map). They also show that the
contrast in top-of-atmosphere (TOA) shortwave cloud radiative effect (SWCRE) between these
two regions is a strong predictor of GCF. This study indicates that the present-day distribution of
clouds could inform future cloud changes through cloud albedo’s dependence on SSTs and the
future expansion of warm SSTs. However, the physical reasoning behind the constraint has been

questioned (Caldwell et al. 2018).
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Another example suggests that the present-day TOA energy balance across the Southern
Hemisphere (SH) is strongly tied to ECS in CMIP3 (Trenberth and Fasullo 2010). They argue that
GCMs with less cloud cover (and thus a more positive TOA radiative imbalance) across the
Southern Ocean might have greater potential for increased cloud cover in a warming climate.
However, this relationship was negligible in CMIP5 (Grise et al., 2015). Moreover, the CMIP3
relationship was found to be driven by a subset of GCMs characterized by unrealistically bright
present-day clouds in the SH subtropics. Instead, Grise et al. (2015) pointed to present-day cloud
and net radiation biases in subtropical stratocumulus-to-cumulus transition regions as important
for explaining ECS variability.

This exemplifies a common issue encountered with proposed constraints on ECS and
GCF: failed “out-of-sample” testing (Caldwell et al. 2018; Schlund et al. 2020), where a proposed
relationship is not found in a different ensemble (Hall et al. 2019). Given these difficulties,
several recent efforts have targeted specific cloud regimes (Qu et al. 2015; Terai et al. 2016;
Myers and Norris, 2016; McCoy et al. 2020; Myers et al. 2021; Hirota et al. 2021) or regions
(Lutsko et al. 2021; Wall et al. 2022) with the prevailing thought being that it is unlikely for a
single current climate metric to robustly explain uncertainty in the highly complex ECS or GCF
(Sherwood et al. 2020).

Here, we use three generations of GCMs to assess the potential value of climatological
cloud biases for constraining regional cloud feedbacks. We primarily focus on metrics that have
been shown to strongly correlate with either ECS or GCF in prior studies as these relationships
likely exploit some regional relationship, which happens to control intermodel spread.

2. Data and Methods
2.1 Climate Models
We use output from a collection of 55 GCMs from the three most recent phases of CMIP

(CMIP3, CMIPS5, CMIP6) (Meehl et al. 2007; Taylor et al. 2012; Eyring et al. 2016) (Tables S1-
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3). Model data comes from the first realization of the pre-industrial control (piControl), AMIP,
and abrupt-4xCO» experiments. The latter is a 150-year simulation in which the atmospheric CO»
is instantaneously quadrupled from pre-industrial levels and then held fixed. The abrupt forcing
experiment was not run for CMIP3, so we rely on the 1pctCO2 experiment instead. We use ECS
values from Zelinka et al. (2020) for CMIP5/6 and model development papers for CMIP3.

2.2 Cloud Metrics

Cloud feedback is calculated following Zelinka et al. (2020) for CMIP5 and CMIP6 models. First,
annual anomalies are computed using the abrupt-4xCO2 experiment with respect to
contemporaneous 2 1-year running means from piControl to account for possible model drift
(Caldwell et al. 2016). Cloud feedback is then derived by adjusting the TOA CRE (clear-sky
minus all-sky upwelling flux) feedback for non-cloud effects (Soden et al. 2008; Shell et al.,
2008). For CMIP3, we calculate the SWCRE feedback by first computing anomalies of SWCRE
averaged over years 60-80 from the 1pctCO2 experiment (surrounding the point when
atmospheric CO» has doubled) relative to the same years of piControl. These anomalies are then
normalized by the change in global and annual mean surface air temperature. Because these
CMIP3 results are not directly comparable to those of CMIP5/6, we only consider the latter when
building an EC on cloud feedback.

We also calculate several climatological cloud metrics. All climatological metrics used
throughout are calculated as 30-year means derived from each piControl simulation (years 100-
130 or the last 30 years if less than 130 years are available) and remapped to a common 2.5°x2.0°
grid. (Note that for AMIP results, we use the entire simulation period for each ensemble.) The
metrics evaluated here include SW and LW CRE at both the surface (SFC) and TOA, total cloud
cover (CLT), and condensed water path (CWP). TOA CRE is defined as the clear- minus all-sky
upwelling radiative flux at the TOA. CRE at the SFC is defined by subtracting the all- minus

clear-sky surface upwelling flux from the all- minus clear-sky surface downwelling flux. We will
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primarily focus on SFC SWCRE rather than TOA because it exhibits a slightly better correlation
with cloud feedback, but these terms are strongly correlated across models (r=0.96). We assess
CLT because many GCMs do not provide the appropriate variables for cloud fraction at differing
levels of the atmosphere.

Lastly, we break down simulated SWCRE into contributions from cloud albedo and cloud
amount to interpret model biases. TOA SWCRE can be derived from the clear- and all-sky SW
radiative fluxes:

SWCRE = SWir - SWan = CLT * (SWeir - SWoy) (1)
where SWy is the overcast SW radiative flux, which can be computed from (2).

SWan = CLT * SWoy + (1-CLT) * SWer (2)
The difference in SWCRE either between two groups or with respect to a given GCM’s ensemble
mean can then be decomposed into two components:

ASWCRE = ACLT * (SWeir - SWov) + CLT * A(SWeir - SWov) 3)

The first term (cloud amount contribution) is derived by holding the radiation contrast term
(essentially cloud albedo) constant, while the second term is derived from holding the cloud
fraction constant.
2.3 Observational Data
An observational estimate of climatological SFC SWCRE is computed from the Clouds and the
Earth’s Radiant Energy System (CERES) dataset (Kato et al. 2018). Since surface products from
CERES are more uncertain than their TOA counterparts (Loeb et al. 2018), we also calculate SFC
SWCRE from ECMWF Reanalysis version 5 (ERAS; Hersbach et al. 2020, 2023). We use data
from 2001-2021 to derive these climatological means. The average of these two estimates is used
throughout. Since the datasets exhibit such good agreement in extratropical SFC SWCRE, we also

calculate annual average SFC SWCRE to quantify interannual variability in this metric. The
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standard deviation (or the more conservative range) of these annual values is treated as
observational uncertainty.

2.4 Constraint Methods

Constrained estimates of cloud feedback are computed using the hierarchical EC framework of
Bowman et al. (2018). This method accounts for the correlation strength, observational
uncertainty, and the signal-to-noise ratio between observational and GCM uncertainty. The
constrained 95% prediction interval is compared to the unconstrained 95% prediction interval to
measure an EC’s value at reducing uncertainty. We also use the EC correlation decomposition
method of Caldwell et al. (2018) to better understand the geographical breakdown of the
relationship between SH extratropical SFC SWCRE and GCF. We adapt their equation 6 as

follows:

COIT(X, GCF) = G(CFlocal)/G(GCF) * COIT(X, CF]ocal) (4)

The decomposition value at each grid cell is the product of the cross-model correlation
between a current climate metric (denoted by X) and the local cloud feedback (CFiocal) (Fig. Sla-
¢), and the ratio of CFiocal variability (o; sampled across the ensemble) to GCF variability (Fig.
S1d-f).

3. Results

3.1 Relevance of Climatological SFC SWCRE to Cloud Feedback

We first assess how the gradient in climatological SFC SWCRE between warm and cool SST
regions (inspired by Siler et al. 2018) correlates with zonal-mean cloud feedback across three
CMIP generations (Fig. 1a). It is important to gauge EC robustness using multiple ensembles
because a relationship can appear in a single ensemble by chance (Caldwell et al. 2014) and large
changes can occur from one ensemble to the next (Schlund et al. 2020; Text S1; Fig. S2). Strong
correlations are evident over 40°S-30°N for CMIPS5, which is expected since this EC was

developed on CMIPS5. These latitudes also happen to coincide with regions where zonal-mean
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cloud feedback is strongly correlated (r>0.7) with GCF (illustrated by bars along the x-axis of Fig.
l1a). Because of this, the gradient metric is strongly correlated with both the tropical cloud
feedback (TCF; defined as 30°S-30°N; r=0.80) and GCF (r=0.76). However, we find substantially
weaker correlations in both CMIP3 (r=-0.15 for TCF, -0.29 for GCF) and CMIP6 (r=0.23 for
TCF, 0.24 for GCF). Cross-model correlation maps show that this weakening is tied to a less
positive, or even negative, correlation between SWCRE across warm SST areas and TCF in
CMIP3 and CMIP6 (Fig. 2a-c). Moreover, in CMIP6, there is a southward shift in which latitudes
are driving variability in GCF, whereby 40-60°S plays a more important role (Fig. 1a). These

latitudes are also more important for ECS variability in CMIP6 (Lutsko et al. 2021).
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Fig. 1. Cross-model correlation between zonal-mean cloud feedback and (a) the gradient in SFC SWCRE between

areas of warm and cool SSTs inspired by Siler et al (2018), (b) the mean SFC SWCRE over 40-50°S. Individual

colored lines represent the results for each of the CMIPs. Latitudes where zonal-mean cloud feedback is strongly
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correlated (r>0.7) with GCF are illustrated on panel a by horizontal bars along the x-axis. Cross-model correlations

between these metrics and TCF/GCF are also shown on the right panel of each plot as colored dots.

Building off prior work which suggests potential connections between SH radiative fluxes
to GCF and ECS (Trenberth and Fasullo 2010; Grise et al. 2015), we also evaluate the relevance
of SWCRE across the SH to zonal-mean cloud feedback. We find that 40-50°S SFC SWCRE is
strongly tied to cloud feedback across much of the 40°S-20°N range in all three ensembles (Fig.
1b). This manifests as a strong negative correlation with TCF, with correlations ranging from -
0.70 in CMIP6 to -0.81 in CMIP5. Because these latitudes tend to control a substantial portion of
intermodel variability in GCF, there is also a strong correlation with GCF in CMIP3 (r=-0.70) and
CMIPS (r=-0.81). The CMIP6 result is slightly weaker (r=-0.59) given a greater role for the SH
mid-latitudes in controlling GCF and less negative correlations at the equator and north of 15°N.
Weaker equatorial correlations stem from two anomalous GCMs, while the decline polewards of
15°N is driven by weak feedbacks in the CESM2 models (Fig. S3). (Note that similar analysis
was performed for a variety of other metrics (LWCRE, TOA SWCRE, CLT, CWP, and TOA
albedo; Fig. S4) and latitude bands (Fig. S5), but this is not discussed for brevity).

Given the robustness of the 40-50°S SFC SWCRE relationships, this will be our focus
going forward. Cross-model correlation maps emphasize that a strong anti-correlation between
TCF and SFC SWCRE over mid-latitude ocean basins is the main persistent feature of this
relationship across generations (Fig. 2a-c). This relationship is particularly robust in the SH,
where climatological cloud cover is very large (Grise et al. 2015; Kay et al. 2016). We can better
understand the relationship between 40-50°S SFC SWCRE and GCF using the correlation
decomposition framework of Caldwell et al. (2018). This method dissects cross-model
correlations to quantify the contribution of a specific region (see Methods). It considers both the
cross-model correlation between 40-50°S SFC SWCRE and the local cloud feedback (Fig. Sla-c),
and the ratio of local cloud feedback variability to GCF variability (Fig. S1d-f). The

decomposition shows large-scale consistency across model generations: larger climatological 40-
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50°S SWCRE corresponds to greater local cloud feedback throughout the tropics (Fig. 2d-f).
Regions with important low cloud feedback off the west coasts of South America, Africa, and
Australia contribute to the negative correlation, but the magnitude and precise locations vary by

ensemble.

CMIP6 CMIP5 CMIP3
a) Local SWCRE vs Tropical Cld Fbk

c) Local SWCRE vs Tropical Cld Fbk

N
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4

=

Fig. 2. Cross-model correlation maps between local SFC SWCRE and TCF for (a) CMIP6 (b) CMIPS5 (c) CMIP3.
Regionally decomposed cross-model correlation (see Methods) for the relationship between 40-50°S SFC SWCRE
and GCF following Caldwell et al. (2018) for (d) CMIP6 (e) CMIP5 (f) CMIP3. The local contribution values can be
spatially averaged to obtain the correlation shown in Figure 2b. Solid black lines denote the tropical region (30°S-
30°N).

3.2 Emergent Constraint on Tropical Cloud Feedback

Given the robustness of this relationship, we build an EC on TCF. In Figure 3a we scatter
climatological SFC SWCRE averaged across 40-50°S against the TCF. (Note that these
climatological values are very similar in magnitude and strongly correlated with those derived
from historical and AMIP simulations). For reference, we also show the relationship with GCF
(Fig. 3¢). Observations from CERES and ERAS over 2001-2021 are used in conjunction with this
relationship to form the EC. We derive an estimate of observational uncertainty from interannual

variability. The observed estimate (-73.5 + 0.8 W/m?; [66% confidence interval]) suggests that

GCMs tend to be negatively biased when it comes to SH mid-latitude SFC SWCRE (average of
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all GCMs: -76.1 + 11.6 W/m?). CMIP3 is the most consistently negatively biased (-79.9 £ 9.9

W/m?), signaling that some progress has been made. However, because the CMIP3 cloud

feedback values are not derived in the same way as for CMIP5/6 (see Methods), we exclude this

data when building the EC. Given the similar slopes for each ensemble, we only report results for

a combined ensemble of CMIP5 and CMIP6 (individual ensemble results are in Text S2).
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Fig. 3. Scatterplot of climatological SFC SWCRE averaged over 40-50°S versus (a) TCF, (¢) GCF where each point
represents a different GCM. The vertical dashed red line represents an observed estimate from observations (CERES,
ERAS) while grey shading denotes the range in annual mean values, which is used in the derivation of the EC (see
Methods). (b) 95% prediction interval of TCF for the unconstrained CMIP5/6 ensemble (black) and the EC (green).
(d) same as b but for the GCF. The horizontal grey dash denotes the central estimate for each dataset, while the wider

portion of the bar shows the 66% prediction interval.

The EC yields a TCF value of 0.52 + 0.34 W/m?*/K, which represents a 34% reduction in
the likely range of TCF (Fig. 3b). We use a conservative 95% prediction interval (PI) derived
from the hierarchical EC framework (Bowman et al. 2018) to measure the uncertainty reduction
(see Methods). The central estimate of TCF is slightly reduced from the unconstrained ensemble
(0.56 £ 0.51 W/m?*/K). This constraint is also slightly weaker than a prior estimate using monthly
and annual CRE-based tropical cloud variability metrics to constrain TCF (90% confidence
interval of -0.22-1.39 W/m?/K; Lutsko et al. 2021). For reference, we also show the resulting EC
for GCF (Fig. 3d), which exists because of the key role that the tropics play in driving GCF
spread (Fig. S1d-f). This constraint suggests a GCF value of 0.40 = 0.26 W/m?*/K, which
represents a 26% reduction in the likely range compared to the unconstrained ensemble (0.42 +
0.35 W/m?/K). Our constrained GCF estimate also agrees well with the two most notable
community assessments in recent years (Sherwood et al. 2020: 0.45 + 0.33 W/m?*/K; Forster et al.
2021: 0.42 + 0.30 W/m?/K).

3.3 Investigating Drivers of Model Spread

To better understand the relationship between 40—50°S SFC SWCRE and TCF, we group GCMs
by their 40—-50°S SFC SWCRE (ten highest and ten lowest across CMIP3/5/6; Tables S1-3) and
assess differences in the subsequent group averages. As per the emergent relationship, the Group
1 models (more negative SFC SWCRE) exhibit much stronger cloud feedback than their Group 2
counterparts (less negative SFC SWCRE) (Fig. 4a). In terms of GCF, their group means are 0.74

W/m?%/K and 0.04 W/m?/K, respectively. This discrepancy stems from the tropics, where the



236  difference between group means is even larger (1.26 W/m?%/K, -0.03 W/m?/K). This contributes to
237  large differences in ECS as well (4.35 vs 2.85K). It has been hypothesized that high ECS models
238  simulate too many stratocumulus clouds in regions dominated by cumulus clouds, thus producing
239  astronger response of low clouds to warming (Cesena and Del Genio, 2021). However, CMIP
240  output does not let us assess these cloud types.
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242 Fig. 4. Maps of the difference in (a) cloud feedback, (b) climatological total cloud fraction, (c) climatological SFC

243 SWCRE, and (d) climatological sea surface temperatures between two groups of GCMs defined based on their
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climatological 40-50°S SFC SWCRE. Group 1 models have a more negative SFC SWCRE than group 2. (e) same as
panel ¢ but derived from AMIP simulations, (f) influence of coupling on the SFC SWCRE difference between the

two groups. Stippling indicates areas of statistical significance determined using a t-test (p < 0.05).

We find that Group 1 models consistently have greater CLT across extratropical oceans
(Fig. 4b), which is surprising given that Group 2 contains more CMIP6 models (4/10 vs. 3/10),
and that CMIP6 has systematically increased CLT relative to CMIPS5 (Fig. S2). Moreover, while
Group 1 models by definition have more negative extratropical SFC SWCRE, this discrepancy
also extends to parts of the tropical oceans (Fig. 4c), particularly where cloud feedback
differences are large (Fig. 4a). Group 1 contains more CMIP3 models, which exhibit
unrealistically bright clouds in the SH subtropics, but similar results hold when CMIP3 is
excluded (Fig. S6). SWCRE differences largely coincide with Group 1 models exhibiting cooler
climatological sea surface temperatures (SSTs) across much of the SH and particularly the
southeast Pacific (Fig. 4d), conditions that favor greater low-level cloud development (Mechoso
et al. 2016). Since similar SFC SWCRE differences are also apparent in AMIP simulations (Fig.
4e), these cooler SSTs are likely driven partly by more negative SFC SWCRE, rather than vice
versa. Fully coupled simulations even enhance SFC SWCRE differences in tropical low-cloud
regions (Fig. 4f). These results agree with past work, which shows that through radiative
perturbation experiments, extratropical energy biases can influence mean-state tropical SSTs and
clouds (Mechoso et al. 2016; Kang et al. 2020; Kang et al. 2023).
3.4 Discussion of Mechanisms
The physical mechanisms driving the relationship between climatological SH extratropical SFC
SWCRE and TCF are complex, but we offer some speculation for why this relationship exists. As
suggested above, SH extratropical SWCRE affects tropical low clouds through a teleconnection
likely via the southeast Pacific. Kim et al. (2022) hypothesize that SH extratropical cooling
propagates into the subtropics and is advected further equatorward by climatological winds. This

cooling is then enhanced by a series of processes including the wind-evaporation-SST feedback,
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stratocumulus cloud feedback, and coastal upwelling. We find that GCMs with more negative 40-
50°S SWCRE tend to exhibit more negative SWCRE and cooler SSTs across tropical low cloud
areas (Fig. 4). These cooler conditions likely help promote greater, more reflective climatological
low clouds in the tropics. In fact, the presence of brighter clouds in Group 1 models becomes
evident across most latitudes when the SWCRE difference between Groups 1 and 2 is
decomposed into contributions from cloud amount and albedo (Fig. S7; see Methods). Therefore,
when these brighter clouds are subjected to future warming, which promotes the loss of low
clouds, the GCM produces a stronger cloud feedback (Fig. 4a). Notably, the Group 1 models also
feature a slightly stronger reduction in tropical CLT (-4.3% compared to -1.3% in Group 2).

In contrast to the SH extratropics, mean-state tropical cloud properties are subject to a
variety of influences that mask any relationship with TCF (Fig. 2a-c). For instance, the cloud
brightness differences noted previously are counteracted by greater cloud amount across the
tropics in Group 2 models. This contrasts with the SH, where cloud amount differences enhance
the cloud brightness discrepancy. Moreover, this disconnect between SFC SWCRE and cloud
feedback locally is likely exacerbated by large intermodel differences in tropical cloud coverage
(e.g., in location and extent; Fig. S8) as CLT and SWCRE exhibit their best agreement in low
cloud areas (Fig. S8e). Lastly, the idea that SH extratropical cloud properties are relevant to
tropical clouds is supported by a moderate correlation between 40-50°S SWCRE in CMIP5-6
with two climatological cloud metrics computed across the tropics (deseasonalized monthly and
annual CRE sensitivities) from Lutsko et al. (2021) (Fig. S9).

4. Conclusions

Using climatological biases for ECs is a potentially promising avenue for research as it gives
modeling centers a relatively easy target metric to monitor during development stages. Here, we
use three ensembles of GCMs to explore the potential of using climatological biases in clouds for

constraining regional cloud feedback. We find the greatest value in climatological SFC SWCRE
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across the SH mid-latitudes (40-50°S), which is strongly tied (|[r|>0.7) to TCF in all generations.
Using this relationship in conjunction with observations, we produce an EC on TCF, which
suggests a TCF of 0.52 + 0.34 W/m?/K, compared to the unconstrained estimate of 0.56 = 0.51
W/m?/K. This suggests that the model mean is slightly too strong, while also representing a 34%
reduction in model uncertainty. Given the importance of the tropics to GCF, 40-50°S SFC
SWCRE can also be used to infer a GCF value of 0.40 + 0.26 W/m?/K, which agrees well with
two notable community assessments (Sherwood et al. 2020; Forster et al. 2021).

Past research identified various metrics as potentially relevant to variability in TCF/GCEF.
This includes parametric differences in extratropical mixed phase cloud partitioning (McCoy et al.
2016). While we find this metric (known as T5050: temperature where ice and liquid phases are
equal) to be only weakly correlated with 40-50°S SFC SWCRE across a set of 23 CMIP5/6
models (r=-0.16), it is possible that there are other unknown GCM tuning dynamics at play here.
Our results also suggest that the warm-cold SWCRE gradient is not useful beyond CMIPS5,
potentially at odds with prior work (see Text S3). As past studies have noted, finding these
relationships is the first step to understanding them, but healthy skepticism should be maintained
about this EC until it is better understood (Caldwell et al. 2014; Klein and Hall, 2015). Future
work should seek to better understand mechanisms and the sources of model bias in SFC SWCRE

across the SH extratropics.
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