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Key Points: 

• We find a relationship between tropical cloud feedback and mean-state biases in Southern 
Hemisphere extratropical cloud properties.  

• This intermodel relationship is found to be present in three different ensembles of global 
climate models, a sign of robustness. 

• This relationship suggests a likely tropical cloud feedback value of 0.52 ± 0.34 W/m2/K, 
which equates to a 34% reduction in uncertainty.   



Abstract 1 

Global climate model (GCM) projections of future climate are uncertain largely due to a 2 

persistent spread in cloud feedback. This is despite efforts to reduce this model uncertainty 3 

through a variety of emergent constraints (ECs); with several studies suggesting an important role 4 

for present-day biases in clouds. Here, we use three generations of GCMs to assess the value of 5 

climatological cloud metrics for constraining uncertainty in cloud feedback. We find that 6 

shortwave cloud radiative properties across the Southern Hemisphere extratropics are most 7 

robustly correlated with tropical cloud feedback (TCF). Using this relationship in conjunction 8 

with observations, we produce an EC that yields a TCF value of 0.52 ± 0.34 W/m2/K, which 9 

equates to a 34% reduction in uncertainty. Thus, we show that climatological cloud properties can 10 

be used to reduce uncertainty in how clouds will respond to future warming. 11 

Plain Language Summary 12 

Different global climate models exhibit large variability in how clouds across the tropics will 13 

respond to future warming. This is largely due to the complexity and diversity of responses that 14 

differing cloud types may experience under warming. A long-term goal of the community has 15 

been to narrow this disagreement between different models. Over the past 15 years, several 16 

studies have proposed ways in which the variability in future cloud changes might be related to 17 

errors in how these models represent present-day properties. Here, we use three collections of 18 

models to show that variability in tropical cloud changes is closely tied to shortwave cloud 19 

radiative properties across the Southern Ocean. We then use this intermodel relationship along 20 

with observations to produce a best estimate of cloud feedback across the tropics.  21 



1. Introduction 22 

Global climate models (GCMs) have long disagreed about how clouds will respond to future 23 

warming, as exemplified by a large and persistent intermodel spread in cloud feedback (Cess et al. 24 

1990; Bony and Dufresne, 2005; Bony et al. 2006; Webb et al. 2013; Zelinka et al. 2020). Given 25 

that cloud feedback is the largest source of uncertainty for model estimates of equilibrium climate 26 

sensitivity (ECS) (Caldwell et al. 2016; Sherwood et al. 2020), there has been a major emphasis 27 

on determining which projected cloud changes are most likely. Emergent constraints (ECs) are a 28 

popular approach to tackling this problem as they use intermodel relationships between current 29 

and future climate metrics in conjunction with observations to narrow uncertainty (Klein and Hall 30 

2015; Williamson et al. 2021). Past studies have suggested that both observable cloud variations 31 

with temperature change (Qu et al. 2014; Zhai et al. 2015; Zhou et al. 2015; Brient and Schneider 32 

2016; Jiang et al. 2023) and climatological biases in cloud or radiative properties (Williams and 33 

Tselioudis 2007; Volodin 2008; Trenberth and Fasullo 2010; Klein et al. 2013; Brient et al. 2016; 34 

Lipat et al. 2017; Siler et al. 2018) might directly affect cloud feedback, and thus ECS. 35 

Here we focus on the latter hypothesis, and briefly discuss two proposed mean-state biases 36 

of relevance to global cloud feedback (GCF). Building off Volodin (2008), Siler et al. (2018) use 37 

the Fifth Coupled Model Intercomparison Project (CMIP5) to find a strong relationship between 38 

GCF/ECS and the difference in cloud contributions to albedo between regions of warm versus 39 

cool (separated by 23.5°C isotherm) sea surface temperatures (SSTs) (derived as a projection of 40 

each model’s albedo climatology onto the albedo-GCF correlation map). They also show that the 41 

contrast in top-of-atmosphere (TOA) shortwave cloud radiative effect (SWCRE) between these 42 

two regions is a strong predictor of GCF. This study indicates that the present-day distribution of 43 

clouds could inform future cloud changes through cloud albedo’s dependence on SSTs and the 44 

future expansion of warm SSTs. However, the physical reasoning behind the constraint has been 45 

questioned (Caldwell et al. 2018). 46 



Another example suggests that the present-day TOA energy balance across the Southern 47 

Hemisphere (SH) is strongly tied to ECS in CMIP3 (Trenberth and Fasullo 2010). They argue that 48 

GCMs with less cloud cover (and thus a more positive TOA radiative imbalance) across the 49 

Southern Ocean might have greater potential for increased cloud cover in a warming climate. 50 

However, this relationship was negligible in CMIP5 (Grise et al., 2015). Moreover, the CMIP3 51 

relationship was found to be driven by a subset of GCMs characterized by unrealistically bright 52 

present-day clouds in the SH subtropics. Instead, Grise et al. (2015) pointed to present-day cloud 53 

and net radiation biases in subtropical stratocumulus-to-cumulus transition regions as important 54 

for explaining ECS variability.  55 

This exemplifies a common issue encountered with proposed constraints on ECS and 56 

GCF: failed “out-of-sample” testing (Caldwell et al. 2018; Schlund et al. 2020), where a proposed 57 

relationship is not found in a different ensemble (Hall et al. 2019). Given these difficulties, 58 

several recent efforts have targeted specific cloud regimes (Qu et al. 2015; Terai et al. 2016; 59 

Myers and Norris, 2016; McCoy et al. 2020; Myers et al. 2021; Hirota et al. 2021) or regions 60 

(Lutsko et al. 2021; Wall et al. 2022) with the prevailing thought being that it is unlikely for a 61 

single current climate metric to robustly explain uncertainty in the highly complex ECS or GCF 62 

(Sherwood et al. 2020).  63 

Here, we use three generations of GCMs to assess the potential value of climatological 64 

cloud biases for constraining regional cloud feedbacks. We primarily focus on metrics that have 65 

been shown to strongly correlate with either ECS or GCF in prior studies as these relationships 66 

likely exploit some regional relationship, which happens to control intermodel spread.  67 

2. Data and Methods 68 

2.1 Climate Models 69 

We use output from a collection of 55 GCMs from the three most recent phases of CMIP 70 

(CMIP3, CMIP5, CMIP6) (Meehl et al. 2007; Taylor et al. 2012; Eyring et al. 2016) (Tables S1-71 



3). Model data comes from the first realization of the pre-industrial control (piControl), AMIP, 72 

and abrupt-4xCO2 experiments. The latter is a 150-year simulation in which the atmospheric CO2 73 

is instantaneously quadrupled from pre-industrial levels and then held fixed. The abrupt forcing 74 

experiment was not run for CMIP3, so we rely on the 1pctCO2 experiment instead. We use ECS 75 

values from Zelinka et al. (2020) for CMIP5/6 and model development papers for CMIP3. 76 

2.2 Cloud Metrics 77 

Cloud feedback is calculated following Zelinka et al. (2020) for CMIP5 and CMIP6 models. First, 78 

annual anomalies are computed using the abrupt-4xCO2 experiment with respect to 79 

contemporaneous 21-year running means from piControl to account for possible model drift 80 

(Caldwell et al. 2016). Cloud feedback is then derived by adjusting the TOA CRE (clear-sky 81 

minus all-sky upwelling flux) feedback for non-cloud effects (Soden et al. 2008; Shell et al., 82 

2008). For CMIP3, we calculate the SWCRE feedback by first computing anomalies of SWCRE 83 

averaged over years 60-80 from the 1pctCO2 experiment (surrounding the point when 84 

atmospheric CO2 has doubled) relative to the same years of piControl. These anomalies are then 85 

normalized by the change in global and annual mean surface air temperature. Because these 86 

CMIP3 results are not directly comparable to those of CMIP5/6, we only consider the latter when 87 

building an EC on cloud feedback.  88 

We also calculate several climatological cloud metrics. All climatological metrics used 89 

throughout are calculated as 30-year means derived from each piControl simulation (years 100-90 

130 or the last 30 years if less than 130 years are available) and remapped to a common 2.5°x2.0° 91 

grid. (Note that for AMIP results, we use the entire simulation period for each ensemble.) The 92 

metrics evaluated here include SW and LW CRE at both the surface (SFC) and TOA, total cloud 93 

cover (CLT), and condensed water path (CWP). TOA CRE is defined as the clear- minus all-sky 94 

upwelling radiative flux at the TOA. CRE at the SFC is defined by subtracting the all- minus 95 

clear-sky surface upwelling flux from the all- minus clear-sky surface downwelling flux. We will 96 



primarily focus on SFC SWCRE rather than TOA because it exhibits a slightly better correlation 97 

with cloud feedback, but these terms are strongly correlated across models (r=0.96). We assess 98 

CLT because many GCMs do not provide the appropriate variables for cloud fraction at differing 99 

levels of the atmosphere. 100 

 Lastly, we break down simulated SWCRE into contributions from cloud albedo and cloud 101 

amount to interpret model biases. TOA SWCRE can be derived from the clear- and all-sky SW 102 

radiative fluxes: 103 

SWCRE = SWclr - SWall = CLT * (SWclr - SWov)   (1) 104 

where SWov is the overcast SW radiative flux, which can be computed from (2). 105 

SWall = CLT * SWov + (1-CLT) * SWclr     (2) 106 

The difference in SWCRE either between two groups or with respect to a given GCM’s ensemble 107 

mean can then be decomposed into two components: 108 

∆SWCRE = ∆CLT * (SWclr - SWov) + CLT * ∆(SWclr - SWov)  (3) 109 

The first term (cloud amount contribution) is derived by holding the radiation contrast term 110 

(essentially cloud albedo) constant, while the second term is derived from holding the cloud 111 

fraction constant.  112 

2.3 Observational Data 113 

An observational estimate of climatological SFC SWCRE is computed from the Clouds and the 114 

Earth’s Radiant Energy System (CERES) dataset (Kato et al. 2018). Since surface products from 115 

CERES are more uncertain than their TOA counterparts (Loeb et al. 2018), we also calculate SFC 116 

SWCRE from ECMWF Reanalysis version 5 (ERA5; Hersbach et al. 2020, 2023). We use data 117 

from 2001-2021 to derive these climatological means. The average of these two estimates is used 118 

throughout. Since the datasets exhibit such good agreement in extratropical SFC SWCRE, we also 119 

calculate annual average SFC SWCRE to quantify interannual variability in this metric. The 120 



standard deviation (or the more conservative range) of these annual values is treated as 121 

observational uncertainty.  122 

2.4 Constraint Methods 123 

Constrained estimates of cloud feedback are computed using the hierarchical EC framework of 124 

Bowman et al. (2018). This method accounts for the correlation strength, observational 125 

uncertainty, and the signal-to-noise ratio between observational and GCM uncertainty. The 126 

constrained 95% prediction interval is compared to the unconstrained 95% prediction interval to 127 

measure an EC’s value at reducing uncertainty. We also use the EC correlation decomposition 128 

method of Caldwell et al. (2018) to better understand the geographical breakdown of the 129 

relationship between SH extratropical SFC SWCRE and GCF. We adapt their equation 6 as 130 

follows:  131 

corr(X, GCF) = σ(CFlocal)/σ(GCF) * corr(X, CFlocal)   (4) 132 

The decomposition value at each grid cell is the product of the cross-model correlation 133 

between a current climate metric (denoted by X) and the local cloud feedback (CFlocal) (Fig. S1a-134 

c), and the ratio of CFlocal variability (σ; sampled across the ensemble) to GCF variability (Fig. 135 

S1d-f).  136 

3. Results 137 

3.1 Relevance of Climatological SFC SWCRE to Cloud Feedback 138 

We first assess how the gradient in climatological SFC SWCRE between warm and cool SST 139 

regions (inspired by Siler et al. 2018) correlates with zonal-mean cloud feedback across three 140 

CMIP generations (Fig. 1a). It is important to gauge EC robustness using multiple ensembles 141 

because a relationship can appear in a single ensemble by chance (Caldwell et al. 2014) and large 142 

changes can occur from one ensemble to the next (Schlund et al. 2020; Text S1; Fig. S2). Strong 143 

correlations are evident over 40°S-30°N for CMIP5, which is expected since this EC was 144 

developed on CMIP5. These latitudes also happen to coincide with regions where zonal-mean 145 



cloud feedback is strongly correlated (r>0.7) with GCF (illustrated by bars along the x-axis of Fig. 146 

1a). Because of this, the gradient metric is strongly correlated with both the tropical cloud 147 

feedback (TCF; defined as 30°S-30°N; r=0.80) and GCF (r=0.76). However, we find substantially 148 

weaker correlations in both CMIP3 (r=-0.15 for TCF, -0.29 for GCF) and CMIP6 (r=0.23 for 149 

TCF, 0.24 for GCF). Cross-model correlation maps show that this weakening is tied to a less 150 

positive, or even negative, correlation between SWCRE across warm SST areas and TCF in 151 

CMIP3 and CMIP6 (Fig. 2a-c). Moreover, in CMIP6, there is a southward shift in which latitudes 152 

are driving variability in GCF, whereby 40-60°S plays a more important role (Fig. 1a). These 153 

latitudes are also more important for ECS variability in CMIP6 (Lutsko et al. 2021).  154 

 155 

Fig. 1. Cross-model correlation between zonal-mean cloud feedback and (a) the gradient in SFC SWCRE between 156 

areas of warm and cool SSTs inspired by Siler et al (2018), (b) the mean SFC SWCRE over 40-50°S. Individual 157 

colored lines represent the results for each of the CMIPs. Latitudes where zonal-mean cloud feedback is strongly 158 



correlated (r>0.7) with GCF are illustrated on panel a by horizontal bars along the x-axis. Cross-model correlations 159 

between these metrics and TCF/GCF are also shown on the right panel of each plot as colored dots.  160 

Building off prior work which suggests potential connections between SH radiative fluxes 161 

to GCF and ECS (Trenberth and Fasullo 2010; Grise et al. 2015), we also evaluate the relevance 162 

of SWCRE across the SH to zonal-mean cloud feedback. We find that 40-50°S SFC SWCRE is 163 

strongly tied to cloud feedback across much of the 40°S-20°N range in all three ensembles (Fig. 164 

1b). This manifests as a strong negative correlation with TCF, with correlations ranging from -165 

0.70 in CMIP6 to -0.81 in CMIP5. Because these latitudes tend to control a substantial portion of 166 

intermodel variability in GCF, there is also a strong correlation with GCF in CMIP3 (r=-0.70) and 167 

CMIP5 (r=-0.81). The CMIP6 result is slightly weaker (r=-0.59) given a greater role for the SH 168 

mid-latitudes in controlling GCF and less negative correlations at the equator and north of 15°N. 169 

Weaker equatorial correlations stem from two anomalous GCMs, while the decline polewards of 170 

15°N is driven by weak feedbacks in the CESM2 models (Fig. S3). (Note that similar analysis 171 

was performed for a variety of other metrics (LWCRE, TOA SWCRE, CLT, CWP, and TOA 172 

albedo; Fig. S4) and latitude bands (Fig. S5), but this is not discussed for brevity). 173 

Given the robustness of the 40-50°S SFC SWCRE relationships, this will be our focus 174 

going forward. Cross-model correlation maps emphasize that a strong anti-correlation between 175 

TCF and SFC SWCRE over mid-latitude ocean basins is the main persistent feature of this 176 

relationship across generations (Fig. 2a-c). This relationship is particularly robust in the SH, 177 

where climatological cloud cover is very large (Grise et al. 2015; Kay et al. 2016). We can better 178 

understand the relationship between 40-50°S SFC SWCRE and GCF using the correlation 179 

decomposition framework of Caldwell et al. (2018). This method dissects cross-model 180 

correlations to quantify the contribution of a specific region (see Methods). It considers both the 181 

cross-model correlation between 40-50°S SFC SWCRE and the local cloud feedback (Fig. S1a-c), 182 

and the ratio of local cloud feedback variability to GCF variability (Fig. S1d-f). The 183 

decomposition shows large-scale consistency across model generations: larger climatological 40-184 



50°S SWCRE corresponds to greater local cloud feedback throughout the tropics (Fig. 2d-f). 185 

Regions with important low cloud feedback off the west coasts of South America, Africa, and 186 

Australia contribute to the negative correlation, but the magnitude and precise locations vary by 187 

ensemble. 188 

 189 

Fig. 2. Cross-model correlation maps between local SFC SWCRE and TCF for (a) CMIP6 (b) CMIP5 (c) CMIP3. 190 

Regionally decomposed cross-model correlation (see Methods) for the relationship between 40-50°S SFC SWCRE 191 

and GCF following Caldwell et al. (2018) for (d) CMIP6 (e) CMIP5 (f) CMIP3. The local contribution values can be 192 

spatially averaged to obtain the correlation shown in Figure 2b. Solid black lines denote the tropical region (30°S-193 

30°N). 194 

3.2 Emergent Constraint on Tropical Cloud Feedback 195 

Given the robustness of this relationship, we build an EC on TCF. In Figure 3a we scatter 196 

climatological SFC SWCRE averaged across 40-50°S against the TCF. (Note that these 197 

climatological values are very similar in magnitude and strongly correlated with those derived 198 

from historical and AMIP simulations). For reference, we also show the relationship with GCF 199 

(Fig. 3c). Observations from CERES and ERA5 over 2001-2021 are used in conjunction with this 200 

relationship to form the EC. We derive an estimate of observational uncertainty from interannual 201 

variability. The observed estimate (-73.5 ± 0.8 W/m2; [66% confidence interval]) suggests that 202 

GCMs tend to be negatively biased when it comes to SH mid-latitude SFC SWCRE (average of 203 



all GCMs: -76.1 ± 11.6 W/m2). CMIP3 is the most consistently negatively biased (-79.9 ± 9.9 204 

W/m2), signaling that some progress has been made. However, because the CMIP3 cloud 205 

feedback values are not derived in the same way as for CMIP5/6 (see Methods), we exclude this 206 

data when building the EC. Given the similar slopes for each ensemble, we only report results for 207 

a combined ensemble of CMIP5 and CMIP6 (individual ensemble results are in Text S2).  208 

 209 



Fig. 3. Scatterplot of climatological SFC SWCRE averaged over 40-50°S versus (a) TCF, (c) GCF where each point 210 

represents a different GCM. The vertical dashed red line represents an observed estimate from observations (CERES, 211 

ERA5) while grey shading denotes the range in annual mean values, which is used in the derivation of the EC (see 212 

Methods). (b) 95% prediction interval of TCF for the unconstrained CMIP5/6 ensemble (black) and the EC (green). 213 

(d) same as b but for the GCF. The horizontal grey dash denotes the central estimate for each dataset, while the wider 214 

portion of the bar shows the 66% prediction interval.  215 

The EC yields a TCF value of 0.52 ± 0.34 W/m2/K, which represents a 34% reduction in 216 

the likely range of TCF (Fig. 3b). We use a conservative 95% prediction interval (PI) derived 217 

from the hierarchical EC framework (Bowman et al. 2018) to measure the uncertainty reduction 218 

(see Methods). The central estimate of TCF is slightly reduced from the unconstrained ensemble 219 

(0.56 ± 0.51 W/m2/K). This constraint is also slightly weaker than a prior estimate using monthly 220 

and annual CRE-based tropical cloud variability metrics to constrain TCF (90% confidence 221 

interval of -0.22-1.39 W/m2/K; Lutsko et al. 2021). For reference, we also show the resulting EC 222 

for GCF (Fig. 3d), which exists because of the key role that the tropics play in driving GCF 223 

spread (Fig. S1d-f). This constraint suggests a GCF value of 0.40 ± 0.26 W/m2/K, which 224 

represents a 26% reduction in the likely range compared to the unconstrained ensemble (0.42 ± 225 

0.35 W/m2/K). Our constrained GCF estimate also agrees well with the two most notable 226 

community assessments in recent years (Sherwood et al. 2020: 0.45 ± 0.33 W/m2/K; Forster et al. 227 

2021: 0.42 ± 0.30 W/m2/K).  228 

3.3 Investigating Drivers of Model Spread 229 

To better understand the relationship between 40–50°S SFC SWCRE and TCF, we group GCMs 230 

by their 40–50°S SFC SWCRE (ten highest and ten lowest across CMIP3/5/6; Tables S1-3) and 231 

assess differences in the subsequent group averages. As per the emergent relationship, the Group 232 

1 models (more negative SFC SWCRE) exhibit much stronger cloud feedback than their Group 2 233 

counterparts (less negative SFC SWCRE) (Fig. 4a). In terms of GCF, their group means are 0.74 234 

W/m2/K and 0.04 W/m2/K, respectively. This discrepancy stems from the tropics, where the 235 



difference between group means is even larger (1.26 W/m2/K, -0.03 W/m2/K). This contributes to 236 

large differences in ECS as well (4.35 vs 2.85K). It has been hypothesized that high ECS models 237 

simulate too many stratocumulus clouds in regions dominated by cumulus clouds, thus producing 238 

a stronger response of low clouds to warming (Cesena and Del Genio, 2021). However, CMIP 239 

output does not let us assess these cloud types.  240 

241 

Fig. 4. Maps of the difference in (a) cloud feedback, (b) climatological total cloud fraction, (c) climatological SFC 242 

SWCRE, and (d) climatological sea surface temperatures between two groups of GCMs defined based on their 243 



climatological 40-50°S SFC SWCRE. Group 1 models have a more negative SFC SWCRE than group 2. (e) same as 244 

panel c but derived from AMIP simulations, (f) influence of coupling on the SFC SWCRE difference between the 245 

two groups. Stippling indicates areas of statistical significance determined using a t-test (p < 0.05).  246 

We find that Group 1 models consistently have greater CLT across extratropical oceans 247 

(Fig. 4b), which is surprising given that Group 2 contains more CMIP6 models (4/10 vs. 3/10), 248 

and that CMIP6 has systematically increased CLT relative to CMIP5 (Fig. S2). Moreover, while 249 

Group 1 models by definition have more negative extratropical SFC SWCRE, this discrepancy 250 

also extends to parts of the tropical oceans (Fig. 4c), particularly where cloud feedback 251 

differences are large (Fig. 4a). Group 1 contains more CMIP3 models, which exhibit 252 

unrealistically bright clouds in the SH subtropics, but similar results hold when CMIP3 is 253 

excluded (Fig. S6). SWCRE differences largely coincide with Group 1 models exhibiting cooler 254 

climatological sea surface temperatures (SSTs) across much of the SH and particularly the 255 

southeast Pacific (Fig. 4d), conditions that favor greater low-level cloud development (Mechoso 256 

et al. 2016). Since similar SFC SWCRE differences are also apparent in AMIP simulations (Fig. 257 

4e), these cooler SSTs are likely driven partly by more negative SFC SWCRE, rather than vice 258 

versa. Fully coupled simulations even enhance SFC SWCRE differences in tropical low-cloud 259 

regions (Fig. 4f). These results agree with past work, which shows that through radiative 260 

perturbation experiments, extratropical energy biases can influence mean-state tropical SSTs and 261 

clouds (Mechoso et al. 2016; Kang et al. 2020; Kang et al. 2023). 262 

3.4 Discussion of Mechanisms 263 

The physical mechanisms driving the relationship between climatological SH extratropical SFC 264 

SWCRE and TCF are complex, but we offer some speculation for why this relationship exists. As 265 

suggested above, SH extratropical SWCRE affects tropical low clouds through a teleconnection 266 

likely via the southeast Pacific. Kim et al. (2022) hypothesize that SH extratropical cooling 267 

propagates into the subtropics and is advected further equatorward by climatological winds. This 268 

cooling is then enhanced by a series of processes including the wind-evaporation-SST feedback, 269 



stratocumulus cloud feedback, and coastal upwelling. We find that GCMs with more negative 40-270 

50°S SWCRE tend to exhibit more negative SWCRE and cooler SSTs across tropical low cloud 271 

areas (Fig. 4). These cooler conditions likely help promote greater, more reflective climatological 272 

low clouds in the tropics. In fact, the presence of brighter clouds in Group 1 models becomes 273 

evident across most latitudes when the SWCRE difference between Groups 1 and 2 is 274 

decomposed into contributions from cloud amount and albedo (Fig. S7; see Methods). Therefore, 275 

when these brighter clouds are subjected to future warming, which promotes the loss of low 276 

clouds, the GCM produces a stronger cloud feedback (Fig. 4a). Notably, the Group 1 models also 277 

feature a slightly stronger reduction in tropical CLT (-4.3% compared to -1.3% in Group 2). 278 

In contrast to the SH extratropics, mean-state tropical cloud properties are subject to a 279 

variety of influences that mask any relationship with TCF (Fig. 2a-c). For instance, the cloud 280 

brightness differences noted previously are counteracted by greater cloud amount across the 281 

tropics in Group 2 models. This contrasts with the SH, where cloud amount differences enhance 282 

the cloud brightness discrepancy. Moreover, this disconnect between SFC SWCRE and cloud 283 

feedback locally is likely exacerbated by large intermodel differences in tropical cloud coverage 284 

(e.g., in location and extent; Fig. S8) as CLT and SWCRE exhibit their best agreement in low 285 

cloud areas (Fig. S8e). Lastly, the idea that SH extratropical cloud properties are relevant to 286 

tropical clouds is supported by a moderate correlation between 40-50°S SWCRE in CMIP5-6 287 

with two climatological cloud metrics computed across the tropics (deseasonalized monthly and 288 

annual CRE sensitivities) from Lutsko et al. (2021) (Fig. S9).  289 

4. Conclusions  290 

Using climatological biases for ECs is a potentially promising avenue for research as it gives 291 

modeling centers a relatively easy target metric to monitor during development stages. Here, we 292 

use three ensembles of GCMs to explore the potential of using climatological biases in clouds for 293 

constraining regional cloud feedback. We find the greatest value in climatological SFC SWCRE 294 



across the SH mid-latitudes (40-50°S), which is strongly tied (|r|≥0.7) to TCF in all generations. 295 

Using this relationship in conjunction with observations, we produce an EC on TCF, which 296 

suggests a TCF of 0.52 ± 0.34 W/m2/K, compared to the unconstrained estimate of 0.56 ± 0.51 297 

W/m2/K. This suggests that the model mean is slightly too strong, while also representing a 34% 298 

reduction in model uncertainty. Given the importance of the tropics to GCF, 40-50°S SFC 299 

SWCRE can also be used to infer a GCF value of 0.40 ± 0.26 W/m2/K, which agrees well with 300 

two notable community assessments (Sherwood et al. 2020; Forster et al. 2021).   301 

Past research identified various metrics as potentially relevant to variability in TCF/GCF. 302 

This includes parametric differences in extratropical mixed phase cloud partitioning (McCoy et al. 303 

2016). While we find this metric (known as T5050: temperature where ice and liquid phases are 304 

equal) to be only weakly correlated with 40-50°S SFC SWCRE across a set of 23 CMIP5/6 305 

models (r=-0.16), it is possible that there are other unknown GCM tuning dynamics at play here. 306 

Our results also suggest that the warm-cold SWCRE gradient is not useful beyond CMIP5, 307 

potentially at odds with prior work (see Text S3). As past studies have noted, finding these 308 

relationships is the first step to understanding them, but healthy skepticism should be maintained 309 

about this EC until it is better understood (Caldwell et al. 2014; Klein and Hall, 2015). Future 310 

work should seek to better understand mechanisms and the sources of model bias in SFC SWCRE 311 

across the SH extratropics.  312 

313 
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