Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

Contents lists available at ScienceDirect

Nonlinear Analysis
Hybrid
Systems

Nonlinear Analysis: Hybrid Systems

journal homepage: www.elsevier.com/locate/nahs

Check for

Constraint-driven nonlinear reachability analysis with automated updies]
tuning of tool properties

Luca Geretti **, Pieter Collins®, Pierluigi Nuzzo ¢, Tiziano Villa®

a University of Verona, Verona, Italy

Y Maastricht University, Maastricht, The Netherlands

¢ University of Southern California, Los Angeles (CA), USA
d University of California at Berkeley, Berkeley (CA), USA

ARTICLE INFO ABSTRACT

Keywords: The effectiveness of reachability analysis often depends on choosing appropriate values for a set
Reachability analysis of tool-specific properties which need to be manually tailored to the specific system involved
Tool automation and the reachable set to be evolved. Such property tuning is a time-consuming task, especially

Safety verification
Optimization
Rigorous numerics

when dealing with nonlinear systems. In this paper, we propose, instead, a methodology to
automatically and dynamically choose property values for reachability analysis along the system
evolution, based on the actual verification objective, i.e., the verification or falsification of a
set of constraints. By leveraging an initial solution to the reachable set, we estimate bounds
on the numerical accuracy required from each integration step to provide a definite answer to
the satisfaction of the constraints. Based on these accuracy bounds, we design a cost function
which we use, after mapping the property space to an integer space, to search for locally optimal
property values that yield the desired accuracy. Results from the application of our methodology
to the nonlinear reachability analysis tool Ariapne show that the frequency of correct answers
to constraint satisfaction problems increases significantly with respect to a manual approach.

1. Introduction

Reachability analysis is concerned with the computation of the reachable set, i.e., the set of points reached by an initial set that
evolves under a system’s dynamics. The reachable set of a dynamical system allows reasoning about its behaviors, and determining
whether the system satisfies a specification, represented as geometric constraints on the reached points.

For linear systems, tools like SpaceEx [1] and HyPro [2] allow an efficient representation of the system evolution. Computing
the reachable set becomes particularly challenging for nonlinear systems. Different approaches are used in the literature; see, for
example, the tools KeYmaera X [3], HSolver [4], CORA [5], ARIADNE [6], JuliaReach [7], and Flow* [8]. In this paper, we focus
on a numerical approach based on computing over-approximations of the reachable set.

Regardless of the tool, automation can play a critical role toward improving the quality of the representation of the approximate
reachable set. Typically, the user needs to provide sensible values for a set of tool properties, such as the integration step size or
the polynomial order of a set representation. These properties usually affect the quality of the numerical approximation, or toggle
specific features, ultimately controlling the over-approximation error. Unfortunately, however, optimal values for these properties
are difficult to find until the system under analysis is understood. The user ends up iteratively refining the property values until

* Corresponding author.
E-mail addresses: luca.geretti@univr.it (L. Geretti), pieter.collins@maastrichtuniversity.nl (P. Collins), nuzzo@usc.edu (P. Nuzzo), tiziano.villa@univr.it
(T. Villa).

https://doi.org/10.1016/j.nahs.2024.101532

Received 19 September 2023; Received in revised form 20 May 2024; Accepted 21 July 2024

Available online 6 August 2024

1751-570X/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/nahs
https://www.elsevier.com/locate/nahs
mailto:luca.geretti@univr.it
mailto:pieter.collins@maastrichtuniversity.nl
mailto:nuzzo@usc.edu
mailto:tiziano.villa@univr.it
https://doi.org/10.1016/j.nahs.2024.101532
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nahs.2024.101532&domain=pdf
https://doi.org/10.1016/j.nahs.2024.101532
http://creativecommons.org/licenses/by/4.0/

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

an acceptable result is obtained, a task that becomes time-consuming, when done manually with a trial-and-error approach. The
situation is exacerbated for systems with nonlinear dynamics, since symbolic approaches are more difficult to pursue, and evaluating
the reachable set can be computationally intensive. The overhead due to user interactions with the tool becomes non-negligible, in
the worst case requiring to spend hours while observing the behavior of the system, also due to the lack of intuition on the complex
interactions among the tool properties. Finally, user interactions may not be feasible in the case of online (dynamic) verification [9]
or model predictive monitoring [10] and control [11], since real-time requirements make efficiency more critical than in the offline
(static) case.

In this paper, we propose a methodology for the automated choice of the values of a set of tool properties for computing
constrained reachability problems in nonlinear systems. Differently from approaches that compute a sequence of converging
approximations to the exact result [12], the methodology aims to solve the problem

1. ideally within a single run of execution,
2. with minimal sufficient accuracy, and
3. with no manual tuning by the user.

We use the term property in place of the common term parameter [13,14] to avoid confusion with the case of parametric systems,
where the dynamical system model (not the analysis tool) is partially unspecified and includes time-invariant quantities defined in a
range [15]. In our methodology, the goal is to provide a definite answer (positive or negative) to the satisfaction of a set of constraints
over a time interval. This objective allows identifying the required accuracy of the reachable set. We then search the property space
at each integration step and choose the values that yield the minimum accuracy necessary to prove that each constraint is either
satisfied or not. Our approach is adaptive, since optimal property values are selected at each integration step and allowed to change,
across different reachability problems and different integration steps of the same problem, to accommodate different dynamical
responses.

To the best of our knowledge, this is the first approach addressing tool property tuning in a general way for nonlinear systems.
Approaches to bound the computation error by a single user-defined value were developed [16] for linear systems, where sets can
be represented very efficiently. Recent efforts in CORA [17-19] have been able to identify analytical expressions to control the
values of multiple internal numerical properties. For close-to-linear systems, accuracy can still be sufficiently controlled due to the
partial ability to maintain a symbolic representation of the error [20]. For systems exhibiting strong nonlinearity, the error has
a complex dependency on the dynamics, and set representations are less efficient in space and time, making automated tuning
highly desirable. Unfortunately, however, the current tools in this category tend to mostly focus on the automated refinement of
the integration step size [21] or support the tuning of multiple properties [22], but not the systematic search of optimal properties
guided by cost criteria.

Recently, a methodology to identify multiple properties automatically has been proposed for nonlinear systems [14,23],
leveraging analytical formulae for the numerical over-approximation error. However, the approach is tailored to a specific set of
properties of interest. Moreover, while aiming to guarantee rigorous bounds on the error, worst-case analytical formulae may result
in overly conservative property values and excessive accuracy, as is the case for a lower integration step than is actually necessary.
While we use an analytical formula for estimating the error, we propose to numerically validate the conservatism across a range of
property values and choose the best ones based on the numerical validation. In doing so, we adopt a heuristic approach, rather than
aiming to generate invariants from a formal analysis of the dynamics [24]. Still, our methodology is generic, in that it is agnostic of
the impact of a given property on the error. Different properties can be appropriately tuned based on the tool or the system. Our
approach is therefore extensible: it can accommodate new tool features and can be used to assess their impact on system analysis.

We support both positive and negative answers to constraint satisfaction, by leveraging state-of-the-art methods to compute inner
approximations [25]. Conversely, an abstraction-based approach using a constraint solver [4] would avoid reachability calculation,
but at the same time it would only be able to return a positive answer. We remain numerically rigorous with respect to constraint
satisfaction: heuristics are only applied to automatically choose property values, as an alternative to manual selection. To summarize,
the main contribution of the paper is a practical methodology for automated reachability calculation for constraint checking.
Cornerstones are the identification of an approximate error bound function and a strategy to select results from different valuations
of tool properties.

The rest of the paper is organized as follows. We start in Section 2 with the preliminary concepts and definitions. The problem
formulation is presented in Section 3, followed by an overview of the algorithm in Section 4. Sections 5 and 6 provide the bulk
of the methodology, with Section 7 dedicated to the resulting algorithm. Section 8 discusses property space exploration. Section 9
analyzes some nonlinear systems to illustrate the benefits of the approach. Conclusions are drawn in Section 10.

2. Preliminaries

Let us consider a nonlinear time-variant system
x=fx10, f:RVxR->RN 1

with f (locally) Lipschitz.
We define R(r) as the evolved set of the system, i.e., the set of points reached, starting from an initial set / and an initial time
T;, at a specific time ¢ > T; under differential dynamics given by f. Instead we call reached set R(z,,t,) or flow tube the set of points

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

reached between ¢, and 7,. Therefore R(z) can also be referred to as the section of the flow tube. If we identify a finite time interval
AT = [T}, Ty|, then we use R with no arguments to refer to the reachable set (also called reachability) of the system in AT implicitly.

Since the exact value of R(7) is not computable in general for nonlinear systems, we are interested in computing approximations
to it. Let us define the three approximations of interest:

. ﬁ(t): an outer-approximation of R(¢), i.e., R(t) C ﬁ(t);
* R(?): an inner-approximation of R(?), i.e., R(t) C R(t);
« R(t): an approximation of R(f), such that R(r) ¢ R().

In the following we will also refer to R as the approximate reachability and R as the rigorous (over-approximated) reachability.
Moreover, an uncontrolled reachability is a reachability obtained using a fixed valuation of the properties, while a controlled
reachability is the result of our methodology, able to control the over-approximation error along the evolution time in AT.

Such approximations will be used to check the satisfiability of a set of M nonlinear time-varying constraints

C={c,(x,0)20,m=0,....M—1}. @

The outcome of satisfiability checking of the mth constraint for a given %,7 pair is a logical value in the {T, L, ?} set, with a
positive answer T when the c,,(%,7) > 0 predicate is satisfied, a negative answer L when it is not satisfied, and an indeterminate answer
“?” when it is not possible to obtain either T or L. We say that we provide a definite answer when it is not indeterminate.

Moving to sets, with some abuse of notation, we introduce the constraint evaluation c,, at a given ¢ using a generic set S(¢) as the
following interval in the reals:

(S, 1) = ¢, (ISD, [1]) = [¢,,(S@),1),C,,(S®),)]

where we use square brackets to refer to the bounding box over-approximation of a set, i.e., a tight coordinate-aligned box enclosing
the set. Here we assume that time may also be represented as an interval in rigorous calculations.

The evaluation of constraints during reachability computation represents a constrained Initial Value Problem (IVP). In particular,
one where we compute approximations to the reachable set that are the least accurate (i.e., fastest to compute) while providing a
definite answer to the satisfiability of the constraints. In the following Section we will provide a formal definition of such a problem.

3. Problem formulation

Our assumptions for the computation of a solution to the constrained IVP can be stated as follows:

* We rely on a reachability tool in which we iteratively perform an integration step from a time t, to a time 7,,, k = 0,..., K
across the whole AT interval; _ _
» Rigorous evolution is performed to compute R(r), while R(#) can be derived from R(r) [25] if necessary.

We also identify a set of Q independent tool properties P = {Pq} that a designer can tune when computing reachable sets.
Conventionally, one would adopt a user-defined valuation p € dom(P) valid for all € AT. Our goal is, instead, to automatically
tune the property values across integration steps based on the constraints.

Constraint evaluation can be performed using interval arithmetic, which returns an over-approximation of the result. In
particular, interval arithmetic can be directly used for [R®)], since the input is already an over-approximation. For R(), instead,
we need to guarantee that a negative evaluation is not the result of a spurious point caused by over-approximation. Therefore,
c(R(1),1) is evaluated point-wise, by progressively splitting the domain of R(#) down to a user-defined maximum splitting depth, and
evaluating the midpoint of the set resulting from the midpoint of each subdomain. While an evaluation [Em (R(), 1), ¢,y (R(), t)] can be
built using this procedure, we are typically interested only in checking that ¢, (R(#),?) < 0 holds. This can be performed via splitting
until a subdomain is found that satisfies the constraint, the constraint is found infeasible for all points of all the subdomains, or the
maximum splitting depth is reached. Remarkably, computing R(¢) is generally expensive, with an exponential cost in the typical
implementation, and the result may still be a very small or empty inner approximation, which would not be effective for our
evaluation purposes. Due to these limits in state-of-the-art inner approximation methods, instead of treating the maximum splitting
depth as another optimizable property, we rather chose a fixed value of 1. We define the satisfaction of c,, in AT with

T, Vre€dT :c, (R®).0)>0
0,AT) =11, FHE€AT :c (RH.H<0 3)
?, otherwise.

We use bars above and below o,, to denote that satisfaction is assessed on rigorous approximations of R(#). While (3) is sound,
based on the above considerations on inner approximations, the condition ¢, (R(?),t) < 0 may not be effective for falsification, and
is often inefficient to compute. Hence, we expand our options for falsification as follows:

T. VIEAT :¢, (R1.0)>0
L, 3tE€AT :¢,(R@),1)<0
Lg, FEAT ¢, (RD.H<O
2, otherwise,

g,4T) = “

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

Fig. 1. Representation of different constraint satisfaction scenarios for sets, corresponding to the T, L,, and Lg conditions.

i.e., we can falsify a constraint using R(?) if all points do not satisfy the constraint. 1 , stands for false for all points while L ¢ stands for
false for some points. For effectiveness and efficiency, we will give priority to L, over L if the condition for the former is satisfied.
In the following, we will use L with no subscript when referring to both cases. As an example, Fig. 1 shows a generic reachable
flow tube S(#) and three constraints ¢, ¢;, and c¢,. The three outcomes for ¢, (4T) are shown, where sections at times ¢, ¢, and ¢,
respectively, represent cases for T on ¢y, L4 on ¢, and 1Ly on c,.

We measure the size of the sets and relate them to computation errors by relying on the normalization of the volume of the
bounding box of a set

B0 =

N-1
[T 1trR®11, ©)
i=0

i.e., the normalized product of the widths over each dimension i of the box. We correspondingly use the notation f(t) for R(t), B
for R(1), and #(t) for R().

We further define 7," (¢) as the expansion or contraction factor from R(1) or R(1), respectively, to the boundary of the mth constraint
that still gives the same constraint satisfaction condition:

¢, (/[RO1.0) >0, ¢, (R(®).0)>0
7, (0= max,s 7 s8¢ [ROLY <0, €, (R@).1 <0 (6
B ¢, GIROLD <0, ¢, (R().1) <0

—N
with y[S(#)] denoting the bounding box, where each width is scaled by a factor of y, i.e., the actual volume becomes 7N ®p (@) or
—m
E(’)N /7’1: (t). Then, y,, (1) would be the expansion or contraction factor from R(?): in practice it represents how much a set can be
enlarged or shrinked while still be useful for constraint satisfaction.

We can finally introduce the local robustness for constraint satisfaction as the available normalized volume with respect to any
additional error in the evolved set:

S 0= {zmmﬁm—ﬁm, G, (AT) = {T, 14}

_ - 7
B0 -/). T, (AT) = Lg 7)

—m

where the condition for &, (AT) is fixed for all #; we set p (t) = 0 whenever the corresponding condition is not satisfied. Then,
— —m

pm(1) represents the robustness with respect to R(7), as a function of f(r) and y,,(r). The robustness can be related to the distance

(maximum for L, minimum for T) between the constraint boundary and the set. The global robustness becomes

_ _J min;cyp Em(t), o, (AT)=T
l_)m(AT) = {maxreAT Em(t), o, (AT) =1 (€)

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

i.e., we pick the worst-case margin for T. For L it is sufficient to find one ¢ for which a negative value is identified, hence we can
focus on controlling the error with respect to the largest margin available. Our problem is finally formalized as follows:

Constraint-Driven Tool Property Tuning. Given the system in (1), the constraints in (2), and a set of Q tool properties P = {Pq h
qg=1,...,0, we want to solve the constrained IVP in a time interval AT by looking for

argmin {7 (AT)} st 3,(T)#2 Vm=0,... . M—1 ©
p(edom®P) *~™

The rationale is that the fastest solution to the IVP is obtained by minimizing the robustness that achieves a definite answer to all
constraints, since that translates into selecting property values that result in larger errors, hence less computationally demanding
operations.

4. Overview of the algorithm

We summarize the steps of the algorithm resulting from our methodology, which is fully described in Section 7. For each step,
we provide the Section in which the step is discussed in square brackets.

1. Identify a random set of property valuations I [Section 8];
2. Pre-analyze the system on one element of IT by computing the approximate and rigorous reachabilities and using them to:

(a) remove constraints for which an answer is already identified during the rigorous case [Section 6];
(b) identify the expected answer for each remaining constraint [Section 5];
(c) construct expressions for the bounds on the growth of the computation error [Section 5];

3. From T; to Ty, perform the kth step of controlled reachability:
(a) V p € II concurrently:

i. Compute one rigorous integration step [Section 9.3];
ii. Evaluate the satisfaction of the bounds on the error growth [Section 5];

(b) Adopt the values providing the minimum accuracy that satisfies the bounds [Section 5];
(c) Check answers to constraint satisfiability [Section 6];
(d) Update the IT population as a function of the points that satisfy the bounds with minimal margin [Section 8];

4. If new answers are found, remove the corresponding constraints and repeat from (2), otherwise
5. Return the reached set and the answers for the satisfaction of each constraint.

Computing reachabilities depends on the reachability tool, and consequently, is not the focus of this paper. We still provide
details about the integration step in Section 9.3 to understand the role of the chosen properties. In the following, we detail the
proposed solution strategy for problem (9).

5. Derivation of the criteria for robustness minimization

Solving (9) requires us to predict the answer to constraint satisfiability in advance, in order to be able to minimize the robustness
margin with respect to constraint satisfaction. To make the prediction, we can compute R(p,) and R(p, 1) and perform a difference
analysis, where p € dom(P) is a random point fixed for all times. We privilege a random point over a “default” valuation of the tool
properties (or even the midpoint of dom(?)) to make no assumptions on the initial property valuations. When using a Taylor model
approximation to the flow tube, R(f) can be obtained by discarding error terms at all integration steps. We have that R(t) ¢ R(f)
and R(r) ? R(@t), while R(t) c R() is guaranteed by construction. By comparing R(f) and R(r), we can estimate the growth of the
over-approximation error along evolution and control it to yield the minimum robustness allowed by property valuations.

If the approximate reachability R(p,?) is used, computing the satisfaction as in (4) translates into a prescription of a given
satisfaction outcome as follows:

T, VIE€AT :c, (R@.0.0>0
G,(AT) =Ly, 3t € AT : T, (R(@.1.10) <0 10
lg, !EAT : ¢, (RP,1,1) <0

Notably, when prescribing 1, for the mth constraint, we can avoid the computation of R(:") for that constraint whenever
¢, (R(t'),1") < 0 is expected to hold for any ' € AT. Due to the cost of inner approximations, this is a decisive performance advantage
brought by pre-analysis. Equivalent expressions using R(p,) are obtained for 7, (r) from (6) and for 5, () from (7).

In the following Subsections, we progressively refine the approximate formulation for controlling the error from a basic version
to the complete one.

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

p2(AT)..
P1(AT)
Po(AT) i » i :

Ty T Ty Te ¢

Fig. 2. Robustness of the trajectory in Fig. 1 with respect to each of the three constraints.

5.1. Bounding the over-approximation error

First, we introduce the notion of approximate upper bound on the maximum time for checking a constraint:

[Tk 5,(AT) =T
T, =1 argmax (1), &,(4T)=1 (1n
reaT

i.e., while we need to check T for all times, for L we assume that a success after the time of the maximum robustness is unlikely if
not already obtained earlier. Fig. 2 shows 7* as well as the local and global 5 from the trajectory and constraints of Fig. 1, where
S(1) = R@).

Since we compute the evolution using outer-approximations to R(t), let us consider the accumulated over-approximation error
at time ¢ as the quantity

e(r) = f(r) — p() (12)

where f(t) is the unknown exact normalized volume. Turning to evolution by discrete integration steps, and making explicit the fact
that we choose a specific point p € dom(P) at each t,, we want to guarantee that

Vi, € AT, 6,(AT)=T

=T &,4T)=1 (13)

e(P(t), 1) < p(ty) {
However, since the error tends to increase over time, we also want to control its growth to ultimately satisfy (13). To predict the
growth with respect to time, we perform a difference analysis using an uncontrolled rigorous reachability R(p,?) under the same p
used for R(p,?). This result is different from the controlled rigorous reachability R(r), where the property values may change with
time. By using approximate results instead of exact ones, we find

ap.t,) = Bp.1,) — f(P.1,) (14

where we use a in place of k since time points between controlled rigorous reachability and uncontrolled approximate reachability
may differ. For similar reasons, we introduce 7, as the time closest to 7, in the uncontrolled rigorous reachability, since even with
the same tool properties, time points between uncontrolled approximate and rigorous reachabilities may differ, i.e., the integration
step size may be adaptive as a function of other properties.

By dividing both sides of (13) by é(p,7,), with 7, the closest time point to #, in the ¢, series, and approximating p,,(7,) with
Am(D, 1), we obtain

e(p(ty), 1) < Pm(D.T})

YA TN (15)
ém. 1) ém, 1)
From the right hand side of (15) we can identify a strictly positive upper bound on the error ratio:
. Pw(Dit,) [Vt, € AT, 6,4T)=T
= -’ az . 16
O = Mo {za =T &, =1L (16)

Using a,, in place of the right hand side of (15), substituting (14) and (12) with 6P, i) in place of the exact normalized volume,
we obtain

P10 - FD.7) < a (BB - .7) a”
and consequently, the following constraint for optimization:
(@ + 1) B,) — 0, BB, T) = B2, 1) 2 0 a8

which for compactness we refer to as s/ (p,#;) > 0, leaving the dependency of p from 7, implicit from now on.
Fig. 3, related to Fig. 2, visually represents the error under a given R(f), assuming that S(t) = R(¢) in Fig. 1. For visualization
purposes, the y axis is magnified with respect to Fig. 2. The figure shows the «,, scaling of &(f) which bounds the error of controlled

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

P, €4

Fig. 3. Example of error ¢ and its modulation with q,, for all constraints in Fig. 1.

reachability by j,, (). We observe that ¢, is the constraint that gives the stricter bound on the error growth. Moreover, « is not
determined by 5,(4T) according to the example curve derived from é.

Given a selection of points IT ¢ dom(P) that represent the explored valuations of tool properties, the minimization in problem
(9) can be performed approximately by finding at each step k

M-1
argmin Z sL@) st s @) 20 Vm=0,.., M1 (19)
pell =)

5.2. Relaxing the error bounds

Since 7 is finite, there may not be a solution to (19) at any given step k. However, a failure for step k may still be compensated
on the following steps by a success with higher than necessary accuracy. Therefore, we do not want our search to fail due to any
violated constraints. We then accept some soft failures, i.e., s:n(p, t,) < 0 for some m. To do so, we relax the error constraints in (19)
and modify the cost function so that the minimum is taken over a pair of objectives. First, we aim to minimize the number of soft
failures in (19). Then, we minimize our robustness objective. More formally, we rewrite (19) as an unconstrained multi-objective
optimization problem

M-1
argmin <#{s:n(p, 1) <0}, Z |s! (p, Ik)|> (20)
pell m=0

where priority is given on the left component of the cost function. We use # to denote the cardinality of a set. Moreover, we use
absolute values in the summation on the right, since some of the addends may be negative.

5.3. Controlling offsets in the robustness estimates

An offset s/ (p,1;) # 0 in any of the estimates in (20), which is usually observed in practice, may produce a drift in the cost
function. A negative drift leads to failure in providing a definite answer to constraint satisfaction. A positive drift leads to overly
accurate computation of rigorous approximations. We therefore aim to compensate the offsets along the remaining time to T};, by
redefining the soft constraint function as follows

k-1

Sm(P,1;)
Sn(0:16) = 5,010 + (1 = 1621) X (21)
j=0 "m J

with s,,(p, 7,) = 0, which distributes the kth offset across the remaining time, proportionally to the time step performed.

In (21) we shift the minimum for the objective value, favoring solutions that perform in the opposite direction to the offset.
While the compensation converges to a negative offset from below, preventing it from reaching positive values, this control strategy
is still acceptable numerically. In fact, relaxing robustness constraints into soft constraints tends to produce an overall positive drift.
Additionally, the # measure, being obtained from the bounding box, is an over-approximation that encourages operating with more
accurate sets than necessary. Based on these considerations, we rewrite our robustness minimization problem as follows

M-1
argmin (#{sm(p, 1) <0}, Z [$m(Ps lk)|> (22)

pell =
5.4. Pruning constraints that are not satisfiable

While we prescribe a definite satisfaction result, over time some c,, may not be satisfiable anymore, leading to an indeterminate

result. We define the disjoint subsets €, C~kl" and C~kl5 of constraints based on the expected satisfaction outcome. These sets shrink

as k increases. Equivalently, if M, is the union of the constraint indexes, then M, also shrinks. We instead denote by CT and C* the

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

(increasing) sets of constraints for which an answer to the satisfaction problem is available. For T, an answer can only be obtained
after Tp.
We define a hard constraint function related to the mth constraint for point p at step k as

¢ (Rt 1) t)s 6,(AT) =T
h,(p,t) =<4 -m m
m(®:1) {T;; — 1 5 (AT) = L

where if h,(p,1;,) < 0, then the constraint is removed from M. Note that the reached set in the whole integration time interval
R(t,_,.t,) must be used for rigorousness. Due to the approximations adopted in formulating our robustness objective, some property
assignments may give a better objective value (and lower failed soft constraints) while failing more hard constraints. We account
for this effect by reformulating the optimization problem as follows

(23)

#mGMk {hm(pa tk) < 0}7

argmin #eat, (Sm(P. 1) <0}, o
pert > Isule 1)l
meMy

where we prioritize, from top to bottom, the number of constraint violations (hard failures) versus the number of violation of the
error bounds (soft failures), and the minimization of the overall robustness objective. The three components of the new cost function
represent the satisfiability (i.e, not having to discard the constraint from now on), effectiveness (i.e., having respected the error bound),
and efficiency (i.e., having respected the error bound with minimum accuracy) criteria, respectively. Clearly, a natural priority exists
in satisfiability against effectiveness on one side, and in effectiveness against efficiency on the other.

In our problem formulation, we continue reachability even if all points in IT lead to one (or more) hard failures. Only when
M, = @ we terminate reachability early since the cost function is no longer defined and there are no constraints on the accuracy of
the result.

6. Rigorous constraint checking
While (24) provides an approximate rule to exclude constraints that are no longer satisfiable, to solve problem (9) we still need

to rigorously verify or falsify the constraints. Success in satisfying the prescription given by &,,(4T) is determined by the following
checks:

4w=Tp: c,€C], 5,(AT) =T
I, Cn(R), 1) <0, 6,(AT) =1, 25)
Vi, - ¢, (R 1) <OA 6,(4T)=Lg

¢, (R, 1) <0,

Success for 6,,(AT) = T is already a result of 4, not failing at all times, and can be deduced trivially after T} if the constraint is still
in Cj. For 6,,(4T) = 14, the condition for falsification is checked at each time, since it is inexpensive. For &,,(4T) = Lg, instead, we
first perform a fast check on R to identify whether an inner approximation with negative constraint satisfaction is possible. If the
preliminary check passes, then we perform the expensive construction of R and check against it.

Finally, by recognizing that uncontrolled rigorous reachability can already give answers to the satisfaction of some constraints,
we introduce simplified checks to possibly remove those constraints. During pre-analysis, as we generate the constraint prescription,
we do not rely on R(t;) for efficiency. Still, we can already identify T and L, answers:

(26)

Vi, toc, (Rt 4) >0 = ¢, €CT
A, ¢, (RE).14) <0 - ¢, ecCt

consequently reducing M, for controlled reachability.
7. Algorithm

The complete constraint-driven reachability analysis flow is given in Alg. 1. It is a loop that terminates when a determinate
answer to all the constraints is found or the number of indeterminates could not be reduced further during the last iteration. While
Sections 3 to 6 dealt with only one round of iteration, we recognize that under a finite exploration of the search space, and given
the approximate nature of the pre-analysis, multiple rounds are usually beneficial. We start by initializing the satisfaction results to
all indeterminates (line 1). Each iteration computes uncontrolled reachabilities, both approximate R, and rigorous R, (lines 7 and
9). The latter in particular is terminated early if the radius of the set (i.e., half of the infinite norm of the bounding box of the set)
is larger than half of the radius of the bounding box B of R. This check is necessary since we have no guarantee that the property
valuations chosen are sufficient to avoid blowup of the error. In line 9, we obtain S, using the simplified checks of (26). The two
reachability analyses are run using a random but common property assignment p. The results are analyzed (line 10) according to
the formulae in Section 5 to obtain the vectors of values for ¢ and a (one per constraint) and the one for § (one per integration step
with respect to R,).

Controlled reachability is performed in line 19 using the h and s constraints, where an early termination of R, (rigorous
uncontrolled reachability), identified by T < T}, prevents the T case from being used both for error control and constraint checking.

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

For R the ideal result from all rounds would be the intersection of all reachable sets found. Unfortunately, the intersection of
nonconvex nonlinear sets, depending on the representation, may be expensive to compute. Instead we focus on the most accurate
reachable set computed, by replacing in line 20 the original reachable set if the ending time is higher or if the ending time is the
same but the number of steps is higher (under the assumption that smaller steps yield better results). Satisfaction results are merged
by setting any definite answer over the previously indeterminate ones (line 21). Finally, the constraints C are reduced each time
we update the satisfaction answers, maintaining only those with an indeterminate answer (line 22).

Algorithm 1 Constraint-Driven Reachability Analysis
Given the system sys, initial set 7, initial time T}, final time 7 and constraints C:

1: S = initialize_satisfaction(C)

2: R=0

3: =|C|+1

4: while num_indeterminates(S) < M, do

5: M; = num_indeterminates(.S)

6: p = random_search_point()

7: RM = approximate_reach(sys, I,T;, Ty, p)

8: B= bounding_box(ﬁu)

9: [S,, R R,] = uncontrolled reach(sys 1,T;,T;,C, B,p)
10: [a B, a] preanalyze(R 4 C)
11: = choose(R R, W)
12: S merge(S, S,)

13: C = reduce_from(C, S)

14: if num_indeterminates(S) = 0 then break

15: end if
16: M; = num_indeterminates(.S)
17: Ty = ending_time(R,)

18: (A, v] = build_control_constraints(C, o, f,a,T;, T, Tr)
19: [S R = controlled_reach(sys,[, T;,Tz,C,B,p,h,s)
20: R= choose(R R,)
21: S = merge(S, S.)
22: C = reduce_from(C, S)
23: if num_indeterminates(.S) = 0 then break

24: end if
25: end while
26: return [S,ﬁ]

In Alg. 2 we describe the controlled_reach procedure. Starting from a search point p, we generate an initial family of points IT
(line 3). For each step, we perform a concurrent evaluation of all points in /7. For each point we set the algorithm to use the
correspondlng property values (line 9), compute in line 10 the evolved set E (prev10usly referred to as R(t)) and the reached set
R (previously referred to as R(t 151)). Hard and soft constraints are evaluated on E in line 11 and the tuple of the results is
adjomed to an ep vector (line 12). The IT set is updated in line 14 according to Sectlon 8. However, no particular update strategy
is essential to the methodology. The best point for the vector is used to update the satisfaction answer for the original constraints
using (25) in line 16, to adjoin to R and to set the next E and ¢ (lines 17 to 19). If the radius of E is larger than the maximum
allowed, then we terminate early (line 20). On this matter, we chose half the radius of B as a maximum value since under a higher
value an evolved set would cover most of the domain and therefore be useless for constraint satisfaction. Conversely, too small a
value may cause termination too early, preventing a potential definite answer to satisfaction.

8. Exploring the property space

In this Section, we discuss how to specify the tool properties for Alg. 1, followed by how to generate a population of points for
searching the optimum and how to evolve it across integration steps. While this heuristic is an important part of the methodology,
the specific algorithm can be replaced with any other search algorithm. This is the reason why we present this Section after the
main algorithm of our methodology. It also gives us the opportunity to provide a concluding discussion on convergence aspects.

To perform a search in Z€ across step, we rely on temporal locality of the optima, i.e., the optimal valuation of properties does
not change significantly between steps k and k + 1. Temporal locality holds for IVPs as long as the time step is reasonably small
with respect to the dynamics. Under this assumption, we can direct the search at step k + 1 by using the results obtained at step k.

Each property in our framework is defined by the tuple

{label, type, is_metric, I'”, '~}

+ label: a name, unique for the specific object, required for lookup within the property tree;

» type: the basic type used (e.g., Boolean, double, integer) or an enumerated type of symbols or objects;

« is_metric: whether there is a notion of distance between points, typically true for all non-enumerated types;

» I'”: only for non-enumerated types, a function that converts the basic type to Z; defaults to the identity rounded to the closest
integer value;

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

Algorithm 2 Controlled Reach

Given the system sys, initial set I, initial time T}, final time T, constraints C, bounding box B, search point p, hard constraint
functions & and soft constraint functions s:

—_

: S = initialize_satisfaction(C)

2: R=0
3: IT = generate_points_from(p)
4. 1=T;
5: E=1
6: while 7 < T do
7. ep=1[]
8: for p; in IT concurrently do
9: use_property_point(p;)
10: [fj,ﬁj, ;1= integration_slep(sys,f, 1)
11: ev; = evaluate_constraints(fj, h,s)
12: ep = adjoin(ep, [pj,Ej,ﬁj,tj,eulJ)
13: end for
14: IT = update_points(ep)
15: bp = best(ep)
16: S = update_satisfaction(.S, bp, C)
17: R= adjoin_best_result(i, bp)
18: E= next_set(bp)
19: t = next_time(bp)
20: if radius(E) > radius(B)/2 then break

21: end if
22: end while
23: return [S, R]

» I'": only for non-enumerated types, a function that converts from Z to the basic type; defaults to the identity.

The choice of I' defines the discretization of the search space. This is determined when the property is defined for the tool, to be
consistent with the conventions followed by the users when manually tuning the property. For example, the value of the step size
is typically explored following a log, progression.

Since the domain is bounded, we can generate Z initial points in the search space randomly with uniform probability across all
properties. Each generated point can be evaluated and ranked according to (24). In our approach, exploration is based on adjacency.
Two points z, and z; are adjacent if they differ in one and only one property value, with a value distance of 1. Values for non-metric
properties are assumed to have distance 1 between each other. At the kth step of integration we discard the worst | Z /2] points
and, for each of the remaining [Z/2] points z, we generate one new adjacent point z; . The list of points for the (k + 1)-th step is
given by the union of the best [Z /2] points with the adjacent | Z /2| points. In this way, we progressively explore the search space
along k without deviating from the best points too quickly.

The value of Z should reflect the number of performance cores in the CPU and consequently the number of concurrent runners
available. Increasing Z obviously implies that we evaluate more points, although that does not necessarily cause a speedup in the
overall procedure. In fact, while we are able to look for more diverse points, the deviation of the execution times for the parallelized
algorithm under such collection of points also tends to increase. Since we need to wait for all runs to finish before we can rank
the corresponding points, completion is bound by the slowest case. This inefficiency can be addressed by reducing the radius of
exploration over time, or by designing a scheduler that dynamically estimates the execution time and makes better allocations of
points to runners, so that more points can be searched within the same maximum execution time per step.

In general, the property valuation space is non-convex and our method only explores a bounded discretization of this space.
Moreover, there are no guarantees that there exists a point in such space that satisfies the accuracy requirements for constraint
satisfaction. Therefore, the proposed heuristic to explore the property valuation space cannot provide convergence guarantees by
itself. In our problem setting, guaranteeing the convergence of the nonlinear ordinary differential equation solver to the desired
tolerance, even with optimal properties, is also non-trivial. While numerical convergence to a given accuracy is easily achievable
across a single integration step, it is difficult to guarantee a sufficiently low over-approximation error for the solver over multiple
steps due to the growing complexity of the representation of the evolved set. Yet, if the properties of the reachability algorithm allow
controlling the over-approximation error, our optimization method will succeed in finding the minimum accuracy that addresses
the underlying constraint satisfaction problem.

9. Evaluation
We use a C++ implementation of our methodology to validate its effectiveness. In particular, the library for property definition
and the corresponding runtime for space exploration are written as an open-source project [26] with no external dependencies. The

reachability tool AriabNE is also open source [27].

10

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

Table 1

Summary information on systems tested.

Name Alias Ref N Tr Initial set bounds

Brusselator BRU [21] 2 1 [0.95, 1.05][0.93, 1.07]

Jet engine JET [21] 2 5 [0.9, 1.11[0.86, 1.14]

Higgins-Sel’kov HIG [20] 2 5 [1.99, 2.011[0.99, 1.01]

Lorenz attractor LOR [28] 3 1 [0.99, 1.01][0.99, 1.01][0.99, 1.01]
Rossler attractor ROS [28] 3 12 [-9.01, —8.99][-0.01, 0.01][0, 0.02]
Chemical reactor CHE [29] 4 5 [0, 1e-3][0, 1e-3][0, 1e-3]1[0, 1e-3]

For reproducibility purposes, the evaluation code is made available in the tool distribution. All the results were obtained using a
MacBook Air M2 laptop, with 4 performance cores, consequently processing 4 search points per integration step. No other parallel
processing is involved in this evaluation.

9.1. Benchmarking setup

Table 1 provides the benchmark suite, including a reference to the literature for details on the nonlinear dynamics. Testing was
limited to 4 state variables due to the substantial cost of computing inner approximations despite using the most efficient method
currently available in the literature [25]. However, since our methodology mitigates the need for the expensive Lg¢ check, as N
increases, we expect to scale favorably with respect to avoiding the pre-analysis step.

For all the original systems with time-varying inputs, we transform those inputs into constants at their midpoint value. Further,
we focus on time independent differential systems, with 7; = 0, and time-invariant constraints, which are more common in the
literature. However, our methodology supports time dependence in the dynamics and the constraints, with no practical impact on
the algorithm and its performance, and therefore, no impact on our evaluation plan.

Based on these considerations, we design a simple and practical constraint generator as follows:

Nl x;,— B ?
iv+4 Y 4 =) =0
N ; l<wi|Bi|>
st. Vi=0,..,N, i € {-1,1}
N 27)
ZA[¢{—N—1,N+1}
i=0
Vi=0,....N-1, w €[0.51]V
Vi=0,....N-1, w, €[1,1.5]

This generator produces axes-aligned ellipsoids and hyperboloids, centered in B with reference semi-widths given by |B;|/2
values. If B is a bounding box of the reachable set, calculated using approximate reachability, then the reference ellipsoid and
hyperboloid is internally or externally tangent to B, respectively. The A; coefficients, uniformly chosen, shuffle through all possible
combinations, from which we exclude all positive or all negative coefficients since the resulting constraint would be trivial. The o,
coefficient values instead are chosen uniformly from the same range (uniformly between [0.5, 1] or [1, 1.5]) for all i, to produce small
or large distances, and consequently, produce ellipsoids that may be enclosed by a cyclic trajectory or my enclose such a trajectory,
and hyperboloids that may graze or cross a non-cyclic trajectory.

9.2. Benchmarking algorithm

The benchmarking algorithm compares the proposed constraint-driven methodology with a random unconstrained one, as shown
in Alg. 3. We evaluate the number of constraints with indeterminate satisfiability answer under an equal real-time budget T,. The
time budget is set by the constraint-driven method, where we terminate as soon as no improvement over the previous internal
iteration is detected. In the unconstrained case, we perform multiple runs of rigorous evolution by picking a random property
assignment in the search space each time and tracking, across the runs, the constraints whose satisfiability has been decided. Once
the time limit is passed, we report the comparison over the strict [0, T,] window. Similarly to the constraint-driven approach, we
compute and use a bounding box also for the unconstrained methodology. If this were not the case, the unconstrained methodology
would get stuck for a significant time whenever a blowup of the error is present, or it may not even terminate. All the partial
constraint satisfiability results are retained as usual.

For comparison between the two methodologies we use two metrics. The first one is the final percentage of constraints with
indeterminate satisfaction, called %’. However, this does not capture the speed of convergence, which can be different under the
same final value. The second metric is then the integral of the percentage across the iterations, called [’

Constraints are generated by first evaluating B from the approximate evolution of the system, by constructing 500 instances,
and finally by running rigorous evolutions where T and L, are checked. All the constraints whose satisfaction is trivially identified
by this run are removed; since assessing L ¢ is not trivial, in general, and inefficient to check, we do not consider it. We observed a
typical 60 — 70% of constraints being discarded in this way. From the remaining constraints, 100 candidates are randomly selected.
We run approximate evolutions once again on this set to provide a summary estimate of the frequency of the given prescriptions

11

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

Algorithm 3 Single run of benchmarking

Given the system sys, initial set I and final time T':
1: C = generate_constraints(sys, I, Tr)
2: ¢ =identify_prescriptions(sys, I,Tf,C)
3: [%Z,f:, S.,T,] = constrained_check(sys, I, T, C)
4: [%l: fu?, S, 1 = unconstrained_check(sys, I, T, C,T,)
5: return [&,TX,%?,/C?,SC,%Z,fu?,SuJ

c

6. The constrained_check method then runs Alg. 1 against the constraints and collects the required metrics, including a vector .S,
with the frequencies of satisfaction for each T, 1,, and Lg possible outcome. The corresponding unconstrained_check mirrors the
constraint-driven version, with no prescription of outcome and no control of the error. Only one approximate evolution is initially
performed to identify a bounding box for early termination. Regular termination happens when T, is hit.

9.3. Integration step

Before we introduce the properties to be chosen, we summarize how we perform the integration step. We use a Picard integration
scheme [21], under which the reached set R, between steps k — 1 and & and the evolved set E, at step k are computed from E,_,
as follows:

1. Given the bounds of E,_,, hereby referred to as [Ek_l], evaluate an approximation of the upper bound on the integration
step size to use, hereby called 5;;,;

2. Find an over-approximation of the bounds of the reach set [Rk] by starting with an approximation computed using Euler’s
method and checking if it is a contraction according to Picard-Lindel6f theorem [30]; in this case, use the contracted box as
[R,], otherwise halve the step size ,,, and repeat the procedure; hence it holds that 8,,; < ;,;

3. Using Picard’s method, starting from [Rk] find a contraction of the flow function @, with a given maximum error,
progressively increasing the temporal order; if the error is too large, then the step size is halved and the procedure repeated,
hence it holds that §, < 6;,;;

4. R, = ®,(E,_;.[0,5,)) and E, = ®,(E,_,.5;).

No global fixed value of the integration step size is suggested: the first approximate estimate 6, (called “Lipschitz step”) is
proportional to the inverse of the Lipschitz constant:
Klip

AR TX 0,8, 1)

Sip (28)
where the Lipschitz constant is defined as the norm of the Jacobian of the vector field f of the dynamics, applied to the product
of the previous evolve bounds and the time interval identified by the previous integration step size (zero, initially). The tolerance
constant K;;, < 1 is a parameter used to obtain a contraction on the first attempt.

9.4. Properties under tuning

The properties that generate the search space can be organized in a property hierarchy tree, where their (alphabetical) position
is identified by a path, in a similar way as with a file system, where the evolver object represents the root. For each property we
specify the basic type for the value domain, whether this is a metric property (Y/N), and the optional conversion rule " (z) of a
value z from the search domain back to the value domain. When I'(z) is the identity, which is always true for an enumeration
type, we do not specify it. The conversion forward is also implicit from I"“(z) in our cases and it is not mentioned.

ENABLE_RECONDITIONING [Boolean, NJ: states whether reconditioning of the set is allowed, pending the error being lower than the
maximum spacial error. Reconditioning transforms the uniform error terms into additional parameters of the set, thus allowing
to control the error better at the cost of additional complexity of the set.

INTEGRATOR/BOUNDER/LIPSCHITZ_TOLERANCE [double, Y, I'™ = 27]: the K|;, constant in the previous Subsection.

INTEGRATOR/MAXIMUM_TEMPORAL_ORDER [unsigned integer, Y]: the maximum order in the time variable for the polynomial expansion.
INTEGRATOR/MINIMUM_TEMPORAL_ORDER [unsigned integer, Y]: the minimum order in the time variable for the polynomial expansion.
INTEGRATOR/STEP_MAXIMUM_ERROR [double, Y, I’ = 107]: the maximum error (i.e., remainder) of the flow tube polynomial function;
the lower the value, the higher the temporal order used;

INTEGRATOR/SWEEPER/THRESHOLD [double, Y, I'™ = 10%]: the minimum value that a coefficient of a term in the polynomial
representation of the flow function is allowed to have; terms with smaller coefficients are “swept” as addends into the
uniform error term, in order to reduce the complexity of the polynomial representation without affecting the bounds of the
corresponding set;

12

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

Table 2
Range of property values chosen for all experiments, with corresponding integer search space
values.
Property D Z
[1 [1
ENABLE_RECONDITIONING False True 0 1
INTEGRATOR/BOUNDER/LIPSCHITZ_TOLERANCE 0.0675 0.5 -4 -1
INTEGRATOR/MAXIMUM_TEMPORAL_ORDER 5 10 5 10
INTEGRATOR/MINIMUM_TEMPORAL_ORDER 0 5 0 5
INTEGRATOR/STEP_MAXIMUM_ERROR le—6 le—4 -6 -4
INTEGRATOR /SWEEPER/ THRESHOLD le-8 le-6 -8 -6
MAXIMUM_SPACIAL_ERROR le-8 le-5 -8 -5
Table 3

Comparison of unresolved constraints between the constrained and unconstrained methodologies,
showing average and standard deviation of their final number %’ and integral number along
optimization /.

Sys Constrained Unconstrained

T, () o2 f7 o2 f7

avg std avg std avg std avg std avg std
BRU 11 7 8 4 5 4 39 15 6 3
JET 162 120 9 3 52 31 39 12 96 55
HIG 359 375 6 2 108 161 44 13 180 132
LOR 155 153 3 2 42 54 62 27 117 72
ROS 59 59 12 21 22 36 48 26 56 38
CHE 2117 1648 12 5 836 729 28 13 757 583

* MAXIMUM_SPACIAL_ERROR [double, Y, I'” = 10?]: the maximum error in the set, over which reconditioning is performed if allowed.

The seven properties described are only a subset of the properties available to the user for continuous evolution (or at other layers
of the tool), although arguably the most important ones. From their role it is already apparent that the interaction between them is
non-trivial in terms of the resulting quality of the set. Aside from enaBLE_rRECONDITIONING, Which has 2 values, all properties are metric,
hence the search moves by adjacency across all dimensions. Some other properties, however, would be inherently non-metric, such
as enumerations of method objects conforming to an interface (e.g., different implementations of the inner approximator).

Table 2 provides the ranges chosen for each property, along with the corresponding ranges in the integer search space according
to I'~, resulting from our general experience with the tool. The resulting search space size is given by 2x4x6Xx6x3x3 x4 = 10368
points, more than enough to call for a directed search rather than sampling, even when high concurrency is available. Notably,
all the combinations of these values are reasonable, i.e., from prior knowledge about the tool there are no search points for which
an integration failure is expected. Even if a step failed for a property assignment, a secondary advantage of our multiple-point
approach is that it is possible to progress using the successful ones and restore the population size at the following step. Overall,
the domain chosen is general enough that we may manually choose any point. However, we will show how poorly a random fixed
choice (representative of manual tuning) performs in terms of constraint satisfaction resolution.

9.5. Results

Tables 3 and 4 provide the results related to unresolved constraints and the success rate based on the expected outcome,
respectively. Results are obtained from 20 independent runs, where both average and standard deviation are provided.

We can see from Table 3 that there is a definite efficiency advantage in the constraint-driven case: the L , case can be detected and
acted upon, avoiding inner approximations altogether for all times. On the other hand, for the unconstrained case, if the conditions
for 1, are not satisfied but those for L ¢ are, then the inner approximation needs to computed. Once it is computed for one constraint,
the inner approximation can be used, whenever necessary, for any other constraints on that specific integration step.

Being driven toward higher accuracy, constraint-driven instances are slower, in general. Conversely, unconstrained instances
rarely improve in terms of number of correct satisfaction answers over the first iterations. For example, on the CHE instance that
took T, = 4387 s, the constraint-driven methodology needed only 4 iterations before settling to a value of %’ = 6. Using the same time
budget, the unconstrained methodology was able to perform 1198 iterations but remained stuck at 14% of constraints unresolved
from iteration 58 onward. The integral value / ? turns out to be favorable for the unconstrained methodology because it takes more
time for the constraint-driven approach to perform its first iterations and resolve the majority of the constraints. We remark that
constraint evaluation takes a negligible time as opposed to integration, therefore the slowdown in controlled reachability is largely
independent of the number of constraints used.

Table 4 shows the success rates for each prescription. The & results provide the average and standard deviation of the distribution
of the expected prescription across all three values, which is obtained during constraints construction. The actual prescription changes

13

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

Table 4
Expected prescription distribution and success rate for all systems, where values are expressed
as percentages.

Sys Expected & Success rate

T 1, Le T 1, Ls

avg std avg std avg std avg std avg std avg std
BRU 9 6 66 6 25 5 70 33 98 2 80 10
JET 7 12 65 9 28 6 42 49 98 2 76 8
HIG 8 9 83 8 9 2 56 38 99 1 61 19
LOR 18 20 81 20 2 1 72 34 95 22 9 27
ROS 30 27 70 27 1 1 55 49 100 O 29 49
CHE 20 10 52 9 28 3 71 24 100 1 70 14

=

1.28 > ‘,‘7((“‘

‘,/",’lll',

0.00 e~ C3
-0.81 X -1.05

Fig. 4. Reachable set R of BRU along with elliptical (c,, ¢, and c,) and hyperbolic (c;, ¢, and c5) constraints each yielding the T, L and L, results respectively.

at each iteration of each run based on the point used for pre-analysis, so it can be slightly different, although we see from the Table
that the deviation across runs is often small. The success rate columns give the percentage of providing the prescribed answer
with respect to the actual prescription. Scenarios leading to 1, are the easiest to generate and verify, while T and Lg are less
numerous. While both T and 1lg are more difficult to be identified, T also has a high variance, i.e., it is more sensitive to the
instance and consequently to the over-approximation error induced by property values. This can be mainly ascribed to the fact that
an excessive growth of the over-approximation error during pre-analysis causes early termination, which prevents from checking T
during controlled reachability.

Finally, let us focus on a concrete case using BRU, whose reachable set as obtained by Ariadne is shown in Fig. 4. Here R is
given by a sequence of nonlinear sets converted into affine sets, starting at T, from the top right corner and ending at T} at the
bottom left corner. In addition, the boundaries of the six tailored constraints used to run this instance of BRU are displayed. Due to
rendering limitations in Ariadne when displaying multiple constraints, those have all been drawn manually as accurately as possible
using ellipses; the side of the boundary where L is obtained is shaded.

Table 5 supplies all the information on the constraint definition, according to the formula described in (27), along with analysis
data on their impact on optimization: the satisfaction result 5, the maximum time for checking the constraint 7* and the maximum
growth rate a. The values |B| = (1.86,1.28) and B = (0.12,0.64) hold for the widths and center of the reachable set obtained. The
values of o as obtained by our verification flow show that we purposely chose elliptical and hyperbolic constraints that stress the

14

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

Table 5
Summary information on constraints for the BRU run.
Name Ao o , o T* a
¢ 1,1, -1 0.50 0.54 T 1.00 73
[1,1, -1 0.65 0.70 Le 0.74 62
¢ 1,1, -1 0.83 0.89 L, 0.78 21
c -1,1,1 0.86 0.89 T 1.00 33
¢y -1,1,1 0.74 0.75 Ls 0.25 1553
¢ -1,1,1 0.59 0.62 1, 0.27 2758
10 T T T T T T m|
. ENABLE RECONDITIONING
™ LIPSCHITZ TOLERANGE
| —— MAXIMUM TEMPORAL ORDER
l,l T"'l' ' MINIMUM TEMPORAL ORDER
L. ‘ - — = STEP MAXIMUM ERROR
| [— — THRESHOLD
L | | MAXIMUM SPACIAL ERROR
1
1
\ |
s e oo b ! 1 4
10 1 1 1 1 1 1
o 20 40 &0 20 100 120 140

Fig. 5. Values of the properties along integration steps for the BRU run.

methodology by being relatively close to tangency. For the BRU system, this happens for 0.5 < w < 1.0 in both elliptical (44, = 1)
and hyperbolic (4,4, = —1) constraints. We can identify such stress for the single constraint by looking at the value of «, which
according to (16) is an upper bound on the error growth. Consequently, the lower the value of «, the more the satisfaction of the
constraint requires a higher accuracy: ¢, effectively is the most critical constraint since its boundary is close to the trajectory and
that situation occurs at later times, since Tz* = 0.78. A similar tangency with ¢, (to yield T) is less critical since it occurs earlier,
where accumulated error is lower. Therefore the least demanding constraints are ¢, and cs, since there is ample margin for error
and the 1 condition needs to be checked for up to around 0.27 s only. Please note that while T* for constraints yielding L matches
the critical time, for constraints yielding T it is always the final time since the whole reachable set is required.

Fig. 5 instead shows the evolution of the optimal Z values of the properties listed in Table 2 across the evolution time. For
completeness, the verification task took 11 s and terminated after 137 integration steps within a single run of the loop in Alg. 1.
The first optimized point is (0, —4,9,4, —4, -7, —8) and the final point is (0, —4, 5,0, —6, —8, —8). We can see that for most properties the
value stabilizes within the first 20 steps. For others, such as the minimum temporal order, an oscillation in [0, 2] is present, against
the [0, 5] range allowed. Around step 70 there is a significant variation in the values, due to the critical region where a satisfaction
of ¢, and ¢, is obtained: since those constraints are not needed anymore, the conditions for optimization change.

10. Conclusions

We addressed the problem of calculating the reachable set of a generic nonlinear system in the most efficient way that can
return a definite answer to the satisfaction of a set of constraints. We introduced a method to identify bounds for the growth of

15

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

the computation error along the system evolution. We then proposed to automatically search for appropriate choices of values of
the reachability tool properties that can achieve the desired bounds. In our prototype implementation, the property value space is
discretized and the search is performed by evolving a population of candidate property assignments based on adjacency relations.
Results from our benchmark suite show that a random choice of property values cannot provide definite answers to a significant
percentage of the constraints, even after a large number of trials. Conversely, our method can resolve almost all the constraints and
it converges generally faster. By avoiding manual tuning of tool properties, it can make a significant leap in the effectiveness and
automation of verification using reachability analysis.

Future plans include extending the theory to support time-varying inputs and hybrid systems. Moreover, we plan to extend the
property definition and exploration framework to support unbounded spaces with constraints between properties, and implement
more sophisticated search algorithms. Last but not least, we intend to interface the pExplore runtime to finite-time reachability tools
other than Ariadne, in order to assess the efficiency of our methodology in different scenarios.

CRediT authorship contribution statement

Luca Geretti: Formal analysis, Investigation, Methodology, Writing — original draft, Writing — review & editing. Pieter Collins:
Formal analysis, Methodology, Validation. Pierluigi Nuzzo: Supervision, Methodology, Writing — review & editing. Tiziano Villa:
Methodology, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability
No data was used for the research described in the article.
Acknowledgments

This work was supported in part by the US National Science Foundation under awards 1846524 and 2139982 and by the US
Office of Naval Research (Science of Al and Science of Autonomy Programs) under award N00014-20-1-2258.

References

[1] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, O. Maler, SpaceEx: Scalable verification of hybrid
systems, in: Proc. 23rd International Conference on Computer Aided Verification, CAV 2011, in: LNCS, vol. 6806, Springer, Snowbird, UT, USA, 2011, pp.
379-395.

[2] S. Schupp, E. Abraham, I. Makhlouf, S. Kowalewski, HyPro: A C++ library of state set representations for hybrid systems reachability analysis, in: C.
Barrett, M. Davies, T. Kahsai (Eds.), NASA Formal Methods, Springer International Publishing, Cham, 2017, pp. 288-294.

[3] N. Fulton, S. Mitsch, J. Quesel, M. Volp, A. Platzer, KeYmaera X: An axiomatic tactical theorem prover for hybrid systems, in: A.P. Felty, A. Middeldorp
(Eds.), CADE, in: LNCS, vol. 9195, Springer, 2015, pp. 527-538.

[4] S. Ratschan, Z. She, Safety verification of hybrid systems by constraint propagation based abstraction refinement, ACM Trans. Embed. Comput. Syst. 6 (1)
(2007).

[5]1 M. Althoff, An introduction to CORA 2015, in: G. Frehse, M. Althoff (Eds.), ARCH14-15. 1st and 2nd International Workshop on Applied Verification for
Continuous and Hybrid Systems, in: EPiC Series in Computing, vol. 34, EasyChair, 2015, pp. 120-151, http://dx.doi.org/10.29007/zbkv.

[6] D. Bresolin, P. Collins, L. Geretti, R. Segala, T. Villa, S. Zivanovic, A computable and compositional semantics for hybrid automata, in: Proceedings of the
23rd International Conference on Hybrid Systems: Computation and Control, 2020.

[7]1 S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, C. Schilling, JuliaReach: A toolbox for set-based reachability, in: Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control, HSCC ’19, Association for Computing Machinery, New York, NY, USA, 2019,
pp. 39-44, http://dx.doi.org/10.1145/3302504.3311804.

[8] X. Chen, E. Abraham, E. Sankaranarayanan, Flow*: An analyzer for non-linear hybrid systems, in: Proc. of the 25th International Conference on Computer
Aided Verification, CAV 2013, in: LNCS, vol. 8044, Springer, Saint Petersburg, Russia, 2013, pp. 258-263.

[9] M. Althoff, J.M. Dolan, Online verification of automated road vehicles using reachability analysis, IEEE Trans. Robot. 30 (4) (2014) 903-918, http:
//dx.doi.org/10.1109/TR0.2014.2312453.

[10] Y. Chou, H. Yoon, S. Sankaranarayanan, Predictive runtime monitoring of vehicle models using bayesian estimation and reachability analysis, in: IEEE
International Conference on Intelligent Robots and Systems, 2020, pp. 2111-2118.

[11] A. Alanwar, Y. Stiirz, K.H. Johansson, Robust data-driven predictive control using reachability analysis, Eur. J. Control (2022).

[12] L. Benvenuti, D. Bresolin, P. Collins, A. Ferrari, L. Geretti, T. Villa, Assume-guarantee verification of nonlinear hybrid systems with Ariadne, Int. J. Robust
Nonlinear Control 24 (4) (2014) 699-724, http://dx.doi.org/10.1002/rnc.2914.

[13] M. Wetzlinger, N. Kochdumper, M. Althoff, Adaptive parameter tuning for reachability analysis of linear systems, in: Proceedings of the IEEE Conference
on Decision and Control, Vol. December, 2020, pp. 5145-5152.

[14] M. Wetzlinger, A. Kulmburg, M. Althoff, Adaptive parameter tuning for reachability analysis of nonlinear systems, in: HSCC 2021 - Proceedings of the
24th International Conference on Hybrid Systems: Computation and Control, Part of CPS-IoT Week, 2021.

[15] L. Geretti, R. Muradore, D. Bresolin, P. Fiorini, T. Villa, Parametric formal verification: the robotic paint spraying case study, in: Proceedings of the 20th
IFAC World Congress, 2017, pp. 9248-9253.

[16] G. Frehse, R. Kateja, C. Le Guernic, Flowpipe approximation and clustering in space-time, in: HSCC 2013 - Proceedings of the 16th International Conference
on Hybrid Systems: Computation and Control, Part of CPSWeek 2013, Vol. 1, 2012, pp. 203-212.

16

http://refhub.elsevier.com/S1751-570X(24)00069-4/sb1
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb1
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb1
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb1
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb1
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb2
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb2
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb2
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb3
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb3
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb3
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb4
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb4
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb4
http://dx.doi.org/10.29007/zbkv
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb6
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb6
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb6
http://dx.doi.org/10.1145/3302504.3311804
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb8
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb8
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb8
http://dx.doi.org/10.1109/TRO.2014.2312453
http://dx.doi.org/10.1109/TRO.2014.2312453
http://dx.doi.org/10.1109/TRO.2014.2312453
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb10
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb10
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb10
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb11
http://dx.doi.org/10.1002/rnc.2914
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb13
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb13
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb13
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb14
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb14
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb14
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb15
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb15
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb15
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb16
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb16
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb16

L. Geretti et al. Nonlinear Analysis: Hybrid Systems 54 (2024) 101532

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]
[27]
[28]
[29]
[30]

M. Wetzlinger, N. Kochdumper, S. Bak, M. Althoff, Fully automated verification of linear systems using inner and outer approximations of reachable sets,
IEEE Trans. Autom. Control 68 (12) (2023) 7771-7786, http://dx.doi.org/10.1109/TAC.2023.3292008.

M. Wetzlinger, N. Kochdumper, S. Bak, M. Althoff, Fully-automated verification of linear systems using reachability analysis with support functions, in:
Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control, HSCC ’23, 2023, http://dx.doi.org/10.1145/3575870.
3587121.

N. Kochdumper, S. Bak, Fully automated verification of linear time-invariant systems against signal temporal logic specifications via reachability analysis,
2024, arXiv:2306.04089.

X. Chen, S. Sankaranarayanan, Decomposed reachability analysis for nonlinear systems, in: 2016 IEEE Real-Time Systems Symposium, RTSS, 2016, pp.
13-24.

X. Chen, Reachability Analysis of Non-Linear Hybrid Systems Using Taylor Models (Ph.D. thesis), Aachen University, 2015.

S. Bak, S. Bogomolov, C. Schilling, High-level hybrid systems analysis with Hypy, in: Proceedings of the Workshop on Applied Verification of Continuous
and Hybrid Systems, Vol. April, 2016, pp. 80-90.

M. Wetzlinger, A. Kulmburg, A. Le Penven, M. Althoff, Adaptive reachability algorithms for nonlinear systems using abstraction error analysis, Nonlinear
Anal. Hybrid Syst. 46 (2022).

S. Sankaranarayanan, Automatic invariant generation for hybrid systems using ideal fixed points, in: Proceedings of the 13th ACM International
Conference on Hybrid Systems: Computation and Control, HSCC ’10, Association for Computing Machinery, New York, NY, USA, 2010, pp. 221-230,
http://dx.doi.org/10.1145/1755952.1755984.

N. Kochdumper, M. Althoff, Computing non-convex inner-approximations of reachable sets for nonlinear continuous systems, in: 2020 59th IEEE Conference
on Decision and Control, CDC, 2020, pp. 2130-2137, http://dx.doi.org/10.1109/CDC42340.2020.9304022.

Pexplore: parallel exploration of properties of an iterative procedure, 2023, https://github.com/ariadne-cps/pexplore.

Ariadne: an open library for formal verification of cyber-physicalsystems, 2020, http://www.ariadne-cps.org.

S.H. Strogatz, Nonlinear Dynamics and Chaos (Second Edition), in: Studies in Nonlinearity, CRC Press, 2014.

S. Harwood, P. Barton, Efficient polyhedral enclosures for the reachable set of nonlinear control systems, Math. Control Signals Systems 28 (8) (2016).
V.I. Arnold, Ordinary Differential Equations, Springer Berlin, 1992.

17

http://dx.doi.org/10.1109/TAC.2023.3292008
http://dx.doi.org/10.1145/3575870.3587121
http://dx.doi.org/10.1145/3575870.3587121
http://dx.doi.org/10.1145/3575870.3587121
http://arxiv.org/abs/2306.04089
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb20
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb20
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb20
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb21
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb22
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb22
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb22
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb23
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb23
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb23
http://dx.doi.org/10.1145/1755952.1755984
http://dx.doi.org/10.1109/CDC42340.2020.9304022
https://github.com/ariadne-cps/pexplore
http://www.ariadne-cps.org
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb28
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb29
http://refhub.elsevier.com/S1751-570X(24)00069-4/sb30

	Constraint-driven nonlinear reachability analysis with automated tuning of tool properties
	Introduction
	Preliminaries
	Problem Formulation
	Overview of the Algorithm
	Derivation of the criteria for robustness minimization
	Bounding the Over-Approximation Error
	Relaxing the Error Bounds
	Controlling Offsets in the Robustness Estimates
	Pruning Constraints That Are Not Satisfiable

	Rigorous Constraint Checking
	Algorithm
	Exploring the Property Space
	Evaluation
	Benchmarking Setup
	Benchmarking Algorithm
	Integration Step
	Properties Under Tuning
	Results

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

