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Strange expectations in affine Weyl groups

Eric Nathan Stucky, Marko Thiel & Nathan Williams

Abstract Our main result is a generalization, to all affine Weyl groups, of P. Johnson’s proof
of D. Armstrong’s conjecture for the expected number of boxes in a simultaneous core. This
extends earlier results by the second and third authors in simply-laced type. We do this by
modifying and refining the appropriate notion of the "size" of a simultaneous core. In addition,
we provide combinatorial core-like models for the coroot lattices in classical type and type G2.

1. Introduction
1.1. Motivation. Macdonald’s celebrated affine denominator formula∏

α∈Φ̃+

(1 − e−α)mult(α) =
∑

w∈W̃

(−1)ℓ(w)ew(ρ)−ρ

specializes to many famous identities, including Euler’s pentagonal number theorem,
Jacobi’s triple product identity, and Dyson’s identity for Ramanujan’s τ -function [17,
7]. One such specialization— for simply-laced types— is the equality

(1)
∞∏

i=1
c(xi) =

( ∞∏
i=1

1
1 − xhi

)n ∑
q∈Q

x⟨ h
2 q−ρ,q⟩,

where h is the Coxeter number and c(x) is the characteristic polynomial of a Coxeter
element. There is a version for all types, which Macdonald refers to but omits in [17](1):∑

q∈Q
x⟨ h

2 q−ρ,q⟩ =
∞∏

i=1

[
(1 − xi)ns(1 − xri)nℓ

∏
α∈Φs

(1 − xiωht(α))
∏

α∈Φℓ

(1 − xriωht(α))
]

,

where ns and nℓ count the number of short and long roots, ω is a primitive hth root
of unity, r is the ratio of the length of a long to short root, Φs and Φℓ are the sets of
short and long roots, and ht(α) is the height of the root α.
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(1)At the end of [17, Section 8], Macdonald writes “When R contains roots of different lengths,
the formula corresponding to [Equation (1)] is more complicated, and we shall not reproduce it here.”
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1.2. Partitions. Recall that an integer partition is a sequence of non-increasing
positive integers λ = (λ1 ⩾ λ2 ⩾ · · · ⩾ λk). The Ferrers diagram of an integer
partition λ (under the English convention) is a top-left justified subset of N×N with
λi boxes in the i-th row (counting from the top). A hook of a given box in a Ferrers
diagram is the collection of boxes to the right and below the given box. An example
is given in Figure 1.

8 5 4 2 1
6 2 1
2
1

Figure 1. The partition λ = (5, 3, 1, 1), with boxes labeled by the
lengths of their hooks. It is a 3-core (since it has no hooks of size 3)
but not a 4-core.

An a-core is an integer partition with no hook of length a. For example, in type
A, Equation (1) can be interpreted as the beautiful combinatorial formula

(2)
∞∏

i=1

1
1 − xi

=
( ∞∏

i=1

1
1 − xai

)a ∑
q∈core(a)

xsize(q).

An (a, b)-core is a partition that is simultaneously an a-core and a b-core. For a
and b relatively prime, it turns out that there are only finitely many (a, b)-cores:∣∣core(a, b)

∣∣ = 1
a + b

(
a + b

b

)
.

For λ a partition, write λ⊺ for its conjugate and size(λ) for the number of its boxes. The
starting point for a number of recent investigations has been Armstrong’s conjecture
on the average number of boxes in an (a, b)-core, and in a self-conjugate (a, b)-core [1,
2], which can be thought of as a sort of finite version of Equation (2).

Theorem 1.1 ([14]). For gcd(a, b) = 1,

E
λ∈core(a,b)

(size(λ)) = (a − 1)(b − 1)(a + b + 1)
24 = E

λ∈core(a,b)
λ=λ⊺

(size(λ)).

Both equalities in Theorem 1.1 were proven by Johnson using weighted Ehrhart
theory [14]; the second equality was first proven by Chen, Huang, and Wang [5].

In [20], we generalized Armstrong’s conjecture and Johnson’s proof of the first
equality to all simply-laced affine Weyl groups, thereby giving a sort of finite analogue
of Equation (1). In the present paper, we find and— in the words of Macdonald—
reproduce the generalization to all affine Weyl groups, giving a finite version of the
formula for all types.

1.3. Combinatorial models of coroot lattices. The set of a-cores under the
action of the affine symmetric group S̃a is a well-studied combinatorial model for the
coroot lattice Q <

a of type Aa−1. Indeed, for all affine Weyl groups W̃ = W̃ (Xn) :=
W ⋉ Q <

Xn
, there is a well-known W̃ -equivariant map from the group to the coroot

lattice W̃ → Q <

Xn
given by w̃ 7→ w̃(0), which restricts to a W̃ -equivariant bijection

on the cosets W̃/W . Thus, combinatorial models for Q <

Xn
also give models for W̃/W ,

Algebraic Combinatorics, Vol. 7 #5 (2024) 1552
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representatives usually taken to be dominant affine elements. In type Aa−1, these
correspondences give S̃a-equivariant bijections

(3)
core(a) ↔ Q <

Aa−1
↔ S̃a/Sa

λ ↔ qλ ↔ w̃λ.

We describe the first of these bijections (λ ↔ Q <

Aa−1
) in detail in Section 3.1.

Remark 1.2. Here and throughout, all actions of W̃ on various sets are left-actions.
In particular, this means that given a reduced expression a1 · · · ak, the corresponding
simple transpositions act in decreasing order of the indices (that is, we “read” right
to left).

Similar combinatorial models may be produced for the quotients W̃/W of other
classical types (Xn ∈ {An, Bn, Cn, Dn}), by embedding Q <

Xn
into an appropriate type

A coroot lattice. Figure 2 illustrates these models in rank 2, as well as a similar model
for Xn = G2.

∅ ∅ ∅

Figure 2. 3-cores in types A2 and G2, and self-conjugate 4-cores in
type C2. (See Section 5 for further details.)

Under the correspondence between a-cores and Q <

a of Equation (3), the set of
(a, b)-cores turn out to be exactly those coroot points that sit inside of a certain affine
transformation of the fundamental alcove S(b), which includes a b-fold dilation, called
the b-Sommers region (see Definition 6.1). The natural generalization of core(a, b) to
any affine Weyl group is therefore the intersection of the coroot lattice Q <

Xn
with its

b-Sommers region, so that core(a, b) = core(Aa−1, b). In other words,
(4) core(Xn, b) := Q <

Xn
∩ SXn

(b).

1.4. Previous work. Under the bijections of Equation (3), we noticed in [20] that
the number of boxes in λ could be computed from the coroot qλ as described above,
or the inversion set of w̃−1

λ , where inv(w̃) = Φ̃+ ∩ w̃(−Φ̃+). More precisely:

Proposition 1.3 ([20, Proposition 6.4 & Corollary 6.7]). Let λ be an a-core and ρ <

be the sum of the fundamental coweights in type Aa−1. Then

size(λ) =
∑

α+kδ∈inv(w̃−1
λ

)

k =
〈a

2 qλ − ρ < , qλ

〉
.

It was natural to consider the corresponding statistic in any affine Weyl group
W̃ (Xn) acting on V , restricting to a certain finite set of coroots core(Xn, b) (defined
below in Equation (4), in analogy with simultaneous (a, b)-cores). The latter two
authors showed that for simply-laced Weyl groups, the result mirrored Theorem 1.1.
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Theorem 1.4 ([20, Theorem 1.10]). Let Xn be a simply-laced Cartan type with Coxeter
number h, and let b be coprime to h. Then

E
q∈core(Xn,b)

(size(q)) = n(b − 1)(h + b + 1)
24 .

When applied to Xn = Aa−1 (so that n = a − 1 and h = a), this result gives
a proof of the left equality of Theorem 1.1 for the expected size of simultaneous
(a, b)-cores. But since self-conjugate cores are a combinatorial model for coroots in
the non-simply-laced type Cn, we were unable to similarly specialize Theorem 1.4 to
conclude the right equality of Theorem 1.1 for the expected size of a self-conjugate
simultaneous core.

1.5. Improved size statistic. In this paper, we describe a modification of the size
statistic to incorporate the lengths of the roots. This appears advantageous over the
original statistic of [20]; we are able to apply the Ehrhart-theoretic techniques of
P. Johnson outside of simply-laced type. Normalize root systems so that the highest
root has length 2, and write r for the ratio of the length of a long to a short root. For
w̃ ∈ W̃/W , define

(5) size <(w̃) :=

 ∑
α+kδ∈inv(w̃−1)

α long

k

+ r

 ∑
α+kδ∈inv(w̃−1)

α short

k


This recovers the original statistic size in simply-laced type, but disagrees in non-

simply-laced type when r > 1. A similar statistic was independently considered in [4].
Using a bijection analogous to those of Equation (3), we interpret size < as statistics

on the combinatorial models of Section 5. For instance, we shows that size < in type
Cn corresponds to the number of boxes in the corresponding self-conjugate 2n-core
(see Figure 2).

Following the same strategy as in [20], we find an affine Weyl group element that
maps S(b) to a b-fold dilation of the fundamental alcove (correctly modifying the size <

statistic), and then apply Ehrhart theory to compute the expected value of size < on
core(Xn, b).

Theorem 1.5. For Xn an irreducible rank n Cartan type with root system Φ,

E
q∈core(Xn,b)

(size <(q)) = rg <

h

n(b − 1)(h + b + 1)
24 ,

where h is the Coxeter number of Xn, g < is the dual Coxeter number for Φ < , and r is
the ratio of the length of a long root to the length of a short root in Φ.

The extra factor of rg <

h is invisible in the simply-laced case, where Φ < = Φ, g < = h,
and r = 1. As an immediate application of Theorem 1.5, we conclude both equalities
in Theorem 1.1 by specializing to these types. Interestingly, although the expected
number of boxes in a simultaneous core and in a self-conjugate simultaneous core
happen to be the same, the formulas have quite different interpretations: the factor
of a − 1 corresponds to the dimension n for ordinary simultaneous cores, but to g < in
the self-conjugate case.

We prove Theorem 1.5 for non-simply-laced types in Section 7, after some setup,
including a careful definition of S(b). Along the way, we briefly generalize other results
from [20], including in particular Theorem 6.3 concerning the maximum size.
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2. Background
We give a brief account of most of the notation used in the remainder of the paper for
objects associated to affine root systems. For definitions and greater detail, we refer
the reader to standard references (e.g. [12]) or to the previous paper of the second
and third author [20, Section 2].

2.1. Root systems. Let V be a Euclidean space of dimension n, and Φ ⊆ V be an
irreducible crystallographic root system in V of type Xn. We often suppress the Xn

notation when there is only one root system under consideration. Denote a system of
simple roots by ∆ = {α1, . . . , αn}, and the corresponding positive roots by Φ+.

For any α ∈ Φ, we may write α in the basis of simple roots as α =
∑n

i=1 aiαi, where
the coefficients ai are either all nonnegative or all nonpositive. The height of α is the
sum of the coefficients: ht(α) :=

∑n
i=1 ai. Notice that ht(α) > 0 if and only if α ∈ Φ+

and ht(α) = 1 if and only if α ∈ ∆. There is a unique root α̃ of maximal height called
the highest root of Φ, and we denote its coefficients by ci, that is, α̃ =

∑n
i=1 ciαi ∈ Φ.

In addition, the Coxeter number of Φ is h := 1 + ht(α̃) = 1 +
∑n

i=1 ci.
For a root α ∈ Φ, define its coroot as α̌ := 2α

∥α∥2 . Define the dual root system of Φ as
Φ < := {α < : α ∈ Φ}. It is itself an irreducible crystallographic root system, and hence
also has a highest root γ̃; note that although γ̃ is by definition the coroot of some
α ∈ Φ, this α is typically not the highest root α̃. Writing γ̃ =

∑n
i=1 diα

<

i as a sum of
the simple coroots in Φ < , then we define the dual Coxeter number g < := 1 +

∑n
i=1 di.

Define the coroot lattice Q < of Φ as the lattice in V generated by Φ < . Finally, let
(ω <

1, ω <

2, . . . , ω <

n) be the basis that is dual to the basis (α1, α2, . . . , αn) of V consisting
of the simple roots, so that ⟨ω <

i , αj⟩ = δi,j . Then ω <

1, ω <

2, . . . , ω <

n are the fundamental
coweights. They are a basis of the coweight lattice

Λ < := {x ∈ V : ⟨x, α⟩ ∈ Z for all α ∈ Φ}
of Φ, which contains Q < as a sublattice. The sum of these basis elements, ρ < =

∑n
i=1 ω <

i ,
will be of particular importance. For notational convenience, we define ω <

0 := 0.

Notation 2.1. We normalize the inner product ⟨·, ·⟩ on V so that ⟨α̃, α̃⟩ = 2 and call
α ∈ Φ a long root if ⟨α, α⟩ = 2.

In particular, all long roots are their own coroots. A short root is a root with
⟨α, α⟩ < 2. If the system has short roots α, then α < = rα for an integer r ∈ {2, 3}
independent of α. If the system does not have short roots, it is called simply-laced.
Note that Φ < is itself a root system, but not subject to Notation 2.1.

2.2. Affine Weyl groups and affine root systems. The Weyl group W associ-
ated to a root system Φ is the subgroup of GL(V ) generated by the simple reflections

si = sαi
: x 7→ x − 2 ⟨αi, x⟩

⟨αi, αi⟩
αi

for αi ∈ ∆. The corresponding affine Weyl group W̃ is the subgroup of distance-
preserving transformations on V generated by the simple reflections {sα}α∈∆ together
with the additional affine simple reflection

s0 : x 7→ x − (⟨α̃, x⟩ − 1)α̃.

One readily checks that the affine Weyl group W̃ acts on both Q < and Λ < . For
any y ∈ V , there is an associated translation ty : x 7→ x + y. If we identify Q < with
the corresponding group of translations acting on V , then W̃ may be written as the
semidirect product W̃ = W ⋉ Q < . For w̃ ∈ W̃ we will use the notation w̃ = w · tq to
denote this semidirect product decomposition. This decomposition gives a bijection
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W\W̃ → Q < given by w̃ 7→ q, but we will make frequent use of the following more
interesting bijection:

Theorem 2.2. The map W̃ = W ⋉ Q < → Q < defined by w̃ 7→ w̃(0) descends to a
W̃ -equivariant bijection on the cosets W̃/W .

Proof. Evidently the first map is W̃ -equivariant, and because g ∈ W implies g(0) = 0,
we have that w̃ and w̃g have the same image. Hence we have a well-defined equivariant
map on cosets, and evidently q 7→ tqW is its inverse, as desired. □

The (real)(2) affine root system is defined by Φ̃ = Φ × Z, and— writing δ for a
formal variable to keep track of the coefficient of Z— we use the notation α + kδ for
a typical element of Φ̃. The root system Φ embeds in Φ̃ by writing αi as αi + 0 · δ,
and we define α0 := −α̃ + δ. The affine Weyl group W̃ acts on Φ̃ by

w̃ · (α + kδ) := w(α) + (k − ⟨α, q⟩)δ,

where w̃ = w · tq.

Definition 2.3. Given a reduced word w̃ = si1si2 · · · siℓ
for w̃ ∈ W̃ , we define its

inversion sequence
inv(w̃) = β1 + k1δ, β2 + k2δ, . . . , βℓ + kℓδ,

where βj + kjδ are the affine roots (si1 · · · sij−1)(αij
).

There may be many reduced expressions— and hence many inversion sequences—
for a given w̃ ∈ W̃ , but these differ only by a reordering: they record the affine
hyperplanes that separate w(A) from the fundamental alcove A.

3. Core partitions and the Type A coroot lattice
As discussed in the introduction, there is a close relation between the coroot lattice
for type An and certain kinds of partitions. Much of the work in this section is well-
known [2, 9, 20], with the exception of the size <

i -refinement of Proposition 3.4. We
also refer the reader to the recent preprint [4] and to our previous FPSAC abstract
on this work [19].

3.1. Coroots and cores. In type Aa−1, one choice of simple roots is αi := ei+1 −ei

for each 1 ⩽ i < a. Then the highest root is α̃ = ea − e1, and the coroot lattice(3) is
Q <

a = Q <

Aa−1
:= {q = (q1, q2 . . . , qa) ∈ Za :

∑a
i=1 qi = 0} .

An integer partition λ can be characterized by its Maya diagram— a bi-infinite
sequence of beads, which are either •s or ◦s, that begins with an infinite sequence
of only •s and ends with an infinite sequence of only ◦s. This diagram encodes the
boundary of λ (in English notation) by detailing the steps taken when traversing from
bottom left to top right: •s representing steps up and ◦s representing steps right. For
example, the Maya diagram of the partition on the left of Figure 3 is read from
south-west to north-east as · · · • • ◦ • • ◦ ◦ • ◦ ◦ • ◦ ◦ · · · .

Partitioning the Maya diagram into consecutive subsequences of length a and stack-
ing them vertically gives the a-abacus representation of λ. This is illustrated in the
middle of Figure 3. Finally, an a-abacus is called balanced if we can draw a horizontal
line between two rows with as many ◦s above the line as •s below; every partition has
a unique representation as a balanced a-abacus.

(2)In the context of Kac–Moody algebras, the affine root system also contains the imaginary roots
0 + Zδ; but here we follow the convention that ignores these extra roots, see e.g. [17].

(3)For safety— even though roots and coroots can be identified in type A— we already throw in
the distinguishing check.
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An integer partition λ is an a-core if and only if its a-abacus representation is
flush— that is, if each of the vertical “runners” of the abacus consists of an infinite
sequence of only •s followed by an infinite sequence of only ◦s. A flush, balanced a-
abacus encodes a coroot as the a-tuple of signed distances from beneath the lowest •
in each runner to the line witnessing the balanced condition— the balanced condition
ensures that these distances sum to zero. We will say that a bead is at level ℓ if the
distance from beneath the bead to the line witnessing the balanced condition is ℓ; note
that this means that levels increase when reading down the abacus. This is illustrated
on the right of Figure 3.

3-core λ =

0 1 2 0 1
2 0 1
1
0

abacus and coroot q = (0, 2, −2) = −α2.

Figure 3. An example of the bijection between a-cores, abaci, and
Q <

Aa−1
(for a = 3).

By the discussion above, Q <

a is in bijection with the set of a-cores core(a).

Definition 3.1. For q ∈ Q <

a, we write λq for the a-core obtained by building the flush,
balanced a-abacus with levels of the lowest • in each runner given by the coordinates
of q, and then reading this as the Maya diagram of a partition. For λ ∈ core(a), we
write qλ for the corresponding coroot in Q <

a obtained by reading the Maya diagram of
λ, producing the corresponding a-core, and then reading off the levels of the lowest •
in each runner.

The action of the affine symmetric group S̃a = W̃ (Aa−1) on Q <

a is generated by
the usual simple reflections si interchanging the ith and (i + 1)st positions, along with
the additional affine simple reflection s0:

si(q1, . . . , qi, qi+1, . . . , qa) = (q1, . . . , qi+1, qi, . . . , qa), and
s0(q1, . . . , qa) = (qa + 1, . . . , q1 − 1).

We can translate this action of S̃a to the set of a-cores [13, Section 2.7] [16]. We think
of a partition as an order ideal in N×N (top-left justified), where each (i, j) ∈ N×N
is indexed by its content (i − j) mod a. For 0 ⩽ i < a, let the simple reflection
si act on a partition by toggling all possible boxes with content i mod n— that is,
adding all possible missing boxes with content i which produce a valid Young diagram,
or removing all possible present boxes with content i which produce a valid Young
diagram. This extends to an action of the full affine symmetric group S̃a on a-cores.

Theorem 3.2. The action of the affine symmetric group S̃a is preserved under the
bijection between Q <

a and core(a) of Definition 3.1. That is, for 0 ⩽ i < a, q ∈ Q <

a,
and λ ∈ core(a), we have

si(q) = si(λq) and si(λ) = si(qλ).
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3.2. Two size statistics. For λ a partition, write: λ⊺ for its conjugate; sizei(λ) for
the the number of boxes in λ with content i mod a; and size(λ) for the total number
of its boxes. Under the bijection between coroots and a-cores, we can interpret these
definitions in the language of the coroot lattice. For q = (q1, . . . , qa) ∈ Q <

a, write
q⊺ := (−qa, . . . , −q1) and define

size <

i(q) :=
〈

1
2q − ω <

i , q

〉
and size <(q) :=

a−1∑
i=1

size <

i(q) =
〈a

2 q − ρ < , q
〉

.

Recall that in type Aa−1 (up to the usual normalization that the sum of the entries
ought to be zero), we have for 0 ⩽ i < a:

ω <

i =
i∑

j=1
ei = (1, 1, . . . , 1︸ ︷︷ ︸

i ones

, 0, 0, . . . , 0)

ρ < =
a−1∑
i=1

ω <

i = (a − 1, a − 2, . . . , 1, 0).

Recall that we previously defined ω0 = 0, which agrees with this description. Note
that we are able to safely ignore the normalization on ω <

i and ρ < because it is still
enforced on the coroot q when computing size <

i . For instance,

〈
1
2q − (ω <

i + t(1, . . . , 1)), q

〉
= size <

i(q) − t⟨(1, . . . , 1), q⟩ = size <

i(q).

Example 3.3. Continuing the example from Figure 3, the coroot q = (0, 2, −2) ∈ Q <
3

corresponds to the 3-core λ =
0 1 2 0 1
2 0 1
1
0

. This λ has four boxes with content 0

mod 3, four with content 1 mod 3, and two with content 2 mod 3. We compute

size <

0(q) =
〈

1
2(0, 2, −2), (0, 2, −2)

〉
= 4 = size0(λ),

size <

1(q) =
〈

1
2(0, 2, −2) − (1, 0, 0), (0, 2, −2)

〉
= 4 = size1(λ),

size <

2(q) =
〈

1
2(0, 2, −2) − (1, 1, 0), (0, 2, −2)

〉
= 2 = size2(λ).

This correspondence holds in general, as follows.

Proposition 3.4. For any a-core λ and q = qλ, then λ⊺ = λq⊺ and size <(λ) = size(q).
In fact, for any 0 ⩽ i < a, sizei(λ) = size <

i(q).

Proof. The statement about conjugation follows by observing that the Maya diagram
of a partition and its conjugate are related by reversing and interchanging • ↔ ◦.
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Write q = (q1, . . . , qa) and λ = λq. We compute directly that〈
1
2q − ω <

i , q

〉
=

i∑
j=1

(
1
2qj − 1

)
qj +

a∑
j=i+1

1
2q2

j

=
i∑

j=1

(
(qj − 1)qj

2 − qj

2

)
+

a∑
j=i+1

(
(qj + 1)qj

2 − qj

2

)

=
i∑

j=1

qj(qj − 1)
2 +

a∑
j=i+1

(qj + 1)qj

2 .

Observing that this is a sum over runners of certain triangular numbers, it would
suffice to show the boxes of content i in λ may be partitioned so each bead on runner
j at level ℓ corresponds to:

ℓ boxes ℓ > 0, black bead, j ⩽ i,

−ℓ boxes ℓ ⩽ 0, white bead, j ⩽ i,

ℓ − 1 boxes ℓ > 0, black bead, j > i,

−ℓ + 1 boxes ℓ ⩽ 0, white bead, j > i.

To do this, begin by partitioning the diagram beneath the main diagonal; that
is, into the boxes with negative content and non-negative content. A black bead on
runner j at level ℓ > 0 represents a vertical edge on the boundary of λ, and every box
not beneath the main diagonal is in the same row as some such edge. In that row, on
or above the main diagonal, there is one box each of content 0, 1, 2, . . . , (ℓ−1)a+j −1.
Counting the number of such boxes with content i mod a, we see there are ℓ − 1 of
them if j ⩽ i, or ℓ if j > i.

Similarly, a white bead on runner j at level ℓ ⩽ 0 represents a horizontal edge on
the boundary of λ, and every box beneath the main diagonal is in the same row as
some such edge. In that row, beneath the main diagonal, there is one box each of
content −1, −2, . . . , (ℓ − 1)a + j. Counting the number of such boxes with content
i mod a, we see there are −ℓ of them if j ⩽ i, or −ℓ + 1 if j > i. □

4. Size statistics in general type
We now turn to the general definition of the size statistic for affine Weyl groups—
note that when we leave type A, we do not have a uniform combinatorial interpreta-
tion (although see the next Section 5 for interpretations in the other classical types
Bn, Cn, Dn and in type G2).

Definition 4.1. Fix w̃ ∈ W̃ and a reduced word w̃−1 = a1 · · · aℓ for w̃−1, with inver-
sion sequence inv(w̃−1) = β1 + k1δ, β2 + k2δ, . . . , βℓ + kℓδ. For any i ∈ {0, 1, . . . , n}
with corresponding simple reflection si and simple root αi, define

size <

i(w̃) = 2
⟨αi, αi⟩

∑
1⩽j⩽ℓ
aj=si

kj .

Example 4.2. Continuing Example 3.3, the coroot q = (0, 2, −2) = −2α <

2 corresponds
to the coset containing w̃ = s1s0s1s2s1s0 ∈ Ã2. We compute the inversion sequence
for the reduced word w̃−1 = s0s1s2s1s0s1 representing w̃−1:

−α̃ + 1 · δ, −α2 + 1 · δ, −α̃ + 2 · δ, −α1 + 1 · δ, −α̃ + 3 · δ, −α2 + 2 · δ.

We observe that size0(w̃) = 1 + 3 = 4, size1(w̃) = 1 + 1 + 2 = 4, and size2(w̃) = 2,
agreeing with the previously-computed sizei(q) and sizei(λq).

Algebraic Combinatorics, Vol. 7 #5 (2024) 1559



E. N. Stucky, M. Thiel & N. Williams

Definition 4.1 turns out to not depend on the reduced word chosen for w̃−1, or on
the choice of coset representative.
Proposition 4.3. Let w̃, w̃′ represent the same coset of W̃ , and let w̃ and w̃′ be any
two reduced words for those elements. Then size <

i(w̃) = size <

i(w̃′).
Proof. We first show that size <

i is constant when w̃ = w̃′. Since the set of reduced
words of w̃ are connected under braid moves, it suffices to show this when w̃ and w̃′

differ by a single braid move. In that case, we have one of
(i) w̃ = · · · (sisjsi) · · · and w̃′ = · · · (sjsisj) · · · ,
(ii) w̃ = · · · (sisjsisj) · · · and w̃′ = · · · (sjsisjsi) · · · , or
(iii) w̃ = · · · (sisjsisjsisj) · · · and w̃′ = · · · (sjsisjsisjsi) · · · ,

corresponding to a braid move of type A2, B2, or G2. In each case, the order of the
corresponding roots in the rank two parabolic subgroup is reversed; since the positions
of the si are also reversed in cases (ii) and (iii), these are immediate. And in case (i),
the statement follows because the roots in the rank two parabolic (of type A2) are of
the form α, α + β, β.

Finally, if w̃ = ṽsi for i ̸= 0, then the affine roots inv(w̃−1) are simply αi and
si(βi) + kiδ for βi + kiδ ∈ inv(ṽ−1). By induction, the size of w̃ is invariant under
right-multiplication by W -elements, as needed. □

For any coset representative w̃, we may therefore define the statistic size < on W̃/W
as

size <(w̃) :=
n∑

i=0
size <

i(w̃) =

 ∑
α+kδ∈inv(w̃−1)

α long

k

+ r

 ∑
α+kδ∈inv(w̃−1)

α short

k

 .

Definition 4.4. Recall that we expand the highest root as a sum of simples as α̃ =∑n
i=1 ciαi, and set c0 := 1. For q ∈ Q < , define

size <

i(q) =
〈ci

2 q − ω <

i , q
〉

.

Because 2
⟨αi,αi⟩ = 1 if αi is long, and is r if αi is short, and because

∑n
i=0 ci = h

and
∑n

i=0 ω <

i = ρ < , we obtain

size <(q) =
n∑

i=0
size <

i(q) =
〈

h

2 q − ρ < , q

〉
.

Theorem 4.5. For w̃ = wtq ∈ W̃ = W ⋉ Q < , we have size <

i(w̃) = size <

i(w(q)) and
size <(w̃) = size <(w(q)).

Note that w(q) = wtq(0), and so this theorem states that size <

i and size < are pre-
served under the equivariant bijection defined in Theorem 2.2.

Proof. It suffices to prove the statement for size <

i . Let j ̸= 0 and let i ∈ {0, 1, . . . , n}.
We compute size <

i(sjw(q)):

size <

i(sjw(q)) =
〈ci

2 sjw(q) − ω <

i , sjw(q)
〉

=
〈ci

2
[
w(q) − ⟨α <

j , w(q)⟩αj

]
− ω <

i ,
[
w(q) − ⟨α <

j , w(q)⟩αj

]〉
=
〈ci

2 q − ω <

i , w(q)
〉

+
〈
α <

j , w(q)
〉

· ⟨ω <

i , αj⟩

= size <

i(w(q)) +
{〈

α <

j , w(q)
〉

if i = j

0 if i ̸= j
.
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Similarly, we compute size <

i(s0w(q)) = size <

i(w(q)) +
{

1 − ⟨α̃, w(q)⟩ if i = 0
0 if i ̸= 0

.

We now argue by induction on the length of an affine element w̃, with base case
coming from the identity e ↔ 0 giving size <

i(e) = size <

i(0) = 0. Consider now an affine
element w̃ = w · t−q of length ℓ − 1, a reduced expression w̃ = a1a2 · · · aℓ−1 = w · tq,
and simple transposition sj .

The result follows by comparing size <

i(sjw̃) to the computation above. First note
that the inversion sequence for (sjw̃)−1 agrees with that of w̃−1 with an additional
last entry, w̃(αj). For j ̸= 0, we have w̃(αj) = w(αj) + ⟨αj , q⟩δ, while if j = 0, then
w̃(−α̃ + δ) = w(−α̃) + (1 − ⟨α̃, q⟩)δ.

When j ̸= i this last entry does not affect the computation of size <

i . Otherwise
size <

i(sjw̃) includes the above coefficient of δ in the sum, but with αj instead of α <

j .
This distinction does not matter if αj is a long root since αj = α <

j and (similarly for
α̃). But if αj is short, then difference between the root and coroot in the formulas
properly introduces the required scaling factor of r. □

5. Combinatorial models
In this section we describe combinatorial models for the affine Weyl groups of classical
type, as well as G2, recovering and extending some results in [11, 6]. In each case,
the models are obtained by exhibiting a suitable equivariant embedding from Q <

Xn

into a type-A coroot lattice Q <

m. Hence, the objects of these models are partitions,
and we interpret the statistic size < , as well as its refinements size <

i , in terms of the
partitions. Unfortunately, we do not know of such an embedding for the remaining
(exceptional) types F4, E6, E7, and E8, and so we leave open the problem of finding
similar combinatorial models for them.

Ãn

0

1 2 n − 1 n
Ẽ6

0

1

2

3 4 5 6

B̃n

0

1
2 3 n − 2 n − 1 n

Ẽ7
0 1

2

3 4 5 6 7

C̃n
0 1 2 n − 2 n − 1 n

Ẽ8
01

2

3 4 5 6 7 8

D̃n

0

1
2 3 n − 3n − 2

n − 1

n

F̃4
0 1 2 3 4

G̃2
0 1 2

Figure 4. The affine Dynkin diagrams, with vertex i corresponding
to the affine simple reflection si.

5.1. Type C. The simple roots for Cn are αi := 1√
2 (ei − ei+1) for 1 ⩽ i < n and

αn :=
√

2en. Hence, the coroot lattice is Q <

Cn
=

√
2Zn. The action of W̃ (Cn) on Q <

Cn

is given explicitly by
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si(x1, . . . , xi, xi+1, . . . , xn) = (x1, . . . , xi+1, xi, . . . , xn) for 1 ⩽ i < n,

sn(x1, . . . , xn) = (x1, . . . , −xn), and

s0(x1, . . . , xn) = (
√

2 − x1, . . . , xn).

We embed the type Cn coroot lattice into the coroot lattice for S̃2n by
ι : Q <

Cn
↪→ Q <

2n,

(x1, . . . , xn) 7→ 1√
2

(x1, . . . , xn, −xn, . . . , −x1).

Evidently, ι(x) = ι(x)⊺ for all x ∈ Q <

Cn
, and therefore self-conjugate 2n-cores serve

as a combinatorial model for the cores of type Cn. It is a particularly well-behaved
model because ι is an isometry (that is, ⟨ι(x), ι(y)⟩ = ⟨x, y⟩) and also our definition
of size < agrees with the number of boxes of the corresponding partitions, as we show
in Theorem 5.2. Moreover, it is straightforward to check that the simple reflections
of W̃ (Cn) agree with the following S̃2n-elements acting on the ι-embedded coroot
lattice:

si ⇔ sA
i sA

2n−i for 1 ⩽ i < n, while
sn ⇔ sA

n , and
s0 ⇔ sA

0 .

Example 5.1. The inversion sequence for W̃ (C2) and w̃−1 = s1s0s2s1s0 (so that
w̃ = t−α <

1
s2) is

−α̃ + δ, −α1 − α2 + δ, −α̃ + 2δ, −α2 + δ, −α1 − α2 + 2δ

and because α1 is short and r = 2, we have that size <

1(w̃) = 2 · (1 + 2) = 6.
On the other hand, observe that w̃ corresponds to q =

√
2(−1, 1) ∈ Q <

C2
. Since

ω <

1 =
√

2(1, 0) and c1 = 2, we compute

size <

1(q) =
〈√

2(−1, 1) −
√

2(1, 0),
√

2(−1, 1)
〉

= 2 ⟨(−1, 1) − (1, 0), (−1, 1)⟩ = 6.

Moreover, the corresponding 4-core has 6 boxes with content 1 or 3 mod 4:

λ(−1,1,1,−1) =
0 1 2 3
3 0 1
2 3
1

.

Theorem 5.2. The map x 7→ λι(x) is a W̃ (Cn)-equivariant bijection between the Cn

coroot lattice and self-conjugate (2n)-cores. Moreover, for any x ∈ Q <

Cn
,

size <

i(x) =
{

size <

i(λι(x)) + size <

2n−i(λι(x)) if 1 ⩽ i < n

size <

i(λι(x)) if i = 0, n
,

and hence size <(x) = size <(λι(x)).

Proof. Note that the map is well-defined because by definition, ι(x)⊺ = ι(x) and thus
by Proposition 3.4 we have λι(x) is self-conjugate. It is evidently injective, and it is
easy to see that every self-conjugate partition is in the image as well. Equivariance
follows from the straightforward check above and Theorem 3.2. Thus it remains to
prove that it preserves the statistic size < .

Begin by observing the following:
ι(ω <

i ) = ((ωA
i ) < + (ωA

2n−i) <), 1 ⩽ i < n, and ι(ω <

i ) = (ωA
i ) < , i = 0, n.
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where (ωA
i ) < is the ith fundamental coweight in type A2n−1 (and (ωA

0 ) < = 0 as always).
Write λi for the number of boxes in λι(x) with content equal to i mod 2n. The

content of Proposition 3.4 is that λi =
〈 1

2 ι(x) − (ωA
i ) < , ι(x)

〉
. Thus, for all 1 ⩽ i < n,

we have

size <

i(x) =
〈ci

2 x − ω <

i , x
〉

= ⟨x − ω <

i , x⟩
=
〈
ι(x) − (ωA

i ) < − (ωA
2n−i) < , ι(x)

〉
=
〈

1
2 ι(x) − (ωA

i ) < , ι(x)
〉

+
〈

1
2 ι(x) − (ωA

2n−i) < , ι(x)
〉

= λi + λ2n−i,

and for i = 0 or i = n the calculation is similar, but because ci = 1, we obtain

size <

i(x) =
〈

1
2x − ω <

i , x
〉

=
〈

1
2 ι(x) − (ωA

i ) < , ι(x)
〉

= λi.

Finally, summing over all i yields the claim for size < . □

5.2. Type B. The simple roots for Bn are αi := ei −ei+1 for 1 ⩽ i < n and αn := en.
Hence, the coroot lattice is

Q <

Bn
=
{

x ∈ Zn :
n∑

i=1
xi ≡ 0 mod 2

}
.

The action of W̃ (Bn) on Q <

Bn
is given explicitly by

si(x1, . . . , xi, xi+1, . . . , xn) = (x1, . . . , xi+1, xi, . . . , xn) for 1 ⩽ i < n,

sn(x1, . . . , xn) = (x1, . . . , −xn), and
s0(x1, x2, . . . , xn) = (1 − x2, 1 − x1 . . . , xn).

We may embed the Bn coroot lattice into the coroot lattice for S̃2n using essentially
the same ι as for Cn, namely ι : (x1, . . . , xn) 7→ (x1, . . . , xn, −xn, . . . , −x1). However,
because we no longer have the normalization factor, this ι fails to be an isometry;
rather, ⟨ι(x), ι(y)⟩ = 2⟨x, y⟩. Nevertheless, it is again straightforward to mimic the
action of W̃ (Bn) using S̃2n by

si 7→ sA
i sA

2n−i for 1 ⩽ i < n, while
sn 7→ sA

n , and
s0 7→ sA

0 sA
1 sA

2n−1sA
0 .

We thus obtain a combinatorial model for Q <

Bn
.

Theorem 5.3. The map x 7→ λι(x) is a W̃ (Bn)-equivarant bijection between the Bn

coroot lattice and self-conjugate 2n-cores with an even number of boxes on the main
diagonal. For x ∈ Q <

Bn
,

size <

i(x) = 1
2


size <

i(λι(x)) + size <

2n−i(λι(x)) if 1 < i ⩽ n

size <

1(λι(x)) + size <

2n−1(λι(x)) − size <

0(λι(x)) if i = 1
size <

0(λι(x)) if i = 0
,

and hence size <(x) = 1
2
(
size <(λι(x)) − size <

0(λι(x))
)
.
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Proof. As in Theorem 5.2 we have that λι(x) is self-conjugate. Moreover, for any
partition λ, the side length of its Durfee square is the number of black beads that lie
below the line in its abacus diagram that witnesses the fact that it is balanced. By
definition of λι(x), this must be |x1|+ |x2|+ · · ·+ |xn|, and since x ∈ Q <

Bn
, this number

must be even. Thus λι(x) has an even number of elements along its main diagonal, as
desired.

This shows that the map is well-defined. Bijectivity and equivariance follow in a
manner analogous to Theorem 5.2. It remains to prove that it has the claimed effect
on size < . We begin as before with the following observation:

ι(ω <

i ) = ((ωA
i ) < + (ωA

2n−i) <), 1 ⩽ i ⩽ n, and ι(ω <

0) = (ωA
0 ) < .

Write λi for the number of boxes in λι(x) with content equal to i mod 2n. By
Proposition 3.4, this is

〈 1
2 ι(x) − (ωA

i ) < , ι(x)
〉
. Thus, for all 2 ⩽ i < n,

size <

i(x) = ⟨x − ω <

i , x⟩

= 1
2
〈
ι(x) − (ωA

i ) < − (ωA
2n−i) < , ι(x)

〉
= 1

2

〈
1
2 ι(x) − (ωA

i ) < , ι(x)
〉

+ 1
2

〈
1
2 ι(x) − (ωA

2n−i) < , ι(x)
〉

= λi + λ2n−i

2 .

We obtain the calculations for size <

0(x) and size <

n(x) in a manner analogous to type
Cn. But when i = 1, we observe somewhat different behavior because c1 = 1:

size <

i(x) = 1
2

〈
1
2 ι(x) − (ωA

1 ) < − (ωA
2n−1) < , ι(x)

〉
= 1

2

(〈
1
2 ι(x) − (ωA

1 ) < , ι(x)
〉

+
〈

1
2 ι(x) − (ωA

2n−1) < , ι(x)
〉

−
〈

1
2 ι(x) − (ωA

0 ) < , ι(x)
〉)

= λ1 + λ2n−1 − λ0

2 .

As usual, the last equality follows by applying Proposition 3.4.
By comparing the results of these calculations to the definition of size <

i(λι(x) and
summing over i, we obtain the desired equalities. □

5.3. Type D. The simple roots for Dn are αi := ei − ei+1 for 1 ⩽ i < n and
αn := en−1 + en. The highest root is α̃ := e1 + e2, and the coroot lattice is the same
as for Bn, namely

Q <

Dn
=
{

x ∈ Zn :
n∑

i=1
xi = 0 mod 2

}
.

The action of W̃ (Dn) on Q <

Dn
is given explicitly by

sD
i (x1, . . . , xi, xi+1, . . . , xn) = (x1, . . . , xi+1, xi, . . . , xn) for 1 ⩽ i < n,

sD
n (x1, . . . , xn−1, xn) = (x1, . . . , −xn, −xn−1), and

sD
0 (x1, x2, . . . , xn) = (1 − x2, 1 − x1, . . . , xn).
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We again embed the Dn coroot lattice into the coroot lattice for S̃2n using the same
ι as in type B and mimic the action of W̃ (Dn) using S̃2n by

si 7→ sA
i sA

2n+1−i for 1 ⩽ i < n, while
sn 7→ sA

n sA
n−1sA

n+1sA
n , and

s0 7→ sA
0 sA

1 sA
2n−1sA

0 .

We obtain a combinatorial model for Q <

Dn
.

Theorem 5.4. The map x 7→ λι(x) is a W̃ (Dn)-equivarant bijection between the Dn

coroot lattice and self-conjugate 2n-cores with an even number of boxes on the main
diagonal. For x ∈ Q <

Dn
,

size <

i(x) = 1
2


size <

i(λι(x)) + size <

2n−i(λι(x)) if 1 < i < n − 1
size <

n−1(λι(x)) + size <

n+1(λι(x)) − size <

n(λι(x)) if i = n − 1
size <

1(λι(x)) + size <

2n−1(λι(x)) − size <

0(λι(x)) if i = 1
size <

i(λι(x)) if i = 0, n

,

and hence size <(x) = 1
2
(
size <(λι(x)) − size <

0(λι(x)) − size <

n(λι(x))
)
.

Proof. Since Q <

B = Q <

D, the first statement is automatic from Theorem 5.3. As usual,
to prove the map has the claimed effect on size < , we begin with the following obser-
vation:

ι(ω <

i ) = (ωA
i ) < + (ωA

2n−i) < 1 ⩽ i < n − 1
ι((ωA

n−1) <) = (ωA
n−1) < − (ωA

n ) < + (ωA
n+1) <

ι(ω <

n) = (ωA
n ) < .

Therefore, the computation of size <

i is identical to the type Bn for all i except for
i = n − 1, n. When i = n it is analogous to the type Cn computation, and when
i = n − 1 we compute:

size <

n−1(x) = 1
2

〈
1
2 ι(x) − (ωA

n−1) < + (ωA
n ) < − (ωA

n+1) < , ι(x)
〉

= 1
2

(〈
1
2 ι(x) − (ωA

n−1) < , ι(x)
〉

−
〈

1
2 ι(x) − (ωA

n ) < , ι(x)
〉

+
〈

1
2 ι(x) − (ωA

n+1) < , ι(x)
〉)

= λn−1 − λn + λn+1

2 .

where as usual λi is the number of boxes in λι(x) with content i mod 2n. □

5.4. Type G2. Following the usual construction, we consider G2 as acting on the
orthogonal complement of the line spanR(1, 1, 1) in R3. The simple roots for G2 can
be taken to be

α1 := (1, −1, 0) and α2 := 1
3 (−1, 2, −1).

With these conventions, the coroot lattice is Q <

G2
= Q <

3. That is, the type G2 coroot
lattice coincides with the coroot lattice for S̃3. Therefore, the map x 7→ λx gives a
bijection between Q <

G2
and 3-cores. The action of W̃ (G2) on Q <

G2
is given explicitly

Algebraic Combinatorics, Vol. 7 #5 (2024) 1565



E. N. Stucky, M. Thiel & N. Williams

by
s1(x1, x2, x3) = (x2, x1, x3),
s2(x1, x2, x3) = (−x3, −x2, −x1), and
s0(x1, x2, x3) = (x3 + 1, x2, x1 − 1).

We may therefore emulate the action of G̃2 using S̃3 by
s1(x) = sA

1 (x),
s2(x) = x⊺, and
s0(x) = sA

0 (x).

As in [6], we obtain a combinatorial model for Q <

G2
.

Theorem 5.5. The map q 7→ λq is a W̃ (G2)-equivarant bijection between the G2
coroot lattice and 3-cores: sG

1 acts on a 3-core by adding or removing all boxes of
content 1, sG

0 acts similarly on boxes of content 0, and sG
2 acts by conjugation. For

x ∈ Q <

G2
,

size <

i(x) =


size <

0(λx) if i = 0
size <

0(λx) + size <

1(λx) + size <

2(λx) if i = 1
3 · size <

0(λx) − size <

0(λx) if i = 2
,

and hence size <

i(q) = size <(λq) + 3 · size <

2(λq).

Proof. The bijectivity and equivariance of the map is the content of Theorem 3.2. It
remains to prove its effect on size < . Because

ω <

1 = (ωA
1 ) < + (ωA

2 ) < and ω <

2 = 3(ωA
2 ) < ,

we have

size <

0(x) =
〈

1
2x − ω <

0, x
〉

=
〈

1
2x, x

〉
= λ0

size <

1(x) =
〈

3
2x − ω <

1, x
〉

=
〈

3
2 ι(x) − (ωA

1 ) < − (ωA
2 ) < , ι(x)

〉
= λ1 + λ2 + λ0

size <

2(x) = ⟨x − ω <

2, x⟩ =
〈
ι(x) − 3(ωA

2 ) < , ι(x)
〉

= 3λ2 − λ0,

where λi is as usual the number of boxes in λx with content i mod 3. □

6. Simultaneous cores
Recall that an (a, b)-core is a partition which is both a-core and b-core. In [14, Lemma
3.1], Johnson showed that among the set of a-cores, the (a, b)-cores are precisely
those that satisfy certain simple inequalities on the heights of their runners. Thus,
when considering them as elements of Q <

Aa−1
, these inequalities imply that they are

lattice points of a polytope in Ra. In fact this polytope is a simplex, previously been
considered by Sommers [18], which we describe now. Recall that Φ = Φ(Xn) is a root
system with irreducible Cartan type Xn and Coxeter number h. For 1 ⩽ i < h, write
Φi to denote the set of (positive) roots of height i.

Definition 6.1. For b coprime to h, write b = tbh+rb with tb, rb ∈ Z⩾0 and 0 < rb <
h. We define the b-Sommers region

SXn
(b) :=

{
x ∈ V : ⟨x, α⟩ ⩾ −tb for all α ∈ Φrb

and
⟨x, α⟩ ⩽ tb + 1 for all α ∈ Φh−rb

}
.

(We write S(b) when the root system is clear from context.)

Algebraic Combinatorics, Vol. 7 #5 (2024) 1566



Strange expectations in affine Weyl groups

As in Equation (4), a natural generalization of core(a, b) to any affine Weyl
group is the intersection of the coroot lattice Q <

Xn
with SXn

(b), so that core(a, b) =
core(Aa−1, b).

6.1. The Sommers region and the fundamental alcove. We would like to
perform the size <-weighted enumeration of core(Xn, b) using Ehrhart theory. Unfor-
tunately, the family

{SXn
(b) : gcd(b, h) = 1}

does not consist of dilations of a fixed polytope— but this difficulty can be circum-
vented. Define, for any x ∈ V , the statistic

(6) size(b)(x) := h

2

(∥∥∥∥x − b

h
ρ <

∥∥∥∥2
−
∥∥∥∥ 1

h
ρ <

∥∥∥∥2
)

.

Notice that when q ∈ Q < , w ∈ W , and b = 1, we have size(1)(w(q)) = size <(w(q)) =
size <(wtq) (recalling Theorem 4.5).

We recall from [20, §4] that there is a unique element w̃b ∈ W̃ such that b
h ρ < =

w̃b( 1
h ρ <), and that left-multiplication by this element maps S(b) onto the b-fold dilation

of the fundamental alcove A := {x ∈ V : ⟨x, α⟩ ⩾ 0 for all α ∈ ∆ and ⟨x, α̃⟩ ⩽ 1}. It
also respects the lattice points in the following sense:

Theorem 6.2. For b coprime to h, the following holds as an equality of multisets:{
size <(q) : q ∈ core(Xn, b)

}
=
{

size(b)(q) : q ∈ bA ∩ Q <
Xn

}
.

Proof. We first note that since w̃b maps S(b) onto bA, and also w̃b ∈ W̃ and thus
is a Q <-preserving bijection, it restricts to a bijection core(Xn, b) → bA ∩ Q < . Write
w̃b = wtq0 ; then w̃b = t b

h
ρ <wt− 1

h ρ < . Since ∥ · ∥ is W -invariant, for q ∈ core(Xn, b):

size(b)(w̃b(q)) = h

2

(∥∥∥∥t b
h ρ < wt 1

h ρ < (q) − b

h
ρ <

∥∥∥∥2
−
∥∥∥∥ 1

h
ρ <

∥∥∥∥2
)

= h

2

(∥∥∥∥w

(
q − 1

h
ρ <

)∥∥∥∥2
−
∥∥∥∥ 1

h
ρ <

∥∥∥∥2
)

= size <(q). □

6.2. Maximum size. Theorem 6.2 is a primary tool in computing the expected size
of simultaneous cores in the next section. As a simpler application, we proceed as in
[20] to determine the maximum size < of a simultaneous core (extending that result to
the non-simply-laced types).

Theorem 6.3. For W̃ = W̃ (Xn) an irreducible affine Weyl group with gcd(h, b) = 1,

max
q∈core(Xn,b)

(size <(q)) = rg <

h

n(b2 − 1)(h + 1)
24 .

Moreover, this maximum is attained by a unique point q∗ ∈ S(b).

Proof. We claim that the maximum is obtained at q∗ = w̃−1
b (0), where w̃b ∈ W̃ is the

same element as used in Theorem 6.2. First note that since w̃b maps S(b) bijectively
to bA, this q∗ is indeed in core(Xn, b) = S(b)∩Q. Since w̃b maps size < to size(b), we will
show the equivalent statement that 0 is the unique element of bA ∩ Q < of maximum
size(b).

Since
∥∥ 1

h ρ <

∥∥2 is a constant, it suffices to maximize Q(x) =
∥∥x − b

h ρ
∥∥2. But the

fact that 0 maximizes Q(x) over bA is known; it follows for instance from the “very
strange” formula of Kac (cf. [15, Equation (0.9)]). Moreover, Q(x) is a strictly convex
function, so it can only be maximized at a vertex of the convex polytope bA. However,
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no other vertices of bA are in Q < , which implies that 0 is the only point in bA ∩ Q <

of maximum size(b).

Moreover, we may explicitly compute size(q∗) as follows.

size(b)(0) = h
2
∥∥ b

h ρ
∥∥2 − h

2
∥∥ 1

h ρ
∥∥2 = (b2 − 1) 1

2h ⟨ρ < , ρ <⟩ .

The desired formula then follows from the explicit computation of ⟨ρ < , ρ <⟩, a dual
version of the “strange formula” of Freudenthal and de Vries:

Theorem 6.4 (see [3, Section 4]). For W̃ an irreducible affine Weyl group,

⟨ρ < , ρ <⟩ = rg < n(h + 1)
12 . □

Although Theorem 6.3 proves that size <(w̃−1
b (0)) is the maximum that the statistic

size < can take on core(Xn, b), more is true in type An, where J. Vandehey shows
that the largest (a, b)-core contains all other (a, b)-cores as subdiagrams (see [21, 8]).
Previously the second and third authors conjectured [20, Conjecture 6.14] that the
inversion set of w̃b contains the inversion sets of all other affine elements corresponding
to elements of core(Xn, b). We here extend that conjecture to the non-simply-laced
types as well.

Conjecture 6.5. The element w̃b is maximal in the weak order on W̃/W among all
dominant elements {w̃ ∈ W̃/W : w̃−1(0) ∈ S(b)}.
6.3. Simultaneous combinatorial models. One of the major advantages to our
improvement from simply-laced to general affine Weyl groups is the ability to in-
corporate type Cn, whose cores lying in SCn(b) also have a natural combinatorial
model:
Theorem 6.6. The map x 7→ λι(x) of Theorem 5.2 restricts to a bijection from
SCn(b) ∩ Q <

Cn
to self-conjugate (2n, b)-cores.

Proof. Recall that a 2n-core is self-conjugate if and only if qλ = (qλ)⊺. In type Cn, the
roots of height r = 2k − 1 are 1√

2 (ei − ei+r) for all i ⩽ n − r, as well as 1√
2 (en−i+1 +

en−r+i) for 1 ⩽ i ⩽ k. Write ι(x) = (y1, . . . y2n).
Thus ⟨x, α⟩ ⩾ −t for all α ∈ Φr(Cn) if and only if

yi − yi+r ⩾ −t 1 ⩽ i ⩽ n − r

−y2n+1−i + y2n+1−i−r ⩾ −t 1 ⩽ i ⩽ n − r

yn−i+1 + yn−r+i ⩾ −t 1 ⩽ i ⩽ r+1
2

−yn+i − yn+1+r−i ⩾ −t 1 ⩽ i ⩽ r+1
2

By definition of ιC we have that yj = −y2n+1−j for all j. Thus under the assumption
that y = y⊺, the above inequalities are precisely the system yi − yi+r ⩾ −t for all
1 ⩽ i ⩽ 2n − r, which is to say, ⟨ι(x), α⟩ ⩾ −t for all α ∈ Φr(A2n−1). In a similar
way, under the same assumption ⟨x, α⟩ ⩽ t + 1 for all α ∈ Φn−r(Cn) is equivalent to
⟨ιC(x), α⟩ ⩽ t + 1 for all α ∈ Φn−r(A2n−1).

Therefore, the target of our map, restricted to SCn
(b) ∩ Q <

Cn
, is indeed SAn

(b) ∩
Q <

A2n−1
. Moreover, the map (y1, . . . , y2n) 7→ 1√

2 (y1, . . . , yn) is a well-defined inverse.
□

The above theorem permits us to understand the left-hand side of Theorem 6.3
and Theorem 1.5 as the maximum and expected size < of self-conjugate simultaneous
cores. In particular, this thus recovers “half” of the Chen–Huang–Wang result (that
is, the case when a is even).
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Unfortunately, this combinatorial interpretation appears to be limited to type Cn.
Even for the other classical types, the maps ι from Section 4 do not map the Sommers
regions into type-A Sommers regions. Since there are many possible embeddings of
Q <

Xn
into Q <

m for various m, it is possible that such a deficiency may be overcome. It
would already be interesting to understand combinatorial conditions on the 3-cores
that do lie in the image of the G2 Sommers region.

7. Expected size of simultaneous cores
We are now ready to prove Theorem 1.5:

Theorem 7.1. For Xn an irreducible rank n Cartan type with root system Φ,

E
q∈core(Xn,b)

(size <(q)) = rg <
h

n(b − 1)(h + b + 1)
24 ,

where h is the Coxeter number of Xn, g < is the dual Coxeter number for Φ < , and r is
the ratio of the length of a long root to the length of a short root in Φ.

We do this by computing the left-hand side explicitly for each type Xn, which by
Theorem 6.2 is

E
q∈core(Xn,b)

(size <(q)) = 1
|core(Xn, b)|

∑
q∈core(Xn,b)

size <(q) = 1
|bA ∩ Q < |

∑
q∈bA∩Q <

size(b)(q).

The denominator was explicitly and nearly-uniformly calculated by Haiman [10]. To
compute the sum, we first record the vertices of the fundamental alcove A: they are
Γ := {0}∪

{
ω <

i

ci
: 1 ⩽ i ⩽ n

}
, where we recall that the ci are defined by α̃ =

∑n
i=1 ciαi.

As in [20], we proceed by translating the problem to the coweight lattice. Define the
extended affine Weyl group by W̃ex := W ⋉Λ < , and write the group of automorphisms
for bA as bΩ := {w̃ ∈ W̃ex : w̃(bA) = bA}. These groups are isomorphic for all b, and
in particular have constant order that we denote by f .

Proposition 7.2 ([20, Theorem 2.5 & Lemma 6.11]). For any b coprime to the Cox-
eter number h in type Xn:

(a) The action of bΩ on bA ∩ Λ < is free.
(b) Each bΩ orbit of bA ∩ Λ < has exactly one element of bA ∩ Q < = core(Xn, b).
(c) For any w̃ ∈ bΩ and any ω ∈ Λ < , size(b)(ω) = size(b)(w̃ · ω)

Using this, we finish the translation from Q < to Λ < :

(7) E
q∈core(Xn,b)

(size <(q)) = 1
|bA ∩ Q < |

· 1
f

∑
q∈bA∩Λ <

size(b)(q).

We now recall the relevant Ehrhart-theoretic tools. For any degree-r polynomial
F : Rn → R, its weighted lattice point enumerator over Λ < is AF (b) :=

∑
q∈bA∩Λ <

F (q).

This AF (b) is a quasipolynomial in b, of degree n + r and period c = c(X̃n) :=
lcm(c1, . . . , cn), where the ci are again the denominators of the vertices of A. As size(b)

changes with b, Ehrhart theory appears to be inapplicable— however, a judicious
rewriting shows that this is not the case.

Proposition 7.3. The weighted lattice point enumerator Asize(b)(b) is a quasipolyno-
mial in b of degree n + 2 and period c(X̃n) := lcm(c1, . . . , cn).

Algebraic Combinatorics, Vol. 7 #5 (2024) 1569



E. N. Stucky, M. Thiel & N. Williams

Proof. Notice that size <

b(x) = h
2 ∥x∥2 − b⟨x, ρ <⟩ + (b2 − 1) ∥ρ < ∥2

2h . Thus we find that

Asize(b)(b) = h
2 A∥·∥2(b) − bA⟨·,ρ < ⟩(b) + (b2 − 1)A ∥ρ < ∥2

2h

(b)

is a quasipolynomial in b of degree n + 2 and period c(X̃n). □

Therefore, to complete the proof of Theorem 1.5, we may compute the quasipoly-
nomial on for all components that contain a residue b mod cXn

that is coprime to
h. For the exceptional types, this is already a finite and computationally feasible
calculation.

Types A and D are simply-laced, and so their calculation was already completed
in [20]. Thus, we proceed along similar lines for types B and C. In what follows,
we write Asize(b)(b)i to mean the polynomial which agrees with Asize(b)(b) for all b ≡
i mod c(X̃n). Relevant data to complete these computations for the irreducible root
systems is provided in Figure 5.

Xn h g < ei ci f r m(Xn)
An n + 1 n + 1 1, 2, . . . , n 1, 1, . . . , 1, 1 n + 1 1 1
Bn 2n n + 1 1, 3, . . . , 2n − 1 1, 2, . . . , 2, 2 2 2 2
Cn 2n 2n − 1 1, 3, . . . , 2n − 1 2, 2, . . . , 2, 1 2 2 2
Dn 2n − 2 2n − 2 1, 3, . . . , 2n − 3, n − 1 1, 2, . . . , 2, 1, 1 4 1 2
E6 12 12 1, 4, 5, 7, 8, 11 1, 2, 2, 3, 2, 1 3 1 6
E7 18 18 1, 5, 7, 9, 11, 13, 17 2, 2, 3, 4, 3, 2, 1 2 1 12
E8 30 30 1, 7, 11, 13, 17, 19, 23, 29 2, 3, 4, 6, 5, 4, 3, 2 1 1 60
F4 12 9 1, 5, 7, 11 2, 3, 4, 2 1 2 12
G2 6 4 1, 5 3, 2 1 3 6

Figure 5. The type Xn, Coxeter number h, dual Coxeter number g < ,
exponents ei, coefficients of the highest root ci, index of connection
f , ratio of long to short root r, and gcd of the ci for the irreducible
root systems.

7.1. Types B and C. For either Xn = Bn or Xn = Cn we have c(X̃n) = 2 and
exponents 1, 3, . . . , 2n − 1. Since all b in the theorem statement are coprime to h,
they must be odd, and so it suffices to compute only the polynomial Asize(b)(b)1. This
polynomial has degree n+2. Recall the fact that the interior of eiA contains no points
of Λ <

Xn
for all exponents ei, because they are strictly less than h (see e.g. [20, Section

7.4]). Thus, by Ehrhart reciprocity we conclude that Asize(b)(−ei) = 0, and because
in types Bn and Cn the exponents are the odd integers 1, 3, . . . , 2n − 1, we thus we
have n roots of our desired polynomial.

Moreover, it is easy to compute that Asize(1) = 0, and therefore (c.f. [20, Proposition
7.5]) we also have Asize(b)(−h − 1) = 0. Hence we know all n + 2 of our desired
polynomial’s roots, that is:

Asize(b)(b)1 = κ(b − 1)(b + 2n + 1)
n∏

j=1
(b + ej).

where the leading coefficient κ depends only on n and whether we are in types Bn

or Cn. Importantly, this formula holds for any odd b, not merely those b which are
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coprime to h = 2n. Thus we can determine it by explicitly calculating Asize(b)(b) at
b = 3, as follows:

κ = Asize(3)(3)
(3 − 1)(3 + 2n + 1)

∏n
j=1(3 + (2j − 1))

= 1
2n+2(n + 2)!Asize(3)(3).

From here, we recall Haiman’s enumeration [10]: |bA ∩ Q < | = 1
|W |

∏n
j=1(b + ej),

whenever b and h are coprime. Thus, we rewrite Equation (7) as the quadratic poly-
nomial:

E
q∈core(Xn,b)

(size <(q)) = 2nn!κ
f

(b − 1)(b + 2n + 1)

= 2nn!
2 · 2n+2(n + 2)!Asize(3)(3) · (b − 1)(b + h − 1)

= Asize(3)(3) · (b − 1)(b + h − 1)
8(n + 1)(n + 2)

Thus, to prove the formula from Theorem 1.5, what remains to be verified is that

Asize(3)(3) = rg <

3h
· n(n + 1)(n + 2) =

{
1
3 (n + 1)2(n + 2) in type Bn,
1
3 (n + 1)(n + 2)(2n − 1) in type Cn.

7.1.1. Type B. In type Bn, since we have
∑n

j=1 ajω <

j = (
∑n

j=1 aj ,
∑n

i=2 aj , . . . , an)
and α̃ = (1, 1, 0, 0, . . . , 0), the coweight points in 3A are those points for which a1 +
2(
∑n

j=2 aj) ⩽ 3, which are the 2n + 2 points

{0, ω <

1, 2ω <

1, 3ω <

1} ∪ {ω <

j , ω <

1 + ω <

j}n
j=2.

We compute that for 2 ⩽ j ⩽ n

size(3)(ω <

j) = n

(2n)2

((
∥2nω <

j − 3ρ <∥
)2 − ∥ρ <∥2

)
= 1

4n

 j∑
i=1

(
2n − 3(n + 1 − i)

)2 +
n∑

i=j+1

(
3(n + 1 − i)

)2 − n(n + 1)(2n + 1)
6


= (2n + 2 − 3j)(2n + 1 − 3j)

6 .

A similar computation also shows that size(3)(ω <

1 + ω <

j) = (2n+2−3j)(2n+1−3j)
6 and

therefore
n∑

j=2
size(3)(ω <

j) + size(3)(ω <

1 + ω <

j) = (n − 2)(n − 1)2

3 .

The remaining points give contributions of the following form:

size(3)(kω <

1) = n

(2n)2

(
(2kn − 3n)2 +

n∑
i=2

(3(n + 1 − i))2 −
n∑

i=1
(n + 1 − i)2

)

= 1 + 3n − 9kn + 3k2n + 2n2

3 .

We thus compute that
∑3

k=0 size(3)(kω <

1) = 4(1+2n2)
3 . Putting these together, we

obtain

Asize(3)(3) = n − 2n − 12

3 + 4(1 + 2n2)
3 = 1

3(n + 1)2(n + 2)

which concludes the proof of Theorem 1.5 for type Bn.
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7.1.2. Type C. Turning to type Cn, we have α̃ = 2√
2 e1 and

n∑
j=1

ajω <

j =
√

2

an

2 +
n−1∑
j=1

aj ,
an

2 +
n∑

j=2
aj , . . . ,

an

2 + an−1,
an

2


So the coweight points in 3A are those points for which 2(

∑n−1
j=1 aj) + an ⩽ 3, which

are the 2n + 2 points

{0, ω <

n, 2ω <

n, 3ω <

n} ∪ {ω <

j , ω <

n + ω <

j}n−1
j=1 .

Using the fact that ρ < =
∑n

j=1 ω <

j =
√

2
2 (2n − 1, 2n − 3, 2n − 5, . . . , 1), we compute

that for 1 ⩽ j ⩽ n − 1

size(3)(ω <

j) = n

(2n)2

((
∥2nω <

j − 3ρ <∥
)2 − ∥ρ <∥2

)
= 1

4n

 j∑
i=1

2
(
2n − 3

2(2n + 1 − 2i)
)2 +

n∑
i=j+1

(3(2n + 1 − 2i)
)2

2 − 4n3 − n

6


= (2n − 3j)2 − 1

3 .

A similar computation also shows that size(3)(ω <

n + ω <

j) = (n−3j)2−1
3 and therefore

n−1∑
j=1

size(3)(ω <

j) + size(3)(ω <

n + ω <

j) = (n − 2)(n − 1)(2n + 1)
3 .

The remaining points give contributions of the following form:

size(3)(kω <

n) = n

(2n)2

(
n∑

i=1
2
(

kn − 3
2(2n + 1 − 2i)

)2
−

n∑
i=1

(2n + 1 − i)2

2

)

= −2 + 8n2 − 9kn2 + 3k2n2

6 .

We thus compute that
∑3

k=0 size(3)(kω <

1) = 2(5n2−2)
3 . Putting these together, we

obtain
Asize(b)(b) = 1

3(n + 1)(n + 2)(2n − 1),

which concludes the proof of Theorem 1.5 for type Cn.

7.2. Types F4 and G2. Finally, we return to the exceptional types. Since we had
previously handled the simply-laced types E6, E7, and E8 [20, Section 7.6], it remains
only to confirm our formula for F4 and G2. Since Asize(b)(b) is a polynomial in each
residue class mod m(X̃n) (here, 12 for F4 and 6 for G2) of degree n+2, we can simply
compute Asize(b)(b) for enough values of b in each relevant residue class and perform
Lagrange interpolation. For all relevant residue classes in both groups there is exactly
one exponent ej and so “enough” values of b means 6 for F4, and 4 for G2.

When performing this computation in SAGE, we see that the polynomials Asize(b)(b)i

coincide for the relevant residue classes. Namely:

Asize(b)(b) =
{

1
18432 (b − 1)(b + 1)(b + 5)(b + 7)(b + 11)(b + 13) in type F4,

1
144 (b − 1)(b + 1)(b + 5)(b + 7) in type G2.
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for all b coprime to h (that is, in both cases, for b ≡ 1, 5 mod 6). Dividing these
polynomials by f and |bA∩t <

b| as in Equation (7), we obtain a formula for the expected
size < of a core that agrees with

E
q∈core(Xn,b)

(size <(λq)) = rg <

h

n(b − 1)(h + b + 1)
24 .

This completes the proof of Theorem 1.5 for F4 and G2, and thus for all types.

Acknowledgements. We thank Benjamin Cotton for help drawing Figure 2.
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