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ABSTRACT

Occupant-centric HVAC control places a premium on factors including thermal comfort and electricity cost to guarantee occupant satisfaction. Traditional
approaches, reliant on static models for occupant behaviors, fall short in capturing intra-day behavioral variations, resulting in imprecise thermal comfort evaluations
and suboptimal HVAC energy management, especially in multi-zone systems with diverse occupant profiles. To address this issue, this paper proposes a novel
occupant-centric multi-zone HVAC control approach that intelligently schedules cooling and heating setpoints using Multi-agent Deep Reinforcement Learning
(MADRL). This approach systematically takes into account stochastic occupant behavior models, such as dynamic clothing insulation adjustments, metabolic rates,
and occupancy patterns. Simulation results demonstrate the efficacy of the proposed approach. Comparative case studies show that the proposed MADRL-based,
occupant-centric HVAC control reduces electricity costs by 51.09% compared to rule-based approaches and 4.34% compared to single-agent DRL while maintaining

multi-zonal thermal comfort for occupants.

1. Introduction

Buildings in the United States account for approximately 36% of
total energy consumption, with HVAC systems being a significant con-
tributor, particularly during hot summers [1]. Smart homes using IoT
technologies and human-centered intelligent scheduling for HVAC con-
trol is a promising solution for energy-efficient and comfortable build-
ings [2]. Understanding and incorporating Occupant-Centric Control
(OCQ) is crucial for effective building energy management [3,4]. Wang
et al. [5] investigated occupancy patterns in single-person offices and
proposed a probabilistic model for occupancy prediction, emphasizing
the complexity and time variation of occupancy intervals. Several stud-
ies have proposed algorithms and models for predicting occupancy to
improve energy consumption and occupant comfort, including Reinhart
[6], Page et al. [7], Klein et al. [8], and Fabi et al. [9]. Furthermore,
integrating clothing behaviors and clothing decisions into HVAC con-
trol strategies can further enhance building energy efficacy [10-12].
There are a lot of literature studies on the simplified model for oc-
cupant behavior model in building energy management to reduce the
electricity cost while maximizing the occupant thermal comfort in resi-
dential buildings [13,14] and commercial buildings [15-17]. However,
occupancy and clothing behavior are not the only factors that have an
effect on occupants’ thermal comfort model. Metabolic rate with activ-
ity schedule is another important factor that should be conducted in the
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thermal comfort [18] considered in indoor temperature control. How-
ever, dynamic occupant behavior containing the occupancy, clothing
adjustment, and metabolic rate involved in thermal comfort in HVAC
control is still an unsolved problem [19].

On the other hand, model-based optimization can be time-consuming
when dealing with large solution spaces, making it unsuitable for real-
time decision-making. In recent years, Deep Reinforcement Learning
(DRL), a model-free approach, has gained traction among engineers and
researchers for tackling building energy management problems [20].
DRL-based HVAC control methods have been proposed to address chal-
lenges posed by large state-action spaces [21,22] and complex indoor
environments [23,24]. However, addressing the multi-zone HVAC con-
trol problem with continuous action spaces remains a challenge despite
the application of DRL techniques in previous studies. In real-world en-
vironments, multi-zone thermal control involves complex control agents
and often necessitates a balance between competition and cooperation
among these agents. Some studies have applied Multi-agent Deep Re-
inforcement Learning (MADRL) to multi-zone thermal control [25,26],
while often lacking dynamic modeling. In Table 1, “Const.” signifies a
consistent schedule applied throughout simulations, while “Dyn.” rep-
resents changing occupant activities influenced by factors such as time
of day, weather, and personal choices. Although certain studies have in-
tegrated occupant presence [27-29], they do not account for metabolic
rate and clothing adjustments. This gap in occupant behavior modeling
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Table 1
Literature review of DRL in HVAC control.
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Reference Whole building Multi-area Multi-agent ~ Occupant behavior
(by time) energy simulation thermal zone approach
Occupancy  Metabolic ~ Clothing
[21]/2017 v v
[30,241/2018-19  +/ v Const.
[311/2020 Vv Vv Const. Const.
[321/2021 v v v Const. Const.
[331/2021 v v Const.
[341/2021 v v
[251/2021 v v Const.
[271/2021 v v v Dyn.
[351/2022 v v Const. Const. Const.
[281/2022 v v v Dyn.
[261/2022 v v v
[291/2022 v v v Dyn.
[361/2022 v Dyn.
[371/2023 v v v
[381/2023 v v
This work \/ \/ \/ Dyn. Dyn. Dyn.

highlights the need for novel MADRL methods capable of addressing
the complexity of multi-zone environments and dynamic occupant be-
haviors in HVAC control.

This paper bridges this gap by proposing a multi-zone HVAC en-
ergy management scheme that aims to minimize the electricity cost and
the occupants’ thermal discomfort using a MADRL approach. The main
contributions of this work are three-fold:

1) This paper proposes a pioneering multi-zone HVAC energy manage-
ment scheme that is the first of its kind to explicitly consider the
occupants’ behaviors, including occupant presence, clothing con-
ditions, and activity conditions, for minimizing the electricity cost
and the occupant’s thermal discomfort.

2) An MADRL approach is developed for making sequential HVAC
setpoint decisions while considering the continuous action space
under a whole-building simulation environment with stochastic oc-
cupant behavior. Specifically, the MADRL intelligently schedules
the cooling and heating set points for the multi-zone office build-
ings while accounting for dynamic occupant behaviors.
The proposed model is trained and simulated by EnergyPlus in a
practical multi-zone building with real-world datasets at daily and
yearly timescales. Simulation results show the electricity cost sav-
ing of MADRL is, respectively, 4.34% and 51.09% compared to
single-agent DRL and rule-based control while maintaining a high
comfort level for multi-zone occupants.

3
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For the rest of the paper, the mathematical formulation and pro-
posed methodology are presented in Section 2. The simulation results
of comparative case studies are in Section 3. Section 4 contains a dis-
cussion of this study. Section 5 presents the conclusions of the paper.

2. Problem formulation and methodology
2.1. Overview of approach

Reinforcement learning is a paradigm within machine learning
wherein an autonomous agent endeavors to acquire an optimal strategy
for selecting a sequence of actions within an environment to maxi-
mize its cumulative reward. The agent’s decision-making process hinges
on the feedback it receives in the form of a reward value following
each executed action. These decisions are contingent upon the agen-

t’s interpretation of the environment, which is encapsulated by a state
representation. This iterative process persists as the agent engages with
the environment, with the aim of progressively improving its policy,
ultimately striving to attain predefined objectives. Fig. 1 provides a vi-
sual representation of the research framework, showcasing the seamless
integration of the MADRL algorithm within a complex five-zone of-
fice building environment. This environment, as shown in the middle
module of Fig. 1, is accurately simulated using the Building Controls
Virtual Test Bed (BCVTB) [39] in conjunction with EnergyPlus, fa-
cilitating realistic building dynamics and HVAC power consumption
modeling. Within this framework, the MADRL agent (top module of
Fig. 1) actively engages with the environment, effectively making de-
cisions (heating and cooling setpoints of HVAC) pertaining to HVAC
control to simultaneously optimize energy efficiency and occupant com-
fort. A distinctive feature highlighted in the figure is the incorporation
of dynamic occupant behavior models, as shown in the bottom mod-
ule of Fig. 1, represented through a stochastic process. These models
dynamically account for variations in factors such as clothing insula-
tion, occupant presence, and metabolic rates over time. Furthermore,
it’s essential to note the bidirectional interaction, where reward values
are transmitted from EnergyPlus to the MADRL module, and optimal
actions are passed from MADRL to EnergyPlus during simulation, effec-
tively capturing occupant behavior. This integration stands at the core
of the research’s mission to achieve efficient multi-zone HVAC control
while upholding occupant thermal comfort standards within the build-
ing.

2.2. Occupant behavior modeling

Building energy management has undergone a significant trans-
formation with the integration of technology, sustainability consid-
erations, and occupant comfort. Occupant-centric control (OCC) has
emerged as a prominent concept, shifting the focus from a building-
centric to an occupant-focused approach [40-42]. Researchers now rec-
ognize the importance of addressing occupants’ needs and optimizing
building systems for their comfort and energy efficiency. In the context
of ensuring thermal comfort, the Predicted Mean Vote (PMV)/Predicted
Percentage of Dissatisfied (PPD) index, introduced by P.O. Fanger and
colleagues, is employed to measure occupants’ comfort levels based on
their environmental conditions [43]. This index is included in ISO 7730
(2005) and the ASHRAE standard 55 (2004) [44,45]. PMV/PPD models,
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Fig. 1. Illustration of proposed MADRL in multi-zone HVAC control. Three modules are contained in this approach, 1) a MADRL algorithm: Multi-agent Deep
Deterministic Policy Gradient; 2) A testbed: EnergyPlus simulator; 3) Stochastic occupant behavior model includes clothing, occupant presence, and metabolic rate.
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

which take into account the indoor environment and occupant behav-
ior factors as input, have been integrated into OCC as a part objective
of the HVAC energy management scheme.

The proposed OCC allows occupants to have control over settings
such as cooling and heating points in HVAC systems, enhancing their
satisfaction and productivity. However, one of the critical factors in im-
plementing OCC is understanding and integrating occupant behavior
[46]. Factors such as occupant presence, activity levels, and clothing
behavior are significant in optimizing thermal comfort strategies. Prior
literature has often overlooked that behavior in building energy man-
agement, resulting in an incomplete understanding of occupant needs
and potentially leading to inefficient control strategies. Our work con-
tributes to addressing these challenges and developing an approach that
considers and integrates these aspects into occupant-centric building en-
ergy management systems. Note that during specific time periods, such
as morning opening (8 am), lunchtime (noon to 1 pm), and afternoon
closing (6 pm to 7 pm), occupants are assumed to be engaged in walk-
ing activities, resulting in elevated activity levels. In the simulation, we
assumed that occupants within the same zone share similar behaviors
in terms of activity level and clothing insulation. This is reasonable in
a multi-zone commercial building environment as the behaviors of one

can easily affect others within the same zone. This assumption allowed
us to group occupants within each zone and apply general patterns of
behavior, which is a common approach in HVAC simulations. Initially,
we established a fixed schedule and subsequently introduced a stochas-
tic model to this schedule to simulate diverse behaviors across different
zones.

2.2.1. Occupant presence

Occupant presence information plays a pivotal role in modern build-
ing management systems, offering invaluable insights into space uti-
lization and opportunities for optimizing energy consumption. As illus-
trated in Table 1, occupant presence is a prevalent factor in HVAC con-
trol as occupant behavior. In our study, we initially implement a fixed
schedule for occupant presence and subsequently introduce stochas-
tic variables to simulate occupancy patterns across the five zones, as
depicted in Fig. 2 (top). While future research avenues may explore
data-driven or Markov chain models to predict time-dependent occu-
pant behavior within simulations [47-49], our current approach serves
as an initial exploration of how dynamic occupant behavior influences
HVAC control strategies.
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Occupant Behaviour Schedule in Building
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Fig. 2. One-day average occupant presence schedule (top) and activity level schedule (bottom) for each zone.

Table 2
Activity level and metabolic rate.

Office Activities Activity Level ~ Met

(W/m?)
Reading, seated 55 1
Seated, quiet 60 1
Writing 60 1
Typing 65 1.1
Standing, relaxed 70 1.2
Filing, seated 70 1.2
Filing, standing 80 1.4
Walking (0.9 m/s) 115 2

2.2.2. Metabolic rate

Efficient energy management in office or residential buildings ne-
cessitates understanding occupants’ metabolic rates and activity levels,
which directly impact energy expenditure [18,50]. Metabolic rate, de-
rived from oxygen consumption, indicates an individual’s energy ex-
penditure during physical activity. Activity levels, measured in watts
per square meter (W/m?), determine the heat generated by occupants.
Typical office activities range from 55 W/m? to 115 W/m?.

To optimize energy usage, it is essential to consider these variations
in activity levels. Table 2 provides an overview of different behav-
ioral conditions based on metabolic rates (in units: W/m? and Met).
Tailoring energy management strategies to accommodate these diverse
activity levels enables the implementation of sustainable practices in
office buildings. Fig. 2 (bottom) illustrates the average activity level in
the office building. The assumption is that the schedule of this behav-
ior is average in all thermal zones and during morning opening (8 am),
lunchtime (noon to 1 pm), and afternoon closing (6 pm to 7 pm), occu-
pants are assumed to have a high activity level. By introducing random
variables to the activity level, we can introduce greater diversity in this
behavior, capturing more realistic occupant activity patterns.

2.2.3. Clothing behaviors

Recognizing the influence of clothing on the discomfort function
(PPD in the reward function), it becomes vital to consider occupants’
clothing behaviors. To achieve this, the research adopts a dynamic
clothing behavior model developed by Schiavon and Lee [51], as repre-
sented in Equation (1). Within this model, 0¢/° denotes the occupant’s
clothing insulation, while 7,,,, ) represents the outdoor temperature
at 6 am. Schiavon and Lee’s study employed multivariable linear mixed
models, with the first model accounting for outdoor air temperature and

the second incorporating indoor operative temperature. These models
successfully explained the total variance in clothing behavior, enhanc-
ing the realism of thermal comfort assessments in office buildings.
Moreover, the inclusion of stochastic elements accommodates the inher-
ent variability in clothing behavior, making the evaluation of thermal
comfort in the office building more authentic and reflective of the di-
verse clothing choices and individual preferences of occupants.

1, latours) < —5°C
yelo ) 0818 =0.0364 51,515, =5°C <ty <5°C W

10-0-1635-0.0066+ 100 50C < tatour) < 26°C

0.46, L atours) = 26°C

2.3. Stochasticity in occupant behavior model

Stochastic modeling is a mathematical approach used to analyze sys-
tems involving randomness and uncertainty which employs probability
theory to describe the likelihood of various outcomes, often using sim-
ulations to estimate complex systems. In addition, stochastic modeling
is essential to make probabilistic predictions and assess risks in sys-
tems influenced by chance events and variability [51]. Previous studies
have extensively explored appliance scheduling problems using various
stochastic models, such as forecast errors in hot water usage [52], out-
door temperature [53] and renewable energy generation [54,55]. On
the other hand, as shown in Table 1, occupant presence has been one
of the most popular areas in recent research. However, these studies
have primarily focused on only occupant presence as the main aspect
of occupant behaviors, while neglecting the dynamic aspects. In addi-
tion, varying clothing behaviors and various metabolic rates are not
considered. To address this research gap, here we propose a model with
occupants’ behaviors influenced by the time of day and weather. In ad-
dition, we introduce stochasticity [56,57] into the occupant behavior
model to show the effect of variability and range of patterns. Specifi-
cally, the following parameters are defined:

OB(1) = {o", 0", o'}

X(0 = (X", Xglo, x ey

where ¢ is the time index; OB(f) represents the estimated values of
occupant behaviors without considering any stochastic effects; X (¢) rep-
resents Gaussian-distributed random variables at time ¢ for occupant
presence, clothing behavior and metabolic rate. Note that O B(¢) val-
ues are derived from the office schedules, shown in Fig. 2 for occupant
presence and metabolic rate based on different activity levels, while
the clothing behavior is determined using Equation (1). Note that the
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clothing insulation and activity level are measured in the average value
through zone because EnergyPlus, as the simulation platform used in
this study, has limitations in representing individual differences.

Based on those parameters, we define:

OB, =O0B(1)+ X (1) 2

where (F)\E, is the stochastic dynamic occupant behavior that provides
the ability to capture the inherent time-dependent variability and un-
certainty of occupant behaviors. By incorporating random variables, our
model can effectively simulate the nature of occupant behavior (pres-
ence, clothing, and metabolic rate), making it the first of its kind to
integrate this concept into DRL-based building energy management sys-
tems.

2.4. States, actions and rewards of reinforcement learning

Three indices are employed: t = {1,2,3,...,T} for time slots, m =
{1,2,3,..,M} for building zones, and j = { H,C} to distinguish be-
tween the HVAC dual modes of heating (H) and cooling (C). The
Reinforcement Learning consists of sets of states and actions, denoted
as § and A, respectively, where s € S and a € A. Specifically, s;" rep-

resents the state of zone m at time slot ¢, and a:"’H and a:"’c indicate
the heating and cooling setpoints for zone m at time slot ¢. In the same
way, OBY" is the stochastic occupant behavior in zone m at time slot 7.

It is worth mentioning that 573,’" is part of s}'. The reward function r,
is defined for the entire building at time slot 7.

The state s, includes two parts: external states and internal states.
External states related to the building’s outside environment encompass
the outdoor dry bulb temperature, air relative humidity, wind speed,
wind direction, diffuse solar radiation, and direct solar radiation. For
each zone m, seven states are considered, comprising the zone air tem-
perature, zone thermal comfort mean radiant temperature, zone air rel-
ative humidity, zone thermal comfort clothing value, thermal comfort
index (PMV/PPD value), occupant counts, and zone average metabolic
rate. Additionally, there are two internal states associated with electric-
ity price and HVAC power consumption. The power consumption in our
simulation represents the total electricity consumed by HVAC for the
entire building, with the assumption that the entire building receives a
single utility bill. As a result, power consumption is treated as a single
parameter, and individual HVAC power consumption for each zone is
not considered. The policy of the proposed MADDPG is a mapping that
takes the current multi-zone environment observation and generates a
probability distribution of actions, specifically the heating and cooling
setpoints. This approach empowers the agent to make informed deci-
sions based on the current state of the building and its zones, leading to
optimized HVAC control strategies that adapt to various environmental
and occupant conditions. The set tuple {s,,q,} is used to represent the
states, including external states and internal states, and actions of all
zones in the building:

{s;,a,} = {(stl, s sfu ), (a,l‘H, atl’c, s atM’H, a,M‘C)}

A reward function in DRL is a numerical signal that informs an agent
about the desirability of its actions in a given state, with higher values
indicating favorable actions and lower values representing unfavorable
ones. The agent’s goal is to learn a policy that maximizes the cumula-
tive reward it receives over time. The reward function for the whole
environment is defined as follows:

M
r(my==d- Y PPD(s/)=b-C,(s.a,) 3)
m=1

In (3), the reward function consists of two components: 1) a dis-
comfort function calculated using the PMV/PPD, and 2) an electricity
cost function C,. The weighted coefficients d, and b, can be determined
based on historical data [51] and represent varying preferences of oc-
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cupants, including cost-saving or comfort-seeking type. The electricity
cost function C, is given by:

M
(o (s;",a;") =c, Z p;"At 4
m=1

where, ¢, is the electricity price at time slot ¢, At is the simulation time
interval, and p{" is the electricity consumption caused by the HVAC
system in zone m at time slot 7. Importantly, ¢, and p;" are part of the
states that can be observed from the environment.

2.5. Multi-agent deep reinforcement learning

While classical reinforcement learning algorithms like Q-learning
and policy gradient have exhibited proficiency in single-agent domains,
their application presents unique challenges characterized by evolving
policies, non-stationary surroundings, and the imperative for agent col-
laboration. In response to these multifaceted demands, the machine
learning community has introduced DDPG, a prominent member of the
reinforcement learning family renowned for its aptitude in handling
continuous action spaces [58]. DDPG serves as a pivotal precursor to
our exploration of MADDPG, an extension tailored explicitly for multi-
agent domains. MADDPG advances the DDPG paradigm by empowering
agents to deliberate global states and make informed decisions predi-
cated on the actions of fellow agents, thereby enhancing coordination
and overall system performance. The ensuing discourse delves deeper
into the nuanced application of DDPG and the pivotal role of MADDPG
in addressing the intricacies of multi-agent scenarios [59]. MADDPG is
specifically crafted for multi-agent scenarios, where multiple agents in-
teract within the same environment, potentially requiring coordination,
communication, collaboration, or competition among agents. MADDPG
extends DDPG to accommodate these complex multi-agent dynamics,
making it suitable for modeling a wide range of cooperative or compet-
itive interactions among autonomous agents. MADDPG offers several
positive aspects in the context of multi-agent reinforcement learning:

1) Cooperative Learning: MADDPG facilitates cooperative learning by
allowing agents to share information and learn from each other. By
considering the joint actions and observations of all agents, MAD-
DPG promotes coordination and collaboration among the agents,
leading to better overall performance.

2) Centralized Learning, Decentralized Execution: MADDPG employs
a centralized training approach, where a centralized critic network
is used to estimate the Q-values based on the joint actions and
observations. However, during execution, each agent acts inde-
pendently based on its local observations, enabling decentralized
decision-making and reducing communication requirements.

3) Handling Non-Stationarity: MADDPG is designed to handle non-
stationarity in multi-agent environments, where agents’ policies
may change during training. By incorporating a centralized critic
network that considers all agents’ actions and observations, MAD-
DPG can adapt to changing dynamics and maintain stability during
training.

4) Policy Exploration and Exploitation: MADDPG combines the ben-
efits of exploration and exploitation by utilizing the DDPG algo-
rithm. DDPG employs an exploration policy, such as adding noise
to the actions, to encourage exploration and discover new strate-
gies. At the same time, it leverages the learned policies to exploit
the most promising actions and maximize performance.

The proposed MADDPG is formulated using the Bellman equation,
enabling the learning of a Q-function and a multi-agent-based policy.
Similar to DDPG, a deep neural network (DNN) is utilized as the Value
Function Approximation (VFA) in MADDPG. This approach integrates
the actor-evaluation approach and multi-agent technique, making it
suitable for handling model-free, high-dimensional, and continuous ac-
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Algorithm 1 Multi-agent Deep Deterministic Policy Gradient.

Input: Environment with M zones, and occupant behavior OB
Output: M sets of actor networks
Randomly initialize evaluation network Q(s,a|0?) with weights ¢ where a =
{a',a%,....,a™}, and M actors u(s|0") = {u'(s|0*"), u?(s|0*?),..., u™ (s|0*M)} with
weights 6", where me {1,2,..., M}
Initialize target-evaluation network Q' with weights 2" < 2, and M target actors x’
= {", w2, ... "M} with weights 64" « 0#" where m € {1,2,.., M}
Initialize experience replay buffer B
for episode = 1 to E do
Initialize Ornstein—Uhlenbeck process (OU) for action exploration
Receive initial observation state s,
fort = 1toT do
Select action a;' = u(s;"|0") + OU, according to the policy network and explo-
ration noise for zone m at ¢
Apply stochastic-based dynamic occupant behavior based on Equation (2) to the
environment
Execute action a, and observe reward r, and new state s,
Store transition (s,, a;, r;, s,,,) in buffer B
Sample a random mini-batch of M transitions (s, @', 1/, s'*!) from B
Set y' based on Equation (6), where 4/ (s'+'|6#') is the sets of M actors
Update evaluation network by minimizing the loss based on Equation (7), where
a = (a,',a,z,...,a,M}
Update the actor policy using the sampled policy gradient for all x(-) based on
Equation (8)
Soft update the target evaluation network and all target actor networks:
02 « 762 + (1 —1)0¢
0" — 70" + (1 —1)0"
end for
end for

tion spaces in multi-zone environments. The Q-Value function, repre-
senting the value function, is given by the following expression:

Q" (sp.a) < O(s,a) + alr (s, a) +y Jnax, O(sy11-a141) — O(s1,.a,)]

6]

« € I represents the policy, which is a set of actions with a probabil-
ity distribution. @ denotes the learning rate, and y is the discount factor
used for future reward considerations. With Equation (5) as the founda-
tion, the VFA of DRL can be formulated as follows:

Vi =1+ 7O 41, 1(514110")169) ©)

where / € L denotes the index of mini-batch L, which is sampled from
the experience replay buffer B. The parameters 6 and 69 correspond
to the weights of the actor neural network u(-) and the evaluation
network Q(-), respectively. The evaluation network Q(-) is updated
through the minimization of the loss function:

1
Loss= - Z(y, — 0(s.4/109))* @

To facilitate the exploration of the actor-network, the Ornstein-
Uhlenbeck process is utilized [60]. The actor networks are updated
using the policy gradient technique, which applies the chain rule to
compute the gradient of the expected return with respect to the actor
parameters, represented by the approximated loss of the distribution J:

1
Voul ~ ~— zl: V,005.al09)] =y, ampuis Vou H(s|OM)], ®)

The MADDPG algorithm introduces specific modifications tailored
for multi-zone HVAC control:

+ During initialization, M actors and target actors are established,
each corresponding to a zone within the building.

+ Each actor contributes the action for its respective zone during pol-
icy execution, resulting in a set of zone-specific actions.

+ The stochastic occupant behavior, represented by Equation (2), is
applied to the environment (EnergyPlus) with each execution, cap-
turing variability in occupant actions.
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Table 3
HVAC parameters.
Feature Parameters Setting
General  High-Speed/Low-Speed Sensible Heat Ratio ~ 0.75
Nominal Capacity (W) 3500
Cooling Rated Cooling COP (W/W) 3.0
Internal Static Air Pressure (Pa) 450
Heating  Burner Efficiency 0.98
Nominal Capacity (W) 3500
Fan Total Efficiency 0.7
Pressure Rise (Pa) 600
Fan Maximum Flow Rate (m?/s) 3.0
Power Minimum Flow Fraction 0.25
Motor Efficiency 0.9
Motor In Air-stream Fraction 1.0

« The outputs of all M actors and target actors serve as inputs to the
target evaluation network.

« All actor networks are updated using the sampled policy gradient,
allowing the agents to learn and improve their strategies based on
the environment’s feedback.

+ Instead of returning a single-actor network, the well-trained
multiple-actor networks are returned, providing zone-specific ac-
tions for each zone in the building.

It is essential to highlight that the MADDPG algorithm employs
2M + 2 networks (with M being the total number of zones) compared
to the four neural networks used in single-agent DDPG. This increase in
the number of networks leads to longer training times for the MADDPG
algorithm compared to DDPG, as will be demonstrated in Section 4.

To learn in the multi-agent environment better, we utilized Cycli-
cal Learning Rates (CLR) [61] to enhance neural network training in
MADDPG. CLR dynamically adjusts the learning rate during training,
allowing it to increase and decrease within a single run. By cycling be-
tween upper and lower bounds, the network explores a wider range of
learning rates, improving performance and convergence. CLR benefits
neural network training by preventing instabilities and escaping saddle
points. It facilitates faster traversal across the loss landscape, leading to
better solutions. Therefore, implementing CLR in MADDPG optimizes
the networks’ generalization and optimization capabilities, while dy-
namic learning rate adjustment improves parameter space exploration,
resulting in superior model performance.

3. Simulation result
3.1. Simulation setup

A single-floor rectangular building with five zones (containing one
interior and four exterior zones) is used to simulate the practical build-
ing, which features windows on all four facades and glass doors on the
south and north facades. The HVAC system incorporates a packaged
variable air volume system with direct expansion cooling coils and gas
heating coils, serving the five zones. The HVAC parameters are listed in
Table 3. For the simulation, the one-year weather dataset of Tempa,
Florida, USA, is employed, providing detailed measurements at 15-
minute intervals. This dataset includes all needs for the external state,
as shown in Fig. 3. Time-of-Use (ToU) electricity tariff chosen is the Pa-
cific Gas & Electric EToU-E6, which consists of three price levels: the
base, shoulder, and peak prices, represented by white, light grey, and
grey colors, respectively, with unit costs of $0.244/kWh, $0.32/kWh,
and $0.436/kWh in Fig. 5. Note that the current validation in this study
utilizes EnergyPlus as the whole-building simulator. The MADDPG al-
gorithm is implemented in Python 3.8.10 with BCVTB serving as the
interface. The computational platform used for the experiments is a PC
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-213500
Table 4
MADDPG network information. 214000
Actor Network # of Neurals Activation °
@ -214500
Input Input(shape = (# of state)) 5
n -4
Hidden 1 Dense(128, 256) Relu © -215000
Hidden 2 Dense(256, 512) Relu 2
Output Dense(128, # of action) Sigmoid é ~215500
Critic Network  # of Neurals Activation MADDPG
-216000
State Input Input(shape = (# of state)) DDPG
State Hidden Dense(256, 256) Relu T - - - . r . : .
State Output Dense(256, 256) Relu o 5 50 75 100d 125 150 175 200
Action Input Input(shape = (# of action)) Episode
Action Output Dense(256, 64) Relu
Concatenate Concatenate([State Output, Action Output]) Fig. 4. Average episode reward during training of DDPG and MADDPG.
Hidden 1 Dense(Concatenate, 512) Relu
Hidden 2 Dense(512,256) Relu Table 5
Output Dense(1) Training and execution time comparison.

equipped with an Intel(R) Core(TM) i7-4790 CPU and 8 GB RAM with
Windows Subsystem for Linux (WSL) Version 2.

To clearly show the efficacy of the proposed approach, we com-
pare the proposed MADDPG with 1) a single-agent DDPG counterpart
(control with occupant behavior) and 2) a rule-based control scheme
(control without occupant behavior), which is discussed in [62,63].
The rule-based control highlights its reliance on outside temperature
for HVAC electricity cost reduction in a whole-year hourly time step
simulation. This method optimizes electricity cost by allowing slightly
wider temperature ranges while ensuring occupant comfort which is
deployed in realistic buildings.

3.2. Result

This section presents the simulation results for three compared
methods: Rule-based method (from [62], DDPG (from [58]) and MAD-
DPG (from Algorithm 1)), all applied to the testbed of a 5-zone building
with 15 minutes time interval simulation model. The neural network
information, including input, hidden, and output layers for actor and
critic networks, is shown in Table 4. Table 5 displays the total train-
ing time for DDPG and MADDPG, along with the single-run execution
times for the rule-based method, DDPG, and MADDPG. It is important
to note that the rule-based method does not utilize any deep neural
network for computation, making it significantly faster in execution
time compared to the learning-based approaches. The single-run exe-
cution time refers to the time taken for a one-time decision-making
process. Specifically, DDPG takes 5 hours to train and 6.25 ms for one-
time decision-making, while MADDPG takes 32 hours (5.4 times longer

Item Rule-based  DDPG MADDPG
Training time N/A 5hr 32 hr
Single-run execution time 0.01 ms 6.25 ms 29.17 ms

than DDPG) for training and 29.17 ms (3.66 times longer than DDPG)
for one-time decision-making. Additionally, the reward function plot
(Fig. 4) displays the training rewards for the episodes. It is evident
that MADDPG exhibits better reward returns after approximately 25
episodes of training compared to DDPG. It is important to note that
MADDPG takes longer to train compared to DDPG due to the presence
of more neural networks. However, this extended training time leads to
higher reward returns after the training process.

In the following, we present the simulation results for three days,
encompassing occupant behavior, decision results for all zones, and the
whole building’s electricity cost with average PMV-PPD. Fig. 5 provides
a visualization of the three-day simulation of occupant behavior, illus-
trating fluctuations in metabolic rate, occupant presence, and clothing
adjustments across all zones. The base price, shoulder price, and peak
price are visually represented in white, light grey, and grey colors,
respectively. It’s essential to emphasize that our simulation environ-
ment is grounded in stochastic behavior modeling rather than a fixed
schedule. This deliberate choice allows us to accurately capture the sig-
nificant variability in occupant thermal comfort experiences over time.
Furthermore, our approach offers flexibility in adjusting stochastic mod-
eling parameters to align with real-world scenarios, leveraging insights
from historical datasets [64]. It’s worth noting that in our modeling,
we assume that clothing adjustments play a relatively minor role in the
overall variations. Detailed schedules for clothing behavior, metabolic
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rate, and occupant presence are elaborated upon in Section 2.2 for a
more comprehensive understanding.

Fig. 6 compares decision results, including heating and cooling set-
points of HVAC, for the three methods, along with room and outside
temperatures. The weather dataset contains a wealth of information,
with the outside temperature being the major factor affecting the room
temperature. In the rule-based simulations, the control range (between
heating and cooling setpoints) is narrow, as it solely considers the out-
side temperature for the control strategy. In addition, the heating and
cooling set points for our rule-based method are derived from [62,63],
in which high cooling and heating set points are observed in the early
morning. Therefore, the rule-based method is typically less adaptive

(top), DDPG (middle), and MADDPG (bottom). The red line represents heating
zone’s average temperature, and the green dashed line represents the PMV-PPD

than DDPG and MADDPG which considers occupant behavior due to
limited control range. As a result, the room temperature is controlled
within this range without considering occupant behavior. In contrast,
both DDPG and MADDPG show a wider range of temperature control
as they take into account the occupant’s behavior. Specifically, DDPG
cools the zone once on Day 1 around 4 pm and requires no control on
Day 2, while on Day 3, it cools the zone from 9 am to 6 pm. On the other
hand, MADDPG adapts to the outside environment on Day 1 and Day
2. On Day 3, it maintains climate control from 9 am to 6 pm but under-
goes a two-hour shift from the grey area (high electricity price) to the
white area (based price). Furthermore, there are two pre-heating phase
on Day 1 around 8 am and Day 3 from about 5 am to 8 am to raise the
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Fig. 7. Results of Zone 2, 3, 4, and 5 over a three-day period. The red line represents heating setpoints, the blue line indicates cooling setpoints, the black line
represents the zone’s average temperature, and the green dashed line represents the PMV-PPD value, while the light blue line depicts the outside temperature.

zone temperature due to its base price period, leading to lower electric-
ity costs while ensuring similar thermal comfort levels. The decisions
made by MADDPG demonstrate a more adaptive and cost-effective ap-
proach, taking into account both the outside environment and occupant
behavior, resulting in better energy efficiency and comfort manage-
ment. Fig. 7 presents a visual representation of the three-day simulation
results for Zones 2 to 5, offering insights into the strategies employed
by the three methods. It’s worth noting that the single-agent method
demonstrates consistent actions across all zones, while MADDPG ex-
hibits adaptive actions tailored to each zone’s unique requirements.
Importantly, MADDPG effectively avoids peak ToU hours, as evidenced
by its morning actions around 7 am or 8 am, leading to cost savings.
Additionally, MADDPG maintains a high level of thermal comfort, as
reflected in the lower PMV-PPD values compared to the single-agent
method.

Fig. 8 illustrates the evaluation metrics for the three methods, in-
cluding HVAC whole building cost and average PMV-PPD in the five
zones. As expected, the rule-based method incurs the highest electricity
cost due to its narrow control climate range, which limits zone tempera-
tures and leads to increased electricity consumption. This highlights the
crucial importance of considering occupant behavior in the simulation.
Regarding thermal comfort, the PMV-PPD values for the first two days

are similar across all methods. However, on the last day, both the rule-
based and MADDPG methods control the temperature at 25 °C, while
DDPG maintains it at 24 °C. This slight difference in temperature con-
trol results in varied performance in thermal comfort, as evident in the
PMV-PPD results. Notably, the pre-heating on the last day contributes
to higher electricity costs in MADDPG but provides more comfortable
thermal control compared to DDPG. The findings underscore the sig-
nificance of incorporating occupant behavior into the simulation. By
accounting for occupant preferences and adjusting temperature settings
accordingly, MADDPG optimizes both electricity costs and thermal com-
fort, offering a more adaptive and efficient HVAC control strategy for
the building. This approach provides a more personalized and respon-
sive solution that takes into account occupant comfort while achieving
energy savings.

An interesting finding is that the single-agent DDPG demonstrates
a nearly identical control action for all zones, as depicted in Fig. 9.
The control pattern remains consistent over the time horizon, with a
relaxation of the control range during nights and a narrowing of the
range during daytime. However, a crucial limitation of this approach is
that it uses similar temperature setpoints for all zones, therefore cov-
ering each other plot line in the top (rule-based) and middle (DDPG)
in Fig. 9, which does not reflect the actual real-world conditions in the
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simulations. Fig. 10 displays the decision distribution over one month of
simulation. It becomes evident that MADDPG provides more options in
terms of temperature settings, while DDPG and rule-based control ex-
hibit a more limited range of options in the simulation results. This
phenomenon indicates that MADDPG employs a more detailed and
zone-specific control strategy, while DDPG applies the similar control
approach to all five zones. Consequently, DDPG fails to capture the
distinct differences between zones within the building, resulting in dif-
ferent simulation outcomes. This observation highlights the advantage
of using MADDPG, which allows for more personalized and adaptive
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control strategies for each zone, leading to enhanced performance and
efficiency in the overall HVAC management within the building.

To comprehensively represent the simulation results at the long-
term level, one-year worth of weather data was employed in this study
from the Tampa dataset from January 1 to December 31. Table 6
presents a one-year comparison of the three methods, showcasing the
average daily electricity cost ($/day) and average PMV-PPD across all
five zones during the year-long simulation. The rule-based control ap-
proach exhibits the highest electricity cost but maintains the best ther-
mal comfort levels. However, this advantage in thermal comfort comes



X. Liu, Y. Wu and H. Wu

Energy & Buildings 303 (2024) 113770

0.4
B  Rule-based actions

0.2

0.0 T T T

20

24 26 28

0.4 14 16
I DDPG actions

Probability (%)
o
N

14 16 18 20

o o
& O

2 2 28

MADDPG actions

0.2

0.0

14 16 18 20

2 2% 2 28

HVAC setting points including heating and cooling (°C)

Fig. 10. One-month HVAC decisions histogram comparison of whole building.

Table 6
One-year comparison between different methods.

Item Rule-based = DDPG MADDPG
Average Daily Electricity Cost ($ / Day)  216.77 110.83 106.02
Avg. PMV-PPD (%) 10.36 11.43 10.39

at the cost of overlooking occupant behavior, as the rule-based con-
trol solely relies on outside temperature, leading to non-optimal energy
usage. In contrast, MADDPG stands out with exceptional performance,
achieving the lowest electricity cost, which is 51.09% lower than the
rule-based control and 4.36% lower than DDPG. Importantly, MADDPG
not only excels in cost-efficiency but also enhances thermal comfort
levels compared to DDPG. Its capacity to strike a harmonious balance
between cost-effectiveness and occupant comfort positions it as a highly
promising and superior choice for HVAC control in buildings.

MADDPG achieves this through a multi-agent control strategy,
which takes into account the unique thermal transfer characteristics and
occupant behaviors in different zones. The control strategy, as in DDPG,
would not capture these differences and result in suboptimal multi-
zone thermal control, as shown in Fig. 10. MADDPG’s incorporation
of multi-agent techniques, training the agents to cooperate and coordi-
nate within the environment, leads to better results in this study. The
approach effectively optimizes both electricity cost and thermal com-
fort, demonstrating its superiority over the rule-based and single-agent
DDPG methods. The consideration of occupant behavior and zone-
specific thermal dynamics in MADDPG results in more adaptive and
efficient HVAC control, offering a more desirable outcome for building
occupants and energy management.

4. Discussion and future study

The findings from the figures and table in this study highlight the
effectiveness of the MADDPG approach in multi-zone HVAC control.
MADDPG operates by making pre-emptive decisions to avoid peak ToC
price periods while ensuring consistent thermal comfort. Its capabil-
ity to customize HVAC setpoints individually for different zones, as
opposed to applying uniform actions across all zones, significantly en-
hances its ability to reduce electricity costs compared to the rule-based
approach. Furthermore, MADDPG exhibits superior thermal comfort
performance when contrasted with the single-agent DDPG method.
In addition, over the course of one year, MADDPG consistently out-
performed the single-agent DDPG methods in terms of average daily
electricity cost, while maintaining superior thermal comfort levels com-
pared to DDPG, striking a balance between cost reduction and occupant
satisfaction. This improved performance is attributed to MADDPG’s
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ability to adaptively design HVAC setpoints based on zone-specific
characteristics and occupant behaviors, effectively utilizing multi-agent
techniques to optimize both electricity cost and thermal comfort.

Regarding the issues of similar actions for all zones in DDPG, we re-
alize that during the training phase, all agents participate in centralized
learning, sharing a global value function that captures interactions and
dependencies between agents and the environment. However, this col-
lective approach does not distinguish individual agents, treating those
agents as a unified entity. Consequently, the shared knowledge acquired
through single-agent DDPG tends to result in similar actions among
agents, particularly when they face similar environmental conditions
such as a testbed of multi-zone HVAC building. However, MADDPG
is tailored for multi-agent environments, which facilitates communica-
tion and coordination among multiple agents, enabling them to learn
distinct policies and make varied decisions based on observations and
other agents’ actions.

This study serves as a proof of concept for applying MADRL to multi-
zone thermal control while considering dynamic occupant behavior.
One of the critical avenues for future research is the validation of this
approach in real-world environments. The validation process entails
several essential steps to ensure the algorithm’s practicality and effec-
tiveness in realistic scenarios. Firstly, it involves establishing the nec-
essary hardware and software infrastructure, gathering real-world data,
including occupant behavior and weather variations, and constructing a
simulation model for virtual testing using the EnergyPlus simulator. Fol-
lowing this, the MADDPG algorithm undergoes offline training before
its implementation within a realistic building system. Continuous sys-
tem operation over an extended period facilitates ongoing performance
monitoring of MADDPG, including model calibration for building mod-
els and parameter updates based on user feedback. Finally, tracking
electricity consumption and occupant comfort, followed by compre-
hensive data analysis, evaluates MADDPG’s performance compared to
baseline approaches in realistic buildings.

5. Conclusions

This study introduces a multi-zone HVAC energy management ap-
proach using MADDPG to minimize electricity costs and enhance oc-
cupants’ thermal comfort. The MADDPG model proves its effectiveness
in multi-zone HVAC control by accounting for dynamic occupant be-
havior and zone-specific thermal dynamics. Simulation results highlight
its capacity to optimize both electricity cost and thermal comfort, sur-
passing rule-based and single-agent DDPG methods. The incorporation
of multi-agent techniques empowers personalized and adaptive con-
trol strategies for each zone, leading to improved HVAC management
performance and efficiency. MADDPG demonstrates its adaptability by
making informed cooling and heating setpoint decisions based on ex-
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ternal conditions and occupant behavior. Moreover, over a year-long
simulation, MADDPG consistently achieves the lowest electricity cost
while striking a remarkable balance between energy savings and oc-
cupant comfort. The inclusion of stochastic modeling, as exemplified
in this study, opens new avenues for more realistic and sophisticated
building energy management systems. Future studies include consider-
ing an energy management system that focuses on multi-zone HVAC
control with the effect of bioclimatic and passive strategy to achieve
higher reward feedback.
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