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A B S T R A C T

Occupant-centric HVAC control places a premium on factors including thermal comfort and electricity cost to guarantee occupant satisfaction. Traditional 
approaches, reliant on static models for occupant behaviors, fall short in capturing intra-day behavioral variations, resulting in imprecise thermal comfort evaluations 
and suboptimal HVAC energy management, especially in multi-zone systems with diverse occupant profiles. To address this issue, this paper proposes a novel 
occupant-centric multi-zone HVAC control approach that intelligently schedules cooling and heating setpoints using Multi-agent Deep Reinforcement Learning 
(MADRL). This approach systematically takes into account stochastic occupant behavior models, such as dynamic clothing insulation adjustments, metabolic rates, 
and occupancy patterns. Simulation results demonstrate the efficacy of the proposed approach. Comparative case studies show that the proposed MADRL-based, 
occupant-centric HVAC control reduces electricity costs by 51.09% compared to rule-based approaches and 4.34% compared to single-agent DRL while maintaining 
multi-zonal thermal comfort for occupants.
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 Introduction

Buildings in the United States account for approximately 36% of 
tal energy consumption, with HVAC systems being a significant con-
ibutor, particularly during hot summers [1]. Smart homes using IoT 
chnologies and human-centered intelligent scheduling for HVAC con-
ol is a promising solution for energy-efficient and comfortable build-
gs [2]. Understanding and incorporating Occupant-Centric Control 
CC) is crucial for effective building energy management [3,4]. Wang 
 al. [5] investigated occupancy patterns in single-person offices and 
oposed a probabilistic model for occupancy prediction, emphasizing 
e complexity and time variation of occupancy intervals. Several stud-
s have proposed algorithms and models for predicting occupancy to 
prove energy consumption and occupant comfort, including Reinhart 
], Page et al. [7], Klein et al. [8], and Fabi et al. [9]. Furthermore, 
tegrating clothing behaviors and clothing decisions into HVAC con-
ol strategies can further enhance building energy efficacy [10–12]. 
ere are a lot of literature studies on the simplified model for oc-
pant behavior model in building energy management to reduce the 
ectricity cost while maximizing the occupant thermal comfort in resi-
ntial buildings [13,14] and commercial buildings [15–17]. However, 
cupancy and clothing behavior are not the only factors that have an 
ect on occupants’ thermal comfort model. Metabolic rate with activ-
 schedule is another important factor that should be conducted in the 
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thermal comfort [18] considered in indoor temperature control. How-
ever, dynamic occupant behavior containing the occupancy, clothing 
adjustment, and metabolic rate involved in thermal comfort in HVAC 
control is still an unsolved problem [19].

On the other hand, model-based optimization can be time-consuming 
when dealing with large solution spaces, making it unsuitable for real-
time decision-making. In recent years, Deep Reinforcement Learning 
(DRL), a model-free approach, has gained traction among engineers and 
researchers for tackling building energy management problems [20]. 
DRL-based HVAC control methods have been proposed to address chal-
lenges posed by large state-action spaces [21,22] and complex indoor 
environments [23,24]. However, addressing the multi-zone HVAC con-
trol problem with continuous action spaces remains a challenge despite 
the application of DRL techniques in previous studies. In real-world en-
vironments, multi-zone thermal control involves complex control agents 
and often necessitates a balance between competition and cooperation 
among these agents. Some studies have applied Multi-agent Deep Re-
inforcement Learning (MADRL) to multi-zone thermal control [25,26], 
while often lacking dynamic modeling. In Table 1, “Const.” signifies a 
consistent schedule applied throughout simulations, while “Dyn.” rep-
resents changing occupant activities influenced by factors such as time 
of day, weather, and personal choices. Although certain studies have in-
tegrated occupant presence [27–29], they do not account for metabolic 
rate and clothing adjustments. This gap in occupant behavior modeling 
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Table 1

Literature review of DRL in HVAC control.

Reference 
(by time)

Whole building 
energy simulation

Multi-area 
thermal zone

Multi-agent 
approach

Occupant behavior

Occupancy Metabolic Clothing

[21]/2017
√ √

[30,24]/2018-19
√ √

Const.

[31]/2020
√ √

Const. Const.

[32]/2021
√ √ √

Const. Const.

[33]/2021
√ √

Const.

[34]/2021
√ √

[25]/2021
√ √

Const.

[27]/2021
√ √ √

Dyn.

[35]/2022
√ √

Const. Const. Const.

[28]/2022
√ √ √

Dyn.

[26]/2022
√ √ √

[29]/2022
√ √ √

Dyn.

[36]/2022
√

Dyn.

[37]/2023
√ √ √

[38]/2023
√ √

This work
√ √ √

Dyn. Dyn. Dyn.
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ghlights the need for novel MADRL methods capable of addressing 
e complexity of multi-zone environments and dynamic occupant be-
viors in HVAC control.
This paper bridges this gap by proposing a multi-zone HVAC en-
gy management scheme that aims to minimize the electricity cost and 
e occupants’ thermal discomfort using a MADRL approach. The main 
ntributions of this work are three-fold:

) This paper proposes a pioneering multi-zone HVAC energy manage-
ment scheme that is the first of its kind to explicitly consider the 
occupants’ behaviors, including occupant presence, clothing con-
ditions, and activity conditions, for minimizing the electricity cost 
and the occupant’s thermal discomfort.

) An MADRL approach is developed for making sequential HVAC 
setpoint decisions while considering the continuous action space 
under a whole-building simulation environment with stochastic oc-
cupant behavior. Specifically, the MADRL intelligently schedules 
the cooling and heating set points for the multi-zone office build-
ings while accounting for dynamic occupant behaviors.

) The proposed model is trained and simulated by EnergyPlus in a 
practical multi-zone building with real-world datasets at daily and 
yearly timescales. Simulation results show the electricity cost sav-
ing of MADRL is, respectively, 4.34% and 51.09% compared to 
single-agent DRL and rule-based control while maintaining a high 
comfort level for multi-zone occupants.

For the rest of the paper, the mathematical formulation and pro-
sed methodology are presented in Section 2. The simulation results 
 comparative case studies are in Section 3. Section 4 contains a dis-
ssion of this study. Section 5 presents the conclusions of the paper.

 Problem formulation and methodology

1. Overview of approach

Reinforcement learning is a paradigm within machine learning 
herein an autonomous agent endeavors to acquire an optimal strategy 
r selecting a sequence of actions within an environment to maxi-
ize its cumulative reward. The agent’s decision-making process hinges 
 the feedback it receives in the form of a reward value following 
2

ch executed action. These decisions are contingent upon the agen- (2
 interpretation of the environment, which is encapsulated by a state 
presentation. This iterative process persists as the agent engages with 
e environment, with the aim of progressively improving its policy, 
timately striving to attain predefined objectives. Fig. 1 provides a vi-
al representation of the research framework, showcasing the seamless 
tegration of the MADRL algorithm within a complex five-zone of-
e building environment. This environment, as shown in the middle 
odule of Fig. 1, is accurately simulated using the Building Controls 
rtual Test Bed (BCVTB) [39] in conjunction with EnergyPlus, fa-
litating realistic building dynamics and HVAC power consumption 
odeling. Within this framework, the MADRL agent (top module of 
g. 1) actively engages with the environment, effectively making de-
sions (heating and cooling setpoints of HVAC) pertaining to HVAC 
ntrol to simultaneously optimize energy efficiency and occupant com-
rt. A distinctive feature highlighted in the figure is the incorporation 
 dynamic occupant behavior models, as shown in the bottom mod-
e of Fig. 1, represented through a stochastic process. These models 
namically account for variations in factors such as clothing insula-
n, occupant presence, and metabolic rates over time. Furthermore, 
s essential to note the bidirectional interaction, where reward values 
e transmitted from EnergyPlus to the MADRL module, and optimal 
tions are passed from MADRL to EnergyPlus during simulation, effec-
ely capturing occupant behavior. This integration stands at the core 
 the research’s mission to achieve efficient multi-zone HVAC control 
hile upholding occupant thermal comfort standards within the build-
g.

2. Occupant behavior modeling

Building energy management has undergone a significant trans-
rmation with the integration of technology, sustainability consid-
ations, and occupant comfort. Occupant-centric control (OCC) has 
erged as a prominent concept, shifting the focus from a building-
ntric to an occupant-focused approach [40–42]. Researchers now rec-
nize the importance of addressing occupants’ needs and optimizing 
ilding systems for their comfort and energy efficiency. In the context 
 ensuring thermal comfort, the Predicted Mean Vote (PMV)/Predicted 
rcentage of Dissatisfied (PPD) index, introduced by P.O. Fanger and 
lleagues, is employed to measure occupants’ comfort levels based on 
eir environmental conditions [43]. This index is included in ISO 7730 

005) and the ASHRAE standard 55 (2004) [44,45]. PMV/PPD models, 
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Fig. 1. Illustration of proposed MADRL in multi-zone HVAC control. Three modules are contained in this approach, 1) a MADRL algorithm: Multi-agent Deep 
Deterministic Policy Gradient; 2) A testbed: EnergyPlus simulator; 3) Stochastic occupant behavior model includes clothing, occupant presence, and metabolic rate. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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hich take into account the indoor environment and occupant behav-
r factors as input, have been integrated into OCC as a part objective 
 the HVAC energy management scheme.
The proposed OCC allows occupants to have control over settings 
ch as cooling and heating points in HVAC systems, enhancing their 
tisfaction and productivity. However, one of the critical factors in im-
ementing OCC is understanding and integrating occupant behavior 
6]. Factors such as occupant presence, activity levels, and clothing 
havior are significant in optimizing thermal comfort strategies. Prior 
erature has often overlooked that behavior in building energy man-
ement, resulting in an incomplete understanding of occupant needs 
d potentially leading to inefficient control strategies. Our work con-
ibutes to addressing these challenges and developing an approach that 
nsiders and integrates these aspects into occupant-centric building en-
gy management systems. Note that during specific time periods, such 
 morning opening (8 am), lunchtime (noon to 1 pm), and afternoon 
osing (6 pm to 7 pm), occupants are assumed to be engaged in walk-
g activities, resulting in elevated activity levels. In the simulation, we 
sumed that occupants within the same zone share similar behaviors 
 terms of activity level and clothing insulation. This is reasonable in 
3

multi-zone commercial building environment as the behaviors of one H
n easily affect others within the same zone. This assumption allowed 
 to group occupants within each zone and apply general patterns of 
havior, which is a common approach in HVAC simulations. Initially, 
e established a fixed schedule and subsequently introduced a stochas-
 model to this schedule to simulate diverse behaviors across different 
nes.

2.1. Occupant presence
Occupant presence information plays a pivotal role in modern build-
g management systems, offering invaluable insights into space uti-
ation and opportunities for optimizing energy consumption. As illus-
ated in Table 1, occupant presence is a prevalent factor in HVAC con-
ol as occupant behavior. In our study, we initially implement a fixed 
hedule for occupant presence and subsequently introduce stochas-
 variables to simulate occupancy patterns across the five zones, as 
picted in Fig. 2 (top). While future research avenues may explore 
ta-driven or Markov chain models to predict time-dependent occu-
nt behavior within simulations [47–49], our current approach serves 
 an initial exploration of how dynamic occupant behavior influences 

VAC control strategies.
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Fig. 2. One-day average occupant presence schedule (top) and activity level schedule (bottom) for each zone.
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Table 2

Activity level and metabolic rate.

Office Activities Activity Level Met

(W/m2)

Reading, seated 55 1

Seated, quiet 60 1

Writing 60 1

Typing 65 1.1

Standing, relaxed 70 1.2

Filing, seated 70 1.2

Filing, standing 80 1.4

Walking (0.9 m/s) 115 2

2.2. Metabolic rate
Efficient energy management in office or residential buildings ne-
ssitates understanding occupants’ metabolic rates and activity levels, 
hich directly impact energy expenditure [18,50]. Metabolic rate, de-
ved from oxygen consumption, indicates an individual’s energy ex-
nditure during physical activity. Activity levels, measured in watts 
r square meter (W/m2), determine the heat generated by occupants. 
pical office activities range from 55 W/m2 to 115 W/m2.

To optimize energy usage, it is essential to consider these variations 
 activity levels. Table 2 provides an overview of different behav-
ral conditions based on metabolic rates (in units: W/m2 and Met). 
iloring energy management strategies to accommodate these diverse 
tivity levels enables the implementation of sustainable practices in 
ce buildings. Fig. 2 (bottom) illustrates the average activity level in 
e office building. The assumption is that the schedule of this behav-
r is average in all thermal zones and during morning opening (8 am), 
nchtime (noon to 1 pm), and afternoon closing (6 pm to 7 pm), occu-
nts are assumed to have a high activity level. By introducing random 
riables to the activity level, we can introduce greater diversity in this 
havior, capturing more realistic occupant activity patterns.

2.3. Clothing behaviors
Recognizing the influence of clothing on the discomfort function 
𝑃𝐷 in the reward function), it becomes vital to consider occupants’ 
othing behaviors. To achieve this, the research adopts a dynamic 
othing behavior model developed by Schiavon and Lee [51], as repre-
nted in Equation (1). Within this model, 𝑜𝑐𝑙𝑜 denotes the occupant’s 
othing insulation, while 𝑡𝑎(𝑜𝑢𝑡,6) represents the outdoor temperature 
 6 am. Schiavon and Lee’s study employed multivariable linear mixed 
4

odels, with the first model accounting for outdoor air temperature and th
e second incorporating indoor operative temperature. These models 
ccessfully explained the total variance in clothing behavior, enhanc-
g the realism of thermal comfort assessments in office buildings. 
oreover, the inclusion of stochastic elements accommodates the inher-
t variability in clothing behavior, making the evaluation of thermal 
mfort in the office building more authentic and reflective of the di-
rse clothing choices and individual preferences of occupants.

𝑙𝑜 =

⎧⎪⎪⎨⎪⎪⎩

1, 𝑡𝑎(𝑜𝑢𝑡,6) < −5𝑜𝐶
0.818 − 0.0364 ∗ 𝑡𝑎(𝑜𝑢𝑡,6), −5𝑜𝐶 ≤ 𝑡𝑎(𝑜𝑢𝑡,6) < 5𝑜𝐶
10−0.1635−0.0066+𝑡𝑎(𝑜𝑢𝑡,6) , 5𝑜𝐶 ≤ 𝑡𝑎(𝑜𝑢𝑡,6) < 26𝑜𝐶
0.46, 𝑡𝑎(𝑜𝑢𝑡,6) ≥ 26𝑜𝐶

(1)

3. Stochasticity in occupant behavior model

Stochastic modeling is a mathematical approach used to analyze sys-
ms involving randomness and uncertainty which employs probability 
eory to describe the likelihood of various outcomes, often using sim-
ations to estimate complex systems. In addition, stochastic modeling 
 essential to make probabilistic predictions and assess risks in sys-
ms influenced by chance events and variability [51]. Previous studies 
ve extensively explored appliance scheduling problems using various 
ochastic models, such as forecast errors in hot water usage [52], out-
or temperature [53] and renewable energy generation [54,55]. On 
e other hand, as shown in Table 1, occupant presence has been one 
 the most popular areas in recent research. However, these studies 
ve primarily focused on only occupant presence as the main aspect 
 occupant behaviors, while neglecting the dynamic aspects. In addi-
n, varying clothing behaviors and various metabolic rates are not 
nsidered. To address this research gap, here we propose a model with 
cupants’ behaviors influenced by the time of day and weather. In ad-
tion, we introduce stochasticity [56,57] into the occupant behavior 
odel to show the effect of variability and range of patterns. Specifi-
lly, the following parameters are defined:

𝐵(𝑡) = {𝑜𝑝𝑟𝑒𝑠𝑡 , 𝑜𝑐𝑙𝑜𝑡 , 𝑜
𝑚𝑒𝑡
𝑡 }

(𝑡) = {𝑋𝑝𝑟𝑒𝑠
𝑡 ,𝑋𝑐𝑙𝑜

𝑡 ,𝑋𝑚𝑒𝑡
𝑡 }

here 𝑡 is the time index; 𝑂𝐵(𝑡) represents the estimated values of 
cupant behaviors without considering any stochastic effects; 𝑋(𝑡) rep-
sents Gaussian-distributed random variables at time 𝑡 for occupant 
esence, clothing behavior and metabolic rate. Note that 𝑂𝐵(𝑡) val-
s are derived from the office schedules, shown in Fig. 2 for occupant 
esence and metabolic rate based on different activity levels, while 

e clothing behavior is determined using Equation (1). Note that the 
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othing insulation and activity level are measured in the average value 
rough zone because EnergyPlus, as the simulation platform used in 
is study, has limitations in representing individual differences.
Based on those parameters, we define:

𝐵𝑡 =𝑂𝐵(𝑡) +𝑋(𝑡) (2)

here 𝑂𝐵𝑡 is the stochastic dynamic occupant behavior that provides 
e ability to capture the inherent time-dependent variability and un-
rtainty of occupant behaviors. By incorporating random variables, our 
odel can effectively simulate the nature of occupant behavior (pres-
ce, clothing, and metabolic rate), making it the first of its kind to 
tegrate this concept into DRL-based building energy management sys-
ms.

4. States, actions and rewards of reinforcement learning

Three indices are employed: 𝑡 = {1, 2, 3, ..., 𝑇 } for time slots, 𝑚 =
, 2, 3, ..., 𝑀} for building zones, and 𝑗 = {𝐻, 𝐶} to distinguish be-
een the HVAC dual modes of heating (𝐻) and cooling (𝐶). The 
inforcement Learning consists of sets of states and actions, denoted 
 𝑆 and 𝐴, respectively, where 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴. Specifically, 𝑠𝑚𝑡 rep-
sents the state of zone 𝑚 at time slot 𝑡, and 𝑎𝑚,𝐻𝑡 and 𝑎𝑚,𝐶𝑡 indicate 
e heating and cooling setpoints for zone 𝑚 at time slot 𝑡. In the same 
ay, 𝑂𝐵𝑚𝑡 is the stochastic occupant behavior in zone 𝑚 at time slot 𝑡. 
is worth mentioning that 𝑂𝐵𝑚𝑡 is part of 𝑠𝑚𝑡 . The reward function 𝑟𝑡
 defined for the entire building at time slot 𝑡.
The state 𝑠𝑡 includes two parts: external states and internal states. 
ternal states related to the building’s outside environment encompass 
e outdoor dry bulb temperature, air relative humidity, wind speed, 
ind direction, diffuse solar radiation, and direct solar radiation. For 
ch zone 𝑚, seven states are considered, comprising the zone air tem-
rature, zone thermal comfort mean radiant temperature, zone air rel-
ive humidity, zone thermal comfort clothing value, thermal comfort 
dex (PMV/PPD value), occupant counts, and zone average metabolic 
te. Additionally, there are two internal states associated with electric-
 price and HVAC power consumption. The power consumption in our 
mulation represents the total electricity consumed by HVAC for the 
tire building, with the assumption that the entire building receives a 
ngle utility bill. As a result, power consumption is treated as a single 
rameter, and individual HVAC power consumption for each zone is 
t considered. The policy of the proposed MADDPG is a mapping that 
kes the current multi-zone environment observation and generates a 
obability distribution of actions, specifically the heating and cooling 
tpoints. This approach empowers the agent to make informed deci-
ons based on the current state of the building and its zones, leading to 
timized HVAC control strategies that adapt to various environmental 
d occupant conditions. The set tuple {𝑠𝑡, 𝑎𝑡} is used to represent the 
ates, including external states and internal states, and actions of all 
nes in the building:

𝑡, 𝑎𝑡} = {(𝑠1𝑡 , ..., 𝑠
𝑀
𝑡 ), (𝑎1,𝐻𝑡 , 𝑎1,𝐶𝑡 , ..., 𝑎𝑀,𝐻

𝑡 , 𝑎𝑀,𝐶
𝑡 )}

A reward function in DRL is a numerical signal that informs an agent 
out the desirability of its actions in a given state, with higher values 
dicating favorable actions and lower values representing unfavorable 
es. The agent’s goal is to learn a policy that maximizes the cumula-
e reward it receives over time. The reward function for the whole 
vironment is defined as follows:

(𝑚) = −𝑑 ⋅
𝑀∑
𝑚=1

𝑃𝑃𝐷(𝑠𝑚𝑡 ) − 𝑏 ⋅ 𝑡
(
𝑠𝑡, 𝑎𝑡

)
(3)

In (3), the reward function consists of two components: 1) a dis-
mfort function calculated using the PMV/PPD, and 2) an electricity 
st function 𝑡. The weighted coefficients 𝑑𝑡 and 𝑏𝑡 can be determined 
5

sed on historical data [51] and represent varying preferences of oc- su
Energy & Buildings 303 (2024) 113770

pants, including cost-saving or comfort-seeking type. The electricity 
st function 𝑡 is given by:

(
𝑠𝑚𝑡 , 𝑎

𝑚
𝑡

)
= c𝑡

𝑀∑
𝑚=1

𝑝𝑚𝑡 Δ𝑡 (4)

here, c𝑡 is the electricity price at time slot 𝑡, Δ𝑡 is the simulation time 
terval, and 𝑝𝑚𝑡 is the electricity consumption caused by the HVAC 
stem in zone 𝑚 at time slot 𝑡. Importantly, c𝑡 and 𝑝𝑚𝑡 are part of the 
ates that can be observed from the environment.

5. Multi-agent deep reinforcement learning

While classical reinforcement learning algorithms like Q-learning 
d policy gradient have exhibited proficiency in single-agent domains, 
eir application presents unique challenges characterized by evolving 
licies, non-stationary surroundings, and the imperative for agent col-
boration. In response to these multifaceted demands, the machine 
arning community has introduced DDPG, a prominent member of the 
inforcement learning family renowned for its aptitude in handling 
ntinuous action spaces [58]. DDPG serves as a pivotal precursor to 
r exploration of MADDPG, an extension tailored explicitly for multi-
ent domains. MADDPG advances the DDPG paradigm by empowering 
ents to deliberate global states and make informed decisions predi-
ted on the actions of fellow agents, thereby enhancing coordination 
d overall system performance. The ensuing discourse delves deeper 
to the nuanced application of DDPG and the pivotal role of MADDPG 
 addressing the intricacies of multi-agent scenarios [59]. MADDPG is 
ecifically crafted for multi-agent scenarios, where multiple agents in-
ract within the same environment, potentially requiring coordination, 
mmunication, collaboration, or competition among agents. MADDPG 
tends DDPG to accommodate these complex multi-agent dynamics, 
aking it suitable for modeling a wide range of cooperative or compet-
ve interactions among autonomous agents. MADDPG offers several 
sitive aspects in the context of multi-agent reinforcement learning:

) Cooperative Learning: MADDPG facilitates cooperative learning by 
allowing agents to share information and learn from each other. By 
considering the joint actions and observations of all agents, MAD-
DPG promotes coordination and collaboration among the agents, 
leading to better overall performance.

) Centralized Learning, Decentralized Execution: MADDPG employs 
a centralized training approach, where a centralized critic network 
is used to estimate the Q-values based on the joint actions and 
observations. However, during execution, each agent acts inde-
pendently based on its local observations, enabling decentralized 
decision-making and reducing communication requirements.

) Handling Non-Stationarity: MADDPG is designed to handle non-
stationarity in multi-agent environments, where agents’ policies 
may change during training. By incorporating a centralized critic 
network that considers all agents’ actions and observations, MAD-
DPG can adapt to changing dynamics and maintain stability during 
training.

) Policy Exploration and Exploitation: MADDPG combines the ben-
efits of exploration and exploitation by utilizing the DDPG algo-
rithm. DDPG employs an exploration policy, such as adding noise 
to the actions, to encourage exploration and discover new strate-
gies. At the same time, it leverages the learned policies to exploit 
the most promising actions and maximize performance.

The proposed MADDPG is formulated using the Bellman equation, 
abling the learning of a Q-function and a multi-agent-based policy. 
milar to DDPG, a deep neural network (DNN) is utilized as the Value 
nction Approximation (VFA) in MADDPG. This approach integrates 
e actor-evaluation approach and multi-agent technique, making it 

itable for handling model-free, high-dimensional, and continuous ac-
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lgorithm 1 Multi-agent Deep Deterministic Policy Gradient.
put: Environment with 𝑀 zones, and occupant behavior 𝑂𝐵
tput: 𝑀 sets of actor networks
Randomly initialize evaluation network 𝑄(𝑠, 𝑎|𝜃𝑄) with weights 𝜃𝑄 where 𝑎 =
{𝑎1 , 𝑎2 , ..., 𝑎𝑀}, and 𝑀 actors 𝜇(𝑠|𝜃𝜇) = {𝜇1(𝑠|𝜃𝜇,1), 𝜇2(𝑠|𝜃𝜇,2), ..., 𝜇𝑀 (𝑠|𝜃𝜇,𝑀 )} with 
weights 𝜃𝜇,𝑚 , where 𝑚 ∈ {1, 2, ..., 𝑀}
Initialize target-evaluation network 𝑄′ with weights 𝜃𝑄′

← 𝜃𝑄 , and 𝑀 target actors 𝜇′
= {𝜇′,1, 𝜇′,2 , ..., 𝜇′,𝑀} with weights 𝜃𝜇′,𝑚 ← 𝜃𝜇,𝑚 where 𝑚 ∈ {1, 2, ..., 𝑀}
Initialize experience replay buffer 𝐵
for episode = 1 to 𝐸 do

Initialize Ornstein–Uhlenbeck process (𝑂𝑈 ) for action exploration
Receive initial observation state 𝑠1
for 𝑡 = 1 to 𝑇 do

Select action 𝑎𝑚
𝑡
= 𝜇(𝑠𝑚

𝑡
|𝜃𝜇)+ 𝑂𝑈𝑡 according to the policy network and explo-

ration noise for zone 𝑚 at 𝑡
Apply stochastic-based dynamic occupant behavior based on Equation (2) to the 

environment

Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and new state 𝑠𝑡+1
Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in buffer 𝐵
Sample a random mini-batch of M transitions (𝑠𝑙 , 𝑎𝑙 , 𝑟𝑙 , 𝑠𝑙+1) from 𝐵
Set 𝑦𝑙 based on Equation (6), where 𝜇′(𝑠𝑙+1|𝜃𝜇′ ) is the sets of 𝑀 actors

Update evaluation network by minimizing the loss based on Equation (7), where 
𝑎𝑙 = {𝑎1

𝑙
, 𝑎2
𝑙
, ..., 𝑎𝑀

𝑙
}

Update the actor policy using the sampled policy gradient for all 𝜇(⋅) based on 
Equation (8)

Soft update the target evaluation network and all target actor networks:
𝜃𝑄

′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

end for

end for

n spaces in multi-zone environments. The Q-Value function, repre-
nting the value function, is given by the following expression:

𝜋(𝑠𝑡, 𝑎𝑡)←𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡(𝑠𝑡, 𝑎𝑡) + 𝛾 max
𝑎𝑡+1∈𝐴

𝑄(𝑠𝑡+1, 𝑎𝑡+1) −𝑄(𝑠𝑡, 𝑎𝑡)]

(5)

∈ Π represents the policy, which is a set of actions with a probabil-
 distribution. 𝛼 denotes the learning rate, and 𝛾 is the discount factor 
ed for future reward considerations. With Equation (5) as the founda-
n, the VFA of DRL can be formulated as follows:

= 𝑟𝑙 + 𝛾𝑄(𝑠𝑙+1, 𝜇(𝑠𝑙+1|𝜃𝜇)|𝜃𝑄) (6)

here 𝑙 ∈ 𝐿 denotes the index of mini-batch 𝐿, which is sampled from 
e experience replay buffer 𝐵. The parameters 𝜃𝜇 and 𝜃𝑄 correspond 
 the weights of the actor neural network 𝜇(⋅) and the evaluation 
twork 𝑄(⋅), respectively. The evaluation network 𝑄(⋅) is updated 
rough the minimization of the loss function:

𝑜𝑠𝑠 = 1
𝑀

∑
𝑡

(𝑦𝑙 −𝑄(𝑠𝑙, 𝑎𝑙|𝜃𝑄))2 (7)

 facilitate the exploration of the actor-network, the Ornstein-
hlenbeck process is utilized [60]. The actor networks are updated 
ing the policy gradient technique, which applies the chain rule to 
mpute the gradient of the expected return with respect to the actor 
rameters, represented by the approximated loss of the distribution 𝐽 :

𝜃𝜇 𝐽 ≈ 1
𝑀

∑
𝑙

∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑙 ,𝑎=𝜇(𝑠𝑙)∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠𝑙 (8)

The MADDPG algorithm introduces specific modifications tailored 
r multi-zone HVAC control:

• During initialization, 𝑀 actors and target actors are established, 
each corresponding to a zone within the building.

• Each actor contributes the action for its respective zone during pol-
icy execution, resulting in a set of zone-specific actions.

• The stochastic occupant behavior, represented by Equation (2), is 
applied to the environment (EnergyPlus) with each execution, cap-
6

turing variability in occupant actions. in
Energy & Buildings 303 (2024) 113770

Table 3

HVAC parameters.
Feature Parameters Setting

General High-Speed/Low-Speed Sensible Heat Ratio 0.75

Nominal Capacity (W) 3500

Cooling Rated Cooling COP (W/W) 3.0

Internal Static Air Pressure (Pa) 450

Heating Burner Efficiency 0.98

Nominal Capacity (W) 3500

Fan Total Efficiency 0.7

Pressure Rise (Pa) 600

Fan Maximum Flow Rate (m3/s) 3.0

Power Minimum Flow Fraction 0.25

Motor Efficiency 0.9

Motor In Air-stream Fraction 1.0

• The outputs of all 𝑀 actors and target actors serve as inputs to the 
target evaluation network.

• All actor networks are updated using the sampled policy gradient, 
allowing the agents to learn and improve their strategies based on 
the environment’s feedback.

• Instead of returning a single-actor network, the well-trained 
multiple-actor networks are returned, providing zone-specific ac-
tions for each zone in the building.

It is essential to highlight that the MADDPG algorithm employs 
+ 2 networks (with 𝑀 being the total number of zones) compared 

 the four neural networks used in single-agent DDPG. This increase in 
e number of networks leads to longer training times for the MADDPG 
gorithm compared to DDPG, as will be demonstrated in Section 4.
To learn in the multi-agent environment better, we utilized Cycli-
l Learning Rates (CLR) [61] to enhance neural network training in 
ADDPG. CLR dynamically adjusts the learning rate during training, 
lowing it to increase and decrease within a single run. By cycling be-
een upper and lower bounds, the network explores a wider range of 
arning rates, improving performance and convergence. CLR benefits 
ural network training by preventing instabilities and escaping saddle 
ints. It facilitates faster traversal across the loss landscape, leading to 
tter solutions. Therefore, implementing CLR in MADDPG optimizes 
e networks’ generalization and optimization capabilities, while dy-
mic learning rate adjustment improves parameter space exploration, 
sulting in superior model performance.

 Simulation result

1. Simulation setup

A single-floor rectangular building with five zones (containing one 
terior and four exterior zones) is used to simulate the practical build-
g, which features windows on all four facades and glass doors on the 
uth and north facades. The HVAC system incorporates a packaged 
riable air volume system with direct expansion cooling coils and gas 
ating coils, serving the five zones. The HVAC parameters are listed in 
ble 3. For the simulation, the one-year weather dataset of Tempa, 
orida, USA, is employed, providing detailed measurements at 15-
inute intervals. This dataset includes all needs for the external state, 
 shown in Fig. 3. Time-of-Use (ToU) electricity tariff chosen is the Pa-
fic Gas & Electric EToU-E6, which consists of three price levels: the 
se, shoulder, and peak prices, represented by white, light grey, and 
ey colors, respectively, with unit costs of $0.244/kWh, $0.32/kWh, 
d $0.436/kWh in Fig. 5. Note that the current validation in this study 
ilizes EnergyPlus as the whole-building simulator. The MADDPG al-
rithm is implemented in Python 3.8.10 with BCVTB serving as the 

terface. The computational platform used for the experiments is a PC 
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Fig. 3. One-year Tampa weather profile.
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Table 4

MADDPG network information.
Actor Network # of Neurals Activation

Input Input(shape=(# of state))

Hidden 1 Dense(128, 256) Relu

Hidden 2 Dense(256, 512) Relu

Output Dense(128, # of action) Sigmoid

Critic Network # of Neurals Activation

State Input Input(shape=(# of state))

State Hidden Dense(256, 256) Relu

State Output Dense(256, 256) Relu

Action Input Input(shape=(# of action))

Action Output Dense(256, 64) Relu

Concatenate Concatenate([State Output, Action Output])

Hidden 1 Dense(Concatenate, 512) Relu

Hidden 2 Dense(512,256) Relu

Output Dense(1)

uipped with an Intel(R) Core(TM) i7-4790 CPU and 8 GB RAM with 
indows Subsystem for Linux (WSL) Version 2.
To clearly show the efficacy of the proposed approach, we com-
re the proposed MADDPG with 1) a single-agent DDPG counterpart 
ontrol with occupant behavior) and 2) a rule-based control scheme 
ontrol without occupant behavior), which is discussed in [62,63]. 
e rule-based control highlights its reliance on outside temperature 
r HVAC electricity cost reduction in a whole-year hourly time step 
mulation. This method optimizes electricity cost by allowing slightly 
ider temperature ranges while ensuring occupant comfort which is 
ployed in realistic buildings.

2. Result

This section presents the simulation results for three compared 
ethods: Rule-based method (from [62], DDPG (from [58]) and MAD-
PG (from Algorithm 1)), all applied to the testbed of a 5-zone building 
ith 15 minutes time interval simulation model. The neural network 
formation, including input, hidden, and output layers for actor and 
itic networks, is shown in Table 4. Table 5 displays the total train-
g time for DDPG and MADDPG, along with the single-run execution 
es for the rule-based method, DDPG, and MADDPG. It is important 

 note that the rule-based method does not utilize any deep neural 
twork for computation, making it significantly faster in execution 
e compared to the learning-based approaches. The single-run exe-
tion time refers to the time taken for a one-time decision-making 
ocess. Specifically, DDPG takes 5 hours to train and 6.25 ms for one-
7

e decision-making, while MADDPG takes 32 hours (5.4 times longer ov
Fig. 4. Average episode reward during training of DDPG and MADDPG.

Table 5

Training and execution time comparison.

Item Rule-based DDPG MADDPG

Training time N/A 5 hr 32 hr

Single-run execution time 0.01 ms 6.25 ms 29.17 ms

an DDPG) for training and 29.17 ms (3.66 times longer than DDPG) 
r one-time decision-making. Additionally, the reward function plot 
ig. 4) displays the training rewards for the episodes. It is evident 
at MADDPG exhibits better reward returns after approximately 25 
isodes of training compared to DDPG. It is important to note that 
ADDPG takes longer to train compared to DDPG due to the presence 
 more neural networks. However, this extended training time leads to 
gher reward returns after the training process.
In the following, we present the simulation results for three days, 
compassing occupant behavior, decision results for all zones, and the 
hole building’s electricity cost with average PMV-PPD. Fig. 5 provides 
visualization of the three-day simulation of occupant behavior, illus-
ating fluctuations in metabolic rate, occupant presence, and clothing 
justments across all zones. The base price, shoulder price, and peak 
ice are visually represented in white, light grey, and grey colors, 
spectively. It’s essential to emphasize that our simulation environ-
ent is grounded in stochastic behavior modeling rather than a fixed 
hedule. This deliberate choice allows us to accurately capture the sig-
ficant variability in occupant thermal comfort experiences over time. 
rthermore, our approach offers flexibility in adjusting stochastic mod-
ing parameters to align with real-world scenarios, leveraging insights 
om historical datasets [64]. It’s worth noting that in our modeling, 
e assume that clothing adjustments play a relatively minor role in the 

erall variations. Detailed schedules for clothing behavior, metabolic 
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Fig. 5. Three-day behavior simulation result for all zones (base, shoulder, and peak prices are represented by white, light grey, and grey).

Fig. 6. Results of Zone 1 over a three-day period, with the Rule-based method (top), DDPG (middle), and MADDPG (bottom). The red line represents heating 
setpoints, the blue line indicates cooling setpoints, the black line represents the zone’s average temperature, and the green dashed line represents the PMV-PPD 
value, while the light blue line depicts the outside temperature.
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te, and occupant presence are elaborated upon in Section 2.2 for a 
ore comprehensive understanding.
Fig. 6 compares decision results, including heating and cooling set-
ints of HVAC, for the three methods, along with room and outside 
mperatures. The weather dataset contains a wealth of information, 
ith the outside temperature being the major factor affecting the room 
mperature. In the rule-based simulations, the control range (between 
ating and cooling setpoints) is narrow, as it solely considers the out-
de temperature for the control strategy. In addition, the heating and 
oling set points for our rule-based method are derived from [62,63], 
 which high cooling and heating set points are observed in the early 
8

orning. Therefore, the rule-based method is typically less adaptive on
an DDPG and MADDPG which considers occupant behavior due to 
ited control range. As a result, the room temperature is controlled 
ithin this range without considering occupant behavior. In contrast, 
th DDPG and MADDPG show a wider range of temperature control 
 they take into account the occupant’s behavior. Specifically, DDPG 
ols the zone once on Day 1 around 4 pm and requires no control on 
ay 2, while on Day 3, it cools the zone from 9 am to 6 pm. On the other 
nd, MADDPG adapts to the outside environment on Day 1 and Day 
 On Day 3, it maintains climate control from 9 am to 6 pm but under-
es a two-hour shift from the grey area (high electricity price) to the 
hite area (based price). Furthermore, there are two pre-heating phase 

 Day 1 around 8 am and Day 3 from about 5 am to 8 am to raise the 
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Fig. 7. Results of Zone 2, 3, 4, and 5 over a three-day period. The red line represents heating setpoints, the blue line indicates cooling setpoints, the black line 
represents the zone’s average temperature, and the green dashed line represents the PMV-PPD value, while the light blue line depicts the outside temperature.
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ne temperature due to its base price period, leading to lower electric-
 costs while ensuring similar thermal comfort levels. The decisions 
ade by MADDPG demonstrate a more adaptive and cost-effective ap-
oach, taking into account both the outside environment and occupant 
havior, resulting in better energy efficiency and comfort manage-
ent. Fig. 7 presents a visual representation of the three-day simulation 
sults for Zones 2 to 5, offering insights into the strategies employed 
 the three methods. It’s worth noting that the single-agent method 
monstrates consistent actions across all zones, while MADDPG ex-
bits adaptive actions tailored to each zone’s unique requirements. 
portantly, MADDPG effectively avoids peak ToU hours, as evidenced 
 its morning actions around 7 am or 8 am, leading to cost savings. 
dditionally, MADDPG maintains a high level of thermal comfort, as 
flected in the lower PMV-PPD values compared to the single-agent 
ethod.

Fig. 8 illustrates the evaluation metrics for the three methods, in-
uding HVAC whole building cost and average PMV-PPD in the five 
nes. As expected, the rule-based method incurs the highest electricity 
st due to its narrow control climate range, which limits zone tempera-
res and leads to increased electricity consumption. This highlights the 
ucial importance of considering occupant behavior in the simulation. 
9

garding thermal comfort, the PMV-PPD values for the first two days in
e similar across all methods. However, on the last day, both the rule-
sed and MADDPG methods control the temperature at 25 𝑜C, while 
DPG maintains it at 24 𝑜C. This slight difference in temperature con-
ol results in varied performance in thermal comfort, as evident in the 
V-PPD results. Notably, the pre-heating on the last day contributes 

 higher electricity costs in MADDPG but provides more comfortable 
ermal control compared to DDPG. The findings underscore the sig-
ficance of incorporating occupant behavior into the simulation. By 
counting for occupant preferences and adjusting temperature settings 
cordingly, MADDPG optimizes both electricity costs and thermal com-
rt, offering a more adaptive and efficient HVAC control strategy for 
e building. This approach provides a more personalized and respon-
ve solution that takes into account occupant comfort while achieving 
ergy savings.
An interesting finding is that the single-agent DDPG demonstrates 
nearly identical control action for all zones, as depicted in Fig. 9. 
e control pattern remains consistent over the time horizon, with a 
laxation of the control range during nights and a narrowing of the 
nge during daytime. However, a crucial limitation of this approach is 
at it uses similar temperature setpoints for all zones, therefore cov-
ing each other plot line in the top (rule-based) and middle (DDPG) 

 Fig. 9, which does not reflect the actual real-world conditions in the 
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Fig. 8. Three days simulation of electricity cost and thermal comfort result (PMV-PPD) for the whole building.

Fig. 9. One-month control patterns of HVAC for all zones.
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mulations. Fig. 10 displays the decision distribution over one month of 
mulation. It becomes evident that MADDPG provides more options in 
rms of temperature settings, while DDPG and rule-based control ex-
bit a more limited range of options in the simulation results. This 
enomenon indicates that MADDPG employs a more detailed and 
ne-specific control strategy, while DDPG applies the similar control 
proach to all five zones. Consequently, DDPG fails to capture the 
stinct differences between zones within the building, resulting in dif-
rent simulation outcomes. This observation highlights the advantage 
10

 using MADDPG, which allows for more personalized and adaptive m
ntrol strategies for each zone, leading to enhanced performance and 
ciency in the overall HVAC management within the building.
To comprehensively represent the simulation results at the long-
rm level, one-year worth of weather data was employed in this study 
om the Tampa dataset from January 1 to December 31. Table 6

esents a one-year comparison of the three methods, showcasing the 
erage daily electricity cost ($/day) and average PMV-PPD across all 
e zones during the year-long simulation. The rule-based control ap-
oach exhibits the highest electricity cost but maintains the best ther-

al comfort levels. However, this advantage in thermal comfort comes 
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Fig. 10. One-month HVAC decisions histogram comparison of whole building.
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Table 6

One-year comparison between different methods.

Item Rule-based DDPG MADDPG

Average Daily Electricity Cost ($ / Day) 216.77 110.83 106.02

Avg. PMV-PPD (%) 10.36 11.43 10.39

 the cost of overlooking occupant behavior, as the rule-based con-
ol solely relies on outside temperature, leading to non-optimal energy 
age. In contrast, MADDPG stands out with exceptional performance, 
hieving the lowest electricity cost, which is 51.09% lower than the 
le-based control and 4.36% lower than DDPG. Importantly, MADDPG 
t only excels in cost-efficiency but also enhances thermal comfort 
vels compared to DDPG. Its capacity to strike a harmonious balance 
tween cost-effectiveness and occupant comfort positions it as a highly 
omising and superior choice for HVAC control in buildings.
MADDPG achieves this through a multi-agent control strategy, 

hich takes into account the unique thermal transfer characteristics and 
cupant behaviors in different zones. The control strategy, as in DDPG, 
ould not capture these differences and result in suboptimal multi-
ne thermal control, as shown in Fig. 10. MADDPG’s incorporation 
 multi-agent techniques, training the agents to cooperate and coordi-
te within the environment, leads to better results in this study. The 
proach effectively optimizes both electricity cost and thermal com-
rt, demonstrating its superiority over the rule-based and single-agent 
DPG methods. The consideration of occupant behavior and zone-
ecific thermal dynamics in MADDPG results in more adaptive and 
cient HVAC control, offering a more desirable outcome for building 
cupants and energy management.

 Discussion and future study

The findings from the figures and table in this study highlight the 
ectiveness of the MADDPG approach in multi-zone HVAC control. 
ADDPG operates by making pre-emptive decisions to avoid peak ToC 
ice periods while ensuring consistent thermal comfort. Its capabil-
 to customize HVAC setpoints individually for different zones, as 
posed to applying uniform actions across all zones, significantly en-
nces its ability to reduce electricity costs compared to the rule-based 
proach. Furthermore, MADDPG exhibits superior thermal comfort 
rformance when contrasted with the single-agent DDPG method. 
 addition, over the course of one year, MADDPG consistently out-
rformed the single-agent DDPG methods in terms of average daily 
ectricity cost, while maintaining superior thermal comfort levels com-
red to DDPG, striking a balance between cost reduction and occupant 
11

tisfaction. This improved performance is attributed to MADDPG’s m
ility to adaptively design HVAC setpoints based on zone-specific 
aracteristics and occupant behaviors, effectively utilizing multi-agent 
chniques to optimize both electricity cost and thermal comfort.
Regarding the issues of similar actions for all zones in DDPG, we re-

ize that during the training phase, all agents participate in centralized 
arning, sharing a global value function that captures interactions and 
pendencies between agents and the environment. However, this col-
ctive approach does not distinguish individual agents, treating those 
ents as a unified entity. Consequently, the shared knowledge acquired 
rough single-agent DDPG tends to result in similar actions among 
ents, particularly when they face similar environmental conditions 
ch as a testbed of multi-zone HVAC building. However, MADDPG 
 tailored for multi-agent environments, which facilitates communica-
n and coordination among multiple agents, enabling them to learn 
stinct policies and make varied decisions based on observations and 
her agents’ actions.
This study serves as a proof of concept for applying MADRL to multi-
ne thermal control while considering dynamic occupant behavior. 
ne of the critical avenues for future research is the validation of this 
proach in real-world environments. The validation process entails 
veral essential steps to ensure the algorithm’s practicality and effec-
eness in realistic scenarios. Firstly, it involves establishing the nec-
sary hardware and software infrastructure, gathering real-world data, 
cluding occupant behavior and weather variations, and constructing a 
mulation model for virtual testing using the EnergyPlus simulator. Fol-
wing this, the MADDPG algorithm undergoes offline training before 
 implementation within a realistic building system. Continuous sys-
m operation over an extended period facilitates ongoing performance 
onitoring of MADDPG, including model calibration for building mod-
s and parameter updates based on user feedback. Finally, tracking 
ectricity consumption and occupant comfort, followed by compre-
nsive data analysis, evaluates MADDPG’s performance compared to 
seline approaches in realistic buildings.

 Conclusions

This study introduces a multi-zone HVAC energy management ap-
oach using MADDPG to minimize electricity costs and enhance oc-
pants’ thermal comfort. The MADDPG model proves its effectiveness 
 multi-zone HVAC control by accounting for dynamic occupant be-
vior and zone-specific thermal dynamics. Simulation results highlight 
 capacity to optimize both electricity cost and thermal comfort, sur-
ssing rule-based and single-agent DDPG methods. The incorporation 
 multi-agent techniques empowers personalized and adaptive con-
ol strategies for each zone, leading to improved HVAC management 
rformance and efficiency. MADDPG demonstrates its adaptability by 

aking informed cooling and heating setpoint decisions based on ex-
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rnal conditions and occupant behavior. Moreover, over a year-long 
mulation, MADDPG consistently achieves the lowest electricity cost 
hile striking a remarkable balance between energy savings and oc-
pant comfort. The inclusion of stochastic modeling, as exemplified 
 this study, opens new avenues for more realistic and sophisticated 
ilding energy management systems. Future studies include consider-
g an energy management system that focuses on multi-zone HVAC 
ntrol with the effect of bioclimatic and passive strategy to achieve 
gher reward feedback.
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