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Hybrid Modeling of Regional COVID-19
Transmission Dynamics in the U.S.

Yue Bai', Abolfazl Safikhani

Abstract—The fast transmission rate of COVID-19 worldwide
has made this virus the most important challenge of year 2020.
Many mitigation policies have been imposed by the governments
at different regional levels (country, state, county, and city) to stop
the spread of this virus. Quantifying the effect of such mitigation
strategies on the transmission and recovery rates, and predicting
the rate of new daily cases are two crucial tasks. In this paper, we
propose a hybrid modeling framework which not only accounts for
such policies but also utilizes the spatial and temporal information
to characterize the pattern of COVID-19 progression. Specifically, a
piecewise susceptible-infected-recovered (SIR) model is developed
while the dates at which the transmission/recover rates change
significantly are defined as “break points” in this model. A novel
and data-driven algorithm is designed to locate the break points
using ideas from fused lasso and thresholding. In order to enhance
the forecasting power and to describe additional temporal depen-
dence among the daily number of cases, this model is further cou-
pled with spatial smoothing covariates and vector auto-regressive
(VAR) model. The proposed model is applied to several U.S. states
and counties, and the results confirm the effect of *“stay-at-home
orders” and some states’ early “re-openings” by detecting break
points close to such events. Further, the model provided satisfactory
short-term forecasts of the number of new daily cases at regional
levels by utilizing the estimated spatio-temporal covariance struc-
tures. They were also better or on par with other proposed models
in the literature, including flexible deep learning ones. Finally,
selected theoretical results and empirical performance of the pro-
posed methodology on synthetic data are reported which justify the
good performance of the proposed method.

Index Terms—Break point detection, COVID-19, short-term
forecast, spatio-temporal model.

1. INTRODUCTION

INCE the first officially reported case in China in late
S December 2019, the SARS-CoV-2 virus spread worldwide
within weeks. As of late May 2021, there have been ~ 34 million
confirmed cases of COVID-19 in the United States alone and
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more than 170 million worldwide. In response to the rapid
growth of confirmed cases, followed by hospitalizations and
fatalities, initially in the Hubei Province and in particular its
capital Wuhan in China, and subsequently in Northern Italy,
Spain and the tri-state area of New York, New Jersey and
Connecticut, various mitigation strategies were put rapidly in
place with the most stringent one being “stay-at-home” orders.
The key purpose of such strategies was to reduce the virus
transmission rate and consequently pressure on public health
infrastructure [1]. To that end, the California governor issued
a “stay-at-home” order on March 19, 2020, that was quickly
followed by another 42 states by early April. All states with such
orders proceeded with multi-phase reopening plans starting in
early May, allowing various non-essential business to operate,
possibly at reduced capacity levels to enforce social distancing
guidelines. In addition, mask wearing mandates also came into
effect [2] as emerging evidence from clinical and laboratory
studies showed that masks reduce the spread [3]. However, these
reopening plans led to a substantial increase in the number of
confirmed COVID-19 cases in many US states, followed by
increased number of fatalities throughout the summer of 2020,
concentrated primarily in the Southern US states. Different states
and local communities adopted and implemented different non-
pharmaceutical interventions to reduce infections, but a “3 rd
wave” emerged in the fall of 2020 with cooling temperatures
and people spending more time indoors. Further, during late fall
of 2020, various variants of concerns started emerging around
the world, characterized by higher transmission capabilities
and potentially increased severity based on hospitalizations and
fatalities [4]. Variants that exhibited a certain degree of spread in
the US include B.1.1.7 (first detected in the United Kingdom),
B.1.351 (first detected in South Africa), B.1.427 and B.1.429
(first detected in California) and P.1 (first detected in Brazil).
The B.1.1.7 variant went on to become the dominant one in
the US by March 2021, displacing the original dominant strain
B.1.2, while the B.1.427/429 ones represented about 15% of the
total based on genomic surveillance studies.'

The emergence of the COVID-19 pandemic led to the de-
velopment of many data science and signal processing model-
ing approaches addressing diverse issues, including forecasting
progress of the disease, impact of non-pharmaceutical inter-
vention strategies [5], methods to estimate the Infection and
Case Fatality Rates (IFR/CFR) [6], pre-existing conditions and
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clinical factors that impact the CFR [7], computer audition for
diagnosing COVID-19 [8], image analysis for COVID-19 [9],
phylogenetic network analysis of Covid-19 genomes [10], im-
pact of aerosol transmission to public health [11], guidelines for
reopening critical social activities such as schools [12]. Note
that as Covid-19 progressed together with our knowledge about
it, the range of topics addressed significantly expanded, while
the focus also exhibited certain shifts. As an example, early on
(March 2020) it was believed that the virus can spread through
contaminated surfaces, known as fomites, and this informed
both the World Health Organization (WHO) and the Center of
Disease Control (CDC) recommendations’ on surface cleaning
and disinfection. However, subsequent studies and investiga-
tions of outbreaks pointed that the majority of transmissions
occur through droplets and aerosols that led to a revision of
recommendations by the WHO and the CDC.? It also led to
new research on aerosol dispersion models and on the role of
ventilation to mitigate transmission [13]. Nevertheless, forecast-
ing the spread of the epidemic throughout its course (initially
with the imposition of various mitigation strategies, and more
recently through the emergence of more transmissible variants
and the increased pace of vaccination campaigns around the
world) has remained a key task and anumber of signal processing
approaches have been developed as briefly summarized next.

A. Related Work

A number of epidemic models have been developed to analyze
and predict COVID-19 transmission dynamics. Mathematical
models, such as the class of susceptible-infectious-recovered
(SIR) models are widely used to model and forecast epidemic
spreads. [14] proposed a time-dependent SIR model and tracked
transmission and recovery rates at each time point by employing
ridge regression while [15] proposed a discrete-time susceptible-
infectious-recovered-dead (SIRD) model and provided estima-
tions of the basic reproduction number (Fg), and the infection
mortality and recovery rates by least squares method. Moreover,
[16] and [17] built an extended SIR model with time-varying
transmission rates and implemented a Markov Chain Monte
Carlo algorithm (MCMC) to obtain posterior estimates and
credible intervals of the model parameters.

A number of models focused on identifying a change in the
parameters of the underlying model employed. For example,
[18] combined the widely used SIR model (see Section II)
with Bayesian parameter inference through MCMC algorithms,
assuming a time-dependent transmission rate. Instead of directly
estimating a change point in the transmission rate and the other
parameters in the SIR model, they assumed a fixed value on
the number of the change points, and imposed informative prior
distributions on their locations, as well as the transmission rate
based on information from intervention policies. Further, [19]
proposed to model the time series of the log-scaled cumulative
confirmed cases and deaths of each country via a piecewise

2[Online]. Available: https://www.who.int/news-room/commentaries/detail/
transmission-of-sars-cov-2-implications-for-infection- prevention-precautions

3[Online]. Available: https:/www.cdc.gov/coronavirus/2019-ncov/science/
science-briefs/sars-cov-2-transmission.html

linear trend model. They combined the self-normalization (SN)
change-point test with the narrowest-over-threshold (NOT) al-
gorithm [20] to achieve multiple change-point estimation. More-
over, [21] and [22] analyzed the effect of social distancing
measures adopted in Europe and the United States, respectively,
using an interrupted time series (ITS) analysis of the confirmed
case counts. Their work aim to find a change point in the
time series data of confirmed cases counts for which there is a
significant change in the growth rate. In [21]’s paper, the change
points were determined by linear threshold regression models
of the logarithm of daily cases while [22] used an algorithm
developed in [23], based on an L penalty on changes in slope
to identify the change points. Finally, [24] utilized a branching
process for modeling and forecasting the spread of COVID-19.

Another line of work employed spatio-temporal models for
parameter estimation and forecasting the spread of COVID-19.
For example, [25] introduced an additive varying coefficient
model and coupled it with a non-parametric approach for mod-
eling the data, to study spatio-temporal patterns in the spread
of COVID-19 at the county level. Further, [26] proposed a
heterogeneous infection rate model with human mobility from
multiple regions and trained it using weighted least squares at
regional levels while [27] fitted a generalized additive model
(GAM) to quantify the province-specific associations between
meteorological variables and the daily cases of COVID-19 dur-
ing the period under consideration.

In addition to mathematical methods, many machine learn-
ing/deep learning methods were applied for forecasting of
COVID-19 transmission. For example, [28] and [29] employed
Artificial Neural Networks (ANN) and Long Short-Term Mem-
ory (LSTM) type deep neural networks to forecast future
COVID-19 cases in Iran and Canada, respectively, while [30]
developed a modified stacked auto-encoder for modeling the
transmission dynamics of the epidemic. Review paper [31]
presents a summary of recent COVID-19 forecasting models.

The previous brief overview of the literature indicates that
there are two streams of models, the first mechanistic and the
second statistical in nature. The former (SIR/SIRD) describe
key components of the transmission chain and its dynamics
and have proved useful in assessing scenarios of the evolution
of a contagious disease, by altering the values of key model
parameters. However, they are macroscopic in nature and can
not easily incorporate additional information provided either
by mitigation strategies or other features, such as movement
of people assessed through cell phone data. Statistical models
can easily utilize such information in the form of covariates
to improve their forecasting power. However, they primarily
leverage correlation patterns in the available data, that may be
noisy, especially at more granular spatio-temporal scales (e.g.,
county or city level) that are of primary interest to public health
officials and policy makers.

To that end, this paper aims to develop an interpretable hybrid
model that combines a mechanistic and a statistical model, that
respects the theoretical transmission dynamics of the former,
but also incorporates additional spatio-temporal characteristics
resulting in improved forecasting capabilities at fairly granular
spatio-temporal scales.
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Specifically, we analyze confirmed cases and deaths related to
COVID-19 from several states and counties/cities in the United
States from March 1st, 2020 to March 31st, 2021. In the absence
of non-pharmaceutical interventions, the spread of COVID-19
can be modeled by a SIR model with fixed transmission and
recovery rates. One of the main reasons to select that model
as the building block for the proposed methodology is that the
transmission and recovery rates are easy to interpret and hence
can be used in policy decision making. However, many diverse
mitigation policies were put in place at different regional levels
in the U.S. Thus, the simple SIR model may not be a good fit for
the data. Instead, we propose a piecewise stationary SIR model
(Model 1), i.e. the SIR model parameters may change at certain
(unknown) time points. Such time points are defined as “break
(change) points”. Unlike some other methods discussed in the
literature review, in our modeling framework, the number of
change points and their locations are assumed to be unknown and
must be inferred from the data. Such flexibility on the modeling
front allows inferring potentially different temporal patterns
across different regions (states or counties), and yields a data-
driven segmentation of the data which subsequently improves
the fit (see more details in Section IV), but also complicates the
model fitting procedures. To that end, a novel data-driven algo-
rithm is developed to detect all break points, and to estimate the
model parameters within each stationary segment. Specifically,
we define certain time blocks and assume the model parameters
are fixed during each block of time points. Then, a fused lasso
penalty is used to estimate all model parameters [32]. This pro-
cedure is further coupled with hard-thresholding and exhaustive
search steps to estimate the number and location of change
points (details provided in Section II). To enhance the forecast-
ing power of the model and to capture additional spatial and
temporal dependence not explained through the SIR model, the
piecewise constant SIR model is coupled with spatial smoothing
(Model 2) and time series components (Model 3). The former is
accomplished through the addition of a spatial effect term which
accounts for the effect of neighboring regions, while the latter
through a Vector Auto-Regressive (VAR) component to capture
additional auto-correlations among new daily cases and deaths.
Capturing the spatio-temporal dependence through Model 3 aids
in reducing the prediction error significantly (sometimes around
80%) compared to the piecewise SIR model which confirms the
usefulness of a hybrid modeling framework (for more details
see Section IV). To verify the applicability of the proposed
methodology to other data sets with similar characteristics, the
developed algorithm is tested over several simulation settings
and exhibits very satisfactory performance (details in Section I1IT)
and some theoretical properties of the proposed method (predic-
tion consistency, as well as detection accuracy) are established
in Appendix B.

The remainder of the paper is organized as follows. In
Section II, proposed statistical models are introduced and data-
driven algorithms are described to estimate their parameters. The
proposed algorithms are tested on various simulation settings
and the results are reported in Section III. The proposed models
are applied to several U.S. states and counties and the results are

described in Section IV. Finally, some concluding remarks are
drawn in Section V.

II. A FAMILY OF SPATIO-TEMPORAL HETEROGENEOUS
SIR MODELS

The proposed class of hybrid models leverages the framework
of the SIR model, which is presented next to set up key concepts.

A. The Standard SIR Model With Fixed Transmission
and Recovery Rates

The standard SIR model [33] is a mechanistic model, wherein
the total population is divided into the following three compart-
ments: susceptible (uninfected), infected, and recovered (healed
or dead). Itis assumed that each infected individual, on average,
infects /3 other individuals per unit time, and each infected
individual recovers at rate . The two key model parameters,
the transmission rate 3 and recovery rate -, are assumed to be
fixed over time. The temporal evolution of the SIR model is
governed by the following system of three ordinary differential
equations:

ds S1 dl S1 dR
=N @Ay e = O
where S, Iy and R represent the individuals in the population in
the susceptible, infected and recovered stages, respectively. Note
that the variables S, Iy and R always satisfy S +I; + R =N,
where N is the total population size. In this formulation, we
ignore the change in the total population, so that N remains
constant over time. Due to the fact that COVID-19 records are
discrete in time (At = 1 day), we consider the discrete-time
version of SIR model, so that for each t =1,...,T — 1, the
system comprises of the following three difference equations

st +1) - s(0) = -p2r0, @
Le+n-4o=2209 sre, @

R(t +1) — R(t) = vI;(2), “

where S(¢) stand for the number of susceptible individuals at
time ¢, I () for the number of infected ones and finally R(t)
for those recovered. Note that these three variables S(t), I (t)
and R(t) still satisfy the constraint S(t) + I (t) + R(tf) = N.
Notice that the number of infected cases I;(t) is not observ-
able. Specifically, confirmed COVID-19 case counts may not
capture the total infected cases due to limited testing availabil-
ity/capacity, especially at the beginning of the pandemic (testing
has been primarily restricted to individuals with moderate to
severe symptoms). For example, in the United States, over
90% of COVID-19 infections were not identified/reported at the
beginning of the pandemic [34], [35]. To that end, we define are-
lationship between the true infected cases and observed/recorded
infected cases through an under-reporting function. Specifically,
define AI(t) = Al¢(t) x (1 —u(t+1))fort =1,...,T -1,
where AI(t) =1(t+1)—I(t), Alp(t) =Ip(t +1) — I5(2),
I¢(t) is the true infected cases, I(t) is the observed/recorded
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infected cases, and finally u(¢) is the under-reporting func-
tion. We consider a parametric model for the function wu(t)
(see more details in Section III). Note that we could also use
non-parametric method to solve the under-reporting issue, but
since the sample size of the time series is limited, in this paper,
we consider a parametric method instead. Given the observed
infected cases I(¢) and under-reporting function u(¢), one can
transform the data back to /¢(¢) by

I
L) = 0
If(t)—%-l-ff(t—l)

AlG-1) 1)
_Z T—u() ' 1-u() ©)
fort=2,...,T.

Combining the difference (2) normalized by the total popula-
tion with the transformations stated in (5) yield to the following
simple linear equations:

A 5() 1 _lr
(Nu—ﬁ%m) (O E) () o
N NS
. RN e

Y: X, B
foreacht =1,...,T — 1 where AI(t) =I(t+1) —
AR(t) = R(t+1) — R(1).

Next, we extend the standard SIR model to accommodate tem-
poral and spatial heterogeneity as well as to include stochastic
temporal components. The former is achieved, by allowing the
transmission and recovery rates to vary over time and through
the inclusion of an additional term in (7) that captures spatial
effects while the latter is achieved through adding a vector
auto-regressive component [36].

I(t) and

B. Modeling Framework: A Stochastic Piecewise Stationary
SIR Model With Spatial Heterogeneity

Compared to the standard SIR model, the proposed modeling
framework makes three major changes/modifications. First, the
assumptions underlying the transmission and recovery rates
of the standard SIR model are stringent. Both environmental
factors and changes in population behavior can lead to time
varying behavior and this has been the case for Covid-19; see,
e.g., discussion in [37]. Variants of the SIR model with time
varying parameters have been proposed in the literature [38]. For
our application, we assume that the transmission and recovery
rates are piecewise constant over time, reflecting the fact that
their temporal evolution is impacted by intervention strategies
and environmental factors (Model 1). Second, the standard SIR
model and its piecewise stationary counterpart do not account
for any influence due to inter-region mobility and travel activity.
We incorporate such inter-region information by considering the
influence exerted by its few neighboring regions such as cities,
counties or states (Model 2); see also [26]. Third, the standard
homogeneous SIR model, previously discussed, is determinis-
tic; hence, the output of the model is fully determined by the

parameter values of the transmission and recovery rates and the
initial conditions. Its stochastic counterpart [39], [40], possesses
some inherent randomness. Alternatively, the general stochastic
epidemic model can be approximated by the stochastic differ-
ential equation (see e.g. [41]):

dX(t) = f(X(2))dt + G(X(t))dW (), (8)

where the random variables S(¢) and I;(t) are continuous,

S(t) B3t
() )
[2pt]I£(2) 2pt)BE — I

E
Qt!SI \/’YT,

and W = (W, W,) is a vector of two independent Wiener
processes, i.e., W;(t) ~ N(0,t). Given (8), the stochastic SIR
model can be written as:

Y: = XiB + &,

G= ®

(10)
where
AI(t)

N HER0!

_ (L@ L)
xi= (PO

oo (\/ 501, 1)AWA () — AT AWz(t))

VAL AW, (t)

with the increments AW;(¢) and AWs(¢) being two inde-
pendent normal random variables, i.e., AW;(t) ~ N (0, At). It
can be seen that the resulting regression model, based on the
discrete analogue of (10), will have an error term exhibiting
temporal correlation, driven by I;(¢) and R(t). An examination
of the temporal correlation patterns in COVID-19 data (see left
two panels in Figs. 6 and 14 in the supplementary material)
supports this finding. To that end, we model the error process
as a Vector Auto-Regressive (VAR) with lag p (Model 3). The
corresponding temporal correlation plots for the residuals after
inclusion of the VAR(p) component are depicted in the right two
panels in Figs. 6 and 14 in the supplementary material and clearly
show the importance of considering such an error structure. The
piecewise stationary SIR model with spatial heterogeneity and
a VAR(p) error process is given by

mp+1
= Z X;B(J)]l{tj_lit{tj} +aZi+ dr1ee1 + ...
j=1

+éperptent=1,...,T 1, (11)

where {t1,...,tm,} are unknown mg “change points” such
that the transmission and recovery rates exhibit a change from
B(.?) = (JS(J),.-}((.?))’ to B(.:H‘]-) = (ﬁ(j‘f‘l),r};(j‘i‘l))’ at time POlnt
t;, while it remains fixed until the next break point. Hence,
these break points divide the time series data into stationary
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segments. Moreover, Z; = Egzl wj( N‘%‘Ei(_t(?)), ‘ﬁR;(f_l) ) is

the weighted average of spatial effect over the neighboring
regions at time ¢t where N7 denotes the total population in
neighboring region j; « is a spatial effect parameter; w;’s are spa-
tial weights such that E?:] w; = 1. The latter two parameters
capture inter-region mobility patterns. Finally, e; is white noise
with mean 0 and variance o2, and ¢, .. ., ¢y, are the correspond-
ing autoregressive parameters. In the sequel, model (11) with
o=@ =--- = ¢p =0 is considered as Model 1 (piecewise
SIR), the case of only restricting ¢y = --- = ¢, = 0 is consid-
ered as Model 2 (piecewise SIR with spatial effects) while the
full model with no constrains is considered as Model 3. Notice
that the number of change points mg and their locations are
unknown and must be estimated from the data together with all
other model parameters including BUs, o, and ¢, ..., Op. A
brief discussion of the proposed algorithm to perform all such
estimations is presented next.

C. Algorithm

The estimation of the model parameters is accomplished in
the following three steps: Step 1. Fit Model 1 for each region of
interest to obtain the change points; Sfep 2: Obtain the transmis-
sion and recovery rates and spatial effect as in Model 2. Step 3:
Compute the residuals (€;) from Step 2 and fit a VAR model to
them, see [36]. The rationale behind this step-wise algorithm is
that assuming that the influence of the spatial effect component
Z; is small, we can use Model 1 for each region of interest to esti-
mate both the change points and the corresponding transmission
and recovery rates. Denoting the final estimated change points by
Model 1as Af = {#{,... ,% ; }, segment-specific transmission
and recovery rates combined with an overall spatial effect can be
readily estimated using least squares applied to augmented linear
model which includes all segments concatenated to each other
at time points E}”s and the spatial effect. Finally, the residuals of
this augmented linear model utilizing the least squares estimates
can be computed and additional least squares estimates on the
residuals with its previous values in the design matrix can yield to
estimates of autoregressive parameters. The difficult part of the
algorithm is to estimate the number and locations of break points.
Details of the algorithm are presented in the Appendix A while
a brief summary is provided next. The first step of the algorithm
aims to select candidate change points A,, among blocks by solv-
ing a block fused lasso problem. The estimated change points
obtained by the block fused lasso step includes all points with
non-zero estimated parameters, which leads to overestimating
the number of the true change points in the model. Nevertheless,
the block fused lasso parameter estimates enjoy a prediction
consistency property, which implies that the prediction error
converges to zero with high probability as n — +-oc. This result
is stated and proved (see Theorem 1 in the Appendix B) under
some mild conditions on the behaviour of the tail distributions of
error terms. A hard-thresholding step is then added to reduce the
over-selection problem from the fused lasso step by “thinning
out” redundant change points exhibiting small changes in the
estimated coefficients. After the hard-thresholding step, those
candidate change points located far from any true change points

will be eliminated when the block size is appropriate. On the
other hand, there may be more than one selected change points
remaining in small neighborhoods of each true change point.
To remedy this issue, the remaining estimated change points are
clustered while in each cluster, an exhaustive search examines
every time point inside the neighborhood search region based on
the cluster of candidate change points and selects the best time
point as the final estimated change point.

III. SIMULATION STUDIES

We evaluate the performance of the proposed models on their
predictive accuracy, change point detection and parameter esti-
mation. We consider three simulation scenarios (see additional
simulation settings in Section II in the supplementary material).
The details of the simulation settings for each scenario are
explained in Section III-A. All results are averaged over 100
random replicates.

We assess the results for the three models presented: Model
1, the piecewise stationary SIR model; Model 2, the piecewise
stationary SIR model with spatial effect; and Model 3, the
piecewise stationary SIR model with spatial effect and a VAR(p)
error process. The out-of-sample Mean Relative Prediction Error
(MRPE) is used as the performance criterion defined as:

1 T T - 16
MRPE(]) = —— > 1) — 1) )I(t)() : (12)
t=T+1

where n'*? is the number of time points for prediction, I () is
the predicted count of infected cases at time ¢, and I(¢) the ob-
served one. The MRPE of R(¢) can be obtained by respectively
replacing the I(¢) and I(¢) with R(t) and R(t). The predicted
number of infected cases and recovered cases are defined as

I(t) = I(t— 1)+ AI(t — 1),

R(t) = R(t— 1)+ AR(t — 1), (13)

forall t =T +1,...,T + n'*. For change point detection,
we report the locations of the estimated change points and the
percentage of replicates that correctly identifies the change point.
This percentage is calculated as the proportion of replicates,
where the estimated change points are close to each of the true
break points. Specifically, to compute the selection rate, a se-
lected break point is counted as a “success” for the j-th true break
point, t;, if it falls in the interval [t; — 2L ¢, 4 20 ]
7 =1,...,mp. We also report the mean and standard deviation
of estimated parameters for each models. All results are reported
in Table L.

A. Simulation Scenarios

We consider three different simulation settings. The SIR
model’s coefficients and under-reporting functions are depicted
in Fig. 1 in the Section II.

1) Simulation Scenario A (Model 3 with no under-reporting):
The data are generated based on (11) with piecewise constant
transmission and recovery rates. We set the number of time
points T' = 200, mo = 1, the change point ¢; = [Z] = 100,
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TABLEI
SIMULATION RESULTS INCLUDING SELECTION RATE, ESTIMATED PARAMETERS, AND OUT-OF-SAMPLE MEAN RELATIVE PREDICTION ERROR (MRPE). NOTE THAT
I R INcLUDES BoTH I(t) AND R(t)

change point truth mean std selection rate
Scenario A 1 0.5 0.5 0 1
Scenario B 1 04 0.4 0 1
2 0.8 0.8 4e-04 1
Scenario C 1 0.5 0.5 0 1
parameter true value mean std
51 0.1 0.1 3e-04
B2 0.05 0.05 le-04
Scenario A " 0.04 0.04 le-04
2 0.04 0.04 le-04
o] 1 0.9945 0.0318
51 0.1 0.1001 0.0078
B2 0.05 0.0488 0.0106
B3 0.1 0.0986 0.0087
Scenario B 1 0.04 0.0392 0.0074
2 0.06 0.0589 0.0114
3 0.04 0.0391 0.0054
a 0.05 0.0515 0.016
R 0.1 0.0904 0.016
B2 0.05 0.0427 0.0123
Scenario C 1 0.04 0.0336 0.0108
Y2 0.04 0.0341 0.0099
o 1 1.84 1.6373
a 0.5 0.3905 0.1977
Model MRPE(JR) MRPE(I(t)) MRPE(R(t))
Model 1 0.000252 0.000362 0.000142
Scenario A Model 2 2.6e-05 3.9e-05 1.3e-05
Model 3 2.4e-05 3.7e-05 1.2e-05
Scenario B Model 1 0.00415 0.005888 0.002413
Scenario C Model 3 (Transformed by u(t)) 0.000162 0.000175 0.000149
Model 3 (Not transformed) 0.000911 0.000829 0.000993

ay 28 points ; = 100 and t, = 200. We choose (1) = 0.10, 8 =
o) g 0.05, BG) = 0.10, v(¥) = 0.04, v@ = 0.06, v(3) = 0.04. Re-
E:, go sults are based on data generated from the SIR model in
> | £8 . 1 (i
£ §§ (11) with B(t) ~ Lognormal (37207 BT, | <4cy 3, 0.005)
| s | 1@
§° g and ~(t) wLognorm::tl(zif',‘i"lJr Y1, <t<t;),0.005). The
50 §§- under-reporting rate is chosen to change over time. Specifi-
=" p _ 1
s Rol L= cally, we set the under-reporting rate u(t) =1 — e
ar U P Mar —WMay —Ju S Nov t=1,...,T,with a = 0.05 and b = 10.
(a) under-reporting function (b) daily testing 3) Simulation Scenario C (Model 3 with quadratically de-
creasing under-reporting rate): The data are generated based on
Fig. 1.  (left panel) Estimated under-reporting rate functions for all six states;

(11) with piecewise constant transmission and recovery rates. All
the settings are exactly the same as those in scenario A except for
the under-reporting rate. In this scenario, we set under-reporting

rate u(t) = 1 — (F455)% t =1,..., T, witha = 0.5.

(right panel) 7-day moving average of daily testing for all six states. (a) under-
reporting function (b) daily testing.

BM =0.10, 8 = 0.05, v = 0.04 and ~? = 0.04. For the
spatial effect, weseta = 1, B,(t) = 0.10 — 255t 4, (¢) = 0.04,

t=1,...,T — 1. We first generate the spatial effect data from B. Simulation Results

SIR model in (11) with parameter 3¢ (¢) and ~.(¢) and generate
the error term by VAR(1) model with the covariance matrix of the
noise process Xz = 0.1, where [; is the two-dimensional iden-
tity matrix. By plugging in the spatial effect data and error term
data, we generate the dataset of the response variable Y; from
(11). The autoregressive coefficient matrix has entries 0.8,0, 0.2,
0.7 from top left to bottom right. We assume no under-reporting
issue in this scenario, i.e., u(t) = 0, hence AI(t) = Al;(t), for
t=1,...,T -1

2) Simulation Scenario B (Model 1 with exponentially
decreasing under-reporting rate): In this scenario, we set
the number of time points T = 250, mg = 2, the change

The mean and standard deviation of the location of selected
changemgoint, relative to the the number of time points T’
— ie., t7/T - for all simulation scenarios are summarized
in Table 1. The results clearly indicate that, in the piecewise
constant setting, our procedure accurately detects the loca-
tion of change points. The results of the estimated transmis-
sion rate ,§, recovery rate 7, spatial effect & and parameter
of the under-reporting rate function @ suggest that our pro-
cedure produces accurate estimates of the parameters, under
the various under-reporting function settings (b is assumed to
be known). We generate additional 20 days worth of data to
measure the prediction performance. The MRPE results for

Authonized licensed use limited to: UCLA Library. Downloaded on July 01,2025 at 01:22:36 UTC from IEEE Xplore. Restrictions apply.



BAI et al.: HYBRID MODELING OF REGIONAL COVID-19 TRANSMISSION DYNAMICS IN THE U.S. 267

I(t) and R(t) are provided in Table I. The results in scenario
A indicate that adding the spatial effect can significantly im-
prove the prediction, when the spatial component influences
the individual data series. The results in scenario C indicate
that adding the under-reporting function u(¢) can significantly
improve the prediction, when there is under-reporting in the data
series.

IV. APPLICATION TO STATE AND COUNTY LEVEL COVID-19
DATA IN THE U.S.

A. Data Description

The COVID-19 data used in this study are obtained from [42].
The curated data and code used in the analysis are available at
the authors’ GitHub repository.* The analysis is performed both
at the state and county level and the raw data include both cases
and deaths, as reported by state and local health departments and
compiled by the NY Times. However, due to lack of complete
information on recovered individuals (which is an important
covariate in the models considered, but the daily number of
recovered cases is only reported at the national level [43]),
we calculate the number of recovered cases for each region
(state/county) as follows: the number of deaths in the region,
multiplied by the nationwide cumulative recovered cases and
divided by the nationwide deaths. Specifically, we assume that
the recovery versus deceased ratio for each state/county is fixed,
and can be well approximated by the nationwide recovery-to-
death ratio. As coronavirus infections increase, while labora-
tory testing faces capacity constraints, reporting only confirmed
cases and deaths leads to (possibly severe) under-estimation of
the disease’s impact. On April 14, 2020, CDC advised states to
count both confirmed and probable cases and deaths. As more
states and localities did so since then, in this study we focus on
the combined cases, which include both confirmed and proba-
ble cases. The populations of states and counties are obtained
from [44]. Further, to decide which neighboring states/counties
to include in Model 2, their distance to the target state/county
of interest is used. The latter is obtained from the [45]. In the
results presented, we define regions within 500 miles for states
and 100 miles for counties/cities as neighboring ones in Models
2 and 3. For those areas with a large number of neighboring
regions, such as New York state, we only consider the top five
regions with the smallest distances. We assume the probability
rate of becoming susceptible again after having recovered from
the infection to be 0.5%. The reinfection rate in the short run
(~6 months) is believed to be very low. Some evidence from
health care workers (median age 38 years) estimates it at 0.2%
[46]. Hence, the selected one seems a reasonable upper bound
for the task at hand. Note that small variation of this rate did not
impact the results.

We analyzed the daily count of COVID-19 cases at the state-
level from March 1, 2020, to March 31, 2021 for the selected five
states (NY, OR, FL, CA, TX), and at the county-level from the
first day after March 1, 2020, when the region records at least

4[Online]. Available: https://github.com/ybai69/COVID-19-Change-Point-
Detection

one positive COVID-19 case to March 31, 2021. In addition,
we analyzed the COVID-19 cases in the state of Michigan from
March 1, 2020, to May 15, 2021. In particular, the sample size
n for the five states presented next (NY, OR, FL, CA, TX) is
n = 395 while for state of Michigan, Riverside County (CA) and
Santa Barbara County (CA), n = 432, 389, 381, respectively.
For the under-reporting rate function w(¢), both quadratic func-
tion -u(t) =1 — (Tﬁ—‘;%)z- and exponential function -u(t) =
1 — 752wy - are considered. The quadratic function achieved
better performance in change point selection in the real data
application (change point detection results using the exponen-
tial function are presented in Table XI in the Supplement).
Therefore, all presented results in this Section are based on the
quadratic function. Finally, to estimate the under-reporting pa-
rameter a, we perform a grid search within the interval [0.1,0.3].
The main reason for selecting this interval is that it matches with
around 90% of COVID-19 under-reporting rate at the beginning
of the pandemic as investigated and reported in [34], [35]. Note
that we also assume that the COVID-19 under-reporting rate
after December is very low as most of the regions built-up their
testing capacity. Therefore, we set u(t) = 1 after December
2020.

Most of the states were selected due to being severely affected
for a certain period of time during the course of COVID-19. The
remaining regions illustrate interesting patterns gleaned from
the proposed models. Let I(¢) and R(t) denote the number
of infected and recovered individuals (cases) on day . Day 1
refers to the first day after March for which the region records
at least one positive COVID-19 case. Fig. 2 in the Supplement
depicts the actual case numbers I (¢) and R(¢) in the six states
considered.

B. Results for Selected U.S. States

The various models considered are applied on scaled versions
(divided by their standard deviations) of the predictors matrix
X and the response vector Y;. For Model 2, we consider four
different types of weights: equal weights (Model 2.1), distance-
based weights (Model 2.2), similarity-based weights (Models
2.3 and 2.4). In Models 2.1 and 2.2, the neighboring regions are
selected based on distance. For states, a threshold of 500 miles
is used and the resulting neighbors are displayed in Table VII in
the supplementary material. When the spatial resolution is high
(county level aggregated data), neighboring regions may exhibit
similar patterns in terms of the evolution of transmission and
recovery rates. Therefore, constructing weight matrices based
on distance is meaningful as it is a common practice in spatial
statistics [47]. Such spatial smoothing through proper weight
matrices is especially helpful in increasing the statistical power
through increasing the sample size, thus yielding more accurate
predictions.

However, the evolution of COVID-19 may exhibit different
patterns across neighboring states due to the coarse spatial
resolution. Thus, defining weight matrices based on distance
may not be ideal. Hence, Models 2.3 and 2.4 select regions based
on similarities of infected/recovered cases. Similarity between
the region of interest and the j-th potential similar region is
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TABLE II
NEIGHBORING STATES AND CITIES/COUNTIES BY SIMILARITY SCORE (FOR
MODEL 2.3). (STATES: SELECTED FROM ALL STATES IN THE COUNTRY,
COUNTIES: IN THE SAME STATE)

Region Neighboring Regions
New York Massachusetts, New Jersey, D.C., Pennsylvania, Michigan
Oregon Maine, Washington, Vermont, West Virginia, New Hampshire
Florida South Carolina, Nevada, Texas, Alabama, Mississippi
California North Carolina, Texas, Nevada, West Virginia, Mississippi
Texas California, North Carolina, South Carolina, Nevada, Alabama
Riverside Orange, Los Angeles, Ventura, San Diego, Monterey
Santa Barbara  San Diego, Ventura, Orange, San Francisco, Contra Costa
defined as
Sj =
T-1 j 2 7 .
¥ Al(t)  AL() 5 AR(t)  ARI(t))*
N NJ N Ni '
t=1 =1
(14)
AI(t) Jrpy . AI(E)
where Al;(t) = TutrD) and AT (t) TouterD) Model

2.3 uses the top five regions with the smallest similarity score,
while Model 2.4 uses all states in the country. For states, the
resulting neighbors for Model 2.3 are displayed in Table II.

In the equal weight setting (Model 2.1), w; = 1/gforany j =
1,...,q. In both distance-based weight and similarity-based
weight settings, power distance weights are used, wherein the
weight is a function of the distancefsimjlarity to the neighboring
region wj = dl , wj = = where d; is the distance score and
s;j is the 51m11ar1ty score for the j-th region. Under the con-
straint that ) 7 j=1wj = 1, we obtain the normalized weights as

S_l

!
wi= Yioad “i = ko1 Sk

Before applying Model 3, we compare the in-sample and out-
of-sample MRPEs (defined in Section III) in all four variants
of Model 2 and select the parameter values estimated by the
best-performing model. In subsequent analysis, the results from
Model 2.3 are reported, since it proved to be the best performing
one.

As expected, change points detected for state data are related
to “stay-at-home” orders, or phased reopening dates issued by
state governments. We define the reopening date as the time
when either the “stay-at-home™ order expired or state govern-
ments explicitly lifted orders and allowed (selected or even all)
businesses to reopen [48]. The “stay-at-home” and reopening
dates for all states are shown in Table III.

In Model 1, a change point is detected from March to April
for all five states: New York, Oregon, Florida, California and
Texas. These change points coincide with the onset of “stay-
at-home” orders and correspond to a significant decrease in the
transmission rate. The first change points detected are around
two weeks after the state’s Governors signed a statewide “stay-
at-home” order (three weeks for CA), which is consistent with
the fact that COVID-19 symptoms develop 2 days to 2 weeks
following exposure to the virus. As can be seen from Fig. 4 in the
supplementary material, in addition to the downward trend after
lockdowns have been put in place, Oregon, Florida and Texas
have a clear upward trend after state reopenings began in May.

The model detects a change point in June for these states, which
relate to their reopenings.

Note that the restriction in either phase 2 reopening plan in
Florida and the phase 3 reopening plan in Texas are quite sim-
ilar in terms of restaurants, bars, and entertainment businesses.
Starting June 5, restaurants and bars in Florida could increase
their indoor seating to 50% capacity. Movie theaters, concert
venues, arcades, and other entertainment businesses could also
open at 50% capacity. Starting June 3, all businesses in Texas
could expand their occupancy to 50% with certain exceptions.
Moreover, bars could increase their capacity to 50% as long as
patrons are seated.

Assuming that Florida had not begun the phase 2 reopening
plan on June 5, our model predicts 36,626 infected cases by
June 12 while the actual number of infected cases is 39,327
(7.3% higher). Similarly, by June 19, our model predicts 41,728
infected cases, while the actual number of infected cases is
55,607 (33.3% higher). Similarly, suppose that Texas had not
begun the phase 3 reopening plan on June 3, then by June 17, our
model predicts 74,204 infected cases, while the actual number
of infected cases is 76,377 (1% higher).

In July, many states paused plans to reopen, amid rising
infected case counts.’ These pausing actions effectively slowed
the spread of COVID-19, as can be clearly seen in the downward
trend of the transmission rate in July and August in Oregon,
Florida, California and Texas. Interestingly, a change point in
July is detected in Oregon, Florida and Texas, and a change
point in August is detected in California, mainly related to this
pausing.

The left panel of Fig. 1 depicts the estimated function (%)
while the right panel displays the performed daily test normal-
ized by the populations for the six states under consideration.
Comparing these two plots indicate that states at which the
testing capacity has been limited, the under-reporting rate was
estimated higher and vise versa. For example, New York had
more daily tests based on its population compared with the other
states, which coincides with its lower estimated under-reporting
rate at the beginning while the estimated under-reporting rate
is higher for Texas and Florida which could be due to limited
capacity in daily testing at the beginning of pandemic for these
states. Note that the under-reporting rate is estimated around
90% in March for all states. Such high under-reporting rates at
the beginning of the pandemic are reported in other countries as
well, such as China [49].

The observed and fitted number of infected cases are displayed
in Fig. 2. Note that the fitted number of infected cases and
recovered cases are defined as

t—1 t—1
I(t)=I(1)+Y_ AI(k), R(t)=R(1)+> AR(K),
k=1 k=1
(15)

for all ¢ =2,...,T. In summary, the piecewise constant SIR
model (Model 1) with detected change points significantly im-
proves the performance in prediction of the number of infected

3[Online]. Available: https://www.usatoday.com/story/news/nation/2020/06/
30/covid-cases-states- pausing-reopening- plans-1ist/3284513001/
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TABLE IIT
STATEWIDE “STAY-AT-HOME” PLAN AND REOPENING PLAN BEGIN DATES, ALONG WITH THE DETECTED CHANGE POINTS (CPS) IN STATES AND COUNTIES/CITIES

Region “Stay-at-home” plan  Reopening plan (statewide) Detected change points

New York March 22 Tuly 6 (Phase 3) April 04 2020

Oregon March 23 May 15 (Phase 1) April 06 2020, June 06 2020, July 18 2020, Jan 16 2021

Florida April 3 June 5 (Phase 2) April 13 2020, June 17 2020, July 25 2020

California March 19 June 12 (Phase 2) April 11 2020, April 29 2020, Aug 12 2020, Dec 06 2020, Jan 19 2021

Texas April 2 June 3 (Phase 3) April 18 2020, June 03 2020, June 15 2020, July 23 2020, Sep 20 2020, Jan 03 2021, Feb 10 2021
Michigan March 24 June 8 (phase 5) April 11 2020, June 04 2020, Nov 01 2020, Nov 21 2020, Dec 11 2020, March 21 2021
Riverside (CA) March 19 June 12 (Phase 2) April 17 2020, June 20 2020, July 26 2020, Nov 28 2020

Santa Barbara (CA) March 19 June 12 (Phase 2) April 15 2020, May 11 2020, June 10 2020, July 25 2020, Dec 27 2020
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Observed (black) and fitted (red) number of infected cases estimated by three models in selected five states. The pre-specified change points are two fixed

change points derived from the statewide lockdown date and reopening date. (a) NY (Model 1 with pre-specified change points). (b) OR (Model 1 with pre-specified
change points). (c) FL (Model 1 with pre-specified change points). (d) CA (Model 1 with pre-specified change points). (e) TX (Model 1 with pre-specified change
points). (f) NY (Model 1 with detected change points). (g) OR (Model 1 with detected change points). (h) FL (Model 1 with detected change points). (i) CA (Model
1 with detected change points). (j) TX (Model 1 with detected change points). (k) NY (Model 2.3). (I) OR (Model 2.3). (m) FL (Model 2.3). (n) CA (Model 2.3).
(0) TX (Model 2.3). (p) NY (Model 3). (g) OR (Model 3). (r) FL (Model 3). (s) CA (Model 3). (t) TX (Model 3).

cases compared with the piecewise constant SIR model with
pre-specified change points. Pre-specified change points are
defined as stay-at-home or reopening order dates for each region.
It can be seen from the first two rows in Fig. 2 that estimating
when break points occurred using the developed algorithm im-
proves the fit significantly, especially for states in which multiple
change points are selected such as Oregon, California and Texas.
Model 2.3 further improves the fit of the data for Florida and Cal-
ifornia, due to the addition of a spatial smoothing effect. Finally,
Model 3 provides further improvements, in particular for New

York, which justifies empirically the use of hybrid modeling
to analyze regional transmission dynamics of COVID-19. To
determine the significance level of the spatial effect in Model 2,
we provide the estimate, p-value, and 95% confidence intervals
for the parameter « in Table VIII in the Supplement. We find
that the influence of the infected or recovered cases in adjacent
states is statistically significant (p-value < 0.05) for all states.
Next, we assess the prediction performance for the three
proposed models. The out-of-sample MRPE is used as the
performance measurement, given by (12). We set the last two
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TABLE IV
OUT-OF-SAMPLE MEAN RELATIVE PREDICTION ERROR (MRPE) OF I(t). THE
NUMBER IN BETWEEN THE BRACKETS STANDS FOR THE STANDARD DEVIATION
OF THE RELATIVE PREDICTION ERROR

TABLE V
OUT-OF-SAMPLE MEAN RELATIVE PREDICTION ERROR (MRPE) OF R(t). THE
NUMBER IN BETWEEN THE BRACKETS STANDS FOR THE STANDARD DEVIATION
OF THE RELATIVE PREDICTION ERROR

NY OR FL Ch TX NY 3 FL TA TX
MRPE(D MRPE(D) MRFE() MRPED) MRPE(T) MRFE(R) MRFE(R) MRFE(R) MRPE(R) MRFE(R)
Model 1 OD0I1(7e03)  Oc03(7e-4]  D00IGO00T)  Be-08(2c-04)  7e-08(3c-04) Model 1 0.0019(3c-4)  D.O0ZB.00IT)  D.00Z8(7e-04)  O.0042(Be4)  D.002(7e-04)
Model 2.1 00011(7e04)  0.001(82-04)  0.0018(7e04)  Se-04(2e-4)  Se-difie(Md) Model 2.1 fe4(3e-04)  OUOLTO0Z)  O0O0L(GeAM)  0.0029(Ted)  0.0025(0.0029)
Model 2.2 QO011(Te4)  0001(Te-04) D001 T(Te-04)  fe-Od(2e-04) Qe-(hd(Be-(M) Model 2.2 de-04(3e-04)  0.0018(0.0019)  0L0O1{Ge-0d) 002N Te-04)  DLOOZH(0.0042)
Medel 2.3 de-04(Se-04)  Te-Dd(Be-04)  O0M2(ReD4)  de-Bd3eM)  Ge-DM(de-0d) Model 2.3 4e04(2e-04)  0.002200.0019)  00012(Se0d)  0.0022(Ted)  0.001(Tedd)
Model 2.4 0.0016(8e-04)  0.001(8e-4)  0.001(Te-0d)  Te-Dd(de-04)  Se-D4(Se-04) Model 2.4 Sed(Se-04)  OOON0.0026)  9e-04(0.001)  000ZH0.001)  D.001S(Te-04)
Model 3 de-(de-04)  Te-Dd(6e-04)  000L(Re04)  de-Bd(3e-M)  Ge-d(4e-04) Model 3 dc-4(2e-04)  0.0022(00018)  0.001(6e-04)  0.0022(Te-04)  D.001(Te-04)
2SIR 00062(9c-04)  0.0076(0.0013)  0.0066(0.001)  0.0L06(6e-04)  0.0095(0.001) eSIR GOIHOONIT)  GO1400031)  001030001Z)  0.0117(00012)  0.01130.001)
ANN Se-Dd(de-04)  0.001H0.0013)  BeD4(Be-04)  de-Bd(3e-Dd4)  Se-Dd(de-04) ANN 3e-0d(2e-04)  QOUIT(O0021)  Se-Odide-04 00012(0.001)  Be-04(5e-04)
LST™ Te-d(de0d)  O00120001)  TedMiBe-D4)  6Ge-Od(8e-04)  Ge-M(Se) LSTM Jo-(d(3e-04)  0.0025(0.0021)  6e-04(4e-04)  D.00ZTO.0036)  Ge-04ife-04)
LSTM (layer,neurcns) L, 10y (3, 10} (1, 50) 11, 100) [ENED] LST™ (layerneurons) (1,10} (3, 10) {1, 50} {1, 100} (3, 50)
TABLE VI

weeks of our observation period as the testing period and use the
remaining time points for training the model. Note that predicted
number of infected and recovered cases are defined by (13).

The results of out-of-sample MRPE of I(¢) and R(¢) in the
selected regions are reported in Table V1. The calculated MRPEs
of I(t) show that Model 3 which includes spatial effects and
VAR temporal component outperforms the other models. Spatial
smoothing itself (Model 2) reduces the prediction error signif-
icantly in some states. For example, in New York, the spatial
smoothing reduced the MRPE (I) by 64% when using Model
2.3 (similarity-based weight). Finally, the reduction in MRPEs
using Model 3 justifies the presence of the VAR component in
the modeling framework. Additional results related to the VAR
component (including the estimated auto-regressive parameters)
are reported in Section V in the Supplement.

We also compare the developed model and associated method-
ology with the extended SIR, the ANN and the LSTM based
models that were proposed in [17], [28], and [29], respectively.
The extended SIR model was trained using the “eSIR™ package
in the R programming language. The transmission rate modifier
w(t) was specified according to actual interventions at different
times and regions as described in [17]. The ANN was trained
using the “nnfor” package in the R programming language. It
comprises of 3 hidden layers with 10 nodes in each and a linear
output activation function, which is the exact architecture in [28].
The number of repetitions for this algorithm was set to be 20 for
I(t) and 10 for R(¢). The LSTM architecture was implemented
in PyTorch. The [29] did not specify the network architecture
setting (number of layers, number of neurons). Thus, we per-
formed a grid search over number of layers ranging from 1 to 3
with number of neurons as 10, 50, and 100. The best architecture
in terms of minimizing the prediction error in the validation
data is selected as the optimal LSTM architecture. Note that
the prediction results with different network architecture in the
LSTM were very similar. The selected number of layers and
number of neurons based on grid search and corresponding
prediction error for each region are also provided in Tables IV
and V.

The results of out-of-sample MRPE for I(¢) and R(#) in
the five states under consideration together with their sample
standard deviations in the bracket are reported in Tables IV
and V, respectively. The proposed method clearly outperforms
the extended SIR (eSIR) model across all five states for both
I(t) and R(t). Further, it broadly matches the performance of
ANN and LSTM for most states. Further, note that the proposed
model is easy to interpret since its key parameters (infection and

OUT-OF-SAMPLE MEAN RELATIVE PREDICTION ERROR (MRPE) OF I(t) AND
R(t) FOR SELECTED REGIONS

New York California Riverside Santa Barbara

I R I R 1 R 1 R
Model 1 0.00IT 0.0019 904 00042 00056 0.0036 00037 0.0071
Model 2.1 00011 4e-04  Se-04 00029 00043 00028 00016 00039
Model 22 0.0011  4de-04  6e-04 00029 00045 00027 00014 0.0032
Model 23 de-04  de-0d4 d4e0d4 00022 00014 00025 0.0014 00028
Model 24 00016  Se-04  Te-04 00029 00013 00027 00017 00033
Model 3 de4  ded  de-0d4 00022 00012 00016 0.0014 00028

recovery rates) are routinely used by policy makers (see also the
discussion in Section IV-C).

C. Results for Selected U.S. Counties

We worked on nine counties/cities. Due to limited space,
results for two counties in the state of California (Riverside
and Santa Barbara) are presented here while rest are described
in Section IV in the supplementary materials. For determining
their neighbors, a threshold of 100 miles is used. Model 2.3 uses
the top five counties in the corresponding state with the smallest
similarity score, while Model 2.4 uses all counties in the given
state. The resulting neighbors for Model 2.3 are displayed in
Table II. The statewide and countywide policy start dates and
the detected change points are shown in Table III.

In December, Southern California was experiencing a fast
and sustained outbreak, believed to be driven by a new strain
designated as CAL.20 C.¢ To that end, we analyzed the daily
count of cases in Riverside and Santa Barbara counties in CA.
As seen from Fig. 11 in the supplementary material, three of the
detected change points occurred on April 17 2020, July 20 2020,
and July 26 2020 in Riverside County. The first one can be related
to the decreased transmission rate in April mainly caused by the
statewide lockdown, while the July ones could be due to the
pause of reopening to halt the spread of COVID-19. Similarly,
five change points are detected in Santa Barbara County. The
first four change points can also be related to the lockdown,
reopening and pause of reopening. An additional change point
in Riverside County and Santa Barbara County is detected on
November 28 and December 27, respectively, which may be
driven by the new CAL.20 C variant.

We also provide the out-of-sample MRPE of I (¢) and R(¢) of
selected counties in Table VI. The MRPE of I(¢) results show
that adding the spatial effect can significantly improve the MRPE
of I(¢) in both the Riverside County and Santa Barbara County.

5[Online]. Available: https://www.newswise.com/coronavirus/local-covid-
19-strain-found-in-over-one-third-of- los-angeles-patients2/
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(d) Averaged empirical recovery rate 5

(e) Estimated Recovery rate 5

(f) Standard deviation of estimated recovery rate 5

Fig. 3. Heatmap of transmission rate and recovery rate in Florida (county-level). (a) Averaged empirical transmission rate E (b) Estimated transmission rate E
(c) Standard deviation of estimated transmission rate 3 (d) Averaged empirical recovery rate ~ (e) Estimated Recovery rate 5 (f) Standard deviation of estimated

recovery rate .

Adding the VAR(p) (Model 3) performs the best in Riverside
County. In Riverside County, the spatial smoothing reduced
the MRPE (I) by 76% when using Model 2.4 (similarity-based
weight) while in Santa Barbara County, the spatial smoothing
reduced the MRPE (I) by approximately 62% when using Model
2.3 (similarity-based weight). The MRPE of R(t) results show
that the piecewise constant model with spatial effect (Model 2)
performs the best in Santa Barbara County while Adding the
VAR(p) (Model 3) performs the best in Riverside County.

In Fig. 3, we provide heatmaps of the transmission and
recovery rates in 67 counties in Florida, based on data from
August 1st 2020 to December 1st 2020, a stable period in
that state with no change point detected. The top left plot
depicts the averaged empirical transmission rate 3, wherein it

is calculated as the average [3(¢) within the given time interval,

ie., B(t) = (rrapdmy + AR(t)/(3214(t)); the top middle

plot, the heatmeap of the estimated transmission rate E and
finally the top right plot the heatmeap of the standard error
of E using linear regression analysis (for more details, see
Section I'V-A in the supplementary material). The bottom plots
are the corresponding heatmaps of the recovery rate, wherein
the bottom left plot depicts the averaged empirical recovery rate
7, which is the average (¢) within the given time interval, and
(t) = AR(t)/I;(t). AsshowninFig. 3, the estimated rates are
very close to the averaged empirical transmission and recovery
rates. This point confirms the interpretability of the proposed
hybrid modeling framework. During this time period, Lafayette
County has the highest transmission rate, while Union County
has the highest recovery rate. Moreover, Citrus, Charlotte and
Highlands Counties have both (significantly) high transmission

and recovery rates based on standard errors of the estimated
parameters.

V. CONCLUDING REMARKS

COVID-19 has posed a number of challenges for modellers,
both due to the lack of adequate data (especially early on in
the course of the pandemic) and its characteristics (relative long
period before emergence of symptoms compared to SARS and
other respiratory viruses). A plethora of models -a number of
them briefly summarized in the introductory section- were de-
veloped, most aiming to provide short and long term predictions
of the spread of COVID-19. This work contributes to that goal by
developing a hybrid model that enhances a piecewise stationary
(mechanistic) SIR model with neighboring effects and temporal
dependence to model the spread of COVID-19 at both state-level
and county-level in the United States. The reasonable forecasts
of Model 3 (including spatial effects and the VAR component)
confirm the existence of spatial and temporal dependence among
new daily cases which can not be accounted by the homogeneous
deterministic SIR model. Further, the detection of change points
in neighboring counties can provide insights into how the spread
of COVID-19 impacted different communities at different points
in time and also that of mitigation policies adopted by county
(state) health administrators.

APPENDIX A
ALGORITHM DETAILS

The key steps in our proposed detection strategy are summa-
rized next while a summary is outlined in Algorithm 1 in the
supplementary material. First, few notations are defined.
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Notation: Denote the indicator function of a subset A as 1 4.
R denotes the set of real numbers. For any vector v € RP, we
use [[v]|1, [|vll2 and [[v]loo to denote D7 |vil, /325 |vil®
and max; <;<p, |v;], respectively. The transpose of a matrix A is
denoted by A'.

Steps of the Proposed Algorithm.

Block Fused Lasso: the objective is to partition the observa-
tions into blocks of size by,, wherein the model parameter B
remains fixed within each block and select only those blocks
for which the corresponding change in the parameter vector
is much larger than the others. Specifically, let n =T — 1 be
the number of the times points for the response data Y; and
define a sequence of time points 1 =g <7y < ... <71}, =
n+ 1 for block segmentation, such that r; —r;_; = b, for
i=1,...kn—1,by <7p, — 18,1 < 2b,, wherek, = [&J
is the total number of blocks. For ease of presentation, itis further
assumed that n is divisible by b, such that r; — r;_1 = by, for
allz=1,...,k,. By partitioning the observations into blocks
of size b, and fixing the model parameters within each block,
we set §; = B and

_ [ BU*Y — BU), whent; € [r;_y,r;) for some j
70, otherwise,

for i =2,3,...,k,. Note that 6; # 0 for ¢ > 2 implies that
6; has at least one non-zero entry and hence a change in the
parameters. Next, we formulate the following linear regression
model in terms of O (k) = (61, ...,0; )"

Y, X, 0 ... 0 £,
Y, Xo Xo ... ... 0 2 £Es
. . . . 02 .
— . + s
: S oo O, :
Y. X Xp oo Xy £,
h v d e(kn)
y x E
where Y= (Y, ,,.... Yr,1), Xi=(Xs, ,,..., X, 01),
Ei=(er,ps--s6r,1)s i=1l....kn. YVeER™ Xe

R2mx2kn Q(ky,) € R%*» and E € R?".
A simple estimate of parameters (k) can be obtained by
using an ¢;-penalized least squares regression of the form

6 (kn) = arg min {2i||y - x0|3 + xnneul} . )
OcRzkn (4T
which uses a fused lasso penalty to control the number of
change points in the model. This penalty term encourages the
parameters across consecutive time blocks to be similar or even
identical; hence, only large changes are registered, thus aiding
in identifying the change points. Further, a hard-thresholding
procedure is added to cluster the jumps into two sets: large and
small ones, so that those redundant change points with small
changes in the estimated parameters can be removed. We only
declare that there is a change point at the end point of a block,
when associated with large jump of the model parameters.
Hard Thresholding: is based on a data-driven procedure for
selecting the threshold 7. The idea is to combine the K -means
clustering method [50] with the BIC criterion [51] to cluster the

changes in the parameter matrix into two subgroups. The main
steps are:

® Step 1 (initial state): Denote the jumps for each block by
vk = ||0k||2. k =2,.. ., ky, and let v; = 0. Denote the set
of selected blocks with large jumps as .J (initially, this is
an empty set) and set BIC?!% = cc.

e Step 2 (recursion state): Apply K-means clustering to
the jump vector V' = (vq,va,..., vk, ) With two centers.
Denote the sub-vector with a smaller center as the small
subgroup, Vg, and the other sub-vector as the large sub-
group, V. Add the corresponding blocks in the large
subgroup into J. Compute the BIC by using the estimated
parameters O after setting 6; = 0 for each block i ¢ Jand
denote it by BIC™®”. Compute the difference BICHT =
BIC™*" — BIC®?and update BIC®'? = BIC™®". Repeat
this step until BICY™ > 0.

Block clustering: the Gap statistic [52] is applied to determine
the number of clusters of the candidate change points. The basic
idea is to run a clustering method (here, K -means is selected)
over a grid of possible number of clusters, and to pick the optimal
one by comparing the changes in within-cluster dispersion with
that expected under an appropriate reference null distribution
(for more details, see Section III in [52]).

Exhaustive search: Define I; = (min(C;) — bn)lyc, =1} +
min(Ci)ll{|ci|>1} and u; = (max(C;) + bn)]l{|C,-|=1} —
max(C;)1l{c,>1), Where C;’s are the subsets of candidates
blocks by block clustering procedure. Denote the subset of
corresponding block indices by J;. Define the following local
coefficient parameter estimates:

% (max(J;_;)+min(J;))

B- %

k=1

O, fori=1,...,mf +1, (17)

where m/ is the number of clusters obtained in the block
clustering procedure, Jo = {1} and Jizr ; = {ky}

Now, given a subset C;, we apply the exhaustive search
method for each time point s in the interval ([;,u;) to the data
set truncated by the two end points in time, min(C;) — b, and
max(C};) + by, i.e. only consider the data within the interval
[min(C;) — by, max(C;) + by). Specifically, define the final
estimated change point f{ as

_ s—1 2
tl = argmin{ > Y: — X:Bi |2

$€(l;%:) \ t=min(C;)—b,

max(C;)+bn—1

o)

t=s

-~ 2
Y, — XtB,;HH2 } (18)

fori=1,...,m’, where Bi’s are the local coefficient param-
eter estimates based on the first step by block fused lasso.
Denote the set of final estimated change points from (18) by
AL ={H,...., T}

Remark: An alternative approach for detection of break points
is to run a full exhaustive search procedure for both single and
multiple change point problems. Such procedures are computa-
tionally expensive, and not scalable for large data sets. Simple
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fused lasso s (block of size one) another method, which although
computationally fast, it leads to over-estimating the number
of break points; hence, it requires additional “screening” steps
to remove redundant break points found using the fused lasso
algorithm [53], [54]. Such screening steps usually include tuning
several hyper-parameters. This task not only slows down the
detection method, but is also not robust. The proposed approach
(block fused lasso coupled with hard-thresholding) aims to solve
this issue by choosing appropriate block sizes, while it only
needs a single tuning parameter (the threshold) to be estimated.

Estimation of Infection and Recovery rates: Once the loca-
tions of break points are obtained, one can estimate the model
parameters by running a separate regression for each identified
stationary segment of the time series data. The work of [54]
shows that this strategy yields consistent model parameter esti-
mates.

Grid search of parameter in the under-reporting function:
We use grid search to estimate the parameter a in the under-
reporting function u(¢). Given a parameter grid of a, we trans-
form the observed infected data I(t) by I(t) = AI(t)/(1 —
u(t)) + I;(t — 1), then apply the transformed data to the above
method and compute the in-sample mean relative prediction
error (MRPE) of AIf(t). Choose the value a that minimizes
the in-sample MRPE of Al(t).

APPENDIX B
THEORETICAL PROPERTIES

In this section, we establish the prediction consistency of the
estimator from (16). To establish predictionfollowing assump-
tions are needed:

A.1) (Deviation bound) There exist constants ¢; > 0 such

that with probability at least 1 — ¢;exp(—ecy(log 2n)),
we have

log 2n
2n

X'E
ka )

‘ <es

A.2) There exists a positive constant M > 0 such that
max1<j<mo+1]|BY [|lo < Mp.

Theorem 1: 1 Suppose Al-A2 hold. Choose i, =
2C14/ I—DEEJ for some large constant C'; > 0, and assume mg <
my, withm,, = o(A;;!). Then with high probability approaching
to 1 and n — +o0, the following holds:

1 N 2
i — < .
= ||X(e 9)“2 < 8MpAnmo (20)

Proof of Theorem 1: By the definition of ©in (16), the value
of the function in (16) is minimized at ©. Therefore, we have

~ 1 )
<—|y- .
9“1 < 5 IV = X3 + An[©ll:

@1
Denoting A = {#1,t2, ..., tm, | as the set of true change points,
we have

= [ (6-9)];

—~12
A

|
2n

<1(8-e) w101, o]
<= (6-6)xE+1, (i} ol -3 ||é;-||1)
i=1 i=1

X'E -
2n 0:

kn
<2y
i=1

=
1
0 Y 1Bl
igA
<hn 3|6+ 2n 3 (6l — |
icA icA

<24, ) [16s]1x

icA

+3n > (116:01: -
oo icA

)

i

)

< 2Ap,mp max
1<j<mg

BU+D _ B(j)“
1
S SMB)anO,

with high probability approaching to deviation bound in (19).
This completes the proof.

Theoretical properties of lasso have been have been studied
by several authors [55]-[58]. In controlling the statistical error,
a suitable deviation conditions on X'E/2n is needed. The de-
viation bound conditions (e.g. the assumption A1) are known to
hold with high probability under several mild conditions. Under
the condition that the error term E' ~ N (0, 0215, ), the deviation
bound condition holds with high probability by Lemme 3.1
in [56]. Given that the p (the number of time series components)
is small and fixed, we have n > log p, therefore, in the case
where the X is a zero-mean sub-Gaussian matrix with parame-
ters (X, crﬁ ), and the error term F is a zero-mean sub-Gaussian
matrix with parameters (2., crg), the deviation bound condition
holds with high probability by Lemme 14 in [57].

Detection Accuracy: When the block size is large enough,
such that log n/by, remains small, if the selected change point
t; is close to a true change point, the estimated éj will be
large (asymptotically similar to the true jump size in the model
parameters); if the selected change point E} is far away from
all the true change points, the estimated 5) 7 Will be quite small
(converges to zero as sample size tend to infinity). Therefore,
after the hard-thresholding, the candidate change points that are
located far from any true change points will be eliminated. In
other words, for any selected change point ;5; € Ay, there would
exist a true change point ¢;; € A, close by, with the distance
being at most b,,. Thus, the number of clusters (by radius b,,)
seems to be a reasonable estimate for the true number of break
points in the model.

On the other hand, since the set of true change points A,
has cardinality less than or equal to the cardinality of the set of
selected change points A,, i.e., mg < m, there may be more
than one selected change points remaining in the set A, in by,-
neighborhoods of each true change point. For a set A, define clus-
ter (A, z) to be the minimal partition of A, where the diameter
for each subset is at most =. Denote the subset in cluster(,zlun ybn)
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by cluster( Ay, by) = {Cy, Cs, . ..

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 16, NO. 2, FEBRUARY 2022

, Cm, }» Where each subset C;

has a diameter at most by, i.e., max, pcc, | — b| < by. Then
with high probability converging to one, the number of subsets
in cluster(. Ay, by, ) is exactly myg. All candidate change points in
Ay, are within ab,-nei ghborhood of at least one true change point
and therefore, with high probability converging to one, there is a
true change point ¢; within the interval (C; — by, C; + by,). The
distance between the estimated change point and the true change
point will be less then 2b,,. Therefore, by selecting b, = clogn
for a large enough constant ¢ > 0, one can conclude that the
proposed detection algorithm locates the true break points with
an error bounded by the order O(logn).
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