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a b s t r a c t

Mixed-frequency data prediction tasks are pertinent in various application domains, in
which one leverages progressively available high-frequency data to forecast/nowcast the
low-frequency ones. Existing methods in the literature tailored to such tasks are mostly
linear in nature; depending on the specific formulation, they largely rely on the assump-
tion that the (latent) processes that govern the dynamics of the high- and low-frequency
blocks of variables evolve at the same frequency, either the low or the high one.
This paper develops a neural network-based multi-task shared-encoder-dual-decoder
framework for joint multi-horizon prediction of both the low- and high-frequency
blocks of variables, wherein the encoder/decoder modules can be either long short-
term memory or transformer ones. It addresses forecast/nowcast tasks in a unified
manner, leveraging the encoder–decoder structure that can naturally accommodate the
mixed-frequency nature of the data. The proposed framework exhibited competitive
performance when assessed on both synthetic data experiments and two real datasets
of US macroeconomic indicators and electricity data.

© 2023 The Authors. Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mixed-frequency (MF) data arise in forecasting tasks
across different domains. One popular application per-
tains to the prediction of key quarterly macroeconomic
indicators (e.g., gross domestic product) by leveraging
monthly economic and financial variables (e.g., Bell, Co,
Stone, &Wallis, 2014; Cimadomo, Giannone, Lenza, Monti,
& Sokol, 2022; Cross, Hou, & Poon, 2020; Huber, Koop,
Onorante, Pfarrhofer, & Schreiner, 2023; Kuzin, Marcellino,
& Schumacher, 2011). Other applications include tasks
in environmental sciences, such as forecasting indicators
that reflect the health of a lake environment based on
high-frequency weather episodic events (Jennings et al.,
2012), or hourly wind speed based on higher-frequency
variables that capture weather conditions (Yang, Tian,
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& Hao, 2022). To handle the aforementioned forecasting
tasks involving data observed at different frequencies,
most existing methods in the literature are linear in
nature and largely fall into the following three cate-
gories: regression-type models with a univariate response
variable, vector autoregressive models, and dynamic fac-
tor models. The latter two have a multivariate response
and the variables are modeled as a joint system. These
methods are briefly reviewed in Section 1.1.

In recent years, neural network (NN)-based mod-
els have been increasingly used in forecasting appli-
cations. For example, multilayer perceptrons (MLPs),
recurrent neural networks (RNNs), and its long
short-term memory (LSTM) (Hochreiter & Schmidhu-
ber, 1997) variant were used in the M3 and M4
forecasting competitions (Makridakis & Hibon, 2000;
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Makridakis, Spiliotis, & Assimakopoulos, 2020) and ex-
hibited good performance vis-à-vis traditional statistical
models (Makridakis, Wheelwright, & Hyndman, 2008), as
a result of their expressiveness and the ability to handle
complex nonlinear dynamics.

In this work, we propose to leverage NN architec-
tures consisting of encoder and decoder modules (e.g.,
sequence-to-sequence (seq2seq) Sutskever, Vinyals, & Le,
2014 or transformers Vaswani et al., 2017) to model MF
data through multi-task learning. Such architectures were
originally developed for natural language processing tasks
and have achieved state-of-the-art performance. Note
that NN-based models have recently been employed to
deal with two distantly related yet distinct tasks that
involve asynchronous (Bao, Yue, & Rao, 2017; Binkowski,
Marti, & Donnat, 2018; Lepot, Aubin, & Clemens, 2017;
Li & Marlin, 2020) and multi-scale (Che, Purushotham,
Cho, Sontag, & Liu, 2018; Shabani, Abdi, Meng, & Sylvain,
2022) time series data. A key difference between MF and
asynchronous data is that the former are synchronous at
low sampling frequencies, while in the latter case, each
time series is sampled at irregular time points. Hence,
the focus of statistical and machine learning methods for
dealing with asynchronous data has primarily been on
imputing missing values of the time series, in order to
create a complete dataset of regularly spaced observations
(see Weerakody, Wong, Wang, & Ela, 2021 for a recent re-
view). In contrast to MF data, in multi-scale modeling, all
time series are measured on the same frequency, and the
main objective is to capture complex temporal dynamics
that arise at different time scales (e.g., daily, weekly, and
monthly) so as to improve forecasting performance. In
other words, multi-scale time series modeling pertains to
the assumption of the temporal dependencies of the time
series, as opposed to having multiple time series sampled
at different resolutions.

Next, we introduce necessary notation and concepts.
There are dy low-frequency (e.g., quarterly) variables and
dx high-frequency (e.g., monthly) ones for which data
are collected over time. Let {yt ∈ Rdy} denote the dy-
dimensional low-frequency block and {xt ∈ Rdx} the
dx-dimensional high-frequency one; the subscript corre-
sponds to a generic time index, unless otherwise
specified. The frequency ratio r provides the relative gran-
ularity of these two collections; for example, in the case
of quarterly/monthly time series, r = 3. Note that in the
case where Ny observations of the low-frequency block
are available, the number of available observations for
the high-frequency block, denoted by Nx, satisfies rNy ≤
Nx ≤ (r+1)Ny.1 Further, let ŷNy+1 denote the prediction at
time period (Ny + 1) for the low-frequency block, which
can come from either a forecast or a nowcast, based on
available information up to Ny for the low-frequency and
Nx for the high-frequency blocks, that is, {yt}Ny

t=1, {xt}Nx
t=1.

A forecast pertains to the case where Nx ≡ rNy. In
the case of a nowcast for the same time period, Nx =

1 The case of Nx = (r + 1)Ny could occur due to data publishing
delays (usually for low-frequency variables) in certain applications
areas. For example, the US gross domestic product is published with
one month delay after the end of the corresponding quarter.

rNy + h for some 1 ≤ h ≤ r . That is, for the quarterly
measured gross domestic product in the period of March,
a forecast is based on data available up to the preceding
December, whereas a nowcast is based on data up to the
preceding December for the quarterly variables, and up to
the preceding January, February, or March for the monthly
variables, depending on the corresponding vintage of the
nowcast.

1.1. Related work on modeling mixed-frequency data

We first provide an overview of existing methods in
the literature that address forecasting and nowcasting
tasks involving MF data. These methods are mostly linear
in nature, and can be broken into three categories based
on how the low- and high-frequency blocks are handled,
namely, whether the underlying dynamics of the system
are assumed to be at the low or high frequency.

In the first category, the mixed data sampling (MI-
DAS) regression framework (Ghysels, Sinko, & Valkanov,
2007) models a low-frequency univariate response as a
function of its own temporal lags and high-frequency
predictors’ contemporaneous and lagged values. The spec-
ification is essentially agnostic to the frequency of the
data. Note that the presence of many lags in the high-
frequency variables leads to a proliferation of regression
coefficients, and hence various combinations of restric-
tions and weighting schemes have been developed to re-
duce the effective number of model parameters to be es-
timated from the data. Neural network-based variants of
the model have also been investigated in recent years (Xu,
Liu, Jiang, & Zhuo, 2021; Xu, Zhuo, Jiang, & Liu, 2019).

The second category postulates that the system evolves
based on a vector autoregressive (VAR) model at the
low frequency, and thus requires frequency alignment
of the high-frequency block (Ghysels, 2016; McCracken,
Owyang, & Sekhposyan, 2015). Specifically, each individ-
ual high-frequency time series is ‘‘expanded’’ into r new
ones, with r being the frequency ratio. The ith (i =
1, . . . , r) new time series is obtained by thinning the
original process with every rth observation extracted
starting from index i. This expansion leads to a prolif-
eration of model parameters, and penalized approaches
have been developed for estimation and inference pur-
poses (Chakraborty, Khare, & Michailidis, 2023; Uematsu
& Tanaka, 2019).

The third category assumes that the underlying time
series that drive the dynamics of the system evolve at
the high frequency, and how the low-frequency block is
modeled depends on the specific approach adopted. In the
case of VAR models, the high- and low-frequency blocks
evolve as a joint system, and the unobserved values for
the low-frequency variables are treated as missing and
are imputed; see Ankargren, Unosson, and Yang (2020),
Foroni and Marcellino (2014), Gefang, Koop, and Poon
(2020), Mariano and Murasawa (2003) and Schorfheide
and Song (2015). Another stream of work assumes that
the dynamics of the system are governed by a few fac-
tors, with the latter possessing autoregressive dynamics.
Factors are extracted from the high-frequency block, with

943



J. Lin and G. Michailidis International Journal of Forecasting 40 (2024) 942–957

their dynamics estimated based on a state-space repre-
sentation. Subsequently, the factors are used as predic-
tors in a regression model with the low-frequency varia-
bles being the responses, where the factors are
either aggregated at the low frequency (Foroni & Mar-
cellino, 2013), or their values that correspond to the
low-frequency timestamps are used (Giannone, Reichlin,
& Small, 2008).

Next, we briefly review NN-based methods that handle
asynchronous time series given their conceptual simi-
larity to MF data. The predominant strategy is to first
convert the irregularly spaced dataset into a ‘‘regular’’ one
by imputing the values that are missing at a regularly
spaced grid. Various NN-based models have been used for
the imputation task, including unidirectional or bidirec-
tional RNNs/LSTMs (Kim & Chi, 2018; Ma & Leung, 2019)
and their variants, whether enhanced with an attention
mechanism (Dabrowski & Rahman, 2019; Shukla & Mar-
lin, 2021) or coupled with ordinary differential equa-
tions (Schirmer, Eltayeb, Lessmann, & Rudolph, 2021). Un-
supervised approaches based on generative models such
as variational autoencoders and generative adversarial
networks (Li & Marlin, 2020; Luo, Cai, Zhang, Xu, et al.,
2018) are also considered. In Baytas et al. (2017) amd
Lipton, Kale, and Wetzel (2016), the authors construct ad-
ditional features based on whether the values are missing
(0/1) and the time elapsed between available observa-
tions. In Che et al. (2018), the time intervals between
available observations are used as weights to determine
the relevancy of the observed values to the missing ones.

Summary of contributions. We introduce a multi-task
shared-encoder-dual-decoder framework to handle MF
data, where the dynamics of the low- and high-frequency
blocks of time series are learned simultaneously, based on
which their predictions can be obtained. Depending on
the encoder/decoder modules used, the framework can
be either an LSTM or a transformer-based one: the first
considers an LSTM-based encoder–decoder architecture
with temporal local attention, wherein both the encoding
and the decoding occur sequentially; the second considers
a transformer-based architecture, where past information
is ingested and processed in a parallel fashion, leveraging
a self-attention mechanism. The proposed framework has
a flexible modeling structure that does not impose specific
assumptions on the resolution of the underlying process
or processes that govern the high- and low-frequency
blocks. Such flexibility is further reflected in the following
two aspects. First, the framework handles forecasting and
nowcasting tasks in a unified manner, without requiring
frequency alignment or model re-specification to accom-
modate the prediction vintages of interest. Appendix A
elaborates on how this is needed for certain existing
approaches. Second, the framework does not posit specific
assumptions on how the low-frequency block evolves.
Consequently, it does not require an imputation or aggre-
gation mechanism for the block, in contrast to selected
existing approaches.

The remainder of the paper is organized as follows.
In Section 2, we provide a brief review of the build-
ing blocks used in the proposed framework. Section 3
describes the proposed framework in detail, including

model architectures, training, and prediction. Model per-
formance vis-à-vis competing approaches is assessed on
synthetic datasets in Section 4 and on a real dataset of
key US macroeconomic indicators in Section 5. An addi-
tional application to electricity data is briefly presented
in Appendix C. Finally, Section 6 concludes the paper.

2. Preliminaries

In this section, we provide a brief overview of the
building blocks of the proposed modeling framework.
Throughout this section, we use x to denote the encoder
inputs and y for the decoder inputs/outputs; and Tx and
Ty respectively correspond to the encoder and decoder
context (i.e., look-back history) length. The problem un-
der consideration is to model the following conditional
probability:

P
(
y1, . . . , yTy |x1, . . . , xTx

)
.

Note that in the natural language processing domain
where these encoder/decoder modules were originally
developed, the subscript indices in the corresponding
input/output sequences do not correspond to physical
timestamps; rather, they usually correspond to the order
that words appear in sentences. For example, in neural
machine translation, {xt}Txt=1 corresponds to some input
sentence that needs to be translated into a sentence in
another language, which is denoted by {yt}Tyt=1. We keep
this convention in this section and use t in subscripts as
the generic indexing of the steps. In Section 3, we further
elaborate how these building blocks are incorporated in
the proposed MF data forecasting framework and make
the dependency on physical timestamps of the observed
data explicit.

2.1. Temporal attention-based LSTM encoder–decoder

LSTM encoder–decoder. The architecture of an RNN
encoder–decoder was introduced in a seminal paper (Cho
et al., 2014) for phase-based statistical machine transla-
tion and is widely used in seq2seq learning tasks
(Sutskever et al., 2014). The architecture consists of two
RNNs: the encoder one that reads in and encodes the
variable-length input sequence {xt}Txt=1 into a fixed-length
vector s0 that contains the summary ‘‘state’’ information
of the whole input; and the decoder one that is trained to
sequentially generate the output yt , t = 1, . . . , Ty, based
on both s0 and yt−1.

Specifically, consider a multivariate input sequence
xt , t = 1, . . . , Tx. At the encoding stage, through a non-
linear function f h, xt is sequentially encoded into ht ,
which denotes the hidden states of the encoder RNN. That
is,

ht = f h(xt ,ht−1).

The terminal state hTx =: s0 is considered the carrier of
the input information to be used in decoding. At the de-
coding stage, for t = 1, . . . , Ty the conditional probability
of the output sequence is modeled through a non-linear
function g(·). That is,
P
(
yt |{y1, . . . , yt−1}, {xi}Txi=1

)
= g

(
st

)
,
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st = f s(st−1, yt−1; s0),
where st (t > 0) corresponds to decoder hidden states.
Note that we keep s0 to highlight the decoder’s implicit
dependency on the encoder terminal state, although for
decoding step t (t > 1), such dependency is no longer di-
rect. Both f h and f s usually correspond to LSTM (Hochre-
iter & Schmidhuber, 1997) or GRU (Cho et al., 2014) cells;
in what follows, we use RNN and LSTM interchangeably
to refer to recurrent networks of such sequential nature.
With s0 as the connector, the two RNNs are trained jointly
to minimize some cost function.

Temporal attention. At the decoding stage, instead of hav-
ing decoder hidden states relying on a single state vector,
a temporal attention mechanism (Bahdanau, Cho, & Ben-
gio, 2014) enables them to access all hidden states {ht}Txt=1
from the encoder through some context vector ct . That is,

st = f s(ct , st−1, yt−1),

ct =
Tx∑

t ′=1

ωtt ′ht ′ , where ωtt ′ := exp(ett ′ )/
Tx∑

t ′=1

exp(ett ′ ).

The context vectors (ct ) are linear combinations of all
encoder hidden states, with the weights obtained by ap-
plying a softmax operator on the ‘‘energies’’ ett ′ . The latter
ett ′ := a(st−1,ht ′ ) are learned through some alignment
model a(·), which is typically a small and shallow feed
forward network. The alignment model is jointly trained
with the encoder and decoder RNNs.

The above exposition provides details on the inner
structure and workings of the encoder and decoder, and
can be further abstracted to the level of two mappings
that provide useful representations for future technical
developments. Specifically, the encoder maps its input
sequence {xt}Txt=1 into their corresponding hidden states
{ht}Txt=1. That is,

Φ : {x1, . . . , xTx} '→ {h1, . . . ,hTx}. (1)

The decoder takes {yt}Ty−1
t=0 (decoder input sequence) and

{ht}Txt=1 as inputs and maps them into state vectors {st}.
That is,

Ψ : {y0, . . . , yTy−1, {ht}Txt=1} '→ {s1, . . . , sTy}, (2)

with {y0, . . . , yTy−1} playing the role of ‘‘teacher forc-
ing’’ (Lamb et al., 2016).2 In both the encoder and the
decoder, the hidden states are obtained sequentially by
recursively applying f h and f s. The final output of inter-
est {yt}Tyt=1 is given by some non-linear function g(·) of
the corresponding states st . Such a recurrent structure
usually poses limitations on learning long-range depen-
dencies (Hochreiter, Bengio, Frasconi, Schmidhuber, et al.,
2001) and is subject to the constraints of sequential com-
putation. As it can be seen next, a transformer architec-
ture effectively conducts the same type of mapping as
in (1) and (2), but circumvents sequential processing.

2 Teacher forcing is a strategy of using ground truth values as
input during model training. During testing, predicted values from the
previous time step of the decoder are used as input.

2.2. Transformer encoder–decoder

A transformer architecture (Vaswani et al., 2017) aims
to reduce sequential computation and enable paralleliza-
tion. To obtain encoder and decoder hidden states, an
attention mechanism is used, with which inputs are di-
rectly attended. Crucially, it does not rely on any recurrent
structure.

Scaled dot-product attention is an important mech-
anism in the transformer architecture. Attention blocks
attend in a parallel manner to all values in the sequence
or sequences under consideration, with a query Q matrix
and a key–value pair of (K , V ) matrices as inputs. The
scaled dot-product operator returns an output that has
the same dimension as V . That is,

ATTN(Q , K , V ) := softmax
(QK)

√
d′

)
V ; Q , K ∈ RT×d′ , V ∈ RT×d.

(3)

The output is effectively a weighted combination of the
values in V , with the weights reflecting a similarity score
between queries and keys after scaling. Depending on
how Q , K , and V are constructed, the usage of such a
mechanism can be further dichotomized into
self-attention (or intra-attention) and inter-attention: the
former takes one single (multivariate) sequence as the
raw input and Q , K , and V are obtained as its linear
projections; in the latter case, Q is obtained through the
linear projection of one sequence, whereas K and V are
obtained through the linear projections of another. In the
transformer architecture, the encoder and the decoder
networks leverage the intra- and inter-attention mech-
anisms to construct the mappings in (1) and (2), whose
details are given next.

Encoder. The encoder input sequence xt , t = 1, . . . , Tx
first goes through a pre-processing step, where positional
encoding (Vaswani et al., 2017) is added to the original
input sequence. The latter describes the location of an
observation in the sequence. We denote the positionally
encoded sequence by x̃t . The mapping from x̃t to its hid-
den representation (see also (1)) uses a stack of encoder
layers, each comprising the following two sub-blocks: (i) a
self-attention block that first (linearly) projects the input
to Q , K , V , followed by the scaled dot-product attention
operator; and (ii) a feed-forward block that contains a
residual connection, layer normalization, and linear lay-
ers. Note that the input to the first encoder layer is {x̃t},
whereas those to subsequent layers are the output from
their previous layers. The final encoder output {ht}Txt=1 is
given by the output of the last encoder layer.

Decoder. Analogously to the encoder, the decoder con-
ducts the mapping in (2) through a stack of decoder
layers. It takes yt , t = 0, . . . , Ty − 1 as well as {ht}Txt=1 as
decoder inputs, with {yt}Ty−1

t=0 playing the role of teacher
forcing. Each decoder layer (compared to the encoder
layer) has an additional encoder–decoder attention block
that consumes {ht}. Concretely, it has three sub-blocks:
(i) a self-attention (intra-) block similar to the encoder
one; (ii) an encoder–decoder (inter-) attention block that
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projects the output from block (i) into Q and {ht} into
K , V , followed by the scaled dot-product operator; and
(iii) a feed-forward block similar to the one in the en-
coder layer. The input to the first decoder layer is the
positionally encoded decoder input {ỹt}Ty−1

t=0 , and that to
subsequent layers is the output from previous layers.

We highlight some additional nuances in the actual
implementation, with more details included in Appendix
D:

– The use of a mask. Self-attention in its generic form
attends to all values in the input sequence, which for
the decoder would run into the risk of ‘‘attending to
the future’’. To that end, for each input indexed by t
and its corresponding encoded counterpart from the
output of the attention operator, masks are applied
to inputs with indices j > t , to ensure that the
output from the attention operator does not depend
on values in the future.

– Multi-head attention. Instead of using a single at-
tention operator, multiple attention functions are
applied in parallel, so that the model attends to
information from representations obtained from dif-
ferent projections (Michel, Levy, & Neubig, 2019;
Vaswani et al., 2017).

3. Proposed modeling framework

An encoder–decoder structure is naturally suited for
MF data prediction tasks in that (1) it does not require
the input and the output to have the same length, which
conveniently tackles a key challenge in modeling MF data;
and (2) attention mechanisms, irrespective of whether
they attend in a temporal (e.g., LSTM) or a parallel man-
ner (e.g., transformer), process and aggregate input in-
formation and make it accessible to all targets/outputs,
which circumvents the need for frequency alignment that
has been a core requirement for a number of existing
approaches reviewed in Section 1.1.

To this end, we introduce our proposed multi-task
shared-encoder-dual-decoder framework to tackle MF
data prediction tasks. The framework consists of a shared
encoder that encodes past HF input information, and two
decoders that handle prediction tasks for the HF and
the LF blocks. Depending on the exact encoder–decoder
architecture adopted, the framework can be further di-
chotomized into either an LSTM- or a transformer-based
one. Through joint training of the encoder and the de-
coders based on minimizing the sum of the loss func-
tions of the two tasks, the proposed framework learns
the high-frequency intra-block dynamics that enable the
block’s r-step-ahead forecasts (task 1), as well as the
inter-block dynamics which aid in the low-frequency
block’s prediction (task 2).

Formally, let the low-frequency block {y} evolve at
a resolution of t and the high-frequency block {x} at
rt . By definition, yt and xrt are LF and HF observations,
respectively, of the same physical timestamp, ∀ t . For
example, in the case where the two blocks correspond to
monthly and quarterly (r = 3) time series, respectively,
they correspond to observations in {Mar, Jun, Sept, Dec}.
The problem of interest focuses on the following two

conditional probabilities, whose conditional expectations
are directly modeled by the proposed framework:

P
(
xr(t+1), . . . , xrt+1|xrt , . . . , xrt−Tx+1

)
and

P
(
yt |yt−1, . . . , yt−Ty+1, xrt , . . . , xrt−Tx+1

)
,

that is, the forecast of the HF block up to r steps ahead
given its own past (up to Tx time lags), and the last-
vintage nowcast of the LF block given its own past (up to
Ty time lags) as well as that of the HF block. Note that the
framework is capable of producing all nowcast vintages
as well as multi-horizon forecasts of the LF block, with
the aid of the plug-in estimates of the HF one, despite the
fact that the quantity being modeled is the last nowcast
vintage of the LF block that depends on the HF block’s
contemporaneous value (see Section 3.4).

Under the proposed shared-encoder-dual-decoder
framework, the conditional predictions are obtained via
the following sets of mappings, where the (shared en-
coder) maps the history of the HF block {xrt−Tx+1, . . . , xrt}
to a sequence of intermediate hidden states of the same
length. That is,

Φ :
{
xrt−Tx+1, . . . , xrt

}
'→

{
h1, . . . ,hTx

}
.

(shared encoder)

The two decoders take the encoder hidden states and
their respective decoder inputs, map them to their cor-
responding decoder hidden states, and produce an output
based on the latter. That is,

Ψ x :
{
xrt , . . . , xrt+r−1,h1, . . . ,hTx

}
'→

{
sx1, . . . , s

x
r
}
,

gx :
{
sx1, . . . , s

x
r
}

'→
{
xrt+1, . . . , xrt+r

}
;

(high-frequency decoder)

and

Ψ y :
{
yt−Ty , . . . , yt−1,h1, . . . ,hTx

}
'→

{
sy1, . . . , s

y
Ty

}
,

gy :
{
syTy

}
'→

{
yt

}
.

(low-frequency decoder)

A summary of the steps for model training is given in
Exhibit 1.

Next, we expand on the details related to the map-
pings Φ and Ψ x,Ψ y for the LSTM and transformer-based
architectures. In the remainder of this section, to convey
the key ideas and for ease of exposition, we focus on the
case where Tx = rTy, i.e., where the lags for the high- and
low-frequency blocks span identical historical periods.

3.1. LSTM-based architecture with temporal local attention

With an LSTM-based architecture (seq2seq), the hid-
den states are obtained sequentially in both the encoder
and the decoders; see the diagram in Fig. 1(a) for an
illustration.

Shared high-frequency encoder. Within the encoder map-
ping Φ , the intermediate hidden states {hi}Txi=1 are ob-
tained by recursively applying some nonlinear function
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Fig. 1. Diagram of the proposed framework, with frequency ratio r = 3. Dotted arrows (in the high-frequency decoder) correspond to ‘‘teacher
forcing’’ during training.

Exhibit 1: Outline of steps for training the multi-task
encoder-dual-decoder models.
Input: Encoder input {xrt−Tx+1, · · · , xrt }; HF-decoder input

{xrt , · · · , xrt+r−1} and target {xrt+1, · · · , xrt+r };
LF-decoder input yt−Ty , · · · , yt−1} and target yt

1 – Forward pass:
2 0. Positional encoding (optional for LSTM-based

encoder);
3 1. Encoding (mapping Φ): pass {xrt−Tx+1, · · · , xrt }

through the encoder to obtain hidden states {hi}Txi=1;
4 2. High-frequency decoding (mappings Ψ x and gx):

pass hidden states {hi}Txi=1 and {xrt , · · · , xrt+r−1}
through the HF decoder to get {̂xrt+1, · · · , x̂rt+r };

5 3. Low-frequency decoding (mappings Ψ y and gy): pass
hidden states {hi}Txi=1 and yt−Ty , · · · , yt−1} through the
LF decoder to get ŷt ;

6 4. Calculate loss based on
∆({̂xrt+1, · · · , x̂rt+r }, {xrt+1, · · · , xrt+r }) and ∆(̂yt , yt )

7 – Backward pass: Update weights based on gradients
(back-propagation)

Output: Trained encoder mapping Φ , HF decoder
mappings Ψ x, gx, and LF decoder mappings Ψ y, gy

f h on the corresponding encoder input and the previous
hidden state. That is, for i = 1, . . . , Tx,

hi = f h
(
xrt−Tx+i,hi−1

)
,

for some h0 of commensurate dimension with either ran-
dom or zero initialization. Note that f h is invariant across
time steps.

High-frequency decoder. To obtain forecasts of the time
series in the HF block, the mapping Ψ x for the high-
frequency decoder entails the recursive application of
some function f s,x:

sxj = f s,x(sxj−1, xrt+j−1, cxj ),

cxj :=
Tx∑

i=1

ωx
jihi

for j = 1, . . . , r,

where sx0 = hTx , and the weights ωx
ji for the context vector

cxj are learned through some alignment model (see also
Section 2.1). The forecasts are obtained as a function of

their corresponding decoder hidden states. That is,

xrt+j = gx(sxj ), j = 1, . . . , r. (4)

Low-frequency decoder. The low-frequency decoder Ψ y is
structured analogously to the high-frequency one. Specif-
ically, it recursively uses some nonlinear function f s,y to
obtain the hidden states sy:
syj = f s,y(syj−1, y(t−1)+j−Ty , c

y
j ),

cyj :=
rj∑

i=r(j−1)+1

ω
y
jihi,

for j = 1, . . . , Ty

with sy0 = hTx . Note that the context cyj attends locally
to the hidden states of the encoder, with the attention
window restricted to those that are in the same period
as the one corresponding to the LF block. Finally, through
some function gy on the terminal decoder hidden state,
the prediction for the low-frequency block is obtained:

yt = gy(syTy ). (5)

3.2. Transformer-based architecture

In this architecture, the hidden states are obtained in
a parallel fashion for both the encoder and the decoders;
see the diagram in Fig. 1(b) for an illustration.

Shared high-frequency encoder. The encoder mapping Φ
maps the high-frequency input {x} to the collection of
hidden states {h} of the same length:

{h1, . . . ,hTx} = Φ
(
{xrt−Tx+1, . . . , xrt}

)
. (6)

Note that the LSTM encoder counterpart of Φ entails the
recursive application of function f h that acts on the pre-
vious hidden state and the current input. In contrast, the
transformer-based encoder mapping obtains the hidden
states {h} through parallel processing, and architecturally
comprises a stack of encoder layers, as described in Sec-
tion 2.2, with the latter including a self-attention block
and additional layers such as residual or feed-forward
ones.

High-frequency decoder. To obtain forecasts of the HF
block, the corresponding decoder mapping Ψ x maps the
encoded hidden states h together with the decoder input
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sequence xj, j = rt, . . . , rt + r − 1 to the decoder hidden
states {sx} as follows:

{sx1, . . . , sxr } = Ψ x
(
{xj}rt+r−1

j=rt , {hi}Txi=1; Mx
)
,

where Mx is a look-ahead mask operator, whose role is
to prevent Ψ x from having access to future values of the
input sequence xj′ , j′ > j for decoding steps j = 1, . . . , r
(see the discussion in Section 2.2 and further technical
details in Appendix D). The constituent components of
Ψ x encompass a stack of decoder layers, as described in
Section 2.2, wherein key modules of each layer include
a self-attention block and an encoder–decoder attention
block. Subsequently, forecasts of the high-frequency vari-
ables are obtained identically to those in an LSTM-based
architecture, namely (4).

Low-frequency decoder. The structure of the LF decoder
mapping Ψ y is analogous to that of the HF one:

{sy1, . . . , syTy} = Ψ y
(
{yj}t−1

j=(t−Ty), {hi}Txi=1; My
)
,

with My again being a look-ahead mask operator fulfilling
the same role as in the HF decoder. The major constituents
of the mapping Ψ y are the same as those in Ψ x; namely,
self-attention and encoder–decoder blocks, etc. Finally,
the predicted values of the LF block are obtained through
some nonlinear function gy, as in (5).

3.3. Model training

As noted above, even though the exact computing
modules differ depending on whether one chooses an
LSTM or a transformer-based architecture, the proposed
framework is unified in its structure with a shared en-
coder governed by mapping Φ , and two decoders that are
respectively governed by Ψ x, gx and Ψ y, gy for the tasks
of predicting high- and low-frequency data. Consequently,
training these two architectures follows the same steps, as
briefly outlined next.

Let ϱ,ψx, and ψy denote the parameters of the map-
pings Φ,Ψ x, and Ψ y, respectively, and let θ x and θ y

denote those of gx and gy, respectively, as described in
Sections 3.1 and 3.2. These model parameters are es-
timated by minimizing the empirical risk measured by
the deviation between the observed values of the time
series and those predicted by the corresponding learned
mappings.

Concretely, there are Nx and Ny available observations
for the high- and low-frequency blocks of time series,
respectively, with Nx and Ny satisfying rNy ≤ Nx ≤
(r + 1)Ny. The observed sequences are arranged into a
total number of N := min{-Nx−r−Tx

r .,Ny − Ty} samples.
Specifically, the nth training sample (n = 0, . . . ,N−1) has
X (n)

enc as input to the encoder, and X (n)
dec and Y (n)

dec as inputs
to the high- and low-frequency decoders, respectively:

X (n)
enc := {xi}rn+Tx

i=rn+1, X (n)
dec := {xj}rn+Tx+r−1

j=rn+Tx , Y(n)
dec := {yj}n+Ty−1

j=n .

The targets for the two tasks are given by

X̃ (n) := {xj}rn+Tx+r
j=rn+Tx+1 and Ỹ (n) := {yn+Ty}.

Estimates of the parameters are obtained by minimiz-
ing the following loss function:

(̂ϱ, ψ̂x, ψ̂y, θ̂ x, θ̂ y) = argminL(ϱ,ψ,ω)

:= 1
N

N−1∑

n=0

)(n)
(
ϱ,ψx,ψy, θ x, θ y;X (n)

enc,X
(n)
dec,Y

(n)
dec, X̃

(n), Ỹ(n)
)
,

where )(n) denotes the loss for the nth training sample and
in the case of the )2 loss is given by:

)(n)(ϱ,ψx,ψy, θ x, θ y) = w0

∥∥∥̂yn+Ty − yn+Ty

∥∥∥2
2

+
r∑

j=1

wj

∥∥∥̂xrn+Tx+j − xrn+Tx+j

∥∥∥2
2,

for positive weights satisfying
∑r

j=0 wj = 1. x̂rn+Tx+j, j =
1, . . . , r and ŷn+Ty are obtained by having the learned
mappings acting on the inputs X (n)

enc,X
(n)
dec,Y

(n)
dec and the

corresponding intermediate estimates.

3.4. Forecasting and nowcasting

Based on the learned mappings Φ,Ψ x,Ψ y, gx, gy and
available observations for the high- and the low-
frequency blocks up to timestamps Nx and Ny (recall that
rNy ≤ Nx ≤ (r + 1)Ny), we can make forecasts/nowcasts
for both blocks. In what follows, we use a hat ( ·̂ ) to
denote the model’s predicted values to distinguish them
from observed ones, and we elaborate on how forecasts
and nowcasts can be obtained based on the trained model.

Single-horizon forecast. For forecasts, note that Nx = rNy;
that is, both blocks have observations up to the same
physical timestamp. The predictions of interest are
xNx+1, . . . , xNx+r and yNy+1, i.e., the values for the HF and
LF blocks in the next period. They can be obtained by first
producing forecasts for the HF block and then using them
as plug-in estimates to produce that of the LF one.

Specifically, the encoder hidden states are given by
{̂
h1, . . . , ĥTx

}
= Φ

({
xrNy−Tx+1, . . . , xrNy

}
; ϱ̂

)
. (7)

For r-step-ahead forecasts of the HF block, with a slight
abuse of notation, its decoder hidden states and the cor-
responding forecasts can be recursively obtained through

ŝxj = Φx
(
{̂hi}Txi=1, {̂xNx+)}j−1

)=0; ψ̂x
)

and

x̂Nx+j = gx(ŝxj ; θ̂ x
)
; for j = 1, . . . , r.

(8)

Note that the recursion in the LSTM and the look-ahead
mask in the transformer enable both architectures (and
thus Φx) to sequentially obtain the decoder hidden states
without relying on the ‘‘future’’ decoder input. With the
estimated {̂xNx+j}rj=1, we re-encode to obtain LF block
forecasts. Concretely, let
{̃
h1, . . . , h̃Tx

}
= Φ

({
xrNy−Tx+1+r , . . . , xrNy ,

x̂rNy+1, . . . , x̂rNy+r
}
; ϱ̂

)
. (9)

That is, we apply the encoder mapping to obtain re-
encoded hidden states based on the last Tx − r actually
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observed values and the r estimated ones of the HF block.
The LF decoder hidden states and the low-frequency fore-
cast are then obtained by
{
ŝy1, . . . , ŝ

y
Ty

}
= Ψ y

(
{̃hi}Txi=1, {y)}

Ny
)=Ny−Ty+1; ψ̂y

)
and

ŷNy+1 = gy(ŝyTy ; θ̂
y).

(10)

Nowcast vintage k, 1 ≤ k ≤ r. The kth nowcast vintage,
denoted by Nk, corresponds to having observed the ac-
tual values of the HF block k steps into the next period,
i.e., Nx = rNy + k. The predictions of interest are given by
xNx+1, . . . , xNx+r−k and yNy+1, that is, values of the next
(r − k) steps of the HF block that remain unobserved and
the value of the LF block for the period in question. Note
that Nx + r − k ≡ (r + 1)Ny by definition. Predictions can
be obtained in a similar fashion to the forecast case, with
minimal modification to the HF decoding. Specifically,
forecasts for the remaining steps in the period of the HF
block are obtained as follows:

– Obtain encoder hidden states according to (7).
– Obtain high-frequency forecasts similar to (8), with

the decoder input substituted by the observed values
wherever applicable. That is, for j = 1, . . . , r ,

ŝxj = Φx
(
{̂hi}Txi=1, {̂xrNy+)}j−1

)=0; ψ̂x
)

with x̂rNy+) ≡ xNx+)−k, ∀ ) = 1, . . . , k and the (r−k)
predicted values given by

x̂Nx+) = gx
(
ŝxk+); θ̂ x

)
, for ) = 1, . . . , r − k.

The remainder of the process follows. That is, one pro-
ceeds by using (9) and (10) to obtain the low-frequency
prediction. Note that in the case where k = r , all observa-
tions of the HF block for the next period are available. One
can disregard the steps pertaining to HF block forecasts
and directly proceed with an LF block nowcast.

Multi-horizon forecasts. Producing predictions for multi-
ple periods is a direct extension of that for a single hori-
zon. In particular, for H-period-ahead prediction, the val-
ues of interest are
{
yNy+1, . . . , yNy+H

}
and

{
xNx+1, . . . , xr(Ny+1), . . . , xr(Ny+H)

}
,

for the low- and high-frequency blocks, respectively. One
can then proceed as follows:

– For period 1, depending on the number of avail-
able observations of the high-frequency block into
the period, the predictions yNy+1 and {xNx+1, . . . ,
xr(Ny+1)} can be obtained by following the aforemen-
tioned steps in either the single-horizon forecast or
nowcast case.

– For period h = 2, . . . ,H , one repeats the steps in the
single-horizon forecasts, while shifting the encod-
ing/decoding windows accordingly, by disregarding
observed values at the front and appending esti-
mates at the end; the estimates are the predictions
coming from previous periods.

The proposed framework based on the seq2seq and
transformer architectures handles forecasting/nowcasting
tasks in a unified manner. It posits a single data gener-
ating process regarding the respective dynamics within
both the high- and low-frequency blocks, as well as the
association between them. The difference between fore-
casts and nowcast vintages is captured by the input se-
quence used by the HF decoder; namely, predicted val-
ues for forecasting tasks and actual values for nowcast-
ing ones. In contrast, many existing regression and vec-
tor autoregression models in the literature require a re-
specification of their temporal dynamics for handling
nowcasting tasks (see also Appendix A).

4. Experiments on synthetic data

We assess the proposed framework in terms of its fore-
casting/nowcasting performance on different data gener-
ating mechanisms, and compare it against several bench-
marks that encompass linear, tree-based, and neural
network-based models. Depending on the working model
adopted, these models largely fall into the following four
categories, allowing for nonlinearity:

1. Autoregressive distributed lag (ADL) models, where
each low-frequency/high-frequency series is mod-
eled as a univariate response and its dynamics
depend on lags of its own and others. Models or
engines within this category include a multi-layer
perceptron (mlp), gradient boosted machine (gbm)
(Ke et al., 2017), and MIDAS (Ghysels et al., 2007)
with different polynomial specifications, that is, Al-
mon (almon), beta (nbeta), and unrestricted
(unres).

2. Vector autoregressive (VAR) models, where the
low- and high-frequency blocks are modeled as
a joint VAR system with frequency alignment
performed. In particular, we consider the multi-
variate extensions of DeepAR (deepvar) (Salinas,
Flunkert, Gasthaus, & Januschowski, 2020) and
NHiTS (nhits) (Challu et al., 2022) to handle
this system, which requires model re-specification
across different vintages.

3. The mixed-frequency Bayesian VAR (mfbvar)
model (Schorfheide & Song, 2015).

4. Univariate time series models where the inter-
dependency across coordinates is ignored. Such
models include ARIMA (arima) and the simple
exponential smoother (ses) (e.g., Makridakis et al.,
2008), with the latter being a special case that
falls under the state-space framework (Hyndman,
Koehler, Snyder, & Grose, 2002).

Within our proposed multi-task framework, we also con-
sider a sequence-to-one (seq2one) architecture variant,
where the high-frequency decoder has a simplified output
head that produces only one-step-ahead forecasts instead
of multi-steps for the entire period.

Additional details on the specification of these classes
of competing models are given in Appendix A.
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4.1. Experimental settings

Synthetic data are generated according to two sets of
models, the first based on state-space models and the
other on regression models. The frequency ratio is set
to r = 3 across all settings, partly to accommodate the
available implementation of some of the competing mod-
els. These two data generating mechanisms are presented
below, with the exact equation for each setting given
in Appendix B.

State-space models. The dynamics of the latent state pro-
cess ft are given by a linear VAR(2) model as follows:

ft = Γ1ft−1 + Γ2ft−2 + eft , where eft ∼ N (0, 1).

Both the high- and low-frequency blocks are generated
according to a VAR(1)-X model and indexed by t for
the former and by t ′ for the latter (note that t ′ and rt
correspond to the same ‘‘physical’’ timestamp):

xt = A1xt−1 +
qfx∑

i=0

Λ
fx
i πi(ft−i)+ ext ,

where ext ∼ 1√
6
· t8, (t-distribution with df = 8)

yt ′ = B1yt ′−1 +
qfy∑

i=0

Λ
fy
i -i(frt−i)+ eyt ′ ,

where eyt ′ ∼ N (0, 1).

The autoregressive dynamics for both blocks are linear,
and all noise processes have independent coordinates
with unit variance. Further, πi(·) and -i(·) are either iden-
tity or radial-basis functions (rbf), with the latter in-
troducing nonlinear dependency on ft . In particular, to
represent rbfs we consider radial-basis function networks
that have one hidden layer and the same number of
output neurons as the input ones. Additionally, the output
neurons are scaled so that they have the same standard
deviation as the input ones.

All entries of the autoregressive coefficient matrices
Γ1,Γ2, A1, B1 are initially generated from Unif{(−2,−1)′
(1, 2)}, then scaled so that the spectral radius of the cor-
responding companion matrix is smaller than 1 to ensure
the stability of the process. For each entry (j, k) in Λfx,
{Λfx

i (j, k); i = 0, . . . , qfx} is generated using an Almon
polynomial of degree 2, so that the sequence over i is
decreasing in magnitude. In practice, we also randomly
flip the sign of the generated sequence so that the co-
efficients can also be negative. The entries for Λfy are
generated in an identical manner. Given the decreasing-
in-magnitude nature of Λi, the degree of nonlinearity of
a data generating process (DGP) can be controlled by the
exact specification of πi and -i. Concretely, in the case
where all the πi and -i are identity functions, the DGP is
linear. When all the πi and -i are rbfs, the DGP becomes
highly nonlinear. In the case where πi and ρi are identity
functions for i ≤ i′ and rbfs for i > i′, the DGP exhibits a
varied degree of nonlinearity.

Regression models. The dynamics of xt are given by a
nonlinear VAR(2) model:

xt = A1xt−1 + A2

(
xt−2 ◦ sin

(
xt−2

))
+ ext ,

where ext ∼ 2√
6
· t8,

where the sin operation is applied in an element-wise
manner (◦ denotes element-wise multiplication). The dy-
namics of the low-frequency block are similar to its ob-
servation equation in the state-space model case, i.e.,

yt ′ = B1yt ′−1 +
qxy∑

i=0

Λ
xy
i -i(xrt−i)+ eyt ′

where eyt ∼ N (0, 1/4).

Once again, A1, A2, B1 are initially generated from some
uniform distribution and then scaled to satisfy the spec-
tral radius < 1 constraint; and Λxy

i and -i are treated
analogously to the case of state-space models. Table 1
outlines all settings considered.

To train the models, we consider training sample sizes
of {500, 1000, 3000}, with Tx ≡ 12 and Ty ≡ 4 for all
settings. For all tree- and neural network-based models,
we reserve a validation set of size 200 and conduct hyper-
parameter tuning using Bayesian optimization, based on
the validation set performance for a training sample size
of 1000.3 The selected hyper-parameters are then also
used for training sample sizes of 500 and 3000. In particu-
lar, for gbm, we use LightGBM (Ke et al., 2017); for deepar
and nhits, we leverage the implementation and API in
the Darts Python library (Herzen et al., 2022); and for
MIDAS and mfbVAR, we leverage the implementation in
R packages midasr (Ghysels, Kvedaras, & Zemlys, 2016)
and mfbvar (Ankargren & Yang, 2021).4

Once the models are trained, we evaluate their perfor-
mance on both forecasting and nowcasting tasks over a
test set whose size is fixed at 100. For each test sample
τ = 1, . . . , 100, we conduct forecast F as well as nowcasts
N1,N2,N3.5 And we predict up to H periods ahead with
H ≡ 4, i.e., for each set of inputs in a test sample, for
vintage Nk, k ∈ {0, 1, 2, 3} (with F ≡ N0). Predicted val-
ues are given by {̂xk+1, . . . , x̂12} and {̂y1, . . . , ŷ4}, where
subscripts correspond to the relative steps to the last
available data point of the forecasting case (see the ad-
ditional illustration in Table B.7). Note that for the MIDAS

3 See Appendix B.2 for additional details on hyper-parameter
selection.
4 In midasr, for the Almon polynomial (almon), its degree is fixed

at 2 and the initial values are set as [1,−0.5]. For the beta polynomial
(nbeta), its degree is fixed at 3 and the initial values are set as
[0.5,−0.5, 0.5]. For mfbvar, we use the Minnesota prior distribution
with the default parameters provided in the package.
5 See Section 3.4 for the definition of the general case, where Nk

corresponds to the Nowcast vintage where there are k additionally
available data points ‘‘into’’ the period of interest for the high-
frequency block. For the experiments in questions, given that the
frequency ratio is set at 3, the high-frequency block can have at most
three such (additional) data points available. As a concrete example,
in the case of monthly–quarterly variables where low-frequency data
are available up to December, N1 refers to the nowcast where high-
frequency data corresponding to January of the next calendar year are
available and used in the prediction; N2,N3 are analogously defined.
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Table 1
Configuration for simulations. ‘‘stsp" corresponds to settings where the DGP is a state-space model, ‘‘regr’’ corresponds to settings where the DGP
is a regression model.

dimf dx dy qfx qfy qxy Remarks
stsp00 5 50 10 15 6 – linear; πi ’s and -i ’s are all identity functions
stsp01 5 50 10 12 6 – mildly nonlinear
stsp02 5 100 10 6 6 – highly nonlinear; πi ’s and -i ’s are all rbfs
regr01 – 50 10 – – 6 mildly nonlinear
regr02 – 100 20 – – 6 highly nonlinear; -i ’s are all rbfs

regression model, the true values of the high-frequency
block are provided, since the model does not generate
such forecasts.

4.2. Performance evaluation

For each test indexed by τ = 1, . . . , 100, the raw
error is calculated by first obtaining the coordinate-wise
mean absolute percentage error (MAPE) and then taking
the median, for each step j into the forecast horizon:

err-xτ ,[k]j := median
s∈{1,...,dx}

{∣∣ x̂
τ ,[k]
j,s − xτj,s

xτj,s

∣∣
}

and

err-yτ ,[k]j := median
s∈{1,...,dy}

{∣∣ ŷ
τ ,[k]
j,s − yτj,s

yτj,s

∣∣
}
,

(11)

where the superscript [k] indexes the vintages and the
subscript s the coordinates. The ‘‘summary’’ error of step j
is obtained by taking the median of err-xτ ,[k]j and err-yτ ,[k]j
across all 100 tests. Finally, for all models, we normal-
ize the summary error by that of the ses, whose the
smoothing parameter is fixed at 0.5. One would expect
the model to have similar performance to a simple expo-
nential smoother if the normalized error is close to 1, and
to outperform by a wide margin if it is close to 0.

Tables 2 and 3 show the performance evaluation for
ŷ1 and x̂4, respectively,6 with the reported numbers cor-
responding to the metrics in (11) for the proposed frame-
work and the aforementioned competitor models, after
normalizing by that of ses.7 In particular, seq2seq and
transf correspond to the LSTM and transformer-based
architectures described in the main text, and seq2one
is a variant of the former with a simplified output head.
Other model codes correspond to the various benchmarks
described at the beginning of this section. Finally, the
naive forecast method, that is, x̂T+h ≡ xT (̂yT+h is analo-
gously defined), is included for validation purposes and is
expected to perform slightly worse than ses in general.

The major observations based on the tabulated re-
sults are three-fold. First, the performance for the de-
veloped multi-task models, mfbvar and gbm, improves
across vintages (F,N1,N2,N3) for both the HF and LF
blocks, although the degree of improvement varies across

6 The choice of x̂4 is out of consideration that it would also
indirectly inform how the error for the HF block would change across
different forecasting steps, as the vintages vary.
7 For the sake of completeness, the absolute metric values in (11)

for ses are included in Table B.8 in Appendix B Table B.8

settings. deepvar and nhits show no noticeable im-
provement across vintages for the low-frequency block,
while the improvement for the high-frequency one is
marginal. Note that these two models fall under the MF
VAR modeling category, and the observed performance
is a consequence of how it handles MF data. See the
brief discussion in Remark 3 in Appendix A.2. Further,
note that for the MIDAS model, the N1 and N2 vintages
exhibit worse performance than F. This is likely due to
the fact that the constraining schema used for the lag
polynomials are different from the true underlying DGP.
Second, all competing models broadly exhibit compara-
ble performance on the high-frequency block, whereas
the NN-based models are generally more stable and per-
form better for the low-frequency block. Third, all NN-
based models show steady improvement in performance
as the training sample size increases. However, such im-
provement is essentially muted for the autoregressive
distributed lag, the MF VAR, and the univariate time series
models.

It is worth noting that when the training sample size
is small, NN-based models do not exhibit an advantage
over competing ones and mfbvar in particular, even in
the presence of nonlinear dynamics. However, their per-
formance picks up and they typically outperform as more
training samples become available. Among the NN-based
models, seq2seq consistently exhibits the best perfor-
mance, whereas transf is less stable and typically re-
quires a larger sample size to achieve comparable perfor-
mance. Finally, the performance of the MIDAS regression
models (almon, nbeta, and unres) is not particularly
competitive against the other models considered, despite
the true value of the HF block being provided to the model
at the time of prediction.

5. Experiments on US macroeconomic data

We apply the proposed framework to a dataset com-
prising 23 quarterly and 91 monthly US macroeconomic
indicators (see Appendix E) that span the period from Jan-
uary 1960 to March 2022. The data are obtained from the
Federal Reserve Economic Data (FRED) database and are
transformed according to the recommendations in Mc-
Cracken and Ng (2016, 2020); see Table E.10 for a full
description.

We consider several classes of models, including the
developed NN-based multi-task ones, selected ADL ones—
that is, gbm and mlp, which performed well overall in the
synthetic data experiments—the existing MIDAS model,
and the MF Bayesian VAR model (Schorfheide & Song,
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Table 2
Performance evaluation for ŷ1 across different vintages and models.

500 1000 3000

F N1 N2 N3 F N1 N2 N3 F N1 N2 N3

stsp00 seq2seq 0.57 0.44 0.36 0.16 0.56 0.48 0.33 0.14 0.51 0.42 0.30 0.09
transf 0.68 0.59 0.56 0.48 0.57 0.54 0.44 0.32 0.56 0.51 0.41 0.26
seq2one 0.55 0.50 0.35 0.17 0.54 0.47 0.33 0.14 0.51 0.43 0.31 0.12

gbm 0.65 0.65 0.56 0.46 0.63 0.60 0.50 0.42 0.59 0.53 0.48 0.37
mlp 0.65 0.59 0.50 0.37 0.59 0.54 0.43 0.28 0.55 0.44 0.32 0.09
deepvar 0.83 0.82 0.84 0.80 0.80 0.77 0.76 0.75 0.73 0.72 0.72 0.70
nhits 0.83 0.80 0.77 0.78 0.75 0.76 0.77 0.74 0.70 0.73 0.72 0.72

almon 0.61 1.29 1.26 0.37 0.60 1.27 1.22 0.38 0.57 1.16 1.12 0.34
nbeta 0.88 1.66 1.84 0.79 0.96 1.73 1.81 0.81 0.77 1.56 1.77 0.77
unres – – – – 6.10 5.67 3.90 0.46 1.04 1.24 1.02 0.25
mfbvar 0.55 0.52 0.47 0.40 0.55 0.51 0.43 0.34 0.54 0.47 0.44 0.34
arima 0.82 – – – 0.81 – – – 0.79 – – –

naive 1.25 – – – 1.25 – – – 1.25 – – –

stsp01 seq2seq 0.72 0.65 0.55 0.44 0.68 0.58 0.51 0.34 0.61 0.51 0.39 0.30
transf 0.75 0.68 0.61 0.58 0.75 0.63 0.52 0.47 0.60 0.55 0.49 0.39
seq2one 0.74 0.67 0.57 0.45 0.70 0.57 0.47 0.35 0.64 0.53 0.44 0.29

gbm 0.76 0.75 0.66 0.57 0.70 0.64 0.60 0.51 0.67 0.61 0.55 0.46
mlp 0.71 0.67 0.60 0.50 0.67 0.66 0.55 0.48 0.68 0.55 0.41 0.27
deepvar 0.81 0.81 0.81 0.80 0.78 0.80 0.75 0.75 0.72 0.73 0.74 0.72
nhits 0.85 0.83 0.84 0.81 0.84 0.82 0.82 0.80 0.76 0.72 0.78 0.75

almon 0.64 1.23 1.09 0.43 0.63 1.07 1.08 0.43 0.65 1.04 1.00 0.49
nbeta 0.96 1.49 1.48 0.82 0.83 1.55 1.49 0.75 0.84 1.47 1.38 0.80
unres – – – – 15.11 17.40 15.09 8.97 2.88 3.59 3.30 1.78
mfbvar 0.69 0.60 0.56 0.48 0.61 0.62 0.57 0.51 0.65 0.60 0.56 0.46
arima 0.78 – – – 0.77 – – – 0.77 – – –

naive 1.17 – – – 1.17 – – – 1.17 – – –

stsp02 seq2seq 0.75 0.76 0.80 0.69 0.72 0.71 0.66 0.59 0.72 0.66 0.64 0.55
transf 0.79 0.77 0.78 0.78 0.77 0.75 0.76 0.71 0.72 0.69 0.70 0.56
seq2one 0.80 0.78 0.78 0.71 0.79 0.71 0.68 0.61 0.75 0.71 0.70 0.59

gbm 0.79 0.78 0.78 0.74 0.76 0.76 0.73 0.68 0.72 0.71 0.72 0.66
mlp 0.77 0.76 0.77 0.74 0.78 0.79 0.77 0.71 0.76 0.70 0.70 0.58
deepvar 0.92 0.90 0.91 0.90 0.87 0.89 0.88 0.87 0.82 0.84 0.82 0.81
nhits 0.91 0.90 0.88 0.88 0.88 0.87 0.85 0.86 0.83 0.83 0.83 0.80

almon 1.00 1.12 0.99 0.94 0.80 0.98 0.87 0.73 0.83 0.91 0.89 0.75
nbeta 1.22 1.30 1.35 1.21 0.99 1.05 1.07 0.96 0.91 1.09 1.01 0.90
unres – – – – – – – – 2.40 3.88 3.60 2.67
mfbvar 0.75 0.79 0.80 0.83 0.70 0.71 0.77 0.71 0.75 0.74 0.79 0.69
arima 0.80 – – – 0.83 – – – 0.82 – – –

naive 1.20 – – – 1.20 – – – 1.20 – – –

regr01 seq2seq 0.84 0.80 0.76 0.66 0.73 0.63 0.51 0.31 0.72 0.59 0.50 0.19
transf 0.87 0.82 0.85 0.84 0.82 0.85 0.83 0.83 0.83 0.80 0.78 0.76
seq2one 0.85 0.85 0.80 0.78 0.77 0.66 0.57 0.38 0.72 0.58 0.50 0.20

gbm 0.85 0.84 0.82 0.78 0.84 0.81 0.78 0.74 0.82 0.81 0.76 0.72
mlp 0.79 0.76 0.72 0.64 0.77 0.73 0.62 0.51 0.74 0.62 0.46 0.29
deepvar 0.83 0.84 0.83 0.83 0.82 0.79 0.81 0.80 0.84 0.80 0.76 0.76
nhits 0.85 0.85 0.86 0.87 0.83 0.84 0.84 0.82 0.82 0.83 0.80 0.80

almon 0.86 0.93 0.93 0.78 0.82 0.99 0.92 0.76 0.78 0.99 0.90 0.73
nbeta 0.91 1.23 1.37 1.00 0.90 1.30 1.25 0.89 0.92 1.17 1.25 0.87
unres – – – – 2.12 1.88 1.56 0.57 0.78 0.93 0.99 0.30
mfbvar 0.77 0.72 0.67 0.60 0.78 0.74 0.65 0.63 0.74 0.69 0.64 0.55
arima 0.84 – – – 0.86 – – – 0.86 – – –

naive 1.12 – – – 1.12 – – – 1.12 – – –

regr02 seq2seq 0.89 0.92 0.86 0.82 0.79 0.78 0.68 0.62 0.70 0.68 0.57 0.52
tranf 0.93 0.90 0.86 0.88 0.82 0.79 0.78 0.80 0.75 0.73 0.73 0.70
seq2one 0.93 0.92 0.84 0.83 0.87 0.85 0.76 0.74 0.78 0.72 0.59 0.52
gbm 0.80 0.77 0.78 0.78 0.77 0.76 0.75 0.74 0.75 0.74 0.72 0.71
mlp 0.81 0.82 0.79 0.78 0.80 0.75 0.75 0.72 0.72 0.68 0.64 0.61
deepvar 0.85 0.84 0.84 0.86 0.80 0.82 0.81 0.81 0.75 0.74 0.73 0.73
nhits 0.91 0.89 0.90 0.88 0.84 0.82 0.83 0.83 0.80 0.81 0.78 0.77

almon 0.94 1.00 1.04 0.87 0.84 0.94 0.93 0.86 0.77 0.86 0.88 0.79
nbeta 1.12 1.29 1.41 1.22 1.07 1.21 1.22 1.03 0.88 1.02 1.07 0.91
unres – – – – – – – – 1.07 1.09 1.13 0.90
mfbvar 0.77 0.77 0.69 0.66 0.75 0.73 0.71 0.66 0.74 0.69 0.60 0.60
arima 0.85 – – – 0.84 – – – 0.84 – – –

naive 1.20 – – – 1.20 – – – 1.20 – – –
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Table 3
Performance evaluation for x̂4 across different vintages and models.

500 1000 3000

F N1 N2 N3 F N1 N2 N3 F N1 N2 N3

stsp00 seq2seq 0.79 0.72 0.57 0.39 0.76 0.74 0.57 0.37 0.73 0.69 0.50 0.34
transf 0.80 0.82 0.61 0.42 0.78 0.75 0.58 0.37 0.75 0.72 0.55 0.36
seq2one 0.82 0.76 0.62 0.39 0.78 0.73 0.52 0.38 0.71 0.70 0.52 0.33

gbm 0.78 0.76 0.69 0.55 0.78 0.77 0.73 0.51 0.76 0.75 0.62 0.48
mlp 0.81 0.78 0.63 0.49 0.78 0.77 0.62 0.45 0.75 0.75 0.59 0.39
deepar 0.83 0.82 0.75 0.69 0.85 0.82 0.73 0.63 0.83 0.80 0.67 0.52
nhits 0.89 0.86 0.79 0.67 0.83 0.82 0.75 0.62 0.81 0.82 0.70 0.58

mfbvar 0.75 0.70 0.53 0.34 0.74 0.70 0.53 0.34 0.75 0.70 0.53 0.35
arima 0.84 0.83 0.85 0.77 0.84 0.82 0.82 0.78 0.84 0.82 0.83 0.77

naive 1.29 1.19 1.28 1.27 1.29 1.19 1.28 1.27 1.29 1.19 1.28 1.27

stsp01 seq2seq 0.63 0.55 0.49 0.40 0.64 0.53 0.47 0.36 0.60 0.54 0.45 0.32
transf 0.68 0.57 0.53 0.40 0.65 0.58 0.49 0.39 0.60 0.52 0.44 0.36
seq2one 0.64 0.53 0.52 0.46 0.63 0.53 0.49 0.38 0.58 0.54 0.46 0.34

gbm 0.67 0.59 0.58 0.56 0.63 0.58 0.56 0.52 0.63 0.54 0.52 0.47
mlp 0.65 0.60 0.56 0.52 0.65 0.56 0.54 0.46 0.60 0.51 0.46 0.34
deepvar 0.68 0.67 0.66 0.67 0.69 0.65 0.60 0.60 0.71 0.56 0.54 0.47
nhits 0.73 0.69 0.66 0.66 0.73 0.70 0.65 0.65 0.66 0.65 0.61 0.61

mfbvar 0.61 0.52 0.44 0.30 0.61 0.52 0.45 0.30 0.59 0.50 0.43 0.29
arima 0.78 0.75 0.76 0.75 0.77 0.76 0.74 0.74 0.77 0.74 0.74 0.76

naive 1.12 1.11 1.09 1.07 1.12 1.11 1.09 1.07 1.12 1.11 1.09 1.07

stsp02 seq2seq 0.87 0.79 0.68 0.60 0.82 0.77 0.66 0.59 0.82 0.74 0.62 0.53
transf 0.88 0.84 0.70 0.63 0.91 0.81 0.69 0.60 0.88 0.77 0.67 0.61
seq2one 0.91 0.79 0.70 0.65 0.87 0.77 0.66 0.64 0.85 0.75 0.64 0.60

gbm 0.82 0.80 0.73 0.72 0.80 0.79 0.67 0.62 0.80 0.75 0.64 0.57
mlp 0.86 0.79 0.70 0.66 0.84 0.79 0.67 0.62 0.84 0.75 0.65 0.58
deepvar 0.85 0.80 0.73 0.70 0.84 0.78 0.70 0.68 0.83 0.77 0.69 0.64
nhits 0.88 0.84 0.78 0.75 0.86 0.82 0.76 0.74 0.80 0.77 0.72 0.68

mfbvar 0.83 0.72 0.62 0.48 0.81 0.73 0.57 0.50 0.81 0.71 0.56 0.47
arima 0.88 0.82 0.83 0.78 0.87 0.81 0.78 0.79 0.86 0.81 0.78 0.79

naive 1.20 1.22 1.19 1.21 1.20 1.22 1.19 1.21 1.20 1.22 1.19 1.21

regr01 seq2seq 0.91 0.89 0.88 0.80 0.92 0.90 0.87 0.80 0.89 0.88 0.87 0.77
transf 0.87 0.87 0.86 0.80 0.89 0.87 0.86 0.79 0.87 0.87 0.86 0.78
seq2one 0.89 0.88 0.89 0.87 0.90 0.88 0.87 0.83 0.87 0.86 0.86 0.78

gbm 0.88 0.86 0.87 0.85 0.87 0.85 0.86 0.84 0.88 0.86 0.86 0.83
mlp 0.91 0.91 0.92 0.90 0.90 0.91 0.91 0.87 0.90 0.89 0.89 0.84
deepvar 0.87 0.86 0.86 0.86 0.86 0.88 0.87 0.85 0.88 0.85 0.84 0.84
nhits 0.88 0.87 0.87 0.87 0.87 0.86 0.87 0.87 0.89 0.88 0.85 0.86

mfbvar 0.91 0.92 0.90 0.84 0.90 0.91 0.90 0.78 0.89 0.90 0.88 0.79
arima 0.90 0.88 0.88 0.89 0.87 0.87 0.86 0.87 0.88 0.86 0.85 0.86

naive 1.24 1.25 1.23 1.23 1.24 1.25 1.23 1.23 1.24 1.25 1.23 1.23

regr02 seq2seq 0.88 0.88 0.86 0.82 0.88 0.88 0.86 0.81 0.87 0.87 0.85 0.81
transf 0.89 0.87 0.86 0.83 0.90 0.88 0.86 0.82 0.88 0.88 0.86 0.79
seq2one 0.86 0.86 0.85 0.86 0.86 0.86 0.85 0.86 0.86 0.86 0.85 0.86

gbm 0.87 0.86 0.86 0.85 0.85 0.86 0.85 0.85 0.86 0.87 0.85 0.85
mlp 0.94 0.95 0.95 0.95 0.90 0.91 0.91 0.90 0.89 0.90 0.89 0.88
deepvar 0.86 0.86 0.85 0.86 0.86 0.87 0.87 0.85 0.87 0.87 0.85 0.86
nhits 0.88 0.87 0.88 0.88 0.86 0.87 0.87 0.87 0.88 0.85 0.86 0.86

mfbvar 0.94 0.95 0.94 0.87 0.92 0.93 0.89 0.81 0.89 0.90 0.87 0.80
arima 0.90 0.89 0.90 0.88 0.88 0.87 0.89 0.88 0.87 0.86 0.86 0.86

naive 1.21 1.22 1.20 1.19 1.21 1.22 1.20 1.19 1.21 1.22 1.20 1.19

2015).8 Note that due to numerical instabilities encoun-
tered while running mfbvar on the aforementioned full
set of data, we resort to using a significantly smaller
dataset according to Schorfheide and Song (2021); see
Table E.11. For all models, we conduct rolling forecasts/
nowcasts up to one year ahead starting from 2018, with
the models dynamically trained based on data up to the
previous quarter-end. In the case of nowcasts, additional
high-frequency data observations within the immediate

8 The same implementation platforms as in Section 4.1 were used
in the analysis.

next quarter of interest are included. Note that for the
MIDAS regression model, we consider only the Almon
polynomial constraining scheme (almon) and supply the
true values of the HF block to produce predictions for
the LF one, in a similar way to how it is handled in
synthetic data experiments. The dataset contains a to-
tal of 249 quarterly and 747 monthly observations. Each
dynamic model training relies on 200+ training samples.
Such a small sample size becomes a bottleneck for cali-
brating NN-based models and may adversely impact their
performance, as corroborated by the synthetic data exper-
iments.
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Table 4
MAE of one and two-step-ahead forecasts/nowcasts for GDPC1 Q/Q AR, 1Q18 to 1Q22. The last column depicts the p-values of the Diebold–Mariano
test, when comparing the forecasts of the seq2seq model vs its competitors, for the (rollling) one-step-ahead forecast vintage.

One-step-ahead Two-step-ahead DM-test p-val
F N1 N2 N3 F N1 N2 N3

seq2seq 1.39 1.19 1.39 1.29 2.32 2.48 2.70 2.11 –
transf 1.57 1.59 1.73 1.77 1.69 1.64 1.93 1.60 0.27
seq2one 1.53 1.18 1.19 1.00 1.58 1.39 1.44 1.19 0.09
gbm 1.87 1.11 1.53 1.44 2.78 3.12 2.91 2.73 0.12
mlp 2.03 0.69 2.46 2.66 1.62 1.13 1.86 1.50 0.09
mfbvar 2.13 1.95 2.00 2.38 2.44 3.43 2.98 2.08 <1e−3
almon 3.84 4.64 2.05 4.01 3.62 2.87 2.53 4.11 <1e-4

The evaluation is based on the median absolute error
(MAE) of the predictions against the true realized values
for the period spanning from 1Q18 to 1Q22, which can
be further divided into three sub-periods: (i) pre-Covid-
19 (1Q18-4Q19), (ii) Covid-19 (1Q20-4Q20), and (iii) the
Covid-19 recovery period (1Q21-1Q22). In particular, the
Covid-19 pandemic disrupted the economy and led to
significant shifts in production, investment, and consump-
tion patterns (Advisers, 2022). We focus our discussion
on the core economic indicators that characterize the
state of the economy, namely GDPC1 (gross domestic
product, quarter-over-quarter annualized rate or Q/Q AR,
quarterly variable), CPILFESL (core consumer price in-
dex, year-over-year change or Y/Y, quarterly variable)
and UNRATE (unemployment rate, levels, monthly vari-
able). We also include the results for the Diebold–Mariano
test (Diebold & Mariano, 2002), whose null hypothesis
is that these forecast models/methods have comparable
predictive accuracy. The p-values shown correspond to
the (rolling) one-step-ahead forecast (vintage = F), when
testing the predictive error of seq2seq against all other
models considered. Further, Figure E.4 in Appendix E
depicts boxplots of the p-values of the test for all low-
and the high-frequency macroeconomic variables.

Table 4 displays the results for GDPC1, where the
NN-based models (transf, seq2one, seq2seq) tend to
outperform. In particular, transf and seq2one exhibit
a strong performance across both prediction horizons,
whereas that of seq2seq varies: it outperforms com-
peting models for the one-step-ahead predictions, but
falls behind for the two-step-ahead horizon. On the other
hand, all ADL models and mfbvar exhibit much larger ab-
solute deviations from actual measurements across
both forecasting horizons. Regarding the DM test re-
sults, interestingly, the magnitude of the p-value largely
aligns with the classes of models adopted. For exam-
ple, it is as high as 0.27 between seq2seq and trans-
former, belonging to the proposed multi-task frame-
work, whereas when the test is against linear models, the
p-value becomes very small.

To gain further insight into the above observations,
we examined the performance of the models over the
three sub-periods. Focusing on the one-step-ahead pre-
dictions, all models exhibit better performance during
the pre-Covid-19 period, with absolute deviation rang-
ing from 0.5%–2.8%. On the other hand, large deviations
(over 10%) are observed during the Covid-19 period. See,

e.g., Fig. 2, which depicts the one-step ahead forecasts
for GDPC1 across both forecast and nowcast vintages for
the seq2seq and gbm models. The latter finding is ex-
pected, as the unprecedented shock in economic activity
incurred observations of a magnitude that was unseen
in the data. For example, GDPC1 (Q/Q AR) experienced
a 31.2% drop in 2Q20, followed by a 33.8% rebound in
3Q20. The performance of all models improves during the
Covid-19 recovery period, although it is still inferior to the
pre-Covid-19 period. Note that the models based on the
proposed framework outperform competing ones across
all three sub-periods.

Table 5 presents the results for CPILFESL. It can be seen
that gbm outperforms its competitors by a wide margin
across both forecast and nowcast vintages (also evidenced
by the corresponding small p-value from the Diebold–
Mariano test), and almon exhibits strong performance in
the forecasting vintage (F). This result is largely driven
by its moderate advantage in performance during the
Covid-19 period, while for the other two sub-periods,
the proposed multi-task framework matches or slightly
outperforms almon. Note that since CPILFESL is not one
of the quarterly variables included for running mfbvar, a
direct comparison is not applicable, so it is omitted.

Table 6 presents the results for UNRATE, for which mf-
bvar exhibits strong performance, followed by seq2seq.
It is also worth noting that the performance of all models
is better for the pre-Covid-19 and Covid-19 periods and
deteriorates for the Covid-19 recovery period, which can
be attributed to a shift in inflation patterns characterizing
the latter period (Advisers, 2022). Finally, for the two-
step-ahead predictions, seq2seq, seq2one, and almon
exhibit similar performance overall.

Overall, seq2seq exhibits stable performance across
the board, with a noticeable advantage over its competi-
tors for GDPC1. On the other hand, transf’s performance
is uneven and varies across variables. Regarding com-
peting models, seq2one exhibits good performance that
follows closely that of seq2seq. Furthermore, mfbvar
and almon perform well on certain variables (UNRATE
and CPILFESL, respectively), whereas MLP can be charac-
terized as the least competitive model across these three
variables. Another general finding for all models is that
the ingestion of fresh monthly information does not lead
to significant improvements across nowcast vintages, in
contrast to what was observed in the synthetic data ex-
periments. This is primarily driven by the Covid-19 period
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Fig. 2. Rolling one-step-ahead prediction for GDPC1 (Q/Q, AR), 1Q18 to 1Q22.

Table 5
MAE of one and two-step-ahead forecasts/nowcasts for Y/Y CPILFESL, 1Q18 to 1Q22. The last column corresponds to the DM-test p-value for
seq2seq vs. others, for the (rolling) one-step-ahead forecast vintage.

One-step-ahead Two-step-ahead DM-test p-val
F N1 N2 N3 F N1 N2 N3

seq2seq 0.56 0.59 0.64 0.61 0.84 0.87 0.89 0.94 –
transf 0.55 0.43 0.51 0.52 1.07 0.94 0.96 1.03 0.62
seq2one 0.54 0.40 0.53 0.46 0.81 0.77 0.76 0.65 0.38
gbm 0.24 0.22 0.23 0.20 0.26 0.25 0.28 0.27 0.001
mlp 0.69 0.69 0.72 0.57 1.40 1.13 1.00 0.91 0.22
almon 0.33 0.53 0.71 0.58 0.94 0.65 1.01 0.94 0.14

Table 6
MAE of the next quarter-end predictions of UNRATE, 1Q18 to
1Q22a.

F N1 N2 N3

seq2seq 0.49 0.43 0.49 –
transf 1.15 1.02 0.86 –
seq2one 0.65 0.66 0.69 –
gbm 0.59 0.42 0.30 –
mlp 1.38 1.34 1.36 –
mfbvar 0.27 0.29 0.23 –

aNote that given that UNRATE is a high-frequency variable and
the setup has freq ratio 3, by construction, the next quarter-end
values are observed for N3.

and the recovery period, where rapid shifts in patterns
in the data provide fluctuating signals to the models and
thus may adversely impact nowcasts.

6. Discussion

The paper developed a multi-task encoder–decoder-
based framework that efficiently addresses modeling
tasks involving mixed-frequency data, leveraging recent
developments in neural network architectures. In partic-
ular, it handles prediction tasks across different vintages
in a unified manner, as new high-frequency data be-
come progressively available during the period under
consideration, without requiring model re-specification,
retraining, or frequency alignment. Based on experiments
on synthetic datasets with various different data

generating mechanisms, and real datasets involving quar-
terly/monthly US macroeconomic indicators and elec-
tricity load and pricing data, the proposed framework
demonstrated competitive performance vis-à-vis a num-
ber of competitors.

Note that the focus of the paper was to outline the
major components—in their most basic form—involved
in the proposed framework to efficiently handle mixed-
frequency data prediction tasks. It is straightforward to
enhance some of these components if needed in specific
application domains, such as including learnable posi-
tional encoding (Liu, Yu, Dhillon, & Hsieh, 2020; Zhou
et al., 2021), alternative encoder/decoder architectures
(Wu, Xu, Wang, & Long, 2021), or adding additional mod-
ules, e.g., a temporal convolution network (or TCN, Bai,
Kolter, & Koltun, 2018) to further process information
in the encoded hidden states. Depending on the tasks
in question, one could potentially adopt more advanced
training strategies, e.g., having multiple optimizers so that
the encoder/decoders’ weights have different learning
rates.

Finally, despite the well-documented advantages of
transformer architectures in the literature, in both our
synthetic and real data experiments, a transformer-based
architecture underperformed when compared against an
LSTM-based one. Note that a similar phenomenon has
been observed in certain experiments pertaining to au-
tomatic speech recognition (Zeyer, Bahar, Irie, Schlüter,
& Ney, 2019). The following two reasons are pertinent.
First, a transformer does not posit any assumption on the
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(sequential) structure in the data. Any inter-dependencies
are learned solely through the self-attention mechanism,
which usually requires a large number of training sam-
ples. On the other hand, a sequential structure is em-
bedded in an LSTM-based architecture. Consequently, it
is conceptually more data-efficient for time series, due to
the compatibility of its structure with respect to the prop-
erties (i.e., temporal dependence) of the data, analogously
to how convolutional neural networks leverage the local
structures embedded in images. Second, one advantage
that is usually discussed in the literature (e.g., Vaswani
et al., 2017) is that a transformer is better suited for han-
dling long-range dependence. This is particularly relevant
in natural language processing settings where contextual
information often involves information in the remote past
of the input. On the other hand, in settings with short-
to-moderate dependence, such an advantage is harder
to manifest. Recall that the data generating mechanisms
used in the synthetic experiments did not exhibit long-
range dependence, and this was also likely the case for
both real datasets, where temporal dependence did not
extend beyond a few lags.

7. Code and data availability

The implementation of the proposed methodology is
available at the following repository: https://github.com/
GeorgeMichailidis/multi-task-mixed-freqmulti-task-mixed-
freq. Further, note that all real datasets used in the paper
are publicly available. Instructions/scripts regarding how
to obtain/process the data have been provided in the
README in the above repository.
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