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ABSTRACT

Inverse wave scattering aims at determining the properties of an object using data on how the object
scatters incoming waves. In order to collect information, sensors are put in different locations to send
and receive waves from each other. The choice of sensor positions and incident wave frequencies
determines the reconstruction quality of scatterer properties. This paper introduces reinforcement
learning to develop precision imaging that decides sensor positions and wave frequencies adaptive to
different scatterers in an intelligent way, thus obtaining a significant improvement in reconstruction
quality with limited imaging resources. Extensive numerical results will be provided to demonstrate
the superiority of the proposed method over existing methods.

Keywords Inverse Scattering · Reinforcement Learning ·Multi-frequency · Precision Imaging · Intelligent Computing

1 Introduction

Nowadays, artificial intelligence (AI) have fundamentally changed a vast of industries. AI leverages computers and
machines to mimic the problem-solving and decision-making capabilities of the human mind. AI has already achieved
similar performance as human experts in many fields, such as image recognition [He et al., 2016], Go [Silver et al.,
2016], Starcraft [Vinyals et al., 2019] and voice generation [Oord et al., 2016]. Recently, AI has been applied in
many scientific fields, e.g., protein structure prediction [Jumper et al., 2021], climate forecasting [Shang et al., 2021],
astronomical pattern recognition [Morello et al., 2014], etc. These exciting successes encourage the exploration of AI
in various scientific research. This paper introduces reinforcement learning (RL) to inverse problems and develops an
intelligent computing method for inverse scattering to achieve precision imaging. In particular, a reinforcement learning
framework is designed to learn and decide sensor positions and wave frequencies adaptive to different scatterers in an
intelligent way, thus obtaining a significant improvement in reconstruction quality with limited imaging resources.

The inverse scattering problem is to reconstruct or recover the physical and/or geometric properties of an object from the
measured data. The reconstructed information of interest includes, for instance, the dielectric constant distribution and
the shape or structure. The interrogating or probing radiation can be an electromagnetic wave (e.g., microwave, optical
wave, and X-ray), an acoustic wave, or some other waves. The problem of inverse scattering is important when details
about the structure and composition of an object are required. Inverse scattering has wide applications in nondestructive
evaluation, medical imaging, remote sensing, seismic exploration, target identification, geophysics, optics, atmospheric
sciences, and other such fields [Borden, 2001, Greene et al., 1988, Henriksson et al., 2010, Verschuur and Berkhout,
1997, Weglein et al., 2003, Li and Demanet, 2016].

We focus on the two-dimensional time-harmonic acoustic inverse scattering problem as a proof of concept for the
reinforcement learning framework. In a compact domain Ω of interest, the inhomogeneous media scattering problem at
a fixed frequency ω is modeled by the Helmholtz equation:

Lu = (∆− ω2

c(x)2
)u,
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where c(x) is an unknown velocity field. We assume that there is a known background velocity field c0(x) such that
c(x) = c0(x) except in the domain Ω. We introduce a scatterer η(x) compactly supported in Ω:

η(x) =
ω2

c(x)2
− ω2

c0(x)2
.

Then we can work with η(x) instead of c(x). The aim of inverse problems is to recover the unknown η(·) given some
observation data d(·). Waves are sent from a set of sensors and received by a set of receivers. The intrinsic properties of
scatterers are contained in the measurements d(·). A corresponding forward problem aims at computing d(·) from a
given η(·). Both problems are computationally challenging. It is difficult to get a numerical solution for the inverse
problem because of the nonlinearity of reconstructing η. Traditionally, there are several numerical methods trying to
resolve this inverse problem and they can be mainly divided into two types: nonlinear-optimization-based iterative
methods [Amundsen et al., 2005, Burger, 2003, Chew and Wang, 1990] and imaging-based direct methods [Cakoni
and Colton, 2005, Cheney, 2001, Cheng et al., 2005]. Recently, deep learning has been introduced to solve inverse
scattering problems with new development [Fan and Ying, 2019, Khoo and Ying, 2019, Li et al., 2021, Gao et al., 2022,
Ding et al., 2022].

Inverse scattering problems are ill-posed when the incident wave has only one frequency due to the lack of stability
[Hähner and Hohage, 2001a]. Minor variations in measured data may lead to significant errors in the reconstruction
[Colton et al., 1998a, Hähner and Hohage, 2001b]. There have been extensive efforts in different directions trying to
alleviate this issue. For example, regularization methods under single-frequency data [Xu et al., 2017, Di Donato et al.,
2015] have been proposed to increase reconstruction efficiency and stability. Another direction to alleviate this stability
issue is to apply multi-frequency data in the case of time-harmonic scattering problems [Bao and Yun, 2009, Bao and
Zhang, 2014]. It can be shown that the inverse problem is uniquely solvable and is Lipschitz stable when the highest
wavenumber exceeds a certain real number. However, the nonlinear equation becomes more oscillatory at a higher
frequency and contains much more local minima. Therefore, [Bao et al., 2015] developed a recursive-linearization-based
algorithm utilizing multi-frequency data to form a continuation procedure that combines the advantages of low and high
frequency. In detail, it solves the essentially linear equation at the lowest wavenumber and then uses the solution to
linearize the equation for higher frequency gradually. Seminal works in other directions have also been proposed for
inverse scattering. For example, single-frequency algorithms can be naturally extended to multi-frequency versions
following the idea in [Burov et al., 2009]. [Wang et al., 2017] devises a novel Fourier method that directly reconstructs
acoustic sources from multi-frequency measurements, avoiding the expensive computation brought out by iterative
methods.

Current literature focuses on computational algorithms and uses fixed sensor positions and frequencies. Motivated by
the numerical challenges and the aforementioned works, a reinforcement learning framework is proposed in this paper
to select scatterer-dependent sensor locations and multiple frequencies to improve the image reconstruction stability
and quality for precision imaging. Previously, reinforcement learning has been applied to medical imaging [Shen et al.,
2020, Zhou et al., 2021, Sahba et al., 2006], a related numerical problem to inverse scattering. Our algorithm is mainly
inspired by the work [Shen et al., 2020], where reinforcement learning is applied to learn sensor locations and X-ray
doses in CT imaging. It is worth emphasizing that the reconstruction problem in CT imaging is a linear problem while
the one in inverse scattering is nonlinear and, hence, more challenging. Second, the goal in CT imaging is to optimize
sensor locations via balancing sensing safety and reconstruction quality, while the goal in inverse scattering is to balance
sensing expense and reconstruction quality, leading to a different learning target in this paper than the one in [Shen
et al., 2020]. Finally, we develop a new reinforcement learning framework that not only optimizes sensor locations but
also incident wave frequencies in this paper. We focus on the case of relatively weak scatterers as a proof of concept in
this paper while still maintaining the nonlinear nature of the forward problem by keeping a few leading order terms in
the Born series. Extensive numerical results will be provided to demonstrate the superiority of the proposed method
over existing methods with limited imaging resources.

The rest of the paper is organized as follows. In Section 2, the inverse scattering problem is introduced. In Section 3,
we explain the proposed reinforcement learning framework. In Section 4, numerical results are provided to demonstrate
the effectiveness of the proposed framework. In Section 5, we conclude this paper with a short discussion.

2 Preliminary of Inverse Scattering

2.1 Background

In this section, we discuss the forward model for inverse scattering problem. The inhomogeneous media scattering
problem at a fixed frequency ω is modeled by the Helmholtz equation in (1). It is assumed that a scatterer η(x) is
compactly supported in a domain Ω (see Figure 1 for visualization). Typically, in a numerical solution of the Helmholtz
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operator, Ω is discretized by a Cartesian grid X ⊂ Ω at the rate of a few points per wavelength. Assume that X has
N ×N grid points and {x}x∈X is used to denote the discretization points of X . After discretization, the scatterer field
η can be treated as a vector in RN2

evaluated at {x}x∈X .

Assuming a known background velocity c0(x), the background Helmholtz operator can be written as L0 = −∆− ω2

c20
.

Then E = diag(η) can be treated as perturbation with

L = L0 − E.

ConsiderG0 = L−1
0 as a background Green’s function. When the scatterer field η(x) is sufficiently small, the expansion

of G = L−1 can be constructed via

G = (L0 (I −G0E))
−1

∼ (I +G0E +G0EG0E + · · · )G0

∼ G0 +G0EG0 +G0EG0EG0 + · · ·
:= G0 +G1 +G2 + · · · .

Note that G0 can be determined by the known background velocity c0(x). Therefore, the difference G − G0 =
G1 + G2 + · · · becomes the quantity of interest to recover E = diag(η). In a standard experimental setup, a set of
sources, denoted as Σ, and a set of receivers, denoted as R, are installed around Ω. Incident waves are sent from
sources to probe the intrinsic structure of a scatterer. Receivers receive the waves scattered from the object. Let ΠΣ be a
source-dependent operator imposing an incoming wavefield via sources in Σ. Similarly, let ΠR be a receiver-dependent
operator collecting data with receivers inR. Then the observation data d can be modeled as

d = ΠR (G−G0) ΠΣ

= ΠR (G0EG0 +G0EG0EG0 + · · · ) ΠΣ

= (ΠRG0) (E + EG0E + · · · ) (G0ΠΣ) .

(1)

In this paper, a summation of finitely many terms in the expansion (1) is used as the forward model in our computation.
Note that this forward model is a high order polynomial in E = diag(η), which would lead to a challenging nonlinear
model in inverse scattering. Next we concretely provide the form of the expansion (1) under a far-field assumption.

2.2 Far-Field pattern

Without loss of generality, we assume that the domain Ω is rescaled to a support in a unit circle denoted as S1. For
simplicity, the background velocity we assume c0(x) = 1. We also assume a sensor is placed on the unit circle S1

where its location is represented by the angle. Let σ ∈ S1 be a unit direction, the source in direction σ sends out an
incoming plane wave eiωσ·x. The scattered wave field uσ(x) at a large distance is modeled by [Colton et al., 1998b]:

uσ(x) =
eiω|x|√
|x|

(
u∞σ

(
x

|x|

)
+ o(1)

)
, (2)

where u∞σ (·) is defined on S1. The incident wave launched from a source at location σ1 is transmitted through the
domain Ω and received by a receiver at location σ2. The measurement data corresponding to this transmission process
can be modeled by

d(σ1, σ2) = u∞σ1
(σ2).

The exact form of the far-field data u∞σ1
can be derived under the general framework of (1). Consider a source located at

a position −σ1ρ, where σ1 is a direction and ρ is a distance going to infinity. The source magnitude is required to scale
up by

√
ρe−iωρ to compensate for the spreading of the wave field and the phase shift (see for example Khoo and Ying

[2019]). In the limit of ρ→∞, we have

lim
ρ→∞

(G0ΠΣ) (σ1, x)

= lim
ρ→∞

(1/
√
ρ)eiω|x−(−σ1ρ)|√ρe−iωρ

= lim
ρ→∞

(1/
√
ρ)eiω(ρ+σ1·x)√ρe−iωρ

=eiωσ1·x.
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Figure 1: The data generating process for the far-field pattern problem.

The same setup works in the prescription of receivers. Suppose a receiver is located at a position σ2ρ
′, where σ2 is a

direction and ρ′ is a distance going to infinity. Then we have

lim
ρ′→∞

(ΠRG0) (x, σ2)

= lim
ρ′→∞

(
1/
√
ρ′
)
eiω|σ2ρ

′−x|√ρ′e−iωρ′
= lim
ρ′→∞

(
1/
√
ρ′
)
eiω(ρ′−σ2·x)

√
ρ′e−iωρ

′

=e−iωσ2·x.

Combining the above two limiting processes together, the observed data d(σ1, σ2) for a source at a location σ1 and a
receiver at a location σ2 can be computed as follows in the sense of limit:

d(σ1, σ2) =
∑
x∈X

∑
y∈X

e−iωσ2·x (E + EG0E + · · · ) (x, y)eiωσ1·y, (3)

where ω is the frequency of the wave field from the source at the location σ1. As mentioned previously, we approximate
(3) as a polynomial in E up to k-th order. For simplicity, we write (3) succinctly as:

d(σ1, σ2) = Fω,R,Σ(η)(σ1, σ2). (4)

Besides the far-field pattern, another widely used setting called seismic imaging is also considered in our paper.

2.3 Seismic Imaging

In seismic imaging, the domain Ω is rectangular with Sommerfeld radiation boundary condition specified and all sensors
can only be installed on a single line parallel to an edge of Ω. The data generation process of seismic imaging is shown
in Figure 2. The sources and receivers are well separated from the scatterer η.

The operators in (1) can be written simply as:

(ΠRG0)(x, σ) = G0(x, σ) (5)
(G0ΠΣ)(σ, x) = G0(σ, x) (6)

Then the observed data d(σ1, σ2) for a source at a location σ1 and a receiver at a location σ2 can be computed as
follows:

d(σ1, σ2) =
∑
x∈X

∑
y∈X

G0(σ2, x) (E + EG0E + · · · ) (x, y)G0(σ1, y), (7)

where ω is the frequency of the wave field from the source at the location σ1. For simplicity, we also use (4) to represent
(7) in seismic imaging setting.

In the next section, based on the forward model (3), we introduce the proposed reinforcement learning scheme to solve
the inverse problem.
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Figure 2: The data generating process for the seismic imaging problem.

3 Reinforcement Learning Framework for Inverse Scattering

In the typical data collection of inverse scattering, sensors are either installed randomly or uniformly on the unit
circle. Moreover, wave frequencies are empirically selected. To achieve a better reconstruction quality and stability,
reinforcement learning is applied in this paper to learn a strategy that adaptively decides sensor angles and wave
frequencies in a sequential manner: 1) several sets of sensors and frequencies are set up sequentially; 2) the locations of
sensors and the frequencies of waves are decided according to the reconstruction result based on previous results. This
is a sequential decision process that gradually adjusts data collection to obtain better reconstructions, and furthermore,
this method uses individualized strategies for imaging different η’s.

The rest of the section is organized as follows. In section 3.1, we introduce the problem setting, which establishes the
foundation for the following sections. In section 3.2, we describe the MDP formulation of the problem, which enables
us to use RL methods to solve it. In section 3.3, we review some basic notions and methods in RL, and introduce the
RL algorithm we used to optimize the policy in the MDP described in section 3.2. In section 3.4, we introduce the
solver used in scatterer reconstruction, which is required in RL algorithms in section 3.3. In section 3.5 and section 3.6,
we present the structure of the policy network and the value network. In section 3.7 and section 3.8, we explain the
training procedure and test procedure of our RL model, combining all the sections from 3.1 to 3.7.

3.1 Problem Setting

Without loss of generality, we assume that the true scatterer η(x) is compactly supported in a unit square Ω centered at
the origin, and all the probes are placed on the unit circle in R2 (containing Ω). In a reinforcement learning framework
as we describe later, an action at decides the location of sensors and the choice of frequencies at time t. In this case,
we discretize the unit sphere S1 uniformly and define σat ∈ R360 as an indicator vector to specify the location of one
sensor. σat has only one non-zero entry to indicate the angle of the sensor on a unit sphere S1. In the experiment, we
place one sensor on the unit circle in each step until T sensors have been placed, where T is a number decided by user
in advance. In each step, sensors send out incident waves and receive scattered waves. At time t, given a group of
sensors placed sequentially at σai (i = 1, 2, . . . , t− 1), a new sensor σat is added on the unit circle. A wave field of
frequency ωat is launched from this new sensor and transmits through the domain Ω. Then sensors at σa1 , . . . , σat will
receive the scattered wave. Each sensor is not only a source but also a receiver. We denote the receiver set at time t
as Rat and the source set at time t as Σat . Therefore, Rat = {σa1 , . . . , σat} and Σat = {σat}. We also assume the
observed data at time t can be approximated by (4): dt = Fωat−1 ,Rat−1 ,Σat−1 (η). It is important to emphasize that that
the frequency ωat at step t can be different from others. After T steps, the data collection procedure ends and we will
reconstruct the scatterer η with all the measurements recorded. We define the entire data collection procedure as an
episode and this episode consists of T sequential steps. The goal of this paper is to improve the reconstruction quality
while limiting the number of probes to use. Our solution is to learn an optimal strategy for data collection.
The original problem of determining sensor location and wave frequency is a combinatorial optimization problem and
is NP-hard. We’ll formulate the problem as a Markov Decision Process (MDP) in section 3.2, which can be further
solved by reinforcement learning methods.

3.2 Markov Decision Process Formulation

The procedure of deciding sensor locations and frequency values in inverse scattering is a sequential decision problem,
where one needs to make a choice of angle and frequency at each step. Thus it can be formulated as a Markov Decision
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Process (MDP). In this way, we can use RL to solve the problem efficiently. We now elaborate how to formulate our
problem as an MDP:

1. State at time t is st = (I1, I2, . . . , It), where It = (dt, ut, T + 1 − t). The first term dt =
Fωat−1Rat−1 ,Σat−1 (η) ∈ C1×(t−1) is the collected observation data at step t. The size 1× (t− 1) comes from
the fact that at time t, we send out wave from a single source to t− 1 receivers. Measurements up to time t are
all included in state st because the reconstruction at step t relies on all the previous collected data. The second
term ut ∈ R360 is a vector recording all the angles where sensors have already been placed by time t and the
corresponding wave frequencies. The j-th entry of ut denotes the angle 2jπ

360 . If the j-th angle is selected at
any step k (k ≤ t), then the j-th entry of ut is ωak , denoting the frequency of the wave sent at k-th step. If
no wave is sent from a specific angle, the entry in ut corresponds to that angle is 0. The last term T + 1− t
means the number of sensors left to be placed.

2. Action taken at time t is at. It is used to define choices on angles and frequencies σat and ωat . σat ∈ R360

is a one-hot vector which denotes the angle of the new sensor to be added at time t. ωat ∈ R stands for the
frequency of its incident wave. In particular, ut can be defined in terms of σat and ωat as ut =

∑t−1
j=1 ω

ajσaj .

3. Transition model. State st and action at enable us to compute a deterministic st+1 under a noise-free model.
According to (4), the new measurement dt+1 = Fωat ,Rat ,Σat (η) can be computed given st and at. Meanwhile,
ut+1 = ut + ωatσat . Therefore, It+1 = (dt+1, ut+1, T − t) and the new state st+1 = (I1, . . . , It+1).

4. Reward at time t is rt, which is defined as the increment in the Peak Signal to Noise Ratio (PSNR) value of the
reconstruction compared to last step. PSNR is commonly used to quantify reconstruction quality for images. We
apply its increment here to quantify how much the new reconstruction has been improved due to the new action.
Suppose the reconstruction at step t is η̂t and the true scatterer is η, then rt = PSNR(η̂t, η)− PSNR(η̂t−1, η).
In this paper, η is reconstructed by a regularization-based optimization method to be introduced later. We
would like to point out that better results might be possible if more sophisticated reconstruction methods were
used.

When we do not know the transition probability, we need a reinforcement learning framework to simultaneously learn
the action taken and the transition probability.

3.3 Reinforcement Learning Algorithm

In RL, an agent interacts with environment to obtain a sequence of data, based on which the agent learns a policy to
maximize a certain accumulated reward to finish a task. Given an interaction trajectory between agent and environment
τ = (s1, a1, r1, s2, a2, r2, . . .), the total reward over time is

G(τ) = r1 + γr2 + γ2r3 + . . . ,

where γ ∈ [0, 1] is a discount rate. We use γ = 1 since the reward at each step is of equal importance in our application.
The policy in the MDP is defined as the conditional probability π(a|s) for at = a and st = s. π(a|s) denotes the
probability of taking action a at step t while the state is s. The value function of a state s following a certain policy π is
given as

vπ(s) = Eτ [r1 + γr2 + γ2r3 + . . . |s1 = s, τ ∼ π].

Similarly, the value function of a state-action pair (s, a) is defined as

qπ(s, a) = Eτ [r1 + γr2 + γ2r3 + . . . |s1 = s, a1 = a, τ ∼ π].

In an MDP, the RL algorithm aims to find an optimal policy that maximize the expected value of initial state s1 following
a probability distribution p(s):

max
π

Es1∼p(s)[vπ(s1)].

Currently, model-free RL algorithms mainly fall into two categories: value-based methods and policy-based methods.
Value-based algorithms learn the state or state-action value and act by choosing the best action in the state, which
requires comprehensive exploration. For example, Q-learning [Watkins and Dayan, 1992] learns the optimal Q function
through the Bellman Equation and chooses a greedy action, which maximize the learned Q function. Since the
maximization requires searching on the action space, it will become slow and imprecise if the actions are continuous.
This means that value-based algorithms are more suitable for discrete actions. On the other hand, policy gradient
methods [Sutton et al., 1999, Silver et al., 2014] are more suitable for continuous actions because they directly optimize
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a parameterized policy under a surrogate objective. Though the variables (angles and frequencies) in our current setting
are discrete, we adopt the policy-based method for possible future extensions to continuous cases.

More specifically, we use policy gradient methods that directly optimize a policy πθ (parameterized by a neural network)
under a certain objective function. Policy gradient methods seek to maximize the performance of πθ via stochastic
updates, whose expectation approximates the gradient of the performance measure with respect to θ. In our experiments,
we use the Proximal Policy Optimization (PPO) algorithm [Schulman et al., 2017]. Given an old policy πθold and a new
policy πθ, let γθ denote the probability ratio γθ(s, a) = πθ(a|s)

πθold (a|s) . An advantage function of policy πθ is introduced as

απθ (s, a) = qπθ (s, a)− vπθ (s). (8)

The objective function to optimize is then defined as:

Lclip(θ) = Es,a∼πθold

[
min

(
γθ(s, a)απθold

(s, a), clip (γθ(s, a), 1− ε, 1 + ε)απθold
(s, a)

)]
,

where ε is a hyperparameter and clip(x, y, z) = min(max(x, y), z). This method employs clipping to avoid destruc-
tively large policy updates, which retains the stability and reliability of trust-region methods but is much simpler to
implement in practice.

In the MDP, a reward needs to be computed each step. This means that we need to generate a reconstruction of the
scatterer each step because of our choice of the reward.

3.4 Reconstruction

According to (4), for a choice of frequency ωat , receiver set Rat and source set Σat at step t, the approximate
measurement dt+1 is given by

dt+1 = Fωat ,Rat ,Σat (η),

where η is the true scatterer. We reconstruct η(x) by minimizing an `2 loss of data discrepancy with an `1 penalization
to encourage sparsity:

min
η̂
‖d− Fω,R,Σ(η̂)‖22 + λ‖η̂‖1,

where λ > 0 is a hyperparameter. Due to the small number of measurements, we observe that the use of a regularization
like `1 significantly improve the results. A new reconstruction is generated at each step in order to compute a reward of
the RL model. Given state st and action at, the reconstruction η̂t obtained at time t is:

η̂t = argmin
η̂

t∑
i=1

‖di+1 − Fωai ,Rai ,Σai (η̂)‖22 + λ‖η̂‖1

:= g(st, at),

(9)

which has taken the advantage of all the previously collected measurements.

In our numerical experiment, λ is set to be 0.1 and L-BFGS Gao et al. [2022] is used to solve the optimization problem
in (9) for the reconstruction problem at each step. Given an initialization η̂, we perform L-BFGS for 3 iterations to
obtain the reconstruction of the current step. It is important to point out that warm start is necessary to obtain good
results. In our tests, we use the reconstruction result of the last step as the initialization of the current step. This greatly
reduces the computational cost and ensures convergence.

In the previous sections, we formulate the original problem as an MDP and introduce how to compute the terms in the
MDP. In order to apply policy gradient methods, we need to build a policy network that parameterizes the policy to
learn.

3.5 Policy Network

In order to handle the increasing dimension of state st over time, we use a Recurrent Neural Network (RNN) to
parameterize the policy. The specific structure of RNN enables us to store all the past information in st in a hidden
state while adding new information at each step. More specifically, we use multi-layer Gated Recurrent Units (GRU),
which was introduced in 2014 by [Chung et al., 2014] and also applied in Shen et al. [2020]. It is similar to a long
short-term memory (LSTM) with fewer parameters. The structure of the whole GRU is shown in Figure 3. The policy
network is denoted by πθp , where θp represents the training parameters. We use hpt to represent the output of the policy
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network at layer t, which is called a hidden state. First, a multi-layer perceptron (MLP) is used to extract features from
an input It = (dt, ut, T + 1− t). Then, the features and the output of GRU in the last layer (a hidden state hpt−1) are
processed by a GRU. In order to learn the sensor angle, the output of GRU will be further processed by another MLP.
This MLP aims to learn the policy for angle based on the information from state st. With the help of a softmax function,
its output is turned into a categorical distribution of angles (a 360-dimensional vector). The value at each entry denotes
the possibility of placing a sensor at the corresponding angle. Because an angle cannot be chosen more than once
in one episode, a mask is introduced to remove all the previously chosen angles. This angle distribution is denoted
by πσθp , which represents the policy for angle σ. During training, an angle is sampled based on the distribution πσθp ,
which is further used to generate a one-hot 360-dimensional vector. This vector uses 1 to denote the chosen angle and 0
otherwise. After that, the output of GRU hpt and the selected angle σat are merged into a single vector, which is used to
learn the frequency policy. This is because the wave frequency should depend not only on state st but also on chosen
angle σat . In our experiment, the frequency can only be chosen from 4 given values. So the merged vector is processed
by another MLP with an output as a 4-dimensional vector, which denotes the categorical distribution of frequencies.
We denote this distribution as πω|σθp

emphasizing that the policy of frequency ω depends on angle σ. Finally, a random

frequency is sampled from the distribution πω|σθp
. The structure of the policy network is shown in Figure 4. To conclude,

the policy network learns the policy πθp(a|s) of an action given a state, which consists of an angle policy πσθp and a

frequency policy πω|σθp
. The angles and frequencies generated by policy nets during training are random samples from

these two distributions.

Besides the policy network, a value network is required for training in policy gradient methods.

3.6 Value Network

In addition to the policy network, we also build a value network γθv parametrized by trainable parameters θv with a
similar structure as in the policy network to approximate the value function of states. The value function approximation
is required in the evaluation of the advantage function of policy πθ in (8). The value network design is visualized in
Figure 5. We use hvt to represent the output of the value network after the t-th layer. At the t-th step, an MLP is used to
extract features from the current input It = (dt, ut, T + 1− t). Then, the features of It = (dt, ut, T + 1− t) and the
output of GRU in previous step (a hidden state hvt−1) are processed by a GRU to generate hvt . The difference between
the policy network and the value network is how they process hvt to generate useful information. The output hvt of a
GRU in the value network is processed by an MLP to generate a deterministic estimate of the value function vπθp (s),
instead of a distribution in the policy network. The estimated value of a state given by the value network is denoted by
v̂πθp (s).

With the policy network and the value network, we can train the RL model through policy gradient methods.

3.7 Training Procedure

Now we will introduce the training procedure of the policy network πθp and the value network γθv . The training set
consists of a specific type of scatterers randomly generated. A scatterer η will be randomly chosen from the training set
and used to generate an interaction trajectory of the RL model τ = (s1, a1, r1, . . . , sT , aT , rT ). In the initialization of
the episode, we set d1 = 0, u1 = 0 and hp1 = hv1 = 0. Thus the initial state s1 = I1 = (d1, u1, T ). At step t, given
past information hpt−1 and current information It, the policy network learns a policy πθp(at|st). Meanwhile, the value
network approximates the value of state st under the current policy v̂πθp (st). During training, angles and frequencies
are randomly sampled based on the policy πθp(at|st). In this way, a more comprehensive exploration of the action
space is encouraged for faster convergence. A new sensor is then placed at angle σat to launch an incident wave of
frequency ωat . So the receiver set isRat = {σa1 , . . . , σat} and the sensor set is Σat = {σat} at step t. Based on the
formula in (4), a new measurement dt+1 = Fωat ,Rat ,Σat (η) is obtained. Meanwhile, compute ut+1 = ut+ωatσat and
let st+1 = (dt+1, ut+1, T − t). Then the reconstruction η̂t at time t is computed based on all the previously collected
measurements. Let us denote η̂t explicitly as η̂t = g(st, at) according to (9). In this way, we can compute the reward
rt as the increment in the PSNR of the reconstruction: rt = PSNR(η̂t, η)− PSNR(η̂t−1, η). When the reward rt and
state st+1 are ready, the value network approximates the value v̂πθp (st+1) in order to estimate the advantage function
απθp (st, at) ≈ v̂πθp (st+1) + rt − v̂πθp (st). We denote the estimate of the advantage as α̂πθp (st, at). These estimates
will be used in PPO. The episode ends after T steps and an interaction trajectory τ = (s1, a1, r1, . . . , sT , aT , rT ) has
been generated. In practice, we generate several episodes on parallel and train the policy network and the value network
on a mini batch of episodes. Based on these simulations, we can compute the surrogate objective function of PPO and
optimize our neural networks. We use auto-differentiation and Adam to optimize the surrogate objective of PPO, and
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the choice of hyperparameters can be found in Section 4. A major advantage of using PPO is that we can apply multiple
optimization steps using a few trajectories without destructively large policy updates. A more detailed algorithm can be
found in Algorithm 1.

After training the RL model on a training set, we need to test the performance of the model on a new test set. The test
procedure is a bit different from the training procedure.

3.8 Test Procedure

Given the fully trained policy network πθp , we can test the RL model on a set of scatterers that are similar to those in
the training set. During testing, given a scatterer η randomly selected from the test set, the policy network generates
an interaction trajectory τ = (s1, a1, r1, . . . , sT , aT , rT ). The initialization is the same as before: d1 = 0, u1 = 0,
hp0 = 0 and η̂0 = 0. At step t, the policy network learns a policy of deciding angles πσθp and a policy of choosing
frequencies πωθp based on the hidden state hpt and the current information It = (dt, ut, T + 1− t). These policies return
probability distributions of angles and frequencies. Note that, in the training of RL, angles and frequencies are randomly
chosen according to their probability distributions to encourage the exploration of the action space. However, in the
testing of the RL model, we choose the angle and the frequency corresponding to the highest probability, hoping to
achieve the highest reconstruction resolution. After deciding an action, a new sensor is placed and the state is updated:
dt+1 = Fωat ,Rat ,Σat (η) and ut+1 = ut+ωatσat . After T steps, we apply L-BFGS with more iterations (20 iterations)
to reconstruct a scatterer via (9) to ensure convergence: η̂T = g(sT , aT ). This η̂T is the reconstruction of η given by
the RL model.

Algorithm 1: The Training Procedure of Our Reinforcement Learning Algorithm
1: Require: A training sample size k, randomly generated training scatterer samples {ηi}1≤i≤k, a grid size N , the

total number of sensors T , a policy network πθp , a value network γθv , a clipping constant ε
2: For epoch = 0, 1, 2, . . .
3: Initialization: d1 = 0, u1 = 0, s1 = I1 = (d1, u1, T ), hp0 = 0, hv0 = 0, η̂0 = 0, v̂πθp (s1) = 0, randomly

choose a scatterer η from {ηi}1≤i≤k
4: For t = 1, . . . , T :
5: Given hpt−1 and It, use policy networks to generate policies πσθp and πω|σθp

, and then update hpt
6: Randomly sample an angle σat from the policy πσθp and a frequency ωat from the policy πω|σθp

7: Let pσ
at

θpold
= πσθp(σat |st) and pω

at

θpold
= π

ω|σ
θp

(ωat |σat , st)
8: Update the receiver setRat = {σa1 , . . . , σat} and the source set Σat = {σat}
9: Compute the state st+1 using dt+1 = Fωat ,Rat ,Σat (η), ut+1 = ut + ωatσat , and
It+1 = (dt+1, ut+1, T − t)

10: Given hvt−1 and It, use the value network to approximate the value v̂θp(st+1), then update hvt
11: Reconstruct a scatterer η̂t = g(st, at)
12: Compute the reward rt = PSNR(η̂t, η)− PSNR(η̂t−1, η)
13: Approximately compute the advantage function α̂πθpold

(st, at) = v̂πθp (st+1) + rt − v̂πθp (st)

14: End for
15: Given hp0 and It, let pσ

at

θp
and pω

at

θp
be the probability of the angle σat and the frequency ωat learned by the

policy network

16: Compute γθp(st, at) =
pσ
at
θp

pω
at
θp

pσ
at
θold

pω
at
θold

17: Evaluate Lclip(θp) = 1
T ΣTt=1(min(γθp(st, at)α̂πθpold

(st, at), clip(γθp(st, at), 1− ε, 1 + ε)α̂πθpold
(st, at)))

18: Given hv0 and It, let v̂θv (It) be the value approximated by the value network
19: Evaluate L(θv) = 1

T ΣTt=1(α̂πθpold
(st, at) + v̂πθp (st)− v̂θv (It))

2

20: Use auto-differentiation and Adam to optimize θp and θv in the objective functions Lclip(θp) and L(θv),
respectively

21: End for
22: Return: The trained policies πθp and γθv
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Figure 3: Structure of Recurrent Neural Network. Each GRU represents one layer, It is the input of layer t. Each layer
outputs a hidden state ht which is also the input of next layer.

Figure 4: Structure of policy network πθp . hpt represents the hidden state of policy net, which is the output of GRU
at layer t. It = (dt, ut, T + 1− t). We use hpt as the input of another perceptron and generate a 360-dim categorical
distribution of angle through softmax function with a mask removing angles that have been chosen. This distribution
is the angle policy πσθp . Then we randomly generate an angle σat based on distribution and combine its one-hot
concentrate with hpt as the input of another MLP, which gives rise to another categorical distribution of frequency. This
distribution represents the frequency policy given angle πω|σθp

. Finally, we use this to randomly generate a frequency
ωat .

Figure 5: Structure of value network γθv . hvt represents the hidden state of value net, which is the output of GRU at
layer t. It = (dt, ut, T + 1 − t). We use hvt as the input of another perceptron and generate v̂πθp (st), which is the
estimate of the value of current state st under the policy πθp parameterized by policy network.
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4 Numerical Experiment

In this section, we’ll test our model on far field pattern and seismic imaging problem to show its performance.

4.1 Setting

In far field pattern, the scatterer field η(x) is discretized at N ×N grid points. N = 32 or N = 64 is applied in our
numerical results and the numerical conclusion remains similar for other N ’s. In seismic imaging, the scatterer field
is discretized at N × 3N , where N = 32. In each experiment, we generate 600 different scatterers, 500 of which
are used for training and the rest are used for testing. The positions of sensors are specified with integer angles in
[0, 360), while the possible choices for frequencies are 8, 16, 24, 32 for N = 32 and 16, 32, 48, 64 for N = 64. The
meaning of angles is clear in far field pattern. In seismic imaging, we can get a direction for any point on the line
where we place sensors, as long as we think of the center of domain Ω as the origin. If we define the direction of the
left endpoint as angle 0 and the direction of the right endpoint as 360, then we can assign each point on the line with
an angle between 0 and 360. Our algorithm allows more choices of frequencies to achieve possible better resolution,
but we limit the choices here for computational efficiency. In far field pattern, 10 probes are applied for sensing when
N = 32 and 15 are used when N = 64. In seismic imaging, 6 probes are used for N = 32. The choice of T is a
user-defined hyper-parameter determined by the requirement of the reconstruction resolution. A larger T leads to a
better reconstruction. We assume the measurements in our experiments approximately follow the model in (4) and we
take the second-order and third-order models in our numerical tests. As we shall see, our method works well in both
nonlinear models and is significantly better than standard sensing methods. The linear model has also been tested and
our method also outperforms existing sensing methods. Since the linear case is less interesting than nonlinear cases in
practice, only the results of the second and third-order models will be presented here. We use L-BFGS to optimize the
objective function in reconstruction, and the model requires a new reconstruction at each step. Only 3 iterations of
L-BFGS are performed and the optimization result is the reconstruction result. Then the result will be the initialization
for reconstruction at next step. We set the penalization constant λ introduced in Section 3.3 to be 0.1.

In the policy network, a multi-layer GRU with 3 recurrent layers is used and there are 256 neurons in each layer. The
angle MLP has 1 hidden layer of 512 neurons and the one for frequency has 2 hidden layers of 512 neurons. In the value
network, the value MLP is composed of 1 hidden layer of 512 neurons. Besides, the MLPs in the policy network and
the value network that extract features from st also contain 2 hidden layers with 512 neurons. We use Adam [Kingma
and Ba, 2014] to optimize the policy network and value network parameters with a learning rate equal to 0.0004. and
coefficients used for computing running averages of gradient and its square are β1 = 0.9 and β2 = 0.999. We trained
the policy network and the value network with PPO in each experiment for several hundred steps. In each step, we
generate 8 episodes using 8 scatterers that are randomly chosen from the training set. Then we perform 1 step of Adam
on a mini-batch of 4 episodes randomly selected from the 8 scatterers. This action is repeated for 10 times in a single
step mentioned above. The PPO algorithm allows us to repeat the optimization on a few repetitive samples without
having destructively large policy updates, thus improving the utilization of data and algorithm efficiency.

We test the numerical results on 5 different sampling strategies for angles and frequencies. The first one is our
reinforcement learning method that learns both angles and frequencies. This method is denoted as “Learn Both". The
second one uses random angles with a fixed frequency and, hence, is denoted as “Random Angle". The third one uses
uniformly sampled angles with a fixed frequency and, hence, is denoted as “Uniform Angle". The fourth one uses
angles learned by the reinforcement learning method while the frequency is fixed and not learned. This method is
denoted as “Learn Angle". The fifth method uses a learned frequency from reinforcement learning with random angles.
Therefore, this method is denoted as “Learn Frequency". There will be comparative experiments to see the impact of
learning angles and frequencies.

For methods that do not learn how to select frequencies, a fixed ω is used throughout an entire episode. The frequency
that reaches the lowest error in the single-frequency case is chosen. During testing, we run L-BFGS for 20 iterations
in the final reconstruction when all the probes have been placed to ensure convergence. To quantify reconstruction
accuracy, we use the Mean Squared Error (MSE):

MSE =
1

N2

∑
x∈X

(η(x)− η̂(x))2,

and thepeak signal-to-noise ratio (PSNR):

PSNR = 20 log10(
MAXf√

MSE
),

where MAXf is the maximum possible pixel value of an image. A method is satisfactory if it produces a small MSE or
a large PSNR.

11



Learning to Solve Inverse Scattering A PREPRINT

4.2 Numerical Results

In conclusion, the RL model that learns both angles and frequencies improves significantly compared to others methods
under limited sensing resources. We now explain and present the numerical results of several datasets in detail.

Experiment 1. (Far field pattern) The size of scatterers is N = 64 and the measurements come from the second-order
model following (4). The scatterers are generated by randomly placing three triangles and three ovals of different
sizes in a unit square. The RL model will also work for the third-order model based on results in Experiment 3, but
we only choose the second-order model here to save computational cost. In the second-order model, the norm of
the second-order measurement (the second-order term in (4)) is around 1

6 of the norm of the first-order one. We test
this setting because the first-order term should dominate in the expansion. At the same time, the second-order data
should not be too small (about one order of magnitude smaller) so that we can verify the power of the RL model in the
nonlinear setting. We also test the case where the norm of second-order data is 1

2 or as large as that of first-order data.
The model performs similarly, so we will not present them here.

The policy network and the value network are trained for 400 steps and 10 iterations of Adam are performed in each
step. After fully trained, the model selects different frequency ω ranging from 16 to 48, while other methods that do not
learn frequencies are assigned a fixed frequency of 32.

We computed the MSE and PSNR of the methods over 50 test samples randomly selected from the test set. The
reconstructions of our model have the smallest error and the largest PSNR among all the 5 methods on all the 50
samples. The mean and standard deviation of MSE and PSNR are shown in Table 1. The reconstruction results are
visualized in Figure 6. It is clear that learning both angles and frequencies results in a significantly smaller MSE and
a larger PSNR than random or uniform angles. Meanwhile, learning both angles and frequencies is also better than
learning angles only or learning frequencies only. Our results have demonstrated the effectiveness and necessity of
training both angles and frequencies. Meanwhile, the significantly lower variance of MSE demonstrates a better stability
of our algorithm than others.

Learn Both Random Angle Uniform Angle Learn Angle Learn Frequency

MSE mean (std) 7.6e-5 (1.2e-10) 0.0008 (1.3e-7) 0.0012 (2.8e-7) 0.00015 (6e-9) 0.0018 (6.2e-7)
PSNR mean (std) 113.4 (0.35) 103.6 (5.2) 101.6 (3.9) 110.7 (3.8) 100 (6.1)

Table 1: The MSE and PSNR and their statistics of five different methods in Experiment 1.

Experiment 2. (Far field pattern) The scatterers we used are digital numbers from the MNIST dataset [LeCun
et al., 1998] for the purpose of testing different kinds of scatterers. The grid size for discretizing the domain Ω is
N = 28. The measurements are generated from the second-order model. The RL model is trained for 1000 steps and
it chooses frequency ω = 7 for all sensors. The choice of frequencies means that the RL model decides that a single
frequency is more suitable than multi-frequencies for this type of scatterers. However, learning frequencies is better
than selecting a fixed frequency empirically and mannually because people do not know which frequency will lead to
better reconstructions, especially when the number of possible frequencies increases. Since the RL model selects the
same frequency for all incident waves, there is no difference between learning both and learning angles only. The same
situation holds for sampling angles uniformly and learning frequencies only. So we only compare the performance of
learning both angles and frequencies, random angles, and uniform angles in Table 2 and Figure 7. From the table and
figure, it is clear that learning both is significantly better than random angles or uniform angles, which demonstrates the
necessity of training angles.

Learn Both Random Angle Uniform Angle

MSE mean (std) 0.00012 (8.5e-9) 0.0046 (3e-7) 0.0039 (3.7e-7)
PSNR mean (std) 111.6 (3.3) 95.6 (0.29) 96.29 (0.43)

Table 2: The MSE and PSNR and their statistics of three different methods in Experiment 2.

Experiment 3. (Far field pattern) The size of scatterers is N = 32 and the measurements are generated from the
third-order model in (4). We train and test the RL model separately on two types of scatterers. The first type of scatterers
is the same as those in Experiment 1, where scatterers are generated by randomly placing three triangles and three ovals
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(a) True image (b) Reconstruction of learning both
angles and frequencies (MSE=8e-5)

(c) Reconstruction of random angle
(MSE=0.0012)

(d) Reconstruction of uniform angle
(MSE=0.0017)

(e) Reconstruction of learning an-
gles only (MSE=3e-4)

(f) Reconstruction of learning fre-
quencies only (MSE=2e-3)

Figure 6: Experiment 1. We compare the reconstruction results of the 5 different methods on a specific type of scatterer.
The true scatterer is shown in subplot (a). We tag the methods under each plot, with the MSE of reconstruction showing
the difference in resolution.

of different sizes in the unit square. The second type of scatterers is generated by randomly placing three circles with
different random intensities. The RL model is trained for 1000 iterations with PPO. The final model sets frequency
ω to be 16 and 24 in the first case and chooses ω = 16 in the second. Because the second case is simplified to a
single-frequency one by the RL model as in Experiment 2, we will not show the results of learning angles and learning
frequencies. The errors are recorded in Table 3 and Table 4. The reconstruction results are visualized in Figure 8. From
these results, we can see that the error of learning both angles and frequencies is much smaller than learning angles
only, which illustrates the power of training frequencies. The other results are similar to the former two experiments.
As shown in Figure 8, the RL model also has the ability to handle different intensities of various objects.

Learn Both Random Angle Uniform Angle Learn Angle Learn Frequency

MSE mean (std) 0.0006 (1.2e-8) 0.004 (7e-7) 0.004 (8e-7) 0.0017 (5e-7) 0.011 (7e-6)
PSNR mean (std) 104.3 (0.62) 96.3 (1.4) 96.2 (1.6) 100.7 (4.4) 92.2 (1.2)

Table 3: The MSE and PSNR and their statistics of five different methods on the first type of scatterer in Experiment 3.
The first type of scatterer consists of 3 randomly placed triangles and 3 randomly placed ovals with different sizes.
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Learn Both Random Angle Uniform Angle

MSE mean (std) 0.0007 (1.4e-8) 0.0045 (9e-7) 0.0053 (4e-7)
PSNR mean (std) 103.6 (0.9) 95.9 (2) 95 (0.5)

Table 4: The MSE and PSNR and their statistics of three different methods on the second type of scatterer in Experiment
3. The second type of scatterer consists of 3 randomly placed circles with random intensities.

(a) True image (b) Reconstruction of learn-
ing both angles and frequen-
cies (MSE=2e-4)

(c) Reconstruction of ran-
dom angle (MSE=5e-3)

(d) Reconstruction of uni-
form angle (MSE=3e-3)

Figure 7: Experiment 2. We compare the reconstruction results of the 3 different methods on a specific type of scatterer.
The true scatterer is shown in subplot (a). We tag the methods under each plot, with the MSE of reconstruction showing
the difference in resolution.

Experiment 4. (Seismic Imaging) In this setting, the domain Ω is rectangle and all sensors are placed on a horizontal
line near the top surface of the domain as in Figure 2.

We consider a domain Ω = [−0.5, 0.5]× [−1.5, 1.5] in the experiment, and the corresponding grid size is 32× 96.

We placed 6 sensors in all and tested the model on second-order and third-order cases. The model works for both cases
and we present the results of the third-order case here. The model is trained for 1000 iterations and the final model
chooses frequencies to be 8 and 16. The results are shown in Table 5 and Figure 9.

Learn Both Random Angle Uniform Angle Learn Angle Learn Frequency

MSE mean (std) 4.3e-5 (4e-11) 6.3e-5 (1.5e-10) 5.5e-5 (3e-11) 5e-5 (5e-11) 5.8e-5 (4.5e-11)
PSNR mean (std) 115.9 (0.3) 114.4 (0.9) 114.8 (0.2) 115.2 (0.6) 114.6 (0.4)

Table 5: The MSE and PSNR and their statistics of five different methods in Experiment 4.
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(a) True image (b) Reconstruction of learning both
angles and frequencies (MSE=5e-4)

(c) Reconstruction of random angle
(MSE=4e-3)

(d) Reconstruction of uniform angle
(MSE=5e-3)

(e) Reconstruction of learning an-
gles only (MSE=2e-3)

(f) Reconstruction of learning fre-
quencies only (MSE=0.01)

(g) True image (h) Reconstruction of learn-
ing both angles and frequen-
cies (MSE=6e-4)

(i) Reconstruction of ran-
dom angle (MSE=4e-3)

(j) Reconstruction of uni-
form angle (MSE=4e-3)

Figure 8: Experiment 3. We compare the reconstruction results of different methods on two different types of scatterers.
The true scatterer of the first type is shown in subplot (a). This type of scatterer consists of 3 randomly placed triangles
and 3 randomly placed ovals with different sizes. The reconstruction results of 5 different methods are shown in subplot
(b) to (f). The true scatterer of the second type is shown in subplot (g). This type of scatterer consists of 3 randomly
placed circles with random intensities. The reconstruction results of 3 different methods are shown in subplot (h) to (j).
We tag the methods under each plot, with the MSE of reconstruction showing the difference in resolution.
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(a) True image (b) Reconstruction of learning both angles and frequencies
(MSE=3.8e-5)

(c) Reconstruction of random angle (MSE=6e-5) (d) Reconstruction of uniform angle (MSE=4.5e-5)

(e) Reconstruction of learning angles only (MSE=4e-5) (f) Reconstruction of learning frequencies only (MSE=6.1e-5)

Figure 9: Experiment 4. We compare the reconstruction results of the 5 different methods on a specific type of scatterer.
The true scatterer is shown in subplot (a). We tag the methods under each plot, with the MSE of reconstruction showing
the difference in resolution.

From the results above, we can see that the RL method achieves lower error mean and variance than the other methods
in seismic imaging, where the data generation and sensor positions are very different from the far field pattern.

The numerical results show that learning both angles and frequencies achieves the highest resolution with a significant
improvement over other methods. Meanwhile, the variance of error indicates that the stability of the RL algorithm
is also much better than other methods. Learning angles only is the second-best method and it can generate a vague
reconstruction. The difference between the best two methods demonstrates the effectiveness of training frequencies.
Sampling angles randomly performs close to sampling uniformly and they are much worse than the previous two
methods. This implies that learning angles is necessary for data collection. The performance of learning frequencies
only is the worst, which means that the learned frequencies must work together with the learned angles. The numerical
results demonstrate the necessity of training sensor angles and incident wave frequencies. Thus, the proposed RL model
outperforms all the other methods.

5 Discussion

In this paper, reinforcement learning is applied to learn a policy that selects scatterer-dependent sensing angles and
frequencies in inverse scattering. The process of sensor installation, information collection, and scatterer reconstruction
is reformulated as a Markov decision process and hence, reinforcement learning can help to optimize this process. A
recurrent neural network is adopted as the policy network to choose sensor locations and wave frequencies adaptively.
The proposed reinforcement learning method learns to make scatterer-dependent decisions from previous imaging
results, each of which requires the solution of an expensive optimization problem. To better facilitate the convergence
and reduce the computational cost of reinforcement learning, a warm-start strategy is used in these optimization
problems. Extensive numerical experiments have been conducted using several types of scatterers in the second and the
third order of the nonlinear inverse scattering model. These results demonstrate that the proposed method significantly
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outperforms existing algorithms in terms of reconstruction quality. This paper serves as a first step towards intelligent
computing for precision imaging in inverse scattering. The case of weak scattering is adopted as a proof of concept. In
the future, more advanced learning techniques will be proposed to deal with more challenging cases.
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