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Abstract

Second-order optimization methods have been developed to
enhance convergence and generalization in deep neural net-
work (DNN) training compared to first-order methods like
Stochastic Gradient Descent (SGD). However, these meth-
ods face challenges in distributed settings due to high com-
munication overhead. Gradient compression, a technique
commonly used to accelerate communication for first-order
approaches, often results in low communication reduction
ratios, decreased model accuracy, and/or high compression
overhead when applied to second-order methods. To address
these limitations, we introduce a novel gradient compres-
sion method for second-order optimizers called COMPSO.
This method effectively reduces communication costs while
preserving the advantages of second-order optimization.
COMPSO employs stochastic rounding to maintain accu-
racy and filters out minor gradients to improve compression
ratios. Additionally, we develop GPU optimizations to mini-
mize compression overhead and performance modeling to
ensure end-to-end performance gains across various systems.
Evaluation of COMPSO on different DNN models shows that
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it achieves a compression ratio of 22.1X, reduces communi-
cation time by 14.2%, and improves overall performance by
1.9x%, all without any drop in model accuracy.

CCS Concepts: « Theory of computation — Data com-
pression; « Computing methodologies — Parallel algo-
rithms.

Keywords: Deep learning, distributed training, second-order
optimization, K-FAC, data compression.

ACM Reference Format:

Baixi Sun, Weijin Liu, J. Gregory Pauloski, Jiannan Tian, Jinda Jia,
Daoce Wang, Boyuan Zhang, Mingkai Zheng, Sheng Di, Sian Jin,
Zhao Zhang, Xiaodong Yu, Kamil A. Iskra, Pete Beckman, Guang-
ming Tan, and Dingwen Tao. 2025. COMPSO: Optimizing Gradient
Compression for Distributed Training with Second-Order Opti-
mizers. In The 30th ACM SIGPLAN Annual Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP ’25), March 1-5,
2025, Las Vegas, NV, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3710848.3710852

1 Introduction

Today’s Deep Neural Networks (DNNs) are increasingly re-
quired to process larger volumes of data due to their robust-
ness and generality [3, 6, 9, 10, 26, 56]. On one hand, this
leads to more iterations needed for training. On the other
hand, the high cost of GPU hours necessitates faster training
methods. As a result, sophisticated optimizers are drawing
more attention, in addition to parallelism mechanisms for
training. Conventional first-order optimizers, such as Sto-
chastic Gradient Descent (SGD) [17] and ADAptive Moment
estimation (ADAM) [27], have been extensively studied.
Recent advancements in second-order optimizers have
proven effective, as they can achieve convergence with fewer
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iterations compared to first-order methods. Notable second-
order optimizers include Kronecker-Factored Approximate
Curvature (KFAC) [35], Broyden-Fletcher—-Goldfarb ~Shanno
(BFGS) [15], Shampoo [18], and Generalized Gauss-Newton
(GGT) [1]. Among these, the pioneering KFAC optimizer has
set a paradigm [34, 36] by efficiently decomposing the Fisher
Information Matrix (FIM) into invertible factors.

However, the intensive computation required for invert-
ing the factors limits the effectiveness of the KFAC optimizer
compared to first-order optimizers. To address this issue, ex-
isting approaches have designed distributed KFAC methods
that parallelize the computation. These approaches divide
the computational workload by layers among GPUs [35, 42],
which necessitates substantial communication to synchro-
nize the KFAC gradient across all GPUs. As shown in Fig-
ure 1, broadcast communication within a distributed KFAC
framework constitutes at least 30% of the total end-to-end
time and increases with model size and GPU count, making
communication a performance bottleneck.

Mask-RCNN GPT-neo-125M

ResNet-50

BERT-Large

Ratio (%)

16 32 64 16 32 64 16 32 64 16 32 64
GPU count GPU count GPU count GPU count
[ KFAC Allgather [ KFAC Computations [ Others
[ KFAC Allreduce 3 Forward+Backward

Figure 1. Time breakdown of distributed KFAC training on
ResNet50, Mask R-CNN, BERT-large, and GPT-neo models with 16,
32, and 64 compute nodes (four A100 GPUs per node).

Compression is a practical approach to reducing the cost
of gradient communication in distributed training. Gradient
compression methods (e.g., sparsification [7, 12] and quanti-
zation [21, 38]) are widely used in Stochastic Gradient De-
scent (SGD)-based DNN training. These methods compress
gradients in a lossy manner to reduce the size of commu-
nication data while keeping the introduced error within a
predefined threshold to ensure convergence.

Error-bounded lossy compression, originally applied to
large-scale scientific data, can be applied to reduce commu-
nication data [48, 60-63]. However, simply adapting existing
first-order gradient compression methods to second-order
optimizers like KFAC is ineffective because: (1 Preserving
convergence can conflict with achieving a high compression
ratio. 2 Lack of consideration for different system setups
can limit end-to-end performance gains; and 3 Ignoring
architecture-specific optimizations (e.g., GPU considerations)
leads to high compression overhead, limiting overall perfor-
mance gains.
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To address these issues, we design COMPSO to enhance
the distributed training performance with second-order op-
timizers through a compression method and a combination
of system and algorithm co-design. To the best of our knowl-
edge, this work is the first to explore these techniques applied
to KFAC gradients and the co-design of the compression al-
gorithm. Our contributions are summarized as follows:

e We analyze the impact of different quantization meth-
ods on KFAC convergence and select the most suitable
method to develop our new compression algorithm.

e We design a novel gradient compression algorithm for
KFAC, which includes an error-bounded scheme and an
adaptive mechanism. These mechanisms incorporate var-
ious strategies throughout training iterations.

e We develop a performance model that guarantees end-to-
end performance improvement and formulates an adap-
tive compression scheme for layers of varying sizes.

e We implement GPU optimizations to minimize compres-
sion and decompression overheads.

e We evaluate COMPSO with KFAC on two GPU clus-
ters with different network configurations. Compared to
the KFAC no-compression baseline, COMPSO improves
communication efficiency by 14.2x and overall training
speedup by 1.9x by achieving a compression ratio of
22.1X for the gradient. Additionally, compared to SGD
with state-of-the-art compression, COMPSO with KFAC
achieves 1.8 X overall speedup, reducing training time
from 60 hours to 33 hours.

The remainder of this paper is organized as follows. §1 pro-
vides an overview of second-order optimization methods and
gradient compression techniques. §2 discusses the research
challenges associated with applying gradient compression to
second-order optimizers. In §4, we detail the design and op-
timizations of our proposed compression method, COMPSO.
§5 presents the results of our evaluation. §6 reviews related
work in the field. Finally, §7 summarizes our findings and
explores potential directions for future research.

2 Background

In this section, we introduce KFAC algorithm, distributed
KFAC mechanism, gradient quantization methods, compres-
sion tools, and CUDA architecture.

2.1 Kronecker-Factored Approximate Curvature

Kronecker-Factored Approximate Curvature (KFAC), a second-
order optimizer, accelerates the convergence by approximat-
ing the inversion of the Fisher Information Matrix (FIM)
and achieves fewer iterations to convergence compared to
first-order optimizers (e.g., SGD) [35, 41, 42, 44, 45]. This ap-
proximation comprises two main steps: Kronecker-product
decomposition to approximate the FIM (Equation 1) and
eigendecomposition (Equation 2). ‘1 The first step utilizes
the Kronecker product of the activation and SGD-gradient
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covariance matrices, formulated as
Fi=A1®G =a1a]  ®qyg], (1)

where A and G represent the covariance matrices, a;_; de-
notes the activation data from layer I — 1, and g is the SGD-
gradient. 2 The second step involves performing eigende-
composition on matrices A;_; and Gy, significantly reducing
computational overhead by diminishing the sizes of these
matrices. The two processes approximate the FIM inversion,
a preconditioner multiplied by the SGD gradient. This yields
the KFAC gradient, detailed below,

((ﬁ + yl)_l) (Z VL (3. f (x, wm) = 0c (% RL T 04 ) o1
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where Qa, Qg and vy, v are eigendecompistion results of
A and G.
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Figure 2. Work and data-flow of distributed KFAC optimizer. a;
and g; are activation and gradient data of layer [, respectively. K
and L are the KFAC gradient and the number of model layers.

2.2 Distributred KFAC

Distributed KFAC optimizers utilize layer-wise parallelism
across GPUs to compute A and G and perform eigendecom-
position efficiently. The workflow includes five main steps
for each neural network layer: (1 covariance computation
of activation and gradient, respectively; 2 local covariances
communication using the all-reduce operation; 3 eigende-
composition on covariance matrices; ‘4 compute the pre-
conditioned gradient; and ‘5 all-gather the preconditioned
gradient to each worker (e.g., GPU), as shown in Figure 2.
The computation workload in steps 3 and 4 are evenly split
across multiple GPUs, i.e., each GPU computes a subset of
all layers’ KFAC gradient. Thus, in step 5, each GPU sends
its computed results to all other GPUs using Allgather. Note
that some KFAC implementations use broadcast instead of
Allgather to overlap communication with computation.

Training with second-order optimizers follows a data-
parallel fashion [42-45]. This contrasts with pipeline-parallel
methods (e.g., PipeFisher [41]), which are the outcome of
restricted GPU memory capacity (e.g., 16-GB P100). The
data-parallel trend also coincides with the introduction of
large-memory GPUs (e.g., 40-GB A100, 141-GB H200), ini-
tially for accommodating large models. These large-memory
GPUs can benefit the memory-intensive KFAC optimization,
ultimately speeding up the training process.
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With the data-parallel requirement initially met, KAISA,
a distributed KFAC approach, is proposed to optimize KFAC
workflow [44]. The contributions of KAISA are threefold.
1 KAISA minimizes intermediate data memory overhead
by performing an Allgather of each layer’s computation
results immediately upon completion instead of waiting
and buffering all layers. 2 KAISA overlaps computation-
communication overlap across layers on each GPU. 3 KAISA
employs an alternate implicit inversion method for FIM to
further optimize the process. In this work, we focus on KAISA
as our design basis.

2.3 Gradient Quantization

Quantization represents FP32 values using fewer bits [2, 13,
24, 25]. Gradient quantization typically consists of two steps:
normalization and rounding. ‘1 An n-bit quantization con-
siders the data range and encloses all the integers, which
are transformed from the input value v, within [-2", 2"]. To
constrain all the input numbers, it is done by

v’ = 2" - v/max(|vmax|, |9minl), (3)

2 Intuitive rounding to the nearest integer (RN) and sto-
chastic rounding (SR) are jointly used. SR is defined as

[ o =10
Uint =
[o')

ith probabilit
with probability p where p= 0
2.4 Representative Compression Methods

[0'] -]

otherwise

We use three representative algorithms: 1 QSGD [2], a
gradient compression algorithm for SGD; 2 SZ [29], an
error-controllable lossy compressor for FP32 data; and 3

CocktailSGD [53], a combination of sparsification and SR-
based quantization. QSGD includes SR-based quantization
and Elias Encoding. SZ includes prediction, RN-based quanti-
zation, and Huffman encoding [23]. SZ uses the surroundings
to predict a data value and quantizes the prediction error;
with the quantized error properly encoded, the data is re-
duced in size. Sparsification of CocktailSGD leverages the
distribution of SGD gradients, recognizing that smaller val-
ues occur more frequently. It selects the most frequent values
and represents the SGD gradient in a sparse format. Lossless
encoding boosts the compression ratio (CR) to surpass the
1-bit quantization limit ! if repeated patterns are presented.

3 Motivation and Challenges

As mentioned in §1, the communication-to-total-time ra-
tio exceeds 30% in distributed KFAC, even considering the
computation-communication overlap. Besides upgrading net-
work bandwidth (which is rare and unexpectable), compres-
sion practically reduces the communication data size to com-
municate and, consequently, the communication overhead.

Existing SGD gradient compression algorithms compress
the gradient vector in a lossy manner and have been validated

IThis is equivalent to 32X in CR for FP32 gradients.
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Figure 3. Compression ratio (left) and validation accuracy (right) of
different solutions on ResNet50 and BERT-large, and the accuracy
benchmark result with KFAC is 75.8 and 90.44, respectively.

to converge with compressed SGD gradients [2, 30, 33, 53, 55].
However, the compression ratio (CR) and impact on accu-
racy/convergence from lossy compression on KFAC gra:
ents has not been explored. We apply two state-of-the-a
compression algorithms to the second-order gradients
KFAC: QSGD and SZ (introduced in §2.4). Note that QSG
and SZ only differ in their (lossy) quantization method, a1
in the remainder of the paper, we tune SZ’s error bounds
match the accuracy for 4/8-bit QSGD.

However, directly applying them results in either a lc
compression ratio (CR) or impacted validation accuracy
well as convergence, as illustrated in Figure 3 with ResNi
50 [20] on ImageNet [9] and BERT-large [10] on Wiki [3
Using a lower error bound for SZ (4E-3) or more bits {
QSGD (8-bit) results in higher accuracy (reaching 75.8 a1
90.44) but limited compression ratios (8X to 20x) On tl
other hand, high error bound will cause compressors su
as SZ to have higher compression error, resulting in lc
validation accuracy, without our optimization (will be ¢
tailed in §4.2-4.3) Furthermore, QSGD 4-bit failed to preser
accuracy on KFAC, contrasting to the behavior on SGD[
because ‘1 KFAC gradients have a larger range than SGD g
dients, resulting in more scattered quantized values with
the scaled range and degraded encoder performance; and
KFAC gradients make more accurate and aggressive ste
toward convergence [32], making them more sensitive
the introduced errors. These necessitate a new compressic..
scheme to address these issues. Additionally, existing SGD
gradient-compression algorithms lack architecture-specific
optimizations, particularly for GPU. Effectively utilizing their
parallelism and memory hierarchy is crucial. Consequently,
designing GPU optimizations to reduce the (de)compression
overhead is essential, ensuring that communication speedup
contributes to the overall gain.

Four challenges lie ahead in developing a framework for
accelerating communication in distributed KFAC training:

1. CR can be limited by the bitrate requirement to main-
tain validation accuracy (§ 2.3) This issue is even more
pronounced for KFAC gradients, as evidenced in Figure 3.
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2. Generalizing the characteristics of a system and modeling
it is non-trivial, considering significant variations in net-
work bandwidth, GPU compute capability, etc. Further-
more, applying compression complicates the modeling.

3. The mechanism of distributed KFAC misfits the circum-
stance when the model is split into cross-GPU layers, as
the gradients vary in data sizes and range across layers.
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Figure 4. Overview of the proposed communication-efficient
second-order training framework, COMPSO.

4 COMPSO Design

In this section, we present the design of COMPSO to address
the identified challenges. We first characterize the accuracy
impact of different quantization approaches for various error
distributions. Building on this characterization, we detail
the design of our new compression algorithm, which fea-
tures an iteration-wise adaptive mechanism incorporating
different compression strategies across training iterations.
We then devise a performance model considering many fac-
tors, including communication bandwidth, compressor cost,
compression gain, etc. Furthermore, based on our perfor-
mance model, we introduce a layer-wise adaptive compres-
sion mechanism for aggregated layers of varying sizes. Lastly,
we describe our GPU optimizations.

4.1 Overview of COMPSO

COMPSO includes ‘1 a validation-accuracy-preserving high-
ratio compression algorithm that hybridizes filter and sto-
chastic rounding and adapts error bounds based on iterations,
2 a performance model, thereby ensuring end-to-end per-
formance gain and integration with the layer-wise adaptive
compression mechanism. and ‘3 GPU optimizations for dif-
ferent data sizes and value ranges by efficiently utilizing
CUDA parallelism and multi-level memory hierarchy. The
design is shown in Figure 4.
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Specifically, the hybrid compression algorithm consists
of a filter that maps gradients within a predefined thresh-
old to zero and represents the indices with a bitmap, an
error-bounded quantizer that maps FP32 values into integers,
and a lossless compressor that compresses the bitmap and
quantized values. It is important to note that, unlike fixed-
rate gradient quantization methods (e.g., 4/8-bit), our fine-
grained error-bounded quantization can balance the com-
pression ratio and validation accuracy. The adaptive compres-
sion mechanism enables flexibility for different KFAC gradi-
ent compression scenarios, as it determines the aggressive-
conservative compression strategy across iterations. The per-
formance model considers the system setup and algorithm
capabilities and utilizes the micro-benchmark results to esti-
mate the end-to-end performance without a complete run of
end-to-end training. Our performance model helps design fu-
ture compressors for distributed training communication on
various systems. GPU optimizations are implemented in two
directions: enhancing memory parallelism and improving
efficiency. We reduce frequent memory access by combining
block reduction with warp-level shuffle techniques. High-
performance parallelism is achieved by tailoring data sizes
and ranges in a fine-grained manner.

4.2 Rounding Method Analysis

This section discusses the relationship between lossy com-
pression error and validation accuracy (with the same num-
ber of iterations to convergence) using KFAC. First, the error
is defined as the difference between the de-quantized value
and the original value. Specifically, two established lossy
compressors with the two rounding schemes (§ 2.3) are stud-
ied: (1 SZ, which uses RN for quantization, and 2 QSGD,
which uses SN for quantization. Figure 3 shows that QSGD
achieves a lower or comparable compression ratio but main-
tains better validation accuracy than SZ. We studied several
metrics, including the L2 norm, peak signal-to-noise ratio
(PSNR), and error distribution, to understand the reason. We
find the (error distribution)-accuracy consistency is signifi-
cant, which becomes a key point throughout this paper.

First, we analyze the distributions of RN- and SR-caused
errors on KFAC gradients when training ResNet-50. We vi-
sualized the error distribution across all layers for every 50
iterations (out of 1563, BERT-large) and five epochs out of
100 (ResNet-50). Each model was trained five times, and we
observed a similar distribution shape across both model lay-
ers and throughout epochs/iterations. As shown in Figure 5,
while RN results in a uniform error distribution determin-
istically, SR results in a triangular distribution due to its
probabilistic nature. We conduct extended experiments by
compressing synthetic uniformly and normally distributed
data. We observe that RN and SR error distribution is consis-
tent with KFAC gradients.

To investigate if the non-deterministic feature preserves
accuracy, we test another non-deterministic rounding, Py 5
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(i.e., mode-2 SR in [8]), which rounds up/down with equal
probability, resulting in a uniform error distribution. This
method significantly impacts accuracy at the same bit level
as SR. For example, with 8-bit quantization on ResNet-50,
convergence accuracy drops to 74.5%, compared to 75.8%
without compression. In contrast, QSGD-8bit (SR) maintains
76.0% in accuracy.

Rounding to Nearest Stochastic Rounding
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Figure 5. The distribution of KFAC gradient compression error with

error bound of 4E-3 using RN (left) and SR (right) on all layers every
50 iterations. The error distributions are similar across iterations.

We conduct extensive experiments on four DNN training
benchmarks using SZ and QSGD (will be detailed in §5.1),
in addition to results mentioned in §3 Figure 3. The results
demonstrate that QSGD better preserves accuracy than SZ
(e.g., QSGD 8-bit achieves higher accuracy under a similar
ratio with SZ 4E-3). This outcome is attributed to SZ, leading
to a uniform error distribution, and QSGD, resulting in a
triangular error distribution. Furthermore, Figure 3 shows
that SZ with an error bound of 4E-3 achieves higher accuracy
than 1E-1, underscoring that a smaller error bound is more
conducive to accuracy preservation.

From the theoretical and experimental analysis presented
above, we draw three key insights concerning validation ac-
curacy: (1 a triangular error distribution is more effective at
preserving accuracy than a uniform distribution (SR versus
RN and Py 5), 2 within the same class of error distribution, a
smaller error bound is more beneficial (§3), and ‘3 whether
the quantization is deterministic (RN) or non-deterministic
(Po.5) has no significant impact on accuracy or convergence.
Accordingly, stochastic rounding (SR) is the superior KFAC
gradient quantization technique. Thus, we focus our com-
pression algorithm on this method.

4.3 Novel Gradient Compression Algorithm

As discussed in §3, direct quantization methods like SR pre-
serve validation accuracy but achieve a limited compression
ratio. Thus, we set to develop a new SR-based compression al-
gorithm to ‘1 maintain validation accuracy and 2 compress
the FP32 values more.

The workflow of our compression algorithm is presented
on the left in Figure 4 and the algorithm is describes in Al-
gorithm 1. First, the algorithm employs a filter to convert
a subset of KFAC gradient FP32 values into a bitmap rep-
resentation. Specifically, the filter selects values based on
a predefined error bound, i.e., values that are less than the
error bound and marks them as one in the bitmap (remaining



PPoPP ’25, March 1-5, 2025, Las Vegas, NV, USA

values will be marked as zero). We use a bitmap to record
the subset of KFAC gradients that are processed by the filter.
After that, we apply an encoder to compress this bitmap loss-
lessly, achieving a high compression ratio; for the remaining
values that are higher than the error bound, we apply SR to
preserve the validation accuracy and encoding to further im-
prove the compression ratio. Notably, the error bound of SR
(ebg) is defined separately from eby. The eb, is determined
empirically to minimize the accuracy impact. For the lossless
encoder, we select the best-fit GPU encoders from existing
implementations, which balances the high compression ratio
and (de-)compression throughput (to be detailed in §4.4).

Additionally, we design an iteration-wise adaptive com-
pression mechanism that enables more aggressive compres-
sion across training iterations. Specifically, we divide the
number of iterations required for convergence into multiple
stages. In distributed training using KFAC optimizers, the
early iterations are typically unstable, while the later itera-
tions trend closer to convergence. This occurs because, ‘1 in
DNN training, the learning rate decreases across iterations,
making early iterations less sensitive to the error introduced
in KFAC gradients than later ones; and 2 the covariance
matrices A and G are computed as the running averages
during training, becoming more stable as more training sam-
ples processed. Consequently, we use larger error bounds
combining filter and SR in the early iterations and smaller
error bounds applying SR only during the later iterations as
the learning rate changes.

Two popular learning rate (LR) schedulers can adjust the
learning rate: StepLR and SmoothLR. StepLR decays the LR at
predefined steps by multiplying the base LR by a decay factor.
SmoothLR decays LR by multiplying a factor by the base LR
at each iteration after the warmup. For StepLR, we use both
filter and SR with a large error bound before the first learning
rate decreases. For SmoothLR, we divide the training process
into z stages, where z is an empirically tunable parameter.

We empirically validate the design in §5, demonstrating
that our approach does not significantly impact model accu-
racy and achieves a higher compression ratio compared to
not using this mechanism. Our design differs from previous
sparsification approaches, such as Ok-topk, which maintains
a fixed error bound across all iterations; we adaptively vary
the error bound based on the learning rate.

Unlike existing SGD gradient quantization methods at
a rigidly fixed rate (i.e., 8/4/2/1-bit), our fine-grained algo-
rithm features tunable error bounds. This is accomplished by
packing bits into bytes based on the specified error bound.
For instance, with an error bound set at 1e-2 to maintain
validation accuracy, our method requires a maximum of
100 quantization bins, corresponding to a 7-bit representa-
tion. Each 7-bit group is then packed into bytes. In contrast,
other quantization methods like QSGD necessitate 256 quan-
tization bins for an 8-bit representation. Consequently, our
approach yields a higher compression ratio by 14%.
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Algorithm 1: Proposed filter and SR-based compression algo-

rithm with adaptive iteration-wise compression.

Inputs :G: KFAC gradient values; eby: filter error bound; ebg: SR error
bound; LR: learning rate schedule; T total iterations; z: number of
stages; a: error bound decay factor;

Outputs: C: Compressed representation of G

1
2 B—0
3C«—0
4 stage_length — [T/z]
5 fort < 0toT do
6
7 if LRS == StepLR then
8 if t < first LR_drop then
9 ‘ ebyr, eby < loose bounds;
10 end
11 else
12 ebf, ebg « tight bounds;
13 end
14 end
15 if LRS == SmoothLR then
16
17 current_stage «— | t/stage_length]
18 if current_stage == 0 then
19 ‘ ebf, ebq « loose bounds;
20 end
21 else
22 ‘ ebr,eby — eby X a,eby X a;
23 end
24 end
25
26 foreach g € G do
27 if |g| < ebs then
28 ‘ Blg] « 1;
29 else
30 | Blgl < 0;
31 end
32 end
33 Compress B losslessly and append to C;
34
35 foreach g € G where B[g] == 0 do
36 Quantize g into using SR with ebg;
37 Pack quantized values into bytes and append to C;
38 end
39 end
40
41 return C;

Our algorithm is tailored for KFAC rather than SGD due
to differences in communication patterns and sensitivity to
compression errors. While SGD relies on ring AllReduce,
which has the error propagation issue, KFAC uses AllGather,
avoiding this issue. KFAC’s faster convergence also heightens
its sensitivity to compression errors, requiring a balanced
design for compression and convergence.

4.4 Performance Model for Optimal Compression

To secure end-to-end performance gain, we develop a per-
formance model that incorporates impacting factors and
offline-online mechanism. The overall performance includes
communication and the incurred (de-)compression overhead.
We first define the modeling space and introduce the nota-
tions below. For system [x]:

e [, and L, [MB] are the sizes of the original and com-
pressed KFAC gradients, respectively.
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° CA(E’“] and (:‘C[x] [MB/s] are the reference communication
throughput for the original data (of size s) and the com-
pressed data (of size c), respectively. They are from the
prebuilt lookup table for each system.

. T[x] and T[x] [MB/s] are the compression and decom-
press1on throughputs for the original data (of size s) and
the compressed data (of size c), respectively. They are
averaged from the first k iterations.

° fllx,i [%] is the ratio of the communication time to the total
iteration time without compression, and this is averaged
from the first k iterations.

Modeling the communication speedup with compression
requires the communication throughput before/after com-
pression. However, without online measures, we cannot
know the compressed data size for each layer. Considering
runtime profiling may incur overhead, we employ a mixed
offline-online strategy to gain knowledge. Specifically, we
benchmark communication offline on each system with syn-
thetic data, forming a deterministic lookup table that maps
communication throughput C1*1 to different message sizes
and the GPU count. Thus, it becomes a reference for online
queries for the varying data sizes (original or compressed).

Table-querying required L, and L. are measured with
real data. Notably, COMPSO includes an encoder that is se-
lected from a vector of candidates (detailed in § 5.2), and they
achieve varying L.. To select the best-fit encoder, we need to
measure L, and overall compressor throughputs (77, and
11x1,) on real data (i.e., KFAC gradients) online. We use the en-
coder with smaller L, and low overall compression overhead.
The gradient data feature is unknown before runtime, so we
are set to profile only k training iteration. We also found that
warmup training iterations can be representative across the
training. Thus, we choose the first k warmup iterations, with
negligible performance impact, to determine the stabilized
compression-decompression throughput (77, and 77,) and
the portion of communication (%)) for each system [x] The
communication speedup is formulated as

s=(i+§r]n LO); Lo I | L)

A | 7 AT T R Flx]

i CO CC To,l..k,i“i+m Tl
S——

EST. TIME WITH

ORIGINAL DATA SIZE EST. TIME FOR COMP.+DECOMP. AND

COMMUNICATING COMPRESSED DATA

where m is the layer-aggregation factor, determined by our
layer-wise compression and layer-aggregation mechanism
on each GPU. Specifically, DNN models feature size-varying
KFAC gradients for each layer, some of which are small
and lead to GPU resources underutilization. We aggregate
multiple layers before compression is employed to improve
and stabilize the performance We ﬁnd the m such that the
end-to-end speedup ((1 | ,1)+r1 k/s) is high. For example,
with 50% of the communication to total iteration time ratio
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and 10X communication speedup considering compression,
the end-to-end performance gain is 1.8%.

4.5 GPU Implementation and Optimizations

KFAC gradients are computed and buffered in GPU global
memory during training. Hence, compressing on the GPU is
essential to avoid the GPU-to-CPU data-transfer overhead,
which can be unacceptable. Existing vanilla implementations
of the GPU compressor, such as QSGD and CocktailSGD,
degrade the system performance (to be detailed in §5.3), mo-
tivating us to develop a GPU-centric compression pipeline.

As outlined in §4.3 and Fig. 4a, the compressor consists of
a filter, a quantizer, and an encoder. Given the compression is
done in O(n) time (if sequential), the arithmetic intensity is
O(1) relative to input size n, implying that the compression
is essentially memory-bound with lightweight computation.
The related optimizations to decrease traffic throughout the
memory hierarchy are twofold. 1) We fuse the three kernels
into one to decrease the memory traffic to global memory
and improve performance. This approach allows the con-
text to persist in local buffers (e.g., shared memory) and
increases the data reuse in the memory-bound compression
process. 2) In addition, we implement the fine-grained range
computation (i.e., finding the extrema of a layer) in a paral-
lel reduction manner using block reduction and warp-level
shuffle. Specifically, the update frequency of global extrema
in global memory can be much lowered after the local ex-
trema are found by block reduction. Backtracing the block
reduction, considering the one order of magnitude higher
latency to access share memory than the warp-wide (SIMD-
32) register file, warp-level shuffle is employed to decrease
the block-wide local extrema update in the shared memory
after each warp finds the even-finer local extrema.

Given that layer sizes vary, a fine-grain mapping of layer
(data) and thread block is required. First, the shared memory
buffer is padded to ensure that only gradients for one layer
are processed. This also ensures that the determination of the
data range (for normalization) is not mixed when aggregating
multiple layers. Second, the varying layer size can result
in workload imbalance, which can increase latency during
training. At the same time, layer features (e.g., size) can
be stable across iterations. i.e., given a list of layers whose
indices are 0...N, the occurrence of layer[i] tends to be
stable. Thus, a pre-determined layer-block hashmap can be
built during the initialization of the KFAC optimizer and
reused for the rest of the iterations.

5 Experimental Evaluation

Platforms. We evaluate COMPSO on two platforms: 1
A 16-node cluster, each node equipped with two AMD EPYC
7742 processors, 256 GB of RAM, and four 40GB NV-Link
connected NVIDIA A100 GPUs. These nodes are intercon-
nected using Slingshot10 with a maximum bandwidth of 100
Gbps. 2 A 64-node cluster, each node equipped with the
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same GPU configuration, one AMD EPYC Milan 7543P pro-
cessor, and 512 GB of RAM. These nodes are interconnected
using Slingshot11 with a maximum bandwidth of 200 Gbps.
Baselines. We compare COMPSO with three state-of-
the-art compression approaches: QSGD [2], cuSZ(A GPU
version of the SZ algorithm) [52], and CocktailSGD [53].
QSGD and SZ algorithms are introduced in §2.4. As Cock-
tailSGD is a fine-tuning solution rather than training from
scratch, we focus more on its compression performance in
ratio and throughput and performance gain in training than
on validation accuracy. For COMPSO, we fix the tunable
parameter aggregation factor to be 4 for all cases accord-
ing to our performance model. In addition, we utilize the
state-of-the-art distributed KFAC optimizer, KAISA [44], to
enhance memory efficiency for large-batch training.
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Figure 6. Convergence Evaluation using four compressors on KFAC
on three models, comparing to KFAC without compression baseline.
Additionally, SGD with CocktailSGD compressor.

DNN models, datasets, and benchmark. We evaluate
the convergence and performance of COMPSO using four

Sun et al.

representative and widely-used models, two CNN-based and
two transformer-based: ResNet-50 [20], Mask R-CNN [19],
BERT-large [10], and a GPT-3 style model, GPT-neo-125M [11].
The first three are from NVIDIA [39] and GPT from EleutherAl
[4]. This selection demonstrates the versatility and effec-
tiveness of COMPSO for various DNNs. Specifically, we
train ResNet-50 on ImageNet, Mask R-CNN on the Microsoft
COCO [31], BERT-large-uncased on the enwiki [37] and
Toronto BookCorpus datasets [5] , and GPT-neo-125M on the
Pile [14]. Additionally, we use widely-received downstream
task dataset and benchmark SQuAD v1.1 [47] to evaluate
the BERT-large-uncased model quality.

5.1 Evaluation of Convergence

We present COMPSO’s impact on convergence in Figure 6a,
along with its auxiliary Figure 6b, and Table 1. We observe it
to have minimal effect on KFAC convergence, on ResNet-50,
Mask R-CNN, and GPT-neo-125M, using 64 GPUs on Plat-
form 1. Figure 6a and its auxiliary Table 6b show the conver-
gence and final iteration metric values averaged by multiple
runs of ResNet-50, Mask R-CNN, and GPT-neo-125M, com-
paring with cuSZ, QSGD, and CocktailSGD. Table 1 show
the SQuAD v1.1 BERT-large benchmark results that evaluate
the model quality. Additionally, we apply CocktailSGD to
SGD optimizers on the four models to demonstrate the effec-
tiveness of KFAC over SGD with compressors. Experiments
are configured to use the same number as the baseline (with-
out compression) for the iterations to convergence, with the
validation metrics as close as possible. This allows a compar-
ative performance analysis as outlined in §5.4-5.2. As shown
in Figure 6a, without compression, the SGD optimizer uses
more iterations than the KFAC optimizer for convergence:
60 vs. 40 epochs, 1800 vs. 1000 iterations, and 5000 vs. 3000
iterations on ResNet-50, Mask R-CNN, and GPT-neo-125M,
respectively. This results in KFAC’s 1.3%, 1.2X, and 1.5X end-
to-end speedup over SGD. For BERT-large, SGD-based opti-
mizer (i.e., LAMB[57]) uses 1563 iterations to convergence,
whereas KFAC-based optimizer uses 1000 iterations, 1.3X
over SGD. Moreover, applying CocktailSGD to SGD results
in preserved convergence compared to the case without com-
pression. Therefore, SGD+CocktailSGD uses more iterations
than KFAC and KFAC+compressors. Additionally, compared
to SGD+CocktailSGD, KFAC+COMPSO achieves 15% to 50%
end-to-end performance gain.

For the KFAC baseline and with compressors, ResNet-50
and Mask R-CNN employ StepLR for KFAC, with the first
learning rate decrease occurring at epoch 25 and iteration
650, respectively. Therefore, we apply aggressive compres-
sion with an error bound 4E-3 prior to the first learning rate
drop, then switch to conservative compression with an error
bound 2E-3 for the remaining epochs/iterations. Table 6b
shows that cuSZ’s accuracy is significantly lower than QSGD,
demonstrating SR’s superiority over RN in preserving ac-
curacy. COMPSO first aggresses in compression with error
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Table 1. Comparing SQuAD result of KFAC with different compres-
sion methods. Underlined are the targets (without compression),
and the shading denotes close to the target.

Equivalent Exact
Approach Error Control F1Score Match
SGD+CocktailSGD fgﬁff{;ﬁ'ﬁ{ 90.43 [l 83.80
KFAC (No Comp.) (n/a) 90.44  83.78
KFAC+cuSZ 4E-3, relative 89.41 8240

to value range

KFAC+QSGD 8-bit quant. Bl EED
KFAC+CocktailsGD ~ [iSParslY [Nl [EEEE
KFAC+COMPSO ite;?g;"’)'t‘i'\)‘é'se 90.27 |l 83.37

bound 4E-3 for filtering and quantization, then conserves
with SR-only mode at the same error bound, effectively main-
taining accuracy on both models. Notably, cuSZ’s accuracy
significantly suffers when the error bound exceeds 1E-2, and
QSGD’s with less than 8-bit quantization.

For GPT-neo-125M with cosine LR, we apply aggressive
compression for the first 5,000 iterations. COMPSO main-
tains a similar validation loss curve to training without
compression. In the case of BERT-large, pre-training encom-
passes 1,000 iterations, segmented into four stages of 250
iterations each. BERT results are presented in Table 1. The
F1 score and exact-match ratio (higher is better), indicate
that QSGD 8-bit and CocktailSGD 8-bit SR quantization sur-
passes cuSZ 4E-3 RN quantization in accuracy preservation,
while COMPSO has a minimal impact on model quality by
refining the error bound from 4E-3 in stage 1 to 2E-3 in stage
4. This demonstrates that SR is more effective than RN, and
COMPSO maintains good model quality using SR.

5.2 Communication Performance Gain

We present the communication speed up during aggressive
compression iterations in Figure 7. The communication time
excludes any compression-decompression overhead. Specifi-
cally, COMPSO achieves up to 14.5%/11.2X (11.0X/7.2X on av-
erage) on the two platforms, respectively. The speedup is lim-
ited by the accuracy-preserving settings for cuSZ at 4E-3 and
QSGD with 8-bit due to their low compression ratios (CR).
Compared to the baseline without compression, COMPSO
achieves up to a 14.15x speedup on BERT-large using 64
GPUgs, attributed to a high overall CR by its initial aggressive
compression. With a slower network (e.g., Slingshot 10), the
speedup is greater than with a faster network (e.g., Slingshot
11) and thus benefits more from a high CR. Furthermore, as
GPU counts increase, the speedup is even greater due to the
high compression ratio and layer aggregation based on our
performance model. Specifically, COMPSO achieves average
CR of 18.95x/ 23.52X/22.05%/18.41X for ResNet-50/Mask R-
CNN/ BERT-large/GPT-neo-125M, respectively. In compari-
son, cuSZ achieves compression ratios of 6.04x/7.04x/15.98x
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Table 2. Overall compression ratio (CR), compression throughput
(C-GB/s), and decompression throughput (D-GB/s) on KFAC gradi-
ent data when training ResNet-50 (left) and BERT-large (right). The
shading represents the optimal compressor compared to others.

ResNet-50 Encoder BERT-large
C-GB/s CR D-GB/s C-GB/s CR D-GB/s
10.73 [ 18.95 | ANS [43.52 [ 22.05 [ 93.85 |
413 1496 381 Bitcomp [IEG 1404 [FIFE)
231 11.21 242 Cascaded 1034 10.70 16.66

021 [FIEA] 0.09  Deflate (kI 2268 1.20
044 [FIEEN 026  Gdeflate 039 [PPER] 253

0.22 13.52 0.24 LZ4 0.46 14.30 143
0.44 13.90 0.22 Snappy 0.48 14.65 2.23

0.13 iy 0.13 Zstd 0.27 pPRN3 0.76

/5.63%, while QSGD achieves 4.97x/5.73%/14.77x/4.87X. COM-
PSO outperforms CocktailSGD on Mask R-CNN and BERT-
large in communication efficiency and end-to-end speedup
because of the advantageous CR.

Moreover, the communication speedups by CocktailSGD
are lower than COMPSO on ResNet-50 and GPT-neo-125M
due to our proposed layer aggregation strategy, which en-
hances efficiency when both approaches have a similar com-
pression ratio of & 20%. For instance, while COMPSO achieves
a compression ratio of 18.95X, slightly lower than Cock-
tailSGD’s 20X, our method still secures a more substantial
communication speedup due to layer-wise adaptive compres-
sion. This leads to a higher overall performance enhancement
on ResNet-50 and GPT-neo-125M.

Next, we analyze the performance by examining the com-
pression ratios. Our strategy for the lossy compression com-
ponent has already been determined but has yet to be de-
cided for the encoder. Specifically, we consider eight en-
coders (lossless compressors) from NVIDIA nvCOMP[40]:
ANS, Bitcomp, Cascaded, Deflate, Gdeflate, LZ4, Snappy,
and Zstd. It is crucial to note that different data types af-
fect the compression ratio and the throughput of compres-
sion/decompression. Therefore, we must select the appro-
priate encoder for each model during the sampled iterations
after warmup. The throughput and overall compression ra-
tios for ResNet-50 and BERT-large are presented in Table 2.
To simplify the demonstration, we present the throughput
and overall compression ratios using representative models,
namely a CNN and a transformer-based language model. We
observe that compressors incorporating entropy coding (e.g.,
ANS, Deflate, and Zstd) achieve higher compression ratios
than those based on dictionary matching (e.g., LZ4, Snappy)
or run-length coding (e.g., Cascaded). This is attributed to
the gradient distribution’s non-uniformity.

ANS stands out for its higher compression/decompression
throughput, attributable to its fewer operations compared to
other algorithms and its capability for parallel execution on
GPUs via a block processing scheme, as discussed in [54]. For
Bitcomp and GDeflate, we find limited widely acknowledged
documentation. Our results indicate that Bitcomp delivers
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high throughput but a lower compression ratio. GDeflate, a
variant of Deflate, achieves a high compression ratio through
entropy coding but low throughput (similar to Deflate). In
these cases, ANS is the overall best encoder.

Furthermore, our compression ratio (i.e., >22) significantly
surpasses cuSZ and QSGD when the accuracy does not drop
considerably (i.e., below 10), as shown in Figure 3. In addi-
tion, the compression ratios of COMPSO are slightly higher
than CocktailSGD, which maintains a constant ratio of 20 (by
fixing the sparsity at 20% and using 8-bit quantization bits).
Specifically, CocktailSGD employs Top-k with random sam-
pling for sparsification before quantization, while COMPSO
uses a relative threshold to filter values. The advantage of our
method is adaptively filtering values based on their range
rather than consistently zeroing out 20% elements.

ResNet-50 Mask R-CNN BERT-large GPT-neo-125M
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Figure 7. Comparison of communication speedup (y-axis) of cuSZ,
QSGD, CocktailSGD, and COMPSO compressed KFAC gradients on
ResNet-50 and BERT-large with different GPU counts (x-axis).
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We also present a comparison of GPU performance be-
tween QSGD using PyTorch’s torch. cuda() [46], the CUDA
implementation of SZ (i.e., cuSZ [52]), QSGD, CocktailSGD
with torch.cuda(), and COMPSO in Figure 8. Note that the
compression throughput may vary with input data, so we
report their average throughput across our tested datasets.

Our CUDA implementation of QSGD offers higher through-
put than its PyTorch counterpart. This is because PyTorch
launches multiple kernels for CUDA tensor operations[22],
whereas our approach fuses kernels to reduce kernel launch
overhead and minimize across-GPU memory data movement
time. Furthermore, our implementation of QSGD exhibits

=== CocktailSGD (Pytorch)
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Figure 9. Overall performance gain of cuSZ, QSGD, CocktailSGD,
and COMPSO scaled by GPU counts. The 1.0x speedup threshold
is marked in each plot.

higher throughput compared to COMPSO. This is because
QSGD performs fewer operations by omitting the filter de-
spite a lower compression ratio. In addition, COMPSO is 1.7X
faster than CocktailSGD due to the latter’s relatively slow
Top-k sparsification with random sampling and its imple-
mentation in PyTorch. As a result, COMPSO enhances com-
munication efficiency and overall end-to-end performance,
even in scenarios where CocktailSGD achieves a marginally
higher compression ratio than COMPSO?.

5.4 End-to-End Training Performance Gain

We evaluate the overall speedup of COMPSO in two ways,

1 with the fixed-to-4 aggregation factor (denoted COMPSO-
f) and 2 with our performance model of dynamic aggre-
gation factor (denoted COMPSO-p). As illustrated in Fig-
ure 9, COMPSO achieves up to a 1.9x (1.3X average) overall
performance gain when training the four models on our
platforms, compared to training without compression. The
average training time before COMPSO of ResNet-50, Mask
R-CNN, BERT-large, and GPT-neo-125M on the two plat-
forms using 8 GPUs is 5, 1, 54, and 1 hours, respectively. 3
This reduces the training time for the four models to 3.5, 0.7,
36, 0.7 hours, respectively. Compared to cuSZ, and QSGD
COMPSO demonstrates superior performance due to its
greater communication reduction and higher compression
throughput thanks to the communication speedup, our GPU
optimizations (discussed in §5.2-5.3). Moreover, with the in-
creasing GPU amount, COMPSQO’s performance gain over
CocktailSGD increases from 10% to 40%, mainly attributed to
our efficient aggregation strategy, GPU optimizations, and
performance model.

2The local-then-global block reduction with warp shuffle boosts GPU per-
formance when CocktailSGD achieves a slightly higher compression ratio.
3Fully pre-training GPT-neo-125M requires >120 hours on 8 A100 GPUs.
We demonstrate COMPSO’s effectiveness using 5000 iterations (1 hour).



COMPSO

Note that without our performance model (i.e., COMPSO-
), COMPSO achieves up to 1.8x and 1.6X speedup (1.4x and
1.3X on average) on the two platforms, respectively. With
the performance model enabled (i.e., COMPSO-p), COMPSO
achieves up to 1.9 and 1.8x speedup (1.5X and 1.4X on
average) on the platforms, respectively. This highlights the
importance of dynamically adjusting the aggregation factor
using our performance model, as discussed in §4.4. Specifi-
cally, a fixed layer aggregation factor with varying layer sizes
can result in the aggregated size being either too small or too
large for optimal end-to-end speedup. Additionally, the per-
formance model’s computational overhead is minimal com-
pared to the total training time - for instance, 2 minutes out of
42 minutes (5%) of training for KFAC+COMPSO on GPT-neo-
125M. Compared to SGD+CocktailSGD, KFAC+COMPSO
achieves up to 2.5X (1.8 in average) speedup. Specifically,
this reduces the training time from 6, 1.2, 60, and 1.3 hours
to 4.6, 0.8, 33, and 0.5 hours for ResNet-50, Mask R-CNN,
BERT-large, and GPT-neo-125M, respectively.

6 Related Work

There are several ways to conduct SGD gradient quantization:
sparsification and their combination. Additionally, there are
other KFAC optimizations.

Quantization methods. Two primary quantization meth-
ods reduce FP32 data to fewer bits: ‘1 rounding to the nearest
(RN) and 2 stochastic rounding (SR). For instance, 3LC [30]
and TernGrad [55] use RN to quantize original values into
one-bit and two-bits, respectively. QSGD [2] and QSDP [33]
employ SR for quantizing normalized values into a pre-defined
number of bits. However, using quantization alone either
has limited reduction on required bits or significantly af-
fects convergence. Thus, the error feedback (EF) mechanism
is proposed to compensate for the quantization error (re-
covered value minus original value). These methods store
errors locally and add them back in the subsequent training
steps [16, 30], necessitate additional GPU memory or lead
to CPU-GPU memory copy overhead. Our work does not
use error feedback to facilitate large batch training with data
parallelism without risking out-of-memory errors.

Sparsification. Sparsification analyzes the SGD gradi-
ent value distribution to obtain value frequency and select
top frequent values in sparse format to represent full gradi-
ents, such as Top-k [51], GaussianK [49], and OK-topK [28].
Successive works either employ sparsification with different
granularity (e.g., row/column-wise [59]) or utilize momen-
tum techniques to preserve convergence while increasing
sparsity [50, 58]. These approaches need to rigidly control
sparsity to preserve convergence, limiting the improvement.
In contrast, we apply error-bounded filtering in the selected
iterations based on the learning rate change, providing better
communication message size reduction.

Combining both. Recent works in SGD gradient com-
pression combine various approaches, with CocktailSGD [53]
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being one of the most notable. This method integrates ran-
dom sampling, Top-k selection, and RN-based quantization.
The distinction between COMPSO and these methods is
threefold: ‘1 We focus on KFAC (second-order) gradient
compression instead of SGD (first-order) gradient, where
KFAC has more accurate directions and aggressive steps to-
ward convergence [32], thus more sensitive to compression
error. COMPSO introduces an error-bounded compression al-
gorithm that combines filter and SR to preserve convergence.
2 We design an adaptive compression strategy that pre-
serves accuracy (iteration-wise) and enhances compression
throughput (layer-wise). '3 We optimize GPU performance
carefully to enhance end-to-end performance on HPC sys-
tems, which often have greater communication bandwidth
and are thus more sensitive to the compressor throughput.
Other KFAC optimizations. PipeFisher [41] introduced
a mechanism for pipeline parallelism in KFAC, aiming to min-
imize GPU idle time by integrating the KFAC computations
into the idle periods of pipeline parallelism. PipeFisher oper-
ates under the assumption that models trained with KFAC
exceed the memory space of a single GPU, as evidenced
by P100 and V100 GPUs (16 GB memory). However, the ef-
fectiveness of PipeFisher might be limited. Firstly, modern
GPUs like Nvidia A100 and H100 offer substantial memory
capacities ranging from 40GB to 94GB, which is more than
sufficient for large models validated as effective with KFAC.
Secondly, models that have demonstrated faster convergence
with KFAC can easily fit within the memory capacities of
A100 GPUs. Thus, pipeline parallelism might not be essential
for KFAC. In this work, we align with previous studies that
focus primarily on data parallelism for KFAC.

7 Conclusion and Future Work

We introduced COMPSO, a novel framework for distributed
KFAC optimizers. This framework features a new KFAC gra-
dient compression algorithm with iteration- and layer-wise
adaptive compression strategies, as well as GPU optimiza-
tions aimed at enhancing end-to-end performance. Experi-
mental evaluation shows that COMPSO achieves up to 14.2x
communication speedup and 3.1X in overall performance.

Future work will focus on: ‘1 Precisely optimizing filter
thresholds and quantization error bounds, moving beyond
empirical settings; 2 Exploring compression techniques for
intermediate data in KFAC, specifically the factor matrices
A and G, to further enhance overall efficiency.
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